
AD-A258 134

A RAND NOTE

Beyond User Friendly

Robert H. Anderson, Norman Z. Shapiro

December 1989

DTIC
ELECTE

0 0 1992

_ S~E
gisuminwr*N STM eAhm!'aj
Approved for public releoseq

Distfibutio Unlhited

RAND 92 12 09 041

b7,

The research described in this report was supported by
The RAND Corporation using its own research funds.

The RAND Publication Series: The Report is the principal publication doc-
umenting and transmitting RAND's major research findings and final research
results. The RAND Note reports other outputs of sponsored research for
general distribution. Publications of The RAND Corporation do not neces-
sarily reflect the opinions or policies of the sponsors of RAND research.

Published by The RAND Corporation
1700 Main Street, P.O. Box 2138, Santa Monica, CA 90406-2138

A RAND NOTE N-2999-RC

Beyond User Friendly

Robert H. Anderson, Norman Z. Shapiro

December 1989

Accesion For

NTIS CRA&W
DTIC TAB
Unannounced 0
Justification

By

Distribution I

Availability Codes

-- Avail and I or
Dist Special

DTIC QUALITY I.S&PECTED 4

RAND

-ili-

PREFACE

Information scientists at The RAND Corporation have had continuing interest in the

design of effective interactive systems and in their impact on the productivity and structure

of work groups and organizations. A series of RAND occasional papers released during the

past decade has dealt primarily with the design and effects of electronic mail systems as one

important example (Shapiro and Anderson, 1985; Eveland and Bikson, 1987; Anderson et

al., 1989).

In studying the design of user-computer interfaces, one is struck by the conceptual

confusion that abounds in the literature. This Note, first published in The EDUCOM

Review, Vol. 24, No. 3, Fall 1989, explores this confusion and formulates a multi-

dimensional scale with which to appraise such interfaces.

The Note should be of interest to both users and designers of interactive information

systems.

-V-

SUMMARY

What is meant when the interface to a computer software program is called "user-

friendly'"! In this Note, we describe six "easy to.. ." dimensions for user-computer

interfaces that distinguish among asp.cts of a program's behavior often confused within the

"user-friendly" rubric. Some of these dimensions are mutually antagonistic, so priorities and

choices must be made depending on the user's context. We apply the six dimensions to aid

in understanding the love/hate relationship some software interfaces engender. Through

categorizations of user interface traits, such as the example proposed here, we hope to aid

both the design and procurement of effective user-computer interfaces for software products.

-vii-

CONTENTS

PREFACE ... iii

SUM M ARY .. v

Section
I. INTRODUCTION ... 1

II. THE DIMENSIONS OF MEASY TO..." 3
1. Easy to Use .. 3
2. Easy to Learn (and Teach) 3
3. Easy to Relearn 4
4. Easy to Unlearn 4
5. Easy to Avoid Harm 4
6. Easy to Support 5

III. THE CONTEXT: PEOPLE, TASKS 7
The Love/Hate Relationship 8

IV. CONCLUSION ... 10

REFERENCES .. 11

-1-

I. INTRODUCTION

We believe that the buzzword "user-friendly" has become so lacking in content and

specificity as to be virtually meaningless. Figure 1 shows an extreme illustration of this.1

What is meant by "user-friendly," focusing our attention on the interface to a

computer software program? Has it simply come to mean "good," rather than "bad?" If it is

shorthand for "friendship with the user" we might approach the topic by exploring what

Fig. 1-Example usage of the term
user-friendly

'This advertisement appeared in lndustrial Equipment News, 1988. Cited without
permission.

-2.

those words mean in this content: What kind of friendship--that of a salesman or that

describing a long-standing mutual relationship among people? In the former case, it

describes an easy, casual, assumed familiarity without depth or longevity. In the latter case,

it involves a significant investment of time and energy to form an understanding of the

resource that is the friend. Some software is like the salesman: We associate this

friendliness with easy-to-learn; there is little investment in time and energy to get some

utility, and the relationship might lack in depth and subtlety. Other software is like a deep

friendship: We associate this friendliness with easy-to-use; a significant investment of time

and energy pays back in a long-term relationship that is rewarding for its depth,

dependability, and subtlety. (Continuing the analogy: Just as a good friend adapts to your

needs, a good piece of software does too.)

Another approach to understanding "user-friendly" is to make finer distinctions in

describing some of the attributes of the interface to computer programs, perhaps distinctions

like that mentioned above: "easy-to-learn" vs. "easy-to-use." But are we merely replacing

one phrase by two? No; we believe there are many "easy to.. ." dimensions, of which these

two are only the most obvious. This Note follows this approach of making finer distinctions

and attempts to explore a multi-dimensional space and describe its implications for

understanding some of the attributes of a program's user-computer interface. Another

interesting attempt to make finer distinctions is made by Jon Meads, in which he relates user-

friendliness to systems having the attributes cooperative, preventative, conducive, reliable,

predictable, and deferent (Meads, 1985).

Because they will help match software to users' needs, the distinctions addressed in

this Note are important to persons who specify, design, develop, judge, select, develop

training for, support, and use software systems and their associated user interfaces.

-3-

II. THE DIMENSIONS OF "EASY TO..."

Software tools are meant to make our lives more productive and easier. But they do

so in various ways, not all of which are mutually consistent or achievable. In fact, many of

these ways tend to be mutually antagonistic. At present we distinguish the following ways a

software's user interface might have the "easy to.. ." attribute. However, this is only one

means of partitioning the space, based on our personal philosophies about software. Other

categorizations may be more useful for other philosophies and their contexts. Our hope is to

stimulate thought, not provide definitive categories.

1. EASY TO USE

Once a software package has been adequately learned-and without regard to how

much time and effort that learning took-how easy is the program to use now? In short, can

the learned user do what he or she wants to do easily?

2. EASY TO LEARN (AND TEACH)

This is often badly confused with "easy to use." We have seen this confusion

occasionally evidenced by even writers and speakers of substantial reputation, knowledge,

experience, and clarity of vision. How hard, measured in both time and intensity of effort, is

it to acquire sufficient familiarity with the software's interface so that use becomes routine?

This is quite distinct from easy-to-use: For example, user interfaces that lead you through

each choice (e.g., through "drop down" menus ubiquitous in Macintosh and IBM's SAA

architectures) might be easy to learn because of the "training wheels" they provide, but

could get in the way of effective use.1 The appropriateness of ease of learning is of course

heavily dependent on the user's context. (We elaborate on context in a later section; see in

particular our example of learning French for a trip to France as illustrating strong context-

dependence.)

tTo carry the analogy one step further. Some people question whether putting
training wheels on bicycles is "just a crutch" creating the added complication of converting
back to their nonuse. (Mis discontinuity is often mirrored in the differing form, vocabulary,
structure, and content between "Getting Started" manuals and the reference manuals
provided with software. Learning with one provides little help in moving to the other. The
topic of software documentation is worthy of more extended consideration than can be given
here.)

-4,

We note that this category is not at all the same as one we have deliberately avoided:
"easy to demonstrate." Software that lends itself to quick, flashy though superficial

demonstrations may well be very different from software that is easy to teach and to learnL

3. EASY TO RELEARN

The user has learned a software package, followed by a period of disuse. How hard

is it to relearn the package? This is not the same as learning the first time, because it

involves how well the models and ideas gained in the initial learning "stuck" in the user's

cognition.

4. EASY TO UNLEARN

Edsger Dijkstra has stated that programmers who have learned BASIC become

"mentally mutilated beyond hope of regeneration" (Dijkstra, 1982). Text editors are another

example of systems that are often difficult to unlearn. Some systems might even be classed

as addicting, in the sense that once the user learns them the user tends to stay with them. We

believe that the concept of inertia applies, both to individuals and (even more) to

organizations: To a degree rarely understood, learning the interface to a piece of software

may entail making a lifetime commitment to it (or to software like it), at least in the sense

that this act affects one's future attitude toward, and behavior with, other software systems.

In organizations, inertia applies in spades: It may be very difficult to eradicate a piece of

software once it is adopted. 2 We elaborate on this theme in describing "The Love/Hate

Relationship," below.

5. EASY TO AVOID HARM

Is it easy to avoid causing inadvertent harm using the software interface? For

example, through misunderstandings or misinterpretations at the user interface, user actions

can cause harm by inadvertent alteration, destruction, or revelation of data (e.g.,

unintentionally mailing a reply to all those copied on the original message).

2A generalization of these notions gives rise to an important consideration: The
order in which people acquire knowledge of programs is important and should be a topic of
research and study.

-5-

6. EASY TO SUPPORT

Many organizations have evolved user support groups to aid their employees in the
use of software packages; these groups often staff "hot lines" to be called for assistance and

provide training classes. Similar user support is also furnished to customers by vendors of

software. With the continuing increase in the number and diversity of software interface

styles, ease of support has become critical. As the magnitude of support costs for a product

becomes better understood, ease of support may well be a dominant factor in institutional

purchases of software products.

We believe the above list of "easy to.. ." dimensions highlights the most important

aspects of a system's user interface. But the list could easily go on. For example, user-

computer interactions should be easy to audit, since it is often desirable, or even mandatory,

to access a record of a system user's activities after the fact. (For example, a complete audit

trail of a bank teller's use of his or her terminal is vital. An audit trail can be very helpful to

user support, or even to users themselves in understanding "How did I get here?" or "Where

am I?") Other factors deal less directly with the system interface and more with its

functionality within an organizational context: A system should be easy to share within a

group-that is, it should enhance computer-supported cooperative work. A system should

be easy to integrate into existing operations, including (1) its integration with other

hardware, software, and databases within an organization and (2) its integration with

existing procedures (although they may evolve to new forms as a result of features in this

and other software products).
Faced with a complex space of attributes like the above, an obvious reaction might

be, "I want a user-computer software interface that meets the 'easy to' criteria along all

dimensions." We believe, on the contrary, that you cannot have it all. Almost all of the

dimensions tend to be mutually antagonistic; for example:

If it is easy to learn and relearn, that may be because it is based on a clean,

conceptually clear underlying model that can be assimilated so completely as to

become virtually part of a user. However, that makes it harder to unlearn.

-6-

Ease of use is often promoted by succinctness of operation; being able to issue a

powerful command quickly, without pawing through four levels of menus.

However, that succinctness and power can make it easier to do harm (e.g., to

one's files) and requires a greater learning effort than verbose and overly

descriptive program interfaces.

If a program's interface provides quick access to significant power, with many

useful capabilities, that may exacerbate the problems of creating,

demonstrating, teaching, sharing, selling, and buying the product.

Not only are there antagonistic tradeoffs among the dimensions we have highlighted,

the dimensions must also be traded against other important factors, not listed above because

they are further removed from the "user friendly" issue. For example: Can the product be

developed in a timely manner and sold for a reasonable price? Does the product fit into a

well-understood niche, and does it interface with (some of) the industry standards? Is the

product easy to maintain, and of course is the product functional? In fact, functionality is of

extreme importance and can override all our proposed "easy to.. ." dimensions.

Given the mutual antagonisms, one must establish priorities, based on one's

individual context. Therefore, we next discuss some attributes of a user's context that are

relevant to establishing those priorities.

-7-

III. THE CONTEXT: PEOPLE, TASKS

The dimensions of a software program's interface most important to a user depend-

at a minimum-on attributes of the user and of the task being performed. Establishing

priorities based on this context is difficult because that context is always changing. The very

act of using a software program changes the user, it makes some other packages easier to

learn (e.g., that share interface characteristics) and others harder to learn (e.g., because they

are based on a conflicting model). Each acquisition and learning experience changes the

equation.

However, there are unifying, stabilizing forces too. People are more similar than they

are different. The user interfaces of two financial programs might be quite similar, although

one is used by an engineer to keep track of household finances and the other by the corporate

controller to aid in tracking institutional finances.

As individuals change, so does the social context. Entire societies are becoming

more computer-literate and more familiar with certain industry standards (such as certain

"look-and-feels"), thereby changing the entire market for which new products are designed.

As we move into the 1990s, an ever larger share of the market will be occupied by relatively

sophisticated and experienced but less adventurous users who have well-formed habits,
likes, and dislikes.

We emphasize the multiple dimensions by which software interfaces should be

judged and the richness of the context in determining relative priorities among those

dimensions, because we often observe lack of attention to these factors in the design,

procurement, and use ef software packages. For example, we believe ease of learning often

predominates when ease of use and support should; since these are often antagonistic

qualities, ease of use then suffers Buyers of software, in becoming new users of it, overly

focus on the learning task ahead of them, rather than the longer period of use that will

follow. The syntactic richness, succinctness, and power that will provide eventual ease of

use form higher obstacles to learning than the superficially friendly program that promises to

be easy to learn.

Consider an analogy regarding these tradeoffs: If you need to learn some French for

a forthcoming trip to France, your priorities depend greatly on the context. If you will spend

two days there in first-class hotels and restaurants, a phrase book will probably do. If you

are on a 4-month assignment and will be renting an apartment and shopping for food, a crash

-8-

Berlitz course is probably more appropriate. If you will be living there for several years,

serious study of the language is in order.

People understand the tradeoffs sketched above and invest in learning appropriately

based on expected time of learning vs. use. Why then do many (as we have conjectured)

bias their priorities in favor of ease-of-learning or ease-of-buying in deciding on appropriate

software for their task? Possibly due to relative unfamiliarity with the properties of

software, so that many of the above-mentioned dimensias are wrongly assumed to be

consonant, not antagonistic. Possibly due to the view of computers and software as a

"universal tool," easily malleable into any needed configuration or attributes. In either case,

we hope that discussion of the distinctions to be considered can aid in making appropriate

tradeoffs in the acquisition and use of software.

THE LOVE/HATE RELATIONSHIP

We believe study of the various dimensions of software characteristics might also aid

in understanding a fascinating phenomenon related to software interfaces-there seem to be

three distinct categories of software:

" Software interfaces nobody loves. This is often a property of the software itself,

not of the person judging it. Everyone's favorite example in this category is

IBM's Job Control Language (JCL).1

" Software interfaces to which people are indifferent. You get used to them,

learning some makes others a bit harder to learn, but their utility is judged

satisfactory. Examples in this category might be MS-DOS and the Pascal and

C programming languages.

" Software interfaces that are proselytizing. These impart missionary zeal to

many who come in contact with them. That is, users are not just content to use

them, but insist that others use them too. Examples might include UNIX, the

Star/Lisa/Macintosh-style interface, and the FORTH programming system.

Why does a software program generally fall into one of these three categories? We believe

it is because of the interplay among all the factors cited in this Note: Software nobody loves

tends to be deficient in all of the dimensions. Software that generates missionary zeal tends

'The reader who is not familiar with jCL need not worry about understanding this

reference; just be thankful.

-9-

to be relatively skewed, emphasizing one or two of the dimensions at the expense of others.

Interfaces in the middle category tend to be less skewed.

Study of the relationships among software interface traits, such as the set of

dimensions we have discussed and the love/hate relationships the interfaces engender, can be

useful. As descriptive categories for software, tasks, users, and organizations (and possibly

other areas) are developed, we might find causal links predicting end users' reactions. In the

meantime, corporate buyers of software might consciously consider how products they buy

fit onto the hate/indifferent/addiction scale. For example, we can imagine deliberate

decisions to avoid buying proselytizing software, so that its use and spread does not

unacceptably bias future purchasing decisions. Further, developers of software might

consciously design them to be proselytizing by better understanding the relationships among

design dimensions, task, user, and organization that create this phenomenon.

-10-

IV. CONCLUSION

We hope for a science of software interface design. Such a science would allow

predictions of the effectiveness of a particular interface design given characteristics of the

user, the task, the organizational context, and the interface design itself. The science must

be based on prior development of useful distinctions, just as Lamarck was a necessary

precursor to Darwin. To lay the foundation for such a science, we must now move beyond

"user friendly" to distinctions in the design, procurement, and use of software systems that

allow traits of the software to be prioritized and matched with traits of the user, task, and

organization.

In developing a list of such user-computer interface dimensions, we are struck by:

(I) how seldom some of these dimensions are explicitly considered in procurement and

usage decisions; (2) the mutual antagonism of many of the dimensions; and (3) the

inappropriate predominance of "easy-to-learn" over "easy-to-use" and "-support" in many

design and procurement decisions. The antagonism among many of the dimensions leads to

tradeoffs that must be considered. Better understanding of these tradeoffs should lead to

better design and procurement decisions, leading in turn to the availability of more effective

software products.

- 11-

REFERENCES

Anderson, R. H., N. Z. Shapiro, T. K. Bikson, and P. H. Kantar, The Design of the MH Mail
System, The RAND Corporation, N-3017-IRIS, December 1989.

Dijkstra, Edsger W., "How Do We Tell Truths that Might Hurt?" SIGPLAN Notices, Vol.
17, No. 5, May 1982, pp. 13-15.

Eveland, J.D., and Tora K. Bikson, "Evolving Electronic Communication Networks: An
Empirical Assessment," Office: Technology and People, Vol. 3, 1987, pp. 103-128.

Meads, Jon A., "Friendly or Frivolous," DATAMATION, Vol. 31, No. 7, April 1, 1985,
pp. 96-100.

Shapiro, N. Z., and R. H. Anderson, Toward an Ethics and Etiquette for Electronic Mail,
The RAND Corporation, R-3283-NSFIRC, July 1985.

