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This article concerns the effects of non-Fickian water diffusion in fiber-
reinforced polymeric composites. The departure from classical diffusion

is attributed to the time-dependent response of the polymer, akin to vis-

coelastic mechanical response.

A formulation is provided to evaluate the coefficient of moisture diffu-

sion and moisture profiles within the composite for the non-Fickian case.

In addition, it is demonstrated that computed magnitudes of residual

hygro-thermal stresses may differ by about 25% from predictions based

upon classical diffusion.

1. Introduction

The diffusion of water in polymers and fiber-reinforced polymeric
composites has been studied extensively for almost a century and a
vast body of literature deals with that subject. A survey, primarily
concerned with fiber-reinforced polymeric composites, was published

recently (Weitsman, 1991).




The most prominent and common formulation' of the diffusion
process employs the well known Fick’s law (Fick, 1855), whose one
dimensional version reads

oc éC
5 =D3a»  t>0,-L<z<L. (1)

The field equation (1) is accompanied by initial and boundary
conditions

C(z,0) = Ci(2), ~-L<2<Z<1L, (2)
and, say
C(xL,t) = Ci(t), t>0. (3)

In equations (1), (2) and (3), z and ¢ are spatial coordinate and
time, respectively, C = C(z,t) is moisture content and D denotes the
coefficient of moisture diffusion. In many cases the coefficient D is
assumed constant, whereby the diffusion process is linear. The above

assumption will be employed in the present work.
Consider, in addition, the special circumstance of an initially dry
plate subjected to constant boundary conditions, namely,

C(z,00=0, -L<z<I, (2a)

C(£L,t) = CoH(t), t>0. (3a)

where, H(t) is the Heaviside step function.
Denote the solution to the unit step input (i.e., Co = 1 in equation
(3a)) by Cx(z,t). The well known result, given in Crank (1975), reads:

Cr(z,t) = g(—l)” [erfc (2—"%}1@-) +erfc (ﬁ‘%_;fifi)] L@

Integration across the thickness provides the weight gain My (t), which
corresponds to Cg(z,1),

My(t) = 4LV - [-% + 2§;ierfc ( \Z_)] , 5)




where Dt
t* = ﬁ’ (6)

erfc(z) is the complementary error function and ierfc(z) is its integral:
jerfe(z) = /0 " erfc (€)dt. ()

In view of linearity, the solution for Cy # 1, as well as for
C(xL,t) = g(t), can be expressed by means of Cy(z,t) and My(t) in
a straightforward manner (Crank, 1975).

Since data on moisture distribution are scarce and difficult to gen-
erate, the most readily available experimental information accounts
for total weight gain. Before comparing weight gain data with model
predictions, note the characteristic features of My (t*) when plotted
vs. V/t*, as shown in Figure 1. Accordingly, the value of the initial
slope is 4L/+/7, departures from linearity by 1% do not occur until
Vi* =~ 0.557, M H(t*) = 0.62, and saturation, to within +1%, occurs
at v/t* = 1.32. It should be recognized that typical weight gain data
exhibit scatter of at least £1%.

In addition, it is possible to infer the value of the diffusion coeffi-
cient D from Mg(t) (Shen and Springer, 1981), we have

2
D= ot ML ®

In this manner, knowledge of My(t) enables the evaluation of
C(z,t), through retracing expression (4) from equation (5), and the
computation of residual hygral stresses by means of well established
analyses (Tsai and Hahn, 1980, Harper and Weitsman 1985, Weits-
man, 1991).

Several uncertainties arise when moisture weight gain data do
not correspond to the strictures exhibited in Figure 1, implying that
the premises which led to My(t) are not met by the polymeric com-
posite material at hand. Such circumstances occur very frequently,

3




with a typical example exhibited in Figure 2 for the case of Fiberite
T300/1014 composite (Blikstad, et al, 1988). To accentuate the de-
partures from “classical” predictions, which corresponds to equation
(5), the data in Figure 2 are bracketed by two curves which conform
to the format of Figure 1 (multiplied by two distinct constants Cp to
provide best fits with data at short and long times, respectively). For
future reference, these curves are denoted by “Upper Fickian” and
“Lower Fickian”, respectively.

There are several plausible explanations for the causes for depar-
ture from a linear diffusion process (Weitsman, 1991). Of these, one
rationale is motivated by considerations akin to the well known time
dependent, viscoelastic response of polymers. Accordingly, the very
same Gibbs free energy which gives rise to time-dependent mechani-
cal response, predicts a diffusion process with time-dependent bound-

ary conditions even under exposure to constant ambient environment
(Weitsman, 1990).

This consideration will be employed in the present work, namely,
we shall retain the field equation (1) and initial condition(2a) but will
consider the boundary condition

C(£L,t) = f(t) (9)

instead of (3a), even though the ambient condition remains constant.

The following issues will be addressed in the present work:

(a) Express the moisture distribution, C(z,t), when moisture up-
take M (t) does not conform to expression (5).

(b) Establish a method to determine the value of the coeflicient
of moisture diffusion, D, when expression (5) — and thereby also
equation (8) — no longer hold.

(c) Evaluate the effects of foregoing distribution C(z, t) on residual
stresses in composite laminates.




2. Diffusion with Boundary Conditions

of Viscoelastic Type

It has been suggested (e.g., Long and Richman, 1960) that depar-
ture from “classical” diffusion may be explained by replacing bound-
ary condition (3a) with

C(£L,t) = [Co+ C1 (1 - )| H(2). (10a)

More recently, it has been shown (Weitsman, 1990) that for vis-
coelastic materials, both creep compliance S(t) and chemical potential
p(t) are expressible in Prony series forms, namely,

N
ut) = po+ 2 e (1 - ™).

n=1

This observation suggests that, in view of the time-dependent re-
sponse of the polymer, one should consider the boundary condition

C(L,t) = [Co + i Cn (1~ e‘ﬁ"‘)] H(t) (10b)

n=1

of which (10a) accounts for the first term in the series. The above
expression implies that equilibrium between the moisture content just
inside the material and the chemical potential of the external vapor

is established over an extended time — rather than instantaneously.

The solution to equation (1), with initial condition (2a) and
boundary condition

C(£L,t)= (1-eP) H(t)

is well known (Crank, 1975). For future reference, it will be denoted
by C(z,t;3). We have

C(z,t;8) = 1-—exp(-pt)- % -
16,3[,2 o (._1)'1 exp{—[(2n + 1)1!’/2]2'”} (211 + 1)7rz
T ,,X:{, (2n + 1)[4BL2 — Dx(2n + 1)?] oS ™51 .(11)
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Upon integration across the thickness, the total weight gain corre-
sponding to C(z,¢;8) is

M(t;ﬂ) = 2L-{l—exp(—ﬂt) ﬁ—'lzitan‘fég_z_

8 exp{-l(2n+ /o)
7 2 Gn T IF(L = (2n + 1) D7 (4AT)]) } - (12

Consequently, thLe distribution and total weight gain due to
boundary condition (10b) are

C(z,t) = CoCh(z,t) + fj CnC(z,t; Bn), (13)
and N
M(t) = CoMy(t) + Y C.M(t; B.). (14)

The latter expression should be correlated with experimental
data.

3. Data Fitting

Since data contain experimental error and statistical scatter, it is
advisable to smoothen the weight gain data, M,(t), before affecting

a match with expression (14).
Noting that for early times Mpy(t) is proportional to v/, we choose
to fit the experimental data as follows,

J
Mg (t) =3 At (15)
i=1

The coeflicients A; are determined by minimizing the square error,
namely,

a tmax J . 2
oy /o [M,,,(t)-ZAjtflﬁ] dt=0, (i=1,2--,J) (16)

i=1

6




In equation (16), tmax denotes the duration of the moisture uptake
experiment.

With A; determined through expression (16) it is now necessary
to express Mg, in the form (14). This task is accomplished in two
steps.

Consider first the step-wise increasing boundary condition

C(+L,t) = CoH(t) + f CHH(t -t),

k=1

to which corresponds the total weight gain

M(t) = CoMpy(t) + é_{:l CHMpy(t — t)H(t — ). (17)

The quantities Cy, C¢ and # (k = 1,2,---,K) in equation (17)

can be selected in a manner which yields M(t) — Mg(t) < 6. at all

times ¢, with 6. a prescribed tolerance. It is advisable to select é. to
be smaller than a typical discrepancy between M, (t) and Mg(t).

The proposed procedure is to select Cj in equation (17) which, in

view of equation (5), would yield M(t) = Mp, at the first time step,

i.€.,
C _ Mf“(At) T
°="4  VDar

where At is the selected time step.

Then, retain M(t) = CoMpy(t) until such time ¢ = ?; when
Mg (t1) — CoMy(t1)) = 6 = 6,. In view of equation (5), this dis-
crepancy at t = % is overcome by introducing a step increment in the
boundary condition at some earlier time ¢; of magnitude

T

5
H-—— —————
= 0D —wy

The combined effect of CoMpy (t)+CH My (t—1,) is now compared
with Mexp(t) until such time #; when they differ by é.,, at which stage
another incremental step is added to the boundary condition at an
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earlier time t5 of magnitude C4 analogous to C{!. The procedure is
repeated until the entire range of M.y, (t) is covered. The amplitudes
of the incremental steps are given by

é [ T

In our computations, we found it is expedient to select ¢; to co-
incide with #;_; (with ¢; = 0).

With known Cf and t; (k =1,2,---,K), it is possible to convert
the step-wise incrementing boundary condition

K
C(xL,t)=Y C{H(t-t). (19)
k=1
to the continuous Prony series form
N
C(xL,t)=Y Ca(1-€P). (20)

n=1

Employing a least square fit, we have

ac,-/o [ngH(t—tk)—gcn(l—e )| d@t=o. (21)

Equation (21) results in an IV x IV system of linear algebraic
equations in Cy,

ai;C; = b; (22)
Whel'e 1— e—ﬁifmn 1-— e“'ﬂjtm;x 1-—- e‘(ﬁi"l‘ﬁ;)‘mn (23)
ai; = tmax — - + ,
’ Bi B Bi + B;
K
bi=) cy [(tmax ~ ) + ﬂl (e'ﬁ““‘" - e’ﬁ"")] . (24)
k=1 i

It should be noted that the above procedure provides some lati-
tude in the selection of t; (k = 1,2,-.-,K) and B8; (j =1,2,---,N).
Although no hard and fast rule seems to be available, it is advisable




to select 8; which cover the spectrum of experimental time, preferably

two — but at least one — values of 3 per time decade.

It may appear that the employment of the intermediate series
(19) is redundant and that the values of C, in equation (20) can be
obtained directly through a least square fit of

8 [tmax N X 2
‘5’6/0 [Mﬁt(t) — CoMpy(t) - Z C,.M(t;ﬂn)] dt =0, (25)

n=1

which yields an IV x IV system of linear algebraic equations
a;C; = b; (26)

to determine C;.
In this circumstance we have

= [ N BB ), (27)

and t
b= [ [Mau(t) — CoMu(t)] Mt Bi)dt. (28)

Unfortunately, the numerical evaluation of a;; and l;,- involves com-
pounded effects of truncation errors and, most critically, yields an ill-
conditioned matrix a,;. The latter difficulty arises from the fact that
rows and columns in the a;; matrix consist of elements of very close
magnitudes.

In many circumstances moisture uptake data do not seem to ap-
proach an equilibrium value, regardless of the duration of exposure,
and M (t) tends to increase according to M(t) ~ KtP ast >> 1. It

can be shown that this circumstance is commensurate with a time
dependent boundary condition

C(£L,t) = Cot®H(t). (29)

To prove this, let C(z, s) denote the Laplace transform of C(z,1),
then, since

I(p+1)
gptl !

5(:*:[:, 3) = Co

9




it can be shown that

= _Cl'(p+1) coshgz
Clz,5) = s»t1 coshqlL

(30)

-

where ¢ = \/s/D.
Consequently, the Laplace transform, M (s), of the total weight
gain M(t) is
2CI'(p+1) tanh qL
03P+1 q (31)
Although it seems impossible to express M(t) analytically!, its
asymptotic value for ¢ >> 1 is readily obtainable from

M(s) =

bmM(s) = — 57—
which yields
lim M(t) = 2LCot”. (32)

4. Evaluation of the Coefficient of Moisture Diffusion

In all previous computations, it was implicitly assumed that the
value of the coefficient of moisture diffusion D is known. However,

! An exception occurs for the important circumstance p = 1/2, which corresponds
to M(t) ~ AVt as t — oo. In this case both C(z,t) and M(t) have the following
analytical expressions (see Appendix)

(—1)n+! (2n4+ 1w ~ 2n+1)rz
2\/F,§(2n+1>2 ( 2 ‘/t_)°°s oL ]

C(z,t) = CoVt [1 +

o0

_ (2n4+ )7~
M(t) = 2LCoV1t [1 g nz_% (h Ty ( — vir )|,
where F(§) denotes Dawson’s integral (Olver, 1974) defined by

FE)=e* | ‘e du.

10




when experimental weight gain data do not fit the format shown in
Figure 1, expression (8) does not apply and D is unknown.

Assume as before that departure from classical diffusion are at-
tributable strictly to the time-dependence of the boundary condition,
namely,

C(£L,t) = Co[1 + F(1)]H() (33)

with f(0) =
Therefore,

M) _CO{MH(t)+/ M (t—r)df(T) } (34)

Let g(s) denote the Carson transform of g(t¢), namely,

i) =s [ eglta,

then
M(s) = Co [My(s) + Mu(s)f(s)] ,
whence .
F(s) = Ci%((—)) - (35)

Note that at this stage, Cy, f(t) (Whereby also f(s)) as well as D
are unknown. However, Mpy(s) is known analytically (Crank, 1975),

namely,
Mpy(s) = 2\@ tanh \/%L. (36)

In addition, M(s), which is the Carson transform of the weight
gain data, can be computed numerically.

By hypothesis, f(t) is independent of the sample thickness L.
Therefore, consider two sets of weight gain data M (t; L) and M (¢; Ls)
associated with thicknesses L; and Ly, respectively. Equation (35)
yields ) i

M(s;Li; D)  My(s; L)
M(s; Ly; D) - MH(S;LQ)’

(37)

11




Note that equation (37) contains the unknown D alone and does
not include f(s) and Cy.

Consider a data fit according to equation (15), whose Carson
transform is given by

~ J . y
M(s)y=3" si};;r(% +1). (38)

j=1
Consequently, it is possible to compute the ratio

M(sy; Ly; D)

pr = p(sk) = M (o8 Ly, D)

at distinct values of transform parameter s = s; (k=1,2,---,K) and
express the ratio

Vel
ri(D) = r(sk, D) = tanh /s L3/ D

tanh \/skL'{’/D’

which corresponds to the right hand side of equation (37).

The value of D can be determined from the best least square fit
obtained from

d X

D Zjl[pk - (D))’ =0, (39)
namely,

glpk - r(D)Jri(D) = 0, (40)
where,

(D) = (— v ;,gD) [Lacth(Lyv/s/D)sech?(Lay/sk/ D) —
--L;cschz(Ln/sk/D)tanh(Ln/sk/D)].

Denote




= Lgcth(Lyy/sx/D)sech®(Lay/sx /D) —-
~Lycsch?(Lyy/s/D) tanh(L,/sx/D), (41)

then, since D # 0, eqn.(40) is equivalent to

K
kZl[pk ~ ri(D)]gx(D) = 0. (42)

This equation can be solved numerically for D. In the sequel,
Newton'’s Iteration Method will be employed.

Newton'’s Iteration Method starts with a suitably chosen initial
value D and employs iteration until attaining convergence within a
prescribed tolerance. In the present case, the n'® iterative value, D™,
is related to the (n — 1)* value as follows:

K
Y [k — ri(DD))gi(DD)
D = pov-1 _ =t : : (43)

{3t - oo}

D=D(n-1)
The denominator in equation (43) can be expressed as
K

3 {ioe ~ re(DYoi(D) + 55 2(D)}

k=1

{g[” kT rk(D)]gk(D)}, -

where

g (D) = ( v ) {cth(Ll\/sk/D)ta.nh(Lg\/sk/D)[

sinh?(L, \/sk/D)

_ L2 N _ LiL, .
coshz(Ln /sk/D)] sinh’(Ll \/;k/D) coshz(Lg\/ Sk/D) } .

5. Moisture Effects on Residual Stresses

To demonstrate the significance of non-Fickian diffusion on resid-
ual stresses in composite materials, consider the case of a [05/90%]s

13




symmetric lay-up. The basic stress-strain relation for the cross-ply

laminate are (Harper and Weitsman, 1985):
For the 0° layers,

0x(z,t) = Qr[2(t) + 2x.(t) — aL AT — B1Ce(2,1)]
+QLT[€2(t) + zky4(t) — arAT — B7rC.(z, t)], (44)

oy(2,t) = Qrr[e(t) + zk4(t) — L AT — BL.C.(z,1)]
+QT[5g(t) + ZK,y(t) - aTAT - ﬂTCe(zat)]a (45)

where subscripts L and T denote the the directions along and per-
pendicular to the fibers respectively, £ and y denote the length and
width directions of the laminate respectively, a’s are the thermal ex-
pansion coefficients and 3’s the moisture swollen coefficient, AT is the
temperature variation, C,(z,t) the effective moisture concentration.

For the 90° layers, the stresses can be obtained by interchanging
subscripts L and T'.

In the above equations, €® and k are determined in terms of the
external applied loads. In the absence of such loads we have

Na(t) = /_ I; 02(2,)dz = 0, (46)

N = [ I; oy(2,)dz = 0, (47)
L

M,(t) = /_ , 0x(z,8)2dz = 0, (48)
L

M, (t) = /;L oy(2,t)zdz = 0. (49)

Substitution of the appropriate stress expressions into eqns.(46)—(49)
yields, after some manipulations, the following results:

&) = 2 1(Qu+QnIAPAT() + RG() + SF()

—QurLIkPAT(t) + RF(t) + SG(2)]} , (50)
&) = % {Qu+QnIAPAT() + RF(®) + SC()
— QrrL[hPAT(t) + RG(t) + SF(t))}, (51)
14




ra(t) = Ky(t) =0, (52)
where

A =K(Qu+ Q)@ +Qn) ~ @url), F()= [ Cx,t)ds,

G(t) = /h ‘ Ce(z,t)dz, P =Qrar+ Qrrar + Qrrar + Qror,
R=QLBL+ Qurfr, S=QrrfL+Qrfr, C.2,t) =C(2,t) — Cu,

Ciy denotes the threshold moisture concentration below which no
swelling effect is observed and h is the common thicknesses of 90°
and 0° laminae group, while — as before — 2L is the total thickness
of the laminate.

6. Computational Results

The moisture weight gain data of Figure 2 were fitted by foregoing
numerical scheme with a smooth curve Mg (t) according to equation
(15) and subsequently with M(t) according to equation (14) and (5).

Those computations yielded a six-term fit with 4; = 0.23281,
A; = 0.010999, A3 = —7.2414 x 1073, A4 = 1.5040 x 1074, A5 =
—1.3487 x 1078, Ag = 4.4508 x 10~ for Mpg; and the resulting curve
is shown by the solid line in Figure 4. The smooth curve of My, was
subsequently represented by M(t) of equation (14) with 6§ = 0.01 M.
This representation is shown in Figure 4.

Afterward, the data were represented by M(t) as expressed by
equation (5) with Cp = 0.7 and N = 7, C; = 0.098605, C; = 0.021929,
Cs = —0.083097, C; = 0.27450, C; = —0.55194, Cs = 1.7834, C; =
—-1.5819 and B; = 1/10, B = 1/50, B3 = 1/100, B4 = 1/500, G5 =
1/1000, Bs = 1/5000, 87 = 1/10000 (8 in hours™).

In all above computation, we took D = 3.2 x 10~* mm?/hour.

The resulting curves for M (t) are indistinguishable from Mpg,(?)
and coincide with the solid line shown in Figure 2.

15




For purpose of comparison, the data of Figure 2 were bracketed
by two curves of the form CoMg(t). The value of Cp = 1.12 x 1072,
with D = 3.2 x 10~* mm?/hour, provide a “Lower Fickian Fit”, while
Co = 1.32 x 1072, with D = 1.7 x 10~* mm?/hour, gave an “Upper
Fickian Fit” to the data. These curves are shown by dashed lines in
Figure 2.

Employing the aforementioned values of C; and §; (1 = 1, 2,-- -, 8)
and Cy = 0.7 x 1072, the distributions C(z, t) were computed at times
t = 500, 3600 and 8000 hours. Results are shown in Figures 5 through
7, where moisture profiles associated with both “Upper” and “Lower”
Fickian data fits are shown for comparison.

Residual hygro-thermal stresses were evaluated according to equa-
tions (44) and (45). The computations employed the manufacturer’s
data (ICI data sheet) which gave h = 0.127mm, E; = 148 GPa
and Er = 11GPa. In the absence of further details, we assumed a
Poisson ratio vyr = 0.28. The above quantities were converted to
the stiffness utilized in -equations (44) and (45) as follows (Tsai and

E E
Hahn, 1980): vry = virL, Q@ = — 2L Qp = — 2T

Ey 1—-virvrg 1 —vprvyg
Qur = 1—vipvrp

Furthermore, we assumed hygrothermal properties similar to
those of AS4/3502 (Harper and Weitsman, 1985). We thus took
B = 0, Br = 3.24 x 1073/1% moisture weight gain, Cy, = 0.1%,
AT = —180°C, o = —0.02 x 107%/°C, ar = 27.5 x 1078/°C.

Results of the hygro-thermal residual stresses are shown in Figures
8-13.

It can be noted from the above results that, at early stages, al-
though all the predicted moisture distributions correspond to the same
total moisture weight gain, they yield distinct stress distributions. At
later stages, as the moisture distribution tends be uniform, the pre-

viTEr
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dicted residual stresses are basically proportional to the predicted to-
tal moisture weight gain. At some locations, the Fickian predictions
may differ by as much as 20-30% from the non-Fickian values.

Furthermore, at the early stages, the stresses are closer to the
lower Fickian fit since the boundary moisture saturation level is closer
to the lower bound, while at later stages, as the moisture saturation
level increases, the stresses are closer to those which correspond to
the upper bound. In any case, it is worth noting that the lower and
upper Fickian fits on the moisture distribution give lower and upper
bounds of the resulting hygro-thermal stress predictions.

7. Conclusions

In principle, the diffusion process of water in polymers and poly-
meric composites may depart from the idealizations inherent in the
classical formulation of Fick. Although there are abundant reasons for
that departure, the current work focused on correlating non-Fickian
weight gain data with a time-dependent boundary condition, as mo-
tivated by the viscoelastic response of polymers.

It is shown that non-Fickian aspects of the moisture absorption
process have significant effects on the resulting hygro-thermal stresses
in composite materials. The current work reveals the sensitivity of the
residual hygro-thermal stresses to a boundary condition of a viscoelas-
tic type, exhibiting discrepancies of about 20-30%.

For a diffusion process whose lower and upper Fickian fits can be
found, is it safe to say that the residual stresses which correspond to
those two cases provide bounds for the non-Fickian case, resulting in
good engineering estimates for the residual stresses in laminates.

However, for an accurate assessment, non-Fickian analysis is
needed and the formulations presented in this work provide a sys-
tematic method to treat this case.
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Appendix:

The Analytical Solution to the Diffusion Problems with
Boundary Condition C(+L,t) = C,vtH(t)

Employing the notation of section 3, the transformed governing
equation for the diffusion problem is:

8 —
2;2-——-50=0 (Al)

The solutions in the transformed space are

— V7 coshgz
C =Co————>"—, A2
®2 Vs coshgqL (A.2)

tanh gL
sz

M(s) = CoVnD (A.3)

For simplicity in future use, we denote, in eqn.(A.2),

cosh gz

5(s) = scoshqL’

(A.4)

Generally, if 7(s) can be expressed as

- f(s)
=== Ab
v(s) o0s) (A.5)
where f(s) and g(s) are polynomials of s, and if the degree of g(s) is
higher than that of f(s), then %(s) can be further expressed as

N
ooy = 3 Do) 1 (A6)

19'(an) s—an’

where, a, are zero points of g(s) and NV is the degree of g(s).
In the present case, f(s) = coshgqz, and g(s) = scoshgqL.

Since
422 42?2 422
coshz:(1+°7r—2)-(1+332—ﬂ_2)-(1+5-2-;)....’ (A.7)




and g(s) is indeed one degree higher than that of f(s). Furthermore,
a, can be solved from the equation

scoshgL =0 (A.8)
to give
Qoo = 0, (Ag)
and on + 1)
gul = i("—;)ﬂ, (A.10)
hence D(2n + 12
n i3
On==——"—7173 (n=0,1,2,---). (A.11)
Thus —C—'_(s) can be rewritten as:
=~_ ~VT]f(0) 1 = flan) 1
Clo) =G5 [g'(O) 7t L e oo o)) (4.12)

Although each value of a,, corresponds to two values (+ or —) of
gn in equation (A.10), the choice of any specific sign is immaterial,
since either one would yield the same results for the present problem.
Selecting the positive sign we obtain

f(s) = coshgz, (A.13)
f(0) = cosh0=1, (A.14)
flan) = eosZELE, (A.15)
g(s) = costh+%quinth, (A.16)
g'(0) = coshld=1, (A.17)
d(a) = ZEVT gy, (A18)

In inverting C(s) as expressed in eqn.(A.12), we note that the
inverse of

—_ 1
f(s) = = a) (A.19)
is
f(8) = ’\}—a e~ exf(v/at). (A.20)
20




On the other hand, the so called Dawson’s integral has an alternative
expression (Olver, 1974)

F(¢) = -‘Q/—:—’ e ¢ erf(£i) = e~¢ /o * e du. (A.21)

Comparing (A.20) with (A.21), then substituting the above result into
eqn.(A.12)we obtain:

(=1)rt? (2n+)r - (2n + )7z
C(z, t)-Co\/_[1+ 5 t‘,,z_;,(2 + 1) ( > \/i—)cos—————-——ﬂ/ ]

(A.22)
The total moisture weight gain can be readily computed from the
integration of the above expression to yield

womtei- 2 E (@R
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Figure 3: Flow chart for presenting the boundary condition as se-
quence of step functions.
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