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Abstract

This study explored the factors influencing divergent outcomes of two

computer system development efforts which were undertaken to fulfill the

same requirement for computer automation of a manual resource scheduling

process. The first project employed the traditional waterfall approach to

system development, but resulted in user rejection and cancellation after

considerable resources and effort had been expended. The second project

employed prototyping and both the process and the product were well

received by the users and ultimately produced an operational system.

Analysis yielded eight contributory factors to the failure of the first effort.

Three of these were related to the waterfall approach, but the remaining

five would have adversely affected any type of development effort. As a

result, the waterfall approach was not deemed to be the most significant

contributor to the failure. However, the major contributor to the success of

the second effort was the use of prototyping. Most theoretical advantages of

prototyping over the waterfall approach were observed in that effort and

two additional advantages were identified. Prototyping's disadvantages

were largely mitigated by strong management control of the development

process.
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RANGE SCHEDULING AUTOMATION FOR THE AIR FORCE
SATELLITE CONTROL NETWORK: A CASE STUDY IN COMPUTER

SYSTEM DEVELOPMENT

I. Introduction

Judging from the researchers' experience, the mission critical

computer resources acquisition process in the Air Force often does not

provide products to users in an efficient, effective, and timely manner.

Many authors have cited recent development projects, both inside and

outside the government, where the final delivered product did not meet all

of the users' expectations and typically exceeded budget and schedule

constraints as well. The first attempt at automating the Air Force Satellite

Control Network's (AFSCN) range resource scheduling function is one such

project. After expending considerable resources and time, the resulting

system had significant deficiencies and was never accepted by the users for

operations. Novel development approaches in a second attempt resulted in

overwhelming project success and users' satisfaction. The second system

was recently installed and is currently supporting daily operations.

The objectives of this study are to explore the principal differences in

the two system development effob is in the context of the unique AFSCN

range resource scheduling problem domain, and to understand why the

second project succeeded after the first project ended in failure. The case
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presents a unique opportunity for comparison of the requirements definition

and system development approaches used because the nature of the problem

did not change. Only the fundamental problem solving methods changed,

within contractual and technological limitations at the time of each

development effort. Theory suggests that, in cases like this, use of the

evolutionary prototyping method is preferred and contributed greatly to the

success of the second project.

To fully comprehend the operational environment for which the two

range scheduling automation projects were developed, it is important to

understand the AFSCN range scheduling domain. Scheduling operations

were a labor intensive process which involved the manual scheduling of

satellite supports on the paper acquisition chart. The paper chart provided

the master schedule for all AFSCN network resources and allocated these

resources to individual satellites for a specified time period. To support

scheduling on the paper chart, scheduling personnel also used a computer

system to maintain an "electronic" database of the master schedule. The

system, known as SCRABL II (SCheduling Resource Allocation Buffer

Linkage II), provided the schedulers the ability to cross-check the paper

chart with the database prior to disseminating the formal schedule to the

various AFSCN organizations. Appendix A providas a more detailed

description of the scheduling activities and Appendix B contains a facsimile

of the paper acquisition chart. Scheduling operations will be discussed in

greater detail in Chapter IV.
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The first system aimed at fulfilling the range scheduling automation

requirement is called BASCH, for BAsic SCHeduling, and was begun in

1983. In keeping vith the accepted practices for Air Force embedded

software, the BASCH developer choose to apply the principles of the

traditional waterfall model to the project. The developer selected the

traditional waterfall model since it provided a structured systems

engineering approach. In addition, the Air Force directed the developer to

conduct the project in accordance with Military Standard-483, Configuration

Management Practices, MIL-STD-490, Specification Practices, and MIL-

STD-1521, Technical Reviews and Audits. The BASCH effort will be

described in detail in Chapter IV.

The second system is called ASTRO, for Automated Scheduling Tools

for Range Operations. The ASTRO system development effort was begun in

1987 after it was clear that the BASCH system would not support

operations. In contrast to BASCH, where the developer was directed to use

a formalized process of specifications, configuration management, and

reviews, the Air Force provided informal direction to the ASTRO developer.

Thus, instead of using the traditional waterfall model, the developer chose

the evolutionary prototyping approach to meet the AFSCN range scheduling

requirements. The ASTRO project will also be described in detail in

Chapter IV.
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Investigative Questions

The objective of the research is to determine if the results observed in

the BASCH and ASTRO projects support the claimed advantages and

disadvantages of the evolutionary prototyping methodology as compared to

the traditional waterfall methodology found in the literature. To achieve

this objective, the following areas of inquiry must be investigated:

1) What is the problem domain? Were the high level system
requirements and objectives the same for both efforts?

2) What development methodology was used in the BASCH
effort? Why was the methodology chosen?

3) What are the factors cited for the failure of BASCH?

4) What development methodology was used in the ASTRO
effort? Why was the methodology chosen?

5) What are the factors cited for the success of ASTRO?

6) What theoretical advantages and disadvantages of the
evolutionary prototyping methodology were evident in the
ASTRO development?

7) What other factors might have influenced the contrasting
outcomes of the two efforts?

The literature review in Chapter II discusses the software acquisition

problem in the Department of Defense (DOD) environment and relevant

software development methodologies, their origins, and the advantages and

disadvantages of their use. The research methodology is presented in

Chapter III. A chronological background of the two projects is presented in

Chapter IV. Chapter IV also addresses investigative question 1 with a

discussion of the range resource scheduling problem, with additional detail
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provided in Appendix A. The remaining investigative questions are

addressed explicitly in the analysis and findings in Chapter V. Chapter VI

presents the conclusions reached through this study.

Concept Definitions

To avoid confusion, traditional software development and prototyping

methodologies are defined for the purposes of this study.

Traditional software development methods are the formal,

well-defined processes used to develop computer system software. Air Force

software development efforts are now predominantly conducted in

accordance with DOD Standard-2167A, Defense System Software

DeveloDment. DOD-STD-2167A establishes procedures used to control

development and provides guidance for formal documentation that describes

the process and products. Additionally, the standard provides detailed

guidance for the management process including configuration management,

product evaluation, informal and formal qualification testing, and

documentation (Marciniak and Reifer, 1990:37). DOD-STD-2167A defines

eight steps in the software development life cycle (SDLC): 1) System

Requirements Analysis, 2) Software Requirements Analysis, 3) Preliminary

Design, 4) Detailed Design, 5) Software Coding and Unit Testing,

6) Computer Software Component Integration and Testing, 7) Computer

System Configuration Item Testing, and 8) System Integration and Testing

(DOD-STD-2167A, 1988:9).
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The steps identified by DOD-STD-2167A are comparable to the steps

associated with the traditional waterfall model. The waterfall model is a

structured approach where a series of well-defined, well-documented, and

sequential steps are performed to accomplish a system development

(Weinberg, 1991:47). Davis, Bersoff, and Comer provide an updated

description of the waterfall model in their comparison of SDLC models, as

shown in Figure 1. The model now includes feedback loops from subsequent

phases of the process (Davis and others, 1988:1453).

MSINTTANM

Figure 1. The Waterfall Model (Davis and others, 1988:1453)

Several software development methodologies and tools have been

promulgated over the past decade in an attempt to enhance the traditional

6
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SDLC model of software development. One such methodology is software

prototyping, analogous to systems engineering (hardware) prototyping which

has long been an accepted design aid (Weinberg, 1991:48-49). For example,

aircraft and automobile manufacturers have been building prototypes for

years to help convert engineers' ideas into reality (Swift, 1989:14). For the

purposes of this study, prototyping is an iterative process where successive

prototype models are quickly developed and evaluated against the users'

requirements. Initially, the developer and users work together to identify

and clarify the requirements and specifications for the system. The

developer then constructs models of the system which are evaluated by the

users. The users' evaluations are fed back to the developer and changes are

made in the prototype. This process continues until the users determine

that the prototype successfully identifies the critical requirements of the

envisioned system. In most cases, the last prototype model will not exhibit

all functional characteristics of the operational system but serves as an aid

for the final development (Lugi, 1989:13).

Despite its increasing popularity, software prototyping is not a

panacea. Attempts at applying the methodology wholesale in lieu of the

formal traditional approach, prescribed by DOD-STD-2167A, have not

generally improved the final results (Kelly and Neetz, 1988:644). However,

in certain types of software development projects, and under certain

conditions, software prototyping has been demonstrated to be very effective

for defining system requirements and functional capabilities (Voltmer,
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1989:24; Carey and Currey, 1989:29; Weinberg, 1991:47). These project

types and conditions are not well defined, so managers presently make

largely subjective decisions about using software prototyping in their

projects. Often, decisions are based upon anecdotal or experiential

information which is prolific in information systems literature.
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II. Literature Review

A review of literature on current software development methodologies

is presented to establish a better understanding of the advantages and

disadvantages of the various alternative approaches for the development of

software systems within the Air Force and to observe if these advantages

and disadvantages relate to the development efforts investigated. The

review examined the current problems facing the DOD associated with the

inability of the traditional software development methodology, the waterfall

model, to deliver quality products on schedule and within budget. The

literature review also focused on the applicability of evolutionary

prototyping as a means of defining and clarifying users' requirements for

computer systems. Finally, the review examined recent research efforts

which investigated alternative methods of software development for

relevancy to this research effort.

The Software Dilemma

As advances in technology increase the complexity of modern weapon

systems, computers are called upon more frequently to control these

systems. To better support these complex weapon systems, the computers

also have become more complex and now play an integral role in virtually

all major systems. A system's performance is dictated by how well the

9



computer programs can analyze the inputs and tell the system what to do

and how to do it (Canan, 1986:46).

In these times of decreasing military budgets, the Air Force must

consider all alternatives before committing to the development of a new

weapon system. Alternatives, such as modifying existing systems, have

become more prevalent in the current acquisition environment. A large

portion of these modifications include enhancing embedded computer

software to improve the capabilities of the system and to meet new threats

(Canan, 1986:46). However, the DOD faces a growing problem associated

with software procurement: the inability of the government managers to

buy or develop quality software systems in a timely and cost-effective

manner (U.S. Congress, 1989:cover letter).

Analysts estimate that the DOD currently spends in excess of $30

billion annually in the development and support of software systems (Staff

Study, 1991:1). Within the Air Force, it is estimated that 10 percent of the

total budget is allocated to developing and maintaining software (Canan,

1986:46). The 1989 Staff Study from the Subcommittee on Investigation

and Oversight, United States House of Representatives Committee on

Science, Space and Technology, to the Congress reported that "computer

software, which is now a major cost item in many procurements, is not

immune from traditional procurement problems such as delays, cost

overruns, and poor performance" (U.S. Congress, 1989:3). The report also

implied that often times the final software system does not meet the needs

10



or requirements of the system users. This results in increased

expenditures to correct development deficiencies during the software

maintenance/support phase which in turn increases the overall life cycle

cost of the system.

The traditional approach of specifying, designing, coding,

documenting, and testing software does not provide adequate insight into

issues that impact software maintenance. The problems associated with the

traditional approach become evident when examining the full life cycle cost

of software (Figure 2). In analyzing Figure 2, it is noted that approximately

sixty percent of the cost associated with the development of computer

software is related to maintenance activities. Those activities include:

enhancing the performance or maintainability of the software--preventive;

modifying the software to support a new processing or data environment--

adaptive; and fixing identified processing, performance, or implementation

deficiencies--corrective (Boehm, 1981:54-55). For example,

It cost $85 million to develop the software for an F-16D. It
costs another $250 million to maintain that software--rectify its
errors, keep it in shape, update it--over its anticipated
operational lifetime. (Canan, 1986:49)

Despite the relatively large costs associated with maintenance

activities, attention remains focused on creating new tools and alternative

methodologies for software design and development. The ease and cost of

software maintenance is directly related to activities associated with the

software development. Yet, in the traditional approach, there exists very

11
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Figure 2. Distribution of Effort in the SDLC (Hager, 1989:1639)

little feedback between the developer and the maintainer. This results in a

product that is difficult to maintain and often does not meet the specified

requirements (Hager, 1989:1648). Thus, maintenance personnel are left

with the responsibility of correcting development deficiencies instead of

improving the system capabilities to meet evolving users' requirements.

Traditional Software Development

The traditional approach is a formalized document-driven process

where each step ends with a specific deliverable that is then used in the

12



next step. The process begins with a thorough analysis by the developer,

focusing on the scope and feasibility of the system. During the next stage,

requirements specification, the users and developer prepare a detailed set of

requirements for the system via system-level specifications. These

specifications typically include a detailed description of the functional

capabilities of the system as well as performance parameters and reliability

and physical constraints (Weinberg, 1991:47-48). The specifications provide

the foundation for all subsequent phases of the effort.

Upon validation of the system specifications, preliminary and detailed

design phases follow. The goal of these phases is to produce a detailed

logical and physical description of the system from which the programmers

can proceed. The design details data processing requirements, user

interfaces, databases, system outputs, and external interfaces. Additionally,

the system hardware on which the software will run is identified (Weinberg,

1991:48).

After approval of the detailed design, the developer enters coding and

testing phases. During these phases, computer software is developed or

purchased and testing of both individual software subsystems and the

overall system is conducted. Ideally, if the system specifications were

complete and the design well thought-out, the actual development and test

can be reasonably uncomplicated. However, many times the specifications

and design are less than complete, which results in errors in the functional

capabilities. Thus, errors in requirements specification ate usually not

13



identified until late in the development and are extremely costly to correct

(Weinberg, 1991:48).

Furthermore, the later the requirement error is discovered, the more

impact the correction has on the development schedule and the overall life

cycle cost (U.S. Congress, 1989:9; Boehm, 1981:40). For example, if a

software requirement error is detected during the requirements phase, its

correction has minimal impact on the development effort. In contrast, if the

same error is not discovered until after system delivery, the correction

involves a significant effort at substantial cost. Past research has estimated

the cost to fix an error during the maintenance phase instead of during the

requirements phase at 100 times greater (see Figure 3).

For Air Force projects, the traditional approach begins with the users

submitting their requirements in a System Requirements Document (SRD)

for a new system or modification of an existing system. In theory, the SRD

outlines the users' expectations of what the system must do and not how to

actually implement the requirements. The SRD provides a starting point

for all subsequent design and development activities and serves as the

criteria for system validation (Rowens, 1990:12).

Following submittal of the SRD, the developer presents the design via

the system specifications. The correctness of these specifications often

depends on how well the users understand the technical aspects of the

project and whether they can visualize the results from the technical

descriptions (Swift, 1989:14). Thus, the success of the entire project hinges

14
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Figure 3. Increase in Cost-To-Fix or Change Software Throughout the
Life Cycle (Boehm, 1981:40)

on the accuracy of the requirements analysis and system design. The

formal stages of the traditional approach, when explicitly followed, should

produce a computer system that meets the specified requirements (Gavurin,

1991:13). However, the traditional approach has been ineffective in meeting

the requirements for development of complex interactive systems required

for DOD weapon systems (Canan, 1986:46-48). Many of the problems

associated with the traditional approach can be tied to two areas; 1) the

users' inability to clearly and accurately convey their requirements via

formal specifications early in the process, and 2) the associated time span

15



between original requirements definition and delivery of the final system

(Gavurin, 1991:13).

In 1987, The Defense Science Board Task Force on Military Software

reported that military software is procured because of the inherent

flexibility it provides modem weapon systems. Nonetheless, the DOD

acquires these critical software systems under an acquisition approach and

regulations which demand extreme rigidity on the part of the developer

(U.S. Congress, 1989:8). The Task Force added:

The most common present method of formulating
specifications--issuing a Request for Proposal, accepting bids,
and then letting a contract for software delivery--is not keeping
with good modem practice and accounts for much of the
mismatch between users' needs and delivered function, cost
and schedule. [We] now understand the importance of iterative
development of requirements, the testing of requirements
against real users' needs by rapid prototyping, and the
construction of systems by incremental development, with early
releases subject to operational use. (U.S. Congress, 1989:8)

Additionally, the Task Force report suggested the DOD change its

development standards to remove the remaining dependency on the

waterfall approach and to institutionalize the use of prototyping and

incremental development. As a result of the Task Force's recommendations,

the DOD adopted DOD-STD-2167A as the new standard for software

development. However, in response to issuance of the new standard the

report stated:

Although some parts of DOD-STD-2167A appear to encourage
modem development methods, the document as a whole
continues to reinforce the document-driven, specify-then-build

16



approach that we believe causes so many of DOD's software

problems. (U.S. Congress, 1989:8)

The report concluded that fully imposing the complex standards of

DOD-STD-2167A on every piece of software purchased by the military

would drive the life cycle cost of the system through the roof, would result

in a mass of useless paper, and would reduce safety in critical systems by

diverting management attention (U.S. Congress, 1989:21).

In some cases the traditional approach does remain attractive to a

program manager. The waterfall approach defines specific documents and

milestones associated with each development phase, which provide the

necessary checkpoints and control mechanisms (Gavurin, 1991:13). At each

milestone, the manager can assess the effort and assure the project is

progressing as planned.

Despite all these controls, computer systems developed under the

traditional approach are often unsuccessful (Swift, 1989:14). Availability of

the end system is often delayed due to misinterpretation of the

requirements by the developer or changes in the requirements by the users.

These delivery delays further frustrate the users, who anxiously await the

required system.

In recent years, several new development methodologies have

emerged as alternatives to the traditional waterfall approach. The overall

goal of these alternatives is to reduce the total life cycle cost of the software

by improving the development process and reducing the need for the

17



maintainers to correct development problems (Hager, 1989:1648). By

reducing the demand on programmers to conduct corrective maintenance,

more effort can be applied to adaptive or perfective maintenance activities,

which in turn will lead to improved system performance. Furthermore,

since the alternative methodologies improve the process for identifying

system requirements, they also reduce the amount of programmer effort

required to perform perfective maintenance as well.

Prototpin•

One of the more widely accepted alternatives to the traditional

development approach is software prototyping. Prototyping offers an

approach to designing and developing computer systems that minimizes the

problems and risks inherent in the traditional approach.

Prototyping differs from the traditional approach in two major ways.

First, the prototype system most often does not include all the functional

capabilities required for the final system, nor is it expected to have the

same performance characteristics required to meet the users' processing

needs. Second, the prototype system should be developed quickly through

an iterative process and at significantly lower cost than the final system.

Michael C. Holloway in his article provides one definition of prototyping:

A software system that exhibits essential features of an
intended system: it is an adequate representation of the
intended system in some ways but not in others (similar to a
scale model). (Holloway, 1987:1)

18



Holloway classifies the prototyping approach in one of two ways: by scope

or purpose. Scope is the extent to which the prototype models the final

system. It may contain the full functionality of the final system, only part

of the functionality, only representative functionality, or simply the

intended user interface. Purpose is defined as the goals or objectives for

which the prototype system is being developed. Prototypes are developed to

clarify system requirements, to test design approaches, or incrementally

build the final system (Holloway, 1987:2).

One of the primary objectives of the prototyping approach to software

development is to get the users involved early in the project to assist them

in defining and clarifying the system's requirements. This is accomplished

by combining the systems analysis, requirements analysis, preliminary

design, and detailed design stages of the traditional approach to minimize

initial design and development time. As a result, the users get earlier

insight into the system and they are able to evaluate the prototype to

assure it meets their needs.

To this end, the prototyping process consists of numerous iterations of

the following four fundamental steps (see Figure 4):

1) Identify the users' initial requirements.

2) Develop an initial prototype system.

3) Users evaluate the prototype.

4) Revise and enhance the prototype system based on users'
feedback. (Er, 1987:13)

19



o4 - ..- : : , . . . .. .

IDENTIFY
INITIAL
REQUIREMENTS

DEVELOP
PROTOTYPE
SYSTEM

USERS•
EVALUATE

PROTOTYPE

DOSNO REVISE

IT MET THEPROTOTYPE

• ,•,YES

DEVELOP
OPERATIONAL
SYSTEM

Figure 4. Prototyping Development Process (Er, 1987:13)

Through this iterative process, prototyping provides a means to develop a

system more quickly and to define requirements more accurately (Carey and

Currey, 1989:30).

The concept of prototyping is not foreign to the Air Force. In fact, Air

Force Regulation (AFR) 800-14, Acquisition Management: Life Cycle

Management of Computer Resources in Systems defines the process for

applying the prototyping methodology to software projects:
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Initial requirements definition and design are abbreviated.
The initial system is developed quickly to meet initial
functional requirements, but may not meet performance
requirements such as speed or capacity. User experience with
the prototype is fed back into requirements for a deliverable
product which is developed using more traditional techniques.
(AFR 800-14, 1986:26)

However, the regulation explicitly directs the use of prototyping be limited

to only the requirements definition phase. Yet, recent efforts in both the

DOD and the commercial sector have shown that prototyping can be

successfully applied throughout the development process especially during

design phases.

Prototvwing Advantages. Discussions so far have focused on the

benefits of prototyping in general terms. Several specific benefits are

derived when applying prototyping techniques.

Possibly the two greatest benefits of prototyping lie in the areas of

requirements definition and users' involvement (Carey and Currey, 1989:30;

Gavurin, 1991:14). Since prototyping consists of an iterative process

between development and users' evaluation, the users can provide valuable

feedback to the developer. This feedback tells the developer early on how

well the system meets users' requirements (Holloway, 1987:2). In the

traditional approach, the system users must provide a comprehensive list of

requirements up front. Unfortunately for new ground-breaking systems,

requirements analysts are often told by the users, "I'm not really sure what

I want, but II know it when I see it" (Boehm, 1984:290). Prototyping also

provides faster response times to the users' changing requirements (Swift,
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1989:15). New requirements can be directed back to the developer through

the feedback channels and swiftly incorporated into the prototype system.

Furthermore, prototyping provides a useful tool in allowing the developer to

assess users' feedback regarding various design alternatives. Through the

application of prototyping, the users and the developer have a clearer

understanding of what is being produced, which results in fewer surprises

(Smyrniotis, 1990:202). Thus, prototypes offer a greater probability of

delivering what the users need with the initial operational delivery (Swift,

1989:15).

In addition, prototyping can be used to stabilize the requirements for

both new systems and proposed modifications to existing systems.

Feedback through users' evaluations is essential for effectively validating

complex requirements found in large embedded real-time computer systems

(Lugi, 1989:24).

Another significant benefit of prototyping is the ability to minimize

the risk and uncertainty associated with the development effort. Purtilo

and others note that by reducing uncertainty, the developer minimizes the

risk that incomplete requirements would lead to system failure (Purtilo and

others, 1991:3). For DOD projects, the program manager is responsible for

controlling all aspects of the project, including minimizing cost, schedule,

and performance risks. DOD Directive 5000.1, Defense Acquisition, Part 1,

Section C, recommends that "technology demonstration and aggressive

prototyping (including manufacturing processes, hardware and software
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systems, and critical subsystems) coupled with early assessment, are to be

used to reduce risk" (DOD Directive 5000.1, 1991:4-5). Prototyping reduces

the risk associated with the project by identifying problems early in the

process and providing more time for the developer to resolve them.

Finally, prototyping is useful in developing user interfaces for

systems with numerous end users. Susan Harker writes:

In the development of large-scale applications, those involving
large quantities of data, complex processing and many end
users, the implications of creating a poor user interface are
particularly serious. The scale of development often makes it
difficult to correct problems which derive from the fundamental
decisions about the nature of the system and the numbers of
people affected results in higher costs to run the system
because of potential errors and lower efficiency. (Harker,
1988:420)

Harker suggests that prototyping can be applied to provide "concrete•

representation" of a possible solution on which the users can comment

directly. Therefore, the developer can ensure that all possible steps have

been taken to provide a user interface which does represent a good solution

for the users (Harker, 1988:420).

The findings of the literature review suggest that prototyping offers

numerous advantages over the traditional waterfall model. Those

advantages are summarized in Table 1.

Prototypin¢ Disadvantages. As with all development processes, there

are potential disadvantages that a prototyping project manager must be

aware of before undertaking the effort. Unlike the traditional waterfall

approach, prototyping does not provide clear and formalized deliverables,
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Table 1.

Advantages of Prototyping (Kelly and Neetz, 1988:644; ASTM Standard,
1990:413)

1. Provides a means for users and developer to work together
defining and developing system.

2. Provides greater insight into users' requirements.

3. Prototypes can be easily modified to accommodate changing
users' requirements.

4. End product is a more stable, tangible representation of the
users' requirements.

5. Provides a better estimate of the time and effort required to
develop the final system.

6. Provides early visibility and elimination of development
problems.

7. Reduces development risk and uncertainty.

8. Can quickly produce a working model to provide a clearer
understanding of system's behavior.

9. Allows flexibility in selection of hardware and support software
for the operational system.

10. Can produce a better user-system interface for large multi-user
systems.

11. Provides higher probability of delivering the "right" system the
first time.

which would provide management insight into the project. Therefore,

attempts to apply traditional controls to prototype efforts often result in

feelings of uneasiness among management (Voltmer, 1989:24). Given the
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lack of a formalized process, management perceives the project is out of

control and may decide to cancel the project. To avoid this problem,

management must be made aware of the differences between the two

approaches ý, nd alternative checkpoints and milestones must be developed.

In addition to maintaining overall management control, the developer

must maintain strict control of the project requirements process. Since

most prototyping projects forego the formal requirements process, the users

often do not find time to completely analyze the system requirements until

the prototype effort nears completion. In a flurry of activity, the users

realize the "window of change" is closing and the developer often receives a

flood of new requirements near the end of the project (Swift, 1989:19).

Studies have shown that in prototyping projects as much as 50 percent of

the system's functional requirements may not show up until the last 10

percent of the development schedule (Voltmer, 1989:25). Therefore, the

developer must be aware of this situation and maintain strict control over

system requirements growth.

Another potential drawback faced by prototype project managers

stems from an inherent strength of the process (Voltmer, 1989:25). Since

prototype systems are much easier to change than traditional systems,

there may be a desire by the users to continually request minor changes

and improvements. The developer must realize that eventually the

prototype effort must be terminated and the project completed. If the

developer allows the project to continue, he may find the computer system
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in a perpetual state of 99 percent complete with no end in sight (Voltmer,

1989:25).

Moreover, the application of prototyping techniques may be

impractical for certain projects. Purtilo, Larson, and Clarke discuss the

potential problems associated with using prototyping for large-scale

development efforts.

Many large-scale prototyping activities are motivated by
applications that must incorporate parallelism or distribution
within the implementation. Unfortunately, when programmers
must manage multiple threads of control, or implement
communications protocols, their programs become difficult and
time consuming. That it, the prototype ceases to exhibit any
economic benefits to the developer. (Purtilo and others, 1991:3)

Finally, prototyping may negatively affect the performance and

adaptability of the modeled system. Since one of the goals of prototyping is

to quickly generate an operational model of the system, performance is often

overlooked during the development. The prototyping effort may result in an

inefficient system and when pushed to its maximum levels (e.g., heavily

loaded, buffers exhausted, and displays filled with data), the system may

not perform up to the required level of performance. Furthermore, often

times the prototype may not be useable outside of the hardware and

software environment in which it is developed. Thus, the prototype would

require significant redevelopment to make it portable to a more desirable

operational system (ASTM Standard, 1990:413).
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In summary, the literature suggests there are numerous potential

disadvantages associated with the use of prototyping during the

development effort. Table 2 lists those disadvantages.

Table 2.

Disadvantages of Prototyping (ASTM Standard, 1990:413)

1. Complete requirements definition often occurs late in the
development process.

2. Process lends itself to growth in system requirements through
iterative users' feedback.

3. May be slow to identify an optimum design.

4. May result in an inefficient system design.

5. Potential risk of the prototype being forced into serving as the
operational system.

6. May produce a system which lacks portability or generality.

7. Not practical for large-scale developments which apply
parallelism or distribution of effort.

8. Can be difficult to maintain a tight development schedule.

9. Does not provide clear, formalized deliverables for management
to track development progress.

10. Documentation tends to lag behind development.

Prototvcinz AvDroaches. The literature divides prototyping efforts

into two distinct categories, throw-away and evolutionary (Gavurin, 1991:13;

Guimaraes, 1987:102; Rowen, 1990:14). Each approach has different
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applicability in software development and selection of an approach depends

on the specific project.

Proponents of throw-away prototyping maintain that a prototype

system should be considered only as a temporary system, and the final

system should be built from scratch using traditional methods (Rogers,

1986:3). Successive throw-away prototypes benefit from the experience

gained with each effort. Throw-away prototypes are extremely useful when

the developer is unable to define a clear design alternative. In this case,

the developer builds throw-away models of particular design alternatives to

assess the feasibility of the design (Guimaraes, 1987:103; Holloway, 1987:2).

With each model, the developer tests system characteristics (e.g., system

response time, memory requirements) for various design alternatives.

These prototypes are far less costly than proceeding into development and

finding the wrong system configuration has been specified. Thus,

prototyping in the context of the throw-away model is a method of system

analysis that involves elaborate simulation of system features and intense

involvement of the users (Klinger, 1986:131).

In determining if throw-away prototyping is applicable for a specific

project, the developer must consider duplication of effort between the

prototype and the final system. Throw-away prototypes often waste

valuable hours in building the initial system only to turn it over to the final

development group, who extract the necessary information on the users'

requirements, discard the code, and begin the development from scratch
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(Guimaraes, 1987:102). For example, a Chicago bank used throw-away

prototypes to support internal software requirements. On average, the bank

expended 250 hours per prototype. An additional 45 hours were expended

by the prototype developers in discussing the project requirements with the

final developers. The system development group took between 75 and 225

hours repeating work already done under the prototype effort. The result

was 30 to 90 percent of the development effort expended being redundant

activity (Guimaraes, 1987:102).

In deciding whether to use throw-away prototyping, a manager must

consider the development schedule. Throw-away prototyping usually

requires more development time as compared to the evolutionary approach

because each subsequent model starts from scratch (Rogers, 1986:3). Thus,

in those cases where time is not of the essence, throw-away prototyping

offers an attractive development alternative.

In operational terms, evolutionary prototyping is the process of

continually gathering knowledge regarding the system's requirements and

converting that knowledge into operational software until such time as the

prototype meets the users' needs. The knowledge sought may pertain to the

definition or clarification of requirements, users acceptance, system

characteristics or performance factors (Tate, 1990:238).

In evolutionary prototyping, the final system evolves directly from the

prototype model through continuous development refinement. Successive

models build on experience gained from the previous iteration. Upon
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completion of each model, the developer delivers the prototype system to the

users for evaluation. As the users evaluate the prototype, they

communicate to the developer any required modifications. The prototype is

again modified and a new model is delivered to the users for evaluation.

The iteration process continues until the point where the developer and

users agree the prototype system meets the users' needs.

Once the prototype meets the users' requirements, the process is

discontinued and the model becomes the baseline for the final operational

system. Additional development actions may be required and range from

the complex actions of recoding the software into a more supportable

language, to rehosting the system and defining new hardware to meet

performance parameters, or to the simple action of producing documentation

of the system "as-designed." In these cases, the prototype evolves into the

final system (Gavurin, 1991:14).

Finally, at the start of the prototyping process no system

specification is needed, since evolutionary prototyping allows the system to

change based on users' feedback. The prototyping process will ultimately

produce the system specification.

Incremental Development

The incremental development model divides large, complex software

projects into manageable subsystems. These subsystems are then developed

in parallel as individual "mini" projects. Individual components are then
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integrated into a single increment, which provides a "snapshot" of the

software system at any given point in time. The developer can use these

increments to assess the overall progress of the project.

In addition, the entire software system can be delivered as a series of

increments which are integrated together over time. These increments

provide a limited software capability to the system users, while other more

complex and time consuming subsystems are developed. Incremental

development can also reduce the overall schedule, since each increment can

be tested separately prior to integration. Precise configuration control must

be maintained to assure that problems with one increment do not result in

the failure of another. Therefore, management must maintain strict control

to assure project success (Marciniak and Reifer, 1990:47).

Incremental development can be used at the system or subsystem

level and is often used when a "breadboard" or model is developed prior to

production. Similar to prototyping, incremental development sturesses the

current trend in software engineering to build a system model prior to

committing time and resources to production of the operational system.

The Spiral Model

Numerous advanced software development approaches have evolved

to take advantage of the benefits of the traditional waterfall model and the

modern practices of alternative models. One such approach is the spiral

model. The major distinguishing factor of the spiral model is that it creates
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a risk-driven approach to software development instead of the primarily

document-driven approach of the traditional waterfall model (Boehm,

1988:88). The basic goal of the spiral model is to reduce development risk

by using an iterative approach that builds upon the lessons-learned

throughout the project (Marciniak and Reifer, 1990:48).

At project initiation, the project manager and software engineers

determine the overall development risk. Based on their assessment, the

team can tailor the development approach. If the risk is high, an initial

prototype may be developed to assist in the further definition of the project

objectives. Each subsequent cycle of the spiral begins with the

identification of the objectives of the cycle, the alternative means of

development to be used during the cycle, and the constraints associated

with the selected approach (i.e., cost, schedule or system performance)

(Boehm, 1988:92). Additionally, at the start of each cycle, the development

team conducts a risk analysis to determine whether to continue the current

spiral or jump to another spiral. If the team determines that the project

risk is extremely low, they may decide to jump to the final cycle of the

model, the traditional waterfall approach.

During the early cycles of the model, documentation and formal

management controls are minimized to reduce the development costs. As

the model progresses through the various cycles, the level of documentation

increases as well as the rigor of the development (Marciniak and Reifer,

1988:48).
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The spiral model reflects an underlying concept that each cycle in the

spiral follows a progression that addresses the same sequences of steps.

These steps are applied to each portion of the development, from the overall

project concept all the way down to the coding of individual software

subsystems (Boehm, 1988:92).

Prototyping Versus Specifyina

In Boehm, Gray, and Seewaldts' article on prototyping versus

specifying, the authors describe an experiment which they conducted to

confirm and quantify the positive aspects of prototyping as an alternative

software development approach. The experiment was conducted to answer

the following question: "Should the current specification-driven approach to

software development be dropped in favor of an alternative based on

prototyping?" (Boehm and others, 1984:290). The authors' motivation was

based on recent proposals that suggested prototyping offered a number of

advantages, such as the early resolution of high-risk issues and the

flexibility to adapt to changing environments and users' needs, over the

traditional approach to development (Boehm and others, 1984:290).

The experiment was conducted with students in a first year graduate

course in software engineering at the University of California at Los

Angeles. Students were divided into seven teams based on personal

preference toward developing software by specifications or prototyping.

Four teams used a specification-driven approach while the other three
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teams used a prototyping approach. Each team was required to develop

the same software product (a user-interactive software cost estimation

model comprising approximately 3000 Pascal source instructions). The four

specification-driven teams had to produce a requirements specification, a

design specification, an end product consisting of operational code and users'

and maintenance manuals. The three prototyping teams were required to

produce the same end products and were required to produce and exercise

their prototypes by midpoint of the class (Boehm and others, 1984:291).

The results of the authors' experiment were: 1) prototyping teams on

average developed products that were 40 percent smaller and required 45

percent less effort; 2) there was no significant difference in overall

productivity between the two groups; 3) overall effort was proportional to

product size; 4) overall product performance was generally the same--the

prototype products were rated lower in overall functionality and their

tolerance for errors in input, but correspondingly higher in the ease of

learning and user interface; 5) maintainability of the prototype products

was rated higher than the specified products, but the prototyping products

were rated lower on the basis of ease of add-on; and 6) the specification

teams were more productive in developing documentation (Boehm and

others, 1984:291-299).

Based on the results of the experiment, the authors concluded that

both prototyping and specifying provide valuable advantages that

complement each other. Specifically, for both large and small projects a
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mixture of the two approaches would be beneficial -and preferable to the

exclusive application of either. Finally, they noted that risk management

should be the driving factor in determining the specific mix of the two

approaches. Each software project should develop a risk management plan

which identifies potential high risk issues, establishes plans for dealing

with them, and documents risk resolution for project status reviews (Boehm

and others, 1984:300).
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IM. Research Methodology

The guiding research question for this study is: Do the results

observed in the BASCH and ASTRO projects support the claimed

advantages and disadvantages of the evolutionary prototyping methodology

over the traditional waterfall methodology found in the literature? The

research methodology establishes the plan for answering this question and

the more detailed investigative questions identified in Chapter I.

Research Design

The case research method is employed, with the two AFSCN range

scheduling automation efforts as the units of analysis in a single-case

embedded design. The events, decisions, methods, impressions, and results

of the effort are chronicled to seek explanation for the divergent outcomes of

the two development projects. The study is explanatory in nature, to

determine if the theoretical advantages of the evolutionary prototyping

method explain the outcomes in this case. The research also attempts to

determine whether other plausible explanations for the failure of BASCH

and the subsequent success of ASTRO can be considered insignificant.

The site was selected because it presents a unique opportunity to

compare the traditional method of software development and the

evolutionary prototyping method in the same problem context. Also,

thorough data collection and detailed contextual development is facilitated
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because both researchers previously worked in the organization which

managed the projects. The objective of the case study is to determine if

application of the evolutionary prototyping methodology in the ASTRO

project significantly contributed to its success.

The reasons for selecting the ex-post-facto research design are

twofold: 1) success via prototyping has been proclaimed, but there is scant

empirical evidence (judging from the literature search) to support the claim

and encourage future use; and 2) the time required to conduct an

experiment in the population of interest is well beyond the time available

for this research. This is because the development phases of the SDLC

typically span more than a year. Also, experimental control of extraneous

variables and collection of data would probably not be manageable across a

sample of contracted development efforts.

Methodolory Literature Review

In his book on case study research, Yin provides the following

definition:

A case study is an empirical inquiry that: investigates a
contemporary phenomenon within its real-life context; when
the boundaries between phenomenon and context are not
clearly evident; and in which multiple sources of evidence are
used. (Yin, 1989:23)

He emphasizes that case studies are not generalizable to populations or

universes, but rather to theories. The case is not a sample in a statistical

analysis, and should not be treated as such. It is used "to expand and
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generalize theories (analytic generalization) and not to enumerate

frequencies (statistical generalization)" (Yin, 1989:21).

In their paper on the use of the case research strategy in information

system studies, Benbasat, Goldstein, and Mead attribute recent interest in

the case method to "dissatisfaction with the type of research information

provided by quantitative techniques." They cite the complexity of

multi-variate statistical methods and the assumptions about the underlying

distributions, requirements for large sample sizes, and difficulty in

understanding and translating results. In their view, "the case strategy is

particularly well-suited to [Information System] research because the

technology is relatively new and interest has shifted to organizational

rather than technical issues" (Benbasat and others, 1987:382). They note

that detailed chronological case studies have helped to understand the

causes of success or failure in particular information system projects.

Benbasat and others cite three reasons that the case research method

is appropriate for information system studies:

First, the researcher can study information systems in a
natural setting, and learn about the state of the art, and
generate theories from practice. Second, the case method
allows the researcher to answer "how" and "why" questions,
that is, to understand the nature and complexity of the
processes taking place. Questions such as, "How does a
manager effectively introduce new information technologies?"
are critical ones for researchers to pursue. Third, a case
approach is an appropriate way to research an area in which
few previous studies have been carried out. (Benbasat and
others, 1987:370)
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Design Considerations. The research design guides the research by

establishing the questions to be investigated, the relevant data, the subset

of data to be collected, and the analysis which links the data to the

questions. Yin breaks the research design into five components which are

important for case study research. They are: "1) a study's questions; 2) its

propositions, if any; 3) its unit(s) of analysis; 4) the logic linking the data to

the propositions; and 5) the criteria for interpreting the results" (Yin,

1989:29). The questions for which case studies are appropriate are "how"

and "why" type questions. When the purpose is explanation, the proposition

helps determine what should be studied (i.e., site selection and unit of

analysis). Data analysis and interpretation, addressing the last two

components, are the least well developed aspect of case study design (Yin,

1989:29-33).

Yin categorizes case study designs into four types. They are single-

case holistic (single unit of analysis), single-case embedded (multiple units

of analysis), multiple-case holistic, and multiple-case embedded. Three

rationales for selecting the single-case design are provided. The first is if

the case is a critical case which can "confirm, challenge, or extend" a well-

formulated theory. The outcomes in the case can either be explained by the

theory's propositions or by alternative explanations. The second is if the

case is so "extreme or unique" that any occurrence of the phenomenon of

interest is worth documenting. Finally, the third rationale is if the case is
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"revelatory," or previously inaccessible to scientific investigation (Yin,

1989:47-49).

Benbasat and others discuss the research design in terms of the

overall themes and objectives. They note in their evaluation of several

papers from information systems journals that "the predominant theme in

the case studies was implementation, that is, the possible causes of the

success or failure of an information or decision support system" (Benbasat

and others, 1987:378). Here the case study design is useful because of the

long time span involved in implementing an information system, the

complexity of the processes, the large number of people involved, and the

chance occurrence of events. They also note that in the case studies

investigated the objective of the research was not always clearly defined.

The researchers did not state, and it was not always clear, whether the

study's purpose was exploratory or explanatory (Benbasat and others,

1987:378-382).

Additionally, Benbasat and others discuss practical considerations of

single-case versus multiple-case design, unit of analysis, site selection, and

data collection methods in the conduct of case studies. They suggest that

single-case studies are "most useful at the outset of theory generation and

late in theory testing," and "may also be used to test the boundaries of well-

formed theory" (Benbasat and others, 1987:373). The unit of analysis can

be an individual, group, organization, or a specific project or decision. The

research questions and the objective (i.e., to generalize to other individuals,
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organizations, or projects) should guide the choice. Site selection is

determined by the same factors which led to the single-case design. Lastly,

the data collection should be from two or more sources "to obtain a rich set

of data surrounding the specific research issue, as well as capturing the

contextual complexity" (Benbasat and others, 1987:372-374).

In her article, Eisenhardt notes that cases are chosen for theoretical,

not statistical reasons. Single, within case, analyses are appropriate if the

intent is to focus on the dynamics involved in a single setting. "The cases

may be chosen to replicate previous cases or extend emergent theory, or

they may be chosen to fill theoretical categories and provide examples of

polar types" (Eisenhardt, 1989:534-537).

Quality Considerations. As in other forms of empirical research, the

issues of validity and reliability must be addressed in a case study. Yin

discusses four tests for quality of research designs. They are defined as:

Construct validity: establishing correct operational measures
for the concepts being studied;

Internal validity (for explanatory or causal studies only, and
not for descriptive or exploratory studies): establishing a
causal relationship, whereby certain conditions are
shown to lead to other conditions, as distinguished from
spurious relationships;

External validity: establishing the domain to which a study's findings
can be generalized; and

Reliability: demonstrating that the operations of a study--such
as the data collection procedures--can be repeated, with
the same results. (Yin, 1989:40-41)

Tactics for achieving these objectives in case studies are provided in

Table 3.
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Table 3.

Case Study Tactics for Four Design Tests (Yin, 1989:41)

Phase of Research in
Tests Case-study Tactic Which Tactic Occurs

Construct use multiple sources of data collection
validity evidence

establish chain of data collection
evidence

have key informants composition
review draft case study
report

Internal do pattern matching data analysis
validity

do explanation-building data analysis

do time-series analysis data analysis

External use replication logic in research design
validity multiple case studies

Reliability use case study protocol data collection

develop case study data collection
database

Data Collection

The data collected consists of program documentation, archival

records, and unstructured interviews with key development and operations

personnel. Appendix C contains the interview preface used to conduct each

interview. The differing sources of data are used for triangulation within

the study to enhance internal validity. Furthermore, "two researchers can
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capture greater richness of data and rely more confidently on the accuracy

of the data" (Benbasat and others, 1987:374).

Data Analysis

The analysis is separated into two tasks. The first task is to detail

the background and events of the case. Chapter IV contains a chronological

history of the range resource scheduling automation efforts from the

beginnings of BASCH to the operational activation of ASTRO. The second

task is to provide answers to the investigative questions through analysis of

the data collected. Chapter V contains a narrative analysis and findings for

each investigative question.
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IV. Case Backrund

To understand the complexity of the development effort associated

with the BASCH and ASTRO projects, it is important to provide some

background into the environment in which the computer systems operate.

The AFSCN is operated by the Air Force Space Command (AFSPACECOM)

and consists of a global network of space and ground tracking, telemetry,

commanding, mission operations, and communications resources dedicated

to the support of manned and unmanned DOD space programs. Programs

supported by the AFSCN include communications, navigational,

environmental, and surveillance satellites which provide data to military

and other national security agencies. The AFSCN is responsible for

providing day-to-day spacecraft operations, which include monitoring health

and status of the on-orbit satellites, performing spacecraft anomaly

resolution, and ensuring that the satellite's mission data is available for the

operational users. The primary role of the AFSCN is to provide the

command and control facilities required for satellite launch and on-orbit

checkout, and the resources necessary to maintain orbiting DOD satellites

so that these vehicles can perform their missions in a timely and effective

manner (Staff Study, 1991:i).

To support these spacecraft missions, it is necessary to schedule

regular contacts with the satellites using AFSCN network resources. A
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contact consists of the transmission of commanding data to the spacecraft

and/or the receipt of health and status information and mission payload

data. The commanding data directs the spacecraft to perform the necessary

maneuvers and activities required to support the vehicle's operational

mission. The transmitted data includes the status of on-board spacecraft

systems (e.g., fuel levels, battery voltage, subsystem configuration and

availability), the orbital location and velocity/direction of the spacecraft, and

the requested mission data. The transmitted data is received by one of the

AFSCN Remote Tracking Stations (RTSs) and is relayed via a dedicated

global communications system back to the AFSCN Mission Control Centers

(MCCs) for processing and analysis.

Integral to the AFSCN are the Range Control Complexes (RCCs)

located at Falcon Air Force Base, Colorado Springs, Colorado, and Onizuka

Air Force Base, Sunnyvale, California. The RCCs are responsible for the

scheduling, allocation, and conflict resolution of all AFSCN ground-based

resources. The RCCs accomplish their task by evaluating the resource

requirements of the various spacecraft users and allocating network

resources in the most effective and efficient manner possible to support each

operational mission. The output of the RCCs is the AFSCN master

schedule which assigns all required network resources to a specific

spacecraft for a given period of time.

In the early years of military space programs, the complexity of

satellite contact scheduling was sufficiently low that a daily schedule of
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satellite contacts could be maintained manually on a paper acquisition

chart. The range scheduling acquisition chart has been used to support

operational satellite scheduling for more than 30 years. The chart is a tool

used to collect requests for resources, identify and resolve resource conflicts,

prepare support schedules, and monitor execution of the completed

schedule. The acquisition chart in conjunction with a computer database

has proven to be an extremely effective, flexible, and reliable tool. In

addition, a very sophisticated set of procedures have been developed and

refined to support the acquisition chart concept and to provide continuous

uninterrupted scheduling of AFSCN spacecraft and ground resources

(Unisys, 1987:1). However, with the continued growth in the number, size,

and complexity of both ground and space resources, combined with the

increased importance these space assets have on national defense, it became

necessary to develop a more effective and efficient means for scheduling and

controlling network resources (Wright and Aitken, 1990:484).

The task of scheduling the network assets effectively is a challenging

problem of supervisory control. For example, on any given day, interrelated

information depicting nearly 1600 entries of satellite visibilities and

scheduled network support must be interpreted and used to make decisions

that are critical to the survival of on-orbit resources (Wright and Aitken,

1990:484). The AFSCN scheduling system must be flexible enough to react

to and resolve problems associated with changing mission priorities,

network equipment outages, and satellite anomalies.
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As discussed previously, early network scheduling was performed

using a paper contact acquisition chart. The horizontal axis of the chart

represented time, and the vertical axis showed each ground station of the

AFSCN (RTS). A single paper chart denoting a 24-hour period measured 36

inches vertically and 144 inches horizontally, discernible to one-minute

increments. Three types of schedules were maintained concurrently: a

seven-day forecast, a 24-hour schedule, and a real-time schedule.

Appendix A provides a more detailed discussion of AFSCN scheduling

activities.

Basic Scheduling (BASCH)

In the late 1970's, Headquarters U.S. Air Force concerns over the

potential single-point failure within the Air Force satellite command and

control system led to the development and construction of the Consolidated

Space Operations Center (CSOC) at Falcon AFB. CSOC would provide

redundant, interoperable satellite command and control capability to

augment the existing control center at Sunnyvale Air Force Station (now

Onizuka AFB). In order to support the concept of interoperability, identical

capabilities would exist at each facility and either facility would be able to

conduct normal command and control operations.

As part of this effort, the CSOC System Program Office (SPO),

Headquarters Space Division, Los Angeles Air Force Base, was tasked with

the responsibility to develop a dual-node scheduling system (BASCH) to
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replace the existing scheduling database system, SCRABL II. The new

system would provide the capability to schedule satellite contacts

simultaneously at the two geographically separated facilities. By 1983, a

final system-level specification was produced. The system specification was

based on capabilities of SCRABL II and the new requirements to support

dual-node operations, as well as the need to provide connectivity between

the satellite MCCs and the local RCCs. This connectivity would provide the

MCCs with access to the scheduling database to support the generation of

contact requests and allow viewing of the official AFSCN schedule for real-

time conflict resolution.

BASCH was developed in accordance with this specification as a

single computer program configuration item (CPCI) under the CSOC SPO

Space Operations Center/Network Control Segment (SOC/NCS) option on

the Data System Modernization (DSM) contract. DSM was an ongoing Air

Force program and contract to procure a new command and control segment

(CCS) for the AFSCN, including modified facilities, commercial computer

hardware and software, and new application software. Originally, the

SOCINCS option was to provide the CCS equipment for CSOC control

centers, but in 1984 was modified to develop the BASCH scheduling

software for the AFSCN as well. To provide commonality with existing

systems, the developer recommended BASCH be designed to operate in the

CCS software environment. The developer's implementation approach

dictated the interdependence between the BASCH system and other CCS
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CPCIs (e.g., CPCI-201 - Operations Planning, CPCI-205 - MCC

Management, CPCI-209 - Common Services, CPCI-210 - Display

Management, and CPCI-232 - External Interfaces).

The developer's design focused on producing software necessary to

support scheduling activities on CCS mainframe computer systems in the

two geographically separated locations. The developer's operational concept

called for the two systems to run concurrently using the same database and

to exchange updates to the database via a real-time communication

interface.

The BASCH development effort proceeded as planned with the

software Critical Design Review occurring in August 1985, followed by

coding and unit testing. The next major milestone in the project was

Functional Qualification Test (FQT). Originally scheduled for November

1986, FQT was conducted in May 1987 at the developer's facility in

Gaithersburg, Maryland. The FQT provided a comprehensive test to

validate the capabilities of the BASCH system and to verify that all BASCH

B-level specification requirements, except those which could only be verified

during operational testing, were incorporated into the system. The FQT

plan and procedures identified 725 testable requirements. Upon completion

of testing, 94 percent of the requirements had been verified.

Following FQT, the BASCH system successfully passed

Functional/Physical Configuration Audits and proceeded to component

testing. Testing of the major BASCH components was successfully
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completed in December 1987. The next milestone was system testing which

began in early 1988 but was never successfully completed. Initial system

testing failed due to numerous problems discovered with internode data

transfer between the two mainframe computers and overall system

performance.

Originally scheduled for operational activation in October 1987, the

availability of the BASCH system was delayed due to software problems

identified during system testing and reprioritization of development

resources. Over the next three years, the developer continued the effort

with little progress made toward operational activation.

From 1987 to 1990, several operational exercises of the BASCH

system were conducted by the CSOC program office site activation task

force (SATAF). The results of one exercise noted that: 1) numerous critical

problem areas need to be fixed before scheduling operations could transition

to BASCH; and 2) the BASCH system lacks the robustness and stability to

sustain operations. The report also stated" the negative aspects [of

BASCH]... preclude this system from being used operationally, even when

[operated] in a single node configuration" (SATAF/TE and The Aerospace

Corporation, undated:3-4).

With the advent and operational activation of the ASTRO system in

January 1991, all development and maintenance efforts associated with the

BASCH project were stopped. In November 1991 after an assessment of the

capabilities of BASCH and ASTRO, AFSPACECOM relieved the CSOC SPO
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of responsibility for delivering the BASCH system and submitted the

necessary requirements documents to implement a fully operational ASTRO

system (Logemann, 1991:1).

Automated Scheduling Tool for Range Operations (ASTRO)

ASTRO is a computer-based scheduling system used to control and

allocate ground-based resources in support of the AFSCN. The development

effort was managed by the Satellite Control and Data Handling Program

Office, Headquarters Space Systems Division, Los Angeles Air Force Base

(SSD/CW). The ASTRO project was started as a proof-of-concept analysis to

assess the potential availability of commercial hardware and

contractor-developed software to support scheduling and allocating of

AFSCN network resources, as well as eliminate the need for the paper

acquisition chart. The development process associated with ASTRO can be

broken into five distinct phases.

Phase I - October 1987 to December 1987. During the initial phase of

the project, the developer focused 6n assessing existing AFSPACECOM

range scheduling requirements, analyzing the content of the paper

acquisition chart, and examining the functional interaction between

scheduling personnel and the chart. In addition, the developer conducted

an industry survey of available computer hardware, and investigated

various alternatives to enhance the man-machine interface between the

operator and the scheduling computer system (Unisys, 1987:2-4). The goals
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of the initial analysis were to obtain a dearer understanding of the users'

requirements and establish a basis for future development efforts.

To perform the analysis of range scheduling requirements, the

developer reviewed the existing AFSCN Range Scheduling Operational

Concept and the Network Control System/Statement of Operational

Requirements Document. The developer also looked at the documentation

produced during the BASCH effort (e.g., System Specifications, Test

Reports, and System Deficiency Reports).

The analysis of the paper acquisition chart focused on the information

and data presented on the chart which facilitates manual scheduling

activities. The analysis provided a detailed understanding of the format of

the chart, the graphic symbols and scheduler annotations associated with

each scheduled event, the sources of scheduling data, and the use of each

chart element (Unisys, 1987:4). The data gathered from this anmlysis was

critical in establishing the system requirements for the display subsystem of

ASTRO.

In analyzing the functional interaction between scheduling personnel

and the chart, the developer examined existing scheduling procedures,

observed current scheduling operations, and conducted in-depth discussions

with senior scheduling personnel. It is important to note that three

members of the ASTRO staff previously worked in scheduling with a

combined 25 years of experience, so the analysis focused on gathering

information beyond the current level of understanding among the staff.
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As part of the man-machine interface effort, the developer

investigated alternative data entry techniques (e.g., display selection devices

and voice input/output products). The developer also reviewed a recent

human factors study which focused on range scheduling operations and

computer displays. The study reported that accessing multiple sequential

displays forces excessive reliance on operator short-term memory, which

results in increased error rates. In addition, the error rate increases with

the number of additional accesses required and with the time required to

perform those accesses. The study concluded that due to limitation of

short-term memory, schedulers would be more efficient if they could see

large amounts of data at one time as opposed to paging/scrolling through

numerous computer displays and extracting the necessary data to make

decisions (Unisys, 1987:9; Egbert and others, 1986:6).

In surveying existing computer hardware, the developer determined

that the limiting factor for any future scheduling system would be the

display subsystem. Thus, a large amount of time was allocated to assessing

state-of-the-art display technology against the display requirements

generated by the paper chart analysis.

The results of this initial analysis showed that current hardware

technology could support the development of an improved AFSCN

scheduling system; however, existing requirements documentation did not

fully define all the processes associated with scheduling resources. At this

point, SSD/CW had two viable development options: 1) produce the
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necessary detailed system specifications and manage the effort under the

traditional waterfall approach; or 2) conduct the project using an alternative

development methodology to assist in the definition and clarification of the

users' requirements. Past efforts (i.e., BASCH) had shown that it was

extremely difficult to identify all the requirements for satellite scheduling

and to translate these requirements into system-level specifications.

Furthermore, because the availability of the system was critical to

continued operations of the AFSCN and development of a detailed

specification would be a time consuming task, the decision was made to

allow the developer to construct the computer system using the alternative

evolutionary prototyping approach.

Phase II - January 1988 to February 1989. Over the next thirteen

months, the ASTRO project evolved from a conceptual design to a fully-

operational prototype workstation system. During this phase, the developer

used evolutionary prototyping to build a prototype system which contained

most of the characteristics and the performance baseline of an operational

system. The ASTRO prototype provided an interactive database to support

the generation and manipulation of a large-screen display (22" x 34") to

replicate the format of the paper acquisition chart. Additionally, the

prototype contained a fully functional database and library of utility

routines critical to scheduling activities.

The response to the prototype system by scheduling personnel was

overwhelmingly positive, since they had played an integral role in the
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development of both the requirements and the system design through

periodic evaluations. By evaluating the prototype system, the users were

able to provide feedback to the developer regarding the system's

requirements. For example, during this period, the developer conducted

over 20 system demonstrations for more than 120 individuals with space

operations and scheduling backgrounds. These demonstrations provided

feedback and suggestions for system improvements.

The resulting ASTRO prototype provided an operational system

which fully replicated the paper acquisition chart and existing scheduling

database. In addition, the ASTRO system provided several benefits beyond

the existing paper chart and computer database. These benefits included

the ability to share electronic representation of the range schedule with

more than one facility, the elimination of errors due to the transcription of

data from the chart to the computer database, and the automatic

identification of schedule conflicts (Unisys, 1988b:18-20).

Phase III - February 1989 to March 1990. During the next phase of

the project, the developer was tasked to expand the ASTRO system from a

stand-alone workstation to a multi-user environment. The developer also

continued improving and refining the existing ASTRO software based on

feedback received from the schedulers. In addition, HQ AFSPACECOM

requested that SSD/CW install the prototype workstation in each RCC for

the purpose of conducting a formal users' evaluation.
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To generate requirements for the multi-user enhancement to ASTRO,

the developer conducted a further analysis of the functions accomplished by

scheduling personnel at the paper chart. The analysis concluded that at

any given time, up to eight schedulers could be working at the chart. Thus,

an ASTRO system capable of supporting full operations must include a

minimum of eight workstations. The developer also investigated two

alternative system designs: centralized "time-share" processing and a

distributed architecture (i.e., network) to support a multi-user environment.

The analysis concluded that the most expedient means of providing multiple

users access to the ASTRO database would be to network together several

ASTRO systems using a Local Area Network (LAN) (Unisys, 1989:2-3). The

decision to use a LAN was partially based on lessons learned from the

BASCH effort, which used a centralized processor to control scheduling

data.

Based on the decision to use a LAN, the developer examined the

operational activities of each scheduling position to determine the expected

loading on the ASTRO network server and central database system. The

analysis results were used to derive requirements to evaluate commercially-

available network products and to drive refinements to the custom ASTRO

database management software.

From August 1989 to December 1989, the ASTRO prototype

underwent extensive evaluation by personnel at both RCCs. The prototype

was evaluated in a single user environment to assess the feasibility of the
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ASTRO system replacing the acquisition chart. The evaluation rated the

prototype in four areas: functional requirements, system performance,

operator interface, and overall system capabilities. Each requirement

within these four areas was measured based on a general evaluation and

five specific criteria:

1) Requirements Satisfaction--how well did the prototype meet
the specific requirements?

2) Scheduler Friendliness--how well does the system support
the abilities and needs of the scheduler?

3) Reliability--scheduler's assessment of the system's
performance during specific requirement evaluation.

4) Human Factors--evaluator's evaluation of the interaction
with the system.

5) Timeliness--evaluator's assessment of the system
responsiveness during the specific evaluation. (Detachment 9,
1990:2-3)

Each requirement was evaluated based on both a numeric rating and

a text description. The numeric rating ranged from "1" to "5", with "1"

signifying the lowest or poorest value assignable, and "5" signifying the

requirement was evaluated as excellent or exceeded the evaluator's

expectation (Detachment 9, 1990:3).

The prototype ASTRO system attained an overall rating of 3.73 out of

5 at Falcon AFB and an overall rating of 4.65 out of 5 at Onizuka AFB.

The report suggested the difference in the rating could be attributed to the

Onizuka AFB evaluators' familiarity with the ASTRO system due to the
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close proximity of the ASTRO development facility, and the hardware

problems encountered by Falcon APB evaluators (Detachment 9, 1990:3).

The final evaluation report concluded that "the ASTRO system proved

the feasibility of hosting scheduling data in a graphical format on an

electronic medium" (Detachment 9, 1990:7). Additionally, the reports

suggested that the evaluation provided a useful tool in providing operator

feedback to the developer.

Phase IV - April 1990 to January 1991. Based on the success of the

users' evaluation of the ASTRO system, the RCCs submitted formal

requirements to Headquarters (HQ) AFSPACECOM requesting the

activation of the prototype ASTRO system to support interim operational

network scheduling. The RCCs requested the installation of a Mini-ASTRO

network (two ASTRO workstations and a database file-server) in each RCC.

The ASTRO systems would work in conjunction with the existing paper

acquisition chart to provide a limited dual-node scheduling capability. Each

RCC would maintain the acquisition chart with one facility having primary

scheduling responsibility while the other would remain a back-up. The

databases of each ASTRO fie-server would be updated periodically via a

dial-up 9600 BAUD secure telephone modem. The operational configuiation

was considered an interim capability until some time in the future when the

full ASTRO network, consisting of eight workstations per RCC, could be

prioritized within existing budgets.
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SSD/CW received the formal requirements for the interim ASTRO

system from HQ AFSPACECOM in May 1990. After validation by the

AFSCN operational community, SSD/CW tasked the ASTRO developer to

procure the necessary hardware, produce the required documentation to

support the activation, and conduct formal development testing. In

September 1990, interim ASTRO systems were installed in both RCCs.

Throughout the development of the interim ASTRO system, the software

underwent a continuous improvement and enhancement process in which

requirements were internally prioritized based on their impact to the

pending activation.

In October 1990, the two ASTRO systems were turned over to

AFSPACECOM for operational test. Scheduling personnel and the Air

Force Operational Test and Evaluation Center conducted a three-month

operational test of the ASTRO system. Problems found during these tests

were communicated back to the developer, who ircorporated the corrections

into a new software delivery. In January 1991, HQ AFSPACECOM decided

to formally activate the interim ASTRO system to support operational

scheduling. At the time of activation, only two minor software problem

remained open against the operational software baseline. Finally, with the

activation of the ASTRO system, the SCRABL II computer system was

deactivated after 22 years of service supporting AFSCN range scheduling.

Phase V - January 1991 to July 1992. The ASTRO system activated

in January 1991 provided only an interim scheduling capability until such
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time as an alternative could be identified and procured to satisfy near-term

operational scheduling requirements. From May to August, 1991, SSD/CW

assessed near-term requirements against the two system alternatives,

BASCH and ASTRO. The assessment evaluated each alternative against

existing operational requirements, and also considered the timeframe in

which either system could provide the necessary capabilities. The

assessment concluded the ASTRO system was the only alternative which

met the users' requirements and could be delivered in the required

timeframe. In a 12 November 1991 letter to SSD/CW, the

HQ AFSPACECOM Director for Force Support stated:

We have reviewed the results of the Near-Term Requirements
Implementation Assessment, and considered your
recommendation that we jointly pursue acquisition of an
enhanced ASTRO system to meet our near-term range
scheduling requirements. We fully agree that this solution,
further developing the ASTRO system hardware and software
and establishing an internode communications link between
the two RCCs, is the most feasible and lowest risk option
available to meet our needs and timeline requirements.
(Logemann, 1991:1)

Based on the above letter, SSD/CW tasked the ASTRO developer, via

an Engineering Change Proposal (ECP), to produce and install an ASTRO

system to meet near-term scheduling requirements. The tasking directed

the developer to install eight ASTRO workstations, a database file-server

and the associated system peripherals in each RCC. Additionally, the

tasking required the installation of a T-1 communication link between the

two sites. The operational concept for the ASTRO system called for all 16
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workstations to Pe connected to a single database fie-server with the second

server periodically updated via the communication link. In the event the

prime fie-server failed, the secondary server could assume the prime role.

As of 31 July 1992, the ASTRO developer had completed hardware

installation and initial testing and the system was formally turned over to

AFSPACECOM for final testing prior to operational activation. In initial

operational testing, several minor software deficiencies were identified. The

ASTRO developer has already resolved most of these problems and has

prepared a new software master for to delivery to the users (List, 1992).

61



V. Analysis and Findings

Now that the case background has been established, the second task

of the case analysis is to address the investigative questions directly and

present the findings. In addressing these questions, three general sources

of data are used. The first source is documentation, consisting of range

scheduling automation study progress reports prepared by the ASTRO

developer, assessments by independent organizations and associate

contractors, and meeting minutes. The second data source is archival

records such as interoffice memoranda and letters. Finally, the third source

is notes from unstructured interviews conducted with key participants in

either the BASCH or ASTRO development, or both. Appendix D contains a

brief summary of the experience and specific involvement of each individual

interviewed. All of the data sources used in this analysis are included in

the bibliography and are cited where appropriate.

Again, the overall research question is: Do the results observed in

the BASCH and ASTRO projects support the claimed advantages and

disadvantages of the evolutionary prototyping methodology as compared to

the traditional waterfall methodology found in the literature? The

investigative questions are:

1) What is the problem domain? Were the high level system
requirements and objectives the same for both efforts?
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2) What development methodology was used in the BASCH

effort? Why was the methodology chosen?

3) What are the factors cited for the failure of BASCH?

4) What development methodology was used in the ASTRO
effort? Why was the methodology chosen?

5) What are the factors cited for the success of ASTRO?

6) What theoretical advantages and disadvantages of the
evolutionary prototyping were evident in the ASTRO
development effort?

7) What other factors might have influenced the contrasting

outcomes of the two efforts?

The following sections present a narrative analysis and findings for each of

the investigative questions.

Investigative Question 1

What is the problem domain? Were the high level system requirements and

objectives the same for both efforts?

The first question establishes the environment in which the BASCH

and ASTRO systems were to be developed and operated and the objectives

of the range scheduling automation endeavor. The advent of dual-node

control operations within the AFSCN necessitated the development of a

scheduling capability which could support operations from the two

geographically separated locations. The concept required scheduling

operations be performed concurrently at both locations or independently at

either location should the other facility become inoperable or unavailable.
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Both the BASCH and ASTRO systems were developed with these

capabilities as the overall objective.

For the BASCH system, the overall system-level requirements were

as follows:

Provide an interoperable dual-node scheduling system with
enhanced survivability, improved man-machine interface, and
additional automation. The improved system should be able to
handle an increased workload, and allow scheduling to be
accomplished with a smaller, less-skilled (and hence less
expensive) staff. (SDC, 1987:1)

Similar to the BASCH requirements, the ASTRO project was to

provide a system to handle the increasing AFSCN workload and to provide

an interoperable scheduling capability. The primary objective was to

eliminate the need to conduct scheduling via the labor-intensive paper

acquisition chart and transition scheduling operations to an interactive

computer-driven display system. This display system would allow

scheduling personnel to manipulate and maintain an "electronic" schedule

at both facilities without the manual construction of duplicate charts.

Furthermore, since the computer database, and/or changes to it, could be

electronically transmitted, both facilities could conduct operational

scheduling (Unisys, 1987:1-2).

For both systems, the lower-level requirements were very similar.

For BASCH, the Air Force development team and the users defined top-

level requirements in the A-level specification. These requirements directly

influenced the development of the lower-level requirements in the BASCH
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B-level specifications and eventually impacted the specific implementation

approach. For ASTRO, the Air Force provided only minimal top-level

direction and allowed the developer to establish lower-level requirements

through the application of evolutionary prototyping methodology.

In summary, the findings suggest there were only minimal

differences in the problem domain across the two development efforts. The

top-level requirements for both systems were highly comparable; however,

the most obvious difference between the two efforts was the methodology

used to establish the lower-level requirements. For BASCH, the

requirements were rigidly defined based on the A-level specification prior to

program start. This approach, in keeping with the philosophy of the

traditional approach to software system development, demanded the process

be driven by increasingly more detailed levels of specification. In contrast,

the ASTRO system benefitted from the derivation of lower-level

requirements through the application of evolutionary prototyping, which

provided the continuous definition and clarification of requirements

throughout the development process.

Investigative Question 2

What development methodology was used in the BASCH effort? Why was the

methodology chosen?

Although the DSM contract and the SOC/NCS option did not

specifically require compliance with DOD-STD-2167, IBM developed BASCH
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using the traditional waterfall model and deliverables such as formal

documentation and reviews, and testing of the software. There was no real

option at the time other than to use the traditional waterfall method of

software development, as defined by DOD-STD-2167. Alternative methods

were in their infancy and the DOD did not encourage their use. The

traditional method was a proven, disciplined, systems engineering approach

to computer system development. Although it was a separate option,

BASCH was actually produced in the same software development

environment as the CCS CPCIs. All the software was to be hosted on the

large new DSM centralized computer architecture already designed and

installed at Onizuka AFB and Falcon AFB.

Investigative Question 3

What are the factors cited for the failure of BASCH?

The third question addresses those factors evident in the data which

played a part in the failure of the BASCH effort. The findings establish

validity for these factors by using the three sources of data discussed in

Chapter III and the introduction to this chapter. The data analysis

identified eight factors which impacted the outcome of the BASCH effort.

These factors are identified in Table 4 and will be discussed at length

during this analysis.

The main factor in the failure of BASCH cited in the data is that, as

specified, the BASCH system failed to meet all requirements needed to
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Table 4.

Factors Influencing the Failure of BASCH

1. The BASCH system requirements did not meet the users'
requirements.

2. Development approach did not provide a means to incorporate
changing or new requirements.

3. Lack of ownership among the users since they did not participate
in the requirement process.

4. Developer's proposal recommended the BASCH system operate in

the CCS environment.

5. Poor man-machine interface and system performance.

6. Geographical separation between the developer and the users.

7. Recurring problems with maintaining operator proficiency on the
system.

8. Low prioritization of BASCH maintenance action as compared to
other CCS functional areas.

conduct AFSCN range scheduling activities. As noted, the BASCH project

began in 1983. However, as early as 1985, the AFSCN Range Scheduling

Working Group identified numerous functional capabilities critical to

operational scheduling which were either inadequately defined in the

BASCH specification or totally absent from the system. Two subsequent

independent assessments confirmed the working group's findings.

In 1987, System Development Corporation (SDC) was tasked to

conduct an assessment of the BASCH functional capabilities. The
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assessment analyzed the operational capabilities of BASCH and reported

there were 16 areas of major concern. The assessment reported "each of

these problem areas had the potential to cripple operational use of the

system" (SDC, 1987:6). Finally, the assessment concluded:

the collective effect of all problems makes successful operations
highly unlikely. It must be concluded that the baseline CPCI
350 [BASCH] system will not be capable of supporting
operational scheduling. (SDC, 1987:6)

In July 1990, The Aerospace Corporation was tasked to conduct a

second analysis of the functional capabilities of BASCH against operational

scheduling requirements. Since in the time-frame of the analysis there did

not exist a validated set of operational requirements, The Aerospace

Corporation developed operational requirements based on the existing

capabilities of the SCRABL II system. The assessment separated

scheduling capabilities into 28 distinct ftuctional areas. The analysis

assessed each area against the capabilities of BASCH. Each area was

graded based on "the operational usability" of the system capabilities. The

criteria for each grade is shown in Table 5.

For the BASCH system, the report gave the following grades:

Meets Expectation 10 areas
Below Expectation 13 areas
Not Supported 4 areas
Not Required 1 area
(Miller and Springsteen, 1990,2-10-2-12)

Furthermore, the report recommended discontinuing further development of

the BASCH system since it did not meet the users' requirements (Miller and
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Table 5.

The Aerospace Corporation Functional Grading Criteria
(Miller and Springsteen, 1990:2-9)

Grade Criteria

Exceeds expectation Functionally exceeds SCRABL IL.

Meets expectation Functionally meets SCRABL IL.

Below expectation Functionally does not work properly
under nominal conditions, a work-around
is required, or functionality is extremely
cumbersome.

Not supported Functionality is not currently supported.

Not required Functionality is not required since it is
provided in a different function.

Springsteen, 1990:3-1).

Finally, it was noted by one individual who participated in the

BASCH system specification review that the system specification was

developed to meet cost as opposed to providing all the capabilities of the

SCRABL II system. This individual added that during the Air Force system

specification reviews, numerous users' requirements were disregarded by

the program office, since their addition to the specifications would drive the

cost beyond the available budget (List, 1992).

The second factor is the inability of the development process to

incorporate changing or new requirements into the system. As discussed

previously, numerous requirement changes were identified during the
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BASCH project; however, since these requirements were beyond the scope of

the original specifications, they were deferred until completion of the initial

development. As the time between the development of the specifications

and the date of availability increased, so did the number of requirement

changes and the cost of incorporating these changes into the system. This

growth in development costs supports the theory that it is significantly less

expensive to fix requirements problems early in the effort as opposed to the

maintenance/support phase.

The third factor relates to the impression among scheduling

personnel that the BASCH system did not reflect their operational

requirements. It was noted that as a result of being ignored during the

requirements phase, the schedulers felt no "ownership" of the BASCH

system (List, 1992; Wong, 1992). rn addition, during initial tests of BASCH

in the RCCs, the schedulers identified and documented numerous software

problems. The BASCH developer closed many of these problems as

"operator error" when in fact they were valid problems (List, 1991:3). These

actions led to a sense of distrust between the users and the program office

and the BASCH developer which resulted in a general unwillingness among

the schedulers to accept the system until it met all of their requirements.

The fourth factor involves the environment in which the system was

developed. As discussed in Chapter IV, the developer proposed to design

BASCH to operate in the existing CCS environment. The developer's intent

was to take full advantage of existing CCS functional capabilities (e.g.,
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Display Management, MCC Management, and Common Services), which

should in theory have reduced the overall cost and risk of the development.

However, what the developer produced was a scheduling "transaction-based"

system to operate in an environment designed to support real-time satellite

command and control (Simpson, 1992). Thus, BASCH suffered from not

only its own problems but also the problems of the entire CCS system.

The fifth factor relates to an extremely poor man-machine interface in

BASCH. Early L, the development, it became obvious to the operational

scheduling community that the man-machine interface would make or break

BASCH. The AFSCN Range Scheduling Working Group discussed at great

length the capabilities of BASCH in regards to this area. Numerous

requirement changes were identified and included in the list of future

BASCH modifications to support area improvements. In addition, the 1990

Aerospace Corporation assessment stated, "the man-machine interface for

many BASCH functions is awkward to use" (Miller and Springsteen, 1990:2-

7). The report went on to identify six specific functions in BASCH with

awkward man-machine interface.

A further example of the poor man-machine interface of BASCH was

the function used by MCCs to generate contact requests. In the CCS

system, MCC planners were to be provided with two methods to generate

satellite contact requests, CPCI-201 (Operations Planning) or BASCH.

However, the request entry frames for CPCI-201 bore no resemblance to the
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request entry frames of BASCH; thus, MCC planners were required to learn

two different formats (List, 1991:1).

Another man-machine interface problem was the number of screen

accesses required to obtain necessary scheduling information for conflict

resolution. The human factors study by Egbert and others stated:

A timing analysis [of BASCH] suggests that this process will be
significantly slower than the current method, due in part to the
display update, and in part to the reliance on human short
term memory... The multiple screen requirement introduces
the risk for errors in data transcription, provides less
information per display, less flexible information manipulation
and risks potential non-acceptance by operators. (Egbert and
others, 1986:6)

The analysis concluded that the introduction of a poorly engineered

automation could actually increase scheduler loading through increased

"cognitive demands." These demands could in turn have a detrimental

effect on the abilities of schedulers to handle increased AFSCN contacts

(Egbert and others, 1986:18-19).

The sixth factor involves the geographical separation between the

system developer and the users. BASCH was developed at IBM's facility in

Gaithersburg, Maryland, while the schedulers were located in California

and Colorado. Also, the exchange of data between the users and developer

was limited to formal design and documentation reviews. In addition, all

questions were channelled through the developer's management for

presentation to the users--there was no direct interface between the BASCH

analysts and programmers and the users. Thus, the analysts and
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programmers had little insight into the problem domain for which they were

developing the system and the physical separation further supported the

feelings of alienation between the developer and schedulers (List, 1992;

Simpson, 1992).

The seventh factor refers to the recurring problem of maintaining

operator proficiency on BASCH. To support BASCH activation, scheduling

personnel were required to maintain system proficiency to support system

and initial operational testing. Prior to the original activation date,

1 October 1987, scheduling personnel underwent extensive BASCH training.

This training familiarized schedulers with the functions and capabilities of

BASCH. Nevertheless, with the continual slips in system availability, the

proficiency of the users diminished over time. During this period, the

schedulers were asked to conduct operational scheduling, which required

proficiency on SCRABL II or ASTRO, while also trying to maintain BASCH

proficiency by exercising the limited capabilities of the existing BASCH

system.

A 27 April 1990 internal CSOC SPO men,,.randum implied the

pending ASTRO interim scheduling system would directly impact the

current BASCH internode system test schedule. The memo stated:

IBM reports the system test would move out one day for each
day ASTRO is used for full interim operations. This is due
primarily to one facto&: manpower. At curfent manning levels,
full-up ASTRO operations in the RCCs would require all
human resources assigned. [The BASCH] system requires the
involvement of BASCH-proficient operators. (Pope, 1990:1)
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The memo also recommended scheduling personnel at Falcon AFB conduct

7-day scheduling operations on BASCH, while maintaining proficiency on

the ASTRO system. ASTRO proficiency was required to support the back-

up of scheduling operations at Onizuka AFB by Falcon AFB schedulers

(Pope, 1990:1-2).

The final factor cited in the research is the impact of the low

prioritization BASCH maintenance activities were given in comparison to

other CCS functional areas. In October 1988, the SOC/NCS option to the

DSM contract was contractually closed out. Since all BASCH software

deficiency reports (S/DRs) had not been resolved, corrective action was

transferred to the Command and Control Sustaining Engineering (CCSE)

contract. The CCSE contract was a follow-on sole source award to IBM to

provide level-of-effort resources for CCS software maintenance and ECP

system improvements.

Under the CCSE contract, the developer was directed to provide CCS

model deliveries every six months. Each model delivery would include

approximately 500 individual CCS S/DR corrections and was considered a

stand-alone software delivery. Upon successful system test, the model

would become the baseline CCS software and would be installed in all

AFSCN control centers. The content of each model delivery was based on a

prioritized list of the CCS functional areas, as well as the available CCSE

maintenance resources.
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It is important to note that in the model planning process, BASCH

was prioritized seventh out of eight CCS functional areas. Thus, fixes to

BASCH were extremely slow to be delivered. For example, from October

1988 to November 1989, 24 total BASCH S/DRs out of approximately 130

outstanding S/DRs were included in five model deliveries (Models X, Y, Z, 1,

and 2). BASCH did not fair any better in the next three models. Only four

S/DRs were delivered in Model 3 in April 1990, ten S/DRs in Model 4 in

November 1990, and 17 S/DRs in Model 5 in April 1991. Further impacting

BASCH progress was the fact that with each subsequent model delivery, a

new set of BASCH problems were identified (Simpson, 1992). These new

problems would then flow into the CCS model planning system for

resolution in some future model.

The July 1990 Aerospace Corporation assessment identified 145

outstanding BASCH-related S/DRs which were to date unresolved. Of these

145 S/DRs, 31 S/DRs were scheduled for delivery in an upcoming model, 99

S/DRs had not been scheduled for a model delivery, and 15 where identified

as enhancements to BASCH, which put them outside CCS maintenance

responsibilities (Miller and Springsteen, 1990:2-6). The assessment

suggested the development effort required to resolve these critical problems,

which limited the use of BASCH, would be substantial. For this reason,

BASCH would not be ready to fully support AFSCN scheduling operations

after the delivery of CCS Model 5 or even within "a reasonable period of

time afterward" (Miller and Springsteen, 1990:3-1).
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Further evidence of the problems associated with BASCH

maintenance was provided in a 18 September 1990 letter from the RCC

Commander at Falcon AFB to 2nd Space Wing/DOQ. The letter identified

nine flight-critical and 27 flight-limiting BASCH S/DRs which had not been

scheduled for model delivery. The letter stated:

The RCCs... have evaluated all outstanding S/DRs that have
not been assigned to a model drop [delivery]. The deficiencies
that are scheduled for delivery by Model 5 will not provide
range scheduling with sufficient capability to support dual-node
range scheduling with BASCH.

In order to support range scheduling operations with BASCH,
all BASCH fixes currently scheduled for Models 3, 4, and 5
must be delivered and function correctly. In addition, as a
minimum, fixes identified in attachment 1 [nine flight-critical
and 27 flight-limiting BASCH S/DRs] must be delivered.
(Fruland, 1990:1)

In summary, the analysis of the data identified eight factors which

impacted the outcome of the BASCH effort. It is impossible to determine if

any one of these factors singularly could have led to the failure of BASCH;

nevertheless, the analysis did reveal that all of these factors contributed to

the failure of the BASCH development effort.

Investigative Question 4

What development methodology was used in the ASTRO effort? Why was the

methodology chosen?

When ASTRO was undertaken, exclusive use of the traditional

waterfall model, as mandated by DOD-STD-2167, had come under question

and was being relaxed in the standard's revision. The AFSCN had its own
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bad experience and was struggling not only with the BASCH effort but with

the entire CCS system. At the start of the ASTRO project, the Air Force

was considering all alternatives to make the new system operational.

The ASTRO development effort was conducted using several one-year

duration study task orders on the Computer Program Integration Contract

(CPIC), a level-of-effort contract managed by SSD/CW. The developer

applied evolutionary prototyping to the entire effort, initially calling it "an

experiment in system prototyping" (Unisys, 1988a:8). The "incremental"

nature of the tasking should not be confused with incremental software

development described in Chapter II. The study was not initially conducted

to deliver an operational system; rather, it evolved into a system

development effort when other alternatives were determined inferior.

The first task order requested the developer to conduct a study

consisting of two primary phases, with the objective "to determine the

feasibility of replacing the Range Scheduling Acquisition Chart with large-

screen computer-driven interactive displays." During the first phase, the

developer conducted a requirements analysis and equipment selection for a

prototype system. Phase 1 concluded with a report which detailed the study

steps, tl'e method and results for derivation of display requirements, results

of vendor surveys for equipment, recommendations for equipment

lease/purchase, and an overview of the plans for the next phase. The report

also included the first detailed description of the chart format and contents

(Unisys, 1987:2-27).
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During the second phase, the developer finished procuring the

equipment recommended in Phase 1 and put together the first ASTRO

prototype, including about 20,000 lines of code, a significant portion of

which was reused. The developer's progress report noted:

Wherever possible, scheduling software designs were "ported"
from the existing SCRABL II system. Many required functions
were added to the ASTRO prototype by simply re-coding them
from assembly language to Pascal. Many other routines were
found applicable to the ASTRO system with minor re-design.
Overall, there was minimum wasted effort to "re-invent the
wheel." (Unisys, 1988a:6)

Because of this aspect, the developer considered the ASTRO prototype to be

an evolution of SCRABL II. Phase 2 was extended to the end of fiscal year

1988 to continue evolutionary development of the prototype.

The reasons for selecting the evolutionary prototyping approach for

ASTRO are provided in the Unisys report submitted at the conclusion of the

second task.

From the user's point of view, prototyping can minimize the
paperwork overhead necessary to define, document, and
maintain system requirements and specifications. Prototyping
also allows a "fly before buy" evaluation, curing the common
"that's not what I asked for" problem. From the developer's
point of view, the absence of rigid specifications allows more
creativity, provides the opportunity to explore more approaches
to the system design, and allows very rapid development.
(Unisys, 1988a:20)

The developer further suggested that the prototyping method could reduce

documentation costs, by eliminating unneeded documents, and thereby

increase productivity. "Constant feedback, rather than paperwork, is the

key to a successful prototyping development" (Unisys, 1988a:47).
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Investigative Question 5

What are the factors cited for the success of ASTRO?

The next question identifies factors cited in the data which influenced

the successful outcome of the ASTRO project. Table 6 identifies those

factors evident from the research.

For ASTRO, the developer's decision to apply the principles of

evolutionary prototyping played an integral part in the project's success.

Evolutionary prototyping provided: 1) a method to continually define and

clarify users' requirements; 2) a communications loop between the users

and developer; 3) a means to effectively respond to users' concerns and

requirements; and 4) the flexibility in the selection of system design

characteristics, as well as the hardware platform. Thus, the first four

factors identified in Table 6 can all be attributed to the use of evolutionary

prototyping throughout the development effort.

The literature review notes that in order to effectively produce a

prototype computer system, the developer must first gain a clear

understanding of the users' requirements. Therefore, as part of the

evolutionary prototyping process, the developer must continually gather

data on the users' requirements and assess them against the prototype's

capabilities. Thus, the process of requirements definition and clarification

continues throughout the development.

The first factor cited in the data impacting the outcome of ASTRO is

the ability of the developer to acquire a clear understanding of the users'
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Table 6.

Factors Influencing the Success of ASTRO

1. Strong understanding of users' requirements and needs by the
developer.

2. Continuous flow of feedback between developer and users
regarding system capabilities.

3. Developer was able to quickly respond to new users'
requirements and software errors.

4. Developer given flexibility in system design and hardware

architecture.

5. Related experience of the development personnel.

6. Lessons learned from past scheduling development efforts.

7. Strong commitment to the development process and end product--
developer initiative.

requirements. As discussed in the case background, initial ASTRO efforts

focused on a detailed analysis of users' requirements. The analysis was not

limited to written documentation, but also included the observation of

actual scheduling operations. Furthermore, the developer did not limit the

time-frame of the requirements analysis to just the preliminary phases of

the project. Instead, the developer continually reexamined the users' needs

against the prototype system. Thus, the system capabilities kept pace with

changing users' requirements.

The users also clearly understood the benefits of using prototyping to

assist in the definition and clarification of system requirements. A 1989
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letter from the Director of Space System Planning, HQ AFSPACECOM, to

SSD/CW stated the primary purpose of the ASTRO effort "is to determine if

technology is capable of meeting long-term scheduling requirements and to

aid in developing system specifications" (Pagano, 1989:1-2). The letter

added that one of the goals of ASTRO was to establish users' requirements

by enlisting and documenting specific users inputs and establishing detailed

range scheduling requirements (Pagano, 1989:2).

SSD/CW management also understood the benefits prototyping

provided for the definition of requirements. The Program Director wrote:

The AFSCN processes on the order of a thousand separate
requirements each year to enhance network capability to meet
the support needs of various satellites. Many of these
individual requirements are translated into modifications or
additions to the network assets. Prototyping has been utilized
successfully for complex and urgent developments to meet
many of these requirements. Rapid prototyping has also been
used for requirements definition and for defining man-machine
interfaces. Through prototyping, the AFSCN has.., improved
the process of defining requirements for operational satellite
support systems. (Whipple and Hoida, 1991:1)

The second factor delineates the impact users' feedback had on the

ASTRO outcome. Each interviewee identified the close working relationship

between the developer and users as a primary reason for the success of

ASTRO. A range scheduling manager noted that the tight users/developer

loop fostered cooperation, which benefitted both groups. The users were

getting a system which met their needs and the developer was getting

continual constructive feedback on the capabilities of the prototype system

(Wong, 1992).
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The third factor relates to the timely response evident throughout the

ASTRO development effort. An examination of the software deficiency/

enhancement process used during the effort provided a clear picture of the

developer's responsiveness. With the installation of the ASTRO single-user

prototype in the RCCs for formal evaluation in August 1989, the ASTRO

system software was placed under informal configuration control. After

August 1989, baseline changes were tracked via ASTRO Report Forms

(ARFs). The ARFs provided an audit trail of software deficiencies during

the prototype effort, as well as a means for AFSCN scheduling personnel to

document suggested improvements and/or enhancements to the system

(Miller and Springsteen, 1990:2-3). ARFs were generated by the

development team, scheduling personnel, and test personnel. Each ARF

was logged against the current system by the developer and tracked until it

was closed by a future software delivery. Prior to the ARF process, system

deficiencies and suggested enhancements were informally tracked by the

developer.

The success of the process can be shown by analyzing the number of

ARFs processed and the number of new masters delivered. From August

1989 to January 1991, nearly 800 ARFs were generated against the ASTRO

system. Upon operational activation in January 1991, 94 percent of the

ARFs had been incorporated into the system baseline and 34 ASTRO

software masters had been delivered. Of the remaining open ARFs, only
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two were considered software deficiencies and both were considered

"noncritical" to operations by the schedulers.

From January 1991 to October 1991, an additional 225 ARFs were

generated. During this period, the developer delivered six new software

masters and four expedited deliveries, closing a total of 212 ARFs and

resolving all identified software deficiencies.

The ASTRO developer also benefitted from the fact their development

facility was in close proximity to the scheduling personnel located at

Onizuka AFB, Sunnyvale, California. The developer's proximity facilitated

the timely response to users' concerns, since the developer could obtain

immediate feedback regarding system design changes, software deficiency

corrections, or new functional capabilities.

The fourth factor describes th- flexibility provided to the developer in

the design and development of the system software and the evolution of the

hardware architecture. The ASTRO system benefitted from the developer's

ability to experiment with various design alternatives and evaluate each

alternative through the feedback process. This flexibility allowed the

developer to use a trial and error approach without the threat of retribution

from the Air Force in the event of failure (List, 1992). In contrast, one

interviewee noted that the BASCH developer was severely penalized via an

award fee reduction for taking the initiative in resolving BASCH-related

deficiencies, since their actions were not in keeping with the direction of the

CCS functional priorities (Walker, 1992).
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For ASTRO, the contract tasking provided the developer with the

flexibility to improve the system hardware in conjunction with advances in

computer technology. For example, initial development efforts were

conducted on 386/20 personal computers (PCs), but with advances in

technology, by 1992 the ASTRO system operated on 486/33 and 486/50 PCs.

In addition, based on users' concerns dating back to the August 1989

evaluation, the developer continually evaluated alternative display systems.

In 1992, the developer replaced the initial Greyhawk large-screen displays,

which were based on a rear-projection laser system with state-of-the-art

Sony (2K x 2K) CRT displays. In contrast, the BASCH developer was

locked into the hardware architecture of the CCS system, which consisted of

early 1980's mainframe computers. Thus, the ASTRO system was able to

take advantage of these advances in computer technology, which resulted in

improved system performance.

The fifth factor relates to the experience of the developer's staff. The

developer clearly understood the problem domain and operational process in

which the ASTRO system was intended to operate. This understanding was

based on a combined 25 years of operational AFSCN scheduling experience,

as well as a combined 80 years SCRABL II system software maintenance

experience of the ASTRO staff. This experience resulted in a strong

working relationship between the schedulers and the developer, since the

ASTRO staff could empathize with the problems associated with range

scheduling (List, 1992). In contrast, an Aerospace system engineer noted
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numerous BASCH problems could be attributed to a lack of AFSCN

scheduling experience by the development staff (Simpson, 1992).

The sixth factor describes the importance of lessons learned from past

development efforts and how these lessons were applied in the early phases

of ASTRO. It was noted in discussions with the ASTRO project manager

and an IBM systems engineer that the ASTRO developer benefitted from

past scheduling development efforts, SCRABL II and BASCH, and the

lessons learned from analyzing their successes and failures. The developer

used numerous aspects of the SCRABL II system to directly influence initial

ASTRO designs. As discussed earlier, approximately 20,000 SLOC of

SCRABL II software were recoded into Pascal to support the ASTRO effort.

Furthermore, the developer was able to.analyze the problems of BASCH

and assure they were not duplicated in the ASTRO project (List, 1992;

Walker, 1992).

The final factor apparent in the research recounts the sense of

commitment evident in the development staff. A range scheduling manager

suggested the developer displayed a strong commitment toward the project

and process, as well as the end product. He added that the ASTRO

developer consistently took the initiative to make the system work, and this

commitment and initiative further strengthened the working relationship

associated with the project (Wong, 1992).

In summary, two things stand out in the analysis of the factors which

made the ASTRO project so successful: first, the ability of the developer to
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define a very complex set of requirements and translate those requirements

into an operational system; and second, the cooperation between the

developer and users and their ability to work toward a unified goal. These

ideas are both associated with advantages of the selected development

methodology, evolutionary prototyping. However, it would be incorrect to

infer the development methodology alone determined the outcome of the

ASTRO project. The analysis has explicitly shown there were numerous

other factors which played a role in the success of ASTRO.

Investigative Question 6

What theoretical advantages and disadvantages of the evolutionary

prototyping methodology were evident in the ASTRO development?

Eleven advantages of prototyping over traditional waterfall

development were presented in Table 1, page 24. Each will be addressed

with respect to the ASTRO development effort in the following paragraphs.

Specific examples or supporting information from the data are incorporated

to augment the findings.

First, prototyping provides a means for users and developer to work

together defining and building a system. As stated earlier, this was clearly

a significant contributor to ASTRO's success. "Forty demonstrations were

given to 320 people with space operations and scheduling background, over

a three year period, to solicit suggestions and to guide the development

process" (Whipple and Hoida, 1991:3). The demonstrations, ARF process,
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and scheduling working group meetings provided a quick means for users

not only to report problems, but also to make suggestions for future system

improvements. Prototyping allowed the users to influence the design and

"see and feel the results of the development process 'hands-on' rather than

write requirements documents or read design documents" (Unisys,

1988a:47).

Second, prototyping provides greater insight into the users'

requirements than the traditional approach. The range automation study

started with an in-depth analysis of the paper acquisition chart and the

functions performed by schedulers using the chart. Although this seems

like an obvious place to start in an automation attempt, a detailed

description of the chart format and contents had never before been

accomplished. The developer concluded that "the current scheduling

procedures and chart annotation techniques cannot be lightly dismissed"

(Unisys, 1987:7). As a result, "the ASTRO Network Display also duplicates

important subtle features of the acquisition chart which have never been

formally described in requirements specifications, but which are taken for

granted by the scheduling staff and used in routine operations" (Unisys,

1988a:9).

An example of the difference in the requirements insight achieved

through the two approaches is provided in Unisys's first study report:

[The schedulers'] stated requirement is to view twelve hours of
schedule and visibility data for all tracking stations (the entire
network) on a single display. The chart emulation features of
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previous scheduling computer systems (the site plot displays of
the SCRABL and [BASCH] systems) have been limited to very
small sub-sets of the required data... Many observers have
assumed that the schedulers' stated need for a display
spanning twelve hours of schedule is based on experience with
the static paper chart, and that panning, scrolling, zooming,
windowing, and split-screen techniques might suffice to provide
an equivalent capability. (Unisys, 1987:9)

The ASTRO developer never compromised on this requirement; the objective

of the study remained to provide a large screen display which would span

the full twelve-hour period.

Prototypes can be easily modified to accommodate changing users'

requirements. During the three-month period of Phase 2 extension, seven

hardware upgrades and 16 software enhancements were implemented on

the ASTRO prototype. The following 4.5 month period produced 18 software

enhancements. All of these changes were accomplished within the original

number of hours estimated at the beginning of the period because the

developer was able to respond quickly to changes and avoid going too far

down the wrong path.

As a result of prototyping, the end product is a more stable, tangible

representation of the users' requirements. The ASTRO prototype effort was

considered complete on 13 February 1989, or at least the objectives of the

original study had been met. ASTRO workstations were subsequently

installed at the two operational locations for evaluation by the users. While

the network display and database scheduling functions were "a superset of

the capabilities of the operational scheduling system," the system could not
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be considered stable (Unisys Report, 1989a:5). This is because the original

prototyping effort was limited to the network display and scheduling

functions. Because of its success, the ASTRO effort was expanded in scope

to go beyond the original objectives and provide networked workstations,

internodal operations, and hard-copy schedule output.

Prototyping provides a better basis upon which to estimate the time

and effort required to develop the final system. In the second study report

dated 30 June 1988, Unisys estimated the total software for the final

ASTRO system would be 35,000 to 40,000 lines of code, and completion

would occur on 31 December 1989. At the time they had coded or reused

20,504 lines of code, so this meant that approximately 15,000 to 20,000 lines

of code would be added. In the 13 February 1989 report, when the system

was deemed complete, the total software lines of code was 44,838, or an

increase of 24,334. This 25 percent growth from anticipated size

corresponds with the 25 percent increase in the time required to complete,

so the software productivity level was right on target. Many new

enhancements had been added which were unanticipated in June 1989, but

it cannot be determined from the available data if this accounts for all of

the variance.

In each of the study progress reports, the ASTRO developer provided

estimates of the hardware costs for the next phase of the project. All

hardware was commercially available, so estimates were easily obtained.

ASTRO hardware costs remained within the conservative $100,000 per
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workstation estimate provided in June 1988. Documentation costs were

estimated in June 1988, based on 40,000 lines of code for the final system;

however, documentation of ASTRO has not been completed.

The prototyping process provides early visibility and elimination of

development problems. There were no specific instances of this advantage

noted in the data or interviews. However, frequent meetings with the Air

Force program manager and users provided significant visibility and

minimized the chance of development problems occurring. One system

engineer noted that these meetings with the schedulers prevented the

developer from wasting time and resources on "excursions down the wrong

path," and in so doing reduced the overall schedule (Simpson, 1992).

Development risk and uncertainty are reduced with.prototyping.

Although this advantage was realized in the ASTRO effort, Unisys initially

cautioned that both the developer and Air Force were at significant risk in a

prototyping effort because "should disputes or misunderstandings arise,

neither party has firm specifications to settle the argument" (Unisys,

1988a.'20). The risk reduction was achieved because the commitments of

time and resources were relatively short (compared to BASCH) and the

results were highly visible.

There was very little cost risk in the original ASTRO prototyping

effort, since it was developed under incremental task orders and the process

could hav-e been stopped at any time if progress was not satisfactory. The

labor hours and hardware cost estimates for the following phase were
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provided at the conclusion of each phase and could be controlled through the

task orders. Decisions tc change or enhance the hardware or software had

to either be made within the authorized expenditures and the allotted

budget of hours, respectively, or requested in future phases.

Two potentially significant cost risks did occur in the ASTRO

development. The first was the ill definition of the level of documentation

which would be required for the system after it was determined that the

system would become operational. The documentation issue was deferred

until recently, and the costs are significant if a maintenance/support

contract is to be awarded by competitive bid. The second cost risk was the

possibility that the Air Force might require that the ASTRO software be

recoded in the DOD standard Ada language. In July 1990, The Aerospace

Corporation estimated that the requirement to recode to Ada would add

$7.8 million to the development cost of ASTRO, or 2.5 times the life cycle

cost of the system as of the report date. This cost did not materialize, but

the determination was not made until after the ASTRO system had been

fully developed.

Although it was not intended at the outset to become an operational

system, ASTRO later turned out to be the least risky system from a

technical and schedule aspect as well, when compared to BASCH. In a

12 November 1991 letter, the using organization stated that continuing

ASTRO development and discontinuing all BASCH effort was "the most

feasible and lowest risk option available to meet our needs and timeline
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requirements" (Logemann, 1991:1). It was emphasized by one systems

engineer who participated in BASCH testing that prototyping should be

used early in a development project because of the risk-mitigation benefit

(Walker, 1992).

By applying prototyping, the developer can quickly produce a working

model to provide a clearer understanding of a system's behavior. After the

feasibility of replacing the paper acquisition chart with computer-driven

displays was determined, it took less than six months to build the prototype

ASTRO system, including roughly 20,000 lines of new and reused software

code. Several demonstrations were performed for schedulers to begin the

feedback process. The demonstrations quickly proved the feasibility of

producing the schedule on a computer-driven large-screen display. Unisys

noted that "the prototyping approach allowed this conclusion to be reached

in just a few months, including several iterative generations of development,

demonstration, and revision" (Unisys, 1988a:20). Additionally, "the ASTRO

prototype also contains the fully functional database and library of utility

routines necessary to support both the display study and an operational

high-performance automated scheduling system" (Unisys, 1988a:5).

The ASTRO development team was able to take advantage of a "high

degree of portability for the scheduling [application program] designs, from

SCRABL II and CPCI 350" which contributed largely to the 20,000 lines of

code (Unisys, 1988a:17). This was cited as a major contributing factor to

the high code productivity. The developer used mostly Turbo Pascal,
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supplemented with C, Fortran, and Assembler to expedite code generation

and revision. Additionally, they used the MS-DOS operating system and

commercially available peripheral devices, drivers, and utilities for the

demonstrator. After many refinements and additions the original system

has evolved into the current ASTRO system.

Prototyping allows flexibility in selection of hardware and support

software for the operational system. The ASTRO developer was never

hindered by specifications or the prospect (time and cost) of changing

documentation when new hardware or software alternatives were

considered. The ASTRO prototypes were used to evaluate many different

hardware devices, some of which were never used in the final system. For

instance, a touch-screen device for the Greyhawk large-screen display was

originally proposed but was dropped when an alternative screen selection

device, the sonic pen, proved to be superior. The system configuration

remained flexible right up to the installation of the fully operational ASTRO

network in 1992.

To a large degree, the evaluation of hardware alternatives was the

intent of the original study. The initial feasibility study investigated

several technologies for achieving the computer-driven large-screen display

objective, including raster-scan and vector-scan CRTs and laser projection

screens. The very high resolution and very large screen requirements

derived from the analysis of the paper chart were "at the fringes of the

current 'state-of-the-art' of display technology" (Unisys, 1988:2). During
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June and July 1991, Unisys conducted a lab evaluation of a new Sony CRT

display and a Metheus Corporation display controller to replace the

Greyhawk display, concluding that the system should be upgraded to the

new display. "Conversion of the ASTRO software to operate with the Sony

CRT and Metheus display controller required only three weeks" (Unisys,

1991:18).

The tenth advantage of prototyping is that it can produce a better

user-system interface for large multi-user systems. This advantage is not

clearly evident because ASTRO was developed for a single-purpose single-

mission environment. ASTRO was also a relatively small software

development effort.

Finally, prototyping provides higher probability of delivering the

"right" system the first time. In this one case, the prototyping attempt did

deliver the right system while the traditional development attempts failed.

But probabilities cannot be determined from a sample of one. Also, the

definition of "right" system is subject to interpretation. The right system for

scheduling might have changed the way scheduling was done entirely. But

the objective of the initial ASTRO prototyping effort was to re-host the

activities associated with the paper acquisition chart to a computer-driven

large-screen display, leaving its contents and format intact. A better term

might be the "objective" system.

The analysis of the research data also identified two additional

advantages of the prototyping methodology not discussed in the literature
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review. In the ASTRO project, prototyping expedited the transition and

integration of new technologies and commercial products into a computer

system. Although this advantage is somewhat related to the flexibility in

selection of hardware and support software, it warrants explicit mention

because sometimes, as in the ASTRO case, it is the objective of the

development effort. The ASTRO project quickly and successfully exploited

new technologies in large screen displays, voice input/output equipment,

screen selection devices, and commercial software applications.

The ASTRO project also benefitted from high programmer

productivity throughout the development effort. For example, during a four

month period, the developer required only 12 man-months of effort to write

or modify in excess of 20,000 operational source lines of code (SLOC). Over

the entire second phase, January 1988 to February 1989, the staff developed

or modified nearly 45,000 SLOC in just 34 man-months or approximately

1325 SLOC per man-month (Unisys, 1988a:5). The ASTRO developer's

productivity far exceeded industry standards for DOD projects and provided

further justification for the continuation of the evolutionary prototyping

methodology.

In his book, Capers Jones notes that an average programmer

develops approximately three function points per man-month for DOD

embedded software systems (Jones: 1991:147). Using Jones's nominal value

of 71 Ada SLOC per function point for DOD software, a programmer on

average produces 213 SLOC per man-month (Galorath, 1992:18-21). Jones
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added that the low productivity rate for DOD projects was due in part to

the complex nature of embedded software, as well as the constraints

associated with DOD-STD-2167A and the enormous overhead required to

develop the documentation and conduct the formal reviews (Jones:

1991:148). Thus, the ASTRO project exhibited over a sixfold increase in

programming productivity as compared to industry standards for traditional

DOD software efforts.

The literature search also identified ten disadvantages or potential

pitfalls of prototyping which were listed in Table 2, page 27. An analysis of

the ASTRO effort with respect to these ten potential problems follows.

Again, specific examples and supporting information from the data are used.

The first listed disadvantage of prototyping is that complete

requirements definition often occurs late in the development process. The

ASTRO prototype development is no exception if requirements definition

means in the formal, written specification sense. However, one of the

primary purposes of prototyping is to define users' requirements in a

physical, tangible sense, so it is arguable whether this is truly a

disadvantage or merely a difference from traditional development. As cited

earlier, the ASTRO developer acknowledged the risk to both the Air Force

and developer of not having the accountability that specifications afford.

The developer recommended that, in the absence of formal development

specifications, "some form of'Memorandum of Agreement', or a level of
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effort contract with measurable milestones" be written to protect both

parties. This recommendation was never implemented (Unisys, 1988a:7).

The study tasking required, and Unisys delivered, a draft

specification of "the database, display formatting, and interactive schedule

manipulation capabilities necessary to meet Resource Scheduling

operational requirements" (Unisys, 1987:27). Unisys later recommended

that generation of detailed specifications and system documentation be

deferred until the prototyping effort was completed and then document it

"as installed" (Unisys, 1988a:7). In July 1990, The Aerospace Corporation

recommended that ASTRO be made operational and brought into

conformance with DOD-STD-2167A regarding requirements specifications,

documentation, testing, and security (Miller and Springsteen, 1990:3-1).

Another disadvantage is that the prototyping process lends itself to

growth in system requirements through iterative users feedback. This is

the problem of not knowing when to stop the iterations and conclude the

prototype effort by formally documenting the requirements of the final

system. In the ASTRO prototyping effort, it is difficult to distinguish

outcome of the requirements definition process from requirements growth

without a requirements specification baseline. The dividing line between

when the system was a prototype anu when it became operational is fuzzy.

Also, the objectives of the ASTRO development were expanded midway

through the effort.
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When all of the study development goals had been achieved and the

prntotype deemed complete in February 1989, the ASTRO software

consisted of 44,838 lines of code. Before operational evaluation began,

Unisys commented that "at system demonstrations and technical

interchange meetings, the schedulers and ASTRO development staff have

discovered new Network Display enhancement ideas and automation

opportunities nearly as quickly as the original goals have been met"

(Unisys, 1989a:5). At that time, 17 additional software enhancement

possibilities were identified for future work. During the following period

ending 30 October 1989, a total of 48 software enhancements were actually

implemented and the software had grown by 19,147 lines of code or 43

percent (excluding the network software, which was added scope) (Unisys,

1989a:28-30; Unisys, 1989b:15-31). Additionally, there were 10 hardware

enhancements performed during the period. Most of the enhancements

after this period were related- to the expanded scope developments, and an

ASTRO Software Specification was submitted in May 1991.

A third disadvantage of prototyping is that it may be slow to identify

an optimum design. Throughout the ASTRO development, the system

design evolved right up until the system's completion in July 1992. The

basic architecture of ASTRO never changed, but individual hardware and

software components have been improved, or optimized, with advances in

technology. Therefore, the system did achieve an optimum design early and

"upgraded" the component capabilities.
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The next disadvantage is that a prototype effort may result in an

inefficient system design. This problem results from the high-level, less-

efficient programming languages typically used fe- fast prototyping.

Recognizing this fact, the ASTRO developer decided at the outset not to use

a single high-level language. Instead, they used a combination of Turbo

Pascal, C, Fortran, and Assembler languages to develop custom database

and display management software.

The developer also chose a dedicated, single-tasking operating

environment (Microsoft MS-DOS running on a PC) to avoid performance

problems and overhead of multi-tasking systems (Unisys, 1987:24). The

developer noted performance problems in the BASCH and CCS system

where "reliance on general purpose database management software, display

management software, and the services of a commercial multi-tasking

operating system which was not designed to support real-time operations"

(Unisys, 1988a:15). Performance measurements yielded "system response

times which are equal to or better than those of the operational SCRABL II

system and which are far superior to those provided by the CCS mainframe

computers" (Unisys, 1988a:17).

An oft cited concern with prototyping is the potential risk that the

prototype system will be forced into serving as the operational system. In

December 1987, Unisys stated:

The final goal of this study is not to develop an operational
scheduling system, but to explore alternatives, try out ideas,
and evolve a set of specifications to be used for procurement of
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the next generation of scheduling hardware and software.

(Unisys, 1987:27)

Despite this declaration, this pitfall was not avoided in the ASTRO

development. Because of ASTRO's progress coupled with BASCH's

stagnation, the users requested installation and operational activation of

the "interim" ASTRO system after it had evolved to meet or exceed nearly

all of the functional evaluation criteria for the scheduling systems.

The sixth disadvantage of prototyping listed is that it may produce a

system which lacks portability or generality. Portability of the ASTRO

system was limited to PCs running the MS-DOS operating system. "To

maintain a degree of hardware independence, all of the ASTRO software is

designed to run under the commercial MS-DOS operating system" (Unisys,

1988a:15). The system is not generalizable to other applications because

the display management, database management, file-server, and network

software was custom designed and tailored to the AFSCN range resource

scheduling problem domain.

The seventh disadvantage notes that prototyping is not appropriate

for large scale developments which apply parallelism or distribution of

effort. Except for the file-server, the ASTRO system does not apply parallel

or distributed architectures. At less than 100,000 lines of code ASTRO is

not considered a large scale software development effort.

The eighth disadvantage is that it can be difficult to maintain a tight

development schedule. The ASTRO study did not have development
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milestones or schedule requirements. However, the prototyping effort did

adhere very closely to the schedules and objectives which were set out in

each of the progress reports. The completion of the prototype system

occurred on 13 February 1989, just 44 days beyond its target date.

The next disadvantage relates to the fact that prototyping efforts

generally do not provide clear, formalized deliverables for management to

track development progress. This is certainly true in the ASTRO

development, but it was by design. In the initial study tasking, there were

only three deliverables required. The first was a demonstration of the

prototype to the Air Force. The second was delivery of all of the source code

to the AFSCN software library. The third was generation of a progress

report for the task order period. The ASTRO project manager maintained

control by keeping himself and the Air Force program manager closely

involved in the prototype development. There was no traditional way to

measure progress because of the informal nature of the development effort.

Lastly, in prototype efforts, documentation tends to lag behind

development. This was also the case in the ASTRO effort. Again, this was

done intentionally, as discussed earlier, to allow the prototyping effort to

evolve and not get bogged down in specification and other documentation

changes. A draft users' guide was delivered in July 1989 and was updated

periodically thereafter. In July 1990, The Aerospace Corporation cited this

documentation deficiency (for a system which would become operational)
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and recommended that the ASTRO software and hardware be documented

in accordance with DOD-STD-2167A and MIL-STD-490, respectively.

Investigative Question 7

What other factors might have influenced the contrasting outcomes of the two

efforts?

This question addresses other factors identified during the analysis

which may have influenced the contrasting outcomes of the two projects.

Since the written documentation and archival records did not address these

factors, the determination as to whether a factor impacted the outcomes

was based primarily on the discussions with key individuals, as well as the

personal insight of the researchers. Table 7 identifies the factors noted

during the analysis.

The first factor identified during the research is the contrasting

number of development steps associated with each effort. An Aerospace

Corporation systems engineer suggested the BASCH effort attempted to

resolve two major problem areas (steps) with a single development

approach. He noted the initial BASCH design focused on two problem

areas: make scheduling a less labor-intensive process and introduce

automation into the process (Simpson, 1992).

The system concept for BASCH called for operational scheduling to

rely on automation (i.e., computer algorithms) to perform the majority of the

scheduling activities. The concept envisioned BASCH automatically
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Table 7.

Contrasting Factors in the Two Projects

1. One step development approach in BASCH versus two step
approach in ASTRO.

2. BASCH system prematurely rushed from development facility to
operational environment.

3. Contract type--formal contractual action versus flexible task
order.

4. Air Force management highly involved in the ASTRO project yet
provided development flexibility.

5. Sense of competition among the ASTRO development staff.

6. Stagnation in BASCH development supported the continued
development of ASTRO.

handling most day-to-day scheduling activities, freeing a smaller scheduling

staff to deal with real-time conflict resolution. However, funding

constraints resulted in deletion of the automation requirements from the

BASCH system specifications. As a result, the delivered BASCH provided a

scheduling system with two databases, resident on geographically separated

computers, connected via an internode communications link. Furthermore,

scheduling remained a highly labor-intensive process requiring the paper

acquisition chart to be maintained at both RCCs in order to support the

dual-node operations concept (Simpson, 1992).

In comparison, the Aerospace Corporation systems engineer suggested

that the ASTRO development was accomplished in a two-step approach.
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First, the developer produced the software to allow the schedulers to use a

single computerized database to conduct scheduling operations rather than

the paper chart. Once this was accomplished to the satisfaction of the

users, the developer generated additional system capabilities to provide

computer processing of certain scheduling activities. These capabilities

reduced the number of activities requiring manual processing effectively

reduced manning requirements (Simpson, 1992).

The second factor relates to the perception of the Air Force BASCH

test team that the system was prematurely rushed from a development

environment to the operational environment. The developer's facility lacked

an internode test-bed, which meant the BASCH system was delivered

without formal testing of the internode data transfer function. As discussed

previously, problems with BASCH started with system test of the internode

function (Walker, 1992). In addition, the Aerospace systems engineer

suggested that the transition of BASCH to an operational environment

reduced the developer's ability to correct software deficiencies in a timely

manner. Since the system was operational, deficiency corrections could only

be delivered via the formal maintenance process. In contrast, if the system

had remained in the development environment, correction could have been

more quickly and effectively incorporated into the system (Simpson, 1992).

In comparison, the ASTRO system remained in a development

environment right up to the delivery of the final software master. The final
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master, Master #1.43, was installed in the ASTRO system on 31 July 1992

to support system turnover to AFSPACECOM (List, 1992).

The next contrasting factor relates to the methods used to develop the

two systems. The Air Force procured the BASCH system via a formalized

cost-plus contract option. This approach provided little flexibility in the

event the government needed to make changes to the baseline system.

Additionally, the program office lacked a means to provide feedback directly

to the developer, since the effort was conducted outside the scope of the

contract award fee plan. In comparison, the ASTRO effort was conducted

under a yearly level-of-effort contract task order. This approach allowed the

SPO to redirect or expand the effort as required. It also provided the SPO

with the option to terminate the effort if the developer failed to meet

desired project objectives. Either of these actions could be easily

accomplished through a routine contracting officer letter. The approach also

provided a direct feedback link with the developer through the contract

award fee evaluations.

The fourth factor pertains to the impact the Air Force program

management style had on the ASTRO effort. It was noted that the ASTRO

program manager took a proactive role in the project while maintaining a

positive government/developer relationship. The program manager also

strongly supported the users' requirements and ensured the ASTRO effort

continually progressed toward meeting those requirements. While

maintaining an active interest in the project, the manager also provided the
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necessary flexibility required to assure project success. Furthermore, a

single Air Force program manager directed the ASTRO development from

project start, October 1987, until the interim operational installation,

January 1991. This provided continuity throughout the effort (Wong, 1992;

List, 1992).

In contrast, The BASCH effort suffered from a lack of overall

management attention, especially after the project was grouped with other

CCS functions for software maintenance. In addition, over the duration of

the development effort the BASCH project had numerous Air Force program

managers. Each manager, within the constraints of the contract, tried to

direct the effort toward their perceived system objectives. Thus, the

BASCH developer suffered from inconsistant guidance, which further

convoluted the effort (Wong, 1992).

The fifth factor relates to the competition perceived by the ASTRO

development staff between ASTRO and BASCH. The ASTRO developer

realized early in the range scheduling automation study effort that success

of BASCH would most probably lead to the cancellation of the study effort.

The ASTRO staff accepted the challenge of this situation and used the

threat as motivation to drive the project toward success. The ASTRO

project manager also comprehended the nuances of the acquisition

environment. He observed that if ASTRO was to be accepted by the

operational community, it would not only have to match the capabilities of

BASCH but must far exceed them (List, 1992). This was due in part to the
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perception among higher Air Force management that the sunk cost of

BASCH must be justified, even though it meant pouring more money into

the failing BASCH effort (Wong, 1992).

The final factor involves the continuous stagnation of the BASCH

project, while the ASTRO effort continually improved and evolved. As

mentioned previously, the ASTRO development staff felt their project would

be terminated upon the successful delivery of BASCH. However, with each

successive slip in the availability of BASCH, the ASTRO developer refined

the system until the capabilities of ASTRO far exceeded BASCH and met

the operational requirements of the schedulers. Furthermore, with each

new ASTRO prototype model, the number of ASTRO supporters grew,

eventually becoming a force witin HQ AFSPACECOM which could no

longer be ignored (List, 1992)..

In summary, the analysis identified several additional factors which

may have impacted the contrasting results of the two efforts. These factors

may have directly or indirectly influenced the project outcomes. However,

as with the three factors identified in Investigative Question 5 which were

not advantages of prototyping, these contrasting factors only enhanced the

benefits gained by using evolutionary prototyping in the development of the

ASTRO system. In comparison, the contrasting factors identified above only

provided more problems which the BASCH development effort would have

had to overcome in order to reverse the inevitable outcome.
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The analysis so far has focused on a single purpose, that being

answering the investigative question individually based on the three data

sources. So far no attempt has been made to draw any overall conclusions

based on the findings of each question. Chapter VI provides a summation of

the analysis and ties the findings of these questions together to answer the

overall research question. Additionally, Chapter VI proposes areas of future

research relevant to this case study.
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VI. Conclusion

The conclusions of this research are: 1) although started at different

times and with distinct objectives, the ASTRO and BASCH projects

addressed the same basic problem; 2) the principal reason for the ASTRO

project's success is application of the prototyping development methodology;

and 3) the reasons for the BASCH project's failure are not limited to

problems associated with the traditional waterfall development

methodology. Additional factors which contributed to each project's outcome

were identified. In the ASTRO project, these factors were complementary to

the prototyping methodology, while some factors identified in the BASCH

project were not at all related to the development method, and would have

caused significant problems even if an alternative method had been

employed.

ASTRO Success

Seven factors contributing to the success of ASTRO were identified in

the documentation, archival records, and interviews with key participants.

Selection of the prototyping method at the outset of the range resource

scheduling automation study was clearly the most significant factor in the

eventual success realized by the ASTRO project. As discussed in Chapter V,

four of the seven factors can be directly attributed to theoretical advantages

of prototyping identified in the literature review. The other three factors
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were development team strengths which facilitated the effective use of

prototyping. Those factors werc the domain experience and knowledge of

the developer's team, lessons learned from the previous scheduling systems

(e.g., BASCH and SCRABL II) and the initiative and commitment of the

development team to the process and product.

Ten of the eleven theoretical advantages of prototyping listed in

Table 1, page 24, were supported by this case. This includes the four

advantages explicitly identified in the data as factors contributing to the

success of ASTRO. The remaining six advantages were born out through

the data analysis. The one advantage not supported by the data is the

applicability of prototyping to the development of large multi-tasking

systems. However, since ASTRO was never intended to operate as a large

multi-tasking system, it could not be expected for the data to reflect this

advantage. The data analysis also identified two additional advantages of

prototyping evident in the ASTRO project, which were not discussed in the

literature review: quick technology exploitation and higher programmer

productivity. Technology advances are expedited with prototyping because

the requirements and design are not bound by specifications which may be

too rigid or may contain preconceived solutions based on existing, proven

technology. Furthermore, higher productivity is attained when the

developer is not burdened by the large documentation and formal review

overhead associated with the traditional development approach.
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The principal advantage realized through prototyping was in the

area of requirements analysis. The inherent synergy of prototyping

facilitated identification, definition, clarification, and incorporation of

requirements which had eluded previous attempts at automating the

AFSCN range resource scheduling activity. The requirements were

gradually extracted from the users with successive iterations of prototype

fabrication and users' evaluation. The resulting system exhibited

characteristics and functional capabilities which the schedulers took for

granted in the manual system, but had previously been unable to

communicate to develorers in formal requirements specifications.

Of the ten theoretical disadvantages of prototyping identified in

Table 2, page 27, only one is considered consequential in the ASTRO

development. In fact, some of the theoretical disadvantages are simply

differences from the waterfall development method and are not necessarily

problems. An example is the late definition of requirements in prototyping

efforts. This is by deeign and is not considered a disadvantage; rather, it is

considered an advantage which allows the requirements to evolve with the

prototype.

The one disadvantage evident in the ASTRO project relates to the

decision to make the proof-of-concept ASTRO prototype the near-term

operational scheduling system, replacing BASCH and SCRABL II. The

theoretical disadvantage notes that forcing the prototype system into

serving as the operational system results in a potential increase in risk. In
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this specific case, the risk relates to potentially significant costs of

maintaining the prototype system in the operational environment. The

initial ASTRO prototype was not developed with the prospect of becoming

an operational system, so supportability issues and associated costs were

not considered in the trade-offs of programming languages, documentation,

and commercial hardware and software. However, because the system

became operational, the trade-off became one of making the system conform

to standards or retaining the developer for sole-source support. Neither

choice is without additional costs to the ASTRO project.

BASCH Failure

Use of the traditional waterfall method of computer system

development in the BASCH project was only one of many significant factors

which contributed to the system's failure to be accepted by its intended

users. A total of eight factors which influenced the failure of BASCH were

identified from the analysis of the three data sources. Three of the eight

can be considered disadvantages of the traditional waterfall development

methodology as opposed to prototyping. The other five factors were not

directly attributable to the development methodology chosen. These factors

were the result of Air Force and developer management decisions and the

interdependence of BASCH with the rest of the CCS development.

These other factors, such as the geographical separation of the users

from the analysts and programmers and the constraint to operate within
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the CCS environment, would have severely crippled even a prototyping

effort. It cannot be determined which factor, if any, had the most

detrimental impact. But certainly the combination of these eight factors

produced a development process and product that was doomed to failure.

Each of the six other contrasting factors, which were observed but not

sufficiently supported in the data, warrant some consideration for future

computer system developments. The first contrasting factor demonstrates

the problems which can occur when the project is too ambitious and tries to

accomplish everything at once instead of one piece at a time. The second

factor illustrates the importance of testing in a high-fidelity test facility, if

at all possible, before delivering software to users. The third and fourth

factors indicate that management visibility and control can be achieved in

less formal, more flexible contract types. Finally, the last two factors

indicate that competition may actually further enhance the responsiveness

and productivity of prototyping efforts.

Suzgestions for Future Research

Unfortunately, a limitation of the methodology used in this study is

that the conclusions reached are not generalizable to other DOD computer

system development projects. Therefore, a research effort should be

undertaken to use statistical methods to answer the general research

question of what benefits are realized through prototyping and what are the

types of projects which benefit most from the methodology. Another
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approach would be to combine this case with other similar cases, perhaps in

a meta-analysis design, to reach a more general conclusion.

The original intent of this research effort was to conduct a statistical

study, using existing sources of computer system development project data,

to determine if application of the prototyping methodology during the

requirements definition and preliminary design phases of the software

development life cycle leads to more successful outcomes. However,

attempts to collect statistical samples of data were unsuccessful because the

kinds of data needed are not routinely recorded and the measures are not

standardized. In fact, some developers are reluctant to release such

information even when confidentiality is maintained. To collect the data

directly would have required more time than the researchers had available.

The population of interest is DOD computer system projects built

since DOD-STD-2167A was published, when developers were given the

option of using alternative development methodologies. A statistical

comparison of two or more development methodologies could be performed

using samples of measurement data from actual projects. One could

determine the degree of success that the DOD has had with each

methodology and develop criteria or guidance for selecting a development

method for a particular project.

114



Avendix A.- A Description of AFSCN Schedulinu Operations
(Authored by John List, Paramax Corporation, Sunnyvale CA, Undated)

1. INTRODUCTION

This paper provides a brief generic description of current AFSCN

scheduling operations. The steps necessary to build, publish, and maintain

the schedule of network activities are described. The intent is to identify

the major activities accomplished by the schedulers and the services

provided by the scheduling computer system, allowing derivation of high

level functional scheduling software requirements.

Scheduling consists of three major activities:

a. Schedule Construction - the "7-Day."
b. Conflict Resolution and Schedule Publication -

the "Support Message."
c. Schedule Maintenance - "Real Time."

It is difficult for visitors to observe these three steps because all three are

"in work" simultaneously. Thus, while some schedulers are maintaining the

real time schedule, others are preparing tomorrow's support message, and

still others are building next week's 7-Day schedule. For simplicity, the

steps will be described sequentially.

2. 7-DAY SCHEDULE CONSTRUCTION

Schedule construction consists of gathering acquisition data for all

spacecraft, gathering support and non-flight requirements from the Mission
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Control Complexes (MOOs), tracking stations, and developers, building the

Acquisition Chart and selecting support times, and publishing the 7-Day

schedule.

2.1 DATA INPUT

The MCCs provide two basic inputs to scheduling: acquisition data

and request data.

2.1.1 Acquisition Data

MCCs which have vehicles in non-synchronous orbits must supply the

schedulers with the predicted visibilities (acquisitions)) for their satellites,

since supports for the satellites can only be accomplished when they are

visible from one of the tracking station antennas.

Normally, each MCC acucmplishes its own ephemeris generation and

provides the resulting acquisition data to scheduling by delivering a

Satellite Acquisition Tape (SAT). SATs are loaded directly into the

scheduling computer.

A "state vector" may be provided instead of pre-computed acquisitions

on a SAT. In this case, ephemeris generation is accomplished off-line (by

the Schedule Plans staff or by Inter-Range Operations) and the resulting

acquisition data is transferred to the scheduling computer via SAT.

Acquisition data on a SAT may be modified when the tape is loaded

into the scheduling computer system. For example, an "offset time" may be
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applied to the data to reflect a change in launch time. Revolution numbers

may be also be altered (removing the tenths digit, for example).

2.1.2 Request Data

All MCCs supply the schedulers with weekly Program Action Plans

(PAPs) which describe specific support requirements for each satellite.

While the acquisition data describes all the times and places each satellite

could be supported, the PAP describes which of those support opportunities

are needed for actual commanding, telemetry reception, and tracking.

PAPs may be supplied to scheduling in several formats. Some MCCs

provide their PAPs on magnetic tape in a machine readable PAP tape

format. Handwritten paper PAPs are still used by some MCCs, while

others use various computer systems and programs (including the Vehicle

Acquisition List function of the scheduling computer itself) to produce PAP

listings.

For synchronous vehicles, the PAP also supplies the schedulers with

current visibility information. The schedulers use this information to

update the scheduling computer database (either through generation of

dummy acquisitions for the synchronous vehicles or through update of

"synchronous flags" in the system environment tables.

Non-flight requests are submitted to the Schedule Plans staff.

Remote locations submit their requests via "9-line" teletype message, while

local non-flight requests may be submitted via paper forms or PAP tapes.
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2.2 ACQUISITION CHART CONSTRUCTION

When the acquisition data has been loaded into the scheduling

computer, the schedulers begin construction of the Acquisition chart. This

activity starts approximately a week and a half before the beginning of the

time-span being processed.

2.2.1 Plotting of the Acquisition Chart

An off-line Personal Computer and high-speed pen plotter are used to

draw selected subsets of the acquisition data on the "Acquisition Chart".

Satellites in very low orbits, or those which may later change orbit

are not plotted. Satellites which are infrequently supported are also

omitted from the plot, as are synchronous satellites. The Global Positioning

System (GPS) satellite visibilities are omitted from the plot because the

large number of satellites in this family would overload the chart. Thus,

plotting is essentially limited to medium and non-synchronous high orbit

vehicles with the exception of GPS. Each Monday morning, the data for the

next week is plotted, resulting in a chart that is 36 inches wide and 84 feet

long.

2.2.2 Selection of Low-Orbit Supports

By the time plotting of the chart has been completed, PAP inputs

have arrived and construction of the schedule begins. This activity starts

with update of the chart and the computer database to reflect known low-
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orbit support requirements. The procedure used to make these updates

depends on the scheduling computer system in use, but the result is the

same. At the Acquisition Chart, an "M" is drawn behind each requested

support. The data system to be used for support is indicated by plotting a

color-coded tape beneath the support on the chart. The computer database

is then updated to show that these acquisitions will be supported.

2.2.3 Selection of Major Downtimes

Next, the Schedule Plans staff manually plots major downtime blocks.

These blocks represent times when a tracking station resource is

unavailable due to a major maintenance or modification effort, and when

contracts or other limitations make it extremely unlikely that satellite

operations will be able to bump the downtime effort. Such major downtimes

are pre-coordinated with the MCCs at a weekly long range scheduling

meeting (held the previous Friday), in an attempt to keep the MCCs from

requesting resources which are already known to be unavailable. These

events are plotted on the Acquisition Chart in wide yellow tape, with

annotations describing the downtime written directly onto the tape.

2.2.4 Selection of High-Orbit Supports

Supports for high orbit vehicles (both synchronous and non-

synchronous) are now selected (Monday afternoon and all day Tuesday).

Again, the procedures used depend to some extent on the scheduling
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computer system in use and also vary depending on whether a paper PAP

or a PAP tape have been provided to scheduling.

Supports are manually selected at the Acquisition Chart. Each

selected support is plotted using colored patterned adhesive tapes (the

pattern indicates the spacecraft family, while the color indicates the specific

satellite). The schedulers work at the chart using a listing of the support

requests provided by the PAP.

Each requested support is selected and plotted on the chart using a

conflict avoidance philosophy. Within the time and visibility constraints

outlined on the PAP (requested times) and Acquisition Chart (visibility

information), the scheduler attempts to find a reasonable way to fulfill the

PAP request. The scheduler also attempts to avoid previously selected

major-downtimes and flight supports, while also considering future inputs

not yet received. Since many low orbit MCCs have not submitted detailed

PAPs at this point, and none of the MCCs are willing or able to formally

resolve conflicts this far in the future, the schedulers do not waste effort on

optimization. Instead, the desire is to get as much raw data onto the

Acquisition Chart as possible to facilitate later conflict resolution. Conflicts,

when discovered, are simply ignored.

To prepare for later conflict resolution and schedule maintenance

activities, a condensed summary of the PAP constraints (which the

schedulers call a "PAP Window") is written on the chart below each selected

support. The PAP Window annotations allow most later schedule
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manipulations to be accomplished without the need to consult the PAP. As

with low orbit supports, the data system to be used is indicated with a strip

of color-coded tape below the support itself.

2.2.5 Selection of Routine Downtimes

After the high orbit supports have been selected, the Schedule Plans

staff returns to the Acquisition Chart to manually select schedule times for

routine downtimes and maintenance. This is normally accomplished l!te on

Tuesday or early Wednesday morning and is an interactive process between

the schedulers and the planners. In theory, the routine downtimes will be

selected in "holes" left after flight supports have been picked. In actual

practice, there are always insufficient "holes", so the high orbit supports

require adjustment to accommodate downtimes. As with major downtimes,

these non-flight activities are plotted in wide yellow tape and are annotated

to provide a description of the activity.

2.3 UPDATE OF THE COMPUTER DATABASE

Wednesday 7-Day efforts are devoted to update the scheduling

computer database to reflect the high-orbit and downtime supports

previously selected at the chart. The specific procedures used to update the

database are dependent on the computer system in use and may include

coding of keypunch forms and/or either on-line or off-line interactive task

creation. When all of the selected supports have been entered in the
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database, Site Schedule Lists are obtained to cross-check the database

against the contents of the Acquisition Chart. Interactive database updates

are then accomplished to correct any errors found.

2.4 PUBLICATION OF 7-DAY SCHEDULE PRODUCTS

On Thursday morning, the scheduling graveshift publishes the

weekly Frequency Protection Messages to supply satellite visibility and

radio frequency utilization information to organizations responsible for

frequency management near the VTS, HTS, and GTS remote tracking

stations (RTSs). The AUTODIN output capabilities of the Vehicle

Acquisition List function are used for this publication. The frequencies used

and turnaround times required for each vehicle are included on this

message through the use of "Text Headers" contained in the scheduling

computer database.

Thursday at noon, the Schedule Plans staff publishes the 7-Day

schedule containing (only) non-flight and rehearsal activities. The 7-Day is

routed to each RTS, MCC, and to contractors who have requested

downtimes. The AUTODIN output capabilities of the Site Schedule List

function are used here.

The scheduling swingshift (Thursday evening) uses the Site Schedule

List function to publish the 7-Day In-House listings of ffight supports

scheduled for selected MCCs. These are printed listings and magnetic tapes

for hand delivery, not AUTODIN outputs.
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All of the published 7-Day schedule products take effect the following

Monday at OOOOZ.

When all 7-Day schedule construction efforts are complete, the

Acquisition Chart is physically moved from the schedule planning area to

the real time scheduling area and construction of the next 7-Day schedule

begins.

3. CONFLICT RESOLUTION AND SUPPORT MESSAGE

PUBLICATION

Each day the schedulers must produce a 24-hour schedule for all the

Air Force Satellite Control Network (AFSCN) operating elements. At the

end of the day, a conflict free schedule must be completed for transmission

to all network elements. The daily activities to produce the schedule are

divided into three major parts: To-Do, Conflict Resolution, and Schedule

Publication.

3.1 TO-DO ACTIVITIES

Daily conflict resolution efforts begin late on dayshift two days before

the schedule is to take effect. This activity is known as the "To-Do" (named

after the clipboard where changes for future time-periods are kept until

sufficient Acquisition Chart is unrolled to reach the supports).

During the To-Do effort, the Acquisition Chart and scheduling

computer database are updated to reflect "final" complete support
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requirements for all vehicles. This includes update of satellite visibility

times and support requirements based on latest ephemeris runs and MCC

support plans including schedule change requests provided via revised PAPs

or Manning Schedule Change (MSC) forms.

To-Do chart work begins with the plotting of visibilities for very low

orbit satellites. These vehicles are not plotted on the chart for the 7-Day

because they tend to do orbit adjusts which cause their visibility times to

change. Next, an "M" is written behind each of these "low flyers" which is

to be supported. The support requirements (including pass supports, pre-

passes, command messages, and playbacks) are annotated on the Vehicle

Acquisition List used for plotting. This annotated list is then used to

update the scheduling computer database.

Next, the plotting accuracy on the chart is checked for vehicles which

were plotted on the 7-Day. This is accomplished in three steps. First, a

Vehicle Acquisition List is compared to the latest ephemeris run to see if

there is a significant difference in visibility times. Then the acquisition

data in the computer database is adjusted as required using the Slide Tasks

function. Finally, the corrected data is listed using Vehicle Acquisition List

and compared to the Acquisition Chart plotting. Any differences are

corrected on the chart. This entire procedure is known as "arrowing", or

"updating Acquisitions".

Since some of these vehicles do not supply an accurate PAP for the 7-

Day, their support requirements are now plotted on the chart with an "M"
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behind each requested visibility. The scheduling computer database is also

updated to reflect these support requirements.

When "arrowing" is completed, any pending schedule change requests

(MSCs or revised PAP requests) are processed. These change requests

represent new or changed requirements submitted by the MCCs in the

interval between construction of the 7-Day schedule and the start of the To-

Do effort. Each schedule change is annotated on the Acquisition Chart and

the database is updated to reflect the change. The chart annotations for

these events include the date and time at which the change was formally

received by scheduling, called the Date/Time Group (DTG). The DTG is

written, enclosed in a circle, on the chart near the event(s) modified by the

MSC.

When all updates to the database have been completed, a Site

Schedule list is run to compare with the Acquisition Chart. This procedure

is intended to cross check the work at the chart and in the computer

database to make sure both representations of the schedule are the same.

All the above activity is concerned with the schedule two days in the

future. When the To-Do activities are completed, the Acquisition Chart

contains all known requirements for use of AFSCN resources for that 24-

hour time span. No conflict identification or resolution has been performed.
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3.2 CONFLICT RESOLUTION ACTIVITIES

3.2.1 The Shuffle

When the To-Do activities are completed, resolution of conflicts

begins. The schedulers manually examine the Acquisition Chart for the To-

Do period just completed and attempt to minimize the number of conflicts

through adjustment of support sites or times within the constraints dictated

by the PAPs. This process is known as the "Shuffle" or board cleanup."

This is a strictly manual effort at the Acquisition Chart, but this process

generates many changes to the schedule which must then be transcribed

into the computer database.

The computer database is updated after the shuffle has been

completed. These database updates consist of "ADDs" and 'vICEst . ADDs

are new entries into the system. The satellite acquisitions have been

previously loaded as part of the 7-Day cycle. Now, support periods are

ADDed to the existing acquisitions. VICEs are changes to supports which

have already been input as part of the 7-Day or To-Do cvcles. These

changes are annotated on Site Schedule Lists generated from the computer

database. All changes are input to the computer system using task creation

functions (ADDs) and interactive task update functions (VICEs).

The schedulers coordinate the results of the shuffle with each MCC

and explain remaining "hard" conflicts. These are the conflicts which can

only be resolved through MCC action (deletion of support, changing of PAP
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requested times or stations, acceptance of non-standard hardware

configuration, etc.). The schedulers aid the resolution of these conflicts by

suggesting reasonable support alternatives based on experience, but the

MCCs have final responsibility for their resolution, which may be based on

classified mission objectives of which the schedulers have not knowledge.

As the "hard" conflicts are resolved, the resulting schedule changes

are reflected on the Acquisition Chart and through update of the scheduling

computer database.

3.2.2 First Board Check and Conflict Scan

Once the post-shuffle schedule changes are entered into the database,

a Site Schedule List is generated for comparison with the Acquisition Chart.

At this point, the Acquisition Chart is not completed. The schedule is not

yet completely conflict free, but the Acquisition Chart is always "ahead" of

the database resulting in additional ADDs and VICEs.

When these updates are completed, the schedule depicted on the

Acquisition Chart and in the database should be the same. In actual

operations, however, this is rarely 100% true, since the schedule continues

to change while the checks and database updates are being accomplished.

To verify the quality of the schedule, the Conflict Scan function is

now run. This function identifies any remaining conflicts (time/equipment

overlaps between tasks). Conflicts thus identified are the result of data

entry errors, miss-plots on the Acquisition Chart, or they may be legitimate
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non-yet-resolved conflicts. The conflict list is checked against the

Acquisition Chart and corrections are made as required to both the chart

and the database.

3.2.3 RFI Conflict Identification

The prediction of RFI conflicts can be divided into two parts. First,

an off-line computer run is made which calculates conjunctions (close

approaches, as viewed from the tracking stations) between satellites. This

calculation must be performed fairly close to real-time when accurate

ephemeris data is available. Normally the runs are made by the Schedule

Plans or Inter-Range Operations staffs on Monday, Wednesday, and Friday

with each run covering the time span until the next run (plus some

contingency overlap). During some critical satellite flights, runs are

performed daily.

The second part of RFI prediction, actual identification of RFI

conflicts, is performed daily by the schedulers and can only be accomplished

when the schedule at the Acquisition Chart is fairly completed. Thus, RFI

conflict identification is usually performed at the chart while the scheduling

computer database is being updated to reflect changes identified by the first

board check.

Identification of RFI conflicts is (currently) a manual task. The

listing of all conjunctions between satellites with common radio frequencies

is compared to the schedule as shown on the Acquisition Chart. The
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schedulers draw an asterisk (*) above each task in conjunction. These flags

allow quick identification of new RFI conflicts which might be created by

later schedule changes. Conjunctions in which two (or more) vehicles plan

to use a common radio frequency (both scheduled, or one scheduled and

another with a "beacon" which is always on) are marked on the chart as

RFI conflicts.

Supports in RFI conflicts which can be moved to alternate sites or

times are moved to avoid the RFI. Supports which cannot be moved are

defined as formal RFI conflicts. Some RFI conflicts require active resolution

by the schedulers. For example, a call to NASA may be required to attempt

to have a conflicting Landsat support moved. Other RFIs require only that

the schedulers notify the affected MCC in writing that the RFI is predicted.

The'assumption is that the MCC will arrange support plans to work around

the RFI problem (don't attempt critical data readout during the predicted

RFI, for example).

3.2.4 Second Board Check

As soon as all first board check activities are completed, a second

check is performed. A Site Schedule List is again compared to the

Acquisition Chart. Procedurally, each scheduler is required to check

different sites than those checked the first time.

While the listing is being compared to the chart, the scheduling

computer system is used to begin preparation of data system schedules,
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including the Bird Buffer computer schedule and Range Controller.

schedulers for both the Sunnyvale and Colorado Range Control Complexes.

These schedules cannot be prepared until the site schedules are relatively

"clean".

The Second Board Check results in more updates to the database.

These updates and the preliminary data system schedules are generally

completed by about 1600L. Thus, by 1600L, tomorrow's schedule should be

100% conflict free and the scheduling computer database should match the

Acquisition Chart.

3.3 SCHEDULE PUBLICATION ACTIVITIES

3.3.1 Final Schedule Checks

When the second board check activities have been completed, the

schedule should be conflict free and nearly ready for publication. To verify

that the Acquisition Chart and the computer database are both correct,

several final checks are accomplished. These checks are normally

accomplished by the swingshift scheduling staff (the previous checks are

done by the dayshift crew), to ensure that the final check is accomplished by

fresh people.

Several Site Schedule Lists are generated, for the final checks. One

list is a basis time-ordered list of all scheduled events for each RTS.

Additional lists are obtained using the Site Schedule equipment selection
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options. These lists are used to verify correct data processing assignments,

wideband data link assignments, etc. The listings are red-lined to reflect

changes or errors, which are then transcribed to the computer database.

Once these "final" checks of the schedule are completed, the data

system schedules are finalized.

3.3.2 Publication of the Support Message

At this point, the database is frozen while the 24-Hour Support

Message is published. All the various schedules produced must be made

from the same database to prevent schedule ambiguities. Schedule

publication consists of approximately 60 listings from the scheduling

computer. Separate Site Schedule Lists are made for each MCC and RTS.

Additional listings are generated for use by the data system operators and

the various communication system operators. Generation of the listings is

streamlined by use of JCL or Macros to automatically supply the required

list control parameters.

Listings for the RTSs and for some other external agencies are

generated in AUTODIN format for transmission by the Air Force

Communication Center. Listings for local organizations are produced both

as paper lists and as magnetic tapes. Both are manually distributed.

The published Support Message takes effect the next morning at

0800L time. Thus, with the normal publication time of about 1900L, there

is a 13 hour "pad" in the scheduling time line to allow catch-up of any
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activity which has fallen behind. However, some of this pad is consumed by

the time required for the Communication Center to transmit the schedule to

the RTSs.

4. SCHEDULE MAINTENANCE

All shifts are responsible for maintenance of the schedule from the

time it is published until the scheduled events happen. This is called real

time scheduling. The schedulers are also the custodians of the schedule

data after-the-fact. This "history" data is used to prepare statistical reports

on network utilization.

4.1. REAL TIME CHANGES

Once the Support Message is published, schedulers must continue to

monitor the schedule and respond to required changes. These changes can

be due to schedule errors (incorrect requests from the MCCs or incorrect

processing by the schedulers), vehicle problems, tracking station problems,

or changing mission requirements. Typically, about a third of the scheduled

activities are changed between publication of the schedule and execution of

the activities in real time. Many of these changes are the result of a

"ripple" effect: A single change in the middle of a tight schedule may

require many additional changes to surrounding activities.

All real time changes are made first at the Acquisition Chart. Tapes

are added, deleted, or moved to reflect the new correct schedule. If the
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changes are for events within 8 to 12 hours of real time, all affected parties

(RTSs, MCCs, ACES, Comm, etc.) must be notified by telephone. This is

currently the most time-critical scheduling activity since the modified

schedule cannot be implemented until those who actually perform the

support are notified. The scheduling computer cannot assist in change

notification because the schedule changes have not yet been input to the

database.

When all necessary verbal change notifications have been completed,

a DD-173 message form is prepared for AUTODIN transmission. This

provides formal hard copy notification of the changes. When the message is

transmitted, the Date/Time Group of the message is written on the chart

next to each scheduled event modified by the message, providing an audit

trail of all schedule changes made subsequent to initial publication of the

24-Hour Support Message. Photocopies of the messages are used by the

schedulers to update the computer database.

4.2 HISTORICAL VALIDATION

When a published schedule (including all changes to it) has been

completely executed, it is termed "history" by the schedulers. Each night,

the graveshift compares the computer database to the Acquisition Chart for

the "history" day just completed. This check verifies that all change

updates were entered into the computer correctly, so the database

accurately reflects what actually happened in the network.
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Periods where resources were not available due to outage are entered

into the database at this time. Then, the Conflict Scan function is run to

verify that the history data is conflict free. The Support Summary function

is then run to provide "quick look" flight support statistics by tracking

station and by program. The summary is also used to provide network

loading information for the daily commander's briefing. After the summary

is completed, a copy of the database is archived to magnetic tape and the

tape is removed from the system for safekeeping.

The Schedule Plans statistician transfers the history data to magnetic

tape for transport to the off-line statistical analysis archives, and finally,

the history is deleted from the scheduling database. This history "purge" is

performed every day to keep the active database as small as possible.

5. ADDITIONAL FUNCTIONAL REQUIREMENTS

As described above, both the Acquisition Chart and the computer

database play a critical role in scheduling operations. The chart presents

the "big picture" of the schedule necessary to quickly explore options and

alternatives when manipulating the schedule. Further, the chart is immune

to component failures, power or air conditioning failures, and software bugs.

Thus, the chart provides insurance for the necessary continuity of

scheduling operations. The scheduling computer and its database, though

less "bullet proof' than the chart,.provide valuable accounting, error

checkikg, and schedule dissemination services not provided by the chart.
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The combined capabilities of both of these scheduling "tools" are essential to

successful scheduling.

At any time, the computer database represents a relatively volatile

accumulation of the results of all scheduling work accomplished at the

chart. Therefore, the schedulers are extremely careful to safeguard the

data. Error checks are performed and non-volatile backup copies of the

database are created several times per hour. An additional backup is

physically removed from the system at the end of each shift to ensure that,

in a worst-case computer, software, or operator induced "crash" only one

shift of database updates would be lost. Safeguarding of the database is

considered so important that turnover of the end-of-shift backup tape

requires an initialed entry in the change-of-shift log book.
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Appendix B: AFSCN Rance Scheduling Acquisition Chart Facsimile

Attached is a facsimile of the range scheduling paper chart produced

by an electrostatic color plotter and the ASTRO system database.
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Appendix C: Interview Preface

PROBLEM: As advances in technology increase the complexity of modern

weapon systems, computers are called upon more frequently to control those

systems. It can be said with a high degree of confidence that computers

now play an integral role in virtually all major systems. However, the DOD

faces a growing problem associated with the development of software: the

inability of its managers to buy or develop quality software systems in a

timely and cost-effective manner.

RESEARCH GOALS: Our goals in conducting this research are to explore

the principal differences in the two system development efforts, BASCH and

ASTRO, in the context of the unique AFSCN range resource scheduling

problem domain, and to understand why the second project succeeded after

the first was unsuccessful. The case presents a unique opportunity for

comparison of the requirements definition and system developmen;'

approaches used, because the nature of the problem did not change. Only

the fundamental problem solving methods changed, within contractual and

technological limitations at the time of the development effort.

RESEARCH DESIGN: The research design utilizes the case study method

to explore the development processes of the BASCH and ASTRO efforts. We
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will attempt to identify those factors which had significant influence on the

results of the two projects. The interview responses will be combined with

other data sources to address the following investigative questions:

1) What are the reasons cited for the non-success of BASCH?

2) What are the reasons cited for the success of ASTRO?

3) What development methodologies were used in each of the

efforts? Why were the methodologies chosen?

4) How did the development methodologies used in the ASTRO

effort enhance the process?

5) What were the perceived advantages and disadvantages of the

development methodologies in this case?

6) What other factors might have influenced the contrasting

outcomes of the two efforts?

INTERVIEW FORMAT: The purpose of the interview is to gather

personal insight from key individuals associated with the BASCH and

ASTRO development efforts. The interview will be conducted via telephone

using an open-ended format so that additional areas of interest or insight

can be pursued based on the individual's responses. The interview will be

conducted in the following format:

1. Introduction.

II. Individual's Experience with the Problem Domain.
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III. Individual's Role/Experience in the BASCH Development

Effort.

IV. Individual's Role/Experience in the ASTRO Development Effort.

V. Investigative Questions.

VI. Additional Questions as a Result of the Individual's Responses.

VII. Conclusion.
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Ayvendix D: Interviewee Background

Mr. John List, ASTRO Prototype Project Manager, Paramax
Corporation - A Division of Unisys Corporation, Sunnyvale, CA.

Mr. List managed the ASTRO project from the initial proof-of-concept

analysis, October 1987, through prototype system design and development,

to installation of the fully operational ASTRO network in July 1992. From

1983 to 1987, he was lead programmer at System Development Corporation

(now Paramax) assigned to SCRABL II system software maintenance. From

1968 to 1983, he was employed by the Air Force as a Master Scheduler at

Sunnyvale AFS. In addition to his primary duties as an operational

scheduler, he supported the development and evaluation of system-level and

detail requirements for the BASCH system. From 1985 to 1987, he was

also a member of the AFSCN Range Scheduling Working Group. Mr. List

has a combined 24 years of AFSCN range scheduling experience as a

developer and an operator.
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Mr. Francis Wong, Scheduling Shift Supervisor, 21 SOPS/DOS,
Onizuka AFB, Sunnyvale, CA.

Mr. Wong has 20 years operational AFSCN range scheduling

experience. He joined range scheduling operations in 1972 after graduating

from college with an Industrial Engineering degree. During his 20 years, he

has progressed from Scheduling Trainee, to Master Scheduler, to Shift

Manager, to his current position. In his current position, one of his primary

functions has been as the direct interface between the range schedulers and

the ASTRO development team. His duties included prioritizing ASTRO

software deficiencies and suggested improvements, as well as reviewing

associated documentation. He also was involved in the operational

evaluation of both the BASCH and ASTRO systems and supported the

BASCH effort as the users representative at the formal design/development

reviews. In addition, Mr. Wong was a member of the AFSCN Range

Scheduling Working Group from 1985 to 1987.
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Mr. Bruce Simpson, Systems and Test Engineer, The Aerospace

Corporation, Colorado Springs, CO.

From 1987 to 1991, Mr. Simpson was a technical advisor and system

engineer for the Consolidated Space Operations Complex/System Program

Office (CSOC/SPO) site activation task force (SATAF) organization. One of

his primary responsibilities was monitoring the operational activation of the

BASCH system. His duties involved observing and participating in BASCH

testing, including Functional Qualification Testing, Component Testing, and

System Testing. He also was the lead test engineer for the SATAF

operational exercises of BASCH. In addition, he managed the resolution of

BASCH software problems identified during testing. Finally, he was

involved in the operational evaluation of the ASTRO prototype system at

Falcon AFB in 1989. Mr. Simpson has over four years experience with the

testing and activation of the BASCH system.

143



Mr. Rick Walker, Systems Engineer, International Business
Machines Inc., Colorado Springs, CO.

From 1986 to 1989, Mr. Walker was the lead Air Force test engineer

for the CSOC/SPO SATAF organization. His primary responsibility was

supporting activities associated with the operational activation of BASCH.

His duties involved observing and participating in BASCH testing, including

Functional Qualification Testing, Component Testing, and System Testing.

He also actively supported the SATAF operational exercises of BASCH. He

was responsible for reviewing and validating proposed design changes to

support deficiency resolution as submitted by the BASCH developer. He

also reviewed associated BASCH enhancement documentation and

preliminary ASTRO progress reports for HQ AFSPACECOM.

Upon separating from the Air Force in 1989, he joined IBM as a

system engineer working CCS-related activities. In February 1991, he was

assigned to the BASCH project as the lead system engineer. During this

timeframe he supported the SSD/CW Near-Term Range Scheduling

Requirements Assessment and was instrumental in the decision to activate

the fully operational ASTRO system.
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