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ABSTRACT

This research designed and simulated an adaptive attitude control system for

the Crew Equipment/Retriever (CER) during autonomous attitude hold and large

angle or slewing maneuvers. The CER is a proposed space robot that deploys

from the Space Station and retrieves any lost equipment or incapacitated

astronauts. The moment of inertia tensor for the CER and acquired target is not

known a priori. In this research, the moment of inertia tensor is estimated by a

Kalman filter and used to update the derived linear quadratic regulator (LQR)

and quatemion feedback regulator (QFR) control laws. Computer simulation

results show that during attitude hold the adaptive LQR design stabilizes the CER

and provides a more fuel efficient controller effort: as compared with a

previously designed nonadaptive minimum time controller and a nonadaptive

LQR design. Computer simulation results of slewing maneuvers show that the

adaptive QFR design provides a more fuel efficient controller: as compared with

a nonadaptive QFR design. Accesion For
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I. INTRODUCTION

A. CERS CONCEPT DESCRIPTION

1. CERS Origin and Purpose

The National Aeronautics and Space Administration (NASA), Johnson

Space Center Space Station Projects Office sent out a Request for Proposal in

May 1987 as part of Space Station Work Package 2. This Request for Proposal,

including an added Amendment 7, defined a requirement to provide for the

capability to rescue an incapacitated external-vehicular activity crewman and to

retrieve equipment inadvertently detached from the Space Station. [Ref.l: p. L-

2-14a]

McDonnell Douglas Astronautics Company (MDAC) responded to this

Request for Proposal in September 1987 with a practical, low cost retriever

concept. This concept was referred to as the Crew/Equipment Retrieval System

(CERS). [Ref. 2: p. 1] This overall system consisted of a crew and equipment

retriever vehicle (CER) and other Space Station based support systems.

The overall mission of the CER is to: deploy from the Space Station,

acquire and capture the designated target, and return to the Space Station. A

summary of the CERS capabilities, as defined by MDAC, is listed as follows:

[Ref. 2: p. 9]

1. Retrieve an 850 pound target (includes 10% safety margin);

2. Total Deployment time of 120 minutes;

3. Retriever activated and deployed without assistance from
an external-vehicular activity crewman;

4. Retriever senses own attitude, range, and range to target;
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5. Retriever can be remotely operated from the Space Station;

6. Retriever accommodates a worst-case separation speed of 3.5 ft/sec;

7. Retriever senses and controls its own attitude with and without a target;

8. Retriever has attitude hold and three-axis translation capability.

2. CERS Baseline Configuration

Figure 1 shows the CER and its Space Station support systems. More

detailed descriptions of proposed hardware and software are contained in Ref. 2

(pp. 20-68).

A simple representation of the CER for attitude dynamics analysis was

developed in Ref. 3 and is shown in Figure 2. The characteristics of the baseline

configuration developed by MDAC are listed as follows: [Ref. 2: p. 24]

1. 850 pounds total weight;

2. Three-axis (six degrees of freedom) stabilized;

3. Remote tele-operated free flyer;

4. Use of 24 cold Nitrogen (N2 ) jet thrusters rated at 1.0 lbf each;

5. Attitude control is accomplished by firing thrusters in pairs;

6. Maximum control torques:

Roll Axis 3 ft-lbf;

Pitch Axis 3 ft-lbf;

Yaw Axis 4 ft-lbf.

2
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Figure 1. CERS Major Components [Ref. 2: p. 15]
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Figure 2. CER Baseline Configuration [Ref. 3: p. 8]
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An important feature of the CER is its ability to control its attitude. After

acquiring a target the CER must stabilize its attitude and perform an attitude

reorientation prior to returning to the Space Station.

The CER's attitude control problem is very different from the norm.

Most spacecraft are designed such that any changes in their moments of inertia

are minimized. The control devices are, moreover, placed so as to act along the

principal axes of the body. This positioning minimizes any gyroscopic coupling

between torque applied to any one axis and rotation about another axis. Neither

of these two conditions hold true for the CER after it acquires a target since Ine

target can be as massive as the CER by itself.

B. THESIS OBJECTIVES

The overall objective of this thesis is to design adaptive attitude control laws

for the CER with and without a target during large angle or slewing maneuvers

and during autonomous attitude hold for all mission phases. Previous thesis

research [Ref. 3] modeled the CER and designed time-optimal and weighted

time-fuel optimal single-axis control systems and tested these control systems by

applying them to several worst case target scenarios. This research analyzes the

complete nonlinear three-axis control problem for small angle motion or attitude

hold and large angle or slewing motion. Attitude hold pertains to attitude

control in the presence of small disturbances while slewing motion pertains to

attitude reorientation. The control law designs are adaptive in that a key system

parameter, the moment of inertia of the CER and acquired target, is not known a

priori and must be estimated. A subsidiary goal of the slewing motion control

law is to accomplish this reorientation in an optimal fashion: an eigenaxis

rotation. Both control laws must be able to deal with a non-diagonal moment of

5



inertia tensor since after target acquisition, the thrusters no longer act along the

principal axes of the body.

C. THESIS ORGANIZATION

In Chapter II, general spacecraft attitude kinematics and dynamics are

developed. These equations of motion are then applied to the CER. The moment

of inertia tensors for the CER with and without a target are calculated.

Chapter III derives two control law designs. One design is developed for

attitude hold while another design is developed for large angle or slewing

maneuvers. Central to each control law design is the knowledge of the CER

moment of inertia tensor.

In Chapter IV, an estimation scheme is developed that provides the above

mentioned control laws with an estimate of the CER moment of inertia tensor.

This estimation scheme is based on a rather unusual application of the Kalman

Filter.

Chapter V presents the computer simulation results of applying each control

law and estimation scheme. Control system design issues and practical

implementation details are also discussed.

Conclusions based on the computer simulation results are presented in

Chapter VI. In addition, recommendations for future research are discussed.

6



II. ATTITUDE KINEMATICS AND DYNAMICS

The equations of motion for any rotating rigid body can be divided into two

sets: the Kinematic Equations of Motion and the Dynamic Equations of Motion.

Kinematics studies motion without considering the forces that cause that motion.

The Kinematic Equations of Motion are a set of first order differential equations

that specify the time evolution of the chosen attitude parameters. The Dynamic

Equations of Motion, meanwhile, take into account the forces that cause

rotational motion and express the time evolution of the angular velocity of the

rigid body. [Ref. 4: p. 510]

A. ROTATIONAL KINEMATICS

1. Direction Cosine Matrix

Any general vector r can be written in terms of its magnitude and

direction. The direction can be represented as a unit vector referenced to some

previously defined coordinate or reference frame as shown in Figure 3. This

unit vector is made up of components known as direction cosines: [Ref. 5: p. 9]

r = ri = r[(cosa)fi1 + (cosPA)fi 2 + (cosY)fi3] (2.1)

where r is a scalar magnitude, and i is a unit vector whose components are

referenced to the three orthogonal axes of the reference frame fi. Note the

following symbolic conventions used throughout this thesis:

1. The underline bar denotes a vector, r

2. The hat symbol denotes a unit vector, i;

3. The double underline bar denotes a matrix, W.

7
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r.

r2 = rcosa3

r. = rcosy

r =i r[(cosa)fi + (COS' J2 + (cosy)fi3]

Figure 3. Direction Cosines [Ref. 5: p. 9]
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Now consider a unit vector b with components along the orthogonal

body axes of a rigid body, i.e., a spacecraft as shown in Figure 4. Let fi be a

unit vector with components along three orthogonal directions that are fixed in

space. These two unit vectors are related by the following transformation: [Ref.

5: p. 9]

b=Tfi. (2.2)

The transformation is defined by T, the 3x3 direction cosines matrix (DCM).

This DCM is critical to the field of spacecraft dynamics and control and Ref. 5

addresses several of its important properties. The most important of these

properties are summarized below:

1. A DCM exists for any pair of orthogonal sets of three axes;

2. The DCM is an orthogonal matrix and its inverse equals its transpose;

3. A DCM can be built up from successive rotations about the axes.

The last property is best explained by an example. Define a sequence of

reference frames related by the following transformations:

S= Tnfi; (2.3)

b=T=•; (2.4)

c=T3b; (2.5)

and therefore the reference frames a and fi are related by:

9



b3

SPACECRAFT SPACECRAFT

b2

bl 
n

•nl

ORBIT
"FIXED"

n3 REFERENCE

FRAME

0
EARTH

SPACECRAFT
ORBIT

Figure 4. Spacecraft Body Axes
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- T3T2Tfi. (2.6)

In other words, one overall DCM can be formed as a product of DCMs:

T32, = T3T2T1. (2.7)

2. Euler Angles

The relative orientation of two orthogonal reference frames can be

defined in terms of three angles [Ref. 5: p. 16]. This idea was first introduced

by Euler in the early eighteenth century and is synonymous with the idea of

parameterizing the previously discussed nine element DCM with only three

independent parameters.

The classical Euler angles, for which there are twelve distinct cases,

define an arbitrary orientation by using the successive rotational transformation

property of the DCM. That is, a sequence of three elementary rigid right handed

rotations about instantaneously fixed axes is used to build up an overall DCM that

represents the transformation from one orientation to a different orientation.

[Ref. 5: p. 17]

This thesis employs the 3-2-1 or yaw-pitch-roll Euler angle sequence

since it is most commonly used in aircraft and spacecraft applications. This

sequence is produced by initially lining up both the body axes and the fixed or

inertial axes. A rotation about the z or number three axis is then performed,

producing a new y and x axis. A second rotation about the new y or number

two axis is then enacted. Finally, a rotation about the new x axis finishes the

rotation sequence. Figure 5 depicts the formulation of this sequence.
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Body Axes and Inertial Axes A rotation is then performed
are initially lined up about the z or yaw axis

y b V

b2 =fi2
x X

bl= fi -=n1 beA
z g3f3z ;3= 63-fi3

Next, a rotation about the Finally, a rotation about the
y or pitch axis is performed x or roll axis is performed

y y

x 0 
(P 3x blf=blf

•,• x

zz

The overall transformation is

T321 = TIT2 T3

1o xV snWcosO 0 0-sine] [1 0 10
T"3| -sin 4cos1V0 T2 = 0 1 0 = cos0• sinq p

0 0 sinO 0 cosO 0 -sinp cosq.

Figure 5. The 3-2-1 Euler Angles
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Reference 5 illustrates the general process for obtaining the kinematic

differential equations for a chosen set of Euler angles. Wertz [Ref. 4: p. 765]

lists the kinematic equations of motion for the twelve possible Euler angle

representations. The kinematic differential equations for the chosen 3-2-1 Euler

angle set are as follows:

S= (my sin((p) + toz cos(qp)) / cos(0); (2.8)

e = coy cos(p) - tz sin(qp); (2.9)

= ox + (mOy sin(Cp) + coz cos(y)) tan(O); (2.10)

where:

1. V is the yaw angle;

2. 0 is the pitch angle;

3. (p is the roll angle;

4. The vector c) is the angular velocity vector and is composed of components
along each of the body axes.

3. Euler's Principal Rotation Theorem

Junkins [Ref. 5: p. 26] states that Euler is generally credited with being

responsible for the Principal Rotation Theorem:

A rigid body can be brought from an arbitrary initial
orientation to an arbitrary final orientation by a single rotation of
the body through a principle angle about a principal line; the
principal line being a judicious axis fixed in the body and fixed in
space.

13



This concept, displayed in Figure 6, allows the DCM to be

parameterized in terms of the principal angle 0 and principal line 1. In

mathematical terms, the principal line corresponds to the eigenvector of the

DCM: for the eigenvalue + 1. Therefore, given any DCM one can solve for the

principal line and angle and reduce the general angular displacement to a single

rotation about a fixed line. [Ref. 5: p. 271

4. Euler Parameters

In conjunction with the Principal Rotation Theorem, Euler defined four

parameters in terms of the principal line and principal angle. These Euler

Parameters are as follows:

0•0 = COO( / 2) (2.11)

P,1 = 1, sin(o / 2)

P2 = 12sin(o / 2)

33 = 13sin(0 / 2)

where '•, 2, 23 are the components of the unit vector along the principal line

and 0 is the principal angle.

The DCM is therefore parameterized in terms of the above Euler

Parameters and this allows the relative orientation of two orthogonal reference

frames to be represented by four parameters. One of these parameters is

redundant since the DCM was previously shown to be parameterized by three

Euler angles. This redundancy manifests itself in the following constraint

equation:

14
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Figure 6. Euler's Principal Rotation Theorem [Ref. 5: p. 25]
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10o2 + p2 +D22 +3 p=1. (2.12)

Various algorithms have been developed that determine the Euler

parameters from a given DCM and convert back and forth between Euler angles

and parameters. These algorithms have been used extensively in the computer

simulation programs for this thesis and are included in the Appendix. [Ref. 5:

pp. 31-35]

By differentiating the inverse relationships between the Euler

parameters and the elements of the DCM, and making a few substitutions, the

kinematic differential equations in terms of the Euler parameters can be

formulated as: [Ref. 5: p. 35]

O [0 i -02 (1F3 D1
1 (o1 0 (i 0 ( 2 .1 3 )

102 2 [(02 -(03 0 (1) P~2 (.3
.PJ LC03 (2 -CO, 0 3LJ

Note that throughout the literature on attitude dynamics and control, the

Euler parameters are sometimes referred to as quaternions and are formulated as

follows: [Ref. 4: p. 4141

q, = 1, sin(4/2) (2.14)
q2 = 1 sin(O / 2)
q3 =I 3sin(O / 2)

q4 = cos(O / 2)

16



The constraint equation (2.12) is also applicable and a conversion from one

representation of Euler parameters to this quatemion representation allows the

following identification:

q4 -PO (2.15)

q i -----P i, i = l1, 2, 3 .

As seen above in equation (2.15), the difference between these two

representations is rather insignificant. Note that this author has chosen to use the

Euler parameter representation of equation (2.11) but throughout this thesis the

terms Euler parameters and quaternions are used interchangeably.

5. Parameterization Discussion

The previous sections briefly demonstrate that there exist several

choices when representing the orientation of a rigid body. Euler angles are

easier to visualize and are more popular but suffer from one large draw back:

the presence of mathematical singularities at certain angles. Equation (2.8), for

example, experiences a singularity when the cosine of the pitch angle goes to

zero. This can be a real problem in terms of numerical computations during

computer simulation or software running control system algorithms. The use of

Euler parameters eliminates the use of trigonometric functions and their

singularities but they are harder to visualize.

Therefore, the intended application should dictate the choice of

kinematic differential equations. In this thesis, the 3-2-1 Euler angle set is used

to define the kinematics for small angle motion during attitude hold. For large

17



angle or slewing motion and control, the less widely used but much more

practical Euler parameters are used to represent the kinematics.

B. ROTATIONAL DYNAMICS

1. General Rigid Body

The Eulerian Rotational Equations of Motion for a rigid body subject to

applied control torques are well known and are typically represented as: [Ref. 5:

pp. 49-521

b=-I-'CI_ + r, U (2.16)

where:

1. 6) is the angular acceleration vector;

2. 1 is the moment of inertia tensor for the rigid body;

3. po is the angular velocity vector;

4. u is the vector of applied control torques;

5. C) is the skew symmetric angular velocity matrix defined as:

()3 0 -01 (2.17)
(0)2 (01 0

2. The CER

The dynamics of the CER can be represented by equation (2.16)

provided that the rigid body assumption is used. The only system parameter in

equation (2.16) that is specific to the CER is its moment of inertia tensor. This

moment of inertia tensor will change whenever the CER captures a target.

18



Hansen [Ref. 3] calculated the moment of inertia for the CER without

target by assuming an 850 pound total system weight symmetrically distributed

about the center of gravity. The resulting matrix is diagonal in the CER's body

coordinate system and has the units of slug-foot2:

39.6 0 0
IM= 0 55 0 (2.18)

-0 0 55

The total moment of inertia of the CER with a target, as previously

discussed, is not known a priori since it depends on the specific mass and

moment of inertia of the acquired target. Hansen [Ref. 3: p. 17] utilized the

parallel axis theorem to calculate the total moment of inertia for the CER and an

acquired target

M 1M2 R2(.9

ITOTAL = ICER + ITARGET- R2  (2.19)

where M, is the mass of the CER, M 2 is the mass of the target, and R2 is the

slkew symmetric matrix derived from the vector r2 between the center of gravity

of the CER and the target:

[0 -r.r
R2 0 . (2.20)

The fact that vectors can only be added together if they are expressed in the same

coordinate system also applies to the moments of inertia in equation (2.19). Here

19



again, the DCM T plays the role of transforming a moment of inertia from one

reference frame to another reference frame as follows:

IAR&ET =TITARrT (2.21)

where the superscript T refers to taking the transpose of the given matrix, the

superscripts b and n refer to the reference frame, and I is the moment of inertia

tensor.

Hansen [Ref. 3: pp. 17-21] further utilized equations (2.18-2.21) to

calculate five worst case target scenarios, each with an associated total moment of

inertia tensor. This thesis used the Case Two scenario most frequently for

control system design analysis and computer simulation. This scenario

corresponds to an astronaut with manned maneuvering unit in the target net and

has a total moment of inertia ( slug-foot2) of:

112.9 2.4 -111.91

ITOTL= 2.4 534.9 6.4 J. (2.22)
-111.9 6.4 497.6J

C. STATE VARIABLE REPRESENTATION

The total set of equations representing the CER attitude kinematics and

dynamics is composed of equation (2.16) and either equations (2.8-2.10) for the

3-2-1 Euler angle representation or equation (2.13) for the Euler parameter

representation. These equations are nonlinear in nature but for initial control

system design and as an approximation when small angle motion is considered,

equation (2.16) and equations (2.8-2.10) can be approximated as:

20



XC=AX+Bu (2.23)

where X =[V 0 p a), co,, coj]', u is the applied control torques and:

0 0 0-
0 0 0
0 0 0

B=1-1 -1 -1 (2.24)
11 I12 13

"0 0 0 1 0 0"
0 0 0 0 1 0
0 0 0 0 0 1
0 000(2.25)
0 0 0 0 0 0

L0 0 0 0 0 01

In order to complete the state space equations, the plant defined by equations

(2.23-2.25) must be accompanied by an output equation:

Y=CX+Du. (2.26)

This thesis assumes that all the states are measurable and there is no direct

coupling between control input and the state outputs. Therefore, the following

definitions are made:

21



"1 0 0 0 0 0"

0 1 0 0 0 0

0 0 010 0 0

Lo 0 0 0 0 11

0 0 00

0 0 0
0 0 0 (2.28)

-- 0 0 0
0 0 0

L0 0 0j

Note that the C matrix is simply the identity matrix and the D matrix is simply a

matrix of zeros. Therefore, equation (2.26) can be reduced to:

Y = X. (2.27)

Realistically, equation (2.27) should contain some added errors or noise due to

the fact that sensors have limited accuracy and do introduce noise into any actual

system. A more detailed discussion on sensors is contained in Chapter In and a

related discussion on computer simulation implementation details is found in

Chapter V.

22



III. ATTITUDE CONTROL LAW DESIGN

The development of the attitude equations of motion in the previous chapter

and the design of control laws or algorithms in this chapter are based on one

fundamental assumption: attitude motion of a spacecraft can be approximately

decoupled from its orbital motion. For the purpose of attitude control design,

therefore, the spacecraft is almost universally considered to have only rotational

degrees of freedom about its center of mass which is fixed to a reference frame

moving on the orbital path. In reality, attitude and orbital dynamics are coupled

and environmental torques produced by gravity gradient, aerodynamic, and solar

radiation pressure depend on the spacecraft's orientation. [Ref. 6: p. 7]

A. DESIGN PHILOSOPHY

The goal of control system design is to cause the output variable of some

dynamic system or process to follow a desired reference variable accurately in

spite of changes in this reference variable, the external disturbances applied, and

any changes in the dynamics of the process itself. Prior to beginning any control

system design, a mathematical model of the system to be controlled is

constructed. [Ref. 7: p. 17] The dynamic process to be controlled in this thesis

is the attitude of the CER plus any acquired target and its equations of motion

have been developed in the previous chapter.

The process of regulation defines a situation in which the output variable of

some dynamic process must follow a constant, usually zero, reference variable.

[Ref. 7: p. 107]. The attitude control of the CER can be defined as a regulation

process. While maneuvering or after acquiring a target, the CER's attitude must
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remain constant despite the presence of external disturbance forces. After target

acquisition, the CER must perform a reorientation before initiating a

translational maneuver that will return it to the Space Station. In this

reorientation maneuver, the reference variable is the desired orientation and the

output variable is the current orientation. A regulation process is needed to

reduce the orientation error, which represents the difference between the current

and desired orientation, to zero in a timely fashion.

This thesis designs closed-loop or feedback control systems because of their

inherent ability to reject disturbances and errors in the model of the dynamic

process to be controlled. This decision, by definition, requires the introduction

of an output sensor which can introduce noise into the control system [Ref. 7:

pp. 107-1131. The availability of quality sensors to measure angular position and

angular velocity is assumed in this research. Wertz [Ref. 4: pp. 155-2011

describes in detail the various types of hardware available to determine a

spacecraft's angular position and angular velocity. The most common

instruments used are the rate gyro and rate-integrating gyro. Since both

instruments have a long history of operation, and are relatively inexpensive, the

assumption that quality sensors exist is, therefore, very reasonable.

B. SPECIFICATIONS AND CONTROL DEVICES

The typical feedback control system is designed such that the overall dynamic

system response meets a set of predetermined specifications. These

specifications, more often than not, must be translated into terms more readily

understood by the control engineer.

One set of specifications is known as time domain specifications and include

such information as settling time, maximum overshoot, and damping ratio. In
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terms of the CER's dynamics, this refers to how long it takes for a reorientation

maneuver and how much orientation angle overshoot is allowed before settling

down to the final desired value. Typical spacecraft attitude reorientation control

requires that no overshoot occurs and this corresponds to a damping ratio of 1.0.

Reference 1 does not specifically address the issue of settling time for CER

attitude reorientation maneuvers or attitude regulation in the presence of

disturbances. However, MDAC [Ref. 2: p. 9] defines a total deployment of time

of 120 minutes. This is certainly an upper limit for any reorientation

maneuvers. A more realistic figure is obtained from MDAC's [Ref. 2: p. 17]

definition of major mission phases as a function of time. In this mission phase

sequence, ten minutes is allocated to target capture. In this thesis, 70 seconds was

selected as a reasonable settling time to accomplish any reorientation maneuver.

Any attitude regulation, after the CER is subject to a disturbance, must be

accomplished in a fraction of this time. A more detailed discussion of

specifications and performance will be given in the following sections on attitude

hold and slewing maneuvers.

In order to achieve control over the CER some type of control device must

be selected. Wertz [Ref. 4: p. 201-210] discusses in detail the types of devices

available for spacecraft control. The most widely used type of device are gas jets

or thrusters and these are the control devices that MDAC selected in their

baseline design of the CER.

The choice of the control actuators is, furthermore, tied to the desired

specifications and to what is practically available. MDAC, for example, has

chosen 1 lbf cold nitrogen thrusters. Wertz [Ref. 4: p. 206] mentions that gas

jets are classified as cold gas and hot gas. Hot gas jets typically produce high
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thrust levels (>5 N or 1.12 lbf) but rely upon a chemical reaction which must

reach steady state. Cold gas systems produce lower thrust levels (. 1 N or 0.225

lbf) but do not rely upon a chemical reaction which must reach steady state.

Cold gas systems, therefore, provide more precise control and can be used

effectively in a pulsed mode. This thesis assumes the use of the cold gas thrusters

selected by MDAC. These thrusters are commercially available and can operate

in a pulsed mode.

C. ATTITUDE HOLD

1. Optimal Control Theory

A linear feedback control law is defined in the following form:

u = -KX (3.1)

where:

1. u is the applied control effort;

2. K is a gain matrix that must be determined;

3. X is the vector containing all the state variables, assuming that they are all
available by either measurement or estimation.

The gain matrix K can be determined by choosing appropri-Ite Laplace domain

closed-loop pole locations based on some given time domain specifications. This

method, known as pole placement, only works well for single-input-single-output

(SISO) systems. In multi-input-multi-output (MIMO) systems, such as the CER,

this technique does not lead to the development of a unique control law. In

optimal control theory, the gain matrix K is determined by minimizing a

specified performance criterion or cost function. [Ref. 8: pp. 337-338]

26



2. Linear Quadratic Regulator

The linear quadratic regulator is an optimal control law of the form

shown in equation (3.1). It is called linear because the control law is a linear

function of the system states and it is called a regulator because this type of

control law is well suited for regulation type problems. The quadratic

description relates to the fact that the gain matrix K, of equation (3.1), is

calculated by minimizing a quadratic integral cost function. For the continuous

state space system described by equation (2.23), a quadratic integral cost function

can be formulated as:

to = J"o [XT (T)QX(_•) + uT (:r)Bu()]dt (3.2)

where Q and R are symmetric weighting matrices that must be chosen by the

control system designer. Q penalizes deviation of the state vector X from the

origin and R penalizes the use of too much control effort. [Ref. 8: pp. 339-340]

During attitude hold of the CER, the goal is to reject all disturbances

and maintain a constant attitude with zero angular velocity. If all the states are

considered initialized at zero, then the control effort must drive all states towards

the origin after a disturbance causes a deviation from this situation. A typical

value for Q that will cause the position angles to go to the origin and yet limit

the angular velocities is
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LO 0 0 0 0 Ci

where c is a number less than one [Ref. 8: p. 340].

The choice of a proper control weighting matrix R also requires

careful consideration. Unless a cost or penalty is imposed for using too much

control, the design that emerges may generate control signals that can not be

achieved by the actuators or control devices. The resulting control signal then

saturates at the maximum signal value that can be produced and this produces, in

most cases, the fastest possible response. The fastest possible response may be

highly desirable but the closed-loop behavior of a system in saturation may be

quite different from the closed loop behavior predicted by a system not in

saturation. The system may even become unstable when the control system

saturates and because of this consequence, R should be chosen to avoid

saturation. [Ref. 8: p. 341]

Hansen [Ref. 31 designed a control law based on saturating the CER's

control input. This control scheme produced a minimum time solution but it

required the control thrusters to be either on or off; this is known in the

literature as bang-bang control. Some of the worst case target scenarios

produced unstable results and this caused Hansen to choose larger values and

different locations for the CER thrusters in order to avoid an unstable situation.

The gain matrix K, that minimizes equation (3.2), is found by solving

the Riccati Equation. It is, in general, a time varying matrix that, given fairly
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general conditions which apply to the CER, eventually reaches a steady state

value. This optimum gain matrix in the steady state is given by:

K• =R-'B TM (3.4)

where M satisfies the algebraic equation also known as the algebraic Riccati

equation:

0 = MA + A T M -MBR-'B T M+Q. (3.5)

[Ref. 8: pp. 345-346] Many software packages, including the program

MATLAB used in this thesis, contain subroutines that calculate the steady state

value of K for a given dynamic system and cost function.

Attitude hold for the CER is, therefore, accomplished by using a Linear

Quadratic Regulator to drive the states of the system to the origin after

experiencing some external disturbances. The gain matrix K is determined by

supplying a MATLAB subroutine with a model of the CER's dynamics and

appropriately chosen Q and R weighting matrices. The steady state value of K

is used for simplicity since K only varies near the final time and this situation is

not encountered during most of the CER's mission.

D. SLEWING MANEUVERS

The problem of reorienting a spacecraft from one rest orientation to another

rest orientation, although a problem of regulation, requires the formulation of a

quite different control law. The linearized equations of motion, used for attitude

hold design, are no longer valid. Slewing over a potentially large range of
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orientation angles requires the use of the complete nonlinear equations of motion

defined by equations (2.13) and (2.16). A linear control law may not be

adequate for this task and the formulation of a nonlinear control law may be

required. In addition, any slewing maneuver should, ideally, be an optimal

maneuver. Optimal in this context refers to taking the shortest angular path.

1. Eigenaxis Rotations

Many spacecraft attitude control systems are currently based on a

sequence of rotational maneuvers about each control axis. This is a natural bias

based on the popularity of Euler angles for describing rigid body orientation.

However, the maneuver time of such successive rotations is two to three times

longer than that of a single maneuver about the eigenaxis. This eigenaxis is the

principal axis developed in Euler's Principal Rotation Theorem. Euler,

moreover, proved that the principal angle 0 of equation (2.11) is always smaller

than the algebraic sum of three successive Euler angles and represents the

shortest angular path between two relative orientations. Therefore, a control law

that causes a spacecraft to reorient itself by rotating about the eigenaxis will be

executing an optimal maneuver. [Ref. 9: pp. 375-3761

2. Quaternion Feedback Regulator

Reference 9 develops a nonlinear control law that takes into account the

complete nonlinear attitude equations of motion and executes an eigenaxis

rotational maneuver. This development begins by defining a quaternion error

which represents the attitude error between the current orientation and the

desired or commanded orientation:
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where terms in the matrix represent the commanded orientation expressed in

Euler parameters. A three-dimensional error vector can be formed by

extracting the three vector components of equation (3.6) as:

P. = 0[. (3.7)

The complete quaternion regulator feedback control law is:

_u = dI2- Dco_- Ki3 (3.8)

where the first term is a nonlinear body-rate feedback term that counteracts the

gyroscopic coupling torque found in equation (2.16), the second term is a linear

body-rate feedback term, the third term is a linear error-quaternion or Euler

parameter-error feedback term, and D and K are 3x3 constant gain matrices to

be properly determined. [Ref. 9: p. 376]

To complete the control law in equation (3.8), the matrices D and K

must be determined. Reference 9 considered the gain selections

K=kI; (3.9)
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D=dI (3.10)

where k and d are positive scalais, and I is the spacecraft moment of inertia

tensor. Global stability via Lyapunov stability analysis was proved for the

control law of equation (3.8) provided that

K-'D >0. (3.11)

Equation (3.11) is always guaranteed with tht gains defined by equations (3.9-

3.10).

With global stability guaranteed for the control law in equation (3.8),

all that remains is a proper choice of k and d. Let i be a unit vector along the

eigenaxis. The orientation is then expressed as:

3 = sin(O/2)i. (3.12)

Substituting equation (3.8) into equation (2.16) yields the following closed-loop

equation:

=-o, + I-h(6RIo - Do- K[). (3.13)

SB slug-- an k l-m- .- • •lP)

Further substitution of equations (3.9-3.10) produces:

6= I-'(-d__o - U (3.14)
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or by rearranging terms:

M) + dio + kU = 0 (3.15)

When the angular rate co is small, and when an eigenaxis rotation is assumed, the

angular rate can be approximated as:

Co = . (3.16)

Further substitution of equations (3.16) and (3.12) into equation (3.15) yields:

(+ d + k sin(O / 2))i = 0. (3.17)

Since the moment of inertia I is, by definition, a positive definite matrix and the

unit vector X is non zero, then X * 0 and equation (3.17) becomes:

S+ d$ + ksin(I / 2) = 0. (3.18)

If the sin(O /2) is approximated by 4 /2, equation (3.18) is further reduced to:

+ +d$+ko /2=0. (3.19)

Equation (3.19) is the well-known linear second order equation where the

damping ratio ý and the natural frequency o')N satisfy:
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d = 2ý(N; (3.20)

k = 2oN. (3.21)

Therefore, proper selection of the damping ratio and the natural frequency

defines the positive scalars d and k. [Ref. 9: p. 377-378]

Since this thesis has assumed a damping ratio of one, a required

maneuver settling time is converted to a required natural frequency by:

Ts = 4/ ýoN. (3.22)

To account for the nonlinear effect of sin(O/ 2) when 0 is large, equation (3.22)

was modified by Ref. 9 as:

TS = 8 / coN . (3.23)

Therefore, a quaternion feedback regulator control law is defined by a desired

orientation and by a desired maneuver settling time as:

d=2WoN= 16ITs; (3.24)

k=2co2 = 128 /Ts2; (3.25)

u= c - (16 / Ts)lco- (128 / Ts)II3. (3.26)
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IV. ADAPTATION LAW DESIGN

Knowledge of the moment of inertia tensor for the CER and acquired target

is required by both the control laws developed in Chapter I1. In the case of the

large angle control law, imprecise knowledge of the moment of inertia tensor

results in a non-eigenaxis slewing maneuver. An argument can also be made that

precise knowledge of the moment of inertia tensor should limit the amount of

thruster firings required and save propellant fuel. Therefore, the ability to

estimate the moment of inertia tensor and provide this information to the control

algorithms is a very beneficial addition to the previously deveioped control

algorithms.

A. ADAPTIVE CONTROL THEORY

An adaptive controller differs from a static or ordinary controller in only

one respect. In an adaptive controller, the controller parameters are variable

and there is a mechanism for adjusting these parameters on-line based on signals

available from the overall system. The two main approaches for constructing

adaptive controllers are: the model reference method and the self-tuning

method. A schematic representation of each of these methods is presented in

Figure 7. [Ref. 10: p. 315]

This thesis employs the self-tuning method. The design of an adaptive

controller by the self-tuning method involves choosing a control law based on

variable parameters and choosing an adaptation law for adjusting those

parameters. The controller, therefore, couples a previously designed control law

with an on-line parameter estimator. [Ref. 10: pp. 319-323] The previous
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estimnated

MODEL-REFERENCE +

ADAPTIVE CONTROL

Figure 7. Adaptive Control Methods [Ref. 10: pp. 315, 320]
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chapter developed two control laws based on knowledge of the CER moment of

inertia tensor; the next section develops an adaptation law based on the Kalman

filter equations.

B. KALMAN FILTER DESIGN

1. General Kalman Filter Equations

The Kalman filter is an observer or state estimator for a dynamic

process given by the following discrete state space equation:

X(k + 1) = 4_X(k) + Aý u(k) + A2w(k) (4.1)

where:

1. X(k) is the state vector at the present time k;

2. X(k + 1) is the state vector one time step in the future;

3. D is the discrete-time version of the A matrix given in equation (2.23);

4. u(k) is the applied control;

5. w(k) is an unknown random input called the plant driving noise;

6. A, is the discrete version of the B matrix given in equation (2.23);

7. A2 is the random input influence matrix and is often identical to A1.

In addition, the measurements of the system are given by:

Y(k) = CX(k) + v(k) (4.2)

where v(k) is a random vector known as measurement noise. [Ref. 11: p. 27]
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The Kalman filter provides an optimal estimate of the system described

by equation (4.1) and (4.2) by minimizing the mean square error between the

actual states and the estimated states. The Kalman filter has the following form:

X(k + Ilk + 1) = X(k + ilk) + G(k + 1)[Y(k + 1)- Y-X(k + ilk)] (4.3)

where:

1. the notation (k + Ilk) refers to the discrete value at time k + 1 based on data

accumulated through time k;

2. R_(k + Ilk) is the estimate of the states given data through time k;

3. Y_-(k + Ilk) is the estimate of the measurements given data through time k;

4. G(k + 1) is known as the Kalman filter gain;

5. X(k + Ilk + 1) is estimate of the states given data through time k + 1.

A set of recursive equations, in the proper order, that solve for the Kalman filter

gain and equation (4.3) are:

P(k +Ilk) = cP(klk)_T + A2 WA_ T; (4.4)

q(k + 1) = P(k + llk)CT [C(k + llk)C!T + V_]; (4.5)

P(k +Ilk + 1)= [I- G(k + 1)C]P(k +Ilk); (4.6)

X(k +lIlk) = 4_X(klk) + Au(k); (4.7)

Y(k + Ilk) = CX_(k + ilk); (4.8)
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X_(k +Ilk + 1) = _X(k + llk)+ G(k + 1)[Y(k + 1)-_Y(k + llk)]; (4.9)

where:

1. P is the covariance matrix of the estimation error;

2. A is the covariance matrix of the plant driving noise;

3. V is the covariance matrix of the measurement noise;

4. 1 is an appropriately dimensioned identity matrix.

Note that final implementation of equations (4.4-4.9) requires an initial estimate

of the states R(OI0) and an initial estimate of the covariance matrix P(0IO) [Ref.

11: pp. 27-29]. The initialization of equations (4.4-4.9) is discussed in Chapter

V.

2. Linear Model

For attitude hold, the linear quadratic regulator requires a model of the

CER's dynamics and this is provided by equations (2.23-2.25). The B matrix

defined by equation (2.24) contains the elements of the CER's inverse moment of

inertia tensor which is the system parameter that needs to be estimated.

To apply the previously defined Kalman filter equations, a plant

equation similar to equation (4.1) is formulated as:

I-' (k + 1) = I-(k) + w_(k) (4.10)

where I-(k) is a vector that contains the six independent elements of the inverse

moment of inertia tensor and w(k) is random plant driving noise. By comparing

equations (4.1) and (4.10), the following correspondences are noted:
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0=1; (4.11)

S=0; (4.12)

A2 =I (4.13)

This basically assumes that the inverse moment of inertia does not change, other

than by the addition of some random noise, from one time step until the next.

An accompanying measurement equation is formulated from a

linearized version of equation (2.16) as

6)c=I-,u. (4.14)

Equation (4.14) can be algebraically rearranged into the following form:

[u,(k) U2(k) U3(k) 0 0 01
0(k)- u,(k) 0 u2(k) u3(k) 0 r-(k) +_v(k) (4.15)
0 0 u,(k) 0 u2(k) u3(k)]

where v(k) is the combined measurement noise that results when angular

acceleration and applied control torques are measured. By comparing equations

(4.2) and (4.15), the following correspondence is noted:

"u(k) u,(k) u(k) 0 0 01
C(k) 0 u, (k) 0 u2(k) u3(k) 0j. (4.16)

0 0 uI(k) 0 u2(k) u3(k)J
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The previously defined Kalman filter can now be used to estimate the

inverse moment of inertia tensor of the CER plus any acquired target. This on-

line estimation assumes that:

1. Reasonable angular acceleration measurements or estimates are available;

2. The applied control torques are available;

3. The covariance matrices for plant and measurement noise can be computed;

4. Initial estimates for the inverse moment of inertia and covariance matrix of
estimation error can be computed.

All the above assumptions are discussed further in Chapter V.

3. Nonlinear Model

An estimate of the moment of inertia for the CER and any acquired

target is required by the quaternion feedback regulator in order to accomplish

any slewing maneuvers. A plant equation similar to equation (4.10) is formed

as:

I(k + 1) = I(k) + w(k) (4.17)

where equations (4.11-4.13) are still valid. Since large angle motion is

inherently nonlinear, it is only prudent to form a measurement equation from the

original nonlinear version of equation (2.16) which has been rearranged as:

u = CI__o + I1±. (4.18)

Further algebraic manipulation results in the following form:

u(k) = C(k)I(k) (4.19)
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where:

2 2(j) I t2 - (0)1(-03 013 + (010(12 -(%)3()2 (02 0) 3 (0)3012

C(k)= (')()3 ( +0)2(03 t)2 _) 6)2 6)3 - 01(02 -(03 (4.20)

((2 _ (2 •1 - (02(03 (01(02 62 + C0WC03 (03

and the time dependence of each term is assumed. Note that while the dynamics

of the CER are nonlinear, the dynamics of the CER's moment of inertia remain

linear.

The previously defined Kalman filter can now be used with this model

to estimate the moment of inertia tensor of the CER plus any acquired target.

This on-line estimation scheme utilizes the same assumptions listed in the

previous section.
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V. RESULTS

A. SIMULATION PROGRAM AND IMPLEMENTATION

Attitude control performance for the CER and target was evaluated through

computer simulation. The simulation programs were written in MATLAB and

are listed in the Appendix. The continuous-time equations of motion given in

Chapter II and the continuous-time control algorithms given in Chapter III were

simulated using discrete-time versions of these equations. A small sampling

period of 75 milliseconds was chosen to ensure that the discrete equations

accurately represented the continuous-time equations.

The selection of thruster size and location inherently limits the amount of

available control torques. To ensure realistic simulation results, hard limits have

been included in the simulation programs so that control signals greater than

those given in Chapter I are not generated.

Plant noise has been added into the simulation programs to further increase

the realism of the computer simulation results. Typical spacecraft disturbance

torques are due to thruster misalignment and solar pressure. Kaplan [Ref. 12: p.

241] lists some assumed values for disturbance torques. The maximum

magnitudes of these assumed values are:

1. Thruster misalignment torque: 8.5 x 10- 5 N-m or 6.27 x 10- 5 ft-lbf;

2. Solar Pressure torque: ± 1.0 x 10-4 N-m or + 7.4 x 10-5 ft-lbf.

As a worst case guess, plant noise was modeled as a random three dimensional

vector with a normal or Gaussian distribution and a standard deviation equal to

the sum of these two disturbance torques, 1.4 x 10-4 ft-lbf.
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The control laws developed in Chapter 11 assume the availability of sensors

to measure angular position and angular velocity. The sensors have limited

accuracy and introduce measurement noise into the control system. Wertz [Ref.

4: pp. 199-200] states that typical rate gyros have a resolution of less than 0.01

degree per second and typical rate-integrating gyros have a resolution of 0.003

degree. Reference 13 indicated that accuracies of 0.01 degree and 0.0003 degree

per second are quite reasonable. As a worst case guess, measurement noise was

modeled as two random three dimensional vectors with a normal or Gaussian

distribution and standard deviations equal to 0.003 degree and 0.0001 degree per

second.

The linear quadratic regulator used for attitude hold required a choice of Q

and R weighting matrices. After some trial and error, weighting matrices were

obtained that allowed the states to be driven towards the origin in a reasonable

amount of time (ten seconds) and also avoided saturation of the applied control

torques:

"1 0 0 0 0 0-
0 1 0 0 0 0

- =0 0 1 0 0 0 (5.1)-- 0~ 0 0 0 0 0 51

0 0 0 0 0 0

L0 0 0 0 0 01

2x0 x1 0 0
R 0 2x10-5  0(5.2)

10 0 2I-
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Finally, the adaptation algorithm developed in Chapter IV required some

computations and assumptions. Reference 13 indicated that angular

accelerometers exist for spacecraft applications but are very expensive and not as

common as rate gyros and rate-integrating gyros. In this thesis, angular

acceleration measurements were generated by numerically differentiating the

given angular velocity measurements as follows:

6)(k) = (_o(k + 1) - T(k)) / T. (5.3)

where Ti is the sample period or interval. Alternative methods for generating

angular acceleration measurements might involve filtering the already available

angular velocity measurements or using an extended Kalman filter to estimate the

moment of inertia tensor and the angular accelerations simultaneously. The

initial covariance of estimation error matrix P(010) was calculated empirically by

computing the total moment of inertia tensor for several targets in various

locations within the CER's net and then computing the overall mean and standard

deviation. The covariance matrix of plant driving noise W and the covariance

matrix of measurement noise V were computed as follows:

W=wl; (5.4)

V=v.i; (5.5)

where I is an appropriately dimensioned identity matrix, and v and w are scalar

values equal to the variances of the assumed plant noise and measurement noise.
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The plant is the CER and target moment of inertia and this author assumes that it

does not change very significantly. A small number should, therefore, be chosen

for w, with zero an ideal choice. However, simulations indicated that a zero

plant noise covariance matrix leads to unsatisfactory results. In this thesis, the

following small number was used:

w = lxlO-8. (5.6)

The measurement noise takes into account the errors and noise that are

introduced by thruster misalignment, and measuring angular acceleration and

angular velocity. After some trial and error via computer simulations, the value

chosen empirically for v was:

V = lXl0-4. (5.7)

The adaptation scheme constantly updates the control algorithms as it

estimates the moment of inertia. The Kalman filter has some inevitable

transients prior to convergence and computer simulation results indicated that the

Kalman filter may even provide an estimate for the moment of inertia that is not

physically realistic. Since the moment of inertia tensor is by definition a positive

definite matrix (the eigenvalues are always positive for a real physical body), a

test has been incorporated within the control and adaptation schemes: estimates

of the moment of inertia are only passed to the control law if all the eigenvalues

are positive.
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Hansen [Ref. 3: p. 21] computed the total moment of inertia tensor for the

CER and several worst case target capture scenarios. These moments of inertia,

tabulated in Table 1, are used in the following sections to evaluate the control

laws developed in this thesis.

TABLE 1. TARCET CAPTURE MOMENT OF INERTIA TENSORS

Case/Description Moment of Inertia Tensor
(slug-foot2)

1. No Target 39.6 0 0
0 55 0

0 0 55
"112.9 2.4 -111.91

2. Man + manned maneuvering [12.4 534 6.4
2.4 534.9 6.4

unit in net center not aligned with -111.9 6.4 497.6

CER. [69.3 0 -178.21
3. 850 lb point mass at net edge 6 0 113 802

0 1153.8 0

along the x-axis. -178.2 0 1124.1
[98.9 -110.5 -110.51

4. 850 lb point mass at net edge -1 .5 496.1 -29.7
-110.5 496.1 -29.7

along the y-axis. -110.5 -29.7 496.1

5. 850 lb point mass at net edge 369.5 0 -368.41
0 796.4 0

along the z-axis. -368.4 0 466.4 .
[172.7 -93.7 -282.31

6. 850 lb point mass at X=Z, Y=I 179.7 83.7 -39.83
-93.7 839.7 -39.8

from net center. -282.3 -39.8 732.9
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B. ATTITUDE HOLD

Evaluation of attitude hold for the CER and acquired target was

accomplished by initializing the position angles and angular velocities at some

reasonable values and then allowing the control system to drive these values

towards the origin. This thesis employed the same the initial conditions as

Hansen [Ref. 3: p. 43]: 2.0 degrees for all position angles and 0.2 degrees per

second for all angular velocities. Throughout the attitude hold simulations, the

adaptive control system has been initialized with the moment of inertia defined

by Case I in Table 1.

1. Comparison of Adaptive and Nonadaptive Control

The control system developed in Chapter III was compared with a

nonadaptive version of the same control system for a CER and target moment of

inertia defined by Case 2 in Table 1. The nonadaptive controller was given a

constant value for the CER and target moment of inertia: defined by Case 1 in

Table 1. The simulation results are listed below in Table 2.

TABLE 2. ADAPTIVE/NONADAPTIVE SIMULATION RESULTS

Controller Design Settling Time (sec) Fuel Used

1. Nonadaptive, 30 1009

I= Case I

2. Adaptive 10 398

A figure of merit for any spacecraft control system design is the amount of fuel

used. In this thesis, the sum of the absolute value of all control used for each

design was calculated. This value is listed as fuel used in Table 2, although it is
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actually only proportional to the amount of fuel used. Note that the settling time

in Table 2 is the maximum settling time for all three position angles.

Simulation plots for the nonadaptive design (I-= Case 1) and the adaptive

design are displayed in Figure 8. Both designs provide for an overall stable

closed loop system. However, the nonadaptive design is clearly much more

oscillatory, requires a long period for all oscillations to completely dampen out,

and requires more control effort. The adaptive design starts out with the worst

possible guess (the CER alone) for the moment of inertia but rapidly and

correctly estimates the actual moment of inertia of the CER and target. The final

estimate is very close to the actual moment of inertia defined by Case 2 in Table
1:

112.7 2.8 -111.5

1., 2.8 540 3.3 (5.8)
-111.5 3.3 498.1
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2. Adaptive Control with various target scenarios

The adaptive control system developed for attitude hold in Chapter III

was simulated for all the target-capture moment of inertia tensors defined by

Hansen [Ref. 3]: Cases 1-6 in Table 1. The simulation results for this adaptive

attitude control design and the nonadaptive minimum time controller designed by

Hansen [Ref. 3] are listed below in Table 3.

TABLE 3. ATTITUDE HOLD SIMULATION RESULTS

Target Case Settling Time (sec) Settling Time (sec)

Adaptive Design Hansen Design

1 3.0 1.5

2 10.0 6.6

3 15.0 00

4 8.0 00

15 15.0 15.6

16 13.0 100

The adaptive control system was stable and exhibited reasonable settling times

for all target cases. The minimum time control system designed by Hansen [Ref.

3] exhibited unstable results for three of the target capture cases: as depicted by

the infinite settling times.

Table 4 lists the final estimate of the CER and target moment of inertia

tensor for each of the target cases. The results are close but not exact. The

differences may be attributed to the use of noisy measurement signals and the

short time (10 seconds) available for system measurements. As the control
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torque and angular acceleration measurements become very small, the estimation

scheme is essentially provided with no new information and therefore can not

accurately estimate the moment of inertia tensor.

TABLE 4. MOMENT OF INERTIA ESTIMATES

Target Actual Moment of Estimate of Moment

Case Inertia Tensor of Inertia Tensor
[39.6 0 0 39.6 -0.3 0.3

o0 55 -50[ 552 0.21
-0 0 55 -0.3 0.2 54.4

2 112.9 2.4 -111.91 112.7 2.8 -111.51
2.4 534.9 6.4 2.8 540 3.3.---1.9 6.4 497.6L,11.5 3.3 498.1

69.3 0 -178.2 69.3 -7.0 -179.4

0 1153.8 0 -7.0 1155.8 -4.4

-178.2 0 1124.1 -179.4 -4.4 1131.6
98.9 -110.5 -110.5 98.7 -110.6 -109.9-

-110.5 496.1 -29.7 -110.6 284.5 182.0

-110.5 -29.7 496.1 -109.9 182.0 282.7

5 369.5 0 -368.41 [411.4 5.0 -417.01

0 796.4 0 5.0 797.0 -5.9

-368.4 0 466.4 -417.0 -5.9 522.9

6 172.7 -93.7 -282.3 173.7 -90.2 -286.1

-93.7 839.7 -39.8 -90.2 851.5 -52.6

-282.3 -39.8 732.9 -286.1 -52.6 746.8

C. SLEWING MANEUVERS

Evaluation of slewing maneuvers for the CER and acquired target was

accomplished by: initializing the position angles and angular velocities at zero,
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selecting a final orientation in terms of the chosen 3-2-1 Euler Angles, and

selecting a desired maneuver settling time. The adaptive quaternion feedback

regulator developed in Chapters III and IV was compared with two nonadaptive

quaternion feedback regulators that assumed a CER and target moment of inertia

as defined by Case 1 in Table 1. The adaptive quaternion feedback regulator was

initialized with this same moment of inertia. A desired orientation of 50 degrees

for each position angle was selected for each controller design. The simulation

results for a target defined as Case 2 are listed below in Table 5.

TABLE 5. SLEWING MANEUVER SIMULATION RESULTS

Controller Desired Desired Actual Max Fuel

Settling Damping Settling % Used

Time (sec) Ratio Time (sec) Overshoot

Adaptive 70 1.0 70 0 826

Non- 70 1.0 +100 55 722

adaptive

Non- 11 2.5 70 4 958

adaptive

The adaptive design clearly meets the desired settling time and desired

overshoot requirements. The first nonadaptive design appears to use more fuel

than the adaptive design, but it is very oscillatory and does not meet the desired

settling time. A second nonadaptive design was generated by adjusting the

desired settling time and damping ratio, which changes the parameters k and d in

the control law developed in Chapter III, until the actual settling time approached
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the original desired settling time of 70 seconds. This second nonadaptive design

meets the required settling time but the response is more oscillatory and uses

more fuel: as compared with the adaptive design. Figures 9, 10, and 11 further

clarify the differences between the adaptive and nonadaptive designs.

The simulation plots of the quaternions or Euler parameters can be used to

check for an eigenaxis rotation: which is defined by Ref. 9 as a straight line in

any plot of the quaternions or Euler parameters. The first nonadaptive

controller is clearly executing a noneigenaxis rotation. The second nonadaptive

design controller and the adaptive controller are, almost exactly, executing an

eigenaxis rotation. The adaptive controller is, therefore, the only design that:

1. minimizes the desired position angle overshoot;

2. meets the desired settling time;

3. minimizes the fuel used;

4. executes an eigenaxis rotation;

5. has the ability to react to different and changing moments of inertia.
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VI. CONCLUSIONS

A. ATTITUDE HOLD

The adaptive attitude control system developed in this thesis to maintain

attitude hold for the CER and an acquired target provided superior control

during the capture of all previously defined worst case target scenarios. This

adaptive linear quadratic regulator provided stable results with very reasonable

settling times, and used a modest amount of fuel as compared with the previously

designed nonadaptive minimum time control system [Ref. 3] and a nonadaptive

linear quadratic regulator design. The additional computational burden of

adaptive control is, therefore, compensated by a substantial improvement in

control system performance.

B. SLEWING MANEUVERS

Fairly accurate knowledge of the moment of inertia tensor is essential for

slewing maneuvers that are well damped, accomplished in a timely manner, use

minimal fuel, and are executed as eigenaxis rotations. The adaptive quaternion

feedback regulator developed in this thesis clearly provides this type of slewing

maneuver control and outperforms nonadaptive quaternion feedback regulators.

Again, the additional computational burden of adaptive control is more than

compensated for by a substantial improvement in control system performance.

C. FUTURE RESEARCH

Both adaptive control system designs developed in this thesis are practical

designs that will result in a more reliable and fuel efficient Crew/Equipment

Retriever for the Space Station Freedom. These designs, however, can also be
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applied to more general spacecraft attitude control problems. The adaptation

scheme can easily be altered to account for spacecraft moments of inertia that are

not only unknown but are subject to frequent and significant changes. In this

respect, the adaptive linear quadratic regulator is an ideal candidate for large

space structures of the future. Instead of limiting space structure design to

shapes and load distributions that lead to quick approximations of the overall

moment of inertia and minimize any changes, this adaptive control system would

remove all these restrictions and become, in current science fiction terminology,

an automatic attitude damping system.

Future research could examine alternative adaptation schemes and employ

filtering techniques to obtain angular acceleration measurements from angular

velocity measurements, since the latter are more generally available. Additional

computer simulations could attempt to model the CER and target as a flexible

structure and account for any target movement within the CER's capture net

mechanism.
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APPENDIX. MATLAB SIMULATION PROGRAMS

"% PROGRAM NAME: CERSimNL1
"% PROGRAM AUTHOR: Nicholas F. Russo
"% CALLED PROGRAMS: actualmoi, CERLQR, guessmoi

"% DESCRIPTION:
"% The below program will simulate the CER Control System for Small
"% Angle Motion or Attitude Hold. The Control Law is a Steady State Linear
"% Quadratic Regulator. However, it is an Adaptive Controller in that the
"% Inverse MOI of the CER + Target is unknown and potentially variable. A
"% KALMAN Filter is used to estimate the Inverse MOI and then update the
"% feedback gains produced by the Linear Quadratic Regulator (LQR). It is
"% assumed that the angular accelerations are available as measurements.

clear
% Prompt user for first guess inverse MOI tensor
guessmoi;

% Define the initial state estimate for the Kalman Filter
estx=[Iig(l,l);Iig(1,2);Iig(1,3);Iig(2,2);Iig(2,3);Iig(3,3)];

% Define the Q and r parameters for the LQR
Q=diag([1,1,1,0,0,0]); % The Q matrix weights the system states

r=2.0e-5; % This iL used to weight the control inputs used
% This is the for used R=r*eye(3,3);

"% Define the actual inverse MOI tensor, as Ii.
"% This is placed into the MATLAB workspace by a separate
"% subroutine.
actualmoi;

T=75e-3; % The sampling time.
B=[zeros(3,3);Ii]; % The B matrix.

t(1)=l; %Initial sampling index
% Initial conditions in degrees & degrees/sec and in radians & radians/sec
x(:, I )=[2;2;2;0.2;0.2;0.2]. *(pi/l 80)

y(:, I )=x(:, I); % Initial measurements
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% Initial Kalman Filter Parameters
phik=eye(6); % Define the phi matrix for the plant

* Ew=(1e-8)*eye(6); % Plant Noise Covariance Matrix
V=1 .Oe-4;

* Ev=V*eye(3); % Measurement Noise Covariance Matrix
% Prompt user for Covariance Estimation Error
ques3=input('Specify the Covariance Estimation Error, P(0/0). < 0 > The
Default. < I1> The Identity Matrix. < 2> A matrix of zeros.>>>');

if ques3==O,
oldP=[-0.01 14 -1.14e-6 2.92e-5 2.166e-5 4.84e-7 2.95e-5
-1.14e-6 0.0001 -2.56e-7 -1.9e-7 -4.25e-9 -2.587e-7
2.92e-5 -2.56e-7 -0.0026 4.864e-6 1.087e-7 6.623e-6
le-6 le-6 le-6 -.0019 le-6 le-6
le-6 le-6 le-6 le-6 -4.246e-5 le-6
le-6 le-6 le-6 le-6 le-6 -2.587e-3];
elseif ques3== 1,
oldP=eye(6);
else,
oldP=zeros(6,6);
end
% This is P(0/0), the covariance matrix of the estimation error

% Prompt user for number of simulation steps
ques4=input('Enter the number of Simulation Steps. < 0> The Default, which is
160. Otherwise, enter your own value (within reason.... .unless you have all
day!!»>');
if ques4--O,
NUM=1 60;
else,
NUM=ques4;
end

rand('normal');

rd=(1 .4e-4)*rand(3,NUM); % Random Plant Disturbance
mn I =( I.745e-4)*rand(3,NUM); % Random Measurement Noise
mn2=(5e-6)*rand(3 ,NUM);%
mn=fmnl ;mn2];

% Now, simulate the CER + Target
for N=l:NLUM
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wskew=[0 -x(6,N) x(5,N);x(6,N) 0 -x(4,N);-x(5,N) x(4,N) 0];
% Skew symmetric matrix
a=-1 *Ii*wskew*inv(Ii);
i5=tan(x(2,N))*sin(x( 1,N));
i6=co s(x(1 ,N)) *tan (x(2,N));
j5=cos(x(l ,N));
j6=-sin(x(1 ,N));
k5=sin(x( I,N))/cos(x(2,N));
k6=cos(x( I,N))/cos(x(2,N));
A=[ 0 00 1 i5 i6;0 0 00 j5 j6;0 0 00 k5 k6;0 0 0 a(1,1) a(1,2) a(l,3); 0 00 a(2,1)
a(2,2) a(2,3);0 0 0 a(3,1) a(3,2) a(3,3)];

% Now, discretize the state space equations
[phi,delu 1 ]=c2d(A,B,T);

% Call the CERLQR function to determine the Steady State Feedback Gain
% Matrix
K=CERLQR(Q,r,Iig);

t(N+1)=N+1; % Increment time index

% Now, apply the limits for the control torques
if abs(U(1,N)) > 4
U( I,N)=4*sign(U( I,N));
else
U(1 ,N)=U(1,N);
end
if abs(U(2,N)) > 3
U(2,N)=3 *sign(U(2,N));
else
U(2,N)=U(2,N);
end
if abs(U(3,N)) > 3
U(3,N)=3*sign(U(3,N));
else
U(3,N)=U(3,N);
end

torque( :,N)=U(: ,N)+rd( :,N);
% The plant discrete state equations
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x(:,N+ 1 )=phi*x(:,N)+delu 1 *torque(:,N);
% Measurement Equation
y(:,N+l-)=x(:,N+l)+mn(:,N);
%
xd(:,N)=A*x(:,N)+B*U(:,N);
yka(:,N)=xd(4:6,N); % This measurement equation takes the angular velocities
% and obtains angular accelerations (like an accelerometer).

yk(:,N)=(y(4:6,N+1)-y(4:6,N))./T; % This equation obtains angular accelerations
% by numerical differentiation.

"% Now, call the Kalman Filter in order to estimate the
"% actual Inverse MOI and update the LQR Gain Matrix.

tl=U(1,N);
t2=U(2,N);
t3=U(3,N);
Ck=[tl t2 t3 0 0 0;0 tl 0 t2 t3 0;0 0 tl 0 t2 t3];

% Below are the Kalman Filter and gain equations

% First, the Gain Equations
newP=phik*oldP*phik' + Ew;
G=newP*Ck'*inv(Ck*newP*Ck' + Ev);
oldP=(eye(6) - G*Ck)*newP;

estxx=phik*esLx(:,N);
est.y= Ck*estxx;
est x(:,N+1)= est-xx + G*(yk(:,N)-esty);

I11 =est x(l ,N);
1I 2=esLx(2,N);
I13=estWx(3,N);
122=est.x(4,N);
123=estx(5,N);
133=est T x(6,N);
IEST=[I1 I112 113;112 122 123;113 123 133];

% Check the inverse MOI guess for physical reality. Eigenvalues must be > 0.
eigcheck( 1:3,N)= [eig(IEST)];
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% Test for physical reality ( All eigenvalues of lEST >0)
checke(N)= 1* sign(eigcheck( 1 ,N))+ 1 *sign(eigcheck(2,N))+ 1 *sign(eigcheck(3,N))

%
if checke(N)==3,
% Update the initial guess inverse MOI
Iig=IEST;
% Otherwise, do not update the control law
else,
end

end % End of Simulation Loop

% Convert the time vector to actual time
t=t.*T;
% create a special time vector for the control input plot
tU--O:N- 1;
tU=tU.*T;
% Calculate the total fuel used (actually this is proportional to it)
FUELUSED=sum(sum(abs(U)))

1% End of Program

"% PROGRAM NAME: guessmoi
"% PROGRAM AUTHOR: Nicholas F. Russo
"% CALLED PROGRAMS: none

"% DESCRIPTION:
"% The below program will prompt user for first guess inverse MOI tensor.
input('Welcome to the Non-Linear Simulation of the CER and Target. Please
choose a first guess inverse MOI tensor for the LQR. <0 > The Default.
MAN+MMU in Net Center with CER Frame of Reference.< I > The CER alone.
< 2 > Case Two from Hansen Thesis. *Any other number will use an average
of all the inverse MOI tensors>>>');
s=ans;
if s==2,
lig=[0.0114 -0.0001 0.00256;-0.0001 0.0019 4.246e-5;0.00256 4.246e-5
0.002587];

elseif s==1,
Iig=inv([39.6 0 0;0 55 0;0 0 55]);
elseif s==O,
Iig=[0.0138 0 0.003;0 0.0018 0;0.003 0 0.0026]
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else,
lig=inv([143.8 -33.6 -175.2;-33.6 646 -10.5;-175.2 -10.5 562])
end

Ig=inv(Iig)
% This is the guess MOI.

% End of Program

"% PROGRAM NAME: actualmoi
"% PROGRAM AUTHOR: Nicholas F. Russo
"% CALLED PROGRAMS: none

"% DESCRIPTION:
"% This program will question the user for a CER + target
"% moment of inertia or its inverse.

caseN=input('Define the actual Moment of Inertia by case number>>');
if caseN== 1,
MOI=[39.6 0 0;0 55 0;0 0 55];
% This is the CER alone.

elseif caseN==2,
MOI=[112.9 2.4 -111.9;2.4 534.9 6.4;-111.9 6.4 497.6];
% MAN +MMU

elseif caseN==3,
MOI=[69.3 0 -178.2;0 1153.8 0;-178.2 0 1124.1];

elseif caseN==4,
MOI=[98.9 -110.5 -110.5;-110.5 496.1 -29.7;-110.5 -29.7 496.11;

elseif caseN==5,
MOI=[369.5 0 -368.4;0 796.4 0;-368.4 0 466.4];

elseif caseN==6,
MOI=[172.7 -93.7 -282.3;-93.7 839.7 -39.8;-282.3 -39.8 732.9];

else,
end
Ii=inv(MOI);
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1% End of Program

"% PROGRAM NAME: CERLQR
"% PROGRAM AUTHOR: Nicholas F. Russo
"% CALLED PROGRAMS: dlqr

"% DESCRIPTION:
"% The below subroutine will compute the Steady State Linear
"% Quadratic Regulator Control Gains for the CER using a Linear
"% State Space Model. It will receive updates on the inverse
"% Moment of Inertia (MOI) Tensor from another subroutine
"% that will estimate this matrix using a Kalman Filter.

% function K= CERLQR(Q,r,li)
% Here are the input parameters:
% Q is the weighting matrix for the states
% r is the scalar used to weight the control inputs
% Ii is the inverse MOI Tensor

function K=CERLQR(Q,r,Ii);

R=r*eye(3,3);

% Now, define the state space equations and discretize.
T=75e-3; % The sampling time.
A=[000100;000010;000001;000000;000000;000000];
% The above is the A matrix.

B=[zeros(3,3);Ii]; % The B matrix.
% Now, discretize the state space equations
[phi,delu 1 ]=c2d(A,B,T);

% Now, call the function dlqr to calculate the feedback gains

[K,SI=dlqr(phi,delul,Q,R);
% END of the function

"% PROGRAM NAME: replotSA
"% PROGRAM AUTHOR: Nicholas F. Russo
"% CALLED PROGRAMS: subplot, plot

"% DESCRIPTION:
"% Plotting Program for Small Angle Motion
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cig;
subplot(22 1);

* xlabel('Time - seconds'),ylabel('Position - radians')
title('Position Angle Histories')

subplot(222);

xlabel('Time - seconds'),ylabel('Angular velocity - rad/sec')
title('Angular Velocity Histories')

subplot(223);
plot(tU,U(1 ,:),tU,U(2,:),'--',tU,U(3,:),'-.'),grid
xlabel('Time - seconds'),ylabel('Control Torque - foot-ibs')
title('Control Torque Histories')

subplot(224);
% Plot fuel usage plot
plot(tU,sum(abs(U))),grid,title('Fuel Usage')
xlabel('Time - seconds'),ylabel('Magnitude');
pause;
% Prompt user to see if additional plots/information are desired.

ques5=input('Would you like to see the final estimate of the Inverse Moment of
Inertia Matrix?? If the answer is yes then type 0, otherwise type I .>)
if ques5==0,
Ii
pause;
lig
pause;
clg;
subplot(22 1);
plot(t,est..x(1 ,:)),grid
title(' Inverse Moment of Inertia Estimate- 11l')
xlabel('Time - seconds')
subplot(222);
plot(t,est..x(2,:)),grid,title('I 12')
xlabel('Time - seconds')
subplot(223);
plot(t,est..x(3 ,:)),grid,title('I 13')
xlabel('Time - seconds')
subplot(224);
plot(t,est-x(4,:)),grid,title('122')
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xlabel('Time - seconds'),pause;
clg;
subplot(221);
plot(t,est-x(5,:)),grid,xlabel('Time - seconds')
title('Inverse Moment of Inertia Estimate - 123')
subplot(222);
plot(t,est.x(6,:)),grid,xlabel('Time - seconds')
title('133'),pause;
cig;
plot(eigcheck(I,:)),grid,title('First Eigenvalue of the Estimated Inverse MOI
Tensor'),pause
plot(eigcheck(2,:)),grid,title('Second Eigenvalue'),pause
plot(eigcheck(3,:)),grid,title('Third Eigenvalue'),pause

else,
end
% End of Program

"% PROGRAM NAME: CERSlewKI
"% PROGRAM AUTHOR: Nicholas F. Russo
"% CALLED PROGRAMS: guessmoi, actualmoi, EULERa2p,
% EULERp2a321

"% DESCRIPTION:
"% The below program will simulate the CER Control System for Large
"% Angle (Slewing) Motion. The Control Law is a Quaternion Feedback
"% Regulator. However, it is an Adaptive Controller in that the MOI
"% of the CER + Target is unknown and potentially variable. A KALMAN
"% Filter is used to estimate the MOI and then update the feedback gains
"% produced by the Quaternion Feedback Regulator. This KALMAN Filter
"% assumes that angular acceleration measurements are available.
clear
% Prompt user for first guess inverse MOI tensor

guessmoi;
% Define the initial state estimate for the Kalman Filter
est-x=[Ig(l,1);Ig(1,2);Ig(1,3);Ig(2,2);Ig(2,3);Ig(3,3)];

% Define the actual MOI tensor.
% This is placed into the MATLAB workspace by a separate subroutine.
actualmoi;

T=75e-3; % The sampling time.

68



t(1)= 1; %Initial sampling index
% Initial orientation
anginit=[0 00];

xEULER(1:3,1)=[anginit(l);anginit(2);anginit(3)];
% Prompt the user for the desired orientation
angc=input('Specify the final or desired orientation in terms of 3-2-1 Euler
Angles, in degrees. Enter as follows, [120 120 120>>>>>');

"% Now, convert each of these orientations to Euler Parameters
"% Initial Conditions
binit=EULERa2p(2,0,anginit(1),anginit(2),anginit(3));
beta(:, l)=[binit(l);binit(2);binit(3);binit(4)];
w(:,l)=[0;0;0];

bcmd= EULERa2p(2,0,angc(1),angc(2),angc(3));
% Compute the commanded quaternion matrix
bOc=bcmd(1);
blc=bcmd(2);
b2c=bcmd(3);
b3c=bcmd(4);
BCMD=[b0c blc b2c b3c;-blc bOc b3c -b2c;-b2c -b3c bOc blc;-b3c b2c -blc
b0c];

"% Prompt the user for the values used to compute the K and D weighting
"% matrices used in the Quaternion Feedback Regulator.
settle=input('Please enter the desired Settling Time in seconds>>>>');

runtime=input('Enter desired simulation run time (sec)>>>>');
actual=runtime/T;
NUM=actual+0.2*actual;
NUM--round(NUM);

% The two weighting matrices, K and D will now be calculated as follows:
zeta=1.0

omegaN=8/(zeta*settle);
dscalar=2*zeta*omegaN;
kscalar=2*omegaNA2;
%
rand('normal');

rd=(l.4e-4)*rand(3,NUM); % Random Plant Disturbance
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mnl1=(( I.745e-4)/3 )*rand(4,NUM); % Random Measurement Noise
mn2=((5e-6)/3 )*rand(3 ,NUM); %

% Initial Kalman Filter Parameters
phik=eye(6); % Define the phi matrix for the plant
% Prompt user for Kalman Filter Design Plant Noise
Wnoise=input('Specify the scalar multiplier for the Kalman Filter Plant Noise
Matrix. < 0> Default Value (TRUST ME). < I > No NOISE. < 2> Choose
your own vle>>>)
if Wnoise==0,
W=le-8; % The scalar multiplier of the below matrix

elseif Wnoise==I,
W=O;
else,
W=input('Specify your own vle>>>)
end
Ew=W*eye(6); % Plant Noise Covariance Matrix
V=l .Oe-04;
Ev=V*eye(3); % Measurement Noise Covariance Matrix
% Prompt user again, for Covariance Estimation Error
ques3=input('Specify the Covariance Estimation Error, P(0/0). < 0 > The
Default. < 1 > The Identity Matrix. < 2> A matrix of zeros.>>>');

if ques3==0O,
oldP=inv([-0.01 14 -1.14e-6 2.92e-5 2.166e-5 4.84e-7 2.95e-5
-1.14e-6 0.0001 -2.56e-7 -1.9e-7 -4.25e-9 -2.587e-7
2.92e-5 -2.56e-7 -0.0026 4.864e-6 1.087e-7 6.623e-6
le-6 le-6 le-6 -.0019 le-6 le-6
Ie-6 le-6 le-6 le-6 -4.246e-5 le-6
le-6 le-6 le-6 le-6 le-6 -2.587e-31);
elseif ques3==1,
oldP~eye(6);
else,
o~dP=zeros(6,6);
end
% This is P(0/0), the covariance matrix of the estimation error

tclock0=clock;
% Initialize omega with noise

% Now, simulate the CER + Target
for N=l:NUM

70



wN(:,N+ 1)=w(:,N)+mn2(:,N); % angular velocity plus measurement noise.

betaN(:,N)=beta(:,N)+mnl(:,N); % Position measurements plus noise.
wskewN=[0 -wN(3,N) wN(2,N);wN(3,N) 0 -wN(1,N);-wN(2,N) wN(1,N) 01;

wskew=[0 -w(3,N) w(2,N);w(3,N) 0 -w(1,N);-w(2,N) w(1,N) 0];

Gskew=.5*[0 -w(1,N) -w(2,N) -w(3,N);w(1,N) 0 w(3,N) -w(2,N);w(2,N)
-w(3,N) 0 w(1,N);w(3,N) w(2,N) -w(1,N) 0];

t(N+ 1)=N+ 1; % Increment time index

% Define the error quatemnion for the feedback equation
be=BCMD*betaN(:,N);
qe=[be(2);be(3);be(4)I;
% Define the weighting matrices K and D. Note that they are updated by the
% Kalman Filter's Estimate of the MOI.
K=kscalar*Ig;
Dq=dscalar*lg;
U(:,N)=wskewN*Ig*wN(:,N) - Dq*wN(:,N) - K*qe;
% Now, apply the limits for the control torques
if abs(U(1 ,N)) > 4
U(1 ,N)=4*sign(U(1,N));
else
U(1,N)=U(1,N);
end
if abs(U(2,N)) > 3
U(2,N)=3 *sign(U(2,N));
else
U(2,N)=U(2,N);
end
if abs(U(3,N)) > 3
U(3,N)=3*sign(U(3,N));
else
U(3,N)=U(3,N);
end

torque(:,N)=U(:,N)+rd(:,N); % Apply the random disturbance torques

% Discrete Nonlinear Kinematic and Dynamic Equations

w(: ,N+ I)=w(:,N)+T*(Ii *torque(:,N)-Ii *wskew*MOI*w(: ,N));
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beta(:,N+ 1 )=beta(:,N)+T*Gskew*beta(:,N);
% The real angular acceleration
wdotreal(:,N)=li *torque(:,N).li *wskew*MOI *w(:,N);
% Angular acceleration from numerical differentiation
wdot( :,N)=(wN(:,N+l )-wN(:,N))./T;

"% Now, call the Kalman Filter in order to estimate the
"% actual MOI and update the Control Law.

Ck=[wdot( I,N) (wdot(2,N)-wN( 1,N)*wN(3,N)) (wN( I,N)*wN(2,N)+wdot(3,N))
(-wN(2,N)*wN(3,N)) (wN(2,N)A2-wN(3,N)A2) (wN(2,N)*wN(3,N))
wN(l ,N)*wN(3,N) (wdot( I,N)+wN(2,N)*wN(3,N)) (wN(3,N)A2-wN( 1,N)A2)
wdot(2,N) (wdot(3,N)-wN(1,N)*wN(2,N)) -wN(l ,N)*wN(3,N)
-wN(2,N)*wN( I,N) (wN(l ,N)A2-wN(2,N)A2) (wdot(1 ,N)-wN(2,N)*wN(3,N))
wN( I,N)*wN(2,N) (wdot(2,N)+wN( 1,N)*wN(3 ,N)) wdot(3,N)];

% Below are the Kalman Filter and gain equations

% First, the Gain Equations
newP=phik*oldP*phik' + Ew;
G=newP*Ck'*inv(Ck*newP*Ck' + Ev);
oldP=(eye(6) - G*Ck)*newP;

est_xx=phik*est...x(:,N);
esLy= Ck*est_xx;
est...x( :,N+ 1)= est-xx + G*(torque(:,N)-est..y);

I II=est-x(1,N);
11 2=est -x(2,N);
11 3=est...x(3,N);
122zest -X(4,N);
123=est...x(5,N);
133=est-x(6,N);
IEST=(Il 1 112 113;112 122 123;113 123 133];

% Check the inverse MOI guess for physical reality. Eigenvalues must be > 0.
eigcheck(l :3,N)=Ileig(IEST)];

checke(N)= 1 *sign(eigcheck( I,N))+ 1 *sign(eigcheck(2,N))+ 1 *sign(ei gcheck(3 ,N))

if checke(N)==3,
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% Update the initial guess MOI
Ig=IEST;
% Otherwise, do not update the control law
else,
end

% Convert the Euler Parameters to Euler Angles
xEULER(:,N+ 1 )=EULERp2a321 (beta(:,N+ 1));
end % End of Simulation Loop

% Convert the time vector to actual time
t=t.*T;
% create a special time vector for the control input plot
tU=O:N- 1;
tU=tU.*T;
etime(clock,tclockO)/60
% Calculate the total fuel used (actually this is proportional to it)
FUELUSED=sum(sum(abs(U)))

% End of CER Slewing Simulation Program

"% PROGRAM NAME: replot
"% PROGRAM AUTHOR: Nicholas F. Russo
"% CALLED PROGRAMS: plot, subplot

"% DESCRIPTION:
"% Plotting program for previously calculated data
clg;
subplot(221 );
plot(t,xEULER(l,:)),grid
xlabel('Time - seconds'),ylabel('Angle - degrees')
title('Z or Yaw Angle History')

subplot(222);
plot(t,xEULER(2,:)),grid
xlabel('Time - seconds'),ylabel('Angle - degrees')
title('Y or Pitch Angle History')

subplot(223);
plot(t,xEULER(3,:)),grid
xlabel('Time - seconds'),ylabel('Angle - degrees')
title('X or Roll Angle History')
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subplot(224);

xl abel('Time - seconds'),ylabel('Angular velocity - rad/sec')
title('Angular Velocity History')
pause;
cig;

subplot(22 1);
plot(beta(2,:),beta(3, :)),grid
title('Quatemion Plot- q2 vs. ql1'),xlabel'q 1 '),ylabel('q2')

subplot(222);
plot(beta(2,:),beta(4, :)),grid
title('Quatemion Plot- q3 vs. ql'),xlabel('ql'),ylabel('q3')

subplot(223);
plot(beta(3 ,:),beta(4, :)),grid
title('Quatemion Plot- q3 vs. q2'),xlabel('q2'),ylabel('q3')

subplot(224);
plot(tU,U(1 ,:),tU,U(2,:),'--',tU,U(3,:),'-.'),grid
title('Control Torque History')
xlabel('Time - seconds'),ylabel ('Control Input/Torque - foot-Ibs')
pause;
cig;

% Prompt user to see if additional plots/information are desired.
ques5=input('Would you like to see the final estimate of the Inverse Moment of
Inertia Matrix?? < 0> YES. <1I > NO»>)
if ques5==0O,
MOI
pause;
MOlestimate=IIEST
pause;
invMOI=Ii
pause;
invM0lestimate=inv(IEST)
pause;
MOleigenvalues=eig(MOI)
pause;
MOlesteigenvalues=eig(MOlestimate)
pause;
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subplot(22 1);
pl ot(t,est-x( I,:)), grid
title('Moment of Inertia Estimate - 111'F)
xlabel('Time - seconds')
subplot(222);
plot(t,est-..x(2, :)),gnid,title('I 12')
xlabel('Time - seconds')
subplot(223);
plot(t,est..x(3 ,:)),grid,title('I 13')
xlabel('Time - seconds')
subplot(224);
plot(t,est...x(4,:)),grid,title('I22')
xlabel('Time - seconds'),pause;

subplot(22 1);
plot(t,est-x(5,:)),grid,xlabel('Time - seconds')
title(Moment of Inertia Estimate - 123')
subplot(222);
plot(t,est-x(6,:)),grid,xlabel('Time - seconds')
title('I33')
subplot(223);
% Plot fuel usage plot
plot(sum(abs(U))),grid,title('Fuel Usage'),pause;

clg;

pilot(eigcheck(l,:)),grid,title('First Eigenvalue of the Estimated MOI
Tensor'),pause
plot(eigcheck(2,:)),grid,title('Second Eigenvalue'),pause
plot(eigcheck(3 ,:)),grid,title('Third Eigenvalue'),pau se

else,
end

1% End of Program

"% PROGRAM NAME: EULERa2p
"% PROGRAM AUTHOR: Nicholas F. Russo
"% CALLED PROGRAMS: none

"% DESCRIPTION:
"% The below function will compute the four Euler parameters
% given a sequence of three Euler Angles. A 3-2-1 or a 3-1-2
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% rotation sequence is allowed.

% function E=EULERa2p(e,r,al,a2,a3);

% Here are the required input arguments:
% Is the sequence 3-2-1 (e=2) or 3-1-2 (e=l)?
% Are the three angles in radians ? (Yes: r=l, No: r=0)
% The three Euler Angles (al,a2,a3)

% A vector is returned that contains bO,bl,b2,b3.
function E=EULERa2pe,r,al,a2,a3);

% Convert the angles to radians if necessary
if r-=0

al=al *pi/180;
a2=a2*pi/1 80;
a3=a3*pi/180;

else
end
% Define the R matrices
R0=[1 000;0 1 00;00 1 0;000 1];
RI=[0-1 00;1 0 00;0 0 0 1;0 0-1 0];
R2=[ 0 -1 0;0 0 0 -1;1 0 00;0 10 0];
R3=[ 0 0 -1;0 0 1 0;0 -1 0 0;1 0 0];

% Test to see which rotation sequence is desired and proceed.

if e==1 % This is a 3-1-2 sequence
R312=(cos(a3/2)*RO
+sin(a3/2)*R2)*(cos(a2/2)*RO+sin(a2/2)*R 1 )*(cos(al /2)*RO+sin(a 1/2)*R3);
E=R312*[1 ;0;0;0];
else
% This is a 3-2-1 sequence.
R321 =(cos(a3/2)*RO+sin(a3/2)*R 1 )*(cos(a2/2)*RO+sin(a2/2)*R2)*(cos(a 1/2)*RO
+sin(al/2)*R3);
E=R321 *[ 1 ;0;0;0];
end

% End of function

1% PROGRAM NAME: EULERp2a32I
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"% PROGRAM AUTHOR: Nicholas F. Russo
"% CALLED PROGRAMS: none

% DESCRIPTION:
% The below function will calculate a sequence of three Euler Angles
% from given Euler Parameters. A 3-2-1 rotation sequence is
% allowed.

% function E=EULERp2a32I(bvector)

% Here is the required input argument:
% The 4 Euler Parameters: bO,bl,b2,b3
% Enter these parameters as a vector. For example,
% bvector=[bO;bl ;b2;b3]
% A vector is returned that contains the three angles in degrees.
function E=EULERp2a321 (bvector);

b0=bvector(1);
bI =bvector(2);
b2=bvector(3);
b3=bvector(4);
% First, compute the Direction Cosine Matrix (DCM) from the Euler
Parameters.
Cp=[bOA2+bl A2-b2A2-b3A2 2*(b l*b2+bO*b3) 2*(bl*b3-b0*b2);2*(bl*b2-
bO*b3) bOA2-blA2+b2A2-b3A2 2*(b2*b3+bO*bl);2*(bl*b3+bO*b2) 2*(b2*b3-
b0*bI) bOA2-blA2-b2A2+b3A2];

% Calculate the middle angle, beta
a2=atan2(-Cp(1,3),((Cp(1,1))A2+(Cp(1,2))A2)A.5);
% Test this angle and calculate the other angles
a2d=a2*(1 80/pi);
a2d=round(a2d);
if a2d==90,
al=O;% This is the angle alpha or the rotation about the z-axis
a3=atan2(Cp(2, 1),Cp(2,2));

elseif a2d==-90,
al =0;
a3=-atan2(Cp(2,1 ),Cp(2,2));

else,
a l =atan2((Cp( 1,2)/cos(a2)),(Cp(1,1)/cos(a2)));
a3=atan2((Cp(2,3)/cos(a2)),(Cp(3,3)/cos(a2)));
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end

E=[al;a2;a3];
E=(1 80/pi)*E;

% End of function

% PROGRAM NAME: Inew
% PROGRAM AUTHOR: Nicholas F. Russo
% CALLED PROGRAMS: none

"% DESCRIPTION:
"% The below function will calculate the new Moment of Inertia (MOI)
"% Tensor for the CER plus the Target.
"% The Target's MOI can be in the CER ref frame or its own;
"% as long as a Direction Cosine Matrix (DCM) is available
"% function I=Inew(Icer,ltar,M1,M2,r2,refdcm);

% Here are the required input arguments:
% MOI of CER (Icer)
% MOI of Target (Itar)
% ref (If it equals 0 then Itar is in the CER ref frame)
% DCM from the Target ref frame to the CER ref frame (dcm)
% Mass of the CER (MI)
% Mass of the Target (M2)
% The vector between the Center of Mass of the CER
% and the target mass in Cartesian Coord. (r2)

function I=Inew(Icer,Itar,M 1 ,M2,r2,ref,dcm);
% First, test to see if the Target MOI is in the CER ref frame
if ref==0
Itar = Itar;
else
Itar= dcm*ltar*dcm';
end

% Define the elements of the R2 Matrix
R2=[0 -r2(3) r2(2);r2(3) 0 -r2(1);-r2(2) r2(1) 0];
MF=MI *M2/(M I+M2); % The Mass Factor multiplying R2

1= Icer + Itar - M*R2*R2;
% End of Function
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"% PROGRAM NAME: DCM
"% PROGRAM AUTHOR: Nicholas F. Russo
"% CALLED PROGRAMS: none
%
% DESCRIPTION:
% The below function will calculate the Direction Cosine Matrix
% (DCM) for a 3 Euler Angle rotation sequence. A 3-2-1 (Yaw,
% Pitch, Roll) or a 3-1-2 (Yaw, Roll, Pitch) is allowed.

% function D=DCM(e,r,al,a2,a3);

% Here are the required input arguments:
% Is the sequence 3-2-I (e=2) or 3-1-2 (e=1) ?
% The three Euler Angles (al,a2,a3), in radians.
% Are the Euler Angles in radians (Yes: r=l, No: r=0)
function D=DCM(e,r,al,a2,a3);

% Convert the angles to radians if necessary
if r==0
al=al*pi/180;
a2=a2*pi/1 80;
a3=a3*pi/180;
else
end
% First, set up the individual rotation matrices.
C3=[cos(al) sin(al) 0;-sin(al) cos(al) 0;0 0 1];
% This corresponds to a rotation about the # 3 axis

C2a=[cos(a2) 0 -sin(a2);% 1 0;sin(a2) 0 cos(a2)] ;% # 2 axis

C2b=[cos(a3) 0 -sin(a3);0 1 0;sin(a3) 0 cos(a3)]; % # 2 axis

Cla=[l 0 0;0 cos(a3) sin(a3);0 -sin(a3) cos(a3)]; % # 1 axis

Clb=[1 0 0;0 cos(a2) sin(a2);0 -sin(a2) cos(a2)]; % # 1 axis

% Test to see which rotation sequence is desired and proceed.

if e==1
D= C2b*CI b*C3;
else
D= Cla*C2a*C3;
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D= Cl a*C2a*C3;
end

% End of this function
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