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ABSTRACT

In this paper we present a class of multiresolution algorithms for fast application of
structured dense matrices to arbitrary vectors, which includes the fast wavelet transform
of Beylkin, Coifmman and Rokhlin and the multilevel matrix multiplication of Brandt and
Lubrecht. In designing these algorithms we first apply data compression techniques to the
matrix and then show how to compute the desired matrix-vector multiplication from the
compressed form of the matrix. In describing this class we pay special attention to an
algorithm which is based on discretization by cell-averages as it seems to be suitable for

discretization of integral transforms with integrably singular kernels.

IThis research was supported by the National Aeronautics and Space Administration under NASA Con-
tract Nos. NAS1-18605 and NAS1-19480 while the author was in residence at the Institute for Computer
Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681-0001.
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1. Introduction.

In this paper we present a class of multiresolution algorithms for rapid application
of dense matrices to vectors. A direct application of an arbitrary N x N dense matrix
to a vector requires N2 operations. However, when the matrix-vector multiplication

stems from a discretization of an integral transform

(L1) u@) = [ [Kauned,

where the kernel K(z,y) is smooth except possibly along curves, this product can

be performed to any prescribed accuracy with only O(N) operations.

In 1] Beylkin, Coifman and Rokhlin (BCR) present a wavelet based algorithm
(referred to as the “nonstandard form”), in which the matrix-vector multiplication
is performed by successive contributions from different scales. It starts with an
initial blurred (low resolution) output vector for u in (1.1), which is then upgraded
successively to higher and higher resolution, in much the same way as the pyramid

scheme in image comrpession.

In [2] Brandt and Lubrecht (BL) describe a multilevel matrix-vector multiplica-
tion which is viewed as performing part of the integration in (1.1) on coarser grids.
This is possible wherever the local smoothness of the kernel K(z,y) enables the re-
placement of its fine grid values by sufficiently accurate interpolation from coarser

grids.

In [7] we have presented a class of multiresolution algorithms for data compres-
sion. In the present paper we apply these data compression algorithms to matrices
as a tensor product of one-dimensional oeprators to obtain a multiresolution rep-
resentation of the matrix. Using this representation we derive a class of O(N)
matrix-vector multiplication algorithms, which includes the BCR algorithm [1] and
the BL algorithm [2] as particular cases. In describing this class we also pay special
attention to the algorithm which is based on discretization by cell-averages, because

it seems to be particularly suitable to kernels with integrable singularity.
2. Discretization and Reconstruction.

In this section we describe a class of discretizations of a function and the approxi-

inate inverse of these discretizations, namely the approximate recovery of a function
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from its given discrete values; we refer to the process of recovery as reconstruction.

Let {z}}, 27 = j-h° be a partition of the real line into uniform intervals {I;}, I; =
[29_,,2)], of size ho. Let y(z) be a function which is concentrated around z = 0

and satisfies
(2.1a) /gp(z)da: =1,

and define its scaled translates

(2.1b) i@ = e (5 7).
Given a function f(z) we discretize it by
(2.2) 77 =6t = [ f@)(e)iz.

Next let us introduce an approximate recovery of the function f(z) from its given
values f° = {fJ} which we refer to as reconstruction and denote by R(z; f°). We

say that the reconstruction is r-th order accurate if
(2.32) R(z; f°) = f(z) + O((ho)"), (accuracy)

provided that f(z) is sufficiently smooth. We assume that the reconstruction is

conservative in the sense that

(2.3b) (R(+; ), <pg-) = f;’ (conservation).

Unlike the setup in [7], where the goal is to obtain maximal data compression, in
the present application to matrix-vector multiplication we want minimal number of
operations. Therefore we assume that R(-; f°) is a linear functional of f° and that

¢(z) satisfies a dilation equation
(2.4a) p(z) =2 arp(2z - 0),
¢
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where the coefficients {a,} satisfy

(2.4b) Y a=1
(2.4¢) Z aroei2m =0 for m #0.

We note that relation (2.4b) is just a consistency condition. Given a set of {a¢}, Y- ar =
1, it is shown in [4] and [8] that ¢(z) is determined by the dilation equation (2.4a)
up to a multiplicative constant. Hence ¢(z) is determined uniquely by adding the
normalization (2.1a) to (2.4a)-(2.4b). In Appendix A we show that condition (2.4c)
implies orthogonality of some matrices and thus reduces the number of operations
in our algorithm. In order for the set of functions {%(z)} to be orthogonal we have

to add another consistency relation (see [8])

2 1
(2.5a) Y o} = >
in which case

2
(2.5b) (@l 5) = %6@1

where §; ; is the Kronecker-6; i.e. 6;; =1, 8;; = 0 for i # j.
In this paper we highlight the following three cases:

Case 1. Pointvalues.

(2.6a) ¢(z) = 6§(z)

where §(z) is Dirac’s distribution. As pointed out by Strang [8] it satisfies the

dilation equation

(2.6b) §(z) = 26(2z)
and thus
(2.6¢) ag=1, ag=0"for £ #0.
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Note that the coefficients (2.6c) trivially satisfy the orthogonality relation (2.4c).

However
Z a? =1
and thus (2.5) is not valid in this case.

The discretization (2.2) becomes
o Z )% g
(270) 7= [ 1006 (5 -3) 2 = £,

1.e. the function f(z) is discretized by taking its value at the grid points {z3}. The

conservation property (2.3b) becomes
-
(2.70) R(z3; f°) = f}
i.e. the reconstruction is an interpolation of the values { f7} at the grid points {=3}.

Case 2. Cell-averages.

1 -1<z2<0

(2.8q) p(z) = X[—I.O)(x) = {

0 otherwise,

satisfies the dilation equation

(2.8b) w(z) = p(22) + ¢(2z + 1)
and thus
1
(28C) Qo =Q-.1 = -2-, Qe = 0 for ¢ # '—1,0.

The discretization of f(z) in (2.2) becomes

0

(2.92) 7= [ 1@ (hi ‘]) Ee / f(e)dz,




i.e. f(z) is discretized by taking f,‘-’ to be its average in the interval I?. The

conservation requirement (2.3b) becomes
1 (%

(2.9b) — / R(z; f)dz = f.
ho 2,

Let us denote by F(z)

(210a) F@) = [ fo,
0
the primitive function of f(z)

(2.10b) %F(:c) = f(z)

and observe that

J
(2.10¢) F@})=ho Y f.

i=1
It is easy to see that

) d 0
(2.11) R(z; f7) = - 1(z; F7),
dz

where I(z; F°) is any interpolation of the values F} = F(z?) (2.10c), satisfies

the conservation requirement (2.9b). This reconstruction procedure is r-th order

accurate (2.3a) if the interpolation technique in (2.11) satisfies
d 0 d r r
(2.12) 1@ F7) = —F(z) + O((ho)") = f(2) + O((ha)")

for sufficiently smooth f(z).
Case 3. Orthogonal Wavelets.

Let ¢(z) be a function which is determined by the dilation equation (2.4a), with
coefficients that satisfy (2.4b)-(2.4c) and (2.5a). Thus we assume orthogonality of
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the set {¢?%} (2.5b). In the context of this paper it is most natural to describe
wavelets by first specifying the reconstruction to be a linear combination of {<p‘}},

(2.13a) Rz f°) = 3 aivi()

and to leave the discretization (2.2) to be determined later. The conservation re-

quirement (2.3b) becomes

(2.13b) (R(5 /%), #3) =D ailed,0}) = f.

]
Using the orthogonality (2.5b) we get

)

C a; = —= _0
(2.13¢c) Tol?
Thus
(2.14) Riz; ) = -2

R

Using the theory of approximation by translates Strang [8] shows that in order for
the reconstruction (2.14) to be r-th order accurate (2.3a) we have to impose the

following condition on the coefficients {ay},

(2.15) Y (-1)¢may=0 form=0,1,...,r—1.
14

Daubechies [4] showed that in order to satisfy the conditions on {a,} listed so
far, one needs at least 2r nonzero coefficients, and that the set of exactly 2r nonzero
coefficients is unique. For r = 1 this solution is given by (2.8¢c), i.e. ¢(z) is the
box function (2.8a). For r > 2 the resulting ¢(z) is necessarily nonsymmetric;
the smoothness of ¢(z) increases with r, but only by half a derivative (approxi-
mately) each time. Beylkin, Coifman and Rokhlin in [1] impose an additional set

of requirements on {a¢}, namely that there exists an integer 7, so that
(2.16a) /cp(:z:+‘r,)x"‘dx =0 form=1,2,... ,r-1;
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This implies
(2.16b) £} = (f,¢5) = f(z§ + 7ho) + O((ho)"),

which shows that the integration in (2.16b) can be approximated to r-th order
accuracy by a single point quadrature. They show that there is a solution to the

extended set of conditions with 3r nonzero coefficients {a.}.

We remark that for large r, the discretization implied by (2.16b) is close to that
of pointvalues.

3. Multiresolution Algorithms for Data Compression

In this section we consider a situation where we are given Ny values
(3.1a) P = {f?}f;"l, Ny = 2™, ny integer,

which represent a discretization (2.2) of some function f(z) corresponding to a

uniform partition of [0, 1],
(3.1b) 2} =j-ho, 0<j<No, ho=1/N,.

To simplify our presentation we assume for the time being that f(z) is periodic

with period 1, so that values outside [0, 1] are known by periodic extension.

We consider the set of nested grids

(3.2a) (=51, 2t =5 he, hi=1/Ni, Np=27FNy;

j=]'l

for 0 < k < L, where k = 0, the original grid, is the finest in the hierarchy and
k=L, L < ng, is the coarsest. The coarser (k + 1)-th grid is formed form the k-th
grid by removing the grid points {zgj_l}ﬁ__'l; thus

(3.2b) zit! = 15,', 0<j < Nit1, Nig1=N/2

J

To each of the nested grids we associate a discretization

(3.32) =R, fF=heh),
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where cpf is properly scaled

(3.3b) ok(z) = —1—¢ (:k ) .

It follows from the dilation relation (2.4a) that

(3.3¢c) pi(z) = Zat¢2,+¢(z),

and consequently

(3.3d) ;= Za,f e = ae2iff ' 1<j< Na.
¢

We rewrite (3.3d) in the matrix form

(34) fk = Hf-k-—l3Hij = Qj-24, HN; X 2N+

Given f° we use (3.4) to successively compute f!,..., fL. Observe that these
values are not computed from the definition (3.3a) but from the dilation relation

(3.3d); thus no explicit knowledge of f(z) is required.

Given f* we can use the reconstruction R(z; f*) in order to get an approximation
f*=1 to the discrete values f¥~! of the finer level by

(3.52) 770 = (R )05, 1<5 < 2Nk = Niy.

As we have mentioned earlier, in this paper we take R(-; f) to be a linear functional

of f. Hence (3.5a) can be epxressed in the matrix form
(3.5b) f*1 = Ryf*

where R is an 2N x N matrix. Because of (3.3c) and the conservation property

of the reconstruction (2.3b) we get that

z Ollfz,-u = Z ae(R(:; f*), 2]+l)

(3.6 ) _ _
: RGP S ezl = (RGf) = 1




or in matrix form

(3.6b) Hf*! = f*

It follows then from (3.5b) and (3.6b) that for any vector f*
F* = Hf*-' = HRf*,

which shows that

(3.7a) HR =1,
and consequently
(3.7b) H(I-RH)=H-(HR)H=H-H =0.

We turn now to examine the error e¥~! in the prediction f¥~! (3.5)
(3.82) ek=1 = fk=1 _ jk=1 _ Fk=1 _ RF* _ (] _ RH)f*-1.
(From (3.7b) it follows that
(3.8b) HeF ' =0,

which shows that only Ni out of the 2N; components of e*~! are indzpendent

quantities. In order to get rid of this redundancy in e*~! we introduce the Ni x 2N,
matrix G
(3.9a) Gi; = ("l)j+1026—1—ja (G)Nyx2N,

which satisfies

(3.9b) HG®

I
g



In Appendix A we show that it follows from the orthogonality condition (2.4c) that

(3.10a) HH* =GG* =|al* 1,
(3.10b) H*H+G*'G=|a]? I,
(3.10¢) laf* = )" of.

¢

Using (3.10b) and (3.8b) we now get that

- 1 ] - - 1 * - 1 »
(3.11a) et = W(H H+G*G)eF' = WG (Ge* 1) = WG d*,
where
(3.11b) d* = Ge*?

is a vector of Ny components. Combining (3.11) with (3.8a) we get

(3.12) fel=fol L ekt = RfF 4 l—&ll—,G‘d",

which is the basis for the following data compression algorithm:

Given a sequence of Ny numbers u = {u;} %, we set
(3133.) f_D =u

and execute
( Dofork=1,2,...,L
fk = Hf-'k-—l

(3.13b) < _ _
ek=1 = f*-1 _ Rk

| d* = Get!

MR of

thus arriving 1t the multiresolution representation u u

(3.13¢) uMR = {fL (d%,...,d")}.
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Starting from the multiresolution representation we recover u by (3.12), i.e.

Dofork=L,L-1,...,1
(3.13d) Fk—1 _ pFk 4 1 o gk

! =Rf +];|1G d*,
(3.13¢) u=f°.

The number of quantities in the multiresolution representation u™® (3.13c) is
Ny as in the original vector u (3.13a). The difference is that the quantities {d*}
are expected to be small in absolute value wherever the underlying function f(z)
is adequately resolved on the k-th grid. Thus data compression can be achieved by
setting to zero elements of d* which fall below some tolerance x. See [7] for more

details.

In Appendix A we present the form of the data compression algorithm (3.13)

when we do not assume the orthoginality condition (2.4c).

In the following we present the details for the three cases that we highlight in
this paper.
Case 1. Pointvalues.

R(z; f*¥) is the interpolation (2.7b). For reasons of symmetry we consider even
order of accuracy r = 2s and take R(z; f*) in [:1:;5_1 , 1‘"; ] to be the unique polynomial

of degree (2s—1) that interpolates f* at the gridpoints {zf_ ..o, 25,1} In(3.5)
we get for 1 <1 < Ni

(3.14a) i ' = (Rf*)2i = f}
(3.i4b) 5L = (Rf*)aica = liﬂl(fiﬂ-l—l + fie)
=1
where
r=2=p8 = -;-
3.14c) r=4=>p =%, bh=-%
r=6=p =18 6=38 8=



In (3.4) and (3.9a) we get
(3.15) Hij = 62i,5, Gij = b2i1,5-

The multiresolution representation (3.13c) is obtained by:

Set

(3.16a) ff=u

Dofor k=1,2,...,L
(3.16b) fF=f1 1<i< Ny,

df = f30) - Y= ﬂl(f;-;-t-—x + fEo), 1<i< Ng.

u is recovered from the multiresolution representation uM® by

Dofork=L,L-1,...,1
(3.16¢) fAl=fk 1<i< Ny
= == ﬂl(f.+t-1+f—z)+d 1<i < Ny,

(3.164) u=f°

Case 2. Cell-averages.

Using interpolation of order (2s + 2) as above for the primitive function in (2.11)

we obtain a reconstruction of order r =2s + 1. In (3.5) we get for 1 <: < N;

(3.17a) * ) = (Rf*)gim1 = fF + 2f

(3.17b) 2.- = (Rf*)i = fi-zf

where

(3.17¢) 2= ve(five—Flo)
=1

and

r=3=>v= —‘g'
(3.17d) )




note that z¥ = 0 for r = 1.

In (3.4) and (3.9a) we get

1 1
(3.18) H;j = 5(52:',;‘ + 62i-1,5), Gij = 5(5%—1,1 = 62i,5)-

The multiresolution representation (3.15¢) is obtained by:

Set
(3.198.) fo =Uu
Do for k=1,2,...,L
(3.19b) fF ( i+, 1SiS N

dk = 2: 1 f.~ - E;=1 ‘71(f.-'5u _fik-t)v 1<i< N,
u is recovered from the multiresolution representation u™ % (3.13c) by
( Dofork=L,L-1,...,1
Do fori=1,2,... ,N;

(3.19¢)
A= E::l 7‘(fik+l :—t) + dk
| Bi=FF+4, 7 =f-4
(3.19d) u=f°.

Case 3. Orthogonal Wavelets
The reconstruction (2.14) for the k-th level is
(3.20a) R f*) = ook J‘;f," oh(a),
and (3.5) becomes
fE1 = (RF) = (R(5 ), 087T) = " o ;f*w,,w* ).
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Using (3.3c) and (2.5b) we get that

k- k— k-
<‘Pf’ Pi l) = Za‘l(‘sz.:n Pi !
4

Recalling that hy = 2hi_; we get

(3.20b)

_ llel?

R=2H".

aj_2; =
hi-1

lell? ;e
b H;;.

Using (3.10) with (2.5a) to express the error in (3.8a) we get that

(3.21a) e*!'= (I - RH)f*' = (I -2H*H)f*! =2G*Gf*! = 2G*d*

(3.21b)

dt = Gf*.

The coefficients {v/2-a;}, 1 < £ < 2r of Daubechies [4] are given in the following ta-

ble: Table 1.
r=2 r=3 r=4 r=25 r==6

V2a; 482962913145  .332670552950  .230377813309  .160102397974  .111540743350
V2a; .836516303738  .806891509311  .714856570553  .603829269797  .494623890398
V2as .224143868042  .459877502118  .630880767930  .724308528438  .751133908021
V2as -.129409522551 -.135011020010 -.027983769417  .138428145901  .315250351709
V2as -.085441273882 -.187034811719 -.242204887066 -.226264693965
V2ag 035226291882  .030841381836 -.032244869585 -.129766867567
V2asy .032883011667  .077571493840  .097501605587
V2as -.010597401785 -.006241490213  .027522865530
V2aq -.012580751999  -.031582039318
V2ayo .003335725285  .000553842201
V2ai, 004777257511
V2ai, -.001077301085

The multiresolution representation (3.15¢) is obtained by:
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Set
(3.22a) P=u

[ Dofor k=1,2,...,L
Dofor:=1,2,...,N;
ff= 23;1 alfzki?t

\ d? = 23;1(_1)1"!;:.'_—11—:

(3.22b)

u is recovered from the multiresolution representation uM?® by:
( Dofor k=L,L-1,...,1
Do for:=1,2,... ,N;

(3.22¢) . . _
2i—1 =2 21:1 [a2t-lf.'k-t + a2ld§+z]
\ —2ki—l = 22;=1[a2lf:‘k—l - O‘Zl—lda[],
(322C) u= fO

4. Matrix-vector multiplication.

In this section we describe a multiresolution algorithm for the multiplication of
an Ny-vector b by an Ny x Np matrix A, which is based on the data compression

of A; we denote the result of this product by the Ny-vector c,

(4.1) Ab=c.

We start by presenting a tensor-product extension of the one-dimensional data
compression algorithm (3.13) to the matrix case, in which each column and row of

the matrix are treated as one-dimensional vectors. Let us set
(4.2a) A’ =4
and define the N; x N matrix A* by

(4.2b) A =HA*'H* k=1,...,L,

15




where H is the Ni x 2N; matrix defined by (3.4).
Given A* we form the prediction A*~? by
(4.3a) A¥' = RA*R*,

where R is the 2N} x N matrix in (3.5). It follows from (4.2b) and (3.7a) that the

error in this prediction E*¥-1,

(4.3b) E*1 = k-1 _ g*-1 = gF-1 _ RARR*

satisfies

(4.3¢) HE*'H* = HA*'H* — (HR)A*(HR)* = A* - A* = 0.

Consequently, using (3.10b) and (4.3¢c) we get

E*1'= —(H'"H + G*G)E*"'(H*H + G*G)
| I4

" faff

where the Ny x N matrices {D" }3., denote

(4.4a)
(G‘D"G + GDiH + H*DG),

(4.4b) D} = GE*'G*, D} = GE*'H*, D} = HE*"'G".

Thus
Ak—l = jk—l +Ek—-l

= RA*R* + W[G‘(D"G + DiH) + H* DXG),

and we get the following data compression algorithm for the Ny x Ny matrix A:

(4.5)

Set
(4.6a) A’ =4
( Do for k=1,2,...,L
A* = HA-1
(4.6b) {

Ek—l - ‘jik—l _RAth
| Df = GE*-'G*, D} = GE*-'H*, D} = HE*-1G~.
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The multiresolution representation AMR of 4 is
(4.78.) AMR = {AL’({DIL ?:l, AR | {D: ?:l)}'

It is convenient to store AME in the form

1 1
D1 Dz
MR _
(4.7b) AME = No
D} D
1
D3
2
D
: o} ok
Dk [AL| {
-—— Ny —

which also shows that the number of elements in AMR is (Ny)?, as in the original

matrix A = A°.

Starting from the multiresolution representation AM® (4.7), we recover the orig-
inal matrix A by (4.5), i.e.

Dofork=L,L-1,...,1
(4.8a) _ _

A*~1 = RA*R* + Jz(G*(D{G + DiH) + H* D}G),
(4.8Db) A= A"

The elements of {D¥}3_, are proportional to the local error in predicting A*~?
from the k-th level of resolution (4.3b). Therefore these elements are small wherever

the discretized function is properly resolved on the k-th grid. Data compression can
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be achieved by setting to zero elements of {D¥}3_, which are smaller in absolute

value than some tolerance ¢g.

In Figures la,b and 2a,b we show results of data compression of two matrices
which are the first two examples in the BCR paper [1]. In Figures 1a,b we show

the multiresolution representation AM® (4.7b) of the matrix

A i#j
(4.9) Aij =
0 i=j

with Ny = 512. The discretization in this calculation is assumed to be by pointval-
ues, i.e. H and G are (3.15) and the reconstruction is by interpolation. We take R
to be (3.14) with r = 6. Entries of {D¥}3_, which are larger in absolute value than
ex = 10”7 are marked in black. The calculations in Figures la and 1b differ in the
treatment of boundaries: In Figure la we use periodic boundary conditions while
in Figure 1b we use one-sided interpolation near the boundaries. The compression
rate (ratio between (Np)? to the number of entries that are larger in absolute value
than 1077) is 6.72 for the periodic case in Fig. la and 8.57 for the one-sided in-
terpolation at boundaries in Fig. 1b; the compression rate for the wavelet based
algorithm in [1] is 7.33.

In Figures 2a,b we repeat the calculations of Figures 1a,b for the matrix

=3

(4.10)

otherwise.

{ o li=Ro = oa U=Polll for i # j,i # No/2,j # No/2
Aij =

Here the compression rates are 6.11 in Fig. 2a and 7.60 for Fig. 2b; the correspond-
ing BCR result is 7.50.

We remark that the “BCR results” above are quoted from [1] in which a different
normalization in (3.3) is used. These results show that the BCR compression rates

are of the same order as the ones in Figures 1 and 2.

We turn now to describe how to compute the product Ab = ¢ (4.1) from the
multiresolution representation AMR (4.7b) of A. Multiplying (4.5) by a vector b*~!
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of Ni_, components we get

Ak—lbk—l = R‘ik Rtbk-l + —
(4.11a) ( ) |or[4

+ H*D5(Gv* )},

(G [DH(GH ) + Dy(HE)]

from which we see that if for all £ we define

(4.11b) b* = R*p*!
(4.11c) ck = AkpF,

then (4.11a) becomes

(4.12) ¢k = Rk +|—F{G'[D"(Gb" 1y 4+ DE(HB')] + H* DX (Gb*—1)).

It follows therefore that given the (compressed) multiresolution representation AMR
(4.7b) of A we can calculate ¢ = Ab by:

Set
(4.13a) b =b,
Do for k=1,2,...,L
4.13b) sk = A HY L ¢k = 1o GhEY
ap P

b* = R*p*-!

evaluate by direct multiplication
(4.13¢) el = ALpt,
and execute

Dofork=L,L-1,...,1
(4.13d)

= Re* + [15(G*(D}* + D}s*) + H*(Dkt)],
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(4.13¢) c=c.

Relation (4.11b) can be thought of as stating the proper scaling of the input
vector as we go to a coarser grid. After preparing the values of b* for all the levels
(4.13b), we start the computation of ¢ = Ab by calculating its lowest resolution
versior: ¢¥ = ALbL in (4.13c). Then we proceed in (4.13d) to successively upgrade
c* by first using the reconstruction technique to predict tie value ¥~ = Rc* for
the finer grid and then correct this prediction wherever needed by the term in the
curved brackets in the RHS of (4.12).

k

If the number of elemen.s in {D;

13-, that are larger in absolute value than the
tolerance ¢x is O(Ny), and the matrices H,G and R are banded (with constant
width), then the number of operations for each k in (4.13b) and (4.13d) is O(Ni),
and consequently the number of operations in the multiplication algorithm (4.13)
is O(Ny).

It is important to observe that due to the tensor-product nature of this algorithm,
the operations on the rows are independent of the operations on the columns. This
enables us to use H;,G, and R, on the left and different Hy,Gy and Ry on the
right. Modifying the relations (4.2b), (4.3b) and (4.4b) to be

(4.2b)’ A* = H A*'H;,
(43b)’ Ek—l = Ak—l - szikR;a

[ -_ » k— . _ - .
(4.4b) D} = G.E*'G}, D} = G.E*"'H;, D§ = H.E*"'G},

we now get the following multiplication algorithm:
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Set

(4.13a) b0 = b,

Dofor k=1,2,... ,L

(4.13b) st = JpHyb 1, = e Gy bk,
k _ pepk-

b* = Ryb 1
(4.13¢)’ el = ALy,

Dofork=L,L-1,...,1
(4.134)

=1 = Rock + (15 (G2(DYek + DEs*) + HI(D5t),
(4.13e) c=c".

This extra freedom in algorithm (4.13)' can be utilized for example to discretize

the integral transform (1.1) by pointvalues in z and cell-averages in y.
Next we present details for the three cases that we highlight in this paper.
Case 1. Pointvalues.

It follows form the definitions of H and G in (3.15) that (4.2b) and (4.3b) become
(4142) A%, = 4505, 1<4,j <N,
(4-14b) (Df)i,j = E:i——ll,’lj-l’ (Df)i,j = E;i_—llﬂj’ (D:’f)i,j = E’f{,_zljv

lﬁi,jSNk-

Using the definition (3.14) of R in (4.13b) we get

8
b = (R*B*1) = 0571 + D Be(bsihey—r +¥5iin-1), 1S i S Ny
£=1

Algorithm (4.13) can be expressed in this case by:
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Set
(4.15a) ¥ =b

Dofor k=1,2,...,L
(4.15b) sk=0b571 th =0k 1<i <IN,
bF = s¥ + ooy Beltl + ti_¢), 1<i< Ny,

(4.15¢) el = AL,

( Dofork=L,L-1,...,1
Dofori:=1,2,... ,N;

(4.15d)
2.— Et=1 ﬂt(c.+t .-1) + (thk + D;‘sk),'
{ c;" 1 = c; +(D§t"),~,
(4.15€) c=c’
here r = 2s.

While writing this paper we found out that algorithm (4.15), although derived
differently, had already been published in [2]. Moreover, it was extended further in

[3] to integral transforms with an oscillatory kernel and to many-body problems.
Case 2. Cell-averages.

It is convenient to introduce the operators p and 6,
1 1
(4.16) pU; = E(v.' +vi—1), dv; = E(v.' - vi-1),

and use the convention that, when applied to two-dimensional arrays, superscripts
z and y denote operation on the first and the second index, respectively. It follows

from the definition of H and G in (3.18) that (4.2b) and (4.3b) become

(4.172) A}, =u’#”-‘i§.-'§,-, 1<4,j < Ni,
(4.17b) (D%);; = 676YEX;!, (D%)i; = w6 Ef;", (DY) = p*6VEf",
1<, <N;.
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Using the definition (3.17) of R in (4.13b) we get

(4.18) B¥ = (R*6*1); = 2[ubbt + Zw(ab;(j.;,) — Jbg(j.l,))].
£=1

Algorithm (4.13) can be expressed in this case by:

Set
(4.19a) b =b
Dofork=1,2,...,L
(4.19b) sk =oubtTt th = 260571 1 <i < Ny,
bf = sf + ELI ‘Yl(tf+z - tf_l), 1<i< N,
(4.19¢) et = ALt
( Dofork=L,L-1,...,1
Dofor:=1,2,... ,N;
(4.19b) AR
1 z= Yoy ve(ck — cf_g) — (Dit* + Dis*);
c;‘,-"_ll =w+z
L cgi—l =w-— 2z,
(4.19¢) c=c%
here r = 2s + 1.

Case 3. Orthogonal wavelets.

In this case H and G are defined by (3.4) and (3.9a) and the Daubechies co-
efficients (see Table 1). Since R = 2H* (3.20b) and HG* = 0 (3.9b) we get in
(4.4b)

4.20 DY = GA*'G*, D} = GA*'H*, D¥ = HA*'G*;
1 2 3
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thus for 1 <i,57 < Ny

2r 2r
(4'213) E Z aam A 2:+l »2)+m?
{=1 m=1
2r 2r _
(4.21b) (D)is =D D (-1 ™aeomAz g 1m:
£=1 m=1
2r 2r _
(421¢) (D3)ii =Y _(~Vfar Y amAyT _ppjim:
=1 m=1
2r 2r _
(4.21d) (D3)ii = Y_(-D)™am Y tdfisi1om:
m=1 =1

Using R = 2H™* in (4.13b) we get that
(4.22) b* = 2HBF1, sk = bk,
Algorithm (4.13) can be expressed in this case by:
Set
(4.23a) b° = b,
( Dofor k=1,2,...,L
Do fori=1,2,... ,N;

WS 22:—1 alb2x+[
' = 221—-1( l)lalbgi_—ll—l’

(4.23c) L = ALbE,

(4.23b) ¢

( Dofor k=L,L-1,...,1

Dofori=1,2,...,N;

czich = 2 gy {oaemalch g + (D5t)izd] + a2e( DE* + DEBF);4 ),
ez = 2 go {aaelel o + (D5t*)ize] — cne-1(Dft* + DEb*)ise},

(4.23d) ¢

(4.23¢) c=c".
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Algorithm (4.23) is identical to the BCR algorithm (the “nonstandard form”) in
[1}.
5. Stability and Efficiency.

In this section we examine the stability of the data compression algorithm (4.6)-

(4.8) and discuss the efficiency of the matrix-vector multiplication algorithm (4.13).

From (4.3b) we get

A° = E°+ RA'R* = E° + RE'R" + R?A*(R?)* = ---
(5.1) A~ S L
= E°+ Y R*E*(R*)* + RLAL(RLY".

k=1

Applying data compression to AMR (4.7) we get truncated matrices E* which result
in A® in (5.1). Denoting

(5.2a) & =E* - E*
we thus get
. L-1
(5.2b) A'— A =£°+ ) ReM(R*Y,
k=1

which shows that each column and row in £ are amplified by R*. For discretization
in [0,1] R* in (5.1)-(5.2) should be interpreted as

(5.3a) RE=R,-R,---Rsi

where Ry, is the 2N, x N,, matrix in (3.5); for discretization in (—o0,00) R is an

infinite matrix and R* should be interpreted as the k-th power of R, i.e.

(5.3b) R* = (R).

Let e denote the unit sequence corresponding to a partition of the real line into

intervals of size 1 with integer endpoints,

€ = 6[,0, -0 < f< oo,
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and consider successive applications R*¥e, k — oco. For example when R is the

piecewise linear interpolation (3.14) with r = 2 we get

Table 2.
r=-1 z=0 z=1
e 0 1 0
Re 0 i 1 : 0 0
R¢ 0 o 1 2 2 1 3 2 1L 9 o0 o0
Pe 0003 3348831388438 400000
Clearly here
(5.4a) (R*e); = n(27%5),
1-|z| [z]<1
(5.4b) n(z) =
0 otherwise

We observe that n(z), the “hat function”, is the solution of the dilation equation
(5.4c) n(z) =4n(2z — 1) + n(22)+4n(2z +1), -

the coefficients of which are given by a; = (Re),.

The limiting process R*e, k — oo, has been studied by Deslauriers and Duboc
[5] and Dyn, Gregory and Levin [6] for interpolating R, and by Daubechies [4] for
orthonormal wavelets, R = 2H"* (3.20b). As in the example above they found that

the limiting process is convergent in the sense that

o0

(5.52) Jim 3" (R*e);jAp0,1)(2"z — §) = n(a),
j=-o00

where X[g,1) is the characteristic function of [0,1) and the convergence is uniform

in z. The limit n(z) is a continuous function of compact support which satisfies the
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dilation equation

(5.5b) n(z) =) amz—£), ar=(Re),
14

and

(5.5¢) ;7% = (n,28p(2% - —j)) = (R*e);.

Since n(z) is continuous and of compact support it follows from (5.5a) that

(5.6a) supx {27F Z |(R*e);]} < const, sup; k|(R*e);] < const.

j=—o0
Consequently we get for the matrix norms

(5.6b) IR |loo < Cooy |IRF|x <2*-C1.

We return now to the stability analysis (5.2) of the data compression algorithm.
Setting to zero elements of D¥ (4.7) which fall below the tolerance ¢; we get

(5.7a) |£,~"j| < const - £x41,

(5.7b) IEXN, < C - Ni-€k41, p=1,00.
For each term in (5.2b) we now get for both the L; and Lo, norms that

(5.82) JR*E(REY|| < IR llooll R*l1 - €+ Ni - ex41 < €CooCy - No - €41
=C-Nyp- €k+1,

and consequently

L
1 " -
(580) I -AY<C-Y e
k=1

this shows the stability of the data compression algorithm.

In the numerical experiments shown in Figures la,b and 2a,b for the matrices
(4.9) and (4.10) we have used ex = € = 10~" (here ho = 1) and computed
(5.9) Pp(e) = I(A° — A)bllp/Ibllp, p=1,00
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for a randomly generated vector b; for purposes of comparison we also computed

7(0) which corresponds to running the program with € = 0 and thus shows the

effect of round-off error. In Table 3 we show the results for the case where R is the

interpolation (3.14) with r = 6.

Table 3.
case |boundary | ratiof £,(1077) Poo(1077) 1(0) Voc (0)
(4.9) periodic 6.72 [ 6.95x107°% | 4.96 x 10~° 1.09 x 1077 1.33 x 1077
one-sided | 8.57 | 7.52x107% | 4.41x107° 9.34 x 1077 2.77 x 107°
(4.10) periodic 6.11 [| 1.62 x107¢ | 1.82x 10~° 4.76 x 1078 9.15 x 1078
one-sided | 7.60 § 1.46 x 107® | 2.04 x 107° 6.46 x 10~7 8.64 x 10~°

It seems to us that the convergence of R¥e to a continuous n(z) stems from the

conservation property HR = I and the accuracy requirement (2.3a) with r > 2.

Therefore we expect the reconstruction from cell-averages (3.17) to also satisfy the

relations (5.5), (5.6). In Appendix B we prove convergence of the limiting process

(5.5a) for reconstruction from cell-averages under the assumption that the corre-

sponding limiting function for the interpolation in (2.11) is continuously differen-

tiable.

In Table 4 we repeat the calculation of Table 3 for the reconstruction from cell-

averages (3.17) with r = 5.
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Table 4.

case |{boundary | ratio] ©;(1077) Doo(1077) 71(0) (1))

(4.9) periodic 5.71 ] 6.03x10~7 | 7.83x 1077 5.66 x 107 | 4.39 x 1077
one-sided | 6.71 | 1.03x10"¢ | 155x10°% | 9.87x107 | 9.52 x 1077

(4.10) periodic 6.29 | 4.00x10™7 | 597 x 1077 3.50 x 1077 3.06 x 1077
one-sided | 7.53 | 2.76 x 10~7 | 6.09x10~7 | 1.73x10"7 | 3.06 x 1077

We turn now to discuss the question of efficiency. If a(z,y) is a function that has
isolated regions of large variation then its discretization on a uniform grid results in
a matrix A which is actually over-resolved in most of the computational domain. In
this case it pays to use multiresolution algorithms as they offer the efficiency of an
adaptive grid method without the complicated logics that is associated with such a
calculation. In applying multiresolution algorithms to matrix-vector multiplication
there is another important consideration: The computational effort of preparing the
representation AM® (4.7) may be greater than a direct application of the matrix
A to a single input vector b. Therefore it makes sense to use algorithm (4.13) only
when the computational task calls for an application of the same matrix to many
input vectors and/or there is apriori knowledge of the location of regions of large

variation.

An important class of applications is the calculation of integral transforms (1.1)

(5.10) u(a:):/o K(z,y)v(y)dy,

where the kernel K(z,y) is smooth except for curves y,(z) at which it has integrable

singularity. To each grid of size hx we associate a finite-dimensional approximation

K*(z,y) to the kernel K(z,y)

N, N,
(5.11a) K*z,y) =YY Khnk(z)niw),
i=1 y=1
1 1
(5.11b) R = /0 / K(z,y)0" (2)o* (v)dzdy,
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and a finite-dimensional approximation u*(z) to the output u(z)

1 . N, N, _
(512)  uh(z) = / K*z,y)(ndy = 3 (ke 3 REo4)nk(2),
=1 =1

1 !
ko k
G1) ot = [t
Here n(z) is the limiting function in (5.5) and
(5.13a) nk(2) = n(= — o).
4 hk
(From (5.5¢) with k = 0 we get that
(5.13b) [ n(@)ez = i)ds = 6o
and thus by scaling
(5.13¢) (nf,e5) = 6i;.

Using (5.13c) in (5.12a) we get

N
(5.14a) af =h Y _KEob  1<i< Ny,
i=1

(5.14b) af = (u¥, pf).

Applying the data compression algorithm to the matrix K° and setting to zero
elements of {D}} that fall below ¢; we get from (5.8b) that

L
(5.15a) hol|[K* - K| <C Y e
k=1

It follows therefore that

L
(5.15b) 15° — @°|| = fho(K® — K°)3°|| < C (3" en)llo®))-
k=1
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The prediction error Efj‘l (4.3b) can be estimated by
(5.162) IE5 < Cr(h)w;) = Frl(Bha) )]

where

o _IK 9

K
(5.16b) D =151+ 1557 Dis

oy

1f the kernel K(z,y) is such that ng;) at a distance A from the singularity can be
bounded by

r CK
(5.17a) U

then it follows from (5.16) that except for a band of width B around the singularity,
all the elements of E*¥~! satisfy

C.Ck
k— r
(5.17b) E5H < ~—5—
Choosing €x = € in (5.15) and

(5.182) B= (Cf’( X

we get that the number of nonzero elements in the compressed {D¥}3_; (4.7) is

proportional to 2B Ny, and the cumulative error (5.15b) is
(5.18b la® — &%) < C||5°|le log, No.

This error can be made arbitrarily small by taking a wider band B in (5.18a).

Beylkin, Coifman and Rokhlin [1] point out that the estimate (5.17a) is satisfied
by the kernels of Calderon-Zygmund operators and pseudo-differential operators.

In this case, taking into account the actual decay of the prediction error away from
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the singularity to sharpen the estimates in (5.7), the log, Ny factor in the RHS of
(5.18b) can be removed.

6. Summary and Conclusions.

In this paper we have presented a class of multiresolution algorithms for data
compression and matrix-vector multiplication. In constructing this class we have
introduced subclasses of different discretizations. Each subclass corresponds to a
particular choice of ¢(z) in (2.2); ¢(z) is assumed to be a solution of a dilation
equation and to satisfy the orthogonality condition (2.4c). Members of each sub-
class of discretization correspond to different reconstruction procedures R(z; f); the
reconstruction is assumed to be conservative (2.3b) and to depend linearly on the

discrete data f.

We have paid special attention to the subclasses of discretization corresponding
to pointvalues and cell-averages because of their simplicity. The wavelet based al-
gorithms [1] are also included in this class but in a “diagonal” fashion: In each
subclass of discretization corresponding to a p(z) which satisfies the moment con-
dition (2.15), there is a wavelet based algorithm corresponding to the reconstruction
R = 2H* (3.20b). For example the wavelet based algorithm for r = 1 (Haar basis)

is in the subclass of cell-averages.

The rate of compression and the stability properties are about the same for all
algorithms of this class with the same order of accuracy. What matters therefore in
choosing an algorithm is simplicity, operational count and suitability to the particu-
lar application; under simplicity we also include handling of boundaries. Comparing
wavelet based algorithms to those of pointvalues and cell-averages of the same or-
der of accuracy r, we find the wavelet based algorithm to be considerably more
expensive because of the larger support (2r) and lack of symmetry and that the
handling of boundaries is not as simple. In comparing cell-averages to pointvalues
we find cell-averages to be more suitable for discretization of kernels with integrable
singularity.
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Appendix A.

Let P denote the symmetric matrix

(A.la) P=HH+G'G

where H and G are (3.4) and (3.9) respectively. A direct calculation shows that

(A.1b) Py = p(li - ;1)

where for m integer

p(2m-1)=0
(A.1c) {

p(2m) = z QkQkt2m -
k

Let us assume now that P is an invertible matrix. It follows then from (3.8b)
that

(A.2a) et = PP = PN H'H + G*G)e* ! = P1G*Ger !
= P-—chdk

where

(A.2b) d* = Ge* .

38




Replacing relation (3.11) by (A.2) we get that the encoding part (3.13b) of the
data compression algorithm (3.13) remains the same, but the decoding part (3.13d)

becomes

Dofork=L,L-1,.,1
(A.3)

7 = RFF + P16t dk.

The orthogonality condition (2.4c) implies that

(A.4) P = p(0)I = |of*T

which brings us back to (3.13d).

As an example for the nonorthogonal case let us consider the “hat function” ¢(z)

1-]a] 0< <1
(A.5a) olz) = {

0 otherwise

which satisfies the dilation equation

(A.5b) e(z) = —:12-[¢(2:c — 1) + 2p(2z) + (22 + 1)).

In this case the only nonzero elements of P are

3
(A.6) P:= 3’ Piit2 = —.

Thus P is diagonally dominant and hence invertible.
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Appendix B.

In this appendix we use the interpolation results of [5] and [6] in order to prove
convergence of the limiting process (5.5a) for cell-averages with the symmetric re-

construction (3.17).

Let R denote the matrix (3.5) corresponding to the central interpolation (3.14)
and let 7j(z) denote the limit function in (5.5a). 7j(z) has its support in |z| <r —1
where r is the order of accuracy of the interpolation. For r = 2, #j(z) is the “hat-
function” (5.4b) which is only Lipschitz-continuous; for r = 4, 6, 7j(z) is continuously
differentiable.

Let S™ denote the “step-sequence”

ST =

J

{0 j€<m-1

1 72m.

The limiting process corresponding to R*S° is also convergent and we denote its
limit by {(z). Since

e=S5"-5!
we get that
(B.1a) i(z) =((z) - ¢(z - 1).
It is easy to see that
0 z<-r+l1
(B.1b) ((z) = ,2;;317(2—1) —r+1<z<r-2
1 r—-2<z

and thus ((z) has at least the same smoothness as #j(z).
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We turn now to express the limiting process R*e for the reconstruction from
cell-averages (3.17) in terms of ((z). From (5.5¢) and (2.11) we get that

oy Tvomk
(B.2a) (R%),-:“Jz ) 2(5&1 N2t

Since (’(z) is continuous and of compact support we get that

(B.2b) n(z) = lim Y (Re); xij-n2-+, j2-41(2) = {'(2)
J

and that the convergence is uniform in z. From (B.1b) it follows that n(z) has its
support in —r + 1 < z < r — 2; from (B.1a) and (B.2b) we get that 5(z) is related
to 7(z) by

(B.3) 7'(z) = n(z) — n(z - 1).
We remark that for r = 2 we get for all k that

Y _(R¥e); xij-1)2-+, j2-41(2) = ¢(2)

J

where ¢(z) is the “box-function” (2.8a) (note that the order of accuracy of the
reconstruction from the cell averages is r — 1). Thus n(z) = ¢(z) and we get formal

pointwise convergence of (B.2b) although 5(z) is discontinuous.
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