
Annual Report

AD-A257 773 Grant No. N00014-91-J-1102

*uEII*ll October 1, 1991 - September 30, 1992

THE STARLITE PROJECT - PROTOTYPING REAL-TIME SOFTWARE

Submitted to: D T IC
Office of Naval Research
Chief of Naval Research NOV6 1992

Code 1267/Annual Report
Ballston Tower One _

Room 528
800 N. Quincy Street

Arlington, VA 22217-5660

Attention:

Dr. James G. Smith, Program Manager
Information Systems

Submitted by:

Sang H. Son
_ S'I•A7D EK- Associate Professor

AvpomeG t@? PUBAjC

SEAS Report No. UVA/525449/CS93/102
November 1992

DEPARTMENT OF COMPUTER SCIENCE

SCHOOL OF

ENGINEERING
& APPLIED SCIENCE
University of Virginia 92-29077
Thornton Hall 1 oil
Charlottesville, VA 22903

P~ iTo~ 3

UNIVERSITY OF VIRGINIA
School of Englneerung and Applied Science

The University of Virginia's School of Engineering and Applied Science has an undergraduate en-
rollment of approximately 1,500 students with a graduate enrollment of approximately 600. There are 160
faculty members, a majority of whom conduct research in addition to teaching.

Research Is a vital part of the educational program and interests parallel academic specialties. These
range from the classical engineering disciplines of Chemical, Civil, Electrical, and Mechanical and Aero-
space to newer, more specialized fields of Applied Mechanics, Biomedical Engineering, Systems Engi-
neering, Materials Science, Nuclear Engineering and Engineering Physics, Applied Mathematics and Com-
puter Science. Within these disciplines there are well equipped laboratories for conducting highly
specialized research. All departments offer the doctorate; Biomedical and Materials Science grant only
graduate degrees. In addition, courses in the humanities are offered within the School.

The University of Virginia (which Includes approximately 2,000 faculty and a total of full-time student
enrollment of about 17,000), also offers professional degrees under the schools of Architecture, Law,
Medicine, Nursing, Commerce, Business Administration, and Education. In addition, the College of Arts
and Sciences houses departments of Mathematics, Physics, Chemistry and others relevant to the engi-
neering research program. The School of Engineering and Applied Science is an integral part of this
University community which provides opportunities for interdisciplinary work In pursuit of the basic goals
of education, research, and public service.

Annual Report
Grant No. N00014-91-J-1102

October 1, 1991 - September 30, 1992

THE STARLITE PROJECT - PROTOTYPING REAL-TIME SOFTWARE

Submitted to:

Office of Naval Research
Chief of Naval Research

Code 1267/Annual Report
Ballston Tower One

Room 528
800 N. Quincy Street • QUALIZT RWP RD 4

Arlington, VA 22217-5660

Attention: Acession For

Dr. James G. Smith, Program Manager 0 t0
Information Systems Uanaaousd

Submitted by: Distrilmtien/

Availability Codes
Sang H. Son ii, "dr

Associate Professor Dist special

Department of Computer Science
UNIVERSITY OF VIRGINIA

SCHOOL OF ENGINEERING AND APPLIED SCIENCE
THORNTON HALL -

CHARLOTTESVILLE, VA 22903-2442

SEAS Report No. UVA/525449/CS93/102 Copy No.

November 1992

forM Appn)"d

REPORT DOCUMENTATION PAGE 0oM N:o. 070-0188

PJenson f oW J amcof ti m 00t 1111 01 1ft9m6•uoe S tme 10 to"Wft, hw PW Iloontw. "a 1110" the time 6o .# sg mWe s " tUsmo ~ me" OEM q euse tourcit.
goeSW t," am W tinum Wt" "wale . 04Wde a oim tai - n g the whol .. qms fe nwoa snOf otiuYm.S" oW""bIs -0901 UWA bihen anamtn fI n,11 or he a"C 0~ 1114a t

0&.6 JqJiJOW. tam IM. ArmeitO.. VA J22204302. and to he Offlce of Ipeneqetu WWU4and 0t qet. f t*Se P•o•gn (0070U4C SL 9tnt. .OC 20303.

1. AGENCY USE ONLY (Leave b1dk) *. REPORT DATE 3. REPORT TYPE AND DATES COVERED
& .November 1992 Annual Report 10/1/91 - 9/30/92

4. TITLE AND SUSTITU L FUNDING NUMBERS

The Starlite Project - Prototyping Real-Time Software N00014-91-J-1102

I. AUTHORMS)

Sang H. Son

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS4ES) L. PERFORMING ORGANIZATION
REPORT NUMBER

University of Virginia
Department of Computer Science
Thornton Hall UVA/525449/CS93/102
Charlottesville, VA 22903-2442

9. SPONSOANGI MONITORING NAME(S) AND AOORESS(ES) 10. SPONSORING/ MONITORINGSAGENAGENC AREP•E)PN ORTINUME

Office of Naval Research AGENCY REPORT NUMBER

800 N. Quincy Street
Arlington, VA 22217-5000

11. SUPPLEMENTARY NOTES

12a. DLSTRAIUTIONIAVAILA5IUTY STATEMENT 12b. DISTRIBUTION CODE

11. ABSTRACT (Maximum 200 words

The StarLite Project has the goal of discovering a set of design principles
and developing efficient algorithms for distributed real-time systems. The
initial focus of the project is on scheduling algorithms and database systems.
The project also involves the construction of a prototyping environment that
supports experimentation with concurrent and distributed/parallel algorithms for
performance testing. One of the most important achievements in this project is
the development of new scheduling algorithms based on the idea of adjusting the
serialization order of active transactions dynamically. When compared with
conventional transaction scheduling algorithms, our aglorithms significantly
improve the percentage of high priority transactions' that meet the deadline. In
addition, we h&ve developed experimental database systems for performance
evaluation of new technology. The RTDB server on ARTS kernel is extended tosupport application programmatic interface, graphic user interface, imprecise
computing server, indexing mechanism, and distributed multiple server.

14. SUBECT TERMS IS. NUMBER OF PAGES

real-time, operating systems, database, scheduling IL PRICE CODE

11" SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified Unlimited
NSN 540-1.-280-W5Q stanoaa gorm ,98 (89004 Deat)

, u bso ANSI SW 230'

TABLE OF CONTENTS

1. PRODUCTIVITY MEASURES 1

2. SUMMARY OF TECHNICAL PROGRESS 3

2.1. Real-Time Transactions 3
2.2. Fault-Tolerant Multiprocessor Scheduling 4
2.3. Experimental Systems and Prototyping Tools 4

3. PUBLICATIONS, PRESENTATIONS, AND REPORTS 6

4. TRANSITIONS AND DOD INTERACTIONS....................9

5. SOFTWARE AND HARDWARE PROTOTYPES 10

APPENDIX: Publications

Robert P. Cook and Sang H. Son
University of Virinia
(804) 982-2205
son@cs.virginia.edu
The StarLite Project
N00014-91-J-1102
10/1/91 - 9/30/92

1. Productivity Measures

* Refereed papers submitted but not yet published: 4

* Refereed papers published: 11

"• Unrefereed reports and articles: 5

"" Books or parts thereof submitted but not yet published: 3

e Books or parts thereof published: 4

"* Patents filed but not yet granted: 0

* Patents granted: 0

* Invited presentations: 5

* Contributed presentations: 6

* Honors received: 11

* Prizes or awards received: 0

* Promotions obtained: 1

e Graduate students supported: 11

e Post-docs supported: 0

* Minorities supported: 0

Honors

e Son, Program Chairman, Tenth IEEE Workshop on Real-Time Operating Systems and
Software, to be held in May 1993.

e Son, Program Committee, Sixth International Conference on Distributed Computing
Systems, to be held in May 1993.

e Son, Program Committee, International Symposium on Database Systems for
Advanced Applications, to be held in April 1993.

e Son, ACM National Lecturer, 1991-1993.

I
1

"* Son, Program Committee, Ninth IEEE Workshop on Real-Time Operating Systems
and Software, 1992.

"* Son, Group Leader, Ninth IEEE Workshop on Real-Time Operating Systems and
Software, Group 4: Architecture, Methodology, and Databases, 1992.

"* Son, Program Committee, IEEE Workshop on Transaction and Query Processing,
1992.

"* Son, Program Committee, ACM SIGMOD Conference on Management of Data 1991.

"• Son, Chair, Technical Activities Committee, Korean Computer Scientists and
Engineers Association, 1991.

"* Son, Session Chair, IEEE Real-Time Systems Symposium, 1991.

"* Son, Panelist, International Conference on Very Large Data Bases (VLDB '91), on the
panel "Real-Time Databases," 1991.

Promotions

Sang H. Son was promoted to the rank of Associate Professor with the granting of tenure,
effective on July 1, 1992.

Graduate Students

Julmyoung Lee (Ph.D.), scheduling real-time transactions

Shi-Chin Chiang (Ph.D.), run-time monitoring in distributed real-time databases

Young-Kuk Kim (Ph.D.), OS support for real-time database systems

Lifeng Hsu (Ph.D.), real-time distributed resource management algorithms

Henry Oh (Ph.D.), fault-tolerant multiprocessor real-time systems

Rasikan David (Ph.D.), real-time operating systems issues

Ambar Sarkar (Ph.D.), RTDB server for RS/6000 platform

David George (M.S.), real-time database system development

Du-Won Kang (M.S.), MRDB development

Matt Lehr (M.S.), distributed real-time testbed development

Carmen lannacone (M.S.), RTDB development

Robert Beckinger (M.S.), temporal data modeling

Spiros Kouloumbis (M.S.), replication control in real-time databases

Stavros Yannopolous (M.S.), RTDB development

Savita Shamsunder (M.S.), optimistic concurrency control protocols

2

Robert P. Cook and Sang H. Son
University of Virginia
(804) 982-2205
son@c&virginia.edu
The StarLite Project
N00014-91-J-1102
10/1/91 -9/30/92

2. Summary of Technical Progress
During the past year, our research was directed towards discovering a set of design

principles and developing efficient algorithms for distributed real-time systems and
databases. Our efforts have been concentrated on three main area: real-time transaction
processing, fault-tolerant multiprocessor scheduling, experimental systems and
prototyping tools.

2.1. Real-Time Transactions

One of the most important achievements in this project is the development of new
scheduling algorithms based on the idea of adjusting the serialization order of active
transactions dynamically. This is the first successful attempt to integrate benefits of the
pessimistic and optimistic approaches for transaction scheduling. Two algorithms are
developed based on the notion of dynamic serialization to control blocking and aborting
in a more effective manner. One is based on a priority-locking mechanism that uses the
phase-dependent control of optimistic approach, while the other is based on dynamic
timestamp allocation. We have implemented the first lock-based algorithm using the
StarLite environment for performance evaluation. When compared with conventional
transaction scheduling algorithms, it significantly improves the percentage of high
priority transactions that meet the deadline. Furthermore, it is shown that the algorithm
provides a very high discriminating power which enables the system to support higher
priority transactions at the expense of lower priority ones when a transient overload
occurs. In addition, we have evaluated optimistic concurrency control protocols for real-
time database systems. Our results indicate that optimistic or hybrid approaches may
outperform the pessimistic approach in a wide operational range.

We also have developed algorithms for resource management in distributed real-
time systems. They are priority-ordered deadlock avojdance algorithms, efficient
deadlock detection/resolution algorithms using partial resource allocation graphs, and a
synchronization scheme for replicated critical data in distributed real-time database
systems. Those algorithms are very efficient for distributed real-time systems, in which
critical resources should be managed to support consistency, while satisfying timing
constraints. Especially for replication control, we have employed a new consistency
criterion, less stringent than conventional one-copy serializability. This scheme is very
flexible and practical, because no prior knowledge of the data requirements or the
execution time of each transaction is required. Using our StarLite prototyping
environment, we have implemented those algorithms and demonstrated that they provide
higher level of concurrency and greater flexibility in meeting timing requirements.

3

2.2. Fault-Tolerant Multiprocessor Scheduling

To investigate feasible solutions for scheduling real-time tasks in
parallel/distributed environments, we have developed a new paradigm for multiprocessor
real-time systems, and implemented a parallel programming interface based on our
paradigm. Our new paradigm has created new research opportunities for operating
systems and databases for parallel computing systems with timing and fault-tolerance
requirements. For example, using the new programming interface, we have developed
PRDB, an experimental real-time database system that runs on an emulated tightly-
coupled multiprocessor system in the StarLite environment. It provides a general
paradigm for exploiting parallelism and different real-time scheduling policies. This
experimental system has been used for investigating implementation techniques for
parallel database systems and the impact of multiprocessor technology on operating
systems design.

To support both real-time and fault-tolerance requirements, an algorithm to
schedule a number of tasks with their timing and precedence constraints on a number of
processors is necessary. We have developed a scheduling model under which timing and
fault-tolerance constraints can be expressed. Using this model, a scheduling problem to
tolerate one arbitrary task error or processor failure has been studied. Since most
multiprocessor scheduling problems are NP-complete, we have developed heuristics to
obtain near-optimal solutions to the problem. We assume that all the critical tasks are
periodic, and they have hard deadlines. We use two versions of each critical task, one as
the primary task and the other as the secondary. The scheduling algorithm is based on the
first-fit decreasing bin packing heuristics. Using the StarLite environment, the algorithm
was implemented and its performance was evaluated. It was shown that the algorithm
performs very well, finding the optimal solution most of the time.

2.3. Experimental Systems and Prototyping Tools
We have developed a suite of database systems on several platforms, such as

StarLite, ARTS, and UNIX, and utilized them as system integration testbeds. Since a
real-time system must operate in the context of operating system services, correct
functioning and timing behavior of the system depends heavily on the operating system
interfaces. We have developed a multi-thread database server, called RTDB, for ARTS
real-time operating system kernel. The RTDB now supports application programmatic
interface and graphic user interface. The application programmatic interface (API)
provides an easy way for the database application programmer to construct batch clients.
The API currently provides Create, Insert, Select, and Update. With imprecise server, a
client can specify a deadline by which a computation (query) must complete. If the server
is unable to complete the entire query, the server will return imprecise result, provided
the computation had proceeded to a point where the output would be meaningful and
appropriate. One problem that hinders the transformation of a non-real-time database
function to a real-time one for imprecise server is recursion. Recursive function are not
amenable to being stopped as easily as iterative functions. To implement the imprecise
server, we have used the state machine approach in representing the execution stages of
each function. Necessary actions are performed with a measurable amount of time
allotted to each stage of execution.

4

In addition, we have developed a separate experimental system, called MRDB, a
real-time database kernel running on Sun/Unix environment. In MRDB, servers and
clients can be created and removed dynamically. The servers use valid time attribute and
run-time estimate of requests in transaction scheduling to reduce the number of
deadline-missing transactions. Using MRDB, we have performed several experiments to
evaluate design alternatives in real-time scheduling and concurrency control. The
temporal database kernel on Sun/Unix environment is transported to IBM RS/6000 with
AIX. Ada programming interface is then developed to support a set of basic access
functions to the database. We have simulated RT-DOSE (Real-time Distributed
Operating System Experiments) using the interface.

Our experimental systems achieve other goal of this project-to transfer technology
developed under the StarLite project to Navy, DoD, and other research organizations.
Currently, Naval Ocean Systems Center in San Diego, California, is using RTDB for
their distributed real-time experiments.

I
I
I
I
I
I
I
i
I
I ..

Robert P. Cook and Sang H. Son
University of Virginia
(804) 982-2205
son@cs.virginia.edu
The StarLAte Project
N00014-91-J-1102
10/1/91 - 9/30/92!
3. Publications, Presentations, and Reports

e Books and Book Chapters

(1) S. H. Son, J. Lee, and H. Kang, "Approaches to Design of Real-Time Database
Systems," Database Systems for Next-Genaration Applications - Principles and
Practice, W. Kim, Y. Kambayashi, and L. Paik (eds.), World Scientific Publishing,
1993 (to appear).

(2) S. H. Son, C. Chang, and Y. Kim, "Performance Evaluation of Real-Time Locking
Protocols," Database Systems for Next-Genaration Applications - Principles and
Practice, W. Kim, Y. Kambayashi, and I. Paik (eds.), World Scientific Publishing,1 1993 (to appear).

(3) S. H. Son and S. Park, "Scheduling Transactions for Distributed Time-Critical
Applications," in Advances in Distributed Systems, T. Casavant and M. Singhal
(Editors), IEEE Computer Society, 1992(to appear).

(4) S. H. Son, R. Cook, J. Lee, and H. Oh, "New Paradigms for Real-Time Database
Systems," in "Real-Time Programming," K. Ramamritham and W. Halang
(Editors), Pergamon Press, 1992.

(5) R. Cook, L. Hsu, and S. H. Son, "Real-Time, Priority-Ordered, Deadlock
Avoidance Algorithms," in Foundations of Real-Time Computing: Scheduling and
Resource Management, A. Van Tilborg and G. M. Koob (Editors), Kluwer
Academic Publishers, 1991, pp 307-324.

(6) S. H. Son, Y. Lin, and R. Cook, "Concurrency Control in Real-Time Database
Systems," in Foundations of Real-Time Computing: Scheduling and Resource
Management, A. Van Tilborg and G. M. Koob (Editors), Kluwer Academic
Publishers, 1991, pp 185-202.

(7) R. P. Cook, "The StarLite Operating System," Operating Systems for Mission-
Critical Computing, K. Gordon, P. Hwang, and A. Agrawala (Editors), ACM
Press, 1991.

* 6

* Refereed Journal Publications

(8) S. H. Son, J. Ratner, S. Chiang, "StarBase: A Simulation Laboratory for
Distributed Database Research," Journal of Computer Simulation, (to appear).

(9) S. H. Son, J. Lee, and Y. Lin, "Hybrid Protocols using Dynamic Adjustment of
Serialization Order for Real-Time Concurrency Control," Journal of Real-Time
Systems, 1992, vol. 4, no. 3, pp 269-276.

(10) S. H. Son, "Scheduling Real-Time Transactions using Priority," Information and
Software Technology, vol. 34, no. 6, June 1992, pp 409-415.

(11) S. H. Son, "An Environment for Integrated Development and Evaluation of Real-
Time Distributed Database Systems," Journal of Systems Integration, vol. 2, no. 1,
February 1992

* Refereed Conference Publications

(12) S. H. Son and S. Koloumbis, "Replication Control for Distributed Real-Time
Database Systems," 12th International Conference on Distributed Computing
Systems, Yokohama, Japan, pp 144-151, June 1992.

(13) S. H. Son, S. Yannopoulos, Y-K. Kim, C. Iannacone, "Integration of a Database
System with Real-Time Kernel for Time Critical Applications," Second
International Conference on System Integration, Morristown, New Jersey, pp
172-180, June 1992.

(14) S. H. Son and J. Lee, "A New Approach to Real-Time Transaction Scheduling,"
4th Euromicro Workshop on Real-Time Systems, Athens, Greece, June 1992, pp
177-182.

(15) Y. Oh and S. H. Son, "An Algorithm for Real-Time Fault-Tolerant Scheduling in
Multiprocessor Systems," 4th Euromicro Workshop on Real-Time Systems Athens,
Greece, June 1992, pp 190-195.

(16) S. H. Son, S. Park, and Y. Lin, "An Integrated Real-Time Locking Protocol,"
Eighth IEEE International Conference on Data Engineering, Phoenix, Arizona,
February 1992, pp 527-534.

(17) S. H. Son, 3. Lee, and S. Shamsunder, "Real-Time Transaction Processing:
Pessimistic, Optimistic, and Hybrid Approaches," Second International Workshop
on Transactions and Query Processing, Tempe, Arizona, February 1992.

(18) Y. Oh and S. H. Son, "Multiprocessor Support for Real-Time Fault-TolerantScheduling," IEEE Workshop on Architectural Aspects of Real-Time Systems, San
Antonio, Texas, December 1991, pp 76-80.

0 Technical Reports
(19) Y. Oh and S. H. Son, "Fault-Tolerant Real-Time Multiprocessor Scheduling,"

Technical Report TR-92-09, Dept. of Computer Science, University of Virginia,

7

April 1992.

(20) S. H. Son, J. Lee, and Y. Lin, "Hybrid Protocols using Dynamic Adjustment of
Serialization Order," Technical Report TR-92-07, Dept. of Computer Science,
University of Virginia, March 1992.

(21) Y. Yang, L. Hsu, and S. H. Son, "Distributed Algorithms for Effircint Deadlock
Detection and Resolution," Technical Report TR-92-06, Dept. of Computer
Science, University of Virginia, February 1992.

. Presentations

e Son, Replication Control for Distributed Real-Time Database Systems, 12th
International Conference on Distributed Computing Systems, Yokohama, Japan, June
1992.

* Son, A New Approach to Real-Time Transaction Scheduling, 4th Euromicro
Workshop on Real-Time Systems, Athens, Greece, June 1992

* Son, An Integrated Real-Time Locking Protocol," IEEE International Conference on
Data Engineering, Phoenix, Arizona, February 1992.

e Son, Real-Time Transaction Processing: Pessimistic, Optimistic, and Hybrid
Approaches," International Workshop on Transactions and Query Processing, Tempe,
Arizona, February 1992.

* Son, Multiprocessor Support for Real-Time Fault-Tolerant Scheduling, IEEE Real-
Time Systems Symposium, San Antonio, Texas, December 1991.

I

I
I
I
I
I
1I

Robert P. Cook and Sang H. Son

University of Virginia
(804) 982-2205
son@cs.virginia.edu
The StarLite Project
N00014-91-J-1102
10/1/91 - 9/30/92

4. Transitions and DOD Interactions

"* Son, The Chronus Project, Proposal submitted to James Smith, Information Systems
Division, Office of Naval Research, September 1992.

"• Son, Replication Control for Distributed Real-Time Database Systems, presentation at
the Sogang University, June 1992.

"* Son, Real-Time Systems and Databases, presentation at the Seoul National University,
June 1992.

"* Son, the real-time database server, version 2.0, installed at NRaD distributed real-time
testbed, April 1992.

"* Son, real-time database project coordination meeting with IBM, Charlottesville,
Virginia, April 1992.

"• Son, Real-Time Systems and Databases, Kingston, Rhode Island, presentation at the
University of Rhode Island, March 1992.

"• Son, Real-Time Systems and Databases, presentation at the Boston University, Boston,
Massachusetts, March 1992.

"* Son, Advanced Real-Time Database Systems Project, Proposal submitted to Les
Anderson, NRaD, February 1992.

"* Son, Real-Time Database Systems, NOSC Code 413 DC2 Review Meeting, San
Diego, California, January 1992.

"• Son, Real-Time Systems and Databases: Issues and Research Directions, presentation
at the KSEA Symposium on Science and Technology, Washington, DC, December
1991.

"* Son, StarLite project research coordination meeting 'with ONR, Charlottesville,
Virginia, November 1991.

" Son, presentation at the ONR Foundations of Real-Time Computing Workshop,
Washington, DC, October 1991.

• Son, meeting with ONR patents office staff, Charlottesville, Virginia, October 1991.

"* Son, ARTS Real-Time Systems Project Review Meeting, Carnegie-Mellon University,
Pittsburgh, Pennsylvania, October 1991.

9

Robert P. Cook and Sang IL Son
University of Virginia
(804) 982-2205
son@cs.virginia.edu
The StarLite Project
N00014-91-J-1102
10/1/91 - 9/30/92

5. Software and Hardware Prototypes

The RTDB real-time database system has been upgraded and delivered to NRaD.
However, we still have a tremendous amount of work to do in fixing minor problems and
identifying performance bottlenecks. The StarLite prototyping environment has been
distributed to several universities as beta test sites. Both RTDB and StarLite still need a
lot of work for providing proper documentation.

10

APPENDIX: Publications

An Integrated Real-Time Locking Protocol

Sang H. Son, Seog Parkt, and Yi Lin

Department of Computer Science, University of Virginia, Charlottesville, VA 22903, USA

t Department of Computer Science, Sogang University, Seoul, Korea

Abstract Conventional data models and databases are not
adequate for time-critical applications, since they are not

Database systems for real-time applications must designed to provide features required to support real-time
satiy Liming constraints associated with transactions, in transactions. They are designed to provide good average
addition to maintaining the consistency of da. In this performance, while possibly yielding unacceptable
paper we examine a priority-driven locking protocol worst-case response times. Very few of them allow userscalled integrated real-tioe locking protocol. We show to specify or ensure timing constraints. Recently, interest
that this protocol is free of deadlock, and in addition, a in this new application domain is growing in database

tha ths potool s fee f dadlckandin ddiion a community [Abb88, Abb89, Har90, Kor90, I~n90, Shag8,
high priority transaction is not blocked by uncommitted Som91, Songb, Son911.
lower priority transactions. The protocol does not assume
any knowledge about the data requirements or the execu- While the theories of concurrency control in data-
tion time of each transaction. This makes the protocol base systems and real-time task scheduling have both
widely applicable, since in many actual environments advanced, little attention has been paid to the interaction
such information may not be readily avaiable. Using a between concurrency control protocols and real-time
database prototyping environment, it is shown that. the scheduling algorithms (Stan88]. In database concurrency
proposed protocol offers performance improvement over control, meeting the deadline is typically not addressed.
the two-phase locking protocol. The objective is to provide a high degree of concurrency

and thus faster average response time without violating
data consistency. In real-time task scheduling, on the

1. Intoduction other hand, it is customary to assume that tasks are
Real-timedatabase systems (RTDBS)are transac- independent. The objective here is to maximize

don procesing systems where transactons have explicit resources, such as CPU utilization, subject to meeting
timing constraints. Typically, a timing constraint is timing constraints. In addition, it is assumed that the
expressed in the form of a deadline, a certain time in the resource and data requirements of tasks are known.

echpressed RDBSis a combination of the two
future by which a transaction needs to be completed. A scheduling mechanisms.
deadline is said to be hard if it cannot be missed or else
the result is useless. If a deadline can be missed, it is a Real-time task scheduling methods can be extended
soft deadline. With soft deadlines, the usefulness of a for real-time transaction scheduling while concurrency
result may decrease after the deadline is missed. In control protocols are still needed for operation scheduling
RTDBS, the correctes of transaction processing to maintain data consistency. The general approach is to
depends not only on maintaining consistency constraints utilize existing concurrency control protocols, especially
and producing correct results, but also on the time at two-phase locking (2PL). and to apply time-critical tran-
which a transaction is completed. Transactions must be saction scheduling methods that favor more urgent tran-
scheduled in such a way that they can be completed sactions (Abb88, Sha91l. Such approaches have the
before their corresponding deadlines expire. For exam- inherent disadvantage of being limited by the con-
pie, both the update and query on the tracking data for a currency control method upon which they are based,
missile must be processed within given deadlines, since all existing concurrency control methods synchron-
RTDBS are becoming increasingly important in a wide ize concurrent data access of transactions by the combi-
range of applications, such as computer integrated nation of two measures: blocking and roll-backs of tran-
manufacturing, traffic control systems, robotics, and in sactions. Both are barriers to meeting time-critical
stock market trading. schedules.

Concurrency control protocols induce a serializa-Whi woxk wit suppomW .in part by ON'R contract # N'0001 4-91 - tion order among conflicting transactions. In non-real-
1.1102. by NOSC. by DOE, and by VCIT. time concurrency control protocols, timing constraints are

I

not a factor in the construction of this order. This is obvi- to the priority of a transaction, we always mean the actual
ously'a drawback for RTDBS. The conservative 2PL priority with the start-timestamp appended. Since the
uses blocking, but in RTDBS, blocking may cause prior- start-timestamp is unique, so is the priority of each ran-
ity inversion. Priority inversion is said to occur when a saction. The priority of transactions with the same initial
high priority transaction is blocked by lower priority tran- priority is distinguished by their start-timestamps.
sactions [Sha88]. The alternative is to abort low priority With two-phase locking and priority assignment,
transactions when priority inversion occurs. This wastes we can encounter the problem of priority inversion. What
the work done by the aborted transactions and in turn also we need is a concurrency control algorithm that allows
has a negative effect on time-critical scheduling, transactions to meet the timing constraints as much as

Satisfying the timing constraints while preserving possible without reducing the concurrency level of thedata consistency requires the concurrency control algo- system in the absence of any a priori information. Therithms to accommodate timeliness of transactions as well integrated real-time locking protocol presented in this

as to maintain data consistency. This is the very goal of paper meets these goals. It has the flavor of both locking
our work. If the information about data requirements and and optimistic methods.
execution time of each transaction is available before- Transactions write into the database only after they
hand, off-line preanalysis can be performed to avoid are committed. By using a priority-dependent locking
conflicts [Sha9l]. However, such approaches may delay protocol, the serialization order of active transactions is
the starting of some transactions, even if they have high adjusted dynamically, making it possible for ansactionspriorities, and may reduce the concurrency level in the with higher priorities to be executed first so that higher
system. This, in return, may lead to the violation of the priority transactions are never blocked by uncommitted
timing constraints and degrade system performance. lower priority transactions, while lower priority transac-

In this paper we examine a priority-driven two- tions may not have to be aborted even in face of
phase locking protocol called the integrated real-time conflicting operations. The adjustment of the serializa-
locking protocol. It is an integrated locking protocol, don order can be viewed as a mechanism to support
since it decomposes the problem of concurrency control time-critical scheduling.
into two subproblems, namely read-write synchronization
and write-write synchronization, and integrates the solu- Example 1: Assume T, and T2 are two transactions with
tions to two subproblems consistently to yield a correct T, having a higher priority. T2 writes a data object x
solution to the entire problem [Bern87]. We show that before T, reads it. Using 2PL, even in the absence of any
this protocol is free of deadlock. The protocol is similar other conflicting operations between these two transac-
to optimistic concurrency control protocols [Kung8l] in tions, T, has to either abort T 2 or be blocked until T 2
the sense that each transaction has three phases, but releases the write lock.
unlike the optimistic approach, there is no validation In Example 1, T, can never precede T 2 in the seri-
phase. While other optimistic concurrency control proto- alization order, because the serialization order T2 -4T1 is
cols resolve conflicts in the validation phase, this protocol already determined by the past execution history. In our
resolves them in the read phase using transaction priority, protocol, when such conflict occurs, the serialization

The remainder of this paper is organized as foi- order of the two transactions will be adjusted in favor of
lows. The details of the locking protocol are described in T1 , i.e. T, -+T 2, and neither is T, blocked nor is T2
Section 2. The properties of the protocol is discussed in aborted. Together with priority-based blocking, the real-
Section 3. Section 4 presents performance evaluation of time locking protocol is free from deadlocks.
the real-time locking protocol. Finally, concluding All transactions that can be scheduled are placed in
remarks appear in Section 5. a ready queue, RQ. Only transactions in RQ are

scheduled for execution. When a transaction is blocked,2. The Integrated Real-Time Locking Protocol it is removed from RQ. When a transaction is
unblocked, it is inserted into RQ again, but may still be

2.1. Basic Concepts waiting to be assigned the CPU. A transaction is said to

A RTDBS is often used by applications such as be suspended when it is not executing, but still in RQ.
tracking. Since we cannot predict how many objects need When a transaction is doing I/O operations, it is blocked.
to be tracked and when they appear, we assume randomly Once it completes, it is usually unblocked.
arriving transactions. Each transaction is assigned an ini- The execution of each transaction is divided into
tial priority and a start-timestamp when it is submitted to three phases: the read phase, the wait phase and the write
the system. The initial priority can be based on the dead- phase. During the read phase, a transaction reads fromline and the criticality of the transaction. The start- the database and writes to its local workspace. After ittimestamp is appended to the initial priority to form the completes, it waits for its chance to commit in the wait

actual priority that is used in scheduling. When we refer phase. If it is committed, it switches into the write phase

Ipas

during which all its updates are made permanent in the Suppose active transaction T, has higher priority
database. A transaction in any of the three phases is than active transaction T 2. We have four possible
called active. We take an approach of integrated conflicts and the transaction dependencies they require in
schedulers in that it uses 2PL for read-write conflicts and the serialization order as follows:
the Thomas' Write Rule (TWR) for write-write conflicts.
The TWR ignores a write request that has arrived late, (1) rr, [x] ,PwT[x[I
rather than rejects it [Bern87]. The resulting serialization order is T, -+ T2 , which

. In our protocol, there are various data structures satisfies the priority order, and hence it is not necessary to
that need to be read and updated in a consistent manner. adjust the serialization order.
Therefore we assume the existence of critical sections to (2) PWT, [x I r%, [x I
guarantee that only one process at a time updates these
data structures. We assume critical sections of various Two different serialization orders can be induced with
classes to group the various data structures and allow this conflict; T2 -+ T, with immediate reading, and
maximum concurrency. We also assume that each T, -4 T2 with delayed reading. Certainly, the latter
assignment statement of global data is executed atomi- should be chosen for priority scheduling. The delayed
cally. reading means that rr, [x I is blocked by the write lock of

T, onx.
2.2. Read Phase (3) rr,[xI ,pwT,[xI

The read phase is the normal execution of a wan- The resulting serialization ,:-der is T2 -+ T1 , which
saction except that write operations are performed on violates the priority order. If T2 is in the read phase, it is
private data copies in the local workspace of the transac- aborted because otherwise T2 must commit before T, and
don instead of on data objects in the database. We call thus block T1. If T2 is in its wait phase, avoid aborting
such write operations prewrites, denoted by pwr[x]. A T2 until T, commits, in the hope that T 2 gets a chance to
write request from a transaction is performed by a commit before T, commits. If T, commits, T2 is aborted.
prewrite operation. Since each transaction has its own But if T, is aborted by some other conflicting transaction,
local workspace, a prewrite operation does not write into then T2 is committed. With this policy, we can avoid
the database, and if a transaction previously wrote a data unnecessary and useless aborts, while satisfying priority
object, subsequent read operations to the same data object scheduling.
retrieve the value from the local workspace.

The read-prewrite or prewrite-read conflicts
between active transactions are synchronized during this Two different serialization orders can be induced with
phase by a priority-based locking protocol. Before a this conflict; T, -+ T2 with immediate reading, and
transaction can perform a read (resp. prewrite) operation T2 -+ T, with delayed reading. If T 2 is in its write
on a data object, it must obtain the read (resp. write) lock phase, delaying T, is the only choice. This blocking is
on that data object first. A read (resp. write) lock on x by not a serious problem for T, because T2 is expected to
transaction T is denoted by rlock(Tx) (resp. wlock(Tx)). finish writing x soon. T, can read x as soon as T2
If a transaction reads a data object that has been written finishes writing x in the database, not necessarily after T 2

by itself, it gets the private copy in its own workspace completes the whole write phase. If T 2 is in its read or
and no read lock is needed. In the rest of the paper, when wait phase, choose immediate reading.
we refer to read operations, we exclude such read opera-
dons because they do not induce any dependencies As transactions are being executed and conflicting
among transactionsh operations occur, all the information about the induced

dependencies in the serialization order needs to be
The locking protocol is based on the principle that retained. To do this, we retain two sets for each transac-

higher priority transactions should complete before lower tion, before trset and after trsei, and a count, before cra.
lpriority transactions. That is, if two transactions conflict, The set before trset (resp. aftertrset) contains all the
the higher priority transaction should precede the lower active lower priority transactions that must precede (resp.
priority transaction in the serialization order. Using an follow) this transaction in the serialization order.
appropriate CPU scheduling policy for RTDBS, a high beforecnm is the number of the higher priority transac-
priority transaction can be scheduled to commit before a tions that precede this transaction in the serialization
low priority transaction in most cases (Lin9OI. If a low order. When a conflict occurs between two transactions,
priority transaction does complete before a high priority their dependency is set and their values of before..rset,
transaction, it is required to wait until it is sure that its afjertrset, and beforecnt will be changed accordingly.
commitment will not lead to the higher priority transac-

don eingabored.By summarizing what we discussed above, we
tion being aborted. define the real-time locking protocol as follows:

I

If

LPI. Transaction Trequests a read lock on data object transactions simultaneously.
z.

for all transactions t with wlock(t,x) do 2.3. Wait Phase
if (priority (t) > priority (T) The wait phase allows a transaction to wait until it

or t is in write phase) can commit. A transaction can commit only if all ran-
1* Case 2.4 *1 sactions with higher priorities that must precede it in the

then deny the lock and exit; serialization order are either committed or aborted. Since
endif before_cnt is the number of such transactions, the tran-

enddo saction can commit only if its before_cnt becomes zero.
for all transactions t with wlock(t,x) do A transaction in the wait phase may be aborted due to two

1* Case 4 */ reasons; if a higher priority transaction requests a
if I is in before :rse:T then abort t; conflicting lock, or if a higher priority transaction that
else If (t is not in after trsetT) must follow this transaction in the serialization order

then commits first. Once a transaction in the wait phase gets
iblue f in ertrsetT; its chance to commit, i.e. its before~cnt goes to zero. it

before_cnt, := beforecnt, + 1; switches to the write phase and release all its read locks.endif 'Me transaction is assigned a final-timestamp, which is
endif the absolute serialization order.

enddo

grant the lock; 2.4. Write Phase

Once a transaction is in the write phase, it is con-
LP2. Transaction T requests a write lock on data sidered to be committed. All committed transactions are

object x. serialized by the final-timestamp order. Updates are

I amade permanent to the database while applying Thomas'
for all transactionstwith rlock(t,x)do Write Rule (TWR) for write-write conflicts [Ber87J.

if priority (1) > priority (T) After each operation the corresponding write lock is
then /* Case I */

If (T is not in aftertrset,) released.
thinclude in after rset; 3. Properties and Correctness

before cntr :- before_cntr + 1; Having described the basic concepts and the proto-
endif col, we now present some properties and prove the

else correctness of the protocol. First, we give the simple
if t is in wait phase /* Case 3 */ definitions of history and serialization graph (SG). For
then the formal definitions, readers are referred to [Bern87].
if (t is in aftertrsetT) A history is a partial order of operations that represents

then abort t; the execution of a set of transactions. Any two
else conflicting operations must be comparable. Let H be a

include t in before trsetT; history. The serialization graph for H, denoted by SG(H),
endif is a directed graph whose nodes are committed uansac-
else if t is in read phase tions in H and whose edges are all Ti -- Tj (i*j) such that

then abort t: one of Ti's operations precedes and conflicts with one of
endif Tj's operations in H. To prove a history H serializable,

endif we only have to prove that SG(H) is acyclic IBern87].
endif

enddo Theorem 1: Every history H produced by the protocol is
grant the lock; serializable.

LPl and LP2 are actually two procedures of the Proof. Let T, and T2 be two committed transactions in a
lock manager that are executed when a lock is requested. history H produced by the algorithm. We argue that if
When a lock is denied due to a conflicting lock, the there is an edge TI -+ T2 in SG(H), then ts(TI)< ts(T 2).
request is suspended until that conflicting lock is released. Since T, -- T2, The two must have conflicting opera-
Then the locking protocol is invoked once again from the tions. There are three cases.
very beginning to decided whether the lock can be Case 1: wI[xI -+ w2 (x]
gansed now. With our locking protocol, a data object
may be both read locked and write locked by several Suppose bs(T2)<ts(T1). Therefore T2 enters into thewrite phase before T,. If wtjx] is sent to the data

manager first, T2's write lock on x must be released commit before Ti. A history H is called strict if, when-
before w(x] is sent to the data manager. If w2[x] is sent ever w,[x] precedes o,[xI where oi[x] is either wi[z] or
to the data manager first, it will either be processed rifxi, T, must either commit or abort before o,(xI. It is
before wxI [J is sent to the data manager, or be discarded known that strictness is a stronger condition than recover-
when the data manager receives w1 [xl, because w2[x] ability, i.e., a set of strict histories is a proper subset of
has a smaller timestamp. Therefore w I[x I is never pro- recoverable histories, and it is more desirable for practi-
cessed before w2 [x). Such conflict is impossible. A con- cal reasons [Bern87J.
tradiction. The strictness of the histories produced by the algo-
Case 2: rfx] -.* w 2(xJ rithm follows obviously from the fact that a transaction
If T2 holds the write lock on x when T1 requests the read applies the results of its write operations from its local
lock, we must have priority (TI) > priority (T2) and T2 is workspace into the database only after it commits. This
nMt in the write phase, because otherwise T, would have property makes the transaction recovery procedure
been blocked by LPI. By LPI, T2 is in aftertrset.,. T2 simpler than other concurrency control protocols that do
will not switch into the write phase before T, does, not support strictness.
because before.cntrT cannot be zero with T, still in the Another property to be discussed is the degree of
read or wait phase. Therefore ts(T 1) < ts(T 2). If T, concurrency provided by the protocol. The compatibility
holds read lock on x when T2 requests the write lock, by depends on the priorities of the transactions holding and
LP2, we have either T2 is in after trsetT, or T, is in requesting the lock and the phase of the lock holder as
beforeý trsetT,, depending on the priorities of the two well as the lock types. Unlike 2PL, locks are note -r classified simply as shared locks and exclusive locks.transactions. In either case, T, must commit before T2. Even with the same lock types, different actions may beHence we also have ts(T1) < ts(T2), taken, depending on the priorities of the lock holder and

Case 3: wl[x] -* r2[X) the lock requester. With the real-time locking protocol, a
Since T1 is already in the write phase before T2 reads x, data object may be both read locked and write locked by
we must have ts(TI) < ts(T 2). several transactions simultaneously, and hence it is less

restrictive than 2PL, and can provide higher degree of
Suppose there is a cycle T, -- T2 - . T-- T, in concurrency by incurring less blocking and fewer aborts.
SG(H). By the above argument, we have In the real-time locking protocol, a high priority transac-
ts (TI) < is (T2) < ". < is (T,) < ts (TY). This is tion is never blocked or aborted due to conflict with an
impossible. Therefore no cycle can exist in SG(H) and uncommitted lower priority transaction. The probability
the algorithm only produces serializable histories. 0 of aborting a lower priority transaction should be less

than that in 2PL under the same conditions. An analytical
Theorem 2: There is no mutual deadlock under the model may be used to estimate the exact probability, but
ie real-time locking protocola that is beyond the scope of this paper.

Proof: In -• algorithm, a high tviority transaction can 4. Performance Evaluation
be blocked by a low priority tranw action only if the low Since the integrated real-time locking protocol
priority transaction is in the write phise. Suppose there is ssume tha tegrata requime ocuin tomol
a cycle in the wait-for graph (WFG), assumes that the data requirement or execution time of
T, -* T2 -- "" - -+ T. -- TT1 . For any edge Ti -+ T. in each transaction is not known, we should compare the
the cycle, if priority (Ti) > priority (T1), Tj must be in the protocol with other protocols with the same assumption.
write phase, thus it cannot be blocked by any other In this section, a comparative evaluation of the perfor-
sactions and cannot appear in the cycle. Therefore we mance of the real-time locking protocol is presented. The
must have priority (Ti) <priority(Tj) and thus results obtained through a simulation study indicate that
priority (TO < priority(T2) < ." < priority(T.) < the real-time locking protocol offers performance

priority (TI). This is impossible. Hence a deadlock can- improvement over 2PL.
not exist I" The performance of the real-time locking protocol

We now discuss some properties of the protocol. was studied using a prototyping environment for database
Furst, the protocol provides a desirable property beyond systems [Son90]. In our simulation, transactions are gen-
the serializability, namely the strictness. From a practical erated and put into the start-up queue. When a transac-
viewpoint, serializability of transactions is not always tion is started, it leaves the start-up queue and enters the
enough. To ensure the correctness in the presence of ready queue. Transactions in the ready queue are ordered
failures, the concurrency control protocol must produce from the highest to the lowest priority. The transaction
execution histories that are not only serializable but also with the highest priority is always selected to run. The
recoverable. A history H is called recoverable if, when- current running transaction sends requests to the con-
ever Ti reads from Tin H and T, commits, T; must currency controller. The transaction may be blocked and

IT ,ms

placed in the block queue. It may also be aborted and res- mode, if the requester's priority is higher than that of all
anted. In such a case, it is first delayed for a certain the lock holders, the holders are restarted and the reques-

amount of time and then put in the ready queue again. ter is granted the lock; if the requester's priority is lower,
When a transaction in the block queue is unblocked, it it waits for the lock holders to release the lock. This
leaves the block queue and is placed in the ready queue. scheme has the advantage of deadlock prevention.
Whenever a transaction enters the ready queue and its For each experiment, we collected performance
priority is higher than the current running transaction, it statistics and averaged over 10 runs. We have used the
preempts the current running transaction. transaction size (the number of data objects a transaction

When a transaction enters the start-up queue, it has needs to access) as one of the key variables in the experi-
the arrival time, the deadline, the priority, the read set and ments. It varies from a small fraction up to a relatively
the write set associated with it. The transaction inter- large portion (15%) of the database so that conflicts
arrival time is a random variable with exponential distri- would occur frequently. The high conflict rate allows
bution. The deadline and the priority are computed by concurrency control protocols to play a significant role in
the following formulas: the system performance. We choose the average arrival

DeadlineT = ArrivalT + Slack * TimeT rate so that protocols are tested in a heavily loaded rather

PriorityT = I DeadlineT than lightly loaded system. It is because for designing
where real-time systems, one must consider high load situations.

Even though they may not arise frequently, one would
DeadlineT= Deadline of transaction T like to have a system that misses as few deadlines as pos-
ArrivalT = Arrival time of transaction T sible when the system is under stress [Abb88J.
TimeT = Service time of transaction T The primary performance metric used in analyzing
Slack = Slack factor the experimental results is the miss percentage of the sys-

The slack factor is a random variable between 3 and 5 tem, defined as the percentage of transactions that do not
with uniform distribution. The service time is the total complete before their deadline. Miss percentage values
time that the transaction needs for its data processing- in the range of 0 to 20 percent can be taken to represent
This includes the CPU time and the I/O time. The dead- system performance under "normal" loadings, while miss
line formula is designed to ensure that all transactions, percentage values in the range of 20 to 100 percent

independent of their service requirement, have the same represent system performance under "heavy" loading
chance of making their deadline. The transaction priority [H&r901. A secondary performance metric, restarts, is
assignment policy is Earliest Deadline. Transactions the number of restarts for a fixed number of transactions.

with earlier deadlines have higher priority than transac- We chose this metric because it provides insight into the
dions with later deadlines. A greater priority value means system behavior. The advantage of the real-time locking
higher priority. The data objects in the read set and the protocol is that while high priority transactions are not
write set are uniformly distributed across the entire data- blocked by low priority transactions, low priority transac-
base. A transaction consists of a sequence of read and tions need not be restarted most of the time. We can ver-
write operations. A read operation involves a con- ify this by using restarts as a performance metric.
currency control request to get access permission, fol- Table I summarizes the key parameters of the
lowed by a disk IVO to read the data object, followed by a simulation model and their default values. Transaction
period of CPU usage for processing the data object. size (data access per transaction) is the total number of
Write operations are handled similarly except for their data access operations of each transaction. Among all the
disk 1/O. Since it is assumed that transactions maintain data access operations of a transaction, the percentage of
deferred update lists in buffers in main memory, disk write operations is specified by the write percentage.
activity of write access is deferred until the transaction By changing the mean inter-arrival time, we can
has committed and switched into the write phase. A tra- study the system performance under normal load and
saction can be discarded at any time if its deadline is heavy load. Fig. 4 shows that the real-time locking proto-
missed. Therefore our model employs a hard deadline col performs better than 2PL under both normal load and
policy, heavy load. If we consider a miss percentage under 20%

To ensure significance of the comparison, the clas- as "normal", the real-time locking protocol can keep the
sical two-phase locking needs to be augmented with a system operating satisfactorily when the mean inter-
priority scheme to ensure that higher priority transactions arrival time is as small as 40ms, while with 2PL the sys-
are not delayed by lower priority transactions. We used tem can maintain a normal load only when the mean
the High Priority scheme [Abb88], in which all data inter-arrival time is greater that 70 ms. Another interest-
conflicts are resolved in favor of the transaction with ing result is that under normal load, the restart number for
higher priority.' When a transaction requests a lock on a each protocol is less than 10. A restart number greater
data object held by other transactions in an incompatible than 10 indicates a degraded system performance for

I Lin9Ol Lin, Y. and S. H. Son, "Concurrency Control 0

in Real-Time Databases by Dynamic Adjust- -0 Real-time locking

ment of Serialization Order," I1th IEEE :P
Real-Time Systems Symposium. Orlando,

Florida, Dec. 1990. Restart 20-

[Sha88J Sha, L. R. Rajkumar. and J. Lehoczky, "Con-
currency Control for Distributed Real-Time o

Databases." ACM SIGMOD Record 17, 1,
March 1988, pp 82-98. .-0

[Sha9l] Sha, L., R. Rajkumar, S. H. Son, and C. to 20 30 .10 50 60 70 40 90IChang, "A Real-Time Locking Protocol," Mean Arrval Interval (Ms.

IEEE Transactions on Computers. vol. 40, no. DtbsSie-10

7, July 199 1, pp 793-800. ThIISIcuoO Size a a

[Son88J Son, S. H., "Semantic Information and Con- Write Peentagei . 50%

sistency in Distributed Real-Time Systems," Fig.5 Sensitivity of Restart Numberto Mean Arrval Interval
Inforrnwion and Software Technology, Vol.1 30, Sept. 1988, pp 443-449.

(Son88bI Son. S. H., guest editor, ACM SJGMODso
Record 17. 1, Special Issue on Real-Time
Database Systems. March 1988. Real-time lockingI[Son9OJ Son, S. H., "An Environment for Protoityping 6-... P

Real-Time Distributed Databases," Interna- is 0
tional Con~ference on Systems Integration, percerge "

Morristown, New Jersey, April 1990, pp 358-

[Son9lJ SoS . .Cok .Le n H. Oh:"e

iRelTmPrgamnK. Ramamnritham 6 9 110 12 14 16

and W.Hln EiosFrao rsTransaion Sin

1991.
Da'*abse Sizea 100

[StmnB8 Stankovic, J., "Misconceptions about Real- Writ Percentage - 50%
rime Computing," IEEE Computer 21. 10, Mea ArrvalIlnterval a 70ms

October 1988, pp 10-49. Fil.6 Sensitvity of Miss Pefeeauge to Transaction Size

50 ReaI-dne locking -oo Rexiidw Wdte ~ k

10~...... 2PLRel s6Pt12 4

20300 06 70 O
Mills Rest-itvl is. rasctoI0 ------ -- -- 0

P1. esivt f isPrcnae~Mean Arriva Interval (ms.S)iivt f eta unbti Tra nsaction Size

DaaaeSzI 00aaeSz o
Irtuo ie8WiePretg 0

An Algorithm for Real-Time Fault-Tolerant Scheduling in Multiprocessor Systems

Yingfeng Oh and Sang H. Son

Department of Computer Science, University of Virginia, Charlottesville, VA 22903, USA

I
uling, or on achieving certain scheduling criteria, such as

Abstract minimizing schedule length or local cost function, or bal-
ancing workload distribution. The problem of tolerating

In this paper, we consider using hardware and software processor failures in a hard real-time multiprocessor system
redundancy to guarantee task deadlines in a hard real-time has not been sufficiently addressed in the literature.
multiprocessor system even in the presence of processor The investigation of the problem is further necessitated
failures. A set of scheduling requirements for the real-time the factigation hf t ie systems are beingtedp-
fault-tolerant multiprocessor scheduling problem is first by the fact that many hard real-time systems are being sup-
identified and a heuristic algorithm is then proposed to ported by multiprocessor systems. This is mainly due to the
solve the problem. Experimental results show that the algo- following two reasons. First, a multiprocessor system isrithm finds optimal solutions in most of the cases, generally more reliable than a uniprocessor system, because

h fthe failure of one processor in a multiprocessor system does
not necessarily cause the whole system to fail if some fault
tolerance techniques are provided. Second, a multiproces-
sor system can offer more computational power for hard

Introduction real-time systems than a uniprocessor system. However,Hard real-time systems are defined as those systems in with these advantages also comes the disadvantage of more

which the correctness of the system depends not only on the likelihood of processor failures as more processors are
logical results of computation, but also on the time at which used. A multiprocessor system can be less reliable than a
the results are produced. Missing a hard deadline in such a uniprocessor system if one processor failure can cause the
system may rtsult in catastrophic consequences, such as whole system to faiL This can happen if no fault-tolerant
immediate danger to human life, severe damage to equip- capability is provided. Thus, a processor failure in a hard
ments, or waste of expensive resources. Since hard real- real-time multiprocessor system is a very serious problem,
time systems are being increasingly used in many mission- which ought to be tackled. In this paper, we address this
critical and life-critical applications, the fault tolerance of problem by formally defining it as a real-time fault-tolerant
these systems becomes extremely important. scheduling problem and then propose a heuristic algorithm

to deal with processor failures.
A real-time system which possesses fault-tolerant

capability is usually termed a real-time fault-tolerant sys- The rest of the paper is organized as follows: Sec-
tern. The correctness of a real-time fault-tolerant system tion 11 defines the. real-time fault-tolerant multiprocessor
requires that timing constraints of computations in the sys- scheduling problem. A heuristic scheduling algorithm is
tern be met even in the presence of hardware or software presented in Section lII. The analysis and performance
faults. Hardware or software faults in a real-time system evaluation of the algorithm are described in Section IV.
can lead to timing faults, such as missing a hard deadline, Section V concludes the paper and suggests future work.
which should be prohibited in a hard real-time system. To
tolerate timing faults, several studies have been carried out
in achieving fault tolerance in real-time systems through the I1. Problem Statements
scheduling of redundant resources, such as replicated tasks We assume that processors fail in the fail-stop manner
and redundant processor power [Anders83] [Balaji89J and the failure of a processor can be detected by other pro-
[Bannis83] (Bertos9l] (Liestm86l [Krishn86]. Most of cessors. All periodic tasks arrive at the system in one cycle
these works, however, focus either on uniprocessor sched- T, i.e., having the same period and are ready to execute any

I

time within each cycle. We further assume that all periodic states that the number of processors to be used to execute
tasks have hard deadlines and their deadlines have to be met the tasks should be the smallest possible.
even in the presence of processor failures. We define a Since no efficient scheduling algorithm exists for the
task's meeting its deadline as either its primary copy or i optimal solution of the fault-tolerant real-time multiproces-

backup copy finishes before or at the deadline. Because the sot scheduling problem as defined above, we resolve to a

failure of processors is unpredictable and there is no opti- heuristic approach. A heuristic algorithm based on a bin
real dynamic scheduling algorithm for multiprocessor herstcappoah.Aingisi algorithm ba sed oooban aprimt bouions

S scheduling [Dertou89], we focus on static scheduling algo- pakigflor itmiesdt banapoiaesltos

fouso SatCpresenting the heuristic, we state the following
rithms to ensure that the deadlines of tasks are met even if Lemmas as the basic results upon which the scheduling

some of the processors might fail. The scheduling problem heuristic is developed.
Iis defined as follows:hersiisdvlp.

Lemma 1: In order to tolerate one or more processor
The Scheduling Problem: A set of n periodic tasks failures and guarantee that the deadline of all the periodic

S = {TI, T2, T.} is to be scheduled on a number of pro- tasks are met using the primary-backup copy approach, the
cessors. For each task i, there are a primary copy P, and a longest computation time of the tasks must satisfy the fol-
backup copy Bi associated with it. The computation time of lowing condition, where T is the period of tasks:
a primary copy Pi is denoted as C', which is the same as the (Cj=-ax,5is.{Ci}) !5T/2,
computation time of its backup copy Bi. The tasks are inde- c still
pendent of each other. The scheduling requirements are Proof: Suppose that the deadline of the task can still
given as follows: be met even if Ci. > T/2. Suppose the processor which exe-

a time cutes Tj fails at the time of T/2and the backup task li1 is(1) achtaskis xecued y oe prcesor a a ime immediately started, then the finishing time of T. is

and each processor executes one task at a time. BF. = T/2+C.. As C, >T/2, we have BF - T, i>e, the
(2) All periodic tasks should meet their deadlines. Ape- deadline of the task is missed. This is a contradiction. A

riodic tasks have soft deadlines. Lemma 2: One arbitrary processor failure is tolerated

3 (3) Maximize the number of processor failures to be and the deadlines of tasks are met with the minimum num-
tolerated. ber of processors possible, if and only if the primary copy

(4) For each task i, the primary task P, or the backup Pi and the Backup copy Bi of task i is scheduled on two

Bi is assigned to only one processor for the dura- different processors and there is no overlapping between

tion of Ci and once it starts, it runs to its comple- them.

tion unless a failure occurs. Proof: In [Lawler8l], it is shown that a set of periodic

(5) The number of processors used should be mini- tasks is schedulable on a multiprocessor if and only if there

mized. exists a valid schedule which is cyclic with a period T; i.e.,
each processor does exactly the same thing at time t as it

The deadlines of aperiodic tasks are assumed to be soft. does at time t + T. Therefore it suffices to consider the exe-
However, as we will show later, the execution of aperiodic cution of tasks within a period T only. We first prove the
tasks are taken into account. Thus, in a normal execution necessary condition. Suppose one arbitrary processor fail-
situation, aperiodic tasks are able to meet their deadlines. ure is tolerated. It is evident that the primary copy of a task
We further assume that all the processors are identical. and its backup copy should be scheduled on two different
Requirement (1) specifies that there is no parallelism within processors. To prove that there is no overlapping between
a task and within a processor. Requirement (2) dictates that the primary copy of a task and its backup copy, we define
the deadlines of periodic tasks should be met, maybe at the BB, as the beginning time of the backup copy Bi and FP, as
expense of more processors. Requirement (3) is a very the finishing time of the primary copy P,. If there is an
strong requirement. The primary and backup tasks should overlapping betw;een the primary copy of task i and its
be scheduled on different processors such that any one or backup copy, then FP, - BBi >0 . Suppose the processor k
more processor failure will not result in the missing of the on which the backup copy B, of task i is assigned has no
hard deadlines of the periodic tasks. Furthermore, the pri- unused time within a period and the processor j on which
mary copy and the backup copy of a task should not overlap the primary copy is executed fails at time t > BB,. Processor
each other, as we shall see in Lemma 2. Requirement (4) k can only be notified of the failure of processor j no earlier
implies that tasks are not preemptive. A processor is than t. Thus the finishing time of the whole schedule of
informed the failure of other processors only at the end of processor k is lengthened by t - BBi > 0, resulting in a
the execution of a task. Also, care has to be taken to ensure missed deadline. To prove the sufficient condition, we have
that exactly one of the two copies of a task is executed dur- that any pair of primary and backup copies are scheduled on
ing a cycle to minimize the wasted work. Requirement (5) two processors and there is no overlapping between them.

Then the failure of any one of the two processors will trig- and precedes the backup schedule, and there is no overlap-

ger the execution of the backup tasks on another processor. ping between any pair of primary and backup copies of
Thus the deadline of the tasks will be met. A tasks.

By summarizing what we described above, we state the

MI. The Scheduling Algorithm algorithm as follows.

The basic idea of using primary-backup copy approach procedure scheduler (Task Set. Period T);

to tolerate processor failures is that there are two copies Sort the set of tasks in the order of decreasing
associated with each task, i.e., the primary copy and the computation time and rename them P , P 2, ..., P.;
backup copy. Once the primary copy fails, the backup copy Apply FFD (First-Fit Decreasing) to assign the set
is activated. Since the possible execution of the backup of tasks into m processors;
copies should also be finished before the deadline, enough
time must be reserved on each processor to execute the Duplicate the schedule on m backup processors to
backup copies. The reservation of enough time for the exe- form the backup schedule;
cution of backup copies implies that redundant processors Applying swapping rules to the backup schedule;
have to be used to execute the primary task set earlier
enough so that once a processor failure occurs, there will be Applying the renaming rule to both the primary
time to execute the backup copies. schedule and the backup schedule;

Our scheduling algorithm is based on the First-Fit end scheduler.

Decreasing (FFD) bin packing heuristic. In the FFD algo- In the following, we define the rules precisely and
rithm for bin packing, the bins are numbered from I to M prove that a schedule produced by applying these rules can
and the items, pre-sorted into decreasing order of size, are tolerate one arbitrary processor failure.
packed sequentially, each going into the lowest numbered Definition 1: For the schedule on each processor, L is
bin in which it will fiL In our algorithm, we regard proces- defined as the length of schedule less than or equal to alf
sors as bins and tasks as items having sizes equal to their of the period T such that it is the sum of the computation
computation times. As shown in Lemma 1, the omputation times of those tasks whose finishing times are less than or
imes of all tasks should be less than half of the period in equal to half of the period. Lq is the length of schedule for a

order to tolerate at least one arbirary processor failure. qBecause the deadline of the tasks are known a priori to be processor. L, is defined as the L -L . Obvio w on,
T, T is used as the size of bins for the FFD heuristic. and L T/2, as illustrated in Figure A. From now on,

where no confusion can be incurred, L. is also used to
The scheduling algorithm proceeds as follows: First, denote the time interval whose length is L.. L. and L, are

the primary tasks are arranged in the order of decreasing also used in the similar manner.
computation times, denoted as P, P2, P'. Second, the
FFD heuristic is used to schedule the primary copies of the
tasks into bins with size T. More specifically, we begin with Lp Tf2 Lq T
one processor. Once the assignment of a task fails for the
existing processors, a new processor is added. Tasks are
assigned to processors in the order of their decreasing com-
putation time. In other words, task Pi is scheduled before Lp

task P," where i <j. Task Pi is assigned to the lowest-
indexed processor on which its finishing time is less than
the period T. The schedule thus obtained is called the pri-
mary schedule. Let the number of processors required be Figure A
n. It is apparent that though the tasks are schedulable to
finish before the deadline, at least one of the tasks will miss In Figure 1. for example, L and L are equal to 5 and

its deadline if theme is a failure. Therefore, the following 9 respectively for processor 1. ?or processor 2, LP is 4. and

steps are necessary. Third, the primary schedule is dupli- Lq is 9.

cated on another set of m processors to form the backup With the definition of L. as above, the swapping rules
schedule. The tasks in the backup schedule are swapped for each processor in the backup schedule can be described
based on the swapping rules to be defined below. Fourth, as follows:
the tasks in the two schedules--primary and backup sched-
ules are all reirmox- according to the following renaming Swapping Rules:
rule, such that the primary schedule uses 2 x m processors (1) Tasks in L. and tasks in L, are swapped together.

I.!

Though the main focus of our scheduling algorithm is to
LT/2 Lq IT guarantee tasks with hard deadlines to meet their deadlines

even in the presence of processor failures, tasks with soft

Primary Lp deadlines still have ample time for execution if there is no
processor failure or the number of processor failures is

Figure D small. This is achieved through the scheduling of primary

Backup Lp copies to finish around half of the period.77 71 B pThe time complexity of the algorithm is 0 (nm) if the
tasks have already been sorted according to their computa-

Figure E tion times. The sorting can be done in 0 (nlogn) time.
Figures D & E: Any. twin schedules after Thus, the complexity of this algorithm is dominated by the

swapping but before renaming sorting process.

Because the multiprocessor scheduling problem is
Case 2: s L, as shown in Figures D & E. known to be NP-complete, we are hopeless in finding an

The tasks in L are swapped with the tasks in L,. First optimal solution to the problem even when the number of
we claim that there are at least two tasks in L,. Suppose tasks is small (e.g. 10). Thus, we consider the most ideal
there is only one task in L,. Because L. < L,, i.e., the corn- case, which we call "best possible". The number of proces-
putation time of any task in L. is shorter than the computa- sors used in the most ideal case is the result of taking the
tion time of the only task in L,, this contradicts the FFD ceiling of the result of dividing the sum of computation
algorithm for assigning tasks in the order of decreasing times of all the tasks (primary and backup) by the cycle.
computation time to processors. Therefore there are at least The performance of the scheduling algorithm and the "best
two tasks in L,. We further claim that if there is no overlap- possible" case is shown in Figure 4. The computation time
ping between the first primary copy in L, of Figure E and of each task is randomly generated from the range of [1,
its backup copy in L, of Figure D, there is no overlapping 20]. The period T is 90 time units. As we can see, there is
between the primary copy of any task and its backup copy only one processor difference in most of the cases. In other
on the twin processors. Suppose task w is one of the tasks, words, the qrh Juling algorithm finds near optimal solu-
but not the first task in L, of Figure E and its primary copy tions.
overlaps with its backup copy in L, of Figure D. Then the
computation time of task w must be longer than that of the
first task in L,. This again contradicts the rules used by FFD V. Conclusion

to assign tasks in the order of decreasing computation time In this paper, we have identified the real-time fault-tel-
to processors. Now suppose that the first primary task in L, erant multiprocessor scheduling problem and proposed an
of Figure E overlaps with its backup task in L,* of Figure D efficient scheduling algorithm to solve it. Experiment
for the length of £ >0 time unit, then the computation time results show that the scheduling algorithm finds near-opti-
of this task is L. + C >LL which again contradicts the rule mal solutions. We have also shown that one arbitrary pro-
used by FFD to assign tasks to processors. We have shown cessor failure can be tolerated by the scheduler.
that there is no overlapping between the primary copy of There are many open questions which need to be
any task in L, of Figure E and its backup copy in L, of Fig- There are to den ext ions h ard real-
ure D. Since L, s L,, the primary copy of any task in L of answered in order to design extremely reliable hard real-
Figure D can not overlap with its backup copy in L. of fig- time systems. The case where tasks have different periods
SUre E. in the scheduling problem is still an open problem. Another

problem remains open where the processors available in the
From the above two cases, it is clear that for any pair of system are all un.iform processors (the speeds of the proces-

twin processors, one arbitrary processor failure is tolerated sors have linear relations). These are the topics for our
and the deadlines of the tasks are guaranteed. A future research.

IV. Analysis and Performance Evaluation References

It is apparent that the scheduling algorithm meets the (Anders83] Anderson, T. and Knight, J.C., A Framework
scheduling requirements identified in Section II. In the for Software Fault Tolerance in Real-time Systems,
worst case, only one processor failure can be tolerated. In IEEE on Software Engineering, SE-9(3), May 1983,
the best case, up to Lm/2J processor failures can be toler- pp. 355-364.

ated, where m is the total number of processors used. (Balaji89] Balaji, S. et al., Workload Redistribution for

I',

Fault-Tolerance in a Hard Real-Time Distributed Com-
puting System, FTCS-19, Chicago, Illinois, pp. 366-
373, June 1989.

[Bannis83] Bannister, J.A. and K. S. Trivedi, K.S., Task T1 T2
Allocation in Fault-Tolerant Distributed Systems. Acta =
Informatica, 20, Springer-Verlag, 1983. ProcessOrl 5 4

[Bertos9l] Bertossi, A.A. and Mancini, L., Fault-Tolerant
Task Scheduling in Multiprocessor Systems, Tech. ProcessorZ 4 3 2
Report, Universita di Pisa, Italy, 1991. A

[Dertou89] Dertouzos, M. and Mok, A.K-L, Multiprocessor T3 T4 TS
On-Line Scheduling of Hard-Real-Time Tasks, IEEE
Trans. on Computer, 15(12), December 1989, pp.
1497-1506.

(Krishn86] Krishna, C.M. and Shin, J.C., On Scheduling
Tasks with a Quick Recovery from Failure, IEEE
Transactions on Computers, C-35(5), May 1986, pp.

I 448-454.

[Lawler83] Lawler, E.L. and Martel, C.U., Scheduling Peri-
odically Occurring Tasks on Multiple Processors, 5 T=10
Information Processing Letters, 12(1), 1981, pp. 9-12. "4 -

[Liestm86] Liestman, A.L. and Campbell, R.H., A Fault Processorl
Tolerant Scheduling Problem, IEEE Transactions on
Software Engineering, SE-12(l1), November 1986, pp. Processor2
1089-1095. !A

Processor3 54

P ocessors Processor4 4 13 12
2 'N
21 Figure 221
1-

l.17
14.

1 T=1011

1 ~Heuristic
Best Possible Processori 5 (P) 4 (B2)~T=90, 1<=Cic-" 19I Processor2 4 (p2) 5 (B 1)

Processor3 4 (P3)

W I ou
1

1 13' Processor4 3(P 2 4(3)• J • T-asks P

Figure 4: Performance of Heuristic
Figure 3

Integration of a Database System with Real-Time Kernel
for Time-Critical Applications

Sang H. Son, Stavros Yannopoulos, Young-Kuk Kim, and Carmen C. Iannacone+

Dept. of Computer Science
University of Virginia

Charlottesville, VA 22903, USA

Abstract only the consistency of the database. Locks and time-
driven scheduling are basically incompatible, resulting

Transactions in real-time database systems in response requirement failures when low priority
should be scheduled considering both data consistency transactions block higher priority transactions. New
and timing constraints. Since a database system must techniques are required to manage the consistency of
operate in the context of available operating system scr- real-time databases, and they should be compatible with
vices, an environment for database systems develop- time-driven scheduling and meet both the required tem-
ment must provide facilities to support operating system poral constraints and data consistency.
functions and integrate them with database systems for To address the inadequacies of current database
experimentation. We chose the ARTS real-time operat- systems, the transaction scheduler needs to be able to
ing system kernel. In this paper we present our experi- take advantage of the semantic and timing information
ence in integrating a relational database manager with a associated with data objects and transactions. A model
real-time operating system kernel and our attempts at of real-time transactions needs to be developed which
providing flexible control for concurrent transaction characterizes distinctive features of real-time databases
management. Current research issues involving the and can contribute to the improved responsiveness of
development of a programming interface and imprecise the system. The semantic information of the transactions
computing server are also discussed. investigated in the modeling study can be used to

develop efficient transaction schedulers [Son9Ob,
1. Introduction Son911].

A database system must operate in the context of
Time is the key factor to be considered in real- available operating system services, because correct

time database systems, and the correctness of the system functioning and timing behavior of database control
depends not only on the logical results but also on the algorithms depend on the services of the underlying
time within which the results are produced. Transactions operating system. As pointed out by Stonebraker, oper-
must be scheduled in such a way that they can be com- ating system services in many systems are not appropri-
pleted before their corresponding deadlines expire. For ate for support of database functions [Ston8]. In many
example, both the update and query on the tracking data areas, such as buffer management, recovery, and concur-
for a missile must be processed within given deadlines, rency control, operating system facilities have to be
satisfying not only database consistency constraints but duplicated by database systems because they are too
also timing constraints, slow or inappropriate. An environment for database sys-

Conventional database systems are typically not tems development must, therefore, provide facilities to
used in real-time applications due to the inadequacies of support operating system functions and integrate them
poor performance and lack of predictability. They are with database systems for experimentation.
designed to provide good average performance, while The ARTS real-time operating system kernel
possibly yielding unacceptable worst-case response under development at Carnegie-Mellon University
times. In addition, conventional database systems do not attempts to provide a "predictable, analyzable, and reli-
schedule their transactions to meet response require- able distributed real-time computing environment"
ments and they commonly lock data tables to assure which is an excellent foundation for a real-time database

Ws work was supported in part by ONR under co t system [Tok89I. The ARTS system, which provides sup-

N00014-91 -J-1102. by Naval Ocean Systems Center, by DOE, and by por for programs written inC and C++, implements dif-
IBM Federal Systems Division. + Curently employed with SRA Cor- ferent prioritized and non-prioritized scheduling
poration. algorithms and prioritized message passing as well as

I

supporting lightweight tasks. All of these features are history, the priority order does not reflect the past execu-
important when cowidering a real-time database. tion history and may dynamically destroy the order set

We have investigated the issues for integrating up in the past execution, hence serializability. Most
real-time database systems with operating system ker- research efforts on real-time database systems concen-
nels, such as the features a database system requires Irate on scheduling algorithms to solve the conflicts
from real-time operating system kernels to provide real- among multiple real-time transactions in multi-user
time transaction support. We have used the relational environment. However, some systems assume a single
database technology since it provides the most flexible user, dedicated processor database system. In such an
means of accessing distributed data. Our research effort environment, there is no need to schedule multiple real-
resulted in a new database manager for distributed real- time tasks on a single processor.
time systems on top of ARTS. The result, RTDB, con- For example, CASE-DB is developed as a sin-
sists of a multi-threaded server which accepts requests gle-user, disk-based, real-time relational DBMS, which
from several clients. It provides a three-tiered approach uses the relational algebra as its query language
for supported media types, offering memory-resident [Ozso9O]. In CASE-DB, it is assumed that the probabil-
data options, local disk storage, and access to the UNIX ity that the query is not executable within the deadline is
file system. This support of various media types pro- near to 1. To process this kind of real-time queries by
vides developers the flexibility to choose appropriately the given deadline, they restrict the queries using several
those that best suit their needs. In addition, we have techniques, such as sampling scheme for aggregate que-
incorporated the notion of imprecise computation ries. Since real-time database grows by time quickly,
[Liu9O] into RTDB to produce meaningful results before even for periodic query, the processing time can be dif-
the deadline of a task by trading off the quality of the ferent depending on the number of scanned tuples or the
results for the computation time of the task. In this paper size of the relation. Thus the worst case execution time
we present our experience in integrating a relational of a transaction can be hard to determine or impractical.
database manager with a real-time operating system ker- Nevertheless, the question is how practical the assump-
nel, and our attempts at providing flexible control for tions made in CASE-DB would be in actual real-time
concurrent transaction management using a technique system environments. Furthermore, this system assigns
called workload mediation. Current research issues priority to the part of a relation C'fragment set"), instead
involving the development of a programming interface of assigning a priority to a query. Then, the remaining
and temporal consistency are also discussed. problem is how to agree a prior on semantically mean-

ingful subset of each relation. RTDB diverges from this

2. Comparison with Other Systems design philosophy in many ways, being a multi-user,
R project is distributed real-time DBMS.

One of the principal goals of the ARTSproj Supported media types also differ among real-
to provide a more easily extensible real-time environ- time database systems. HP-RTDB, one of Hewlett Pack-
ment than is currently enjoyed by programmers devel- ard's Industrial Precision Tools, provides software
oping on other kernels. To that end, ARTS requires application developers with a tool to structure and
better data management facilities than many other ker- access memory-resident data. Essentially, HP-RTDB is
nels offer. RTDB on ARTS represents a combination of a library of routines used to define and manipulate a
desirable aspects of database technology and develop- database schema, build the database in memory, as well
ment flexibility. In comparing RTDB with other existing as load and unload, and write or read data to and from it.
systems, we note some differences between the It also provides mechanisms for archiving schema and
approach we are taking and that of other research or data and storing timestamp information. ARTS-RTDB
commercial products. supports a three-tiered approach to data storage. The

In many cases, real-time database systems user's options for data storage include memory-resident
should provide facilities to process concurrent transac- relations, RAM-based disk relations, and storage on the
tions from multiple users. It requires protocols and algo- UNIX file system. Each media has its own advantages
rithms for transaction scheduling and concurrency and drawbacks in terms of predictability, performance,
control. In real-time transaction scheduling, the actual and recoverability. The relation media abstraction is
execution order of operations is determined by two fac- demonstrated in Figure I which depicts the ARTS-
tors: priority order and serialization order. The difficul- RTDB testbed at the University of Virginia. Naturally,
ties in real-time transaction scheduling arise from the access times decrease along this continuum. This sup-
fact that these two factors have different natures and are por of various media types provides developers the
constructed in different ways. While the serializable
excutionsordter is sdrifetlys. bound the pastexecution flexibility to choose appropriately those that best suit
execution order is strictly bound to the past execution their needs. Also, we provide the ability to cross the

Vita Meoy Sun3/50 Sun 3/50
srver RTDB|

UNI

serial port A serial port B• H Sun 3/280 Sun 3/60 I

•File Server se Cnsl

Figure 1. University of Virginia ARTSIRTDB Testbed

boundaries between these media, and to utilize several other distributed, object-oriented operating systems do,
media types in an individual query for both the source while at the same time including elements of temporal
and resultant relations. A detailed discussion on the per- significance to the services it provides. This integration
formance of those media types are reported in [Son91 b]. of data, thread, and concurrency control greatly facili-

tates real-time schedulability analysis. ARTS can sup-

3. The ARTS Real-Time OS Kernel port both hard and soft real-time tasks as well as
ereal-time periodic and sporadic ones [Tok89].

Research in the area of distributed, rTo support time-critical operations, the ARTS
operating systems indicates that most are designed for a programming language interface allows designers to
specific need, and as such are difficult to build, main- specify timing requirements and the chosen communi-
tain, and modify; in addition, they do not afford the cation structure so that they are visible at both the Ian-
capability of predicting runtime behavior during appli- gnage and system level; this allows the system-wide
cation design. In fact, few non-real-time operating sys- ARTS environment to make scheduling decisions based
tems provide a functionally complete set of general on both temporal constraints and priorities of transac-
purpose, real-time task and time management functions, tions. The Integrated Time-Driven Scheduler (ITDS)
despite the fact that the user community is expressing model of ARTS is more effective than the common pri-
the desire for increasingly complex applications of this ority-based preemptive scheduling of many real-time
type. Since the success of applications in real-time com- systems. Such simple schedulers become confused dur-
puting is primarily contingent on a system's temporal ing heavy system loads when they cannot decide which
functionality, what is needed is an environment in which tasks are important and should be completed and which
the system engineer can analyze and predict. during the tasks should be aborted, causing unpredictability in the
design stage, whether the given real-time tasks having applications. The ITDS model, however, employs a
various types of system and task interactions (i.e. mem- time-varying "value function" which specifies both a
ory allocation/deallocation, message communications, I/ task's time criticality and semantic importance simulta-
0 interactions, etc.) can meet their timing requirements. neously. A hard real-time task can be characterized by a

In an attempt to provide such functionality, step function where the discontinuity occurs at the dead-
ARTS provides the process and data encapsulation that line, while soft real-time tasks are described by continu-

ous (linear or nonlinear) decreasing function after its operation with a time fence is invoked, the operation
critical time. In addition. ARTS' designers have sepa- will be executed (or accepted) if there is enough remain-
rated the policy and mechanism layers, so that users can ing computation time against the specified worst case
implement new scheduling policies with a minimum of execution time of the operation for the caller. Otherwise,
effort, and even dynamically changing the policy during it will be aborted as a time fence error. The objective of
runtime. this extension to a normal object paradigm is to prevent

The issue of priority inversion is crucial to pro- timing errors from crossing task or module boundaries
viding semantically correct system behavior in addition (as often happens in traditional real-time systems which
to addressing temporal concerns. Priority inversion use a cyclic executive) and to bind the timing error at
occurs when a high priority activity waits for a lower every object invocation.
priority activity to complete. Resource sharing and com- On top of the ARTS foundation we have built a
munication among the executing tasks can lead to prior- relational database manager using message passing
ity inversion if the operating system does not manage primitives and employing the client/server paradigm.
the available resource set properly. Significant research The result, RTDB, currently consists of a multi-threaded
in the construction of ARTS was done to avoid priority server which accepts requests of several clients. Based
inversion among concurrently executing tasks; in the on the temporal urgency of the request. the server deter-
processor scheduling domain, low priority servers mines whether it can commit the transaction or if it has
which provide service to clients of all priorities are sus- to reject it.
ceptible to inversion. For example, when a low priority
request is being serviced, and a high priority task 4. The RTDB Real-Time Database Manager
requests the same service, the high priority request RTDB is a relational database manager written in
waits, since the server's computation is non-preempt- brid C-ba gage called ARTS/C++ designed

able. Any task of higher priority than the server may
preempt the server itself, however, so if a medium prior-
ity task arrives it preempts the server indefinitely, caus- plete set of relational operators - such as join, projec-

ing the high priority job to be lost in the shuffle. ARTS tion, selection, union, and set difference - but also

employs a priority inheritance mechanism to propagate other necessary operators such as create, insert. update,

information about a single computation which crosses delete, rename, compress, sort, extract, import, export,

task boundaries. That is, if a server task accepts the and print. These operators give the user a good amount

request of a client, the server inherits the priority of the of relational power and convenience in managing the

client. Furthermore, the server should also inherit the database.
priority of the highest priority task waiting for the ser-W aedvlpe w ifrn.knso let
vice. for RTDB. One is an interactive command parser/

The notion of time encapsulation cannot be request generator that makes requests to the server on

divorced from the basic structure of ARTS, in which behalf of the user. This client looks and behaves simi-
every computational entity is represented as an object, May to a single-user database manager. It is possible to

called an artobject. An artobject is defined as either a run the client without knowing that any interaction
passive or an active object. In a passive object there is between server and client is occurring. The other client
no explicit declaration of a thread which accepts incom- is a transaction-generating "batch" client, representing a

ing invocation requests while an active object contains real-time process that needs to make database access

one or more threads defined by the user. In an active requests.

object, its designer is responsible for providing concur- The RTDB server object is the heart of the data-
Scontrol among coexecuting operations. When a ase management system. It is responsible for creatingrency storing the" relations, receiving and acting on

new instance of an active object is created, its root
thread will be created and run immediately. A thread can requests from multiple clients, and returning desired
create threads within its object. information to the clients.

The ARTS kernel supports the notion of real- The server object defines three threads. The root

time objects and real-time threads. A real-time object is thread is an aperiodic thread, which is automatically

defined with a "time fence," a timer associated with the executed by ARTS upon invocation of the server. The

thread which ensures that the remaining slack time is server activates one or more worker threads. The
larger than the worst case execution time for the opera- worker threads are aperiodic and each one has a differ-
tion. A real-time thread can have a value function and ent priority which will match the priority of the mes-

timing constraints related to its execution period, worst- sages it will service. The backup thread is a low priority
case execution time, phase, and delay value. When an peodic thread responsible for periodically bad ing up

the relations that reside only in main memory. thread which accepts the messages from the clients and
The root thread of the server is responsible for puts them in the appropriate worker queue according to

binding the server's name in the ARTS name server so their priority. It is intrinsic in implementing various
that the clients can find it and send requests. It is also transaction prioritizing algorithms which utilize seman-
responsible for reading the relations into its local mem- tic information provided by the clients and/or the data-
ory, initializing the lock table and the blocked request base transaction requests such as user-entered runtime
queue, instantiating the backup thread and the server estimates, deadline constraints, or command-to-priority
worker threads. There is usually one worker thread cre- mappings. Determining the proper balance of control
ated for each priority level. After completing these between ARTS primitives and RTDB explicit mediation
tasks, the root tuhead enters an infinite loop that accepts will help us achieve the most beneficial symbiosis of the
database requests from any client. The requests come in system's resources. Figure 2 illustrates the mediator
as packets. RTDB provides two different types of pack- mechanism incorporated within the server object.
ets. call packets and return packets. The call packet, cre- This mechanism is unobtrusive from the view of
ated by a client, contains all the information that the system-wide scheduling, because it does not do any
server needs to carry out the desired database access scheduling on its own. It only breaks the incoming
operation. Since different commands require different workload up among the worker pool. Controlling what
information, the call packet has a variant field contain- criteria are used to make this static assessment is impor-
ing different information for each command. When the tant, and Table 1 indicates the techniques we are investi-
server completes the processing of the request, it returns gating. The ARTS OS provides eight priority levels. In
a packet to the client with the information requested. the first two cases, there are as many worker threads as
This packet is called a return packet. The return packet priority levels and the mapping is direct; in the first case,
is created by the server and also has a variant field that
carries command specific information. S6tVe7 Parameters

The communication between the server and cli-
ents is performed by the ARTS communication primi- direct map. object diem object prry
tives: Request, Accept, and Reply. The communication direct map, message diem message priority

is synchronous; when a client issues a Request, it is modulo map, object diem object priority

blocked until the server Accepts and Replies to the mes- moduto map message diem message priority
sage. This may cause some problems, especially in a commmad mapping requested command type
real-time environment, for two reasons: priority inver- complexity mapping rquested command cotpiciuty rating
sion and data sharing, coe mappinthgR dies host network ad numpberThe AMT kernel (and thus the RTDB system) ,r/oempig cin' e ewr dnme

suppouts eight message priorities. When the root thread media based mapping media type(s) housing relation(s) in query
Accepts a message, it extracts priority information from Table I
the message packet. The root thread then enqueues the Workload mediation strategies and their parameters
request on the message queue (i.e. pending request
queue) of the worker thread designated to service
requests of that priority level. If inactive, the worker according to message priority, and in the second case,
drlead will be polling its queue; if active, the requests according to the priority of the client that sent the mes-
will be processed in FIFO order. Note that in this way sage. In the next two cases, the priority levels are a mul-
we can easily exploit the scheduling merits of the under- tiple of the available workers so the priority of the
lying ARTS kernel without circumventing its priority- incoming message (case 3) or that of the client that sent
based scheduling mechanism. Since the worker thread's it (case 4) has to-be divided by a specific number before
priority matches that of the messages it services, it will it is put in the appropriate worker queue. In the com-
only be scheduled for the CPU in an interval where its mand mapping, the message or client priority is ignored
priority is currently the highest in the system. This is a and instead the priority that has been preassigned to
general case; for those instances where the scheduling each one of the database operations determines the
technique is not priority based, or ARTS priority inherit- worker that will process the request. The next case
ance mechanism is employed, these decisions will natu- (complexity mapping) is a variation of the previous one
rally be reflected in the workers. where priority is determined according to previously

This technique of distributing requests among a calculated complexity rates for each operation. Site/
pool of workers based on information contained in the node mapping maps each node participating in the dis-
request packet is called workload mediation. In our tributed system to one worker. Finally, media based
system workload mediation is realized by the server root mapping maps the request according to the media

a

I
RTDB Server Object RTDB Client RTDB Server Object RTDB RTDB Client

Object Mediator Object

Lock Table
I Lock T Object

Trans. Queuel Trans. Queue]
SeSrerveeP Serve

WoWorker Worker

Figure 2. Mediator as internal server object Figure 3. Mediator as separate object

type(s) (virtual memory, hram, file system) housing the 'worker replies to a client without completing a request
relation(s) used in the request. We try as much as possi- when it needs to return more information than can fit in
ble to make mediation invisible and uncontrollable from a single packet. In such a case, the worker sets a contin-
the vantage point of the clients, primarily for security uation flag indicating that there is more information to
reasons-- the server has the ability to ignore a query's be sent back to the client. The client must make continu-
requesed priority to prevent users from improperly ation requests to the server until it gets all the informa-
seeking a higher priority than they deserve. Also, since don requested. To maintain the consistency of the
the server is in a better position to analyze the current database, the RTPB server needs to handle conflicting
situation than remote users, allowing the server to moni- requests properly. For example, a problem occurs when
tor itself minimizes the amount of spurious parameters some request or part of a request (as in a multi-relational
that might enter the mediation algorithms, query) has to be blocked since it needs to lock a relation

Another method of implementing this technique that is already locked. Our solution is to use a lock table
involves creating a dedicated object which acts as an that keeps track of which relations are in use at any
intermediary between the RTDB client and server (Fig- given time. Currently, we use a coarse granularity for
ure 3). The advantages of this implementation are locks, where the worker locks the file which contains the
enhanced abstraction for the mediation algorithms, and relation it needs to access. If a request for file A comes
better modeling of the components involved. Also, algo- in while file A is being used by another active worker,
rithm implementors have a centralized repository of the then the new request must be put on an internal queue
routines they require and a strong definition of the com- until A and any other files it needs are available. Using
munication interface they are required to maintain, coarse granules incurs low overhead due to locking,
However, it is our contention that the disadvantages of since there are fewer locks to manage. However, it also
this scheme outweigh its merits. The primary disadvan- reduces the degree of concurrency, since operations are
tage is a severe performance decrease due to the over- more likely to conflict. Fine granularity locks (e.g., tuple
head of increased inter-object message passing. In locks) improve the degree of concurrency by allowing a
addition, many of the data structures needed by the transaction to lock only those data items it accesses. But
worker threads are also needed by the mediation algo- fine granularity involves higher locking overhead, since
rithms. the number of locks requested and that to be maintained

Returning to our model, the worker thread of the will be higher. We are investigating an appropriate
RTDB server performs the client's request to access the granularity level for our database system, including
database. It checks its request message queue, calls the multi-granularity locking mechanisms [Bem87J.
appropriate database function that executes the Whenever the worker becomes free, it first
requested operation, and replies back to the client. The checks its queue of blocked requests. If there are any

requests in the block queue that can be unblocked, it ent image (that is, certain C++ tokens which allow
dequeues the request and processes it. If no request in object creation and specification). To expedite the
the block queue is ready to be processed, the worker development process, we provide a thoroughly corn-
looks to its incoming request queue. mented, standardized client template with which devel-

opers need only combine their source and compile. All
5. The Programming Interface the system specific declarations and function calls that

Conventional database systems often p e the application developer need not be concerned about
someint centhrouh whtasey " rte ofunctionality are coded in the client template. These include the datasome interface through which they export fntoaiy structure declarations used by the API and all the object

to application developers. Such programming interfaces and thread declarations and instantiation function calls.

simplify storage and retrieval tasks and provide a When writing an application, the user forms queries by

scheme for the creation, manipulation, and destruction placing o ppration-specificriformationrint (t

of database files. For systems utilizing the client-server placing operation-specific information into function

paradigm, communication primitives can also be parameters in a specified format and then calling the

accessed through such an interface, achieving further appropriate function. This way, when interaction is not
needed, a number of database operations can be submit-

Programmpleenterfacesinreal-ti me daet , ted in batch mode and intermediate results can beProgammng ntefacs inrea-tie dtabses manipulated and acted upon in a predefined, user-speci-

differ greatly in terms of application-developer friendli- fled manner, coded in the application program.
ness. Some DBMS interfaces are tightly coupled to the- We codenthe appo n program.

oretical techniques such as the relational algebra. We currently support a small subset of database
tica techniqus isu an example relathistyeo fina gebra, operations through the API, namely: Create, Insert,CASE-DB [Whie9hi is an example of this type of inteo- Update, Select. This is a minimal set of operations

face. While this interface satisfies the desired function- required to perform experiments on any relational data-ality requirements for a database, it can be awkward to base. We are planning to support a complete interface
use when developing harge, complex applications. For baeWerepnigtosprtacmleitrfe
uhese whenpdevloping largomle x appricatitonus. Fer- by providing the full set of database operations currentlyIthese applications it is more appropriate to use an inter- sporebyuritatvecen
face similar to those already in use in non-real-time sys- supported by our interactive client

teas. These application program interfaces consist of 6. The RTDB Imprecise Server
library functions.

To facilitate the construction of application cli- Certain real-time applications require that some
ents, we have written an application programming inter- result of initiated computation be available at a deadline,
face (API) for the database command set which hides often at the cost of absolute precision. Much research
the implementation details of the system as much as has been done in this area, aptly named imprecise corn-
possible. In this way, developers who are more familiar ptaation. [Liu90]. The concept behind imprecise corn-
with function-call interfaces can quickly adjust to the putation is most often associated with numeric
task of constructing custom application clients instead computations whose precision is improved proportion-
of application programs. In addition to providing rou- ally with the amount of time spent performing the calcu-
tines as in other relational databases, we can hide the lation. However, several instances of using this
details of ARTS' Request/Accept/Reply message pass- technique with a database merit consideration.
ing sequence, by developing an appropriate program- With RTDB, we have created a server object
ming interface for RTDB. Lack of such an interface capable of performing imprecise query retrievals. Basi-

would require the application developer to be familiar cally, we provide the client a mechanism to specify a
with the RTDB message passing mechanism, since it is deadline by which a computation (query) must comn-
necessary to ensure correct communication between the plete. This was easily accommodated by adding a dead-
application program and the server. Moreover, the user line field to the request packet that the client sends to the
would have to be concerned with scheduling and con- server. Now the server knows, not only the operation
currency issues, because of the multi-user, multi-pro- requested, but also the time constraints upon the opera-
gramming nature of RTDB. tion. The server then attempts to complete the query,

By providing a programming interface, the client checking repeatedly at strategic intervals whether it is
and server appear as if the application client were the within danger of missing the specified deadline. If it is
only one interacting with the server. This goal is only not, the server continues working and returns the exact
partially attainable, since the physical code provided by result of the query to the user. If unable to complete the
the application developer must coexist in the same entire query, the server will return imprecise data. pro-
source code file the as code which specifies constants vided the computation had proceeded to a point where
and declarations necessary to construct the complete cli- the output would be meaningful and appropriate. This is

Altoted Execution Time Number of Tuples Retrieved Calculated Average

250 milliseconds 38 1344.4737

500 milliseconds 214 2004.9766

750 milliseconds 393 1935.1247

1 second 582 1906.7096

I second 250 milliseconds 748 2051.6618

1 second 500 milliseconds 922 2195.1106

1 second 750 milliseconds 978 2273.7606

Table 2. Elapsed time. tuple count, and computed results for imprecise server

an important caveat to consider, as returning certain vol- attribute in a relation. The relation file involved con-
atile data structures could have serious detrimental tamined 978 tuples. We initially set the deadline time to be
effects if permitted. The result is that all tuples returned 250 milliseconds from the packet transmission time at
from a query match the search criteria. However addi- the client site and we incremented the deadline interval
tional matching tuples may also exist in the relation, and by 250 milliseconds until a precise answer was
they would have been retrieved had sufficient time been obtained.
allotted.

The intervals at which deadline checks are made 7. Conclusions and Future Work
were carefully calculated. Each database request is ser- A real-time database manager is one of the criti-
viced by breaking down the operation in simple primi- cal components of a real-time system, in which tasks are
tive operation& This, in turn, requires making associated with deadlines and a significant portion of
appropriate function calls that implement the primitive data is highly perishable in that it has value to the mis-
operations. The execution time of each one of those ion only if used in a timely manner. To satisfy the tim-
functions is variable and sometimes it is not enough to s
check for a missed deadline upon calling and returning ing requirements, transactions must be scheduled
from the function. The structure of several functions had considering not only consistency constraints but also
been changed in order to provide real-time services, and timing constraints. In addition, the system should sup-

in many cases, deadline checking had to be performed port a predictable behavior such that the possibility of

more than once in a function body. One problem that missing deadlines of critical tasks could be determined

hinders the transformation of a non-real time function to ahead of time, before the deadlines expire. Since the

a real-time one is recursion. Recursive functions are not characteristics of a real-time database manager ar dis-

amenable to being interrupted as easily as iterative func- tinct from conventional database managers, there are

tions. Due to these and other minor causes, we have different kinds of issues to be considered in developing
used the state machine approach in representing the exe- a real-time database manager. For example, priority-

cution stages of each function, and to "pump" through based scheduling and memory resident data are two

the necessary actions with a measurable amount of time suchissues.

allotted to each stage of execution. The state machine In this paper, we have presented an experimental

approach proved to be very useful because it simplified database manager developed for time-constrained dis-

the analysis of associated routines. It is our hypothesis tributed systems. The foundation now exists for a real-

that the state machine is a useful tool for the real-time time relational database manager. We have discussed

database, since it isolates the various stages of action our work toward providing a flexible programming

and allows run-time estimates to be computed more eas- interface and standard client template to allow quick

ily. prototyping and fast modeling. We also have presented

Table 2 indicates an instance where an imprecise our experiences in developing a server based on the

computation may yield a satisfactory answer. Here, we notion of imprecise computing. RTDB described in this

issued the aggregate operator "average" on a numeric paper with its multi-threaded server modrl is an appro-
priate research vehicle for investigating riew techniques

and scheduling algorithms for distributed real-time data- Real-Time Systems Symposium, Orlando,
base systems. Florida, Dec. 1990, to appear.

As with any active research project, there are [Liu9O] Liu, J. et al., "Algorithms for Scheduling
several technical issues associated with real-time data- Imprecise Computations," ONR Annual
base systems that need further investigation. For exam- Workshop on Foundations of Real-Tune
pie, temporal database components are being Computing, Washington, DC. OcL 1990.
investigated for inclusion in RTDB. They will address [ONR9l] ONR Annual Workshop on Foundations of
the desired timestamping of surveillance updates gener- Real-Time Computing, Washington, DC.
ated by radar, sonar, or similar equipment, and temporal Oct. 1991.
consistency requirements of real-time transactions. [Ozso90] Ozsoyoglu, G., et al., "CASE-DB--A Real-
Other potential improvements in efficient implementa- Time Database Management System," Tech.
tion are being examined to determine their overall value Rep. Case Western Reserve University, 1990.
to RTDB. Indices and views are two of them. Since [Sha881 Sha, L., R. Rajkumar, and J. Lehoczky,
such features not only alter the speed and predictability "Concurrency Control for Distributed Real-
of the system but also the basic file structure, they need Time Databases,"ACM SIGMOD Record 17,
to be examined closely on their own and then as new 1, Special Issue on Real-Time Database Sys-
elements within the existing system. tems, March 1988,82-98.

We are also examining inclusion of run-time [Sha9l] Sha, L., R. Rajkumar, S. H. Son, and C.
estimates for various commands within the server which Chang, "A Real-Time Locking Protocol,"
will enable it to offer a choice of service to clients IEEE Transactions on Computers, vol. 40,
whose work cannot be completed in the time allotted: no. 7, July 1991, 793-800.
imprecise results or a missed deadline. Conceivably [Son88] Son, S. H., guest editor, ACM SIGMOD
some clients might wish to simply exclude some queries Record 17, 1. Special Issue on Real-Tune
which might introduce incomplete -es Its, and terminate Database Systems, March 1988.
as quickly as possible. These execution estimates would (Son90] Son, S. H. and C. Chang, "Performance
be maintained in a table in the ecrver and will be based Evaluation of Real-Time Locking Protocols
on several factors such as relation file size, query type, using a Distributed Software Prototyping
media types involved, and current resource utilization. Environment," 10th International Confer-
Properly implementing such a heuristic mechanism will ence on Distributed Computing Systems,
require carefully controlled execution timing, and some Paris, France, June 1990, 124-131.
consideration of the temporal impact of held data locks. [Son9Ob] Son, S. H. and J. Lee, "Scheduling Real-

Time Transactions in Distributed Database
References Systems," 7th IEEE Workshop on Real-Tnme

Operating Systems and Software, Charlottes-

[Abb89J Abbott, R. and H. Garcia-Molina, "Schedul- ville, Virginia, May 1990,39-43.
ing Real-Time Transactions with Disk Resi- [Son9l] Son, S. H., P. Wagle, and S. Park. "Real-
ent DTime Database Scheduling: Design, Imple-

dent Data," VLDB Conference, August 1989. mentation, and Performance Evaluation,"
[Buc89] Buchinann, A. et al., "Time-Critical Data- International Symposium on Database Sys-

base Scheduling: A Framework for Integrat- tems for Advanced Applications (DASFA
ing Real-Time Scheduling and Concurrency '91), Tokyo, Japan, April 1991, 146-155.
Control," Fifth Data Engineering L-infer-'91,TkoJanArl91,465.
ence, Feb. 1989,470-480. [Son9lb] Son, S. H., M. Poris, and C. lannacone, .q

ence Feb 198,470480."Implementing a Distributed Real-Time
(Comp91] IEEE Computer, Special Issue on Real-Time DatabasenMang T sed nerna

Systems, vol. 24, no. 5, May 1991. Database Manager," The Second Interna-

[IEEE91] Eighth IEEE Workshop on Real-Time Oper- tional Symposium on Database Systems for

ating Systems and Software, Atlanta, Geor- TyJan , Apri 11 -.
gia, May 1991. Tokyo, Japan, April 1991, 51-60.

[Kor90] Korth, H., "Triggered Real-Time Databases [Ston8l] Stonebraker, M., Operating System Support
with Consistency Constraintsim 16th VLDB for Database Management, Commun. of
withConserenceristency C straints," g 16 .VACM 24, 7 (July 1981), 412-418.
Conference, Brisbane, Australia, Aug. 1990. [Tok89] Tokuda, H. and C. Mercer, "ARTS: A Dis-

[Lin90I Lin, Y. and S. H. Son, "Concurrency Control tributed Real-Time Kernel," ACM Operating
in Real-Time Databases by Dynamic Adjust- Systems Review, 23 (3), July 1989.
ment of Serialization Order," 11th IEEE

Replication Control for Distributed Real-Time Database Systems

Sang H. Son and Spiros Kouloumbis

Computer Science Department
University of Virginia

Charlottesville, VA 22903, USA

ABSTRACT and thus faster average response time without violating
Schedulers for real-time distributed replicated data- data consistency [Son87]. Two different policies can be

bases must satisfy two requirements: transactions should employed in order to synchronize concurrent data accessbase mut saisf tworeqiremnts wanactons ho at'o transactions and to ensure identical replica values:
meet their timing constraints, and mutual consistency of blocking transactions or aborting transactions. However,
replicated data should be preserved. In this paper, we blocking macaus priortinversion H or-
propose a new replication control algorithm, which inte- blocking may cause priority inversion when a high prior-

grates real-time scheduling and replication control. The ity transaction is blocked by lower priority transactions.
algorithm adopts a token-based scheme for replication Aborting lower priority trianstions, though, wastes the
alontrio andoaepts atok-basced shemgeny ofo replcation work done by them. Thus, both policies have negative
control and attempts to balance the urgency of real-time effects on time-critical scheduling.

transactions with the conflict resolution policies. In addi- convtionacrepicai contrliag o
tion. the algorithm employs epsilon-seriulizability Conventional replication control algorithms are syn-

on, nhew aloriectnempls critepionwhicisilonsetria lty chronous, in the sense that they require the atomic updat-(ESR), new correctness criterion which is less stringent ing of some number of copies. This leads to reduced

than conventional one-copy-serializability. The algo- sys e ailbit an crese Thr h as th se
rithm is flexible and very practical, since no prior knowl- system availability and decreased throughput as the size
edge of data requirements or execution time of each of the system increases. On the other hand. asynchronous
transaction is requiredm replication control methods that would allow more trans-

actions to meet their deadlines suffer from a basic prob-
lem: the system enters an inconsistent state in which

1. Introduction replicas of a given data object may not share the same
value. Standard correctness criteria for coherency con-

In Real-time Distributed Database Systems (RTD- trol such as the 1-copy serializability (ISR) (Ber87] are
DES), transactions must be scheduled to meet the timing thus hard to attain with asynchronous consistency con-
constraints and to ensure that the replicas remain mutu- troi.
ally consistent [Son9O0. Real-time task scheduling can be A less stringent, general-purpose consistency crite-
used to enforce timing constraints on transactions, while rion is necessary. The new criterion should allow more
concurrency control is employed to maintain data consis- real-time transactions to satisfy their timing constraints
tency. Unfortunately, the integration of the two mecha- by temporarily sacrificing database consistency to some
nisns is non trivial because of the trade-offs involved, small degree. Epsilon-serializability (ESR) is such a cor-
Serializability may be too strong as a correctness crite- rectness criterion, offering the possibility of maintaining
rion for concurrency control in database systems with mutual consistency of replicated data asynchronously
timing constraints, for serializability limits concurrency. [Pu91]. Inconsistent data may be seen by certain query
As a consequence, data consistency might be compro- transactions, but. iata will eventually converge to a con-
mised to satisfy timing constraints. sistent (ISR) state. Additionally, the degree of inconsis-

In real-time scheduling, tasks are assumed to be tency can be controlled within a specified threshold.
independent., and the time spent synchronizing their The goal of our work is to design a replication con-
access to shared data is assumed to be negligible corn- trol algorithm that allows as many transactions as possi-
pared with execution time. Knowledge of resource and ble to meet their deadlines and at the same time
data requirements of tasks is also assumed to be available maintains the consistency of replicated data in the
in advance, absence of any a priori information. Our algorithm is

In replication control methods, on the other hand, based on a token-based synchronization scheme for rep-
the objective is to provide a high degree of concurrency licated data in conventional distributed databases. Real-

__time scheduling features are developed on top of this

Wis work was supponed in pan¶ by ONR. NRaD DOE. and IBM. platform. Epsilon-serializability is employed as the cor-

rectess criterion that guarantees the robustness of the value of X, T2 sees the database in a state before the exe-
scheme. cution of TI, and in reading the after-value of Y, T2 sees

the database in a state after the execution of T1.

2. Database Model 2.2 Transactions

Before presenting our real-time replication scheme,
we first present the model of the underlying distributed A transaction is a sequence of operations that takes
database system and transaction processing. the database from a consistent state to another consistent

state. Two types of transactions are allowed in our envi-

2.1 Distributed System Environment ronment query transactions and update transactions.
Query transactions consist only of read operations thatA of multiple autono- objcts and return their values to the user.

mous distuter systems cosistes) connectedtip a ono- Update transactions consist of both read and write oper-

nication network. Each site maintains a local databa ations. They execute a sequence of local computations
sysatem ThetsmallEsth uite of in databaccessibleato user i and update the values of all replicas of each associated
system. The smallest unit of data accessible to the user is data object.
called data object. A data object is an abstraction that Transactions arriving at the system are assumed to
does not correspond directly to a real database item. In be non-periodic. A globally unique timestamp is gener-
distributed database systems with replicated data objects, ated for each transaction [Lam78]. Each time a transac-
a logical data object is represented by a set of one or tion is aborted and resubmitted, a new timestamp value
more replicated physical data objects. We assume that is assigned to it. If a transaction T" has a smaller times-
the database is fully replicated at all sites. Read and Write tamp than another transaction T2, we say that T, is the
are the two fundamental types of logical operations that older transaction and T2 is the younger one.
are implemented by executing the respective physical We assume no a priori knowledge of which or how
operation on one or more copies of the physical data many data objects are going to be accessed by each indi-
object in question. A token designates a read-write copy. vidual transaction. However, we assume that the average
Each logical data object has a predetermined number of length of query and update transactions are known in
tokens, and each token copy is the latest version of the order to control the level of inconsistency. Transactions
data object. The site which has a token-copy of a logical that miss their deadlines are immediately aborted.
data object is called a token site, with respect to the log- Read or write operations of the same transaction are
ical data object. In order to control the access to data executed one by one in a serial fashion. Each read and
objects, the system uses timestamps. When a write oper- write carries the timestamp of the transaction that issued
ation is successfully performed and the transaction is it, and each copy carries the timestamp of the transaction
committed, a new version is created which replaces the that wrote it. A conflict occurs when a transaction issues
previous version of the token copy. a request to access a data object for which other transac-

When a transaction performs a write operation to a tion has previously issued a request to access, and fur-
physical data obect, there are two values that are associ- thermore at least one of these requests is a write request.
ated with the data object: the after-value (the new ver- There are three kinds of conflicts: read-write (RW),
sion) and the before-value (the old version). Because the write-read (RW), and write-write (WW) conflicts
before-value is available during the transaction process- (Ber871. In each case, we say that the transaction
ing, it is natural to ask if concurrency can be improved by requesting the new access has caused a conflict.
giving out this value [Bay80]. For example, if the trans-
action T1 has been given a permission to write the new
value of a data object and the transaction T2 requests to 2.3 Token-Based Conflict Resolution

read the same data object, then it is possible to give T2 the
before-value of the data object, instead of making T2 wait Let T, be the transaction which already issued an
until T, is finished. However, an appropriate control access request, and T2 cause the conflict. For each token
must be exercised in doing so, otherwise the database copy of X, conflicts are resolved as the following
consistency might be violated. In the example above, [Son89J:
assume that T, has written a new value for two data (1) RW conflict: If T2 is younger than TI, then it
objects X and Y, and T2 has read the before-value of X. waits for the termination of T1 . If T2 is older than Tt, then
T2 wants to read Y also. If T2 gets the after-value of Y it reads before-value of X.
created by Ti, there is no serial execution of T, and T2 (2) WR conflict. If T2 is younger than T1 , then its
having the same effect because in reading the before- write request is granted with the condition that T2 cannot

commit before the termination of T1. If T2 is older than • Required consistent queries. Queries are specified
T1 , then T2 is rejected. -as such when they are first submitted by the user, and

(3) WW conflict: If T2 is younger than TI, then it they are always guaranteed to return consistent data;
waits for the termination ofT1. If T2 is older than T1, then - Consistent queries. Their final output is correct
T2 is rejected. regardless of any requirement by the user,

The coordinator of an update transaction maintains * Possibly inconsistent queries. In case of such a
the before-list (BL), a list of transactions which read the query, there exists a small possibility that returned values
before-value of any data object in its write set, and the of a replicated data object might reflect an inconsistent
after-list (AL), a list of transactions which write the after- state of the database.
value of any data object in its read set. The BL and AL Consider a read operation of transaction Ti on a data
are used during the commitment phase of every update object X. If the local copy of X has timestamp > times-
t ction. tamp (Td then the local value is returned. Otherwise, an

When a transaction T2 reads the before-value of a Actualization Request Message (ARM) is sent to any
data object locked by TI, the token-site which gives the available token-site to actualize the read-only copy. At
before-value, conveys the identifier of T2 to the coordi- the token-site, an ARM is treated the same as a readnator of T1. Hence, the identifier of T2 is inserted in the request, and the current version of the data object will be

before-list of TI, which stores all the transactions that returned. However, depending on their categories, query
read the before-values of any data object in T1's write- transactions are not always guaranteed to return accurate
set The transaction manager at the read-only site of T2 results.
also conveys the identifier of T, to the coordinator of T2.
Actually, the identifier of T1 is inserted in the after-list of 3. Epsilon-Serializability
T2, which stores all the transactions that write the after-
value of any data object in T2"s read-set. Epsilon-seriizabiliy (ESR) is a correctness crite-

When a transaction terminates (either commits or Epioseiiablt(S)isacrcnssct-Whena tansatio terinaes (ithr comit or rion that enables asynchronous maintenance of mutualI ~ ~~aborts), the coordinator of the terminating transaction nothtealssycroumitnneofuulmust inform the coordinator of each transaction in its AL consistency of replicated data [Pu91]. A transaction withabout the termination by sending Termination Messages ESR as its correctness criterion is called an epsilon-(TM). On receiving aTM from the coordinator of a trans transaction (ET). An ET is a query ET if it consists ofaction iecits BL, the coordinator of the active transaction only reads. An ET containing at least one write is anremoves the identifier of the terminating transaction update ET. Query ETs may see an inconsistent data state(sender of T the the BL. A transaction can cor- produced by update ETs. The metric to control the levelmit only when its BL is empty. By this way, we prevent of inconsistency a query may return is called the overlap.niton-lyzaben execution sequence toiswaye oc r. n It is defined as the set of all update ETs that are active andUpdate transactions have their own private work- affecting data objects that the query seeks to access. If aspace where they initially apply their write operations, query ET's overlap is empty, then the query is serializ-

Update transactions commit by employing a two-phase able.
protocol. In the first phase (vote-phase), an update trans-
action sends an update message to each token-site of 3.1 Query Overlap Considerations
every data object in its write-set. The transaction waits
until it gets a response from all the token-sites for each The overlap of an active query transaction Q can be
data object. If all token-sites vote YES, then the transac- used as an upper bound of error on the degree of incon-
tion enters the second phase (commit phase). It sends the sistency that Q may accumulate. Given that we are inter-
actual value of each data object to be written to the ested in how many update transactions overlap with Q
respective token-sites. Update messages to non token- more than which transactions those are, the term overlap,
sites can be scheduled after commitment. Therefore, a in its further usage, will reflect the cardinality of the set
temporary and limited difference among object replicas of update transactions that conflict with the query ET Q.
is permitted; these replicas are required to converge to More formally, query Q's overlap is described as fol-
the standard ISR consistency as soon as all the update lows:
messages arrive and are processed. An update transac- Overlap(QJ =/I IU, I Ui update trans A
tion that executes its commit phase can never be aborted, Ui active during Q A write-set(Ui)
even if it potentially conflicts with another transaction. o read-set(Q) # 0)/H

Query transactions fall into three different catego- Suppose we have a database of A distinct data
ries as far as the correctness of their response is con-
cerned: objects, and that query transactions read m data objects

on the average, and possibly conflict with update trans- currency than 1 SR in two ways. First, query ETs can be
actions that update n data objects on the average. The processed in any order because they are allowed to see
exact value for the overlap number can be computed as intermediate, inconsistent results. Second, update ETs
follows. We compute the maximum allowable overlap of may update different replicas of the same object asyn-
the query Q for a given degree of query inconsistency p. chronously, but in the same order. In this way, update ETs
The probability that Ui accesses n objects different from produce results equivalent to a serial schedule; these
any of the m objects of Q's read set is: results are therefore consistent.

There are two categories of transaction conflicts that
we examine: conflicts between update transactions and

A - m A - m - 1 A - m -n conflicts between update and query transactions.
P = A A'- 1 A --A Conflicts between update transactions can be either

RWconflicts or WWconflicts. Both types must be strictly
So the probability that Ui has common elements resolved. No correctness criteria can be relaxed here,

with Q (i.e. Q overlapping with U5) is: I - pi. since execution of update transactions must remain I SR
The probability for a query transaction to overlap in order for replicas of data objects to remain identical.

with an arbitrarily chosen update transaction is: Conflicts between update and query transactions are
of RW type. Each time a query conflicts with an update,

A m A- m - we say that the query overlaps with this update, and the
i = A -Pi I - A x ... x A -n overlap counter is incremented by one. If the counter is

still less than a specified upper bound (i.e. the value of k
(A - m)! (A - n - 1)! derived above), then both operation requests are pro-

I- A! (A - m - n- 1)7- cessed normally, the conflict is ignored, and no transac-
tion is aborted. Otherwise, RW conflict must be resolved
by using the conventional ISR correcmess criteria of the

Variable 4i essentially represents the inconsistency accommodating algorithm.
probability that a query overlaps with exactly one update The performance gains of the above conflict resolu-
transaction (k = 1). If k is the maximum overlap, then the tion policies are numerous. Update transactions are

k rarely blocked or aborted in favor of query transactions.
equation l 1i = p must hold. We emphasize that we They may be delayed on behalf of other update transac-

i-I =tions in order to preserve internal database consistency.
have k distinct update transactions that potentially con- On the other hand, query transactions are almost never
flict with the query. blocked provided that their overlap upper bound is not

Since we assume that read/update sets are uniformly exceeded. Finally, update transactions attain the flexibil-
distributed within the database, we have li = I Vi:5 k, and ity to write replicas in an asynchronous manner.
thus k xl = p. Solving the equation for k after substituting
the value for 1, the overlap bound k is: 4. Real-Time Issues

k = P In real-time databases, transactions are character-
(A - m)! (A - n - 1)! ized by their timing constraints and their data and com-

1 - A! (A - m - n - putation requirements. Timing constraints are expressed
through the release time and the deadline. Computation
requirements for transactions are unknown, and no run-

Even though this choice of the overlap bound k is time estimate is available for every transaction that
enters the system. Neither are data requirements known

reasonable, it is not unique or critical. The algorithm to entehe syt ther are datavrequirements knw
be presented in Section 5 will work with other choices of beforehand, but they are discovered dynamically as thek, or even in its ab~sence, transaction executes. Our goal is to minimize the number

of transactions that miss their deadlines [Abb88].
The real-time scheduling part of our scheme has

3.2 E-Transaction Compatibility three components: a policy to determine which transac-
tions are eligible for service, a policy for assigning prior-

Among several replica control methods based on ities to transactions, and a policy for resolving conflicts
ESR, we have chosen the ordered updates approach between two transactions that want to lock the same data
[Pu91]. The ordered updates approach allows more con- object. None of these policies needs any more informa-

It

tion about transactions than the deadline and the name of current and all subsequent conflicts must be resolved in a
the data object currently being accessed. strict manner, so that no more inconsistency will be accu-

All transactions which are currently not tardy are mulated on the query.
eligible for service. Transactions that have already When a query transaction eventually commits, the
missed their deadlines are immediately aborted. When a user is able to determine the degree of correctness of the
transaction is accepted for service at the local site where data values returned. If the query was qualified as a CQ,
it was originally submitted, it is assigned a priority then the user can be confident that the values returned are
according to its deadline. The transaction with the earli- coherent. For regular query transactions, the private
est deadline has the highest priority. This policy meshes overlap counter is checked. If the counter is still zero,
efficiently with the "not tardy" eligibility policy adopted this means that no conflict has occurred throughout the
above, so that transactions that have already missed their entire execution of the query and the results must again
deadlines are automatically screened out before any pri- be perfectly accurate. Such a query falls into the CQ
ority is assigned to them. High priority is the policy that class. An overlap counter greater than zero indicates that
is employed for resolving transaction conflicts. Transac- a certain number of conflicts with update transactions
tions with the highest priorities are always favored. The remained unresolved; the query had seen some possibly
favored transaction, i.e. the winner of the conflict, gets inconsistent intermediate states, and might yield some
the resources that it needs to proceed (e.g., data locks and inaccurate data. This last type of query falls into the
the processor [Car89]). The loser of the conflict relin- "possibly inconsistent" queries class. The probability
quishes control of any resources that are needed by the that such a query outputs inconsistent data is bounded by
winner. The loser transaction will either be aborted or the probability p which was used in the calculation of the
blocked depending on the relative age of the two con- overlap limit k. Data values can then be referenced with
flicting transactions and the special provisions made by I(1 - p) x 1001% confidence in their correctness.
the replication control 'scheme. Since arbitrary queries may produce results beyond

allowed inconsistency even within its overlap limit, it is

5. Replication Control Scheme important to restrict ET queries to have certain properties
that permit tight inconsistency bounds. A first attempt in
this approach is proposed in [Ramn91]. It is beyond the

In this section, we present the token-based replica- this pach stris b n the

tion control scheme in detail, along with the embedded scope of this paper to deal with such strategies. In the

ESR orrctnss citeia nd ral-imeconsraits.remainder of the paper, we assume that inconsistencyESR correctness criteria and real-time constraints, bounds can be enforced by the system if necessary.

For each query transaction T, we can also provide
5.1 Controlling Inconsistency of Queries the number of possibly incorrect values read by T by

checking the overlap counter of T and the number of data
Queries are only involved in RW/WR conflicts, objects read by T. Let m, be the exact number of data

When a query transaction is submitted to the system, the objects read by T and k,, be the value of the overlap
user may quantify it with the restriction "required to be counter of T after T is terminated. The number of possi-
consistent." Such a characterization means that all possi- bly incorrect data values read by T is: m,, x p,, where
ble future RW/WR conflicts between this query and
update transactions will have to be resolved in a strict (A- m,)! (A- n- 1)!
(ISR) way. In other words, consistent queries (CQs) are paz = kx (A n)
treated in the same fashion as update transactions. Values A! (A - m,, - n - 1)!
returned by CQs are always correct, reflecting the up-to-
date state of the respective data objects. is the exact probability that T is inconsistent.

If no consistency constraints are specified explicitly
by the user on a submitted query, then the ESR correct-
ness criterion is employed to maintain the query's con-
sistency. The overlap upper bound is computed, and an
overlap counter is initialized to zero. Each time the query Mechanisms for conflict resolution between update
conflicts with an update transaction over the same data transactions comprise the core of our scheme. Query
object and the counter is less than the overlap upper transactions need not be considered separately because
bound, the conflict is ignored, the counter is incre- queries that are forced to resolve their RW conflicts with
mented, the query reads the value of the data object in update transactions can be treated as update transactions.
question and proceeds to read the next object. When the Therefore, in the rest of the section, we use the general
overlap counter is found to be equal to the upper bound, term transaction when we refer either to a normal update

Shigher priority lower priorityAgeT 1 riTsBfoevle

I T2 writes. b T, reads before value.
T21 . T2 allows T, to commit • T2 writes.

younger before it commits. • T2 waits for T, to commit
If T2 request to commit before it commits.

T, is cond) aboted.mmis.

T2 - T, is aborted (cond). * T, reads.
older • T2 writes. T2 is aborted.

Table 3: W-R Conflicts

lower priority. In the case that T2 has a higher priority, tion is acceptable, since the higher priority T, is favored
aborting T2 would violate the real-time constraints, to proceed. On the contrary, when T2 has the higher pri-
Therefore, we let T2 proceed and write a new value for X ority, T2 must be allowed to write its own new value of
while T" is aborted, since it has seen a value of X that has X, and T, must be conditionally aborted for the database
already become obsolete. to remain cc_.. ,stent with respect to the data object X.

(3) W- W Conflicts
Transaction T2 requests to write data object X for 5.3 Commitment

which transaction T, has already issued a write request.
Table 4 shows the various resolution policies.

If T2 is younger than TI, then T2 should wait for the The coordinator of a transaction decides to commit
termination of T, before it writes a new value for data when the following conditions are satisfied:•The transaction must not have missed its deadline:
object X. Such conflict resolution favors Ti and is com- Each data-object in the read-set of the transaction
patible with the situation where T2 has lower priority Eo reads
than T1. However, when T2 has a higher priority, it is not

required to wait for the lower priority transaction T1. • All the token-sites of each data object in the write-

Hence, T2 will proceed, and T1 will be conditionally set of the transaction have precommitted (this only

aborted in order for the database to remaia internally applies to update transactions);

consistent. • There is no active transaction that has seen before-

If T2 is older than T1 , then T2 should be aborted. value of any data object in the transaction's write-set. In

Note that we are interested only in the most recent value other words, the before-list of the transaction must be

of X, i.e. the value written by the younger T, transaction. empty (this only applies to update transactions).

In the case that T2 has a lower priority, the above resolu-

Age'3 T2 higher priority T2 lower priority

r2 T, is aborted (cond). - T, writes.
younger * T 2 writes. .T waits foro T

to terminate

rT T, is aborted (cond). - T, writes.
o.1er * T2 writes. - T2 is rejected.

Table 4: W-W Conflicts

I°

6. Concluding Remarks REFERENCES

In this paper we have presented a synchronization [Abb88] R.Abbott, and H.Garcia-Molina, "Schedul-
scheme for real-time distributed database systems. The ing Real-time Transactions: a Performance Evalua-
algorithm is based on a token-based approach, in which tion," Proceedings of the 14th VLDB Conference,
two additional components are built. The first is a set of
real-time constraints that each transaction has to meet. A Los Angeles, California 1988.

separate priority scheme is employed to reflect the
demand of a transaction to finish before its deadline. The [Bay80] R. Bayer, H. Heller, and A. Reiser, "Paral-
second component is the ESR correctness criterion with lelism and Recovery in Database Systems," ACM
which query transactions have to comply. Instead of Trans. Database Syst. 5, 2, June 1980.
applying 1SR to all transactions, ISR is applied only to
updates, and queries are left free to be interleaved with
updates in a more flexible way. [Ber87] P.A.Bemstein, V.Hadzilacos, and N.Good-

By relaxing the consistency criteria for query trans- man, "Concurrency Control and Recovery in Data-
actions, queries and updates hardly ever have to abort or base Systems," Addison-Wesley Publishing Co.,
block each other due to conflicts between them. As an 1987.
immediate consequence of this, more transactions may
terminate successfully before their deadlines expire. [Car891 MJ.Carey, RJauhari, and M.Livny, "Pri-
Additionally, the second mechanism further improves ority in DBMS Resource Scheduling," Proceedings

performance; updating the different replicas of the same1989.
data object is done asynchronously, but in the same orders in h 5h DCe rence, Anda M 989.
Thus, logical write operations become disjoint from the

corresponding physical write operations, and update [Lam78J L.Lamport, "Time, Clocks, and the Ordering
transactions are free to proceed to the next step of their of Events in a Distributed System," Comm. ACM,

execution or even to commit. Internal database consis- vol. 21, no. 7, pp. 558 - 565, July 1978.
tency is preserved strictly. Data returned by certain que-

Ties are allowed to exhibit limited inconsistency, under
user control. [Pu91R

Another advantage of our scheme lies in the fact tributed Systems: An Asynchronous Approach,"
that there is very little information the user has to provide ACM SIGMOD Conference, May 1991.
to achieve efficient system operation. No a priori knowl-
edge of the kind or the number of the data objects that are tRam9l] K. Ramamritham and C. Pu, "A FormalSincluded in the read-set or the write-set of a transactionCh rcei a on f Ep l n e aizb iy, T c .
is needed. The only information required is the kind of Racterti of Epsilo Se , Tech.
each submitted transaction (query or update), and the Rep. 91-91, Dept. of Computer Science, Univ. of
expected average number of objects accessed by each Massachusetts, Dec. 1991.
transaction. Moreover, no execution time estimate is
required for each submitted transaction. It would be [Son87] S.H.Son, "Synchronization of Replicated
extremely difficult to compute a run-time estimate, espe- Data in Distributed Systems," Information Systems,
cially in the distributed environments for which our vol. 12, no. 2, pp. 191 - 202,1987.
scheme is designed.

There is a price to pay for relaxing correctness crite-
ria and meeting more deadlines. Although the user can [Son89J S.H.Son, "A Resilient Replication Method
control the maximum permissible inconsistency of que- in Distributed Database Systems," Proceedings of
ries, one cannot know exactly which one transaction out IEEE INFOCOM '89, Ottawa, Canada, April 1989.
of the set of all possibly inconsistent queries will return
incorrect data, unless a tight inconsistency bound is pro- [Son90] S.H.Son, "Real-Time Database Systems: A
vided. Note that an overlap counter greater than zero
does not necessarily mean that the respective query New Challenge," Data Engineering, vol. 13, no. 4,
transaction is inconsistent. It simply indicates that certain Special Issue on Future Directions on Database Re-
RW/WR conflicts were passed unresolved, and inconsis- search, December 1990.
tency might be present among the data values returned.

Scheduling real-time transactions using
priority

SHSon

Compared with traditional databases, real-time database systems missed. In real-time database systems, the correctness of

have a distinct feature: they must satisfy timing constraints asso- transaction processing depends not only on maintaining
ciated with transactions. This requires that transactions in real- consistency constraints and producing correct results,
time database systems should be scheduled to consider both data but also on the time at which a transaction is completed.
consistency and timing constraints. The paper addresses the Transactions must be scheduled in such a way that they
issues associated with transaction scheduling and concurrency can be completed before their corresponding deadlines
control in real-time database systems. As a specific example of expire. For example, both the update and query on the
real-time transaction scheduling, a priority-based scheduling tracking data for a missile must be processed within
algorithm is discussed, together with a performance study using a given deadlines, satisfying not only database consistency
database prototyping environment, constraints, but also timing constraints.

real-time systems, databases. prototyping, synchronization, tran- Conventional database systems are typically not used
saction. priority in real-time applications due to the inadequacies of poor

performance and lack of predictability. They are
designed to provide good average performance, while
possibly yielding unacceptable worst-case response

As computers are becoming an essential part of real-time times. In addition, conventional database systems do not
systems, real-time computing is emerging as an import- schedule their transactions to meet response require-
ant discipline in computer science and engineering'. The ments and they commonly lock data tables to assure only
growing importance of real-time computing in a large the consistency of the database. Locks and time-driven
number of applications, such as aerospace and defence scheduling are basically incompatible, resulting in res-
systems, industrial automation and robotics, and nuclear ponse requirement failures when low-priority transac-
power plants, has resulted in increased research in this tions block higher-priority transactions. New techniques
area. Researchers working in the real-time systems area are required to manage the consistency of real-time data-
have found that traditional data models are not adequate bases, and they should be compatible with time-driven
for real-time systems. In recent workshops, the need for scheduling and meet both the required temporal con-
more active research in database systems that satisfy straints and data consistency.
timing constraints in collecting, updating, and retrieving To address the inadequacies of current database
shared data has been pointed out2-3 . Most database
systems are not designed for real-time applications and systems, the transaction scheduler needs to be able to

take advantage of the semantic and timing information
lack the features required to support real-time transac- associated with data objects and transactions. A model
tions. Few conventional database systems allow users to
sc4 of real-time transactions needs to be developed that char-

tacterizes distinctive features of real-time databases andmeets those set by the user. Interest in this new appli- actribe tonthe impred reap-tivenes and
cation domain is also growing in the database commun- can contribute to the improved responsiveness of theity. Recently, a number of research results has appeared system. The semantic information of the transactions
in the literature4-.2, investigated in the modelling study can be used to deve-Real-time database systems have (at least some) tran- lop efficient transaction schedulers'2 .13 .Realtim daabae sstes hae (t lastsom) tan- The satisfying of timing constraints while preservingsactions with explicit timing constraints. Typically, a Thsasfigotmngcsritswlepsrvntiming constraint is expressed in the form of a deadline, a data consistency requires the concurrency control proto-certain timc in the future by which a transaction needs to col to accommodate timeliness of transactions as well asceraintim inthefutre y wicha tansctin nedsto data consistency requirements. In real-time database
be completed. A deadline is said to be 'hard' if it cannot d cste ncy requirents.tin real-tim bane
be missed or else the result is useless. If a deadline can be systems, timeliness of a transaction is usually combintd
missed, it is a 'soft' deadline. With soft deadlines, the with its criticality to take the form of the priority of theusefulness of a result may decrease after the deadline is transaction. Therefore, proper management of priorities

and conflict resolution in real-time transaction schedul-
ing are essential for predictability and responsiveness of

Dqiprtment of Computer Science. University of Virginia. Charlottes- real-time database systems.
viNe. VA 22903. USA This paper addresses the issues associated with tran-

Vol 34 No 6 June 1992 0950-5849/92/060409-07 1 1992 Butterworth-Hcinemann Ltd 409

.w-.s'-u ,i wutciaacionJ usig priority

section scheduling and concurrency control in real-time highest-priority transaction, will be blocked no longer
database systems. First, a priority-based scheduling than the time for transaction T3 to complete and unlock
approach for real-time database systems is introduced. O1. However, the duration of blocking may, in fact, be
As a specific example of real-time transaction scheduling, unpredictable. This is because transaction T3 can be
the priority-ceiling protocol is discussed, together with a blocked by the intermediate priority transaction T2,
performance study using a database prototyping which does not need to access 0. The blocking of T3, and
environment. Other issues in scheduling real-time tran- hence that of T1, will continue until T2 and any other
sactions are also discussed. pending intermediate-priority-level transactions are

completed.

PRIORITY-BASED SCHEDULING The blocking duration in the example above can be
arbitrarily long. This situation can be partially remedied

Real-time databases are often used in applications such if transactions are not allowed to be preempted, how-
as tracking. Tasks in such applications consist of both ever, this solution is only appropriate for short transac-
computing (signal processing) and database accessing tions, because it creates unnecessary blocking. For
(transactions). A task can have multiple transactions, instance, once a long low-priority transaction starts
which consist of a sequence of read and write operations execution, a high-priority transaction that does not
that operate on the database. Each transaction will require access to the same set of data objects may be
follow the two-phase locking protocol", which requires a needlessly blocked.
transaction to acquire all the locks before it releases any An approach to this problem, based on the notion of
lock. Once a transaction releases a lock, it cannot acquire priority inheritance, has been proposed's. The basic idea
any new lock. A high-priority task will preempt the of priority inheritance is that when a transaction T of a
execution of lower-priority tasks unless it is blocked by task blocks higher-priority tasks, it executes at the high-
the locking protocol at the database. est priority of all the transactions blocked by T. This

In a real-time database system, scheduling protocols simple idea of priority inheritance reduces the blocking
must not only maintain the consistency constraints of the time of a higher-priority transaction, by solving the
database, but also satisfy the timing requirements of the unbounded priority inversion problem. In the context of
transactions that access the database. To satisfy both the preemptive scheduling, a higher-priority transaction T
consistency and real-time constraints, it is necessary to can preempt the execution of lower-priority transactions
integrate synchronization protocols with real-time prior- unless T is blocked by the locking protocol. The priority
ity-scheduling protocols. Due to the effect of blocking in inheritance rule states that when a transaction blocks the
lock-based synchronization protocols, a direct appli- execution of higher-priority transactions, it executes at
cation of a real-time scheduling algorithm to transac- the highest priority of all the transactions blocked by its
tions may result in a condition known as priority inver- locks. For example, suppose transaction T, is blocked by
sionts. Priority inversion is said to occur when a higher- T3. Then the priority-inheritance protocol ensures that T3
priority task is forced to wait for the execution of a will execute at TI's priority until it releases the lock on
lower-priority task for an indefinite period. When two wil exect Tis prority ulre
transactions attempt to access the same data object, the the data object Ta is blocked for.
access must be serialized to maintain consistency. If the The priority inheritance alone, however, is inadequate
transaction of the higher-priority task gains access first, because the blocking duration for a transaction, though
then the proper priority order is maintained; however, if bounded, can still be substantial due to the potential
the lower-priority transaction gains access first and then chain of blocking. For instance, suppose that transaction
the higher-priority transaction requests access to the T1 needs to access sequentially objects Oj and 0,. Also
data object, this higher-priority task will be blocked until suppose that T' preempts T3, which has already locked
the lower-priority transaction completes its access to the 02. Then, T'2 locks O. Transaction T, arrives at this
data object. Priority inversion is inevitable in transaction instant and finds that the objects 0, and 0, have been
systems. To achieve a high degree of schedulability in locked by the lower-priority transactions T, and T3, re-
real-time applications, however, priority inversion must spectively. As a result, T, would be blocked for the
be minimized. This is illustrated by the following exam- duration of two transactions, once to wait for 7T, to
pie. release O and again to wait for T3 to release 02. Thus a

chain of blocking can be formed.
One idea for dealing with this inadequacy is to use a

Example 1 total priority ordering of active transactions9. A transac-

Suppose T,, T2, and T' are three transactions arranged in tion is said to be active if it has started but not yet
descending order of priority, with T, having the highest completed its execution. A transaction can be active in
priority. Assume that T. and T'i access the same data one of two states: either executing or being preempted in
object 0,. Suppose that at time 11 transaction T3 obtains a the middle of its execution. The idea of total priority
lock on 0,. During the execution of T3, the high-priority ordering is that the real-time locking protocol ensures
transaction To arrives, preempts T3, and later attempts to that each active transaction is executed at some priority
access the object 0. Transaction T, will be blocked, as 0, level, taking priority inheritance and read/write seman-
is already locked. It would be expected that T1, being the tics into consideration.

S410 Information and Software Technology

S H SON

TOTAL ORDERING BY PRIORITY Example 2
CEILING Consider the same situation as in example 1. According
To ensure the total priority ordering of active transac- to the protocol, the priority ceiling of 0, is the priority of
tions, three priority ceilings are defined for each data T1. When T2 tries to access a data object, it is blocked
object in the database: the write-priority ceiling, the because its priority is not higher than the priority ceiling
absolute-priority ceiling, and the rw-priority ceiling. The of 0•. As T3 blocks T2, its priority is promoted to that of
write-priority ceiling of a data object is defined as the T2. When T, requests 0,, it will be blocked, and the
priority of the highest-priority transaction that may priority of 7'3 will be promoted to that of T1. When T3
write into this object, and the absolute-priority ceiling is unblocks O, the priority of T3 resumes its original prior-
defined as the priority of the highest-priority transaction ity. At that point, T, will preempt T3 and will lock O.
that may read or write the data object. The rw-priority Therefore, T, will be blocked only once by T3 to access
ceiling is set dynamically. When a data object is write- 0,, regardless of the number of data objects it may
locked, the rw-priority ceiling of this data object is equal access.
to the absolute priority ceiling. When it is read-locked, Using the priority-ceiling protocol, mutual deadlock
the rw-priority ceiling of this data object is equal to the of transactions cannot occur and each transaction can be
write-priority ceiling, blocked by at most one lower-priority transaction until it

The reason for specifying the rw-priority ceiling differ- completes or suspends itself. A high-priority transaction
ently depending on the lock type set on the data object is can be blocked by a low-priority transaction in one of
lock compatibility. When a data object is write-locked, it three cases.
cannot be read or written by another transaction. To
ensure this, the rw-priority ceiling of the data object is set . The first case occurs when a high-priority transaction
to its absolute-priority ceiling. As the absolute-priority attempts to lock a data object already locked by a low-
ceiling of a data object is equal to the priority of the priority transaction.
highest-priority transaction that may either read or write * The second case occurs when a medium-priority tran-
it, it prevents another task from reading or writing until saction is blocked by a low-priority transaction that
the lock is released. Similarly, if it is read-locked, it has promoted its priority by inheriting that of a high-
cannot be written by another transaction. To ensure this, priority transaction. This type of blocking is necessary
when a data object is read-locked by a transaction, its to avoid a situation in which a high-priority transac-
rw-priority ceiling is set to its write-priority ceiling. As tion is indirectly blocked by a medium-priority tran-
the write-priority ceiling equals the priority of the high- saction.
est-priority transaction that may write it, it prevents * The third type of blocking is called ceiling blocking,
another transaction from writing the data object. which occurs when a transaction cannot start the
According to the rw-priority-ceiling rule, the systems can execution because its priority is not higher than the
guarantee that a data object can be locked by a transac- priority ceiling of the data objects locked by other
tion T only if T's priority is higher than the priority active transactions. Ceiling blocking is necessary to
ceiling of all data objects currently locked by transac- avoid deadlock and chained blocking.
tions other than T in an incompatible mode.tiosher pirty-ceiling protcolmisprmised on. sThe total priority ordering of active transactions leads towith a fixed priority scheme. The protocol consists oftwo some interesting behaviour. As shown in example 2, the
mechanisms: priority inheritance and priority ceiling priority-ceiling protocol may forbid a transaction from
The combination of these two mechanisms gives the locking an unlocked data object. At first sight, this seems
properties of freedom from deadlock and a worst-case to introduce unnecessary blocking. However, this can be
blocking of at most a single lower-priority transaction. considered as the 'insurance premium' for preventing

When a transaction attempts to lock a data object, the deadlock and achieving block-at-most-once property.
transaction's priority is compared with the highest rw-
priority ceiling of all data objects currently locked by
other transactions. If the priority of the transaction is not PERFORMANCE EVALUATION
higher than the rw-priority ceiling, the access request will The issues associated with the idea of total ordering in
be denied, and the transaction will be blocked. In this priority-based scheduling protocols have been investi-
case, the transaction is said to be blocked by the transac- gated using a database prototyping environment"6. One
tion that holds the lock on the data object of the highest of the critical issues related to the total ordering
rw-priority ceiling. Otherwise, it is granted the lock. In approach is its performance compared with other design
the denied case, the priority inheritance is performed to alternatives. In other words, it is important to figure out
overcome the problem of uncontrolled priority inver- what is the actual cost for the 'insurance premium' of the
sion. For example, if transaction T blocks higher tran- total-priority-ordering approach. The results indicate
sactions, T inherits P,, the highest priority of the tran- that the ceiling protocol offers performance improve-
sactions blocked by T. Priority inheritance is transitive. ment over the two-phase locking protocol (2PL).
The next example shows how transactions are scheduled In the author's experiments, transactions are gener-
under the priority-ceiling protocol. ated and put into the start-up queue. When a transaction

Vol 34 No 6 June 1992 411

acea•uwmg real-timae transactions using priority

is started, it leaves the start-up queue and enters the 20.0 -
ready queue. Transactions in the ready queue are
ordered from the highest priority to the lowest priority.
The transactior vith the highest priority is always
selected to run. iwc current running transaction sends 5.0o
requests to the concurrency controller. The transaction
may be blocked and placed in the block queue. It may
also be aborted and restarted. In such a case, it is first :
delayed for a certain amount of time and then put in the 10.0 -
ready queue again. When a transaction in the block
queue is unblocked, it leaves the block queue and is R
placed in the ready queue. Whenever a transaction enters P
the ready queue and its priority is higher than the current 2 5.0

running transaction, it preempts the current running
transaction.

When a transaction enters the start-up queue, it has 0 J
the arrival time, the deadline, the priority, the read set, 0.0 4 8 12 16 20 24
and the write set associated with it. The transaction inter- Transaction size (number of data objects)
arrival time is a random variable with exponential distri-
bution. The data objects in the read set and the write set Figure 1. Transaction throughput
are uniformly distributed across the entire database. A
transaction consists of a sequence of read and write When the transaction size is small, there is little lock-
operations. A read operation involves a concurrency- ing conflict and the problem. such as deadlock and prior-
control request to get access permission, followed by a ity inversion, has little effect on the overall performance
disc input/output (I/O) to read the data object, followed of a locking protocol. On the other hand, when transac-
by a period of central processing unit (CPU) use for tion size becomes large, the probability of locking con-
processing the data object. Write operations are handled flict rises rapidly. Hence it would be expected that the
similarly, except for their disc i/O. A transaction can be performance of protocols will be dominated by their
discarded at any time if its deadline is missed. Therefore, abilities to handle locking conflicts when the transaction
the model employs a hard deadline policy, size is large.

Transaction size (the number of data objects a transac- As illustrated in Figure 1, the performance of the 2PL
tion needs to access) has been used as one of the key with or without priority assignments degrades very fast
variables in the experiments. It varies from a small frac- when transaction size increases. On the other hand, the
tion up to a relatively large portion (10%) of the data- ceiling protocol handles locking conflicts well. The pro-
base, so that conflicts would occur frequently. The high tocol is free from deadlocks and exhibits the block-at-
conflict rate allows synchronization protocols to play a most-once property. Hence it performs much better than
significant role in determining system performance. The 2PL when transaction size is large. This is because in the
arrival rate was chosen so that protocols are tested in a priority-ceiling protocol the conflict rate is determined
heavily loaded rather than lightly loaded system. For the by ceiling blocking rather than by direct blocking, and
design of real-time systems, high-load situations must be the frequency of ceiling blocking is not sensitive to the
considered. Even though they may not arise frequently, it transaction size.
is desirable to have a system that misses as few deadlines Another important performance statistic is the
as possible when such peaks occur. In other words, when percentage of deadlines missed by transactions, as the
a crisis occurs and the database system is under pressure synchronization protocol in real-time database systems
is precisely when making a few extra deadlines could be must satisfy the timing constraints of individual transac-
most important'. The following summarizes the findings tions. In the experiments, each transaction's deadline is
briefly to illustrate the performance of the algorithms. set in proportion to its size and system workload

In Figure I. the throughput of the ceiling protocol (C), (number of transactions), and the transaction with the
2PL with priority mode (P), and 2PL without priority earliest deadline is assigned the highest priority. As
mode (L). is shown for transactions of different sizes. shown in Figure 2. the percentage of deadlines missed by
The two-phase locking protocol with priority mode is transactions increases sharply for the 2PL as the transac-
also called the high-priority protocol. In that protocol, tion size increases due to its inability to deal with dead-
all data conflicts are resolved in favour of the transaction lock and to give preference to transactions with shorter
with higher priority. When a transaction requests a lock deadlines. Two-phase lock with priority assignment per-
on a data object held by other transactions in an incom- forms somewhat better, because the timing constraints of
patible mode. if the requester's priority is higher than transactions are considered, although the deadlock and
that of all the lock holders, the holders are restarted and priority-inversion problems still handicap its perfor-
the requester is granted the lock; if the requester's prior- mance. The ceiling protocol has the best relative perfor-
ity is lower, it waits for the lock holders to release the mance because it addresses both the deadlock and prior-
lock. ity-inversion problems.

412 Information and Softwairc Technology

S H SON

,70.0- consistency requirement, which specifies the validity of
data values accessed by the transactions. For example, if

Sa the temporal consistency requirement is 15, it indicates

L that data objects accessed by the transaction cannot be
50older than 15 time units relative to the start time of the

transaction. This temporal consistency requirement can
be specified as either hard or soft, just like deadlines. If it

40.0- Pis hard, an attempt to read an invalid data object (out of
its valid interval) will cause the transaction to abort.

30.0 While a deadline can be thought of as providing a time

C interval as a constraint ;n the future, the temporal
20.0 - consistency specifies a temporal window as a constraint

in the past. As long as the temporal consistency require-
10.0 ment of a transaction can be satisfied, the system must be

able to provide an answer using available (may be not

0.% _I up-to-date) information. The answer may change as
0 4 8 12 16 20 24 valid intervals change with time. In a distributed data-

Transaction size (number of data objects) base system, sensor readings may not be applied to the
Figure 2. Percentage of deadline-missing transactions database at the same time and may not be reflected

consistently at the console due to the different delay in

ISSUES IN SCHEDULING REAL-TIME processing and communication. A temporal data model

TRANSACTIONS for real-time database systems must therefore be able to
accommodate the information that is partial and out of

Deadlines are timing constraints associated with transac- date. It should distinguish adequately between 'infor-
tons. In real-time database systems, scheduling decisions mation not available at time t' and 'information out of
are often directly related to whether the transactions valid interval at time t'.
meet or miss their deadlines. Scheduling decisions must Real-time systems require a scheduler that should
be made when the scheduler has to select from among a incorporate timing constraints associated with transac-
collection of transactions that are ready to be started or tions and data objects in its scheduling decisions. The
when a choice has to be made between two or more goals of such a scheduler in real-time database systems
transactions that are competing for the same resources are:
(i.e., data objects). A decision to abort a transaction for a
later restart may result in the transaction missing its * to minimize the number of transactions that miss their
deadline. deadlir-s

In addition to deadlines, other kinds of timing con- * to ensure meeting the timing requirements of highly
straints are associated with data as well as transactions in critical transactions
real-time database systems. For example, each sensor . to maximize the overall transaction accuracy within
input could be indexed by the time at which the sample the system
was taken. Furthermore, once entered into the database,
data may get old or become out of date if they are not A simplistic approach would be solely to consider the
updated within a certain period. To quantify this notion minimization of transaction loss due to missing dead-
of 'age', each datum is associated with a valid interval, lines. This goal by itself, however, is not sufficient as the
Data out of the valid interval do not represent the cur- transactions due to their temporal requirements may
rent state. The time associated with the data is the time at have different degrees of criticalness associated with

* which the value is currently believed to have been true. them. A scheduler may be able to maximize the overall
The valid interval indicates the time interval after the number of transactions that meet their deadlines by suc-
most receht updating of a data object during which a cessfully scheduling the less critical transactions and
transaction may access a data object with 100% degree causing the highly critical transactions to miss their
of accuracy. What occurs when a transaction attempts to deadlines. The failure of these highly critical transactions
access a data object outside of its valid interval is depen- may be too costly in terms of endangering the safety of
dent on the semantics of data objects and the particular the entire system. Therefore, it would be desirable for the
implementation. For some data objects. for instance, scheduler to make an effort to ensure that the deadlines
reading it out of its valid interval would result in 0% of the highly critical transactions are met. In addition, as
accurate data values. In general, each data object is asso- transactions may require different degrees of accuracy
ciated with a validity curve that represents its degree of based on their temporal consistency requirements and
validity with respect to the time elapsed after the data the validity intervals of data objects. the scheduler must
object was last modified. The system can compute the consider the overall transaction accuracy within the
validity of data objects at the given time, provided it is system before making a decision for or against a transac-
given the time of last modification and its validity curve. tion.

A real-time transaction should include its temporal An intuitive approach to achieve only the first goal

Vol 34 No 6 June 1992 413

Scheddln real-tiM transactions using priority

would be to assign the highest priority in the system to be considered. The preemption decision in a real-time
the transaction with the smallest deadline. As this tran- database system must be made carefully, and it should
saction is at the highest risk of missing its deadline, it not necessarily be based only on relative deadlines'7 . This
would be favoured in the scheduling decision. This is so as preemption implies not only that the work done
approach is not acceptable, however, because it fails to by the preempted transaction must be undone, but also
consider other important factors. For example, it is poss- that later on, if restarted, it must redo the work. The
ible that the transaction is so close to its deadline that it is resultant delay and the wasted execution may cause one
almost certain that it would miss its deadline anyway. or both of these transactions, as well as other transac-
Making a decision in favour of this transaction may lead tions, to miss deadlines.
to the competing transaction missing its deadline, result- Even though data objects out of their valid interval do
ing in a poor performance. Therefore, the scheduler must not represent the current state, they might be used forI consider the feasibility of meeting the deadline of the approximation. Methods to specify the temporal-
transaction in making a decision. consistency requirement of transactions, and to use valid

It is proposed that the goals mentioned above may be intervals of data objects in determining the degree of
achieved by having the scheduler consider the deadlines, consistency of transactions that access them, are relati-
the criticalness, and the temporal consistency levels that vely unexplored and are an important problem. Several
are associated with transactions. A set of scheduling approaches to designing scheduling algorithms for real-
algorithms that consider each one of these elements in time transactions have been proposed 4.".3.2 , but their
the scheduling decisions has been developed. It has been performance in distributed environments has not been
shown that using these algorithms could reduce the studied. The author is currently working on implement-
number of deadline-missing transactions and meet the ing scheduling algorithms for distributed real-time tran-
temporal consistency requirements' 2. For real-time tran- sactions, using his prototyping environment.
sactions, it is necessary to define an appropriate notion
of correctness, and investigate new techniques to guaran- ACKNOWLEDGEMENT
tee the desired level of correctness while increasing the

performance of the system by using the semantic know- This work was supported in part by ONR under contract
ledge of transactions and a temporal data model. A N00014-91-J-l 102, by DOE, and by NOSC.
multiversion data object is one approach for exploiting
the semantic information of real-time transactions and REFERENCES
temporal data models. In a system with multiple versions
of data, each write operation on a data object produces a I 'Special issue on real-time systems' Computer Vol 24 No 5
new version instead of overwriting the old version. (May 1991)

Hence, for each read operation, the system selects an 2 Proc. Eighth IEEE Workshop on Real-Time Operating
Systems and Software Atlanta, GA, USA (May 199 1)

appropriate version to read, enjoying the flexibility of 3 ONR Annual Workshop on Foundations of Real-Time Corn-
controlling the order of read and write operations. One puting Washington, DC, USA (October 1990)
of the issues that needs further study is methods to spe- 4 Abbott, R and Garcia-Molina, H 'Scheduling real-time tran-
cify appropriate correctness requirements of real-time sactions: a performance study' in Proc. 14th VLDB Conf.

(September 1988) pp 1-12
transactions by their timing constraints and the data 5 Abbott, R and Garcia-Molina, H 'Scheduling real-time tran-
objects they need to access. sactions with disk resident data' in Proc. 15th VLDB Conf.

(August 1989)
CONCLUSIONS 6 Buchmann, A et al. 'Time-critical database scheduling: a

framework for integrating real-time scheduling and concur-

In real-time database systems, transactions must be sche- rency control' in Proc. Fifth Data Engineering Conf.
(February 1989) pp 470-480

duled to meet their timing constraints. In addition, the 7 Korth, H 'Triggered real-time databases with consistency
system should support a predictable behaviour such that constraints' in Proc. 16th VLDB Conf. Brisbane, Australia
the possibility of missing deadlines of critical tasks could (August 1990)
be informed ahead of time, before their deadlines expire. 8 Lin, Y and. Son, S H 'Concurrency control in real-time

The priority-ceiling protocol is one approach to echirev databases by dynamic adjustment of serialization order' in
T ph achieve Proc. 11th IEEE Real-Time Systemns Syrup. Orlando. FL,

a high degree of schedulability and system predictability. USA (December 1990)
It has been discussed that this protocol might be appro- 9 Sha, L, Rajkumar, R and Lehoczky, J 'Concurrcncy control
priate for real-time transaction scheduling as it is stable for distributed real-time databases' ACAM SIGMOD Record
over the wide range of transaction sizes and, compared Vol 17 No I (March 1988) pp 82-98
with the twideprane locking pransctoo , sits a credue t 10 Sha, L, Rajkumar, R, Son, S H and Chang, C 'A real-time
with the two-phase locking protocol, it reduces the locking protocol' IEEE Trans. Comput. Vol 40 No 7 (July
number of deadline-missing transactions. 1991) pp 793-800

There are many technical issues associated with real- II Son, S H (guest ed) 'Special issue on real-time database
time transaction scheduling that need further investi- systems' ACM SIGMOD Record Vol 17 No I (March 1988)
gation. In the priority-ceiling protocol and many other 12 Son, S H, Wagle, P and Park, S 'Real-timc database schc-

duling: design, implementation, and performance cvalu-
database scheduling algorithms, preemption in locking is ation' in Proc. Int. Symp. Database Systems for Advanced
usually not allowed. To reduce the number of deadline- Applications (DASFAA '91) Tokyo, Japan (April 1991) pp
missing transactions, however, preemption may need to 146-155

414 Information and Software Technology

S H SON

13 Seo, S H sad Le, J 'Scheduling real-time transactions in protocol: an approach to real-time synchronization' Tech-distributed database systems' in Proc. 7th IEEE Workshop nical report Computer Science Department, Carnegie-Mel-
on Real-Tinme Operating Systems and Software Charlottes- Ion University, Pittsburgh, PA, USA (1987)yule, VA, USA (May 1990) pp 39-43 16 Sea, S H 'An environment for prototyping real-time distri-14 Denuein, P. Hadztlacms, V and Goodman, N Concurrency buted databases' in Proc. Int. Conf. Systems Integrationcontrol and recovery in database systems Addison-Wesley Morristown, NJ, USA (April 1990) pp 358-367(1987) 17 Stankovic, J 'Misconceptions about real-time computing'IS Slan, L, Rajkumaa, R and Lehoczky, J 'Priority inheritance Computer Vol 21 No 10 (October 1988) pp 10-19

V

S

p

* Vo 3 N 6 un l 9 1

Books

Uneven text on CASE for design and practice
CASE: computer-aided software protocols by turning them into state 'instance/class'.
engineering models. I have borrowed 'how to start' Real-time issues are relegated to one
T G Lewis heuristics from Yourdon, Ward, or two-paragraph programmatic sidebar.
Van Nostrand Reinhold (1991) 593pp Shlaer and Mellor when I am beginning a There is little coverage of methods or
£33.50 ISBN 0-442-00361-7 model of a problem. Methods, and their notations used for real-time analysis and

component notations, are tools for design. State models are not discussed or
This book includes much information thought. Many companies have bought taught, but only briefly mentioned, and
about some rather unusual computer- CASE tools, but not taught their then only as a notation for communicat-
aided software engineering (CASE) employees how to think with the ideas ing with a user-interface design tool.
tools, embedded in what would appear behind them. Result: disaster. For years, Jackson Structured Programming (JSP)
to be Lewis' university course in software electronics engineers successfully used is discussed, but not Jackson Structured
engineering generally. finite-state machine notations to model Design (JSD). Just to keep things inter-

First, the coverage of CASE tools par- complex digital problems without the esting. JSP is called JSD in the text. A
ticularly: all CASE tools discussed run help of computer-aided engineering. Although the preface claims a reader-
on and. for the most part. only on Apple They may have occasionally made mis- ship of 'practitioners who manage.
Macintoshs. Some are commercial pro- takes, but their digital design work could design, code, test and market ... ' soft-
ducts; some are local products of Oregon not have been done without the disci- ware, most of them will probably fall
State University at Corvalis, USA, the pline of paper-and-pencil work with asleep over the chapters on mathematical
results of student projects and appar- decision tables and state models, verification and software metrics. The
ently available from the author. A few 'Computer-aided' is not a synonym for former is fuzzily written and too shallow
tools are uncredited. but obviously exist 'useful'. to teach a beginner anything useful. The
because they, like most others in the text, Other highly contentious and I think latter leads the eager practitioner - as
are discussed to the accompaniment of wrong claims are made. For instance, software metrics often seem to -
endless illustrations of their many menus 'There are no guide-lines for combining nowhere much. Nor do the pages on the
and output screens. methods when appropriate". Or 'None mathematics of reliability statistics and

In several cases this merely underlines of the methods guarantee incremental cost estimates. The pages 'adapted from
the difficulty of using necessarily linear correctness of design' ('guarantee', the IEEE Standard for Configuration
text descriptions of highly nonlinear con- maybe not, but 'help verify' or 'assist in', Management Plan' teach nothing and
cepts. In all cases the amount of detail certainly), are likely to induce terminal coma.
devoted to 'which mouse button to push' There is some confusion between Lewis' heart would seem to be in
seems out of place in what is not a user methods, notations advocated by them, design and implementation: his coverage
manual but a textbook. and tools used to expedite the use of of lower-CASE tools and the concepts

Second, the coverage of software engi- either. A naive student might assume for behind them is excellent. He makes good
neering in general: the best I can say is instance that data dictionaries and the use of quantitative data (I had not before
.uneven', or perhaps 'idiosyncratic'; use of a data composition notation is a run into Card's wonderful result suggest-
important issues are left out or glossed feature of Anatool, as opposed to a reali- ing that small modules are more expen-
over, others are laboured to death. In the sation of a concept common to many sive to maintain!). Testing, programming
'left-out' category I would put at the top methods. style and complexity, and coding
of the list careful discussion of the differ- The coverage of many major methods standards are covered well.
ence between specification and design and notations is half-hearted. Any book The text occasionally gets bogged
models. There is no discussion of 'imple- that includes dataflow diagrams with no down in programming details of no
mentation-free' specification models, of arrows on any of the data flows is proba- general consequence. There are pages
the concept of domain modelling, or of bly not taking the concept behind the devoted to Macintosh system program-
how to move from a formal problem diagrams very seriously. There is vir- ming, down even to hex listings of icon
description to a design. tually no coverage of data-modelling/ and mask resources.

The rather cursory discussion of data- entity-relationship-diagram notations Coverage of project management
flow modelling merely reinforces this and the methods that use them. The few issues is deeper than what usually gets
lack of distinction. For instance, what is pages devoted to them use the eccentric into an introductory software engineer-
meant to be a specification dataflow term 'entity category relation', which ing text. and much more than one would
diagram (for a problem that is about cost (notation? method?) is introduced with- expect from a book purportedly about
estimation) includes stores with labels out discussion or definition. The reader is CASE. My main protest would he the
such as 'RAM', 'file'. and 'printer'. given the impression that such notations use made of Boehm's spiral model. Lewis

Even more fundamentally. Lewis and the models built with them are only, leaves out all mention of risk. and uses
seems to feel that a method without a or mostly, to do with the physical design the spiral model as a mechanism for dis-
CASE tool is a fish without a bicycle - of databases. cussing rapid prototyping using very-
that it will not get very far. I was sur- 'Object oriented' is interpreted as high-level code generators. Rochm's risk-
prised. Many times I have clarified my encapsulation, and as a design issue. driven model is easy to understand. and I
thinking about a complex subjcetmatter There is no coverage or mention of believe really should be discussed when-
by drawing a simple data model on the object-oriented or domain analysis. ever the concept of prototyping comes
back of a fish. I've used dataflow Inheritance is only mentioned once or up.
diagrams to help discuss problems with twice, and then not helpfully; 'subtype/ The book could have benefited from
fish. I make sense of communications supertypc' appears to be equated with better production. Graphics are derived

416 Information and Software Technology

The Journal of Real-Time Systems, 4. 269-276 (1992)
© 1992 Kluwer Academic Publishers. Manufactured in The Netherlands.

Hybrid Protocols Using Dynamic Adjustment of
Serialization Order for Real-Time Concurrency Control

SANG H. SON. JUHNYOUNG LEE AND YI LIN
Department of Computer Science, University of Virginia, Charlottesville, VA 22903

1. Introduction

A real-time database system (RTDBS) differs from a conventional database system because
in addition to the consistency constraints of the database, timing constraints of individual
transaction need to be satisfied. In order to provide a timely response for queries and up-
dates while maintaining the consistency of data, real-time concurrency control should involve
efficient integration of ideas from both database concurrency control and real-time schedul-
ing. Various real-time concurrency control protocols have been proposed which employ
either a pessimistic or an optimistic approach to concurrency control.

In this paper, we present two hybrid real-time concurrency control protocols which com-
bine pessimistic and optimistic approaches to concurrency control in order to control block-
ing and aborting in a more effective manner. One protocol is a combination of optimistic
concurrency control and locking, and the other is a combination of optimistic concurrency
control and timestamp ordering.

2. Integrated Real-line Lecking Protocol

Concurrency control protocols induce a serialization order among conflicting transactions.
For a concurrency control protocol to accommodate timing constraints of transactions, the
serialization order it produces should reflect the priority of transactions. However, this is
often hindered by the past execution history of transactions. A higher priority transaction
may have no way to precede a lower priority transaction in the serialization order due to
previous conflicts. For example, let Ti .:d Tj be two transactions with TH having a higher
priority. If TL writes a data object x before TH reads it, then the serialization order between
T,, and TL is determined as TL -- T1. TH can never precede TL in the serialization order
as long as both reside in the execution history. Most of the current (real-time) concurrency
control protocols resolve this conflict either by blocking TH until TL releases the writelock
or by aborting TL in favor of the higher priority transaction TH. Blocking of a higher prior-
ity transaction due to a lower priority transaction is contrary to the requirement of real-
time scheduling. Aborting is also not desirable because it degrades the system performance
and may lead to violations of timing constraints. Furthermore, some aborts can be wastcful

This work was supported in part by ONR, by NRaD, by DOE, and by IBM.

270 S.H. SON, J. LEE AND Y. LIN

when the transaction which caused the abort is aborted due to another conflict. The objec-
tive of our first protocol is to avoid such unnecessary blocking and aborting.

In this protocol called Integrated Real-Time Locking, a priority-dependent locking pro-
tocol is used to adjust the serialization order of active transactions dynamically. Its goal
is to execute high priority transactions first so that they are not blocked by uncommitted
lower priority transactions, while keeping lower priority transactions from being aborted
even in the face of a conflict. This adjustment of the serialization order can be considered
as a mechanism to support real-time scheduling.

This protocol is an integrated protocol because it uses different solutions for read/write
(rw) and write/write (ww) synchronization, and integrates the solutions of the two subprob-
lems to yield a solution to the entire problem (Bernstein, Hadzilacos and Goodman 1987).

The protocol is similar to optimistic concurrency control (OCC) in the sense that each
transaction has three phases, but unlike the optimistic method, there is no validation phase.
This protocol's three phases are read, wait, and write. The read phase is similar to that
of OCC wherein a transaction reads from the database and writes to its local workspace.
In this phase, however, conflicts are also resolved by using transaction priority. While other
optimistic realtime concurrency control protocols resolve conflicts in the validation phase,
this protocol resolves them in the read phase. In the wait phase, a transaction waits for
its chance to commit. Finally, in the write phase, updates are made permanent to the database.

2.L Read Phase

The read phase is the normal execution of a transaction except that all writes are on private
data copies in the local workspace of the transaction instead of on data objects in the data-
base. Such write operations are called prewrites. The prewrites are useful when a transac-
tion is aborted, in which case the data in the local workspace is simply discarded. No roll-
back is reqcired.

In this phase read-prewrite and prewrite-read conflicts are resolved using a priority based
locking protocol. A transaction must obtain the corresponding lock before it reads or pre-
writes. According to the priority locking protocol, higher priority transactions must com-
plete before a high-priority transaction, it is required to wait until it is sure that its commit-
ment will not lead to the higher priority transaction being aborted.

Suppose TH and TL are two active transactiQns and TH has higher priority than TL., there
are four possible conflicts as follows.

(1) rTs[.x] followed by pwTL[xI. The resulting serialization order is TH - TL, hcnce
satisfies the priority order, and does not need to adjust the serialization order.

(2) PWrT[x] followed by rrL[xl. Two different serialization orders can be induced with this
conflict; TL -- TH with immediate reading, and TH -- TL with delayed reading. Ccr-
tainly, the latter should be chosen for priority scheduling. The delayed reading in this
protocol means blocking of rr [x] by the writelock of TH on x.

(3) rTL[xI followed by pwTH[x]. The resulting serialization order is TL -' TH, which
violates the priority order. If TL is in read phase, abort TL. If TL is in its wait phase,
avoid aborting TL until TH commits in the hope that TL gets a chance to commit before

I te

r

HYBRID PROTOCOLS 271

TH does. If TH commits, TL is aborted. But if TH is aborted by some other conflicting
transaction, then TL is committed. With this policy, we can avoid unnecessary and
useless aborts, while satisfying priority scheduling.

(4) pwTL[x] followed by rTH[x]. Two different serialization orders can be induced from this
conflict; TH - TL with immediate reading, and TL - TH with delayed reading. If TL
is in its write phase, delaying TH is the only choice. This blocking is not a serious
problem for TH because TL is expected to finish writing x soon. TH can read x as soon
as TL finishes writing x in the database, not necessarily after TL completes the whole
write phase. If TL is in its read or wait phase, choose immediate reading.

As transactions are being executed and conflicting operations occur, all the information
pertaining to the induced dependencies in the serialization order needs to be retained. In
order to maintain this information, we associate the fbllowing with each transaction; two
sets, beforetrset and after.trset, and a count, beforect. The before._trset (respectively,
after-trset) of a transaction contains all the active lower priority transactions that must
precede (respectively, follow) this transaction in the serialization order. The before.cnt
of a transaction is the number of higher priority transactions that precede this transaction
in the serialization order. When a conflict occurs between two transactions, their dependency
is determined and the values of their before-trset, after-mrset, and beforecnt are changed
accordingly.

By summarizing what we discussed above, we define the locking protocol as follows:

LPI. Transaction T requests a read lock on data object x.

"for all transactions t with write-lock(t,x) do
if (priority (t) > priority (7) or t is in write phase) /* Case 2, 4*/
then deny the lock and exit;
endif

enddo

for all transactions t with write lock (tx) do /*Case 4*/
if t is in before.JrsetT then abort t;
else if (t is not in after..trsetr)

then
include t in after .trsetT
before-cnt, := before-cnt, + 1;

endif
endif

enddo
grant the lock;

LP2. Transaction T requests a write lock on data object x.

for all transactions t with read lock (t,x) do
if priority (t) > priority (7)

then /* Case) */
if (T is not in afier-irset,)

272 S.H. SON, J. LEE AND Y. UN

then
include t in after-trset,;
before.cntT := before-cntt + 1;

endif
else

if t is in wait phase /* Ccse 3 */
then

if (t is in afterJrsetT)
then abort t;
else

include t in before__trsetr;
endif

else if t is in read phase
then abort t;
endif

endif
endif

enddo
grant the lock;

2.2. Wait Phase

The wait phase allows a transaction to wait until it can commit. A transaction in the wait
phase can commit if all transactions with higher priority that must precede it in the serializa-
tion order, are either committed or aborted. Since the beforecnt of a transaction keeps
track of the number of such transactions, the transaction can commit only if its beforecnt
becomes zero. A transaction in the wait phase may be aborted due to two reasons; if a
higher priority transaction requests a conflicting lock or if a higher priority transaction
that must follow this transaction in the serialization order commits. Once a transaction
in its phase finds a chance to commit, it commits, switches to its write phase and releases
all readlocks. The transaction is assigned a final timestamp which is the absolute serializa-
tion order.

2.3. Write Phase

Once a transaction is in the write phase, it is considered to be committed. All committed
transactions can be serialized by their final-timestamp order. In the write phase, the only
work of a transaction is making all its updates permanent in the database. Data items in
local workspaces are copied into the database. The write requests of each transaction are
sent to the data manager, which carries out the write operations in the database. Transac-
tions submit write requests along with their final timestamps. After each write operation,
the corresponding write lock is released. In order to resolve write-write conflicts here,
we apply Thomas' Write Rule (TWR) (Bernstein et al. 1987), which just ignores late write
requests rather than aborting them.

)

HYBRID PROTOCOLS 273

3. Hybrid Timestamp Interval Protocol

3.1. Key Ideas

This protocol is a combination of OCC and timestamp ordering. One serious problem of
OCC is that of wasted resources. Because data conflicts are detected and resolved only
during the validation phase, transactions can end up aborting after having used resources
and time for most of the transaction's execution. The situation becomes even worse because
previously performed work has to be redone when the transaction is restarted. The problem
of the wasted resources and time becomes even more serious for real-time transaction
scheduling, because it reduces the chances of meeting the deadlines of transactions.

Another problem of OCC is unnecessary aborts. When a transaction is ready to commit,
it is checked whether this transaction is involved in any nonserializable execution. This
validation test is usually conducted based on the read sets and write sets of transactions,
rather than on actual execution order. Hence sometimes the validation process using the
read sets and write sets erroneously concludes that a nonserializable execution has occurred,
even though it has not in actual execution. The problem of unnecessary aborts is serious
because it results in a waste of resources and time.

The problem of wasted resources is partly remedied with forward validation scheme,
because the validation test is conducted against active transactions in their read phase
(Haritsa, Carey and Livny 1990; Huang, Stankovic, Ramamritham and Towsley 1991). Early
detection and resolution of conflicts can reduce the wasted resources and time. Our pro-
tocol presented here also utilizes OCC with forward validation to take the advantage of
the early detection and resolution of nonserializable executions. Furthermore, this protocol
employs the notion of dynamic timestamp allocation (Bayer, Elhardt, Heigert and Reiser
1982) and dynamic adjustment of serialization order using timestamp interval (Boksenbaum,
Cart, Ferrie and Pons 1987). With these, the ability of early detection and resolution of
nonserializable execution is improved, and unnecessary aborts are avoided.

3.11. OCC with forward wvidation. The execution of each transaction in this protocol con-
sists of three phases; read, validation, and write, as in other OCC protocols. This protocol
uses a forward validation scheme, rather than a backward validation scheme. As mentioned
earlier, in forward validation, the validation test is conducted against active transactions
in their read phase. When a conflict is detected, either the validating transaction or the
conflicting active transaction can be aborted. It is this property that makes OCC with for-
ward validation flexible and allows it to be easily combined with the priority mcchanism.
The phase-dependent control of OCC and the property of forward validation scheme pro-
vide a framework for the following components of the protocol.

3.L2. Categories of conflicting transactions. Since this, protocol uses forward validation
conducted against active transactions, when a validation test is performed for a transaction,
say T,., active transactions in the system can be divided into several sets according to their
execution history (with respect to that of Tv). First, the set of the active transactions are
divided into two sets; a conflicting set, which contains transactions in conflict with T,., and
a nonconflicting set, which contains transactions not in conflict with T,. The conflicting

274 S.H. SON, J. LEE AND Y. LIN

set can be further divided into two sets; a Reconcilably Conflicting (RC) set and an Irrec-
oncilably Conflicting (IC) set. Transactions in the RC set are in conflict with T,., but the
conflicts are reconcilable, i.e., serializable. However, transactions in the IC set are in con-
flict with T,, and the conflicts are irreconcilable, i.e., nonserializable. The formal descrip-
tion of the conditions to categorize these sets of active transactions and the definitions of
the terms such as reconcilable conflict and irreconcilable conflict can be found in (Son,
Lee and Lin 1992).

The RC transactions do not have to be aborted, but their execution histories have to be
adjusted with the timestamp interval facility of this protocol. The IC transactions should
be handled with priority-based real-time conflict resolution schemes.

3M.3. Dynamic timestamp allocation. Another important aspect of this protocol is dynamic
timestamp allocation. Most timestamp-based concurrency control protocols use a static
timestamp allocation scheme, i.e., each transaction is assigned a timestamp value at its
startup time, and a total ordering instead of a partial ordering is built up. This total order-
ing does not reflect any actual conflict. Hence, it is possible that a transaction is aborted
when it requests its first data access (Bayer et at. 1982). Besides the total ordering of all
transactions is too restrictive, and degrades the degree of concurrency considerably. With
dynamic timestamp allocation, serialization order among transactions are dynamically con-
structed on demand whenever actual conflicts occur. Only the necessary partial ordering
among transactions is constructed instead of a total ordering from the static timestamp
allocation.

This dynamic timestamp allocation scheme is possible, because OCC provides a phase-
dependent structure of transaction execution. During the read phase, a transaction gradually
"builds its serialization order with respect to committed transactions on demand whenever
a conflict with such transactions occurs. Only when the transaction commits (after passing
the validation test), is its permanent timestamp order (i.e., the final serialization order)
determined.

3.1.4. Dynamic adjustment of serialization order with timestamp intervals. The dynamic
timestamp allocation scheme is made more efficient with a timestamp interval facility
(Boksenbaum et al. 1997). More flexibility to adjust serialization order can be obtained
using a timestamp interval (initially, the entire range of the timestamp space) assigned to
each transaction instead of single value for the.imestamp. The timestamp intervals of active
transactions preserve the partial ordering constructed by serialization execution. The time-
stamp interval of each transaction is adjusted (shrunk) whenever the transaction reads or
writes a data object to preserve the serialization order induced by committed transactions.
When the timestamp interval of a transaction shuts out, it means the transaction has been
involved in a nonserializable execution, and the transaction should be restarted. With this
facility, it is possible to detect and resolve nonserializable execution early in read phase.

When a transaction, say T, commits after its validation phase, the timestamp intervals
of those transactions catagorized as reconcilably conflicting are adjusted, i.e., the serialization
order between the validating transaction T, and its RC transactions are determined. Since
the permanent serialization order (final timestamp) of these active transactions is not dcter-
mined, all we have to do is determine the partial ordering between T, and these active

HYBRID PROTOCOLS 275

transactions by adjusting their timestamp intervals. Therefore these transactions do not have
to be aborted even though they are in conflict with the committed transaction, i.e.. unnec-
essary aborts are avoided, unlike other OCC protocols.

M.A Real-Tune Conflict Resolution. In order to resolve an irreconcilable conflict means
a nonserializable execution. As mentioned, since this protocol is based on OCC with a
forward validation scheme, either the validating transaction or the conflicting active trans-
action can be aborted. To determine which transaction to abort, we can employ the follow-
ing priority-based conflict resolution schemes (Haritsa et al. 1990; Huang et al. 1991).

* commit: When a transaction reaches the validation phase, it commits and notifies all
the IC transactions. These IC transactions are immediately restarted.

* priority abort: When a transaction reaches its validation phase, it is aborted if its priority
is less than that of all the IC transactions. If not, it commits and all the IC transactions
are restarted immediately as with the commit scheme.

* priority sacrifice: When a transaction reaches its validation phase, it is aborted if at
least one IC transaction has a higher priority than the validating transaction; otherwise
it commits and all the IC transactions are restarted immediately.

* priority wait: When a transaction reaches it validation phase, if its priority is not the
highest among the IC transactions, it waits for the IC transactions with higher priority
to complete.

3.2. Procedural Description

lb execute the proposed protocol, the system maintains an object table and a transaction
table. The object table entries maintain the following infbrmation:

RT7: the largest timestamp of the committed transactions that read the data object; and
W7S: the largest timestamp of the committed transactions that wrote the data object.

The transaction table entries maintain the following information:

RS(T): read set of transaction T ,
WS(T): write set of transaction T, and
77(7): timestamp interval of transaction T

We assume that the write set of a transaction is a subset of its read set and there is no
blind write. In addition to the timestamp interval assigned to each active transaction. a
final timestamp, denoted as 7S(T), is assigned to each committed transaction, T, that has
passed the validation test.

The read, validation and write phase of transaction execution with the proposed protocol
can be summarized as follows:

If T is not aborted during the real-time conflict resolution (if any), then it is validated
and committed. The execution of Tshould be reflected in the serialization order of committed

76S.H. SON, J. LEE AND Y. IUN

transactions. Thus a final timestamp for T should be reflected in the serialization order
of committed transactions. Thus a final timestamp for T should be chosen such that the
order induced by the final timestamp does not destroy the serialization order constructed
by the already committed transactions. In fact, any timestamp in the range of 77(7) satisfies
this condition because TI(T) preserves the order induced by all committed transactions.
Hence any timestamp from 77(T) can be chosen for the final timestamp. Then R/S and
W7l for all data objects that T accessed should be updated, if necessary, and finally, the
timestamp intervals of all the RC transactions should be adjusted.

4. Conclusions

Time-critical scheduling in real-time database systems has two components: real-time
scheduling and concurrency control. While both concurrency control and real-time schedul-
ing are well-developed and well-understood, there is only limited knowledge about the inte-
gration of concurrency control and real-time scheduling. Though recently the problem has
been studied actively, the proposed solutions are still at an initial stage. A major source
of problems in integrating the two is the lack of coordination in the development. They
are developed on different objectives and incompatible assumptions (Buchmann 1989).

Most of the proposed work for real-time concurrency control employ a simple method
to utilize one concurrency control scheme such as 2PL, TO and OCC, and to consider
the priority of operations inherited from the timing constraints of transactions in operation
scheduling. This method has an inherent disadvantage of being limited by the concurrency
control method used as the base. Since neither of pessimistic nor optimistic concurrency
control is satisfactory by itself for real-time scheduling, this simple method using only one
control can hardly satisfy the timing requirements of RTDBS. Problems such as excessive
blocking, wasted restarts, and priority inversion are serious in RTDBS.

In this paper, we proposed two real-time transaction scheduling protocols which employ
a hybrid approach, i.e., a combination of both pessimistic and optimistic approaches. These
protocols make use of a new conflict resolution scheme called dynamic adjustment of serial-
ization order, which supports priority-driven scheduling, and avoids unnecessary aborts.

References

Bayer, R., Elhardt, K., Heigert. J. and Reiser, A. 1982. Djynamic timestamp allocation for transactions in database
systems, Proc. 2nd Int. S)mp. Distributed Data Bases. September, pp 9-20.

Bernstein. P.A., Hadzilacos, V. and Goodman. N. 1987. Concurrency Control and Recowry in Database Swstems.
Reading, Mass. Addison-Wesley.

Boksenbaum. C., Cart, M., Ferrie, J. and Pbns. J. 1987. Concurrent certifications by intervals of timcstamps
in distributed database systems. IEEE Transactions on Sofi'ure Engineering. SE-13, (4). April pp. 409-419.

Buchmann, A. et al.. 1919. Time-critical database scheduling: a framework for integrating real-time scheduling
and concurrency control, Fifth Data Engineering Conference. February 1989.

Haritsa, J.R.. Carey, MJ. and Livny, M. 1990. Dynamic real-time optimistic concurrency control. IEEE Real-

Towe Systents Symposium, Orlando, Florida. December pp. 94-103.
Huang. L., Stankovic, LA.. Ramamritham. K. and Towsley. D. 1991. Experimental evaluation of real-time op.

timistic concufrency control schemes. VLDB Conerence. Barcelona, Spain, September.
Son. S. H.. Lee, J. and Lin. Y. 1992. Hybrid protocols using dynamic adjustment of serialization order, Technical

Report TR-92-O7, Department of Computer Science, University of Virginia, March.

Journal of Systems Integration. 1. 67-90 (1992)
C 1992 Kluwer Academic Publishers. Boston. Manufactured in The Netherlands.

An Environment for Integrated Development and
Evaluation of Real-Time Distributed Database Systems

SANG H. SON
Department of Computer Science, University of Virginia. Charlonesmil1e, VA 22903

(Received June 26. 1990. Revised April 26. 1991)

Abstract, Real-time database systems must maintain consistency while minimizing the number of transactions
that miss the deadline. To satisfy both the consistency and real-time constraints, there is the need to integrate
synchronization protocols with real-tiew piority scheduling protocols. One of the reasons for the difficulty in
developing and evaluating database synchronization techniques is that it takes a long time to develop a system,
and evaluation is complicated because it inelves a large number of sysem parameters that may change dynamically.
This paper describes an enviroment for investigating distributed real-time database systems. The environment
is based on a concurrent programming kernel that supports the creation, blocking, and termination of processes.
as well as scheduling and interprocesa communication. The contribution of the paper is the introduction of a
new approach to system development that utilizes a module library of reusable components to satisfy three major
goals: modularity, flexibility, and extensibility. tn addition. experments for real-tuime concurrenocy control techniques
are presented to illustrate the effectiveness of the environment.

Key Wbnds: Distributed database, pmroyping, synchronization. tiasaction, real-timi.

1. Introduction

In this paper, we report our experiences with a new approach to integrated development
and evaluation of real-time distributed database systems, and present experimental results
of various real-time synchronization techniques. The goal of the project is to test the
hypothesis that a host environment can be used to significantly accelerate the rate at which
we can perform experiments in the areas of operating systems, databases, and network pro-
tocols for real-time systems. A tool for developing components of real-time distributed
systems and integrating them to evaluate design alternatives is essential for the advance
of real-time computing technology. To the best of our knowledge, this is the first successful
attempt to develop such a tool as an environment consisting of a hybrid of actual implemen-
tation and simulation.

As computers are becoming an essential part of real-time systems, real-time computing
is emerging as an important discipline in computer science and engineering [I]. The grow-
ing importance of real-time computing in a large number of applications, such as aerospace
"and defense systems, industrial automation, and nuclear reactor control, has resulted in
an increased research effort in this area. Researchers working on developing real-time

This work was supponed in part by ONR contract # N00014-88-K-0245, by DOE contract # DEFGOS-88-ER25063.
by CIT contract # CIT-INF-90-OII, and by IBM Federal Systems Division.

68 SON

systems based on distributed system architecture have found out that database managers
are assuming much greater importance in real-time systems. In the recent workshops,
developers of "real- real-time systems pointed to the need for basic research in database
systems that satisfy timing constraint requirements in collecting, updating, and retrieving
shared data [2, 3]. Further evidence of its importance is the recent growth of research in
this field and the announcements by some vendors of database products that include features
achieving high availability and predictability [4].

In addition to providing relational access capabilities, distributed real-time database
systems offer a means of loosely coupling software processes, making it easier to rapidly
update software, at least from a functional perspective. However. with respect to time-driven
scheduling and system-timing predictability, they present new problems. One of the char-
acteristics of current database managers is that they do not schedule their transactions to
meet response requirements and they commonly lock data tables indiscriminately to assure
database consistency. Locks and time-driven scheduling are basically incompatible. Low-
priority transactions can and will block higher-priority transactions leading to response
requirement failures. New techniques are required to manage database consistency that is
compatible with time-driven scheduling and the essential system response predictability/
analyzability it brings. One of the primary reasons for the difficulty in successfully develop-
ing and evaluating new database techniques is that it take a long time to develop a system,
and evaluation is complicated because it involves a large number of system parameters that
may change dynamically.

A prototyping technique can be applied effectively to the evaluation of database tech-
niques for distributed real-time systems. In this paper, we report our experiences with a
new database prototyping environment. It is constructed to support research in distributed
database and operating system technology for real-time applications. A database proto-
typing environment is a software package that supports the investigation of the properties
of database techniques in an environment other than that of the target database system.
The advantages of an environment that provides prototyping capability are obvious. First,
it is cost effective. If experiments for a 20-node distributed database system can be ex-
ecuted in a software environment, it is not necessary to purchase a 20-node distributed
system thereby reducing the cost of evaluating design alternatives. Second, design alter-I. natives can be evaluated in a uniform environment with the same system parameters, mak-
ing a fair comparison. Finally, as technology changes, the environment need only be up-
dated to provide researchers with the ability to perform new experiments.

A prototyping environment can reduce the time of evaluating new technologies and design
alternatives. From our past experience, we assume that a relatively small portion of a typical
database system's code is affected by changes in specific control mechanisms whereas the
majority of code deals with intrinsic problems, such as file management. Thus. by prop-
erly isolating technology-dependent portions of a database system using modular program-
ming techniques, we can implement and evaluate design alternatives very rapidly. In addi-
tion, a prototyping environment provides a friendlier development environment than a target

II hardware system. The bare-machine environment is the worst possible place in which to
explore new software concepts. For example, even the recovery of the event history leading
up to an error in a distributed system can be a difficult and, in some cases, impossible,
task. Debugging is greatly facilitated in a prototyping environment. The symbolic debugger

AN ENVIRONMENT FOR INTEGRATED DEVELOPMENT AND EVALUATION 69

of our environment supports the examination of an arbitrary number of execution threads.
As a result, the state of a distributed computation can be examined as a whole.

Although there exist tools for system development and analysis, few prototyping tools
exist for distributed database experimentation, especially for distributed real-time database
systems. Recently, simulators have been developed for investigating performance of several
concurrency control algorithms for real-time applications [5, 6]. However, they do not pro-
vide a module hierarchy composed from reusable components as in out prototyping
environment. Software developed in our prototyping environment will execute in a given
target machine without modification of any layer except the hardware interface. In addi-
tion, because our environment is a hybrid of prototyping and simulation (i.e., partially
implemented and partially simulated), we can easily capture important timing features of
the system, whereas it is very hard using simulation only.

A database system must operate in the context of available operating system services.
In other words, database operations need to be coherent with the operating system, because
correct functioning and timing behavior of database control algorithms depend on the ser-
vices of the underlying operating system. Unless you have a control over the operating
system, investigating timing behavior of a database system does not provide much infor-
mation. An environment for database systems development must, therefore, provide facilities
to support operating system functions and integrate them with database systems for
experimentation.

Another important use of a prototyping environment is to analyze the reliability of database
control mechanisms and techniques. Because distributed systems are expected to work cor-
rectly under various failure situations, the behavior of distributed database systems in degrad-
ed circumstances needs to be well understood. Although new approaches for synchroniza-
tion and checkpointing for distributed databases have been developed recently [7-11, ex-
perimentation to verify their properties and to evaluate their performance has not been
performed due to the lack of appropriate test tools.

When a database system is developed, functional completeness and performance of the
system are of primary concern. The resulting systems are often not layered or modular
in their implementation. However, for experimentation, a layered implementation approach
facilitates the rapid evaluation of new techniques. Such a facility improves significantly
the capability of the system designer in comparing design alternatives in a uniform en-
vironment. In this regard, the concept of developing a methodology for layered implemen-
tation of the system and building a library of modules with different performance/reliability
characteristics for operating system and database system functions seems promising. The
prototyping environment we have developed follows this approach [12, 131.

The rest of the paper is organized as follows. Section 2 presents an informal description
of a message-based simulation. Section 3 describes the design principles and the current
implementation of the prototyping environment. Section 4 presents experimentations of
priority-based synchronization algorithms and multiversion data objects using the prototyping
environment. Section 5 concludes the paper.

70 SON

2. Message-Based Simulation

When prototyping distributed database systems, there are two possible approaches: sequential
programming and distributed programming based on message-passing. Message-based
simulations, in which events are message-communications, do not provide additional ex-
pressive power over standard simulation languages; message-passing can be simulated in
many discrete-event simulation languages including SIMSCRIPT [14] and GPSS (151.
However, a message-based simulation can be used as an effective tool for developing a
distributed system because the simulation "looks" like a distributed program, whereas a
simulation program written in a traditional simulation language is inherently a sequential
program. Furthermore, if a simulation program is developed in a systematic way such that
the principles of modularity and information hiding are observed, most of the simulation
code can be used in the actual system, resulting in a reduced cost for system development
and evaluation.

To prototype a distributed database system on a single-host machine, it is necessary to
provide virtual machines for each node of the system being simulated. For that, the proc-
ess view of a system has been adopted. A distributed system being simulated consists of
a number of processes that interact with others at discrete instants of time. Processes are
basic building blocks of a simulation program. A process is an independent, dynamic entity
that manipulates resources to achieve its objectives. A resource is a passive object and
may be represented by a simple variable or a complex data structure. A simulation pro-
gram models the dynamic behavior of processes, resources, and their interactions as they
evolve in time. Each physical operation of the system is simulated by a process, and the
"process interactions are called events.

In the literature, the notion of a process has been given numerous definitions. The defini-
tion used in our model is much the same as that given in [161: A process is the execution
of an interruptible sequential program and represents the unit of resource allocation, such
as the allocation of CPU time, main memory, and 1/0 devices.

We use the client/server paradigm for process interaction in the prototyping environ-
ment. The system consists of .-. of clients and servers, which are processes that cooperate
for the purpose of transaction processing. Each server provides a service to its clients,
where a client can request a service by sending a request message (a message of type re-
quest) to the corresponding server. The computgtion structure of the system to be modeled
can be characterized by the way clients and servers are mapped into processes. For exam-
ple, a server might consist of a fixed number of processes, each of which may execute
requests from every transaction, or it might consist of a varying number of processes, each
of which executes on behalf of exactly one transaction.

Internal actions of a process, i.e., actions that do not involve interactions with other proc-
esses in the system, are modeled either by the passage of simulation time or by the execu-
tion of sequential statements within the process. We use a simulator clock to represent the
passage of time in a simulation. The simulator clock advances in discrete steps where each
step simulates the passage of time between two events in the system.

In a physical system, each process makes independent progress in time if the resources
they need are available, and many processes execute in parallel. In its simulation, the multiple
processes of a physical system must be executed simultaneously on one processor. This

AN ENVIRONMENT FOR INTEGRATED DEVELOPMENT AND EVALUATION 71

simultaneity is achieved in the prototyping environment by supporting a simultaneous ex-
ecution of multiple processes in a single address space.

A message-based prototyping environment can be of enormous benefit in designing and
testing emerging systems, such as real-time systems, and in comparing and improving
algorithms that are applicable to many different systems. One such benefit is that the soft-
ware to be used in an actual system can be developed using the environment. The proto-
typing environment can support a simulated environment, actual hardware, or a "hybrid"
mode in which some of the modules are implemented in hardware and some are simulated.
In this way, it is irrelevant to the software developer using the environment whether or
not all or part of the software is running on hardware. When the system is running in a
hybrid mode, the virtual clock used for performance measurement is updated by the actual
time used for direct execution, making performance measurements correct.

3. Structure of the Prototyping Environment

The prototyping environment is designed to facilitate easy extensions and modifications.
Server processes can be created, relocated, and new implementations of server processes
can be dynamically substituted. The prototyping environment efficiently supports a spec-
trum of real-time database functions at the operating level and facilitates the construction
of multiple database systems with different characteristics. For experimentation, system
functionality can be adjusted according to application-dependent requirements without much
overhead for a new system setup. Because one of the design goals of the prototyping envi-
ronment is to conduct an empirical evaluation of the design and implementation of real-
time distributed database systems, it has built-in support for performance measurement
of both elapsed time and blocked time fIr each transaction.

The prototyping environment provides support for transaction processing, including
transparency to concurrent access, data distribution, and atomicity. An instance of the pro-
totyping environment can manage any number of virtual sites specified by the user. Modules
that implement transaction processing are decomposed into several server processes, and
they communicate among themselves through ports. The clean interface between server
processes simplifies incorporating new algorithms and facilities into the prototyping en-
vironment or testing alternate implementations of algorithms. To permit concurrent tran-
sactions on a single site, there is a separate process for each transaction that coordinates
with other server processes.

Figure I illustrates the structure of the prototyping environment. The prototyping en-
vironment is based on a concurrent programming kernel, called the StarLite kernel. The
StarLite kernel supports process control to create, ready, block, and terminate ,rocesscs.
It also supports the semaphore abstraction to be used by higher-level modules in resource
control, critical section implementation, and synchronous message passing. The internal
structure of the kernel follows the well-known client-server model [171, in which most of
the operating system operates as server processes in the same address space as client proc-
esses, with the kernel merely handling message communication between various processes.
Figure 2 shows an instance of this model. This structure is particularly useful for extens-
ible systems such as our prototyping environment, as additional or alternative functionality

72 SON

can easily be provided by creating a new server, instead of changing and recompiling the
kernel.

Scheduler in the kernel maintains a virtual clock and provides the hold primitive to con-
trol the passage of time. The benefit of a virtual clock is that any number of performance
monitoring operations may be performed at an instant of virtual time. If a physical clock
were embedded, the monitoring activities themselves would interfere with other system
activities and add to the execution time, resulting in incorrect performance measures.

User Interface

Configuration Manager Performance Monitor

Transaction Generator

Servers Transaction Manager

Message Server

StarLite Kernel

Fgure L Structure of the prototyping environment.

Machine I Machine 2 Machine 3

Client File server Process server

Kcml KemclKcc

Message from Communication medium

clicnt to server

Rgure 2. Client-server model.

AN ENVIRONMENT FOR INTEGRATED DEVELOPMENT AND EVALUATION 73

The kernel also provides the capability of isolating overhead imposed by each system
component. For instance, total time at each node can be divided into CPU time and I/O
time, to determine the computation-intensive and I/O-intensive functions and investigate
the distribution of tasks around the system so as to maximize parallelism. The user inter-
face (UI) is a front end invoked when the prototyping environment begins. UI is menu
driven, and designed to be flexible in allowing users to experiment various configurations
with different system parameters. A user can specify the following:

1. System configuration: number of sites and the number of server processes at each site,
topology and communication costs

2. Database configuration: database at each site with user-defined structure, size, granularity,
and levels of replication

3. Load characteristics: number of transactions to be executed, size of their read-sets and
write-sets, transaction types (read-only or update) and their priorities, and the mean
interarrival time of transactions

4. Concurrency control: locking, timestamp ordering, and priority based.

The U! initiates the configuration manager (CM), which initializes necessary data struc-
tures for transaction processing based on user specification. The database at each site con-
sists of different number of files, and each file consists of different number of records.
The database structure can be made complicated if necessary. However, we use a simple
file access because investigating synchronization problems does not require complex database
structures.

The CM invokes the transaction generator at an appropriate time interval to generate
the next transaction to form a Poisson process of transaction arrival. The environment is
flexible enough to generate any number of transactions with different characteristics. The
user can specify his or her own procedure for transactions. At initialization time, the user-
specified procedure is converted irto a transaction process. Furthermore, the prototyping
environment supports the facility .hat allows mixing system generated transactions with
user-specified ones. It is very desirable to have such a capability as the user can setup
any workload that represents the situation to be simulated, with or without system-generated
background workload.

A transaction is distinguished from the other processes in the system by its behavior.
To the system, the only distinction between transactions and server processes is the Port-
Tags on which each receives messages. When a transaction is generated, it is assigned an
identifier that is unique among all transactions in the system. Each transaction is also assigned
a globally unique timestamp hidden within a single module. The advantage of extracting
the definition and assignment of the timestamp from its use is that it provides a means
of uniquely assigning timestamps that are independent from any specific implementation.

The timestamp assignment is closely related to the clocks in the system. In a sequential
simulation, a single clock suffices to order events in the system. An event is taken off the
event queue, and the global clock is advanced to the time required for the event to occur.
Events are related in time by their relation to the global clock. In prototyping distributed
environments, no such global clock is available. Time is referred to by local clocks, which
is maintained at each site and visible only to processes at that site. Ordering of events in

74 SON

terms of the global time, therefore, depends on the proper synchronization of local clocks.
In our environment, clocks are synchronized by intersite communication. An intersite
message includes the clock value of the sender site at the time the message is sent. If the
sum of this clock value and the propagation delay between the sites is greater than the
clock value at the receiver site, the receiver increments its clocks by the difference be-
tween the sum and its clock value. In this way, all succeeding events at the receiver site
can be said to occur after the sending of the message. This satisfies our intuitive notion
of "happens before" relationship [181.

Transaction execution consists of read and write operations. Each read or write opera-
tion is preceded by an access request sent to the resource manager, which maintains the
local database at each site. Each transaction is assigned to the transaction manager (TM).
The TM issues service requests on behalf of the transaction and reacts appropriately to
the request replies. For instance, if a transaction requests access to a file and that file is
locked, TM executes either blocking operation to wait until the data object can be assessed,
or aborting procedure, depending on the situation. If granting access to a resource will
produce a deadlock, TM receives abort response and aborts the transaction. Transactions
commit in two phases. The first commit phase consists of at least one round of messages
to determine if the transaction can be globally committed. Additional rounds may be used
to handle potential failures. The second commit phase causes the data objects to be written
to the database for successful transactions. TM executes the two commit phases to ensure
that a transaction commits or aborts globally. Figure 3 illustrates a queueing model adopted
for transaction processing.

Startup Queue

RESTART

cc COMMIT

Ready Queue

- Block Queue

I I ~ taýaIIý:Ic v1!sACýCESS

Figure I. Simulation model.

AN ENVIRONMENT FOR INTEGRATED DEVELOPMENT AND EVALUATION 75

Transactions are generated and put into the start-up queue. When a transaction is started,
it leaves the start-up and enters the ready queue. The transaction at the top of the queue
is selected to run. The current running transaction sends requests to the concurrency con-
troller (CC) implemented in the resource manager. The transaction may be blocked and
placed in the block queue. It may also be aborted and restarted. In such a case, it is first
delayed for a certain amount of time and then put in the ready queue again. When a trans-
action in the block queue is unblocked, it leaves the block queue and is placed in the ready
queue again.

In prototyping distributed database systems, a communication network is an important
component to be simulated because the system performance depends heavily on the topology
and communication protocols used. However, in many database simulators, the communica-
tion subsystem is either ignored or simplified by adding communication cost to the trans-
action processing time. Our prototyping environment uses a different approach by pro-
viding a virtual communication network that actually runs a layered communication pro-
tocol on a network topology specified by the user. Because the communication module
is a separate building block in the prototyping environment, the user can change it to simulate
different requirements of the application.

The message server (MS) is a process listening on a well-known port for messages from
remote sites. When a message is sent to a remote site, it is placed on the message queue
of the destination site and the sender blocks itself on a private semaphore until the message
is retrieved by MS. If the receiving site is not operational, a time-out mechanism will unblock
the sender process. When MS retrieves a message, it wakes the sender process and for-
wards the message to the proper servers or TM. The prototyping environment supports
both Ada-style rendezvous (synchronous) as well as asynchronous message passing. Inter-
process communication within a site does not go through the message server; processes
send and receive messages directly through their associated ports. The interprocess com-
munication structure is designed to provide a simple and flexible interface to the client
processes of the application software independent of the low-level hardware configurations.
It is split into three levels of hierarchy: transport, network and physical layers.

The transport layer is the interface to the application software, thus it is designed to be
as abstract as possible in order to support different port structures and various message
types. In addition, application level processes need not know the details of the destination
device. The invariant built into the design of.the interprocess communication interface is
that the application level sender allocates the space for a message, and the receiver deallocates
it. Thus, it is irrelevant whether or not the sender and receiver share memory space. i.e.,
whether or not the physical layer on the sender's side copies the message into a buffer
and deallocates it at the sender's site, and the physical layer at the receiver's site allocates
space for the message. This enables prototyping distributed systems or multiprocessors
with no shared memory, as well as multiprocesses with shared memory space. When the
latter is prototyped, only addresses need to be passed in messages without intermediate
allocation and deallocation.

The physical layer of message passing simulates the physical sending and receiving of
bits over a communication medium, i.e., it is for intersite message passing. The device
number in the interface is simply a cardinal number, this enables the implementation to
be simple and extensible enough to support any application. To simulate sending or to

76 SON

actually send over an Ethernet in the target system, for example, a module could map net-
work addresses onto the cardinal numbers. To send from one processor to another in a
distributed system, the cardinals can represent processor numbers.

Messages are passed to specific processes at specific sites in the network layer of the com-
munication interface. This layer separates the transport and the physical layers so that the
transport-layer interface can be processor and process independent and the physical layer
interface need be concerned only with the sending of bits from one site to another. The trans-
port layer interface of the communication subsystem is implemented in the transport module.
A transport-level Send is made to an abstraction called a PortTag. This abstraction is
advantageous because the implementation (i.e., what a PortTag represents) is hidden in
the Ports module. Thus the PortTag can be mapped onto any port structure or the reception
point of any other message passing system. The transport-level Send operation builds a
packet consisting of the sender's PortTag, used for replies, the destination PortTag, and
the address of the message. It then retrieves from the destination PortTag the destination
device number. If this number is the same as the sender's, the Send is an intrasite message
communication, and hence the network-level Send is performed. Otherwise the send re-
quires the physical module for intersite communication. Note that accesses to the implemen-
tation details of the PortTag are restricted to the module that actually implements it; this
enables changing the implementation without recompiling the rest of the system.

The performance monitor interacts with the transaction managers to record, priority/
timestamp and read/write data set for each transaction, time when each event occurred,
statistics for each transaction, and CPU-hold interval in each node. The statistics for a
transaction includes arrival time, start time, total processing time, blocked interval, whcther
deadline was missed or not, and the number of aborts.

Because each TM is a separate process, each has its own data area in which to keep
track of the time when a service request is sent out and the time the response arrives, as
well as the time when a transaction begins blocking, waiting for a resource, and the time
the resource is granted. When a transaction commits, it calls a procedure that records the
above measures; when the simulation clock has expired, these measures are printed out
for all transactions.

4. Prototyping Real-Time Database Systems

Section 3 described the structure of the prototyping environment with some of its advanced
features. In this section, we present real-time database systems implemented using the proto-
typing environment. The objectives of our study using the prototyping environment are
(1) to evaluate the prototyping environment itself in terms of correctness, functionality, and
modularity, (2) to compare perfbrmance between two-phase locking and priority-based .yn-
chronization algorithms and between a multiversion database and its corresponding single-
version database, through the sensitivity study of key parameters that affect performance.

Compared with traditional databases, real-time database systems have a distinct feature:
they must satisfy the timing constraints associated with transactions. In other words. "time"
is one of the key factors to be considered in real-time database systems. The timing con-
straints of a transaction typically include its ready time and deadline, as well as temporal

AN ENVIRONMENT FOR INTEGRATED DEVELOPMENT AND EVALUATION 77

consistency of the data accessed by it. Transactions must be scheduled in such a way that
they can be completed before their corresponding deadlines expire. For example, both the
update and query on a tracking data of a missile must be processed within the given deadlines
otherwise the information provided could be of little value. In such a system, transaction
processing must satisfy not only the database consistency constraints but also the timing
constraints.

The prototyping environment we have developed is especially useful for investigating
timing behavior of real-time transactions as we can control all the system components. An
alternative to the prototyping approach is to develop a system on a bare machine, based
on a specialized real-time kernel. The ARTS [19] and the RT-CARAT [20] systems take
this approach. Difficulties with such an approach are that (1) it takes much more effort
to develop, (2) the system is strongly coupled with its hardware and hence hard to change
its timing characteristics when needed, and (3) the system is not portable as it is implemented
in the target environment.

4.1. Steady-State Estimation

In order to show that the results we get from experiments represent the performance of
the system in steady states, we have performed experiments to check if the system were
allowed to run for any length of time greater than certain threshold value, the variation
in results would be within some tolerable interval. We have implemented a well-known
synchronization protocol, two-phase locking (2PL), for the following system and workload
"configuration:

8 sites with fully interconnected network
multiprogramming level of 10
75% read-only and 25% update transactions
read-only transactions access 3% of the database
update transactions access 1% of the database
database consists of 500 unreplicated objects
Poisson distribution of transaction arrivals

Figure 4 shows the average response time of transactions using the 2PL. It shows that the
average response time begins to stabilize at 3000 simulation time units and varies only
slightly from then on. The lower response time up to 3000 time units arc due to the first
set of transactions that benefits from a lower initial multiprogramming level and potential
conflicts. In addition, because transactions requiring longer execution time will increase
the average response time when they complete, they do not contribute to the average response
time during the early stage of transaction execution if they were in the initial group of trans-
action. These initial characteristics are gradually erased from the average performance.

In addition, as we increase the time for experiments, the average response time is deter-
mined from an increasing number of transactions. For example, at 100 time units, the number
of transactions contributing to the mean is approximately 12. At 4000, it is approximately
60. Thus the overall behavior of the system becomes less and less subject to the behavior

78 SON

400-

S2PL

300-

Average
Response 200-

Time

100-

! -or
I I II

-0 1000 2000 3000 4000

Simulation lcngth

Figure 4. Response-time stability.

of individual transactions. From the graph and characteristics of our environment, we con-
cluded that an experiment must run at least 3500 time units before it starts to capture the
steady state behavior of the system.

4.2. Priority-Based Synchronization

Real-time databases are often used by applications such as tracking. Tasks in such applica-
tions consist of both computing (signal processing) and database accessing (transactions).
A task can have multiple transactions, which consist of a sequence of read and write opera-
tions operating on the database. Each transaction will follow the two-phase locking proto-
col, which requires a transaction to acquire all the locks before it releases any lock. Once
a transaction releases a lock, it cannot acquire any new lock. A high-priority task will
preempt the execution of lower-priority tasks tinless it is blocked by the locking protocol
at the database.

In a real-time database system, synchronization protocols must not only maintain the
consistency constraints of the database but also satisfy the timing requirements of the trans-
actions accessing the database. To satisfy both the consistency and real-time constraints.
there is a the need to integrate synchronization protocols with real-time priority schedul-
ing protocols. A major source of problems in integrating the two protocols is the lack of
coordination in the development of synchronization protocols and real-time priority schedul-
ing protocols. Due to the effect of blocking in lock-based synchronization protocols, a direct
application of a real-time scheduling algorithm to transactions may result in a condition
known as priority inversion [6]. Priority inversion is said to occur when a higher-priority
process is forced to wait for the execution of a lower-priority process for an indefinite period
of time. When the transactions of two processes attempt to access the same data object.

AN ENVIRONMENT FOR INTEGRATED DEVELOPMENT AND EVALUATION 79

the access must be serialized to maintain consistency. If the transaction of the higher-priority
process gains access first, then the proper priority order is maintained; however, if the
transaction of the lower priority gains access first and then the higher-priority transaction
requests access to the data object, this higher priority process will be blocked until the
lower-priority transaction completes its access to the data object. Priority inversion is in-
evitable in transaction systems. However, to achieve a high degree of schedulability in real-
time applications, priority inversion must be minimized. This is illustrated by the follow-
ing example.

Example: Suppose that T1, T2 , and T3 are three transactions arranged in descending
order of priority with T, having the highest priority. Assume that T, and T3 access the
same data object Oi. Suppose that at time T, transaction T3 obtains a lock on O/. During
the execution of T3, the high-priority transaction T, arrives, preempts T3, and later attempts
to access the object Oi. Transaction T, will be blocked because Oi is already locked. We
would expect that T1, being the highest-priority transaction, will be blocked no longer than
the time for transaction T3 to complete and unlock Oi. However, the duration of blocking
may, in fact, be unpredictable. This is because transaction T3 can be blocked by the in-
termediate priority transaction T2 that does not need to access O. The blocking of T3, and
hence that of T1, will continue until T2 and any other pending intermediate priority level
transactions are completed.

The blocking duration in the example above can be arbitrarily long. This situation can
be partially remedied if transactions are not allowed to be preempted; however, this solu-
tion is only appropriate for very short transactions, because it creates unnecessary block-
ing. For instance, once a long low-priority transaction starts execution, a high-priority trans-
action not requiring access to the same set of data objects may be needlessly blocked.

An approach to this problem, based on the notion of priority inheritance, has been pro-
posed [211. The basic idea of priority inheritance is that when a transaction T of a process
blocks higher-priority processes, it executes at the highest priority of all the transactions
blocked by Ti. This simple idea of priority inheritance reduces the blocking time of a
higher-priority transaction. However, this is inadequate because the blocking duration for a
transaction, although bounded, can still be substantial due to the potential chain of blocking.
For instance, suppose that transaction T, needs to sequentially access objects 01 and 02.
Also suppose that T2 preempts T3, which has already locked 02. Then T2 locks 01.
Transaction T, arrives at this instant and finds that the objects 01 and 02 have been respec-
tively locked by the lower-priority transactions T2 and T3. As a result, T, would be blocked
for the duration of two transactions, once to wait for T2 to release 01 and again to wait
fbr T3 to release 02. Thus a chain of blocking can be formed.

One idea for dealing with this inadequacy is to use a total priority ordering of active
transactions [221. A transaction is said to be active if it has started but not yet completed
its execution. A transaction can be active in one of two states: executing or being preemp-
ted in the middle of its execution. The idea of total priority ordering is that the real-time
locking protocol ensures that each active transaction is executed at some priority level,
taking priority inheritance and read/write semantics into consideration.

80 SON

4.3. Total Ordering by Priority Ceiling

To ensure the total priority ordering of active transactions, three priority ceilings are defined
for each data object in the database: the write-priority ceiling, the absolute-priority ceil-
ing, and the rw-priority ceiling. The write-priority ceiling of a data object is defined as
the priority of the highest-priority transaction that may write into this object, and absolute-
priority ceiling is defined as the priority of the highest-priority transaction that may read
or write the data object. The rw-priority ceiling is set dynamically. When a data object
is write locked, the rw-priority ceiling of this data object is defined to be equal to the ab-
solute priority ceiling. When it is read locked, the rw-priority ceiling of this data object
is defined to be equal to the write-priority ceiling. The priority ceiling protocol is prem-
ised on systems with a fixed priority scheme. The protocol consists of two mechanisms:
priority inheritance and priority ceiling. With the combination of these two mechanisms.
we get the properties of freedom from deadlock and a worst case blocking of at most a
single lower priority transaction.

When a transaction attempts to lock a data object, the transaction's priority is compared
with the highest rw-priority ceiling of all data objects currently locked by other transac-
tions. If the priority of the transaction is not higher than the rw-priority ceiling, the access
request will be denied, and the transaction will be blocked. In this case, the transaction
is said to be blocked by the transaction that holds the lock on the data object of the highest
rw-priority ceiling. Otherwise, it is granted the lock. In the denied case, the priority in-
heritance is performed in order to overcome the problem of uncontrolled priority inver-
sion. For example, if transaction Tblocks higher-priority transactions, T inherits PH, the
"highest priority of the transactions blocked by T.

Under this protocol, it is not necessary to check for the possibility of read-write con-
flicts. For instance, when a data object is write locked by a transaction, the rw-priority
ceiling is equal to the highest priority transaction that can access it. Hence, the protocol
will block a higher priority transaction that may write or read it. On the other hand, when
the data object is read-locked, the rw-priority ceiling is equal to the highest priority trans-
action that may write it. Hence, a transaction that attempts to write it will have a priority
no higher than the rw-priority ceiling and will be blocked. Only the transaction that read
it and have priority higher than the rw-priority ceiling will be allowed to read lock it as
read-locks are compatible. Using the priority-ceiling protocol, mutual deadlock of trans-
actions cannot occur and each transaction can be blocked by at most one lower-priority
transaction until it completes or suspends itself. The next example shows how transactions
are scheduled under the priority ceiling protocol.

Example: Consider the same situation as in the previous example. According to the pro-
tocol, the priority ceiling of Oi is the priority of T1. When T'2 tries to access a data ob-
ject, it is blocked because its priority is not higher than the priority ceiling of 0,. Therclore
T, will be blocked only once by T3 to access O, regardless of the number of data objects
it may access.

The total priority ordering of active transactions leads to some interesting behavior. As
shown in the example above, the priority-ceiling protocol may forbid a transaction from

m1

AN ENVIRONMENT FOR INTEGRATED DEVELOPMENT AND EVALUATION 81

locking an unlocked data object. At first sight, this seems to introduce unnecessary block-
ing. However, this can be considered as the "insurance premium" for preventing deadlock
and achieving block-at-most-once property.

Using the prototyping environment, we have investigated issues associated with this idea
of total ordering in priority-based scheduling protocols. One of the critical issues related
to the total ordering approach is its performance compared with other design alternatives.
In other words, it is important to figure out what is the actual cost for the "insurance
premium" of the total priority-ordering approach.

4.4. Performance Evaluation

Wrious statistics have been collected for comparing the performance of the priority-ceiling
protocol with other synchronization control algorithms. Transaction are generated with ex-
ponentially distributed interarrival times, and the data objects updated by a transaction are
chosen uniformly from the database. A transaction has an execution profile that alternates
data access requests with equal computation requests and some processing requirement
for termination (either commit or abort). Thus the total processing time of a transaction
is directly related to the number of data objects accessed. Due to space considerations,
we do not present all our results but have selected the graphs that best illustrate the dif-
ference and performance of the algorithms. For example, we have omitted the results of
an experiment that varied the size of the database, and thus the number of conflicts, because
they only confirm and not increase the knowledge yielded by othc. experiments.

For each experiment and for each algorithm tested, we collected performance statistics
and averaged over the 10 runs. The percentage of deadline-missing transactions is calculated
with the following equation: %missed = 100* (number of deadline-missing transac-
tions/number of transactions processed). A transaction is processed if either it executes
completely or it is aborted. We assume that all the transactions are hard in the sense that
there will be no value for completing the transaction after its deadline. Transactions that
miss the deadline are aborted and disappear from the system immediately with some abort
cost. We have used the transaction size (the number of data objects a transaction needs
to access) as one of the key variables in the experiments. It varies from a small fraction
up to a relatively large portion (10%) of the database so that conflict would occur frequently.
The high conflict rate allows synchronization protocols to play a significant role in the system
performance. We choose the arrival rate so that protocols are tested in heavily loaded rather
than lightly loaded system. In order to design real-time systems, one must consider high-
load situations. Even though they may not arise frequently, one would like to have a system
that misses as few deadlines as possible when such peaks occur. In other words. when
a crisis occurs and the database system is under pressure is precisely when making a few
extra deadlines could be most important [5].

We normalize the transaction throughput in records accessed per second fbr successful
transactions, not in transactions per second, in order to account for the fact that bigger
transactions need more database processing. The normalization rate is obtained by multiply-
ing the transaction completion rate (transactions/second) by the transaction size (database
records accessed/transaction).

82 SON

In Figure 5, the throughput of the priority-ceiling protocol (C), the two-phase locking
protocol with priority mode (P), and the two-phase locking protocol without priority mode
(L), is shown for transactions of different sizes with balanced workload and I/0 bound
workload. The two important factors affecting the performance of locking protocols are
their abilities to resolve the locking conflicts and to perform I/O and transactions in parallel.
When the transaction size is small, there is little locking conflict and the problem such
as deadlock and priority inversion has little effect on the overall performance of a locking
protocol. On the other hand, when the transaction size becomes large, the probability of
locking conflicts rises rapidly. In fact, the probability of deadlocks goes up with the fourth
power of the transaction size [23]. Hence, we would expect that the performance of proto-
cols will be dominated by their abilities to handle locking conflicts when transaction size
is large.

As illustrated in Figure 5, the performance of the two-phase locking protocol, with or
without priority assignments to transactions, degrades very fast when transaction size in-
creases. This can be attributed to the inability of this protocol to prevent deadlock and
priority inversions. On the other hand, the priority-ceiling protocol handles locking con-
flicts very well. The protocol performs much better than the two-phase locking protocol
when the transaction size is large. The main weakness of the priority-ceiling protocol is
its inability to perform I/O and transactions in parallel. For example, suppose that transac-
tion T has lock on 01 and it now wants to lock data object 02. Unfortunately, 02 is not
in the main memory. As a result, T is suspended. However, neither are transactions with
priorities lower than the rw-priority ceiling of 01 allowed to execute. This could lead to
the idling of the processor until either 02 is transferred to the main memory or a transac-
tion whose priority is higher than the rw-priority ceiling arrives. We refer this type of block-
ing as 1/0 blocking. When the transaction size is small, the locking conflict rate is small.
Hence, the two-phase locking protocol performs well. However, due to I/O blocking the
throughput of the priority ceiling protocol is not as good as that of the two-phase locking
protocol, especially when the workload is 1/0 bounded.

Because I/O cost is one of the key parameters in determining performance, we have in-
vestigated an approach to improve system performance by performing I/O operation before
locking called the intention I/0. In the intention mode of I/O operation, the system pre-
fetches data objects that are in the access lists of transactions submitted without locking
them. This approach will reduce the locking time of data objects, resulting in higher
throughput. As shown in Figure 6, intention I/O'improves throughput of both the two-phase
locking and the ceiling protocol. However, improvement in the ceiling protocol is much
more significant. This is because intention I/O effectively solves the I/O blocking problem
of the priority ceiling protocol.

Another important performance statistics is the percentage of deadline missing trans-
actions, since the synchronization protocol in real-time database systems must satisfy the
timing constraint of individual transaction. In our experiments, each transaction's deadline
is set to proportional to its size and system workload (number of transactions), and the
transaction with the earliest deadline is assigned the highest priority. As shown in Figure
7, the percentage of deadline missing transactions increases sharply for the two-phase locking
protocol as the transaction size increases due to its inability to deal with deadlock and to
give preference to transactions with shorter deadlines. Two-phase locking with priority

AN ENVIRONMENT FOR INTEGRATED DEVELOPMENT AND EVALUATION 83

20.0

Throughput
(records/second)

15.0 ed Workload

10.0.

5.0

0. ,
0 4 8 12 16 20 24

Transaction size

a) balanced workload transaction

25.0Tbro ut •

"20. O bounded Workload

15.0.

10.05. Q .- --cc

0.0

0 4 8 12 16 20 24

Transaction size

b) !/O bounded workload transaction

Figure 5. Transaction throughput. C: priority-ceiling protocol. P: 2-phase locking protocol with priority mode.
L: 2-phase locking protocol without priority mode.

84 SON

25.

(;e'grS#Pnd)
20.0

Balanced Workload

15.0

10.0
1oS.o

5.0.
L

0.0 ,- I

0 4 8 12 16 20 24
Transaction size

Figure 6 Transaction throughput with intention IVO

70.0
Percentage of

missing d adline 60.0

50.0

40.0 p

30.0

20.0

10.0

0.0
0 4 8 12 16 20 24

Transaction size

Figure 7 Percentage of missing deadline.

AN ENVIRONMENT FOR INTEGRATED DEVELOPMENT AND EVALUATION 85

assignment performs somewhat better because the timing constraints of transactions are
considered, although the deadlock and priority inversion problems still handicap its per-
formance. The priority-ceiling protocol has the best relative performance because it ad-
dresses both the deadlock and priority inversion problem. A drawback of the priority-ceiling
protocol from a practical viewpoint is that it needs knowledge of all transactions that will
be executed in the future. This may be a very strong requirement to satisfy in some
applications.

The priority-ceiling protocol takes a conservative approach. It is based on two-phase
locking and employs only blocking, but not rollback, to solve conflicts. For conventional
database systems, it has been shown that optimal performance may be achieved by com-
promising blocking and rollback [24]. For real-time database systems, we may expect similar
results. Aborting a few low priority transactions and starting them later may allow high
priority transactions to meet their deadlines, resulting in improved system performance.
Several concurrency control protocols based on optimistic approach have been proposed
[9, 11, 25]. They incorporate priority-based conflict resolution mechanisms, such as prior-
ity %Wit, that makes low-priority transactions wait for conflicting high-priority transactions
to complete. However, this approach of detecting conflicts during validation phase degrades
system predictability. A transaction is detected as being late when it actually misses its
deadline as the transaction is only aborted in the validation phase.

4.5. Multiversion Database System

To illustrate the effectiveness of the prototyping environment, we have investigated the per-
formance of a multiversion database system. There is no correlation between the priority-
ceiling protocol study and the multiversion database study.

In a multiversion database system, each data object consists of a number of consecutive
versions. The objective of using multiple versions in real-time database systems is to in-
crease the degree of concurrency and to reduce the possibility of rejecting user requests
by providing a succession of views of data objects. One of the reasons for rejecting a user
request is that its operations cannot be serviced by the system. For example, a read
operation has to be rejected if the value of data object it was supposed to read has already
been overwritten by some other user request. Such rejections can be avoided by keeping old
versions of each data object so that an appropriate old value can be given to a tardy read
operation. In a system with multiple versions of data, each write operation on a data object
produces a new version instead of overwriting it. Hence, for each read operation. the system
selects an appropriate version to read, enjoying the flexibility in controlling the order of
read and write operations. When a new version is created, it is uncertified. Uncertified
versions are prohibited from being read by other transactions to guarantee cascaded-abort
free [26). A version is certified at the commit time of the transaction that generated the
version.

The multiversion database system we have implemented is based on timestamp ordering.
Each data object is represented as a list of versions, and each version is associated with
timestamps for its creation and the latest read, and a valid bit to specify whether the version
is certified. The multiversion concurrency control scheme we have implemented is called the
"4multiversion timestamp ordering method" and is proved to satisfy the serializability 1261.

Sc~J~~I ...

86 SON

Each transaction consists of read and write requests for data objects. Read requests are
never rejected in a multiversion database system if all the versions are retained. A read
operation does not necessarily read the latest committed version of a data object. A read
request is transformed to a version-read operation by selecting an appropriate version to
read. The timestamp of a read request in compared with the write-timestamp of the highest
available version. When a read request with timestamp T is sent to the resource manager,
the version of a data object with the largest timestamp less than T is selected as the value
to be returned. Figure 8 shows an example of a read operation with a timestamp "1i'"

The timesnamp of a write request is compared with the read timestamp of the highest
version of the data object. A new version with the timestamp greater than the read-timestamp
of the highest certified version is built on the upper level, with the valid bit reset to in-
dicate that the new version is not certified yet. In order to simplify the concurrency control
mechanism, we allow only one temporary version for each data object. Inserting a new
version in the middle of existing valid versions is not allowed.

The experiment was conducted to measure the average response time and the number
of aborts for a group of transactions running on a multiversion database system and its
corresponding single-version system. Two groups of transactions with different characteristics
(e.g., type and number of access to data objects) were executed concurrently. The objec-
tive was to study the sensitivity of key parameters on those two performance measures.
Here we present our findings briefly.

Performance is highly dependent on the set size of transactions. As shown in Figure 9,
a multiversion database system outperforms the corresponding single-version system for
the type of workload under which they are expected to be beneficial: a mix of small update
transactions and larger read-only transactions. The reason for this is that, in a multiver-
sion database system, read requests have higher priority than the write requests, whereas
the priority for read requests is not provided in a single-version system. Therefore, in a
single-version system, the probability of rejecting a read request is equal to that of a write
request. The experiment shows that a single-version database system outperforms its
multiversion counterpart for a different transaction mix.

IW:12

IR:I1

Figure & A read operation with two certified versions of a data object.

iI ,

AN ENVIRONMENT FOR INTEGRATED DEVELOPMENT AND EVALUATION 87

It was observed that the performance of a multiversion system in terms of the number of
aborts is better than its single-version counterpart for a mix of small update transactions and
larger read-only transactions. Similar experiments have been performed by changing the data-
base size and the mean interarrival time of transactions. It was found, however, that the
main result remains the same. From these experiments, it becomes clear that among the four
variables we studied, the set size of transactions is the most sensitive parameter for deter-
mining the performance of a multiversion database system. This experiment demonstrates
the expressive power and performance evaluation capability of the prototyping environment.

S. Conclusions

Prototyping large software systems is not a new approach. However, methodologies for
developing a prototyping environment for real-time database system% have not been in-
vestigated in depth in spite of its potential benefits. In this paper, we have presented a proto-
typing environment that has been developed based on the StarLite concurrent program-
ming kernel and message-based approach with modular building blocks. Although the com-
plexity of a distributed database system makes prototyping difficult, the implementation
has proven satisfactory for experimentation of design choices, different database controls
techniques, and even an integrated evaluation of database systems.

There are three main goals to be achieved in developing a prototyping environment for
real-time database systems: modularity, flexibility, and extensibility. Modularity enables
the environment to be easily reconfigured as any subset of the available modules can be
combined to produce a new testing environment.

An additional benefit of the "right" modularity is that actual system software can be
developed in the prototyping environment and then ported to the target machine. This is
enabled by the use of technology-independent interfaces that are general enough to support
any target system architecture. In addition to the portability, programs may be run in a
"hybrid" mode, that is, not all service calls need be simulated. For example, file system
calls in the application program can be intercepted by the interpreter and directed to the
existing host file system. Then, as a file system is developed, the file system calls can be
directed to it. If the file system is not necessary or is not the focus of the current research,
it need not be developed. This feature of the prototyping environment allows the developer
to focus on only pertinent design issues.

Flexibility enables the prototyping environment to be applicable over a wide range of
configurations and system parameters. One of the keys to achieving this goal is to design
interfaces whose operations are independent both of the implementation technology and
the context in which they are used. For example, the user-level Send operation sends an
array of bytes to an abstract data type, the PortTag. Thus this operation can be used to
send any packet type to any destination, be it local or distant.

The third goal is that the prototyping environment be extensible enough to model addi-
tional features of particular systems by adding modules without affecting the operation of
or requiring the recompilation of existing modules. For instance, the implementation can
be extended to model the operation of different types of I/0 devices of different speeds
by modifying the implementation module that performs the read and write operations. One
way to modify the implementation would be to delay flr a period depending on the address

88 SON

a single-version
500 a muti-version

Average 400

response
time 300

200

100 TI
10 20 30 40 50 60 70 80 90 100

. # of transactions

PARAMETERS
Group 1 : Setsize = 10, Type = READ-only, Transaction Ratio = 80%
Group 2: Setsize = 2, Type = WRITE-only, Transaction Ratio = 20%

300- a single-version
a multi-version

250

Average
response 2005

time
150-

100

10 20 30 40 50 60 70 80 90 100

of transactions

PARAMETERS
Group 1I Setsize = 10. Type = READ-only. Transaction Ratio = 50%
Group 2: Setsize = 2. Type = WRITE-only. Transaction Ratio = 50%

Figure 9. Average transaction-response time.

AN ENVIRONMENT FOR INTEGRATED DEVELOPMENT AND EVALUATION 89

passed to the read or write operation. Reading from a disk might be indicated by one range
of addresses and take some time while reading from a tape drive might be indicated by
another range and presumably take longer. However, because the interface of this module
is device independent, changing the implementation to process I/O requests at different
speed will not affect any of the modules that request I/O operations. Therefore, time and
effort for system reconfiguration can be reduced.

Expressive power and performance evaluation capability of our prototyping environment
has been demonstrated by implementing real-time database systems and investigating the
performance characteristics of the priority-ceiling protocol and multiversion databases.

In real-time database systems, transactions must be scheduled to meet their timing con-
straints. In addition, the system should support a predictable behavior such that the possibility
of missing deadlines of critical tasks could be informed ahead of time, before their deadlines
expire. Priority-ceiling protocol is one approach to achieve a high degree of schedulability
and system predictability. In this paper, we have investigated this approach and compared
its performance with other techniques and design choices. It is shown that this technique
might be appropriate for real-time transaction scheduling since it is very stable over the
wide range of transaction sizes, and compared with two-phase locking protocols, it reduces
the number of deadline-missing transactions.

Using the prototyping environment, we have shown that in general, a database system
with a multiversion concurrency control algorithm performs better for processing rea-2 re-
quests. Read requests that would be aborted in a single-version database system due to con-
flicts may be successfully processed in a multiversion system using older versions. Therefore,
when the read requests dominate the transaction load, and there is a high probability for
abort of read-only transactions due to conflicts, a multiversion system outperforms its cor-
responding single-version system. The relative size of the read and write sets of transac-
tions is an important factor affecting the performance. Although the actual performance
figures will vary depending on workload and implementation details, we believe that our
results provide a good picture of the costs and benefits associated with the multiversion
approach to concurrency control.

Real-time distributed database systems need further investigation. In priority-ceiling proto-
col and many other database scheduling algorithms, preemption is usually not allowed.
To reduce the number of deadline-missing transactions, however, preemption may need
to be considered. The preemption decision in a real-time database system must be made
very carefully, and as pointed out in [27], it should not be necessarily based only un relative
deadlines because preemption implies not only that the work done by the preempted trans-
action must be undone, but also that later on, if restarted, must redo the work. The resul-
tant delay and the wasted execution may cause one or both of these transactions, as well
as other transaction to miss the deadlines. Several approaches to designing scheduling
algorithms for real-time transactions have been proposed [5, 7, 261 but their performance
in distributed environments is not studied. The prototyping environment described in this
paper is an appropriate research vehicle for investigating such new techniques and scheduling
algorithms for real-time database systems.

90 SON

References

1. K.G. Shin, "Introduction to the special issue on real-time systems." IEEE Trans. Computers. vol. 36. no.

8. pp. 901-902, August 1987.
2. Seventh IEEE Jbrkshop on Real-Thne Operating Systems and Software. University of Virginia. Charlottesville.

May i990.
3. ONR Workshop on Foundations of Real-7Tme Computing, Washington. D.C., October 1990.
4. S.H. Son, ed. ACM SIGMOD Record vol. 17. no. i, Special Issue on Real-Time Database Sstems. March 1988.
5. R. Abbott and H. Garcia-Molina, "Scheduling real-time transactions: A performance study:" VLDB Conf.,

pp.1-12. September 1988.
6. R. Rajkumar, "Task synchronization in real-time systems:" Ph.D dissertation, Carnegie-Mellon University.

Pittsburgh, PA. August 1989.
7. J.W.S. Liu, K.J. Lin, and S. Natarajan, "Scheduling real-time periodic jobs using imprecise results:" Real-

Time Systems Symp. San Jose, CA, December 1987.
8. H. Kotth, "Triggered real-time databases with consistency constraints," 16th VLDB Conf., Brisbane. Australia,

August 1990.
9. Y. Lin and S.H. Son, "Concurrency control in real-time databases by dynamic adjustment of serialization

order," 11th IEEE Real-Time Systems S)wtp.. Orlando FL, December 1990L
10. S.H. Son and A. Agrawala, "Distributed checkpointing for globally consistent states of databases:' IEEE

Trans. Software Eng., vol. 15. no. 10, pp. 1157-1167, October 1989.
II. S.H. Son and J. Lee, "Scheduling real-time transactions in distributed database systems"'7kh IEEE Wbrkishop

on Real-Time Operating Systems and Software, Charlottesville. VA, pp. 39-43. May 1990.
12. R. Cook and S.H. Son. "The StarLite Project:' 4th IEEE Workshop on Real-lime Operating Systems, Cam-

bridge, MA, pp. 139-141, July 1987.
13. S.H. Son, "A message-based approach to distributed database prototyping.' 5th IEEE kbrkshop on Real-

lime Software and Operating Systems, Washington. DC, pp. 71-74. May 1988.
14. P. Kiviat, R. Villareau, and H. Markowitz, The SIMSCRIPT Ii Programming Language, Englewood Cliffs.

NJ: Prentice-Hall, 1969.
15. T. Schriber, Simulation Using GPSS, New York: Wiley, 1974.

16. P. Hansen Brinch, "Distributed processes: A concurrent programming concept:" Comm. the ACM. vol. 21,
no. U, pp. 934-941, November 1978.

17. A. Tanenbaum, Operating Systems Design and Implementation. Englewood Cliffs, NJ: Prentice-Hall. 1987.
18. L. Lamport, '"ime, clocks and ordering of events in distributed systems," Commun. ACM, vol. 21. no. 7,

pp. 558-565, July 1978.
19. H. Tokuda and C. Mercer, "ARTS: A distributed real-time kernel," ACM Operating Syst. Rev.. vol. 23, no.

3, pp. 29-53, July 1989.
20. J. Huang, J. Stankovic, D. Towsley, and K. Ramamritham, "Real-time transaction processing: Design, im-

plementation and performance evaluation," Tech. Rep. TR-90-43, Dept. of Computer and Information Science.
University of Massachusetts, May 1990.

21. L. Sha, R. Rajkumar, and J. Lehoczky, "Priority inherltance protocol: An approach to real-time synchroniza-
tion,' Technical Report, Computer Science Dept.. Carnegie-Mellon University. Pittsburgh. PA, 1987.

22. L. Sha. R. Rajkumar, and J. Lehoczky, "Concurrency control for distributed real-time databases:' ACM
SIGMOID Record, vol. 17, no. 1. Special Issue on Real-lime Database Systems. pp. 82-98. March 1988,

23. J. Gray, et at., "A straw man analysis of probability of waiting and deadlock." IBM Research Report. RJ

3066, 1981.
24. P. Yu and D. Dias, "Concurrency control using locking with deferre blocking:* 6th Int. Conf. Data Engineering.

Los Angeles, pp. 30-36, February 1990.
25. J. Haritsa, M. Carey, and M. Livny, "On being optimistic on real-time constraints," ACM PODS Simp.,

April 1990.
26. P. Bernstein. V. Hadzilacos, and N. Goodman, Concurrency. Control and recowrv in Database S.stems,

City: Addison, Wesley, 1987.
27. J. Stankovic. "Misconceptions about real-time computing," IEEE Computer. vol. 21, no. I0. pp. 10-19. October

1988.

DISTRIBUTION LIST

1 - 2 Office of Naval Research
Chief of Naval Research
Code 1267/Annual Report
Ballston Tower One
Room 528
800 N. Quincy Street
Arlington, VA 22217-5660

Attention: Dr. James G. Smith, Program Manager
Information Systems

3 - 8 Director
Naval Research Laboratory
Washington, DC 20375

Attention: Code 2627

9 -20 Defense Technical Information Center, S47031
Building 5, Cameron Station
Alexandria, VA 22314

21 Ms. Charlotte Luedeke
Administrative Contracting Officer
Office of Naval Research Resident Representative
2135 Wisconsin Avenue, N. W.
Suite 102
Washington, DC 20007

22-23 S.H. Son

24 A.K. Jones

25 -26 E. H. Pancake, Clark Hall

SEAS Postaward Administration

27 SEAS Preaward Administration Files

JO#4745:ph

