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EVALUATION OF THE PROPERTIES OF 1-3 __ 1

PIEZOCOMPOSITES OF A NEW LEAD
TITANATE IN EPOXY RESINS

ROBERT Y. TINGJt AVNER A. SHAULOVt and WALLACE A. SMITHt§ 0

Naval Research Laboratory, P. 0. Box 568337, Orlando, FL 32856; ýPhilips wI
Laboratories, Briarcliff Manor, NY 10510, §Office of Naval Research, Code

1131, Arlington, VA 22217 USA

(Received March 6. 1992)

By using a new calcium-modified lead titanate ceramic with a near-zero planar coupling coefficient, a
series of 1-3 piezocompositc samples was fabricated with a dice-and-fill technique. The ceramic rods
were approximately 0.10 mm in size. and the percent of ceramic loading varied from 10 to 30%. Two
epoxy resins with different glass transition temperatures and moduli were used. The dielectric properties
and the piezoelectric d,, and g, coefficients of the composites were measured as a function of pressure
and temperature and were found to exhibit little variation, but 10-25% lower than theoretical predic-
tions. A prototype hydrophone made from one of the piezocomposite samples was tested to show a
constant free-field voltage sensitivity of - 201 dB re V/g±Pa from 100 Hz to 6 kHz.

INTRODUCTION

The development of future submarines is expected to emphasize a greater speed
and depth capability, in addition to an increased acoustic aperture for their sonars.
One may therefore envision that these new sonar arrays will become very large in
size and be totally under the influence of flow noise. A potential solution to abate
this noise problem is to use large-area hydrophones in such arrays. This requirement
for hull-mounted hydrophone arrays calls for piezoelectric materials that exhibit
high sensitivities in a hydrostatic mode far exceeding what the conventional PZT
ceramics can offer. Piezoelectric PVDF polymers were investigated earlier for this
application,1 but were found to be limited by the temperature dependence of their
piezoelectric properties and the inheritantly low dielectric constant of this polymer..2

New piezoelectric composite materials with different connectivity patterns 3 were
therefore considered as potential alternatives to PVDF in the design of future large-
area hydrophones for hydrostatic-mode sensing.4

Among many types of piezocomposites that have been investigated, the 1-3 type,
consisting of thin parallel rods of ceramic imbedded in a polymeric matrix, was
successfully developed for use in pulse-echo ultrasonic transducer arrays.5 This
success in the medical field has led to the interest in considering the 1-3 piezocom-
posites for hydrophone applications. In this paper, the dielectric and the piezo-
electric properties of a series of 1-3 composite were investigated. These samples
were made by using a new calcium-modified lead titanate ceramic.' This material.
having a negligible d31 coefficient and near-zero planar coupling coefficient, is itself
very sensitive in hydrostatic mode. Furthermore, the permittivity of this ceramic
is much lower than that of conventional PZT ceramics, resulting in a higher pi-
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70 R. Y. TING, A. A. SHAULOV and W. A. SMITH

ezoelectric voltage coefficient for increased hydrophone sensitivity.7 Composite
samples were fabricated by using this lead titanate and two different types of epoxy
resins. Their dielectric constant and dissipation, and their piezoelectric dh and gh,
coefficients were evaluated as a function of pressure and temperature. A prototype
hydrophone was also assembled by using one of the composite sample for evaluating
its acoustic response in water. These experimental results are presented and dis-
cussed here.

EXPERIMENTAL

The 1-3 piezocomposite samples investigated were fabricated by using a calcium-
modified lead titanate ceramic, designated as the C-24 type by Toshiba. Two epoxy
polymers of different stiffnesses were used as the matrix material in order to assess
the effect of polymer phase on the properties of the composite. One epoxy resin
with the trade name of Stycast was stiffer than the second one called Spurr, when
both were cured at 70'C overnight. Composite samples were made by using the
dice-and-fill technique8 to form 40-mm diameter disks that were 1 mm thick. Square
ceramic rods were 0.10 mm in size, and ceramic volume fraction varied from 10
to 30%. Figure 1 illustrates this fabrication technique. Deep grooves were cut into
a solid ceramic disk that was previously poled. The epoxy resin was then back filled
into the grooves, followed by heat cure and slow cool to room temperature before
grinding off the remaining ceramic base to form the required experimental samples
for evaluation. Metallized chromium-gold electrodes were added to either side of
the disk sample, but no additional poling was necessary since the starting ceramic
disk was already poled.

The hydrostatic dh and g& coefficients of each sample were determined from
measurements in an acoustic coupler. Direct measurements of the dielectric con-
stant and voltage sensitivity were obtained by using an acoustic reciprocity technique9

at 1 kHz. This measurement frequency was well below any potential resonance of
the composite disks, so that a hydrostatic response of the sample was ensured. The
experiments covered the pressure range from ambient to 20 MPa, and a temperature
range of 0 to 50'C. The d 33 coefficient of each composite sample was also measured
at 100 Hz by using a Berlincourt meter. At least twenty measurements were made
over the surface of the sample in order to obtain an acceptable average d 3 3 value
for the composite.

POLYMER PIEZOCERAMIC
MATRIX RODS

0 0 0 0

PIEZOCERAMIC COMPOSITE

FIGURE I A schematic for the dice-and-fill technique of sample fabrication.
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A 1-3 composite sample containing 0. 10-mm square rods spaced at a distance of
0.14 mm in Stycast epoxy was used for hydrophone fabrication. It had a density
of 2.5, giving an estimated ceramic volume fraction of 17%. The composite sample
was bonded to a 5-cm thick stainless steel base plate by using Shell Epon 828 epoxy.
The assembly was then water-proofed by encapsulation with a medium hardness
Eccobond resin. The prototype hydrophone was tested at the Naval Research
Laboratory's Lake Facility at a water depth of 4 m over the frequency range of
100 Hz to 100 kHz.

RESULTS AND DISCUSSION

Figure 2 shows the measured d,3 and dh coefficients for the composite samples of
different lead titanate (PT) volume fractions. The data points represent the ex-
perimental result obtained at room temperature and ambient pressure. As indicated
earlier, the dh coefficients were measured at 1 kHz, and d 33 at 100 Hz. Ceramic
volume fraction was calculated from the measured density of each sample, using
a simple mixture law. The data points at the extreme right of Figure 2 are the
measured d 33 and dh values of a solid lead titanate ceramic disk. In general, it is
noted that the d coefficients increase rapidly with increasing ceramic loading in the
composites for ceramic volume fractions in the range of 10 to 30%. The two curves
in Figure 2 represent the result from a theoretical calculation'0 based on the simple
parallel-series connectivity model of Haun and Newnham" for PT/Stycast samples.
The analysis predicted a trend similar to the experimental observation, but the
calculated values of the d coefficients were approximately 10 to 25% too large.

100

80

:so-

S60 0

40-

0 0 0 SPURR

20- • 0 STYCAST

a PURE CERAMIC

0 I 1
a 20 40 so so 100

CERAMIC VOLUME PERCENTAGE

FIGURE 2 Piezoelectric d, and d, coefficients of 1-3 composites as a function of ceramic volume
fraction.
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Some of this discrepancy may be attributed to the uncertainty in the values for the
material parameters used in the calculation.

The pressure dependence of the piezoelectric dh and g, coefficients for composite
samples with either Stycast or Spurr epoxy is shown in Figure 3. The samples
contained approximately 20% of lead titanate ceramic. This result suggests that
these composites are remarkably stable with pressure. At the maximum test pres-
sure of 20 MPa, the degradation of either the dh or the g, coefficient for the 1-3
composites is less than 0.2 dB.

In Figure 4, the measured dh coefficients of three composite samples are shown
as a function of temperature. The dh properties of a solid lead titanate and a PZT5
sample 7 are also included for comparison. As shown in Figure 2, the d. property
of the PT/epoxy 1-3 composites increases monotonically with increasing ceramic
volume fraction. This relationship is different from that found earlier in the 1-3
composites of PZT5/polymer, 12 which exhibited a maximum in the composite dh
coefficients that exceeded the value for the pure PZT5 ceramic. The peculiar
behavior of the PT/epoxy composites was investigated earlier,10 and found to be
caused by the combined effect of the Poisson stress in the polymer and the high
d33 coefficient of lead titanate. Figure 4 shows that the composite dh coefficients
are reduced from that of lead titanate, but their temperature dependence is similar
to that of the pure ceramic. Over the temperature range tested, the material was
very stable. With the softer Spurr epoxy, there was a further reduction in dh from
that of the composite containing the stiffer Stycast polymer. However, even in that
case, the dh property of the PT/epoxy 1-3 composite is still comparable to that of
a solid PZT5 ceramic.

Although the dh properties of the composite samples are stable with temperature,
the temperature dependence of their gh coefficients is slightly more pronounced.
This result is shown in Figure 5. As the temperature increases, the gh coefficients
decrease gradually. The gh values of the composites at 50°C are approximately one
dB less than those at 0°C. When compared with the temperature dependence of

80 -I I PTISTYCAST I PTISPURR

70

00 0 0 0 0 0

z 60 -40
E

= Z
>E 5 0 DO 0] 0 E) Cnr-3 5

"CD 40" 30 ••• •3, 0 0 0 0 2./0

30* lm * . -25

1 1 20
0 5 10 15 20

PRESSURE (MPa)

FIGURE 3 Pressure dependence of the d, and g, coefficients of 1-3 composites.
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FIGURE 4 Temperature dependence of the d, coefficients of 1-3 composites in comparison with those
of solid lead titanate (PT) and PZT5 ceramics.

the gh for solid lead titanate, the slopes in this plot are approximately the same.
One may therefore conclude that the reduction in gh is mainly due to the increase
in the permittivity E of the sample with temperature. While the dh values are stable
with temperature, a slight increase in E leads to the gradual reduction of gh with
increasing temperature because of the relationship g = (dl/,).

It is also noted from Figure 5 that the gh coefficients increase with an increase
in the ceramic volume fraction from 20 to 30%. This result is different from the
prediction of an early calculation,' 0 which suggested that the gh coefficients of the
PT/epoxy 1-3 composite would show a maximum value at about 8% ceramic loading.
This additional discrepancy indicates that there is a need to improve the predictive
capability of the simple parallel-series connectivity model. Nevertheless, the g;
coefficients are seen to have been increased by a factor of 2 or greater in the
composite samples, when compared with that of the pure lead titanate. For con-
ventional PZT5 ceramics, the gh values are typically in the range of 2 to 3 mV-
m/N, as is also shown in Figure 5. Thus, the improvement obtained in the PT/
epoxy 1-3 composites is even more impressive in comparison. Since the hydrostatic
sensitivity of a hydrophone is equal to the product of g, and the thickness of the
sensing element, the 1-3 composite provides a viable means to the design of sensitive
new transducers for passive detection.

Experimental results presented in both Figures 4 and 5 show that the use of a
stiffer epoxy leads to higher dh and gh, values in the 1-3 composites. Table I also
summarizes the measured data for a number of composite samples containing
different epoxies. The selection of the Stycast and Spurr epoxies was based on their
elastic properties for resins cured at 70°C. It was therefore considered instructive
to examine if that was the optimum cure condition for either resin. Pure polymer
samples were prepared and their dynamic mechanical properties characterized by



74 R. Y. TING, A. A. SHAULOV and W. A. SMITH

80

PT III s

so 20X PT/S'YCAS'I

E

30 - P••T

20 -

10-

PZT5

0 10 20 30 40 50
nUPERA7URE (-C)

FIGURE 5 Temperature dependence of the g, coefficients of 1-3 coefficients in comparison with those
of solid lead titanate (PT) and PZT5 ceramics.

using a Polymer Laboratory's Dynamic Mechanical and Thermal Analyzer (DMTA).
Dynamic Young's modulus and loss tangent were measured at 1 Hz as a function
of temperature. The sample was heated at a heating rate of 4VC per minute over
the temperature range of 0 to 150°C for the experiment. When cured at 70°C
overnight as one would have cured a polymer-filled composite sample, the result
of a DMTA scan for the Stycast sample showed a glass transition temperature of
about 62°C, as indicated by the peak position of the loss tangent curve labelled
"1" for Run 1 in Figure 6. This low glass transition temperature indicated that the
polymer was not fully cured. When the sample was scanned in the DMTA for a
second run, the heating cycle in the instrument alone caused the glass transition
temperature to increase to about 82°C. At the same time, the peak value of me-
chanical loss tangent has decreased from 1.04 to 0.62. These are clear indications
that additional cure has taken place in the polymer. This glass transition temper-
ature continued to increase until about 95*C after the fourth run, as shown in Figure
6. During these repeated scans, the dynamic Young's modulus of the Stycast pol-
ymer at the temperature corresponding to the loss peak location increased from
63.1 to 158.5 MPa. On the other hand, the 70*C overnight cure was sufficient for
the Spurr polymer, because such a cured sample gave a glass transition temperature
of 70*C, which remained unchanged in repeated DMTA scans. This fully cured
Spurr epoxy sample had a dynamic Young's modulus of only 11.2 MPa at 70°C.
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TABLE I

Dielectric and piezoelectric properties of 1-3 lead titanate composites at I kHz

Epoxy Ceramic D d3 3  dh gh

T

Stycast 29.4 54 1.1 49 31 66

* 20.7 43 1.7 44 23 72

19.0 40 1.1 47 20 56

12.1 27 1.4 36 13 50

Spurr 26.4 53 1.6 59 25 52

* 18.2 34 1.4 50 18 52

* 15.6 31 1.2 44 16 59

* Dielectric dissipation.

0 Measured at 100 Hs.

2-0

1.6

1.2

0.8

0.4

0.0
0 50 100 150

FIGURE 6 Dynamic mechanical loss tangent of the Stycast polymer measured at 1 Hz as a function
of temperature under repeated runs at a heating rate of 4°C/min.

The result of this cure study suggests that the stiffer Stycast epoxy is a higher
temperature resin, and an improved cure cycle for the PTlStycast 1-3 composite
samples may further stiffen the polymer phase. As a result, this modification may
possibly further improve the composite piezoelectric properties, according to the

S9i 1
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FIGURE 7 Free-field voltage sensitivity of a 1-3 composite hydrophone.

data given in Figures 4 and 5. Further studies on the design of the polymer phase
for optimized 1-3 composite performance are warranted.

A prototype hydrophone was fabricated as described above by using one of the
PT/Stycast 1-3 composite samples, which had a ceramic volume fraction of ap-
proximately 17%. The hydrophone was calibrated in 29°C water for its free-field
voltage sensitivity over the frequency range of 100 Hz to 100 kHz at a water depth
of 4 m. The calibration result is shown in Figure 7. At the end of a 0.3-m cable,
a constant sensitivity of about - 201 dB re 1 V/RPa was measured from 100 Hz to
6 kHz, a response ideal for broadband acoustic detection. At higher frequencies.
different modes of the motion of the base plate began to interfere with the acoustic
response of the sensor, but on the average a 4 to 5 dB increase in sensitivity seemed
to be present. To take advantage of his high frequency behavior, a different hy-
drophone design will be required for the 1-3 piezocomposites.

CONCLUSION

New 1-3 piezocomposites of lead titanate and epoxy were experimentally investi-
gated to show their stable dh and gh properties with pressure up to 20 MPa. While
the d4 coefficient was found to be stable with temperature, the g, coefficient
decreased slightly with temperature, which was believed to be related to the tem-
perature behavior of the permittivity of the ceramic. A comparison of the exper-
imental result with calculations from a simple parallel-series connectivity model
indicated the need to improve the predictive capability for the performance of 1-
3 composites. The role of the polymer phase was examined to show the benefit of
using a stiff matrix. The result from a preliminary hydroacoustic evaluation suggests
that the 1-3 piezocomposites represent a class of promising new materials for
underwater acoustic applications.
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