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L INTRODUCTION AND BACKGROUND

In an earlier paper1 (hereinafter referred to as "[I]"), a comprehensive study was

made of the recirculation and losses of electrons in their flow through simple inverse

power-law potential wells bounded by similarly inverse power-law dependent magnetic

fields. This study examined electron flow and loss behavior in the simplest approximation

invoked to describe Polywelltm confinement systems. The importance of this study, and of

the present paper, is that the power balance in Polywelltm systems is determined entirely

by the rate of electron losses; if these are large, then the system can not yield net power.

Thus it is of interest to determine those conditions that result in small losses, and to

design experiments and systems to attempt to achieve and operate at these most favorable

conditions, in order to test and prove the efficacy of the system for the generation of net

power from fusion reactions. The outline and summary of this problem presented in jI1 is

generally repeated here, with some modifications to clarify particular physics issues of most

concern, in order to avoid having to refer to the earlier document for this general

description.

As noted in [I], a large body of work has been undertaken over the past 35 or so

years in the study of general cusp confinement of plasmas2. 3.4. 5. Nearly all of this has

examined single particle electron (or ion) motion or the motion of particles in neutral

plasmas within cusped magne* systems, generally without internal electric potential

fields. Furthermore, almost all of this work on plasmas has been limited to plasmas in

local thermodynamic equilibrium (LTE); none applied to non-neutral systems. Nearly all

were without internal E fields; all particles studied were at constant (fixed) total kinetic

energy throughout the system. And, almost all of the prior work focussed on

spindle-shaped biconic cusps5 - which are iwiqualy unable to satisfy the configuration
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criteria necessary for effective electron confinement in Polywelltf--type multicusp systems.

These special polyhedral configurations 7. s allow formation of stable deep

electrostatic potential wells in electron/ion mixtures by radial injection of energetic

electrons into plasmas with net negative charge. Their spatial characteristics combined

with the distribution of the internal E field arising from electron injection, and the induced

predominantly-radial ion motion, can result in long confinement times (due to many

recirculation passes through the well before escape) for the electrons9 . This is the sine qua

non for minimum electron energy losses, under the conditions of large ion energy and core

depity achieved by the trapping of ion motion by the electron-driven internal potential.

Although not directly relevant, due to lack of internal potential wells and associated

E fields, the work of Taylor1 0 , Grossman" and Kaye12 is of particular interest to illustrate

some features of the loss situation. Taylor's study suggested that particle losses from

spindle cusp systems would be such that the loss rate through the polar cusps would be

equal to that through the equatorial ring cusp around the configuration. His result (shown

earlier by Grad13, and by BerkowitzO) was predicated on the assumption that only two

constants of the motion exist; the kinetic energy and the angular momentum of the

particles. Unfortunately, since this is not the case in the Polywelltm or any other

symmetrical cusp system, the results derived are of no relevance to the current problem.

A better picture and clear description and analysis of the realistic situation for fixed

energy particles in spindle cusps was given by Kaye,14 who showed that a third constant of 0

the motion, the magnetic moment, acted to reduce the loss rates drastically from those 0

derived under the less restrictive (and incorrect) assumptions of the other analyses. This

illustrates the fact that much of the historical work on "cusp confinement" is not of rele- n/

tm"F Codes
vance to the problem in Polywelltm systems. Conclusions, perceptions, and Cod-08
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"t'understanding" drawn from this body of work are often not applicable to the

configurations and particle motions of interest here. In short, "conventional wisdom" in

the "fusion plasma community" concerning cusp confinement behavior is frequently of no

value as a guide here.

In this note the problem of electron motion, confinement and losses is analyzed in

the non-LTE, electron-rich plasma system with anisotropic radial energy in both species,

in multicusp Polywelltm geometry. The bulk problem is treated as one-dimensional, with

arbitrary spatial indices of radial B and E field variation. Here, unlike [I], the B field is

taken to have a "rollover" shape, consistent with the results of computer calculations of

actual field distributions in polyhedral systems, that follows a simple power-law within the

system but departs from it as the system boundary is approached form within. Figure (1),

taken from work of Lovberg, Weggel, et al reported by Krall5 illustrates this in showing

the field variation on a major cross-section through a truncated cube system.

An important feature of the Polywelltm system is the possibility of inducing B field

distortion by bulk diamagnetic collective effects arising from diamagnetic currents induced

in the motion of electrons by their interaction with the basic field geometry. These

diamagnetic currents will act to exclude the B field from the interior of the system; an

effect which will lead to a B field shell, compressed to a ( - 1 condition, surrounding and

confining the central electron cloud in the system. These effects are crudely modelled as

they influence this 1-D spatiftariation of B field, but electron entry into single cusp

volumes includes elements of the geometric effects of the real 3-D configuration. Electron

motions in mirror reflection regions are analyzed on the usual basis of conservation of

magnetic moment of the electron at entry into the confining cusp. However, turning points

of this motion are modified to account for the effects of diamagnetic currents on this

process. Further details are given in the following sections.
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11. CUSP MOTION: PROCESS DESCRIPTION AND TECHNICAL APPROACH

There are two distinctly different ways to operate the system. In discussing these it

is helpful to define several terms for critical radii within the system. In either case, the

electrons are modelled as originating at the system center, at r = 0, moving through a

noi-adiabatic region to that radius (rb) at which the electron "= - 1", thence to that

radius (rd) at which electrons are captured adiabatically in the cusp fields, and finally to

the outer radius, r = R, of the system.

The first operating scheme is to establish the system with maximum B field, and

turn on a small electron current at maximum (desired) electron energy, followed by

injection of ions controlled so as to yield the desired central virtual anode height in the

system. It has been shown by Bussard and KinglS that this control must be relatively

precise (e.g. within a factor of 2-4x) in order to avoid "blowout" of the well by excessive

ion density. Given a controllable ion source, and similarly controllable electron injection,

the system can be driven to higher core density by injection of ever-increasing electron

current with corresponding ion input.

This mode of operation ensures that the system will start as a mirror confinement

system for, at low electron density, <rb> = (rb/R) is very small compared to

<rsd> -= (rd/R) and the only physics initially able to retain the electrons is that of

reflection in the cusp fields; n~diamagnetic P = 1 fields have yet been established. Once

started in this mirror reflection (MR) mode, continued increase in electron injection

current drives the P = 1 radius, <rb>, to larger values so that some internal reflection

within the diamagnetic sphere adds to the confinement due to continuing MR effects. It is

important to note that the electron recirculation due to the MR contribution is severely
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limited by the considerable depth of the negative potential well created by the (desired)

excess electron charge in the system.

In contrast with electron motion under conservation of magnetic moment in

field-free cusp systems, the confining effect of the magnetic moment conservation process

is greatly reduced here by the presence of the internal E field. This acts to accelerate the

electrons outwards in the system, and adds radial energy to their motion almost as fast as

the cusp-trapped transverse energy increases and takes it from radial motion. In fact, if

the well depth were to become exactly equal to the electron injection energy (a physical

impossibility so long as ions are present), the cusp fields would not confine the electrons at
a-

all. The MR mode works, but only poorly if the system has a deep potential well.

The general model of electron motion in the system for this mode of startup and

operation was discussed and illustrated further in [I], which showed the linear ap-

proximation used for variation of the adiabaticity radius, <rAd>, in modelling the

transition from the MR mode to the diamagnetic P = 1 mode. Examining this mode in

some more detail, once the electrons have reached a radial distance (rx) at which their local

gyro-magnetic radius is sufficiently small that the total area of all of their gyro radius

circles from each of the cusps is equal to the area of the spherical surface at that radius,

they will enter one or another cusp in their outward motion. If rb is less than this

"transition radius" rx the electrons move non-adiabatically without confinement, and enter

the spatial domain of each cv* at rx. No diamagnetic effects are yet functional at this

point, as the gyro radius of electrons within rb < r• is greater than the gyro radius at r.,

and coherent currents counter to the external B fields can not be generated and sustained.

Once rb becomes greater than r. the electrons inside rb will "see" a lossy sphere

with surface loss area (due to gyro radius area "holes") that is smaller than the sphere area



at rbl and they will be confined by internal reflection within this diamagnetic • = 1 sphere.

The average number of transits an electron will make within this sphere at rb is just the

ratio of the sphere area to the total loss area. As rb grows larger (with increasing electron

current input, and increasing central density - with requisite additional ions to maintain

charge balance) this confinement grows larger, because the fractional hole loss area

becomes smaller due to increasing B field strength at larger radial positions. This can be

thought of as the confinement of a particle inside a perfectly-reflecting spherical shell

perforated by holes - like the "wiffle ball" toy; and it is called "wiffle-ball" (WB)

confinement. The average number of transits within rb is defined here as Gjwb-

At some radius (rad) set by the mirror adiabaticity requirement that the local B

field change only little over a local gyro radius, the electron is trapped in

"mirror-reflection" (MR) oscillation within the cusp. Electron trapping in this (MR)

mode is by the usual form of mirror reflection coefficient for motion in a single cusp mirror

system . This can be used to find a measure of the average number of transits G. thatjmr

an electron will make between rad < r < R within this cusp mirror geometry.

1 The form for mirror reflection coefficient involves a term which is the square of the sine of the

minimum trapping angle (relative to the B field) of electron motion in the B field at rad' the trapping

radius, for their escape at radius r = R. In the case of a system with electrons at constant energy and a

B field varying as <r> this term varies as <rad>m. In the present case, the simultaneous radial

variation of the E field reduces thwflection coefficient by virtue of the acceleration of electrons out of

the system by the potential well gradient. If this E field is equal in magnitude to, and varies with the

same functional form as the B field, no mirror trapping will be possible in the system. If the potential

well is less deep than the electron injection energy, trapping is still possible, but with the reflection

coefficient term reduced by a factor of about (1 - a q), where aq = e 0/E is the ratio of well depth to

injection energy.
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As rb grows beyond r it begins to distort the externally-imposed polyhedral B field

distribution to yield a configuration in which the field is compressed outwards by

continuing expansion of the "P = 1" surface (rb). This results in the displacement of

the adiabaticity radius (rd) to larger radii at a rate such that, with full diamagnetic

currents, it will always fall outside the "• - 1" radius. Thus rd recedes outwards as rb

exceeds r.x

Eveniually rb and rd reach a critical radius rk at which further radial growth of rb

becomes unstable with respect to r. This is because the magnetic pressure balance criterion

is satisfied for all radii beyond rk, once it is reached at rk. This radial position is that at

which the electron (and ion) density begins to increase rapidly with r > r.. Up to r < rk

both ion and electron density fall approximately as 1/r2 from the core region at radius r
with density no. Beyond rk both ion and electron density increase rapidly, and the electron

energy increases while the ion energy decreases as r -, R. Beyond rk the electron density

diverges markedly from the ion density in order to satisfy Poisson's equation and produce

the desired negative potential well.

Once rb = rk on this model, the behavior of the system "jumps" from rk to R, where

all further increase in system density buildup (by increasing electron and ion injection

currents) is stopped at the levels relating drive current (Ie) and core density (nd) attained

at the rb = R condition. This is (obviously) because rb can not physically become greater

than R, even though mathen4cally this is possible, because the B field falls past r > R

and the electron loss area thus increases with increasing r.

In short, the B field can not confine electrons at a density above that at which the

surface electron energy density exceeds the energy density of the magnetic field system.

Operation at this final condition is pure WB mode, and is at the point where <rb> = 1; all
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mirror effects have vanished and the electron confinement is due entirely to recirculation

within the diamagnetic sphere perforated by loss holes on the cusp axes whose radii are

proportional to the on-axis strength of the cusp B fields.

This final <rb> = 1 WB mode operating condition can be reached by an alternate

route. The other extreme of startup and operation is to avoid the MR mode entirely, and

drive the system from the beginning as a high beta diamagnetic device. This can be done,

in principle, by starting with any desired electron injection energy but with a greatly

reduced B field, so that the beta =1 surface initially is very far out in the system,

;<rb> z 1. At this condition there will be no mirror reflection, because there is no mirror

field region; all of the field is diamagnetically compressed to the outer boundary region, and

all electron losses are governed by the WB gyro hole loss mechanisms (see e.g. Kaye).

However, with small B fields and large electron energy (as required for the

production of wells deep enough to yield ions with high fusion cross-sections) the electron

recirculation factor (Gjo) will be very much too small to achieve low electron losses and

good power balance. In order to reach high G. values the confining B field, that sets theJo

size of the electron gyro loss holes in the WB sphere, must be increased to a much larger

value.

If this is done rapidly, with no increase in electron current, the fl = 1 sphere will be

compressed to a radius small•than rb z R, and the WB confinement will be reduced by

the increase in gyro hole loss area due to the decreased gross B field at smaller radius, as

well as by the smaller size of the confining sphere. If this decrease is sufficiently large, the

system will reach an unstable mode such that the WB sphere will continue to shrink until

it stabilizes with the rise of MR mode confinement as rb falls below rk. Now, the system

has "jumped" to operation in the MR mode, as described above.
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However, if the B field is increased slowly (relative to electron lifetime in the

system), and in small steps, the system will remain stable along the <rb> = 1 line and can

be driven to higher and higher recirculation simply by increasing the B field, without

increasing the electron drive current. This method avoids the limiting behavior of the MR

mode, and allows attainment of the final state of maximum Gjo on the <rb> = 1 line with

much less drive current that is required to make the transition from MR to WB mode in

the other startup scenario.

In either case, at this final stable state, when rb = R the core and bulk densities of

electrons (and also of ions) are at their maximum values for the parameters defining the

system (e.g. IC, n , E0 , B0 , R). Further increase in electron drive current can not increase

system density. Since fusion power output is proportional to the square of the core density,

and since this is proportional to the surface density - and hence to the square of the B field

- it is clear that increasing B field strength has a strong effect on system fusion power

generation. On this simple argument, on the <rb> = 1 line, the fusion power will vary as

the fourth power of the B field, just as for conventional magnetic confinement machines.

In the MR startup case, when electron injection is started, the only confining

mechanism is mirror-reflection (MR) from the radius rd to R, over a number of transits

G.mr. As electron injection current is increased the WB mode develops when rb > rx, and

the confinement parameter Gjwb grows progressively larger than unity. Particles between

r and rb simply transit thtgh this space. Since all particles that emerge from rb

(escaping the WB region) enter the MR region at r < rd, the total number of passes that

an electron will make before loss is the product of those in each region.

In order to describe behavior of the "average" electron in the system, G in each
2

region must be weighted by the number of particles in that region. For the 1/r2 density
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variation previously cited, this weighting is simply proportional to the region radial extent,
running over b < r < rb for the WB region and rb < r < R for the MR region. This simple

weighting neglects the density increase in the region r > rk, and thus underestimates the

MR contribution when rb < rk, and the WB contribution when rb > rk. In the WB startup

case, only the wiffle-ball parameter Gjwb will be active, and this will characterize electron

motion across the entire extent of the machine.

The behavior of electron losses is determined entirely by the lifetime of electrons in

the system. This lifetime can be related to the average transit time of the "average"

electron, weighted over the transit times of the electrons across their radial and transverse

energy distribution, and the average number of transits, Gi, which is the electron

recirculation factor. This can be found by analysis of the time spent in the MR mode and

adding this to that spent in the WB mode and dividing this total system lifetime by the

average electron transit time in one pass through the system. This average transit time

must be estimated as correctly as possible to obtain correct models of cusp losses. The

final parameter of interest is the recirculation, Gio, as this is described in terms of design

specifications of the system.

As discussed in [I], this analysis is difficult because of the somewhat complicated

electron distribution in both radial and transverse energy, and by the non-monotonic

nature of the potential well, which involves both a central virtual anode and a "rollover" at

the system boundary. This lter feature was not incorporated in the model used in [I]; it

is included in the analysis here. Details of the methods used to determine transit time are

discussed in [I], and in an earlier EMC2 technical report. These same methods were

employed here, with the addition of the complexities of the rollover field and a parameter

describing the well depth in terms of the electron injection energy.
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Figure (2) summarizes the mathematical formulae obtained from this analysis,

giving transit times in different regions of the potential well in terms of parameters

describing the well shape and critical radial points across the device. Note the explicit

dependence of transit time on the well depth parameter, cq = e00/E0 , as well as on the
qmodified virtual anode height parameter, ril = I - a q (1-%o). Transit times are determined

by integration over each of these forms, in the regions in which they are applicable.

m. ANALYTIC MODELS OF ELECTRON MOTION

In [I] the electron motion was based on a simple monotonic potential well with

magnetic field and electron kinetic energy variation according to

B(r) = B<r>m and E(r) = E <r> m  (1)

where <r> = (r/R). However, studies17, is, 19 have shown that the field variation

asymptotically approaches the simple power law form only as the radius becomes smaller

(approaching the origin) within the system. At radii beyond about <r> = 0.5, the field

modulus exhibits a "bumpiness", and its variation in any plane section through the center

of the system and one of the edge midpoints always shows a "rollover" as the edge of the

system is approached. Figure (1) shows an example of this sort of variation with radial

position.

The effect of this realis c departure from the power law assumed in [I is beneficial

to electron confinement because it gives larger B fields at deeper radii than does the simple

power law (for the same face cusp central field strength). The simple model is thus likely

to yield results that are conservative (or pessimistic), because of its underestimate of the

strength and effects of the real magnetic fielc& in the system. This can be rectified by
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employing an improved description of the B field, which better mocks up the actual

variation within the polyhedron. Limiting this, as before, to radial-only dependence (1-D

can be analyzed in closed form; 2-D can not) it is found that the edge effects can be

accounted for in an approximate way by use of

B(r) = B <r>mf(r) = B <r>m [ 2 + ] (2)

It is obvious from this that the field strength deep within the system will be twice

that previously used, for the same value of cusp central-axis maximum field strength, B .

As a result, the electron gyro radii at these inner radialpositions will be roughly one-half

of those previously estimated, with concomitant improvement in electron confinement.

This simple formula has the advantage that it will still yield analytic solutions for

most (but not all) of the parameters which characterize the system and are used in the

solution methods employed in the model of [I] (e.g. the specific dimensionless radii <r a>,

<rb>, <rX>, and the separate mode recirculation ratio terms Gjmr and G jwb)

Unfortunately, the transit time integrals can not be obtained in useful closed forms with

this more realistic potential variation. However, since the transit time segments used in

the calculation of the electron recirculation are divided by the total transit time in the

expression for the overall system G. ratio, the effect of integral departures from exactJo

behavior are minimal for this factor, thus these times can be taken from the forms

described above (and shown in Figure 2) without serious error.

Consider the motion of electrons in this rollover well, under adiabatic conditions

where the magnetic moment, L0, remains constant. Here the total energy of the electron is

Etot -- Ep + Ek = Ep + Eperp + Epar& (3)
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where E is the potential energy in the E field, and Ek is the kinetic energy of motion,

divided into its two component, Eperp and Epara. Also, the magnetic moment of any given

electron is related to its E relative to the field and to the B field and well depthperp

parameter by

p.Bo<r>m = Eperp = E0sin 2((ad)<r/rad>m[ 1- aq(-<rd>m)] (4)

where Ead is the angle of entry of the electron into the adiabatic cusp at <rad> and
* q = e4o /Eo, as before. Using this in eq. (3) and taking the kinetic energy to be

Ek = e~o(1 - <r>m) allows determination of Epara. Setting this equal to zero, to

determine the mirror reflection condition for the given electron yields a restriction on the

angle of entry of electrons into the adiabatic field as

[1 - aq(1-<r>m) ]<rad>m
sin2 (ead) = m(5)

[1 - q(1-<rad>M)]<r>m

Now, the electrons will arrive at <r> = 1 at the system edge. Thus, the entry angle which

yields such a reflection can be determined from eq. (5) by setting <r> = 1 and solving for

sin 2 ( ed) to give the minimum angle possible for electron trapping. This is found to be

emin = sin- 1 [<rrd>m/(1--a q(1-<r d>m))]0"5 . Eq. (5) can then be integrated over the

range of angles from which electrons enter the cusp region at <rad>, and normalized to the

total angle, to find the effective reflection coefficient. Carrying out this integration (from

e.n to (4/N)0"5 ) gives the elftron reflection coefficient [R] in terms of the number of

cusps N, the well parameter ckq, and the adiabaticity radius <r,,>. The recirculation due

to mirror reflection is just G, = 1/(1-[R]), which is
jnmr

411--aq( I--<r ad >m)]

G. = (6)
__ N<r ad>m
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This is just the "old" formula for Gj.r used in [I], multiplied by the term due to

well depth. Here N is the (effective) number of point cusps in the system (in a system with

all cusps identical, N is twice the number of full bi-polar magnetic axes).

Similarly, the radius of transition (rx) from uncorrelated to cusp-centered

non-adiabatic motion is found by solution of the geometric definition of <r > given by

4ir(rx) 2 = N(r(rL(r))2, where rL is the "gyro loss radius", defined as rL = kLrg. Here kL is

a measure of the departure of gyro "hole" area losses from the strict single-gyro-radius

(minimum) limit. The local gyro radius is

(r (r)) 2E<r>m sin2(ed (( 1-aq(l(<r)m))(

where sin 2 ((ed) must be taken as the mean square of the sine of the entry angles of all

electrons into the cusp system, defined as S . As usual, this can be written more

compactly in terms of the parameter W = E 0 /(B 0 R)2 characterizing the system design,

and re = e 2/mc2 = 2.818E-13 cm is the classical radius of the electron. Note that (2W/re)

is the square of the ratio of electron gyro radius at the system boundary to the boundary

radius, and is a measure of the "goodness" of confinement; small W gives longer lifetimes

than large W. With these the transition radius in the unperturbed field is

[.w,<1 r,-< -< :>m)l
<r > m+2 NW(k L)2[S2 1-a q(1-<rx>M 8

e ~ (f 0<rx>) 2

Note that this is an implicit equation for <rx>, which can not be solved

analytically. Similarly, the "adiabaticity radius" in the unperturbed field (ri&) is defined,

for an adiabaticity index20 (re), as

14



fdLN(B(r) La
[rg(redo)] dr e" [rg(redo)] = r < 1 (9)

9r 1doJda

This, too, yields an implicit equation for <redo>, in terms of the W parameter and
the adiabaticity index, the well depth factor, and the rollover field function f and its first

0

derivative. This equation is given in Figure (3) which contains a summary of all of the

equations describing electron motion in this more realistic (than [I]) field and well

geometry.

Comparison of the criterion eq. (9) with computer simulation data 21 , 22, 23 for

electrons of fixed energy shows that Ta z (2/3) is a reasonable fit to the data for motion in

the magnetic field configuration of a truncated cube.

As the electron density builds up within r < rb < rx collective diamagnetic effects

initially will be -negligible, because the gyro radius at small r within this region is greater

than the dimension r, itself. Increasing electron density will push rb to larger radius and,

when rb approaches rx, the diamagnetic currents due to internal electron gyro motion will

begin to affect (reduce) the local B field amplitude. As rb exceeds rx and approaches rd,

gyro currents become relatively stronger and more concentrated around the cusp axis, and

this relative reduction in B field will increase.

This results in an outwaTd compression of the B field external to the I - 1 surface,

which will affect the true position of the adiabaticity radius in such a way that the true

adiabatic motion condition can no longer be satisfied at its original position <redo> in the

undisturbed field. The adiabaticity radius will move further out into a region of larger B

field. The net result is a progressive "pushing" of the effective rd to larger radii, by rb

moving out with higher interior electron density. This pushing displacement can continue
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only to the critical density turnaround radius rk, at which point rb = rad = rk and rb jumps

to R, as discussed previously. In a general analysis of particle density distributions, Krall 24

showed that the position of <rk> depends on the the potential well shape. For typical well

shapes of interest, <rk> -W 0.83. However, note that the distortion of B field introduced by

diamagnetic effects will result in a comparable distortion of the potential shape, thus the

value of <rk> will increase towards unity (1) as <rb> becomes larger, out to <rb> = 1.2*

This coliective effect was modelled (in [I]) crudely by a linear algorithm that scaled

the motion of rd from r &d to rk in proportion to the motion of rb from r X to rk. This

model considerably overestimates the true diamagnetic shift effect. In order to test the

importance of the model, calculations were made of systems with this overestimated form

and with no diamagnetic shift effect at all. The results are shown in Figures (4a,b) that

show the variation of Gjo with Z and W for these two extreme cases. Note that the only

difference is in the Z position at which the mirror component of G. begins to decrease, and

that this difference is only about a factor of 3x in Z (the maximum diamagnetic shift gave

lower Z values). As indicated by theory, no effect was found in the WB region.

The "/• = 1" radius is the radial position at which magnetic pressure exactly

balances electron kinetic pressure, (n(rb))(E(rb)) = (B(rb)) 2/8wI. The variation of particle

density with radius from the core density n at r is given by an inverse-square relationship

However, note that <rk> can never reach unity in systems with a finite number of cusps,

because gross MHD beta stability limits the radius of <rk> between cusps to that at which the

outwardly compressed B field is tangent to the plane passing through the maximum B amplitude point

in each surrounding cusp. For an m = 3 (truncated cube) system this limits <rk > to a maximum value

of about 0.883.
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out to about rk. Using this, the 1 = 1 radius, r is found to be given by another implicit

equation (as for eq. 8, above), in the parameters oq, W, and the fo function, and the new

parameter Z = 8xnc(rc) 2. The implicit equation for this is shown in Figure (3). Note that

(Zr/6) is the total number of ions (or electrons) in the core.

The filling of the system so that rb becomes greater than the transition radius rX

creates a WB confinement sphere with electron recirculation determined as

Gjwb = 4,x(rb)2 /Nwr(rL) 2 S2 . Using the equations for (rb) and (rL) gives this as

2r Ze

Gjwb = N(kL)2S2 (10)

To determine the overall lifetime and mean number of passes made by an electron in

the system it is necessary to find these parameters for each mode of confinement, and

weight them by the fractional number of electrons participating in each mode. This

introduces a weighting factor dependent on <rb> in the equations given in Figure (3).

The time an electron spends in the MR mode is just that during its transit time t mrr

between rb and R, multiplied by the number of MR mode recirculation Gjmr. Note that

G. is determined by motion over the radial interval r < r < R or rb < r < R, while the

transit time includes the non-reflective region rb < r < r.., if such exists. For 1/r 2

variation of density, the number weighting function is just (1-<rb>). Note that this

underestimates the weighting because the density actually increases at r > rk. The time

spent in the WB mode twb is that while transiting the space 0 < r < rb, multiplied by the

number of WB mode recirculation and the number of MR passes for each such

recirculation. Its particle number weighting factor is simply <rb>; here correct as the

density variation with radius is inverse-square in this region.
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As remarked earlier, determination of these transit times requires integration over

the electron energy distribution in the potential well, for the several regions of the well that

apply to each condition. Carrying this out results in the transit time formulae summarized

in Figure (2). With these it is possible to write the recirculation ratios for the two cases

when the system has not yet begun to exhibit WB mode operation (i.e. when rb < r.) and

when the system does show this mode (i.e. rb > r ). These formulae are also given in

Figure (3).

Using these formulae it is possible to calculate G. over a range of the.Jo

system-defining parameters, (Z) and (W). Note that W is defined by system external

design criteria, while Z is determined by internal conditions reached in the dense core

during system operation. It is instructive to examine G. to see how the MR and WBJo

contributions vary with these parameters.

Each of these can be calculated separately from their terms in the overall formulae

for G. . Since all of the relevant parametric terms in these equations are given only inJo

implicit form, it was necessary to construct a simple computer code to calculate Gjmr, Gjwb

and G .. This code, called the GJ code, was used to determine parametric scaling of G

with Z and W for a wide range of operating and design parameters for the Polywelltm

systems of interest. Results of these calculations are shown in a series of figures attached

herewith (Figures 5-8). All calculations were made for a truncated cube system with an

effective cusp number of N u 4 B field spatial index of m = 3, a critical density radius of

<rk> = 0.83, loss radius factors of kL = 1, 2, 3, and for a potential well with virtual anode

fractional height of n - 0.272.

All the figures show that G.mr drops with increasing Z (increasing core density)

beyond the point where rb 2_ r.. This is a result of the decrease in both MR mode time tmr
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and in the weighting term (l-<rb>), even before <rb> reaches <r&o>. As <rb> moves

beyond <rio> the drop is even faster, as the diamagnetic effects of induced

counter-currents in the electron flow become larger and "push" <rd > to larger radii.

The WB mode does not begin until rb > rx and then rises rapidly with increasing Z,

twb and the weighting term <rb>. This is quite clearly seen where the Gjwb curves fall

rapidly to unity as Z approaches a value of about 1E14/cm from above. The cutoff Z value
is determined from the equation for Gjwb by setting this equal to unity. Thus, for all

values of Z < N(kL) 2S2 /2re the system will be operating solely in the MR mode. This has

the irverse consequence that WB mode physics can be tested only if the experimental

system is capable of being driven to a core density above this cutoff limit;
neC roC)2 > N(k L)2/ 16wre.

Operation along a line of constant W above this point leads to a maximum Gjwb

value at the boundary where rb = R; beyond this point Gjwb no longer increases with

greater input electron current. Also, at this point the electron (and ion) density within the

system has reached its maximum value and all further density buildup is stopped, for here

the system surface is already operating at an electron/magnetic beta of unity; more

electrons can not be contained within this field. All of the early studies15 of this concept

were made along this line of maximum performance, at the condition r = rb.

The sum of these two*4ms gives Gjo for the complete system. Figures (5a-f),

(6a-d) and (7a-d) show 2-D plots of this total Gjo for m = 3 power-law wells with a

Joo
virtual anode, over a range of Z and W, and for convergence ratio <r0 > = 1E-2 and anode

height 17 = 0.272. Figures (5a-f) show a wide range of the well depth parameter cq, from

zero (no well) to 0.995. Figure (6a) is a plot of just the <rb> = 1 line for several values of

the gyro loss radius parameter kL. Figures (6b-d) show the full G. vs. Z plots for each
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value of kL at aq = 1, full well at electron injection energy; no MR mode. As expected,

2increasing kL shifts the <rb> = 1 li t repeller

effectiveness, car, was also varied over the range from 0 to 0.999 and is shown in Figures
(7a-d). As expected, increased repeller effectiveness affects only the MR component of G.

Jo

by the simple multiplying factor 1/(1--a), thus repellers with 0.9 effectiveness will yield

10x electron densities in MR mode operation as compared to a system with no repellers.

The variation of repeller effectiveness is also plotted in 3-D in Figures (8a--c). These

graphs show clearly the separate MR and WB modes of operation with the large "valley" in

between.

Examination of Figures (5a-f) shows that the well depth affects the MR mode

drastically as a becomes larger than about 0.8-0.9, and that the character of the

parameter phase space changes for larger values than 0.9. In particular, it is found that the

MR mode regime bifurcates from the WB mode regime, and develops a characteristic

behavior that is antithetical to WB operation. A "valley" appears between these two

regimes of operation that subsequent code calculations have shown is very difficult to cross.

Another series of calculations was made to test the effect of anode height on G..Jo

These showed that the variation of G. with Z and W is virtually independent of il for allJo

n > 0.01. At very small q -4 0 the forms used for the transit time integrals begin to break

down and give excessive transit times; for all realistic wells the dependence of Gjo on anode

height is negligible for 0 < if 0.3.

It is useful to distinguish three regions of differing character on these figures. In the

left hand region below Z z 1E13/cm the electron behavior is completely dominated by

mirror-reflection effects. In this area the device is simply a multicusp mirror machine,

operating with the usual MR features. In the right hand region above Z r 1E16/cm,
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electron behavior is completely dominated by collective mode (diamagnetic) wiffle-ball

effects, and mirror phenomena in this region have essentially vanished. Here and above (to

Z > 1E18/cm) lies the fusion reactor regime. This region is new and unfamiliar to the field

of cusp plasma research; it forms the basis for the original Polywelltm concept and the early

studies25 of its characteristics.

In the middle region where 8E13 < Z < 8E15/cm lies all of the physics of transition

from MR to WB operation. This region is of experimental and theoretical interest, because

of the new and novel physics features found here. However, this transition is significant for

operation of these devices in fusion reactor regimes only if the system is started in the MR

mode.

A variety of calculations have been made that show the parametric performance

across the range from pure WB mode to pure (initial) MR mode. These are summarized

for one set of cases on Figures (8a,b,c) that show three-dimensional pictures of the

two-dimensional portrayals of the earlier figures. From these it is evident that .the device

can operate either as a mirror machine OR as a wiffle ball machine, but that it can NOT

operate as both.

Examination of the calculated data shows that the MR mode (the right hand area of

the figures) leads to increased G. but only at modest Z, not sufficient for power reactor

operation. However, starting4e system as a WB machine causes it to ride up the

<rb> = 1 "ridge" line at the left hand side of the figures, always with an increasing G .

Detailed EKXL code calculations have been made, to test the validity of this GJ code

global mapping, that show the drive current required to move up either of these startup

paths.
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The results show that following the MR mode at small W leads to early increase in

G., until Z values around those of the P = 1 line are reached. Beyond this point, to force

the machine through the transition from MR to WB modes, in order to get on the f = 1

line, itself, requires ever-increasing electron drive currents. In contrast, if the device is

started with a large W (e.g. by operation at low B field), it can be made to reach the P = 1

linb at small G. in the WB mode, and then to ride up the <rb> = 1 line by slow reduction

of W (by slow increase of the B field) to the reactor regime (ca. Z z 1E19/cm) without

significant increase in the current required to reach the fl = 1 line in the first place.

Note that the electron recirculation ratio G. increases more slowly with Z, in the
Jo

MR mode, once the Z value has passed that for # = 1 (in the 2-D projections), and that

the slope of the G. vs. Z curve, along a line of constant W first becomes negative, thenJo

slowly becomes positive, until it reaches a slope of unity. Below this point the system is

grossly stable with respect to increasing drive current input. However, beyond this point

the slope exceeds unity, and the system becomes grossly unstable. From this point up to

the <rb> = 1 line (at which point the device can not be driven further) the current must

be reduced, for operation on the <rb> = 1 line requires LESS current than to reach the

slope < 1 regions beyond the <rb> = 1 line below the unstable region. This can all be

avoided by operation along the P = 1 line, as described above.

Since the value of G. for MR operation drops with increasing Z, from its initialJo

low-Z value, as operation leas the MR mode - before WB mode confinement has taken

any significant effect - it appears as a "gate" through which machine operation must be

driven at startup. This is true only if started in the MR mode and is NOT true if started

in the WB mode. If the device is drive-current-limited, and if the current is insufficient

(for the design values of minimum W for the machine) to yield Z values (e.g. core
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densities) beyond this gate region, it will not operate above the much smaller Z value to

which the limited current can drive it in the MR mode.

It is very important to note the effects and characteristics anticipated for this

device. In particular, a limited-current experiment operating strictly in the MR mode that

runs into the "gate" effect will demonstrate poorer electron (and ion) confinement with

increasing current and core density. This is to be expected in this regime. Results of such

experiments can map out the MR portion of the 3-D parameter space that describes

complete system operation, but can not illuminate the physics of operation in the WB

regime. This regime is a2n the <rb> = 1 ridge line in the parameter space of the system,

as shown in Figures (8a,b,c).

This final form of the G. formalism outlined above has been developed as a simple

computer program, the GJ code. This (GJ vers. 1.1), has been built into the EKXL code

(vers. 4.1), so that this code now incorporates fully correct physics models that properly

describe system behavior across all the possible range of parameter space.

Calculations using this version 4.1 of the EKXL code have been made paramet-

rically for a variety of cases at high density ("reactor") conditions, and for a wide range of

models for SCIF experimental systems and operations. Results of the SCIF computations

are discussed in a separate EMC2 technical note26. Results of the reactor case studies are

given in a forthcoming EMC2 *hnical note. In all of these the effective "loss radius" has

been taken to be in the range 2 < kL < 3, as derived from elementary considerations2 7 of

diamagnetic behavior in the system. Knowledge derived from this work has been used to

analyze possibilities for startup of SCIF with neutral background gas; this is reported in

another technical note.26
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LIST OF FIGURES

Figure 1.

Variation of magnetic field in pure linear truncated cube systems, showing "rollover" at edge and
field strength 2x higher in interior regions than used in simple power-law model normnalised to
square face edge strength.

Figure 2.

Summary of formulae used for total and partial (segmented> electron transit time calculation in
virtual anode wells with "rollover" B field.

Figure 3.

Summary of equations for total electron recirculation ratio, and under mirror reflection (MR) and
wiffle-ball (WB) operating modes, and formulae used for critical system radii (gyro, adiabaticity,
transition and magnetic pressure balance radii) in "rollover" wells.

Figure 4. ab

Electron recirculation, G. vs. Z for various values of W. a) Non--diamagnetic case, no shift in

<rd> with increasing <rb). b) Diamagnetic shift overestimated to show maximum effect.

Figure 5.a-f

Effect of well depth, aq, on G vs. Z plots for various values of W. The <rb> = 1 line is

indicated in each chart by the dashed line.

Figure 6. "-

Effect of gyro "hole" radius, kL, on G. vs. Z plots for various values of W. a) The <rb> > 1

line for kL 1 1, 2, 3. The magnitude of W at G. I 1 is indicated. b-d) Plot of G. vs. Z for

each value of kL at a-1.

Fig•,, T.-d

Effect of repeller efficiency, ar, on G vs. Z plots for various values of W.

FigureS. a--c

3-D plots of 2-D projections for various repeller efficiencies, as in Figure 7, with k L=2.
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Transit Time Calculations for Gjo

V < rw_>_2_-<_r 0> 
1

2R <r0> + 2<r 0  2 > -1

totVi1•",n/[i'+2 1 "+" 6E f1/2 <rw>1/2-2

For <rb> < <r >:

<rw>2 -<rb>2

2R 2<r O> 2 2 )
t7 M6E w11/2. +[ 1 E + 11/21< w $1/2 ~

S<rb>2_<r >2 2

2R <r 0> 
2 <r 0 >

twB - 6+ 1 /2
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For <rb> > <rw>:

t i 2r 2 1/2-

2R <r0>-- 2<<r > 2- 1 1]

tWB - v.7+ 11 /2 + S1/2 w12/2 b 21

E [i22 1/(m+2)1 0 41 <r <r >+ E <r >71]

E.•_

6EW r>2r- V + ___•__ q)

Fiue2.

Summary of formulae used for total and partial (segmented) electron transit time calculation in
virtual anode wells with "rollover" B field.



Mirror'Wiffle Model for G,,

=• ~~~tMR +4 <Zb>tWB rb r

F G. (1-<rb>)Gjo 1 •.. (l-0 r ) tMR + G3V<r b>tWB I -to rb < r x
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1
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G 2r 9ZZ ir2anW=E
L 0

WBN2 Sez Z8r 2  and W=

=(2m+2) = () ag(1 -< r b> 2 =2 2WS1 I1-aq(I -<r>m)
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F+<>re) [i+<r>(m+2 )]2

Summary of equations for total electron recirculation ratio, and under mirror reflection (MR) and

wiffle--ball (WB) operating modes, and formulae used fer critical system radii (gyro, adiabaticity,

transition and magnetic pressure balance radii) in "rollover" wells.
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