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ABSTRACT

An axisymmetric boundary element flow algorithm is coupled with a finite

element structural analyzer to perform interactive calculations of the growth
and subsequent collapse of an explosion bubble near a submerged compliant
structure. The validity of the program is established through direct compar-
isons with published experimental data. A parametric study of the interaction
between a growing and collapsing bubble and a spherical shell is presented.
The results show that if the stiffness of the shell is sufficiently low, the mass
of the shell is a critical parameter in the collapse problem. If the mass of
the structure is high, a reentrant jet forms and is directed towards the shell.
As the mass of the spherical shell is decreased, the collapse becomes spherical
with no jet formation. At the lowest structural mass for which calculations
are performed, a jet directed away from the structure begins to form. The
ratio of the depth of submergence to bubble maximum radius was also found
to be a critical parameter in the collapse problem. When this ratio is large
(greater than 100), the collapse is driven by interaction forces. However, for

shallow submergence, buoyancy effects become more important than interac-
tion forces.

ADMINISTRATIVE INFORMATION

This work was funded by the David Taylor Research Center Independent
Research (IR) program under Work Unit 1750-161 for fiscal year 1991.

INTRODUCTION

BACKGROUND

The interaction between a growing and collapsing bubble and a sub-
merged compliant structure is relevant to a number of engineering prob-
lems. Important examples include cavitation bubbles in fluid machinery and
pulsating, collapsing underwater explosion bubbles near naval vessels. Ex- on For
perimental and theoretical studies have shown cavitation bubble collapse RAI
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to be characterized by extremely high local velocity and overpressure, and
high-speed liquid jet formation (Roberson and Crowe')- Recent studies have

shown bubble centroid motion as well as jet strength and direction to be
greatly influenced by the presence and nature of any nearby boundaries. The

jet is known to cause surface erosion and pitting in turbomachinery. Ship
propellers and other propulsion devices are especially susceptible to this type
of damage (Arndt 2). Collapsing cavitation bubbles are also responsible for

structural vibration, noise 4 nd degradation of operating efficiency.

The detonation of a submerged explosive is characterized by the conver-
sion of the original explosive material into a gas sphere at extremely high
temperature and pressure. The inertia of the water surrounding the bubble

and the compressible explosion products form a damped oscillatory system

(Cole 3). This oscillating bubble and entrained fluid can induce low frequency
beam-like flexural motions in a nearby ship or submarine (Hicks4' 5). This
whipping phenomenon can lethally damage both ship structure and onboard
equipment. As was the case for the cavitation bubble, the explosion bubble

is greatly affected by the presence of any nearby boundaries. Under certain
conditions, explosion bubble collapse is also accompanied by the formation of

a high speed reentrant jet (Snay6 ). Here again, the jet strength and direction
depend upon the proximity and compliance of any nearby boundaries. Stud-
ies on the damaging potential of underwater explosions have often focused
on the initial shock wave emitted by the explosion. However, many investi-

gations have shown that bubble collapse damage can be more extensive than

shockwave damage.

PRIOR WORK

To study the fundamental aspects of these problems, a number of theo-
retical, numerical, and experimental investigations have been conducted to

examined the growth and collapse of vapor bubbles near plane boundaries.

Collapse near a rigid wall is often characterized by the formation of a reen-
trant jet directed toward the wall (Benjamin and Ellis'). When the plane

boundary is a free surface, a reentrant jet is also formed, but in this case,

the jet is directed away from the boundary (Blake and Gibson8 ).
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This complex interaction between the collapsing bubble and nearby bound-

aries has led a number of investigators to suggest application of a relatively

flexible surface coating in order to redirect the reentrant jet and hence re-

duce bubble damage. Shima, Tomita, Gibson, and Blake9 photographed

the growth and collapse of spark generated vapor bubbles near planar sur-

faces covered with elastomeric coatings. Their study indicated that for some
coating properties the jet was indeed redirected away from the solid bound-

ary. Through this same study, detailed histories of the motion and shape of

the bubbles are provided. Numerical simulations of the interaction between

a growing and collapsing vapor bubble and a planar compliant surface have

been conducted by Duncan and Zhang°'0 ". In these simulations, a boundary-

integral flow algorithm was coupled to a finite difference representation of a
spring-backed membrane. By equating pressure and velocity conditions in

the flow and on the structure at the fluid-structure interface, Duncan and

Zhang achieved a completely interactive simulation. The results of these sim-
ulations were in qualitative agreement with the experimental work of Shima,

Tomita, Gibson and Blake9.

In the present study Duncan and Zhang's numerical method is extended

to include an axisymmetric finite element structural idealization. The finite

element model uses isoparametric continuum elements and a linear-elastic

material model. This structural model allows one to include more detailed

information about the structure and more complex structural geometries

than the idealized, planar, spring-backed membrane used by Duncan and

Zhang. As in Duncan and Zhang's model, inviscid, incompressible, potential

flow is assumed and the boundary integral method is again employed to ef-

fect a solution of the potential flow problem. By matching the pressure and

motion conditions at the fluid-structure interface, an interactive simulation

is again achieved. In addition, the present work includes a polytropic model

of the gas inside the bubble and a gravitational field, significant parameters

that were not present in the work of Duncan and Zhang. These extensions

make possible simulations of the growth and collapse of underwater explosion

bubbles near target structures.
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ORGANIZATION OF STUDY

The following section contains an account of the theory behind the bound-
ary integral formulation for the potential flow problem, a description of the
finite element algorithm used to compute the structural response, and de-
tails of the numerical implementation for the bubble growth and collapse

problem. Verification calculations are then given of the collapse of a bubble
near a finite element idealization of a spring backed membrane. The results
of these calculations are compared with the results of Duncan and Zhang.
Next, an attempt is made to numerically simulate the experiments of Shima,
Tomita, Gibson and Blake9 . A parametric study of the growth and collapse
of an explosion bubble near a compliant sphere is then presented. Finally,
the results of the present work and suggested directions for future research

are summarized.

THEORETICAL MODEL

MATHEMATICAL FORMULATION

A schematic showing the initial configuration of the bubble and a spher-
ical structure is given in Fig. 1. A cylindrical coordinate system is used
in the solution of the interaction problem. The radial coordinate is r and
the circumferential angle is 0. The problem is axisymmetric about the z-
axis. The spherical structure has outer radius R, and is centered at r = 0,
z = -R,. The bubble is initially (t = 0) spherical with radius R0 , and its
center is located at z = Z0. The pressure in the fluid far from the bubble,
P•,, is maintained constant during the calculation. The theoretical model
for the fluid is the one used by Duncan and Zhang. For clarity, parts of the
presentations of Duncan and Zhang are included here in modified form.

The fluid motion is assumed to be incompressible and inviscid and there-

fore satisfies Laplace's equation:

V20 (1)

4



where V2 is the Laplacian operator and 0 is the Eulerian velocity potential.

The fluid velocity is equal to the gradient of the velocity potential, U7 = Vd.

On the surface of the bubble, the pressure in the fluid is equal to the pressure

in the bubble, P.. The condition imposed on 0 by this dynamic toundary

condition can be written as Bernoulli's equation in material derivative form:

D-- = 11€12 + + g(z - Zo) (2)
Dt 2 P

where D/Dt is the derivative with respect to time following a fluid particle,

p is the fluid density, and

g is the acceleration due to gravity.

The noncondensible gases inside the bubble are assumed to have a polytropic

behavior,

PgV- = const (3)

where -y is the polytropic constant and V is the volume of the bubble. The

kinematic boundary condition on the surface of the bubble states that ma-

terial points remain on the surface of the bubble:

Di.C (4)Dt•

where i*, is the position vector to these material points.

For t < 0, the structure is motionless and statically loaded by uniform
pressure, P0 , applied by the fluid. The response of the structure to the fluid

loading is computed using a linear elastic finite element model. The struc-
ture is represented by an assemblage of discrete elements, interconnected at

nodal points on the element boundaries. Each quadrilateral element has four

nodes defined in orthogonal two dimensional coord;- ate space. There are two

displacement degrees of freedom (dofs) associated with each nodal point. An

axisymmetric element formulation is used such that each element represents

the portion of the structure that is swept out by rotating the planar element

one radian about the z-axis (see Fig. 2). The solution of a system of dynamic

equations of motion provides the displacement, velocity, and acceleration of

each nodal point in the element assemblage at discrete times. The system

5



equilibrium equations of the element assemblage are derived from virtual
work considerations and are of the form:

MA + I'• = R (5)

where M is the global consistent mass matrix,

K is the global stiffness matrix,
R is consistent nodal load vector obtained from the total pressure

in the fluid acting on the structure,
ý is the nodal acceleration vector (two components per node),
ý is the nodal displacement vector.

The consistent mass matrix contains structural mass information and pro-
vides the relationship between force at degree of freedom i and acceleration
at dof j. The global stiffness matrix relates the applied force at dof i to
resulting displacement at dof j. The K matrix is developed from material
elastic stress-strain relations and linearized strain-displacement relations.

During the collapse, the fluid and the structure are coupled using lin-
earized equations for the pressure and velocity in the two systems. These
equations are satisfied at the undisturbed position of the fluid-structure in-
terface:

ot a (6)

P.( =,t) -p--- + P. (7)

where •n is the component of the s rface displacement in the direction
normal Lo the undisturbed surface of the structure,

•,,/at is the normal velocity of the structure (positive
outward into the fluid), and

aO/an is the derivative of the velocity potential in the direction
normal to the undisturbed surface of the structure.

The second equation is the linearized Bernoulli equation and P,(Y,, t) is the
fluid pressure applied to the structure at X-,.

6



To show how the system of equations can be advanced in time, assume
that at time ti all dependent variables are known. The boundary conditions
on the surface of the bubble, Eqs. 2 and 4, are integrated numerically to get

the position of the surface of the bubble and the value of q on the bubble at
time ti+,. The finite element method is used to obtain the value of 8•/Ot =

-ao/On on the surface of the sphere at ti+1 . In order to move on to the

next time step, ti+2 , the values of Vq$ must be known on the bubble surface
for use in Eqs. 2 and 4. However, at this point only the value of 0¢/0s

can be computed (where s is a coordinate along the bubble surface). Also,
in order to find the value of O¢/On on the surface of the structure at t,+2 ,

the pressure must be known on the surface of the structure at tj+, for use

in the finite element calculation of the structural response. The pressure at

ti+1 can be obtained from Bernoulli's equation (Eq. 7) if O9/1t is known.
Thus, the value of 0 on the fluid-structure interface at time t,+j must be
found to obtain a finite difference approximation for O90/Ot. To complete the
problem, the values of O9/an on the bubble surface and 0 on the surface of
the structure are obtained by solving Laplace's equation in the form of an

integral equation (Lamb"2 ):

f g(- q-)9 .dSqJ ag(,q q)dq 70p (8)

Sb+S. On d On + .

where Sb is the surface of the bubble,
S, is the interface between the structure and the fluid,
F is a field point that is on the surface S = Sb + S•,

q is the source point that is also on S, g(fl,q" = 1/ Ifn- q-,
n is the normal to S directed outward from the fluid, and

dSq is the area element of S varying the point q.

Since the problem is axisymmetric, the positions of the field points need
only be considered in a single plane, 0 = 0. Once this equation is solved, the

calculation can proceed on to the next time step or, with a companion form

of this integral equation, the velocity and pressure can be found at any point

in the fluid.

A special treatment is needed to start the calculation because the pressure

distribution on the structure at t = 0 is unknown. The following procedure

7



was used. From the linearized form of Bernoulli's equation (Eq. 7) evaluated
on the structure at t = 0, it can be seen that the pressure on the structure is

equal to the partial derivative of the velocity potential with respect to time
evaluated on the surface of the structure. The calculation of the initial value
of 80/6t on the structure is divided into two steps. In the first step, the

initial value of ao/an on the bubble surface is obtained from the integral
equation (Eq. 8) with the initial value of 4 on the bubble obtained from an

integrated form of the Rayleigh-Plesset equation for the case of a spherical
bubble growing in an infinite fluid (see Batchelor"3 ),

= 3p (I - -()

where Pg0 is the pressure inside the bubble at the start of the calculation and

S= R /R ,,., . Since the structure is initially m otionless, the value of 8C/an
on the structure is given by

a a-- =0. (10)

The values of 8a/Ot on the bubble are then obtained using Bernoulli's equa-
tion in the form

_ 1 (a\2 + P p (11)

where the fact that 8a/as = 0 at t = 0 (s is the direction along the bubble

surface) has been used. In the second step of the calculation, it is noted

that the partial derivative of 0 with respect to time also satisfies Laplace's

equation:

( at (12)

Thus, the integral equation (Eq. 8) is valid with € replaced by 00/0t. On

the bubble, 84/at is obtained from the first step described above. On the

surface of the structure,

PT = m 8t'(13)

The value of a0/8t on the structure and thus, the pressure on the structure

at t = 0 can be obtained by solving the integral equation for a4/8t.

8



NUMERICAL IMPLEMENTATION
In the numerical model, the surface of the bubble is approximated by

a set of panels each of which is obtained by rotating a straight line in the
0 = 0 plane about the z-axis (see Fig. 3). The bubble is composed of nb of
these panels. The interface between the fluid and the structure is modeled
by a set of n8 equal length panels. Field points (nodes) are taken at the

positions where the line of intersection of two adjacent panels pierces the

0 = 0 plane. A predictor-corrector scheme sometimes referred to as Heun's
method (see Ferziger 14 ) is used to perform the temporal integration of the

boundary conditions on the bubble. The r and z coordinates of the nodes on
the bubble and the corresponding values of 4 at ti+1 are expressed in vector

form as:
Predictor step:

rz; + (4+1 - ti) w (

03+ oil Po-P P.

Corrector step:

r7'L4 1  +1 (ti,. 1 - to) i4 ii+1_' iW -' (15)

1i + W 4+
041 2 2 +1 12 + 2P (P

where the superscript refers to the nodes and the subscript refers to the time

step. The value of IV€[ is computed from the derivative of 0 in the direction
normal to the bubble surface, which, in turn, is obtained from the solution
of the integral equation, and the derivative in the direction tangent to the

surface, obtained from a central difference scheme.

In the numerical solution of the integral equation (Eq. 8), the values of

0 and 90/8n are assumed to vary linearly in the 0 = 0 plane as the source
point is varied along each panel. The integral equation in its discrete form

can be written as

as. 0 = "" oj + 2,, )
9



N

- E (GN''ijij + GN2,i4joj+l) (16)
j=1

where N = n, + n,, and

= j V r( l') ~~• L j - I i 2 1 dOdl 3

LJi V 13 27r 1

G~l'i'j D r( 0 " p, -n q p' (r 0) (r 1 )

GN',iJ = oV r("l V -P 1 d )i dOdij
Sfo lq -j(r,0)9"

G ,j= JV r(P) 1L f~ 21r 9 1 ir0I dOdl 3

= O /7 rl)JO 1r I- ( - qj(r,90)1)ddi
In these equations, the length of panel j in the 0 = 0 plane is given by V, and

P is the distance coordinate along the panel. The parameter a' is the solid
angle within the fluid subtended by the fluid surface at node i. The integra-
tions in the 0-direction were carried out analytically following the method
of Jaswon and Symm1 5 ; results in terms of elliptic integrals were obtained.
The integrations in PJ were carried out numerically using Gauss-Legendre

quadrature techniques for the regular parts of the integrals and the quadra-
ture methods of Anderson16 for the singular parts of the integrals.

The structural finite element program, developed by Whang-1 7 , has been
modified to include isoparametric continuum elements and Newmark-Beta
(see Newmark 18) time integration with variable time step size. The structure

is discretized into n. quadrilateral finite elements, interconnected at n, nodal
points. Each element is comprised of four nodes. For each structural node on
the fluid-structure interface there is a corresponding node in the fluid model.

Coupling of the fluid and structural models is accomplished by exchanging
pressure and velocity information between these pairs of fluid and structural

nodes. The numerical forms of the boundary conditions at the flow- structure
interface (Eqs. 6 and 7) are

"I n ] J [ - j, (17)

O ý . f f], J
pti+1 -- ti

.+1 - P =P~ t-+1 -0 (18)

10



wherea t is the normal velocity of structural node J,, and is the
normal derivative of the velocity potential at the corresponding fluid node jj.

The second boundary condition merely states that the pressure computed at
fluid node ji is applied at the corresponding structural node Ji.

The time step of the calculation varied during each run. At each step,
the time difference A4)max= 1 + 0.5q2

was computed, where A4,a is a constant and qmax is the maximum fluid
velocity on the surface of the bubble at any time step. A minimum time

step, At,,,, and a maximum time step, Atmax, where chosen such that
Atmin = Ata,,/200. If Atmin < At, < Atax, then At,, was used as the time
step. If At,, > Atmax the time step was taken as Atmax, while if At, < Atmi,,

the time step was taken as Ati,,,.

PROGRAM VERIFICATION

A series of interactive calculations was performed to assess the overall
performance of the coupled flow and structural algorithms. This was ac-

complished by making direct comparisons between the results of the present

model, employing the finite element method and the results of Duncan and

Zhang's model, using the finite difference method. The calculations simu-

lated the collapse of a bubble near a spring-backed membrane.

MODEL DESCRIPTIONS

A schematic showing an idealization of a spring-backed membrane and a va-

por bubble is given in Fig. 4. The spherical bubble is initially at rest with

radius R, and is centered at r = 0, z = Z,. The pressure inside the bubble,

P., and the pressure in the fluid at infinity, Po, are held constant during the

calculation. The membrane lies in the r-O plane and is centered at r = 0,

z = 0. The membrane has radius R,. For r > R, on z = 0, the boundary

is modeled as a flat rigid wall. A constant tensile force, T, is applied to the

membrane at r = Rm.

11



The finite difference membrane has three independent variables, mass per
unit area, m; spring constant per unit area, K; and membrane tension per
unit length, T. The independent variables for the flow are the initial radius of
the bubble, Ro, the initial standoff from the bubble to the membrane, Z0 , the
pressure diffe rence, AP = Po, - P., and the density of the fluid, pf. From
this set of eight independent variables, several dimensionless parameters can
be formed that relate the properties of the membrane to the conditions in the
fluid. The parameters include the dimensionless inertia, M*, spring constant,

K*, and membrane tension, T*. The parameters are defined as follows:

M. (19)

=* K&p (20)

T -= T (21)

M" is the ratio of the mass per unit area of the membrane to an equivalent
mass per unit area of the fluid based on thickness Ro. K" and T" are the
ratios of the spring and tension terms, respectively, in the membrane model
to the pressure driving the collapse. In order to obtain relevant comparisons
between th e finite element and finite difference results, it is necessary to
identify finite element equivalents for the dimensionless parameters M*, KI,

and T*.

The finite element idealization of the spring-backed membrane is shown
schematically in Fig. 5. There are 20 elements in the radial direction and
the membrane is one-element thick. The length of each element is the same
as that of the corresponding flow panels, i.e., 0.125 R0 . Symmetry conditions
require that all nodes at r = 0 be constrained from moving in the radial di-
rection. The nodes on the edge of the membrane at r = R, are constrained
from moving vertically. All nodes along the base of the backing elements,
Z = -(t,, + tb), are fixed in both the radial and vertical directions.

A very thin finite element membrane is required to minimize bending
stiffness and mass distribution effects that are not present in the finite differ-
ence model. However, finite element aspect ratio considerations require that

12



the element thickness be no less than one fourth of the in-plane dimension.

Thus, a membrane thickness, tin, of tm = 0.125 R,/4 = Ro/32 is used. The

spring backing is modeled with two rows of square elements and has a total

thickness tb. The axial stiffness per unit area of the backing elements is ob-

tained from generalized Hooke's law (Timoshenko and Goodierl9 ), which in

this case reduces to the following:

E
K = - (22)

t

where K is the spring constant per unit area,

E is Young's modulus of the specimen, and
t is the thickness of the specimen in the direction of the

applied load.

The combined axial stiffness per unit area, Kt, of the membrane and
spring backing is obtained by treating the two layers as a set of springs in

series, i.e.,
E. t b -1

where E,,m and Eb are the Young's moduli of the membrane and backing

elements, respectively. The Young's modulus of the backing elements, EB,
is chosen so that the axial stiffness per unit area of the backing provides the

required spring constant, K. A Young's modulus for the membrane is chosen

such that - » >> -_. Consequently, the axial stiffness of the membrane, E
tM tb "tn

has a negligible effect on the combined axial stiffness of the membrane and

backing. The combined axial stiffness per unit area of the system is now

li= t b (24)

For the finite element case, the mass per unit area, m, is

m = P,.•n + Pbt b (25)

where p, is the density of the membrane and Pb is the density of the backing.

The density of the backing elements is chosen so that Pbt b << Pmtm; hence,
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the mass per unit area reduces to m = pmtm. The finite element equivalents

for M* and K* are expressed as

M"= Ptr (26)pf R,

K R tB R (27)
AP AP

The finite element equivalent for T* is the same as for the finite difference

model, i.e., T* = ToaR"

COMPARISON OF RESULTS

In the calculations described in this section, the bubble is represented
by 20 panels of equal arc length. The membrane radius is 2.5 Ro and the
flow-membrane interface is represented by 20 panels of length 0.125 Ro. The
rigid portion of the flow boundary surrounding the membrane is modeled
with 40 panels of increasing length, so that the last node is at r = 100 Ro.

This flow discretization is used in both the finite difference and finite ele-
ment calculations. The following values are held constant in both sets of
calculations to be discussed later; AP = 1.0, pf = 1.0, and Zo = 1.5 Ro.
Furthermore, the calculations are for the collapse phase of the interaction
only; hence Ro = R,,, = 1.0. In the finite element calculations, Poisson's
ratio for the spring backi ng Vb and that of the membrane v,, are taken as zero.

Figure 6 contains plots of the membrane velocity at r = 0.0 for M* =

K" = 2.0. The results of the finite difference and finite element membrane
models are very similar. In both cases the velocity reaches a maximum at
roughly two thirds the overall collapse time and decreases rapidly at the end
of the collapse. In Fig. 7, the pressure difference (Pm - P,) on the membrane
at r = 0.0 is plotted for M* = K* = 2.0. The pressure remains constant for
most of the collapse and then increases very rapidly towards the very end
of the collapse. For this reason, it is most informative to plot the pressure
versus the vertical separation of the north and south poles of the bubble.

Once again the finite element membrane results are in close agreement with
the results of Duncan and Zhang's model. The pressure on the membrane

increases gradually for most of the collapse and then rises rapidly when the
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separation of the poles of the bubble has reached about 20 percent of its

original value.

The excellent agreement between the results of the two interaction models

provides a good indication that the coupled finite element/boundary element
model is working properly.

COMPARISON WITH EXPERIMENTAL DATA

The most extensive set of experimental data on the behavior of vapor cav-
ities near compliant walls, is that published by Shima et al.9 What follows
is a description of an attempt to simulate this experimental work numerically.

DESCRIPTION OF EXPERIMENT

Figure 8 shows a schematic of the experimental set-up. The experiments
were conducted in a stainless steel bubble chamber containing tap water at

atmospheric pressure and room temperature. A composite surface was placed
in contact with the free surface of the water, and a vapor bubble was then
generated by means of electric spark discharge. The growth and subsequent
collapse of the bubble was recorded photographically. Composite wall prop-
erties such as inertia and stiffness were varied, and their effect on collapse

behavior was observed.

The composite surface was 40 mm in diameter and consisted of a Nitrile

rubber sheet of thickness, t, and a foam rubber backing of thickness, t1 . The
foam rubber density, pf, was 0.024 g/cmr3 , and the Nitrile rubber density, p,
was 1.39 g/crn3 . A series of uniaxial compression tests was performed to
determine the axial stiffness of the individual layers. It was observed that
for 5 mm < t1 < 20 mm, the spring constant, Kf, for the foam rubber
was 3.0 kg/cm. For the Nitrile rubber, the value K, = 8.3 kg/cm was

reported for a specimen with thickness t, = 5 mm. A set of dimensionless
parameters was used to describe the composite surface. The parameters were
the dimensionless surface inertia, M*, and dimensionless surface stiffness, KI,
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defined as follows:

M* = Prtr + Pjt (28)

K KRm (29)P. - P.

where Kt is the combined stiffness of the foam and Nitrile rubber layers

(K, = [- + -L'] ), P, is the pressure in the water at infinity, P, is the
pressure inside the bubble (vapor pressure of the water), pi is the den-

sity of the water, and Rax is the maximum bubble radius. In this case
(P,, - Po) = 1.0159 and Rmax = 3.5 mm. The thickness of the foam rubber
was held constant (tf = 20 mm). Variation of the composite wall stiffness
and inertia was obtained by varying the thickness of the Nitrile rubber sheet
between 0.3 mm and 5.0 mm.

NUMERICAL SIMULATION

A schematic showing the numerical idealization of the experimental set-
up is given in Fig. 9. The problem is axisymmetric about the z-axis. Thus
the problem can be defined in the r-z coordinate plane (0 = 0). All lengths
are normalized with respect to the maximum bubble radius, Ra,. The pres-
sure inside the bubble, P., is assumed to equal the vapor pressure of the fluid
throughout the calculation, i.e., P. = P, = const. The ambient fluid pres-
sure, Pa,, also remains constant during the calculations. Gravity effects have

not been considered; thus, the vapor bubble is shown above the composite
surface. The bubble is initially spherical with radius RX and center at z = Z,.

Twenty six panels are used to model the bubble. The interface between the
flow and the surface of the Nitrile rubber lies in the r-9 plane at z = 0. Flow
along this surface is modeled with 40 panels of equal length. The flow bound-
ary at z = 0 is modeled as a rigid wall for r > Re, where R, is the radius of
the compliant surface. The rigid portion of the boundary is modeled with 40
panels of increasing length so that the last node is at r = 100 R,.,, z = 0.
The composite wall is modeled using finite elements. There are 40 eleme nts
in the radial direction, 4 elements through the thickness of the Nitrile rubber
layer, and 8 elements through the foam rubber layer. (A finite element mesh
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convergence study was performed for the case of t, = 1.0 Rmax (Al- = 1.4).

It was concluded from this effort that the mesh density is sufficient to

model this thickness of Nitrile rubber.) Nitrile and foam rubber densities are

as s tated in the previous section. Young's moduli for the two materials are

obtained from the spring constant data for the individual layers. Applying

generalized Hooke's law (Timoshenko and Goodier' 9 ) to the loading and

boundary conditions of the uniaxial compression tests, yields the following

relation between Young's modulus and axial stiffness

AE
K = AE (30)

t

where K is the spring constant for the Nitrile or foam rubber,

A is the cross sectional area of the rubber specimen,

t is the thickness of the rubber, and

E is the Young's modulus of the material.

Solving the above relation for E yields Young' s modulus of 0.330 kPa and

0.120 kPa for the Nitrile and foam rubbers, respectively. Poisson's ratio for

the two materials was not provided. Nitrile rubber is nearly incompress-

ible, and a Poisson's ratio, v, of 0.49 is routinely used for the treatment

of rubber materials in finite element analysis. Conversely, the foam rubber

is quite compressible, and the Poisson's ratio for the material is probably

not a constant. A review of data for other foam rubber materials indicates

a range of Poisson's ratio between 0.24 and 0.36. Lacking further informa-

tion on this particular material, a Poisson's ratio of vf = 0.30 is assumed.

It is important to note that these material properties were obtained from

static stiffness measurements. However, strain rates cannot be expected to

remain near quasi-static values throughout the entire fluid-structure inter-

action. Poisson's ratio and Young's modulus for many rubber and foam

materials are sensitive to the rate at which the load is applied (Hunston, Yu,

and Bullman2 1). Thus, the statically measured values for Young's modulus

and Poisson's ratio may not accurately characterize the composite wall ma-

terials throughout the entire time domain of interest.
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COMPARISON OF RESULTS

An interesting parameter describing the collapse of the bubble is the col-

lapse height, z,. Collapse height is the height above the composite surface
where the north and south poles of the bubble meet at the end of the col-

lapse. In the published experimental data, the collapse height is presented

in plots of z, versus the dimensionless surface inertia M*. Variation in 'Al'
is achieved by changing the thickness of the Nitrile rubber layer while hold-

ing the thickness of the foam rubber layer constant. Comparative data are

obtained by performing a series of calculations in which the thickness of the
Nitrile rubber elements in the finite element model is varied. Note that as
the thickness of the Nitrile layer is increased, the number of elements in the
structural model increases also, while mesh density remains more or less in-
variant. The results of the numerical study along with the experimental data

for initial standoffs Zo = 1.14 R,.,, Zo = 1.43 R ,. and Zo- = 1.71 Rm,

are presented in Figs. 10 through 12, respectively. For the case of Z. = 1.14
R,.., (Fig. 10), the calculated values of collapse height are shifted towards

higher M* for M* < 1.75. The slopes of the calculated and experimental
curves differ for low M*. However, at higher values of M* the asymptotic

behavior of the two curves seems to be similar. For the case of Zo = 1.43

R,,x (Fig. 11), there is good agreement between the experimental results
and the present calculations. For M* < 1.75, the shapes of the two curves

are about the same, with the calculations shifted to slightly larger M*. For

M* > 1.75, the calculated collapse height drops off more rapidly than for the
experimental data. This behavior could be an indication that the finite ele-

ment program is underpredicting the response of the composite surface and
causing the interaction calculation to tend toward the rigid wall case more

rapidly than it should as M* is increased. The collapse height predictions

for Z, = 1.71 R,. (Fig. 12) are slightly higher than the experimentally

observed values; however, the shapes of the two curves are similar.

There are several possible sources of discrepancy between the experimen-

tal results and the calculations. In the calculations, the pressure inside the

bubble was held constant at the fluid vapor pressure. In the experiment,

there was evidence of burning of electrode material during the spark gen-

eration process. The compressibility of the gaseous products resulting from
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electrode burning is likely to have affected the experimental results. The
inadequacy of the linear elastic material model to represent the Nitrile rub-
ber is likely to be a major source of error in the calculations. A strain-rate
sensitive nonlinear elastic representation of the rubber properties is a neces-

sity in these calculations. Finally, the linearized boundary condition on the
fluid-structure interface is likely to have influenced the predictions for low
M*. In these cases, the Nitrile surface attains a significant normal velocity,
but this was not considered in the linearized Bernoulli equation.

INTERACTION WITH A COMPLIANT SPHERE

MODEL DESCRIPTION

The interaction calculations discussed thus far have involved planar fluid-
structure interfaces, constant bubble internal pressure, and no gravitational
effects. Attention is now focused on a more complex problem involving a
doubly- curved fluid-structure interface, namely, the interaction between a
growing and collapsing bubble and a submerged spherical structure. The
problem is shown schematically in Fig. 13. The problem is rotationally sym-
metric and is defined in cylindrical coordinates (r-z) at 0 = 0. The z-axis
pierces the north and south poles of both bubble and sphere. The spherical
structure has outer radius R,, wall -shickness t, and is centered at r = 0,
z = -R.. By requiring the spherical structure to be thin walled, -R > 50,
thin shell theory can be used to validate the structural portion of the model.
As in the previous calculations, the bubble is initially spherical with radius

R, and center at r = 0, z = Z0 (the center of the bubble is initially at
depth d below the fluid free surface) and the pressure inside the bubble is
initially P.0. Bubble internal pressure is made to obey the polytropic law,

= (P,)0 , where Vo is the initial bubble volume and V is the instan-

taneous bubble volume. The bubble is modeled with 30 flow panels and the
"wet" shell interface is modeled with 60 panels. The structural finite element

model has 60 meridional elements and one element through the shell thick-
ness (Fig. 14). The structural nodes on the axis of symmetry are prevented
from moving radially but are free to move in the vertical direction. Thus the

spherical structure can undergo rigid body vertical motion, as well as local
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deformation.

There are 10 independent variables in this interaction problem. For the
flow, the variables are the init. d pressure differential, A•P = P o - P ,: fluid

density, pf; initial positioi of the bubble, Zo; initial radius of the bubble,

R,; and maximum bubble radius, Rm,,. -'or the spherical structure, the
variables are the outer radius, R,; wall thickness, t,; Young's modulus, E,;
Poisson's ratio, v,; and density of the structural material, p,. An interesting

parameter in this problem is the collapse height, z,, which is the height above
the north pole of the sphere where the north and south poles of the bubble
meet at the end of the collapse. Collapse height is a function of the 10
independent variables previously discussed, but can be expressed in terms of
seven dimensionless parameters

=c ( R_.0o R8  ta oZ. p. (R3, - R?) K B ) (31)Z- =f_ 7' R•,, . •=, •,3 ' Ra..AP" 3R(31)
Z1 \?nax ý RTna2, 7 Rs a Pf Rinaw R ~.. maxAD

where R, is the inner radius of the shell (R, = R, - t•),

K is its extensional rigidity (Kraus21),K = I and

B is its bending rigidity (Timoshenko and Woinowsky-Krieger 22)
B= E t 3B 12(1!-:;2)"-

For ease of reference, the last three shell terms on the right-hand side of
Eq. 31, are defined as M*, KI, and B*, respectively. M* is the mass ratio
of the sphere to the displaced fluid at R,,. The dimensionless membrane
stiffness, KI, is the ratio of the extensional stiffness to the pressure driving

the collapse. The dimensionless flexural stiffness, B*, relates bending stiffness
to the pressure driving the collapse. In this study, the outer radius of the

spherical structure is a multiple of RPa,; R, = nR.ma,. rhus, B* can be

expressed in terms of the radius of the shell
n3 E Lt,3 1

B' = 1 E (32)

It should be noted that since R,/t8 > 50 and 1 >> (t,/R8 )3, the bending
stiffness of the sphere is relatively small and its influence here is negligible.
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RESULTS

The time scale for the flow in this problem is T, = Rm, ,A• In the cal-
culations that are described in this section, all times and lengths are nondi-

mensionalized by TL and R,,,a, respectively. Furthermore, pf, Poo, and R,,m

are taken as unity in their respective units; -y = 1.25; Zo = 1.5 R, and
the calculations begin with the bubble radius R. = 0.4 Rma,. The initial
bubble internal pressure is Po = 1.5 Pgo,. The bubble's initial conditions

have been chosen to be consistent with the detonation of one half pound of
TNT at a depth of 300 ft (see Cole3 for a detailed discussion of the gas globe
that results from the detonation of TNT). The structure has radius R, = 4

R.,, and wall thickness, t, -.: 0.075 R,,•, so that Rl/t, = 53.33. For now,

gravitational and depth effects are not included in the calculations. The am-
bient hydrostatic pressure, Po,, is applied statically to the structure at the
start of the transient calculation. The resulting hydrostatic displacements

are part of the initial conditions for the structure in the subsequent dynamic
calculation. The deformation of the shell due to this static preload must be
small since the boundary conditions are satisfied at the undisturbed position
of the fluid- structure interface. This condition dictates a fairly stiff shell
(high K'); hence, Young's modulus for the sphere is fixed at E, = 10,000.0
P,,. The resulting value of K* is then 4286, and the static deflection due to

P,, is 6 = t,/10.0 for Poisson's ratio v, = 0.30.

We now consider the effect of M* on the collapse of the bubble while

holding fixed all other dimensionless parameters and again neglecting gravi-
tational effects. Variation in M* is achieved by changing the density of the

structural material. Figure 15 contains plots of the height of the north and

south poles of the bubble as a function of time. The plots are for four dif-

ferent values of M" and for the case in which the sphere is rigid and fixed in
space. The height at which the poles of the bubble meet is indicated by a

short dashed line. In the rigid sphere case, the collapse height is z, = 0.966

R., and the total time for the growth and collapse is t. = 1.856 T,. For a
flat rigid wall with Ro, = 0.4 R.., and Zo = 1.5 RP ., the collapse height is
z, = 0.85 , and the collapse time is t, = 2.024 T.. Thus, adding curva-

ture to the fluid-structure interface significantly alters the dynamic behavior

21



of the bubble. When the sphere is compliant but very massive (MA = 226),
the collapse time is t, = 2.104 T,, and the collapse height is z, = 0.865 Rma,,.

Reducing the dimensionless mass of the sphere to M" = 92 yields t' and z,
values of 2.104 T0 , and 1.16 R ,, respectively. As M" is decreased further,

the collapse height increases monotonically, and the collapse time decreases.
At these lower values of M*, the poles of the bubble do not meet at the
end of the collapse calculation. This is an indication that the collapse has
become almost spherical. (The collapse height for a bubble collapsing spher-
ically in an infinite fluid is z, = Zo.) It should be noted that in these cases of
near spherical collapse, the calculation becomes unstable near the end of the
collapse; hence, the final position of the bubble is a little more speculative
than in the other calculations. As the mass of the sphere is reduced below
M* = 92, the separation of the poles at the end of the collapse begins to de-
crease, and the projected collapse height is greater than the initial standoff,

indicating redirection of the bubble motion.

Profiles of the bubble at various times during the collapse near the rigid
sphere and several compliant spheres of various M* values are given in Fig.
16. In the profiles for the rigid sphere case, a reentrant jet directed toward
the sphere can be seen near the end of the collapse. For M" = 226, the later
stages of collapse are also characterized by the formation of a reentrant jet
directed towards the sphere. As mentioned above, the collapse height is ac-
tually smaller than the collapse height for the rigid sphere case. When M" is
reduced to 76 (Fig. 16), the collapse has been modified such that all collapse
profiles are nearly spherical. The collapse height in this case, z, = 1.34 Pma,
is beginning to approach the value for spherical collapse in an infinite fluid,
zMo = 1.5 R,,. When M* is reduced to 56 (Fig. 16), the collapse height,
ZC = 1.53 Rma, is higher than the initial standoff, Z. = 1.5 R,._ In this

case, deviation from sphericity is apparent. The shape of the bubble near

the south pole suggests that a redirected jet is beginning to form late in the

collapse.

The effect of M' on the response of the spherical structure is illustrated

in Fig. 17, which contains plots of dimensionless velocity of the north pole,

in the shell normal direction (positive outward), versus time. As expected,
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shell peak velocity increases as the sphere mass is reduced. Figure 18 con-
tains similar plots for the south pole. In all cases, the south pole velocity

is lower than that of the north pole, indicating that interaction between the
bubble and sphere is driven by local deformation of the surface of the sphere
near the bubble. North pole displacement of the shell is shown in Fig. 19
for several values of M*. Peak displacements increase as structure mass is
decreased. For M* = 56, the peak structural displacement (0.066 Rmax)

is nearly 90 percent of the shell thickness, t,. Local displacements of the
sphere in execess of one shell thickness violate the underlying assumptions of
small displacements of the fluid-structure interface, and hence, the numeri-
cal model fails. For this reason, calculations for M* < 56 were not performed.

The effect of gravity is now included in the calculations by expressing the
gravity term in Bernoulli's equation (Eq. 2) in terms of the dimensionless

Froude number, i.e., Eq. (2) becomes

S= 1 (VO)2 + -P9+ (z-Z)(33)
2Pf F2

where all quantities are dimensionless and the Froude number is defined by

F, = P. /pfPgRma, = d/Rmc,. where d is the initial depth of the centroid of

the bubble. Fig. 20 contains plots of the height of the north and south poles
of the bubble vs time for M* = 226 and various values of FT. When F, = 206,

i.e., the bubble is initially 206 R,,. below the fluid surface, the effect of grav-
ity is negligible, and the collapse time and collapse height are essentially the
same as for the case when gravity was not considered (d = 206 R... is con-
sistent with the intitial conditions used in the previous set of calculations).

As the initial bubble depth is reduced to 100 RPm., gravitational effects have

increased the collapse height to 0.95 R,,..,. For the case of d = 10 RP .,, grav-
itational effects have become more important than interaction forces, and the

collapse height becomes greater than 2.0 R,•.,. Figure 21 contains collapse
profiles for M* = 226 at various depths. For the cases of d = 206 R,,, and
d = 100 R,.,, significant target attraction and target- directed jetting occur.

However, when d is reduced to 10 R,,., the collapse is driven by gravita-

tional effects, and the bubble migration and jetting are away from the target.
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SUMMARY

For a given initial standoff, collapse behavior near a rigid spherical target
is significantly different from that near a flat rigid wall. When the sphere is
very compliant, the collapse problem is sensitive to the mass of the spherical

structure. When the target mass is high, a reentrant jet forms late in the

collapse and is directed toward the structure. As the shell mass is decreased,

the collapse becomes spherical with no jet formation. A jet, directed away
from the target, begins to form when the structure mass is low. At very
low structural mass, significant local shell deformation occurs, and the small
displacement assumptions for the fluid-structure interface are violated. When

gravitational forces are considered, the collapse is driven by interaction effects
at depths greater than 100 RP.,. The collapse is driven by gravitational

effects for shallow depths.

CONCLUSION

In this study a boundary element flow algorithm was coupled with a finite
element structural analyzer to perform interactive calculations of the growth
and collapse of an explosion bubble near a compliant structure. The valid-
ity of the program was established through direct comparisons with a code
previously developed by Duncan and Zhang,10'" in which the structure was
a spring-backed membrane. There was good agreement between the results

of the two programs.

Calculations of the collapse of a vapor bubble next to a composite wall
were performed. The calculated collapse heights were in good agreement
with published experimental data.

A parametric study of the interaction between an explosion bubble and a
thin walled spherical structure was also performed. The mass of the spherical

structure was found to be a critical parameter in the interaction. When the
mass of the structure was high, the collapse of the bubble was characterized

by the formation of a reentrant jet directed toward the structure. As the
mass of the spherical structure was decreased, the collapse became spherical

and no jet formed. A jet, directed away from the spherical structure, began
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to form when the mass of the structure was low. Significant shell deforma-

tion, enough to violate small displacement assumptions, was associated with
very low structure mass. The ratio of the depth of submergence to bubble

maximum radius was also found to be a critical parameter in the collapse
problem. When this ratio is large (greater than 100), the collapse is drivcn
by interaction forces. However, for shallow submergence, gravitational effects

become more important than interaction forces. For a given initial standoff,
the collapse of a bubble near a rigid sphere was found to be significantly
different from the case of collapse next to a rigid wall.

A promising technique has been synthesized for numerical prediction of
coupled explosion bubble-structure interaction. Extension to a full three-
dimensional model will make possible submarine and surface ship whipping
calculations with completely interactive loading, target attraction, and buoy-
ancy effects. This method, in combination with a shock wave fluid-structure
decoupling scheme, will eventually make possible the prediction of structural
response to both shock wave and hydrodynamic loading from a pulsating
bubble experiencing gravity migration as well as target/free-surface attrac-
tion or repulsion.
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Fig. 1. Schematic showing the coordinate system and the initial position
of the bubble and the compliant spherical shell.
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Fig. 2. Axisymmetric continuum element.
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Fig. 5. Firnite element idealization of spring backed membrane.
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Fig. 8. Schematic showing experimental set-up for compliant coating
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Fig. 9. Finite element idealization of compliant coating.
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Fig. 10. Comparison of results of present calculations and data from experiments of
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Fig. 13. Schematic showing coordinate system, spherical shell, and initial
position of the explosion bubble.
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Fig. 16. Bubble collapse profiles at various times for collapse near rigid shell and

compliant shells of M* = 226, 76, and 56.
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3.00 1 GROWTH AND COLLAPSE PROFILES FOR M* 76

• 2.00
Ui/
0z
w
w

w
0

"+ t.o.0
0 t-1.065
0 t 1.665

t t.2.02

0.0 1

-2.00 -1.00 0.0 1.00 2.00

RADIAL COORDINATE

3.00
GROWTH AND COLLAPSE PROFILES FOR M =56

IL4

~2.00

I1.00

÷ t0.0

•t. 0 965
REENTRANT JET *t .

• t ,,1.997

0.0
-2.00 -10 0. 1.00 2.00

RADIAL COORDINATE

Fig. 16. (Continued)
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Fig. 17. Velocity (positive outward into fluid) of the north pole of the shell versus time.
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Fig. 18. Velocity (positive outward into fluid) of the south pole of the shell versus time.
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Fig. 19. Displacement of the north pole of the sphere versus time.
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Fig. 20. Effect of gravity on the motion of the north and south poles of the bubble.
Plot of height of north and south poles of the bubble versus time for shells
of M* = 226, at depths, d = 206 Rmax, 100 Rnx, 10 Rmax.
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Fig. 21. Bubble collapse profiles at various times near shell of M* = 226, at depths,
d = 206 Rmax, 100 Rmax, 10 Rmx.
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