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ABSTRACT

Identification and control of non-linear dynamical systems is a very complex task which

requires new methods of approaching. This research addresses the problem of emulation and

control via the use of distributed parallel processing, namely artificial neural networks. Four

models for describing non-linear MIMO dynamical systems are presented. Based on these

models a combined feedforward and recurrent neural networks are structured to emulate the

dynamical system. Further, a procedure to emulate multiple systems in a single network is

suggested. A method for finding a minimal realization of a network is introduced. The

minimization greatly reduces the complexity of the network without degrading the operating

performance of the network.

This work also examines the application of artificial neural networks for adaptive control.

The multiple-system approach is used to find an adaptive neural network controller for non-

linear MIMO time-varying system in a direct model reference control scheme. The controller

network is trained using a procedure called back-propagation through the plant, which was

extended in this work.

The application of neural networks is demonstrated on a longitudinal model of the F/A- 1 8A

fighter aircraft both with the undamaged aircraft and with a damage mechanism as a time-

'Acce6ion For
varying MIMO dynamical system. I
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THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may not have

been exercised for all cases of interest. While every effort has been made, within the time

available, to ensure that the programs are free of computational and logic errors, they cannot

be considered validated. Any application of these programs without additional verification is

at the risk of the user.
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I. INTRODUCTION

In many engineering and scientific applications a dynamical system or process of

unknown structure acts upon measurable input excitations to produce observable output

signals. One way of gaining knowledge of the system is by analyzing available data

using a chosen candidate model to represent the system and applying an algorithm to

adaptively change the parameters in the model, to cause it to function similarly to the

unknown system when driven by the same inputs. The procedure is called system

identification [LL87]. Controlling unknown systems is approached mainly by robust

control and adaptive control, both relying on linearized or linear system theory to

compensate for changes in the system. While robust control stays in the linear regime

based on state feedback, adaptive control makes use of identification techniques to find

a controller to compensate for parameter variations in the system as well as in the

selected model, and regulates the output of the system according to some linear

reference, resulting in a non-linear controller [AW89].

This work explores the subjects of identification and control of non-linear

dynamical systems from aspects of artificial neural networks. This chapter describes the

research objectives and contains a survey of previous work in the area of utilization of

neural networks regarding dynamical systems. This chapter also summarizes the main

contributions of the research and concludes with the organization of the dissertation.
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A. RESEARCH OBJECTIVE

The research focuses on utilizing artificial neural networks with non-linear time-

varying multi-input multi-output (MIMO) dynamical systems. The objective is to emulate

multiple dynamical systems in a single neural network and to apply the procedure to form

an adaptive controller for a changing plant.

The F/A-18 fighter aircraft was chosen to represent a MIMO dynamical system.

The undamaged and impaired aircraft represented multiple models, for which an adaptive

model-reference neural controller was designed.

B. A BRIEF SURVEY OF NEURAL NETWORKS INVOLVING DYNAMICAL

SYSTEMS

Recently, there has been tremendous interest in exploiting artificial neural networks

(ANN) to perform tasks of system identification and control [MSW90], [SM92]. The

identification is done by emulation of the dynamical system without having to find

specific parameter values of a hopefully matching model. Techniques from linear and

adaptive control were used to select a proper network structure for the task, as was done

by Narendra and Parthasarathy for emulation of nonlinear systems [NP90], by Scott and

Collins [SC90] and Bertrand and Collins [BC92] who used aircraft models for emulation

and control of linear systems, and by Barto, Sutton and Anderson for control of nonlinear

plant of inverted pendulum [BSA83]. Controlling took shape in different ways. usually

with single-input systems as like Guez, Eilbert and Kam did for second order linear

system [GEK88], or as Ha, Wei and Bessolo did for linearized second order
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approximation of the F16 aircraft. The works of Kraft and Campagna, who used a

memory addressable type neural network controller [KC90], and of Nguyen and Widrow

for the truck backer-upper using sequential emulation and control learning [NW90] in

nonlinear systems, are other examples of single-input systems.

For emulation and control the general approach has been to have a full state output,

as Goldenthal and Farrell [GF90] and Anderson [AC89J did for inverted pendulum, as

did Specht in his general regression neural network [SD9 1], and as was done in most of

the works mentioned earlier. The approaches to control varied from neural network gain

scheduling of classical controller of an aircraft by Burgin and Schnetzler [BS90], to

finding an inverse plant such as was done by Bertrand [BD91] and by Levin, Gewirtzman

and Inbar in a binary type inverse controller [LGI91], to self tuning or model reference

adaptive control as was done in [KC90] and by Saerens, Soquet, Renders and Bersini

using back-propagation through the planit training [SSRB90].

The field of multiple multi-input multi-output systems requires further research and

exploration. It is the purpose, subject and substance of this work to expand the

knowledge and understanding of such systems.

C. THE CONTRIBUTIONS OF THIS WORK

The research defines an approach to emulating non-linear MIMO dynamical

systems using artificial neural networks, as well as the limitations associated with the

systems and networks. Furthermore, the concepts developed for emulation are used to

find a model-follower neural network controller for a MIMO system.
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The research addresses the issue of treating multiple models in a single neural

network associated with emulation and adaptive control of general dynamical systems

from a common class. A general scheme is presented for training a single network with

multiple processes sharing a common dynamical structure and the same order of input

and output. Additionally,a method for finding minimal realization of an artificial neural

network, using singular value decomposition of the weight matrices, is developed.

D. ORGANIZATION OF THE DISSERTATION

Dynamical systems in association with neural networks are addressed in several

chapters of this work. The disclosure of what a neural network is and how it is trained,

is described in chapters H and MI. The architecture, structure and behavior of artificial

neural networks are presented in chapter H. The back-propagation algorithm used in this

work to train the networks is presented with a few variations and extensions in chapter

IM. Chapter IV characterizes the classes of dynamical systems with the associated

structural aspects and training of neural networks used to emulate the systems. Chapter

IV also present the approach to handling multiple models in a single network. A brief

overview on adaptive control with implementation of control using neural networks is

given in chapter V, which also establishes the procedure of reconfigurable neural-net

controller. After having an understanding of what artificial neural networks are, how

they are trained and how they specifically apply to the problems of emulation and control

of MIMO non-linear dynamical systems, some design considerations for dealing with

dynamical systems are highlighted in chapter VI. Chapter VII describes the F/A- 18
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aircraft as the dynamical system chosen to demonstrate the procedures which were

developed in the previous chapters and is followed by a presentation and a discussion on

the results in chapter VIII. Chapter IX closes with conclusions and recommendations for

further research. To summarize, the research shows how identification and adaptive

control problems can be solved quite straightforward using neural networks.
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II. NEURAL NETWORK THEORY

A. INTRODUCTION TO NEURAL NETWORKS

A neural network, or better called artificial neural network, is a parallel,

distributed information processing structure consisting of processing elements that are

interconnected among themselves via unidirectional connections. The artificial neural

network (ANN) has the ability to learn from experience, to perform abstractions of inputs

with relevant information, and to generalize its knowledge from previous results. The

massively connected network is highly parallel because the operations of each processing

element occur simultaneously. Associated with each connection is a weight. The

connection weights are the dynamic elements that change when the network is trained.

The goal of the training is to adapt the weights so that the network performs in a desired

fashion in response to a given input.

The architecture of artificial neural-network has three main levels: topological, data

flow, and neurodynamics. The architectural and algorithmic factors that compose any

neural network are: the interface with the environment, the propagation paradigm, the

learning rule and the recall or test phase. The structure and behavior of artificial neural

networks are set by the layers that are built of processing elements and the activation

function of each processing element. This chapter describes the architectural and

structural factors and, where appropriate, gives a mathematical description. Three basic
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categories of networks that find use in this work are then described and are then followed

by a discussion on the existence of networks suitable for this research.

B. ARTIFICIAL NEURAL NETWORK ARCHITECTURE

The architecture of ANN is described in three levels: topological, data flow, and

neurodynamics. The presentation here will follow the guidelines of Neural Computing

by NeuralWare, Inc. [NC91], who developed the basic software for this research.

The topological level defines the structure of the network and its interface with the

environment. The topology also describes how processing elements (PEs) are grouped

into layers and how PEs are interconnected to one another. A layer here is defined as

a group of PEs that act in a similar fashion. In Figure 2.1 a basic schematic of an

artificial neural network is presented, consisting of an input layer, an output layer, and

one hidden layer. The circles denote the processing elements and the lines denote

connections. The term hidden layer refers to a layer which dGes not have a direct

connection with the environment. The hidden layers are the essence of the network and

extract the features that enable the network to solve nonlinear problems.

OUTPUT LAYER

Element

- -l
INPUT LAYER

Figure 2. 1: A Basic Schematic of an Artificial Neural Network
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The second level involves dataflow and describes how information is presented to

the network, is passed from one processing element to another, is acted upon within a

processing element, and is delivered to the outside world. The data flow level defines

the learning rule and the recall or testing process.

The third level, neurodynamics, describes in detail the operations that act upon the

data within a processing element. This level defines the functions and the behavior of

the processing element.

The following paragraphs describe the architectural factors in more detail. The

description will start with the environment in which the network operates and will end

with a scrutiny of the inner structure of a single processing element.

1. Environment

Recognizing and understanding the environment in which the neural network

has to perform is as important as choosing the network itself. Most of the time the

environment is the factor that dictates the choice of the neural net, its architecture, and

its learning scheme. It is important to have a proper interface, including scaling and

normalizing the data. In particular, the I/O, its timing and characteristics, determines

the number of inputs, outputs, and other criteria such as convergence and

pre/post-processing.

After the proper interface on the network is selected, the inner-structure of

the network that propagates the data from the input layer to the output has to be chosen.

The structure is governed by the propagation scheme.
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2. Propagation Scheme

The general structure of the network is controlled by the propagation scheme.

The propagation scheme defines how processing elements are connected to one another.

Figure 2.1 is an example of connections in a fully connected feed-forward network, from

the input elements, through the hidden layer, to the output nodes. The propagation

scheme governs the connectivity matrix structurally and by type. The connections may

be sequential, by layer, random in order and occurrence, or they may be dictated by the

properties of the specific element.

Now that the network is formed, it has to be trained to perform the desired

task. The training is done via a learning rule.

3. Learning Rule

Learning is the phase in which the connection weights are adapted according

to relation in the input data to some other process. The kind of process categorizes the

learning type into one of three categories: supervised learning, unsupervised learning,

and reinforcement.

Supervised learning is a process where a desired output corresponds to a

given input. Both, input and desired output, should be supplied in the learning phase,

during which the weights are updated via some learning rule to match the input-output

pair. When the input-output pair is the same vector, the network is referred to as being

auto-associative. If the desired output and the input vectors are unequal the network is

called hetero-associative. The work of this thesis uses supervised hetero-associative

learning.
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Unsupervised learning occurs when no desired output is presented and the

network groups the input presentation into some meaningful clusters.

Reinforcement is a process that falls between the two above-mentioned

categories. In this case, there is an indicator, a teacher, that indicates whether the

response to the presented input is satisfactory.

In any learning category the process is governed by a certain learning rule.

This learning rule dictates the change of connections' values or weights to achieve the

goal of the training. The parameters that control the learning rule may change while

training. The learning phase may need thousands or even millions of presentations until

convergence to a satisfactory result is achieved. The learning sequence usually involves

a feedback process in which the weights are updated. The specific learning rule that was

used in this research, caIe*d the back-propagation algorithm, is described in detail in

Chapter [I.

When the network is trained to satisfactory degree the learning is stopped and

the weights in the network are frozen. The network can then be used to perform the task

it was trained to. This implementation is governed by the recall phase which is described

next.

4. Recall Phase

The recall or testing phase is represented as a feed-forward pass in the

network that gives a response to a certain presentation at the input layer. The recall pass

might be a subprocess of the learning phase in which the network output is calculated

before the adaptation action is taken due to output error with respect to the desired
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network response. In essence, after learning is completed, testing is the practical and

useful phase.

Recall phase is strongly related to the propagation scheme. To better

understand the propagation through the structure, a basic multi-layer feed-forward

network is discussed and analyzed next.

C. ARTIFICIAL NEURAL NETWORK STRUCTURE

The behavior of an artificial neural network (ANN) is determined by the network's

global and internal structure. This section gives the mathematical description of behavior

of an ANN.

The nomenclature adopted here and throughout the dissertation is as follows:

Scalars are denoted in upper-case letters. Vectors are denoted in bolded lower-case

letters. Matrices are denoted in bolded upper-case letters. Elements of vectors or

matrices are denoted with corresponding unbolded lower-case letters with appropriate

indexing. Additional indexing, when required, is given and explained in the text.

1. Multi-Layer Neural Network Structure

Multi-layer networks belong to a family of networks consisting of an input

layer, output layer and one or more hidden layers. Figure 2.2 shows a basic three layer

feed-forward artificial neural network and its block diagram representation. The

presented network 'is used for the analysis of the structure and operation. A basic

network was selected to simplify description and understanding without the loss of

generality in the more complex multi-layer networks. The network shown is fully
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connected between consecutive layers and a bias term is connected to every processing

element.

Wi W) 2( W)[3]

f f-

whr Fisr a.2 fucto That-mapsr xed-torwar Artifi. a Fo uralseii laetwrk ,h

nonifnear function NrE R"--R is written as

N,(x) = F,.[WIIx +b'2] (2.2)

where" F is a diagonal nonlinear operator which represents a set of m nonlinear

activation functions f i R--R that are identical for the current sr' layer gNPe r]. The

operand of F is the weight matrix W IVERnxm times the input vector xE R summed over
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all connecting nodes and with a bias term bE RT. A multi-layer network containing R

layers, excluding the input layer, is denoted as/f,.,, .... Each [r]l layer consists of n,

nodes (processing elements). The network, N, transforms an input vector xE Rn' to an

output vector yE R" propagating via (R-l) hidden layers, each consisting of n,,n 2 ... n,-

nodes, respectively.

For the three-layer feed-forward network shown in Figure 2.2, the output of

the network, y, as a function of a given input vector, x, is given by
y = N•,,,,,.,(x)=F3{WIF 2[V21F1(WtIx +btU) +bt21] +b13 1} =N NNN 3(x) (2.3)

The input vector, x, is presented to the network and processed in parallel in each layer.

The information is passed in cascade from layer to layer and presented at the output layer

as the network's outcome.

Each layer in the network is built from processing elements that work in a

similar fashion. The processing elements carry the processing task of each layer.

Another step down to the basic element of the ANN is taken next.

2. Processing Element

The processing element (PE) is the basic element in any artificial neural

network. It has virtually as many inputs as desired and one output. The inputs are

summed to create net input for the given PE. A bias is added and the result is acted

upon via a scalar activation function. The output of the activation function is the output

of the PE. A diagrammatic representation of a processing element is given in Figure

2.3. The basic PE configuration just described is used in the present research.
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INPUTSXx •w 
f
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OUTPUT

W yi
Xn

BIAS

Figure 2.3: A Basic Configuration of a Processing Element

The mathematical description of a processing element in the form presented

in Figure 2.3 is
Y, Id flrJ(Jlui) (2.4)

[ri

where y/'1 is the output of the ih PE in the (r]th layer and tf' is the activation function

that acts upon the summation value IfrI* The summation is done over all the outputs X,

of PEs that are connected to the i' PE in the [r]"' layer via a weight wij'" and the bias

b!4r. It is noteworthy that throughout the work the first subscript of a weight component

relates to the target PE whereas the second subscript relates to the source PE.

Variants of a PE's structure may include different summation functions, such

as cumulative sum, maximum, minimum, product, etc. The output can either be passed

directly or a competitive process between PEs of a given layer can be established
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(Kohonen layer). The output value can feed any number of other PEs' inputs, including

its own.

An important part in determining the output of a PE is the activation function.

Selecting a proper activation function is crucial to successful network training. A more

elaborate discussion is given next.

3. Activation Function of a Processing Element

The activation function is a scalar function that acts upon the net sum of the

effective inputs. In general, activation functions can be linear, semi-linear or nonlinear

functions, and may be non-differentiable. A nonlinear network is achieved by

introducing PEs with nonlinear activation functions. In linear processes a linear

activation function can yield better results, but generally the more interesting cases are

nonlinear. In some cases the weights can even be pre-predicted as will be shown in

section C of Chapter IV.

The two activation functions used in this work are the linear function, and the

hyperbolic tangent.

The linear function, given by

f(X) = I. Gain + b (2.6)

where I is the summation value multiplied by Gain parameter and b is a bias term.

The hyperbolic tangent, a continuous monotonic squashing function, which

maps the input into a range from minus one to one is given by

I = - Gain

f(J) = eh) e'- -i (2.7)

el÷ e-I
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The hyperbolic tangent is differentiable, and moreover, the derivative can be expressed

in term of the function itself as

f(l) = (1 +f(I)) * (1 -f(f)) (2.8)

The differentiability condition is needed in the application of the back-propagation

learning algorithm and an analytical differential as in equation (2.8) saves computations.

Another function commonly used in networks trained via the back-propagation

algorithm, and which is similar to hyperbolic tangent, with the difference that it maps

to a range from zero to one, is the sigmoid function. The sigmoidal function also shares

the property that its derivative can be expressed in terms of the function itself. Figure

2.4, below, shows graphically the functions and their derivatives. Some other activation

functions that are used in various neural networks include, but not limited to, sine,

signum, step-function and piecewise linear.

I tr• I L C~~t r 0~t o 0 • O~•4 r c tI e t, , f ul,0 - 0

0 6 •

S0 4

0 2
f 0I =

0
-5 0 55 0

Input Gelue flout blIue

Figure 2.4: Hyperbolic Tangent and Sigmoid Activation Functions and Derivatives

Having finished the general structure of an ANN, the specific configuration

of the multi-layer networks used in this research are described next.
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D. CATEGORIES OF MULTI-LAYER NETWORKS

Multi-layer networks are divided into two main categories. The first and most

common is the feed-forward network, as shown earlier in Figure 2.2. The second is the

recurrent network. Introducing the recurrent network is essential when dealing with

dynamic systems. A block diagram of a recurrent network is shown in Figure 2.5. A

multi-layer network may include either or both types. A block diagram of a basic unit

of a generalized multi-layer network is shown in Figure 2.6. The principle of combined

recurrent and feed-forward network can be further extended to include information from

prior input and output vectors, as shown in Figure 2.7. The idea of using general

networks in conjunction with dynamic systems, and the detailed structure of the block

denoted by N, will become clear in Chapter IV.

Figure 2.5: A Recurrent Figure 2.6: General Multi-Layer Building Block
Network

Input

"-- Output

Figure 2.7: General Regression Network
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E. ARTIFICIAL NEURAL NETWORKS AS GENERAL APPROXIMATORS

Before choosing a network with a specific structure one may ask if there is a

network that can do the desired task. The answer to such a question is in the affirmative

and is based on two major theorems. The theorems express the existence of artificial

neural networks as function mapping devices. ANN is found to be capable of

approximating functions from a finite dimensional space to another, to any desired degree

of accuracy with only one hidden layer.

The first proof of the capability of a feed-forward multi-layer network to represent

continuous functions of many variables by superposition of continuous functions of one

variable and addition was given by Kolmogorov's superposition theorem. Hecht-Nielsen

entitles the theorem as "Kolmogorov's Mapping'Neural Network Existence Theorem"

[HN91, pp. 122-124]. The theorem shows the existence of a neural network with linear

input and output layers, with as little as one hidden layer, as being capable of mapping

any continuous multi-variable function. A corollary gives an upper limit to the number

of hidden nodes needed for the mapping (2no+ 1, where no is the number of input nodes).

However, for every mapping task a different unknown activation function is needed.

Other expansions of this theorem show the existence of neural networks as mapping

devices on different but very wide and practical function spaces [HN9g, pp. 131-133].

An important theorem based on Stone-Weierstrass' theorem, given by Hornik,

Stinchcombe and White, shows that ANN are general approximators of a bounded

function using an arbitrary squashing activation function, i.e., a sigmoid or a hyperbolic
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tangent in an unknown but large enough number of PEs to get the desired accuracy

[HSW89]. The results show that multi-layer neural networks are universal approximators

in mapping any measurable function to a desired accuracy and any lack of success in

application must arise from inadequate learning, an insufficient number of hidden PEs,

an inappropriate activation function, or the lack of a deterministic meaningful relationship

between the input and the desired output.

However, neither theorem really helps to build a "correct" structure of the

network, although both show that three layers are enough. Since three-layer network

approximators may require an impractical large number of hidden processing elements,

in real world problems multi-layer (> 3) networks are used to find a tractable solution.

The theorems, although not helping in the selection of a proper network structure, do

give confidence that an appropriate network exists. Thus, although a suitable network

exists, there is no guarantee on the existence of a learning rule to train the weights.

An understanding of the physical nature of the problem may assist in choosing a

"good" number of hidden layers and hidden nodes. Until the present, choosing network

parameters was a kind of art, usually done by trial and error. A more rigorous way of

selecting the number of hidden layers and how many nodes each layer should include is

presented in this dissertation as minimal realization of a network (Chapter VLD).

Although the method cannot predict in advance a good choice of number of layers and

PEs, the rationale for going through the procedure of finding minimal realization of the

network is to achieve the same accuracy with less network complexity. Reassured that

a suitable network exists, a suitable training algorithm needs to be chosen. The

19



algorithm used in this work, which has been successfully applied to numerous multi-layer

feed-forward networks, is the back-propagation algorithm, described in the next chapter.
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E[I. ANALYSIS OF BACK-PROPAGATION ALGORITHM

Among the many types of learning algorithms, the back-propagation algorithm has

been chosen for this research. This learning rule is also called the generalized delta rule.

The name back-propagation is based on the way the errors are handled in changing the

weights during learning and is attributed to Rumelhart [RM86, vol. 1, pp. 319-364].

This algorithm is implemented on a hetero-associative network. The standard back-

propagation learning rule is derived, followed by four common variations. An extension

of the standard algorithm is also presented, with some new highlights used in this

research.

A. ARCHITECTURE

Multi-layer networks based on the back-propagation algorithm are feed-forward

networks. They consist of an input layer, an output layer, and at least one hidden layer.

A typical fully connected feed-forward network with two hidden layers is presented in

Figure 2.2. To keep the discussion general, the rest of the derivation will not refer

specifically to a particular number of hidden layers or hidden nodes. The representative

network shown in Figure 2.2 is merely for demonstration and ease of explanation and

does not affect the generality of the back-propagation algorithm.

The back-propagation learning algorithm is used to train multi-layer networks to

map or approximate a process or function y= 5r-(x); Sr E R!"x", represented by input-

output pairs [x,yj1, where d denotes desired values and p stands for different
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presentations. An analytical representation of the function may not be available. After

the training is complete to a desired accuracy the weights are fixed and the network then

generates an approximation of the desired function, y, for a given input, x, as y=ANx).

The rationale for this method of adaptation is given in the next section and the basic form

of the learning rule is derived. Many variations have been suggested, mainly to increase

convergence speed and to avoid reaching local minima.

B. MINIMIZING GLOBAL MEASURE

The goal of the learning process is to minimize a global measure by modifying the

weights in the network. This measure is usually taken as a function of the error at the

output of the system. The global measure can in some cases be interpreted in terms of

the energy content of the system. Minimizing a global quadratic error is well treated in

the literature and is based on the gradient descent method, sometimes referred as the MIT

rule, e.g., [BH75, pp. 237-240] or [LL87, pp. 282-288]. The discussion here will

concentrate on the discrete domain where a continuous domain equivalence also exists

[NP911.

Let a measure, J, as a function of the parameter space, 0, be defined as

N

J(O) = -N L[e(,k)] (3.1)
k:-

where k is the discrete time indicator and N is the number of samples taken. Among

many sensible error functions, L, that can be used, a commonly used one that acts on

a network's output error, e, is the global quadratic error, defined as

L[e(O,k)] = IIe(0,k) III e Ter (3.2)

22
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Minimization of the measure J with respect to the parameters 0, is done by going

in the negative direction of the gradient of J in the parameter space. Hence, the change

in the parameters is proportional to -V, J such that,

0,e= OM+A , and (3.3)

A = 1 (3.4)

where the gradient is defined as VJ, TO and 71 is a constant of proportionality.

Utilizing the gradient descent method to minimize J, the gradient is determined from

equation (3.1) using the chain rule

V aL[e(e,k)]. Oe(O,k) (3.5)
k- e Oe(0,k) a0

For optimizing dynamical systems best results are achieved when N-00, but in practice,

N is chosen over a finite interval, T, [k-T+1,k]. In static processes N= I is sufficient

[HN91, pp. 136] and usually is the case implied in the back-propagation algorithm.

Using the global error function as in equation (3.2), letting i represent the instantaneous

time, the performance measure takes the form

i k

J(9,k) = .r e (O,i)Te ()3.6)
i-k-Tei

and the gradient is
S[o0,1)• (3.7)

7i-k-T- L aJ

The parameters, 0, are then updated every T samples. A single parameter, 0,, at time

t= (k+ 1),is updated as

k a e(O,i) (3.8)
Oj(k-l) = 0(k-T+l) - 8 i) 1 e(,2i)(
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The above equation implies that the gradient method can be implemented if the value

8e(O,i) can be computed on-line for all values of i in the interval [k-T+1,k].
86

The major disadvantage of the gradient descent method is the slow convergence

rate near the optimum [BH75, p. 238].

The next section shows how this kind of parameter optimization is applied to the

back-propagation algorithm.

C. BACK-PROPAGATION LEARNING RULE DERIVATION

Suppose the network in consideration is from the class Nfl. 0 ,....,, as defined in

section I.B.5, where the input vector is x=-[x,,x2, ... ,xJ, and the output vector is

y=[y,,y2 , ... y,J]. The parameters in the network are the weights W, which consist of

all relevant wtrJ; r= 1,2,...,R, as defined in section II.B.6. The training sets are [x,yd]P

for every presentation, p, and y/ has the same dimension as y in order to train all the

outputs of the network. The network propagates the input vector to produce an output

vector, y, which is compared with the desired vector, y? and result in an error vector,

e, where e,= yy; m= 1,2,...,nR. If there is no difference, no learning takes place.

Otherwise, the weights are changed in the direction of the negative gradient, -V,,E, to

reduce this difference, i.e., the method of steepest descent. The performance measure

is defined here as E, in correspondence with the nomenclature used in the neural-

networks related literature, corresponds to the total-error energy in the system, in the

mean square sense. In accordance to equation (3.6) the measure is given as
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N

E = , and (3.9)
,p-I

E 1 - (3.10)
EP 2 ~ Y. y)

where E, is the error energy in a single presentation p, over all the nR output PEs. The

dependance of the measure, E, on the weights, W, is through the output y. The change

in the weights as in equation (3.4), is proportional to the negative gradient,

A " rE = _ 811(W)
= [~awgýr J N 1  awg'(311

The coefficient of proportionality, 17, is called the learning rate. In the batch update,

the number of presentation, N, is to be chosen according to the problem, and does not

necessarily have to include all presentations. Furthermore, in practice a small finite

number is taken, usually N=1, i.e., an immediate update.

For simplicity, without affecting the generality of the mathematical calculations,

cascading fully connected layers will be assumed. For clarity, the governing equations

for data propagation, equations (2.3) and (2.4), are repeated here.
IfrI = In 4r-I) (3.12)

zin) ilr) (3.13)

The value z, represents output of hidden PEs. At the input layer I/°1 x,, and at the

output layer 4/m--y. The error at the output layer is given by

e= YnYM (3.14)

The gradient in equation (3.11) is derived assuming that N = 1. The end result will

be generalized for any N.
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Since any functional dependence of E. on w%" must be through ifrI, one can write

the gradient using the chain rule as

aE, aE, 1 (3.15)
awol arlrl aw,,Ur

Define a local error as,

= =__a (3.16)

Substituting equation (3.16) and using equations (3.12) and (3.14) in equation (3.15)

gives the negative gradient as
S_ +,+. :. ,I , ,

(rI~~~ 8 r I'=8r r-I) (3. 17)
=a w rj Wq1 . q j

where zj"I' is the output signal of the/h PE in the [r-] layer in the forward pass of the

p' training presentation.

Evaluating the local error term 8, and using equation (3.13) in the derivation gives,

= - . . .._ 8_Pf'"ail") (3.18)
at!" a." at!'" a',

where f' is the derivative of the activation function with respect to its argument,

evaluated at I/n. This illustrates the need for the existence of the derivative term asP
azr/

At the output layer z/rI= y, then

a; _ -) = _ _(yiy,) = -e, , and (3.19)
azxl ay,

SIM= e, ffr(II) (3.20)
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At layers other than the output layer, i.e., hidden layers, use of the

multidimensional chain rule gives

" '*' 3EP a0l11ri(.1
pq

Z,. q-1 aq'" a" Z r
Using equations (3.12) and (3.18) in equation (3.21) yields

8zE, - W , . and (3.22)

azilrl q-1

n_,
5fr = ffrr(l[,i). [ r]) ,. wt.r+ (3.23)

q-1

In essence, no particular restriction was placed on the error function, E. The only

requirement is that the activation function will be differentiable at least once. A

recursive mechanism to back-propagate the error at the output layer, equation (3.20), to

the hidden layers, equation (3.23), is formed. Altogether, it gives a straightforward

learning rule, where according to equations (3.3), (3.8) and (3.11),

w7 = w + Z/Nz/" ;= wtt ;d 0 (3.24)

where,
'3,.,

r .I 0 <r <R, (3.25)
q-I

and for the output layer,
ti = fvRrqiý). (yd d_ yY) (3.26)

In the general case where N> 1, equation (3.24) becomes

N

w W. =w,,+ 70•.1 fr• - (3.27)
p,, Ix 1

and equations (3.25), (3.26) are with addition of subscript p on all variables.
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Figure 3. 1 [NP91, p. 254] gives a diagrammatic representation of the process

including the forward and backward passes.

WP brXt Y

E E5
w 2) rw 31 •

e e

Figure 3.1: A Diagrammatic Representation of Back-Propagation Architecture

As shown, in the backward pass the first derivative of the activation function is

used as well as the value of the function itself. For the sigmoid and hyperbolic tangent

activation functions, in addition to their desired behavior emphasized in section Il.B.7,

their derivatives can be expressed in terms of the function itself. Representing the

derivative by the value of the function itself saves in the number of calculations needed,

and it may also enable a much simpler hardware implementation of a multi-layer,

feed-forward neural network trained via back-propagation algorithm. For example, using
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hyperbolic tangent activation function, equations (2.7) and (2.8), in equations (3.25),

(3.26) gives

Y, = (l+Z~ri)(l -Z[r)" 6t" Wqtu*1' and (3.28)
q-1

* Y, = (1y)(1-i_)- (yd_ y,) (3.29)

respectively.

D. COMMON VARIATIONS ON THE STANDARD BACK-PROPAGATION

ALGORITHM

A difficulty with gradient descent-based algorithms, including back propagation,

is choosing a suitable learning rate - 71. Updating the weights by means of equation

(3.24) is based on the assumption that the error surface is locally linear with respect to

the step size. At points in which the error surface is "highly" curved, too big a step size

may cause the process to become unstable and diverge. On the other hand, keeping the

learning rate small yields a very slow convergence, and the process may get trapped in

a local minima. Many methods have been developed to overcome this phenomenon and

create a more stable update process and much faster convergence. Some of the simple

and effective methods are briefly summarized here. [NC9 1, pp. 94-99]
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1. Momentum Term

A momentum term is introduced in equation (3.27) which gives significance

to the previous change in the weight. The equation with the momentum term is,

wg'(k) = w~r(k-l) + &w ,,r(k) (3.30)

Aw'r'(k) = qr(k)zr+kk) + a,&P" (k-I)

where 0< a< I is a scalar momentum term between zero and one. Introducing the

momentum term enables faster learning with low learning rate, 9, and also allows an

increase in q and a before the learning process goes unstable.

2. Cumulative Update of Weights

Implementing equation (3.27), without the normalizing term (I1N), (with or

without the momentum term) also improves the convergence rate, by the fact that A

weights in the wrong direction are averaged out.

This approach may lead to inadequate learning in some data sets. This is

because for well-behaved learning, the training sets have to be well randomized. If the

data comes from more than one source, i.e., multiple-function mapping, desirable

changes might cancel each other.

3. Fast Back-Propagation

Another variation on the standard back propagation that greatly improves the

convergence rate, although it is more sensitive to divergence, is the addition of the error

to the PE value.

= -. . (z1r,( + 367"- ) (3.31)
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where 0 <fl < 2 is a factor, which when set to zero yields the standard back-propagation

algorithm. It can be seen that asymptotically when &-O (as training progresses), this

learning rule approaches the basic back-propagation algorithm. The momentum term as

discussed in section 1 may also be applied.

4. Modifying the Derivative

As seen in Figure 2.5, at the extremes where the activation function becomes

saturated, the derivative of the activation function goes asymptotically to zero, and thus

the PE stops learning, since Awoxf. By adding a small offset to f, the PE continues

learning even when it is saturated. This can in turn speed up the learning.

Another significant variant of the back-propagation algorithm, called back-

propagation through the plant, that treats the problem where the desired values at the

output layer are not known directly, is presented in the next section. It should be

mentioned that any of the four variants described above can be further applied to the new

algorithm.

E. BACK PROPAGATION THROUGH THE PLANT

The following training algorithm was developed in the context of controlling a plant

with only qualitative knowledge on the plant behavior by Saerens and Soquet [SS89].

An extension of the algorithm is proposed here to give a more accurate implementation

of the gradient descent, and results in faster convergence. The change comes in

estimating the Jacobian of the plant, and keeping the process within the domain, an

important issue when dealing with non-linear systems.

31



1. Architecture and Formulation

As was shown, in order to train a network, the pair of input and

corresponding desired output values need to be supplied. There are instances where the

neural network is cascaded to another physical process, and the ANN output is connected

to the process or plant input, as shown in Figure 3.2. Suppose the network in

consideration is from the class , as defined in section II.B.5, where the input

vector is x=(x1 ,x2,...,xj, and the network output vector is u=[u,,u2,.... u,]. The

parameters in the network are the weights W, which consist of all relevant w~";

r=1,2,...,R, as defined in section II.B.6. The output of the network u, is used to excite

a non-linear dynamic process, 4. The output of the non-linear process is given by

Y = [Yl,Yz .y ,Y], where S is the number of outputs of 4. The training sets are [x,y']p for

every presentation, p. The formulation of the combined system, with special attention

to the indexing used in the derivation of the learning rule, is given by

Iy(k+l) 4 [u(k), v(k)] (3.32)

u W) = N",.,,..... (k), W(k)]

where v(k) are internal parameters of 40 that do not depend on the current input u(k), but

may depend on previous inputs, W represents the weights in the network, and

u (k) = (u,(k), (3l.3...),nR}

y(k) = {y.(k), m=l,...,S}

Neural i Process /

Figure 3.2: Artificial Neural Network preceding a Physical Process
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The desired values are known at the output y, but not at the intermediate

point u, which are the values needed for training a hetero-associative neural network.

In cases like this, a variant of the back-propagation algorithm is used, called back

propagation through the plant (BPTP). The idea is to transfer the error information at the

output of the plant, through the plant, to the output of the network u. There are two

ways of doing this.

In the first a neural network is used to emulate the plant or process, and the

weights are frozen after training. A new neural network is built and connected in

precedence to the emulated process. The combined network is trained using regular back

propagation. The error at the output y is transferred backwards through the fixed

weights of the emulated plant. The transferred error is further back propagated through

the preceding network. The weights in the preceding network are updated until a small

enough error is achieved at the output of the emulated plant.

The second method avoids the need to have a neural network representation

of the process/plant. The error at the output of the plant y, is transformed to a

corresponding error at the output of the network u. From that point it is possible to use

the standard back-propagation algorithm. The procedure of back-propagating the error

through the plant is derived in the next section.

2. Derivation of Learning Rule for Back-Propagation Through Plant

As before, the objective of the training is to minimize an error function that

acts upon the output values due to changes in the weights. Define a measure on the
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q

output as in equation (3.10) as E= (y4 - y,) 2. The parameter space is W, where
rn-I

w.rI is the weight connecting the output of the j PE in source layer [r-1] to the input of

the j' PE in target layer [r]. The development will follow the procedure set in

subsection C. The change in the weights is proportional to the negative gradient of the

measure with respect to the weights as in equation (3.11) A WV' -(v+0E) = -,) aE'

Following the exact derivation as in equations (3.15)-(3.18), gives

_a8E, = 5(rIzI, and (3.34)

L- ._ (3.35)
az!"

The partial derivative of the measure with respect to the output of each PE needs to be

evaluated. Starting at the output layer, using a multidimensional chain rule and utilizing

equations (3.10), (3.11) and (3.32), noting that at the output layer e'-u, gives

EP 8E, S

En- -E .J, (3.36)

where J, is the Jacobian of the function I, with dimensions sxn,, and the (m,1) element

is given by --. Substituting equation (3.36) into (3.35) yields8mI

S.,(,). e.J.' (3.37)
rn-I

and therefore,
w = 7 -(3.38)

which has the same form as equation (3.24) in the generalized data rule, and equation

(3.26) is replaced by equation (3.37) as the back-propagated error at the output layer.
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Following on with the derivation, equations (3.21)-(3.23) give the same results, i.e.,

equation (3.25).

Tne BPTP learning rule is a recursive procedure identical to the standard

back-propagation algorithm, with the modification on how the error at the output layer

is calculated. The same result under different derivation can be found in [SS89].

Recognizing in the classical back-propagation scheme that l(u) I 'u, and J+=I•,

where L, is the identity matrix of size nR, equation (3.37) reduces to (3.26) exactly.

This shows that the BPTP variant is a direct extension of the basic rule, or rather, the

basic rule is a particular case of the former. Hence all the other variants described in

subsection D apply to back propagation through the plant as well.

In the derivation, the only parameter that does not have a closed from for the

general non-linear case, is the Jacobian. Researchers treat it in different ways, and

another approach to estimating the Jacobian is proposed next.

3. Estimating the Jacobian of the Plant

Close examination of equation (3.37) leaves the Jacobian J, a process

dependent parameter, that not always has a closed form formulation. Jordan [J189]

suggested a way to calculate an estimation of the Jacobian using a neural network

emulation of 4(u). Saerens and Soquet [SS89] showed that if no details are available on

the Jacobian, knowing its sign might be sufficient, given this is a priori known. Because

this is a rough approximation, convergence is rather slow, since the descent is not in the

direction of the gradient. In nonlinear systems, monotonic behavior is not guaranteed.

In off-line procedures, where the process 4(u) is simulated, if the exact value were
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unknown or were difficult to calculate, a simple numerical differentiation may be used.

A similar technique was used by Psaltis, Sidris and Yamnamura [PSY88]. As was

mentioned earlier, the exact value is not necessary [SS89], but a close value is preferable

for more rapid convergence. Thus, an "influence coefficient" may be considered instead

of the Jacobian. Assuming 4 is well behaved at the point of calculation for a small

enough Au, backward or forward differences are sufficiently accurate and simplify the

calculations in computing an estimate of the Jacobian. The choice of backward or

forward differences is based on the previous state of u in order to ensure staying within

the domain. The influence coefficients are calculated at every iteration for every state

in the vector u. Denoting the iteration sequence by the index k, the choice of difference

method is as simple as

if ul(k) > u,(k+ 1), use forward differences.

if u,(k) < u,(k+ 1), use backward differences.

The calculation is done for each state in u sequentially, leaving the rest constant.

The influence coefficients are calculated as follows:

Using forward differences

,,, k (UU2, ... ,u,+A Ut, ... ,u,,k)-,,(u,,u2, ... ,ut, ... ,u.,k) (3.39)
• A ut

Using backward differences

m,,,(u,,up, ... ,ul, ... ,u,,k)-4ý(u1 ,u2, ... ,uA-A u1, ... ,u,,k) (340)J "',(k) = A ut ( .0

Where ,m.(-,k)=y,(k), and Au, is the perturbation in the u, state.
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The implementation of artificial neural networks trained via the back-propagation

algorithm is described next. The implementation makes use of the methods described in

this chapter, on feed-forward and recurrent networks structure, described in Chapter 11.
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IV. NEURAL NETWORK REPRESENTATION OF

DYNAMICAL SYSTEMS

It is interesting to examine how neural networks can interact with, act upon, or

represent dynamical systems and processes. It seems evident that neural networks can

have an important role in dealing with dynamical systems. There are already numerous

examples of the application of neural networks to dynamical system problems, and some

examples can be seen in references [MSW90], [NP90], [NMi1], [SS89], [HWB92],

[SM92]. This research deals with the emulation and control of non-linear dynamical

systems or processes using artificial neural networks. In this chapter a class of non-

linear multi-input multi-output dynamical systems is developed. The affiliation of such

systems with neural networks is then presented, followed by the special case of a linear

time-invariant system. It is shown that a single network can represent a multitude of

systems from the same class. A brief survey of previous work in related topics is

presented, as well as motivations for extensions in this work.

Narendra and Parthasarathy have presented extensive work, [NP90] and [NP91],

on dynamical systems and their neural-network representation. They dealt with Auto

Regressive Moving Average with eXternal input (ARMAX) model structures and mainly

with single-input single-output (SISO) systems. Based on the models described in

references [NP90] and [MSW90, pp. 126-128], another presentation is suggested for

multi-input multi-output (MIMO) state-space models.
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It is possible to transform ARMAX form to a state-space form, since state-space

representation is preferable. State-space representation is especially useful in giving

insights into the physical mechanisms of the system, which can usually be more easily

incorporated into state-space models than into ARMAX models [LL87, p. 81]. Another

reason that working in state-space became very popular, e.g., in modern control theory,

is that state-space models are more reliable in computer analysis [GLLT90, pp.

1-67,1-68], since the numerical algorithms are more stable. In fact, for MIMO systems,

the state-space representation is the only convenient model.

Most physical systems are more easily described in the continuous time domain,

simply because most laws of physics are thus expressed. However, in many real-life

implementations, a discrete representation is used and the modeling developed here will

be based on a discrete representation. A similar description for the continuous time is

achieved by replacing the difference equation by differential equations.

A. CHARACTERIZATION OF NONLINEAR DYNAMICAL SYSTEMS

Four classes of unknown nonlinear discrete dynamical systems were suggested by

Narendra and Parthasarathy [NP90]. The models are extended here for MIMO

dynamical systems with the addition of an output measurement equation. Common to

all of them is that the state at t=(k+ 1) is derived directly from the state and excitation

functions at time t=k. If previous states are needed to describe the system, the prior

states are augmented, forming a new state vector. The models are assumed to have the

measured output of the system as a linear function of the state vector.
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The nomenclature adopted here uses symbols that are usually used in control

theory. In addition, upper-case italic bold letters followed by brackets represent vectorial

functions, subscripted with i for a linear function, and with ni for a non-linear function.

Upper-case bold letters with or without succeeding parentheses, represent matrices. The

state vector is denoted as x, the measured output vector is denoted as y, the input

sequence is u, the discrete time is represented by k, and 0 are the unknown parameters

of the system.

1. Model I

x(k+l) = Fj[k,Of]x(k) + G,. [k,O,,u(k)] x (0) = x0
(4.1)

y(k) = C(k)x(k) + D(k)u(k)

In this nonlinear model, the state vector depends linearly on its prior state and

nonlinearly on th;. input signals. The output is a linear combination of the state and input

vectors. This modcl is very common in many mechanical systems where the inputs are

subjected to nonlinearities such as saturation, backlash (dead zone), and switching

(bang-bang).

2. Model 1[

x (k+l) = Fd [k,9O,x (k)] + G, [k,O1] u(k) ; x (0) = xO

y (k) = Cc(k) x (k) + D(k) u (k)

Here the nonlinear function F,, acts on the previous states, while the inputs

are linear. This is a very popular model in systems where kinematics are involved
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(nonlinear trigonometric functions), systems with viscous friction, e.g., airplanes. This

model or its linearized version, is very common in implementations of control actions,

u, on the system F.

3. Model IU

x(k+l) = F,.[k,Of,x(k)] + GJk,8g,u(k)] ; x(O) = xo

y (k) = C(k) x (k) + D (k) u (k)

In model MII, both the input values and the previous state vector are subjected

to two separate but additive nonlinear functions. Real-world examples for this model can

be simply a combination of examples from models I and IH.

4. Model IVIx(k+l) = Hj,[k,eh,x(k),u(k)] ; x(O) = xo
(4.4)

y(k) = C(k)x(k) + D(k)u(k)

This is the most general form that represents the current state as a nonlinear

function of both the previous states and inputs combined. Although it is the most

general, it is the most difficult to deal with, and in practice, approaches described in

models I to III are mostly used.

For every suggested model there is a corresponding neural network structure. The

structure characterizes the physical behavior of the model, and is trainable by the

generalized delta rule. The representations and their generalizations are described in the

following section.
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B. NEURAL NETWORK REPRESENTATION OF NON-LINEAR

DYNAMICAL SYSTEMS

To represent linear or non-linear dynamical systems, recurrent networks must be

used. The issue of building a proper recurrent network structure to represent, emulate

or identify a non-linear dynamical systems has been treated by researchers in different

ways. Narendra and Parthasarathy worked with SISO systems [NP9g]. Werbos [WP90]

and Gherrity [GM89] discuss training aspects for a recurrent networks. Seidi and Lorenz

suggested a general structure by which a recurrent neural network could approximate a

non-linear dynamic system, from the general form of model IV, where the measurement

equation was a non-linear function of the states only [SL9 1]. Unfortunately, they did not

address the problem of finding a weight adjustment algorithm to insure convergence of

the system.

A structure containing hidden recurrent layer, was also investigated by the author,

in terms of training via back-propagation method. In the general case, when the output

does not have a full presentation of the state vector, successful training via the back-

propagation method is not guaranteed. The reason for the inability to learn to a

reasonably small error is that during training the values of the state vector are unknown.

The research conducted here classifies dynamical systems in two categories. First

by the order of the input and output vectors, and the second by the relation of the output

vector to the state vector. Each category is then subdivided as follows:

Category A: Input-Output Orders

1) Single-input, single-output (SISO).
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2) Single-input, multi-output (SIMO).

3) Multi-input, single-output (MISO).

4) Multi-input, multi-output (MIMO).

Category B: Output to State vectors relation

1) Output vector contains full state representation.

2) Output vector contains partial state representation.

For emulation, the dynamical system has to be completely reconstructible (also

defined as constructible in the literature) in the linear case [KS72, pp.65-79,462-465],

or realizable in the non-linear case [IS89, pp. 129-144]. An examination shows that

systems belonging to category B. 1, i.e., systems containing full state output are rather

trivial cases to emulate or identify using artificial neural networks. An example of linear

time-invariant system with full state output is demonstrated and analyzed later in section

IV.C. Systems from categories A. I and A.2, i.e., single input systems, are also rather

straight-forward, since there is a theoretical solution for the one step ahead prediction and

control [LL87, pp.51-65], that is easily adapted to neural network implementation. Most

examples in the literature deal with models from or converted to categories A. 1, A.2 and

B.1.

The main thrust of this work was to find a network structure to represent MIMO

dynamical systems, trainable via back-propagation algorithm. The general form in which

an ANN is trained to emulate or identify a plant is presented in Figure 4. 1, where the

inputs and desired values are generated, either by simulation or experimental data, and

presented to the network in parallel. The network is trained until the error at the output
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reaches an acceptable level. The specific inner structure of the network is now

described.

0, PLANT>

T >

Figure 4. 1: A Neural Network Emulation of Dynamical System

In constructing an ANN it is important to take into consideration the structural and

trainability aspects, which have to comply with theory. To better explain the structure

and operation of an ANN used to emulate a dynamical system, first the solution is

introduced followed by the incentives that motivated the approach. A representative

network used to emulate dynamical systems represented by models I-Wll as described in

section IV.A is given in Figure 4.2, where the circles denote processing elements, solid

lines connecting PEs are adjustable weights, and the dash-double-dot line (- -. -)

represents a fixed unity-valued weight. The structure is for any MJMO system. A

system with three inputs and two outputs was selected for demonstration purposes only.

The configuration retains the "black-box" form of the emulated system, by interfacing

with the environment only with current values.
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1. Structural Aspects

The structural considerations are considered in sequence. Systems from

category A.4 - MIMO are considered, noting that categories A. I-A.3 are subsets of the

former. The discussion starts with systems from category B. 1 - full state output, such

that for the measurement matrix C, rank (C) =n., and ny a n. ; where ny and n, are the

dimensions of the output and state vectors respectively. For this case it is possible to

talk in terms of y instead of x. For example, model MI can be written as

yk+1) = Fjk 1,Y(k) + Gd.k,9,sU(k)] (4.5)

where P, (, relates to F and G as y of eq. (4.5) relate to x in eq. (4.3), given that x(k)

is the unique solution of C(k) x(k)=y(k)-D(k) u(k). The unknown parameters of the

functions P, G; are denoted 0,, and 09 respectively.

Each of the linear and nonlinear functions presented in models I-IV can be

represented by a multi-layer neural network. The functions F,, F,, are mapped by a

network from the class N .. Similarly, the functions G;, 10,, are mapped by

N ,.•, .•,,, where n,, is the dimension of the input vector, and ft,, is mapped by

NR•,n ,....n,,_. The network combined from feed-forward and the recurrent parts for u

and y respectively. In this case,

y(k+l) = N,[y(k)] + NfIu(k)] (4.6)

where N, is a recurrent network shown on the right of Figure 4.2, while Nf is a forward

network as depicted in the same figure on the left. The network N, is an extended form

of the Hopfield recurrent network represented in a block diagram in Figure 2.5, where

Z' denotes a one-step delay. Note that Hopfield network is from the class N',,,,, whe.e
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the input is fully connected to the output layer and the output values are fed back to the

input layer via a one-step delay line.

The more difficult case is for systems from category B.2, where the state

variables cannot be computed from the output vector. For systems from category B.2,

The measurement matrix C has rank (C)< n., making the determination of N, more

difficult. From linear systems theory it is known that the system needs to be

constructible [KT80, pp.90-103], or reconstructible [KS72, p. 67] in order to be able to

predict succeeding outputs. In non-linear systems, realizability is required [IA89,

pp. 131-144]. Reconstructibility means that present output values can be predicted from

past values of the output. The need for previous information leads to introducing of

regression layers.

The inherent structure of the regression layer acts as a delay-line to provide the

network with previous measurements of the input and output of the system. The order

of a regression layer is defined as the number of previous measurements taken. The

order of a regression layer is determined by the system which the network has to

emulate, and sometimes may be assigned theoretically (see also minimal realization in

Chapter VI.D). Examples of two regression layers of order three are shown in Figure

4.2. On the left side the data from the input layer is regressed, and on the right side of

Figure 4.2 the output values are regressed structuring a recurrent network. The

regression layers become the practical input layer to the network, even though they are

represented as an internal layers. The delayed values can be viewed as additional inputs

to the network, to help create a proper relationship between the input and the output of

the network.
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The network is structured to correspond with the model chosen to represent

the system. In the case of models I-1I, represented by Figure 4.2, the effect of the

input, described by G, is represented by N1 in the left branch of the figure, and the past

output influence, described by F is represented by N, at the right branch. The

resemblance to the physical behavior gives more insight to the system when analyzing

the trained network and the weight matrices. Another advantage is gained when using

the emulated system for training a peripheral network, such as training a controller

network for the system. In the given structure, the back-propagated error that appears

at the input of the emulated system is due to the input's effectiveness, as opposed to

errors spread over a large number of nodes, part of which are not relevant to the

system's inputs, as happens when one uses the generalized-delta-rule. From numerous

simulations it was found that a network structure similar to the mathematical model

yielded better results.

output - - - - - - -

Soo

9 \NI

Regressio

12 9> -Laiyers

?I rnpUt ----------
Figure 4.2: Artificial Neural Network Emulator for Models I-Ill
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A suitable network configuration was established based on physical behavior

of the system, and theoretical considerations for MIMO dynamical system. A suitable

training procedure is next discussed.

2. Trainability Aspects

It was shown in Chapter Ml.E that an ANN used to approximate a

function/process, uses a squashing activation function in the PEs. If a squashing function

is used, then the network has bounded output. In a physical system it is usually

desirable, and practical also to have bounded inputs. Therefore, a dynamical system that

is to be represented by an ANN should normally be a bounded-input bounded-output

(BIBO) system over a time interval [to, t,]. A system which is BIBO over time interval

is denoted as bounded system ( see definition 3-36 in [AF66, p.101]). Note that a

bounded system does not necessarily impose BIBO stability. In fact, unstable linear

systems do belong to bounded systems, and can be emulated, as shown by Bertrand and

Collins "n [BC92] and [BD91]. It is worth mentioning that using a squashing activation

function is not necessary. Indeed, to represent linear systems, better results are often

obtained using a linear activation function [SR891, (BD9[1].

For bounded systems, two training schemes are possible, parallel and series-

paralle: schemes [NP90, pp. 13-14]. For example, assume the dynamical system

y d(k+ 1) = Q [yd(k), u(k)], where Q is a vectorial bounded function to be emulated by N,

with y(k+ 1) as the output of the network. The two schemes are herein described, using

this example.

48



In the parallel-scheme the current network output is transferred to the output

regression layer. The intermediate network approximations are used while training and

in the recall phase, resulting in a process of the form

y(k+l) = N[y(k),u(k)1 (4.8)

The parallel-scheme has not been shown to be globally stable, even in the linear case

[MSW90, p. 130].

The series-parallel scheme, uses the desired / known values, y", in the output-

regression layer while training, making a simple feedforward network. During the

training the procedure takes the form of

y(k+l) = N[yd(k),u(k)] (4.9)

Since the input and output values are assumed to be bounded, and there is no feedback

loop containing non-linear elements, the standard back-propagation algorithm can be

used. After training is complete y(k) *.yd(k), the parallel scheme is used in the recall

phase, i.e., the network outputs are regressed. The series-parallel scheme has been

shown to be stable [MSW90, p. 130], and thus it will be used in this research.

This section established a suitable structure and training scheme for an ANN

emulation of a non-linear MIMO dynamical system. A simple and unique result arises

in the linear time-invariant systems. The power of ANN in identification and emulation

of linear systems is demonstrated in the following section.
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C. ARTIFICIAL NEURAL NETWORK REPRESENTATION OF LINEAR

TIME-INVARIANT SYSTEMS

The linear time-invariant (LTI) system is a special case of either model I, II or IM,

where both F and G are linear functions. Consider the dynamical system

[x(k+1) = Fx(k) + Gu(k) ; x(0) = x0

y (k) = C x(k)

where C is full rank and invertible when the number of outputs is equal the number of

state variables. That specific system can be represented by a fully connected neural

network from the class N' lo. with linear activation function for the PEs, where the

output layer is fully connected to itself, as seen in Figure 4.3 for an example of a system

with four inputs and three outputs.

For any network it is unknown in advance to which values the weights will

converge to, and whether the solution is unique. The final results strongly depend on

the structure of the network and the initial weight randomizatio:n. In the LTi case

however, not only is convergence guaranteed but it is also unique; perhaps surprisingly,

the weight matrices have a simple physical meaning. Examining the weights after the

network converged, gives insight to the behavior of the system. In fact, if the system

is known the weights are known a priori, and no training is needed. Using the fact that

C is invertible, eq. (4.10) can be written in terms of y only as

y(k-l) = CFC-'y(k) + CGu(k) ; y(O) = Cx (4.11)
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In several tests with LT[ systems, the weights converged as expected to W"=CG, and

W' 21=CFC-', with residual error of zero if numerical rounding errors of a computer

simulation were ignored.

3 Outputs
-- ...... ..... ..... -: - --- -

I W2

. Inputs
Figure 4.3: A Neural Network Representation of LTI System

D. EMULATION OF MULTIPLE MIMO SYSTEMS IN A SINGLE ANN

Throughout the chapter it was shown that artificial neural networks have the

capability of approximating non-linear dynamical systems. A new method is now

proposed to extended the capability to emulate multiple systems from the same class in

a single network.

The different systems are assumed to have the properties discussed in subsection

B. The dynamical systems belong to the same class and have the same input and output

order. Additional type nodes, as many as the different models, are introduced at the

input layer. At the presentation of information of a specific model, the corresponding

node takes the value of one while all the rest of the type nodes are valued minus one.
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The training is in series-parallel scheme. To ensure proper training of all systems

involved, the following conditions were obtained:

1) Random presentation of each system.

2) Balanced presentation of all systems.

3) Persistent excitation in the domain of interest.

The domain of interest in dynamical systems refers to both frequency and

amplitude, over which the systems are to be mapped or emulated. The subject of

persistent excitation will be discussed in more detail in Chapter VI.B, and is important

for the single system as well.

The implementation of the three conditions in this research for different dynamical

models was as follows:

"* Model is changed every presentation.

"* Model number is selected for a random sequence without repetitions.

"* Input signal is random-binary-sequence,

The input signal is band limited to the desired spectrum, and amplitude of + 1, with

corresponding scaling of the models.

Until now the discussion concentrated on emulation of dynamical systems by

artificial neural networks. The next chapter discuss the role of ANN in adaptive control

of dynamical systems.
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V. ARTIFICIAL NEURAL NETWORKS IN ADAPTIVE CONTROL

The control of LI7 systems is a mature field with well established foundations on

conditions and techniques, which define how LTI system can be controlled to yield

desired responses. On the other hand, requirements for stable controllers of non-linear

and time-varying systems are not generally available. In the last forty years, there has

been significant progress in developing methods for identification and adaptive control

of linear systems with unknown or time-varying parameters. Adaptive control techniques

were based on the assumption of reasonably slow-varying changes in the parameters of

the system, and depend on methods from linear estimation and control theory [AW891.

A recent trend of detection abrupt changes [AD9g1], [DS89], may be introduced to the

adaptive methods for more rapid changing systems, but still staying at the linear regime.

In the last decade, the nonlinear properties of ANN have been used to address

identification and control of non-linear systems as indicated in the introduction.

In this chapter a brief description of classical adaptive control schemes is given,

and a description is also given of how the neural networks employ the classical schemes.

A new method to form a neural-network adaptive controller is suggested. The idea is

based on multiple-model approach together with the generalizing capability of ANN.

A. BASIC CONCEPTS OF ADAPTIVE CONTROL

The general idea in adaptive control is to find a regulator that will compensate for

uncertainties, small or slowly changes in the controlled plant to form an overall stable
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system. There are five basic approaches to adaptive control as described by Astr6m and

Wittenmark [AW89] including:

1) Constant gain robust control.

2) Self oscillating adaptive controller.

3) Gain scheduling.

4) Self tuning.

5) Model-reference adaptive systems.

Although the model-reference method is used in this thesis, a brief description is given

of the other methods.

Robust control is based on a linear state feedback for linear MIMO systems to form

a large stability margin, good disturbance attenuation and low sensitivity to smah

variations in the plant. This field is covered by the H.. and the frequency weighted LQG

theories. Robust controllers designed by means of H. or H 2 schemes have been applied

in many areas of multidimensional systems (CS881 as well as aircraft [HG90].

The self oscillating method is also a feedback based mechanism, utilizing a relay

in the feedback loop. The bandwidth is automatically adjusted to be as high as possible

and to a gain margin of approximately two. However limit-cycle oscillations occur.

This bang-bang type of controller is an optimal controller for some systems, in other -

human operated systems, it may be unacceptable.

Gain scheduling is basically an open loop approach. The gains in a feedback loop

are changed according to some measurable parameters in a pre-designed classical
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controller. This method was originated for flight control systems to compensate for

Mach number and dynamic pressure variations.

The self-tuning regulator is based on a two-step procedure. Initially, there is an

estimation process for the parameters of the plant. Based on the estimated parameters,

the controller parameters are then updated under some design law. The parameter

estimation is usually done recursively, using the results as if they were true. The

controller design law as well as the estimation procedure vary and are problem

dependent, although should tightly correspond to the plant structure.

1. Model-Reference Adaptive Control

Model-reference adaptive controllers, sometimes referred to as model-

following, involve methods to adjust the parameters of the controller so that the overall

closed loop system will behave closely to a prescribed model. It is not always possible

to achieve perfect following, but the overall stability properties are determined by the

reference model. Caution must be taken to ensure a stable parameter adaptation

procedure. The adaptation is based on some norm of the difference between the plant

output and the reference model output.

The model-reference, as well as self-tuning approaches can be further

subdivided into direct and indirect adaptive controllers. In direct control the parameters

of the controller are changed directly based on some measure of the output error, as

shown in Figure 5.1. Alternatively in indirect control first the parameters of the

unknown system are estimated, and are used to update the parameters of the controller
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as presented in Figure 5.2. Both direct and indirect approaches result in a non-linear

controller even for LTI systems.

DESIGN OBJECTIVE

" CNROLR u UNKNOWNl
SYSTEM

; ~MEASUREMENTS

Figure 5. 1: Direct Adaptive Control

•~CONTROLLER .. .. u ,, UNKNOWN Y

rM

S/ 
• . • [ SYSTEM • l

ICONTROLLER MT

DESIGN OBJECTIVE ESTIMATED PARAMETERS

Figure 5.2: Indirect Adaptive control

To apply adaptive control techniques on LTI systems with unknown

parameters, prior information should be available on the plant transfer function, such as

the order and relative degree, and whether the zeros lie within the unit circle. The

information is needed to determine the existence of the desired controller as well as the
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reference model. It is reasonable to assume that for non-linear system even more

information might be needed for theoretical treatment. Artificial neural networks can

then be of help to find a suitable controller for the non-linear systems, as presented in

the following sections.

B. ADAPTIVE CONTROL USING ARTIFICIAL NEURAL NETWORKS

Artificial neural networks are used to control dynamical systems in a variety of

ways. Whether it is an imitation of classical methods, or utilizing the capability of ANN

to represent a non-linear relationship between input and output variables even in the case

where analytical depiction does not exist. An approach such as inverse dynamics control,

which is not very practical in classical methods, is quite easily done using neural

networks. In any case, new ways of application are opened to facilitate control

procedures that otherwise would have been very tedious, if at all possible. This section

summarizes different ways of using neural networks for control.

1. Imitating Classical Methods

Many of the applications of neural networks controllers are basically an

imitation of classical methods. Robust controllers derived using H0. method were

emulated u.ing neural networks by Bertrand to control an unstable LTi X29 aircraft

model [BD91]. Neural networks were also used in the gain-scheduling approach as do-ie

by Burgin and Schnetzler for X15 pitch control [BS90], and for selecting proper gains

and time-constants in a linear controller of the F/A-18 pitch controller by DiGirolamo

and Donley [SM92]. Nguyen and Widrow used an ANN for the truck backer-upper
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problem in a self-tuning fashion [NW90]. Ungar addressed the problem of bioreactor

control using neural networks in term of self-tuning regulator [MSW90, pp.3 87 -402], and

Chen directly implemented ANN for self tuning adaptive controller for non-linear SISO

plant [CF90]. The most common approach is the model-reference controller, since it has

the least restrictions on the knowledge of the controlled plant. Examples of model-

follower neural networks controllers for non-linear dynamical systems have been given

among others by Narendra and Parthasarathy [NP90], and by Saerens and Soquet [SS89]

for a variety of different plants. Comparisons between neural controllers and classical

adaptive controllers [SSRB90], [KC90] show that while it is worthwhile using neural

networks for control, there are still areas to investigate in utilizing neural controllers in

practical and theoretical issues. The model-reference approach adopted in this research

is discussed later in more detail.

The method of inverse-dynamics control is a quite complex procedure as

classical approach and is rarely used [IA89, pp. 181-183 and 234-243]. Neural network

implementation of inverse control is more natural, as discussed next.

2. Inverse-dynamics Control

Inverse-dynamics control is based on supervised learning, .:here the inputs

to the ANN are the outputs of a system, and the desired outputs are the inputs to the

system. A schematic of the procedure is given in Figure 5.3.a. When the network is

trained and connected in series as in Figure 5.3.b, exciting with the desired output

response, yd, will produce the corresponding control action such that the output of the

system, y, is close to the desired output value, i.e., y - yd.
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The inverse plant was used by Bertrand to control a LTI unstable X29 aircraft

[BD91], and by Teo for a non-linear SISO systems [TC91]. Kawato used a slightly

different scheme of inverse dynamics for control of a multi-joint arm trajectory with a

procedure to update the inverse plant when the dynamics of the system changes [MSW90,

pp. 197-228], and [KIS88].

-INVERSE
PLANT N

a) training

PLANT NPLN

b) controlling

Figure 5.3: Direct Inverse Control

There are two major drawback of the inverse modelling. The first assumes

that an inveise-plant exists, which imposes a limitation on the family of systems that can

be controlled using this method. Second, it is rather sensitive to changes in the original

plant, and on-line adaptation is rather long. Kawato also addressed the problem when
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the inverse was not unique, i.e., there is no one-to-one mapping, as when different inputs

produce the same output. The non unique mapping arises also when there are more

actuators than degrees of freedom. But, when such an inverse mapping does exist, it is

a quite straight forward and promising procedure. Indeed the H. theory often involve

elements of an inverse of the plant.

3. Model-Reference Control Using Neural Networks

Model-reference adaptive control is based on reference model that specifies

the behavior of the overall system. The controller parameters are updated based on the

error between the outputs of the reference model, y", and the plant, y. Figure 5.4 shows

the general architecture of model-reference adaptive controller, where, r, is the command

signal fed into the reference and the controller, and u, is the control actions obtained

from the controller and excite the plant. Two loops are involved. The inner loop

specifies the feedback controller, whereas the outer loop adapts the controller's

parameters.

•REFERENCE MODEL •y4,

' [ ADJUSTMENT

.. ....... MECHANISM

Lj CONTROLLE PL.ANT

Figure 5.4: Model-Reference Adaptive Control Architecture
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The model-reference approach overcomes some of the limitations of the

inverse plant control. First it does not depend on the existence of an inverse plant.

From the beginning of the training the control actions are in the desired trend to bring

the plant to follow the reference model, i.e., there is no need for a preliminary off-line

learning phase. The procedure is directed to work on the desired domain which is the

output of the plant, despite the fact that the controller does not have direct access to plant

output, which is usually needed for training artificial neural networks. Since it is

continuously learning to supply control actions in the desired direction, it can be used for

varying systems. The problem is to ensure stable learning procedure over the possible

changes in the system, which is not guaranteed. The adaptation to the new plant is also

a long, time-consuming process, in particular when stable learning is embraced, thus

questioning the capability of real-time application. The procedure suggested in this work

addresses the stability and real-time limitations as discussed in section V.C.

Model-following can be applied in neural networks both in the direct and

indirect schemes. The indirect model reference control scheme as presented in Figure

5.5 involves a preceding or interlacing phase of emulation of the plant. First the

emulation network is trained and the weights are frozen. At the second phase the error

at the output with respect to the reference model, is back propagated via the emulated

plant and through the controller network, updating the weights of the controller to drive

the output of the plant to follow the reference model. This approach was used by Psaltis.

Sidris and Yamamura for coordinate transformation [PSY88], and by Jordan for a six-

degree-of-freedom manipulator [1189].
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Figure 5.5: Indirect Model-Reference Adaptive Control

Direct model-reference adaptive control overcomes the need to first emulate

the plant by utilizing the back-propagation through the plant described in Chapter 1.E.

A schematic of the direct model-reference controller is given in Figure 5.6. The neural

network controller is trained based on an error, transformed backwards through the plant,

and effects the plant output directly. This method was used by Psaltis, Sidris and

Yamamura for coordinate transformation [PSY88], and by Saerens and Soquet for

different constant dynamical systems [SS891. Ha, Wei, and Bessolo supposedly used the

method for control of a linearized longitudinal approximation of the F16 aircraft.

The direct model-reference adaptive control with the extensions described in

section lII.E is the method used in this research. The specific implementation of the

control scheme is presented in the coming section.
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SCONTROLLER PLANT

Figure 5.6: Direct Model-Reference Adaptive Control

C. ANN ADAPTIVE CONTROLLER FOR TIME VARYING DYNAMICAL

SYSTEMS

The ultimate function desired from an adaptive controller is the ability to control

a dynamical system under changing environmental conditions as well as changes in the

plant itself. The dynamical systems are assumed to be output-controllable under all the

changed conditions for the purpose of this design [OK90, p.706]. The adaptive control

scheme is of the model-reference type. The reference model represents the desired

response of the overall controlled dynamical system. The reference model is usually

described by a linear dynamical system from rE RI to /E R!, simply because the

properties of linear systems are well defined. It is assumed that the reference model is

chosen such that for a given bounded command signal, r, there exists a control action,

uEU, exciting the plant, such that the output y follows yd. The control actions spanned
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by %IER!m and are bounded in accordance and as required by the plant. This in turn

makes the controller be a bounded system by itself. Under the specified control actions,

u EU, the neural network controller treats the "non-exact" tracking, by reaching the best

controller in a least-mean-square sense. The changing plant is also assumed to remain

within the same class of dynamical systems and retain the same inputs and outputs, i.e.,

1,m and n are constant for the problem.

1. Design Philosophy

The ANN based controller design is adopted from classical control. A

feedback controller N1,.E R°-R m and a forward shaping filter NdE Rl•Rm, as shown in

Figure 5.7 schematically. The two parts of the controller can be combined into one

network which accomplishes both functions, having as inputs the command signal r, and

the plant output y, resulting in the control actions u. The dash-dot (-- -) line in Figure

5.7 indicates the combined controller, denoted N,. The training of the network is done

as described in Figure 5.6 for the model reference approach.

I FILTERLE Nf'

Figure 5.7: Control Architecture

The controller in the model-reference scheme is continuously adjusting to

change the parameters in the network to drive the plant to follow the reference output.
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As mentioned earlier, it is desirable to shorten the transition time of the adaptation

between changes of the plant.

Training can be accomplished by defining a finite set of probable changes,

each with its corresponding reference model and a resultant controller. Each model is

trained off-line. As discussed in the multiple-systems emulator, a single network is used

to incorporate all of the controllers creating a unified controller. Inputs to the controller

network are used to relate the controller to the proper plant or new plant. For linear

MEMO systems described in a state-space observer canonical form, controllability implies

identifiability [LL87, pp. 119-123]. A sensible choice of physical information to describe

the plant, even in the non-linear case, is past measurements of input and output of the

plant (see Figure 5.8). Having the information about the current plant in physical terms

enables the network to generalize a suitable controller for the cases where the real plant

differ somewhat from the plant the network was trained on. Consequently the network

is valid for a variety of changes with a finite number of pre trained conditions, unless the

given change is in some sense linearly independent of the models used to train the

network. The structure of the unified controller is herein presented.

2. ANN Structure for the Unified Controller

The unified controller can be introduces in a network very similar in structure

to the multi-system emulation network. Figure 5.8 shows the general block diagram of

the training. One can see that the information on which a plant is currently controlled

is passed to the reference as well, enabling a possibly different reference model for every

plant. The network N, not only trained as a simple controller, but also makes a
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synthesis of type information to generate proper control actions to the corresponding

plant.

~REFERENCE MODEL ••Y4

I-P AN ----- -• o , -------.

Figure 5.8: Unified Controller Training via BPTP in a Model-Reference Scheme

In the case of dynamical systems, the information about the type of the plant

happens to be the same as needed for creating the controller itself. Previous

measurements of the commands, output and controls are provided inside the network by

using regression layers. Figure 5.9 depicts the classical controller as appears in Figure

5.7 with additional type information combined into a single network as in Figure 5.8.

Controls

FEEDBACKFORWARD
CONTROLLE SHAPING

NA FILTER N'ff

S,.Regression •

Plant Output• •--(j--Layer- - Command
Figure 5.9: General Structure of ANN Unified Controller
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The example given in Figure 5.9 shows a controller network with one

command input, two control actions as an input to a plant with three outputs, all of which

are fed into regression layers of order three. Each of the sub-networks, Nf and N, in

Figure 5.9, may have its own dynamics based on the inputs to that block. The blocks

of the feedback controller and the forward shaping filter incorporates networks of the

from appears in Figure 4.2. The type information, i.e., the regressed value of the inputs

and outputs of the plant are supplied to both sub-networks. The z' block represent a

delay of one time unit, and is inherent in the structure of the network. The structure of

the network is further generalized in section VLD to suit a wider range of problems and

arrangements.
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VI. DESIGN CONSIDERATIONS

Before starting to work with neural networks, whether for emulation or control,

several design considerations need to be taken into consideration. There should be some

general knowledge about the system such as its interface with the environment. The

following issues need to be addressed:

1) Defining measurable input and output variables.

2) Frequency and amplitude ranges of interest.

3) Sampling rate.

4) Exciting input character.

5) Data record length.

6) The class to which the dynamic system belongs, if possible.

7) Normalization and scaling.

8) Capabilities of the peripheral equipment on hand, such as measurement devices,
analyzing tools - hardware and software, etc.

According to the available information, a suitable network is constructed and properly

excited. To verify that indeed the network has been trained to meet the design goal in

the domain of interest, the following matters must be looked into:

a) Selecting a design criteria.

b) Define and execute validation issues.

The above parameters can be called design variables, and the manner by which

they influence the design of a neural network is discussed in this chapter.
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A. DYNAMICAL SYSTEM PROPERTIES

In order to have a successfully trained network, the dynamical system has to have

certain properties, depending on the task performed, i.e., emulation or control. The

properties were defined earlier and are repeated here to make the discussion about design

issues more comprehensive. The systems under consideration in this research are non-

linear MIMO dynamical systems. For both emulation and control the systems are

assumed to be bounded, not necessarily BIBO stable (see IV.B).

1. System Properties for Emulation Design

In order to successfully emulate a system, or multiple systems in a neural

network the system has to be reachable in the linear case, or realizable for nonlinear

systems (see IV.B). The measured variables are the exciting inputs and the plant outputs.

2. System Properties for Controller Design

In order to successfully control a system, or multiple systems, in a neural

network the system has to be output-controllable (see V.B). For controller design the

measurable variables are the command signals, the control actions and the plant outputs.

B. SPECTRUM AND AMPLITUDE ISSUES

In analyzing dynamical systems the frequency domain of interest has to be defined.

For emulation, the spectrum is usually defined by the dynamical behavior of the plant.

In control applications, the bandwidth of the reference model, or the spectrum over

which the controlled system has to function, determines the frequency range. For non-

linear systems it is important to define the amplitudes of the measured variables both for
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emulation and control problems. The trained network will perform well within the

specified amplitude range, but there is no guarantee on the performance outside this

range. In addition to the above conditions, the sampling rate, exciting signal

characteristics complying with the concept of persistency of excitation, both in frequency

and amplitude, and consequently the amount of data collected need to be considered, and

are discussed in Chapter VIII while examining the test case.

It is of great importance in neural networks that the inputs to the network

have similar energy content over time for proper training of the weights. Since a

network is also a non-linear device, matters of amplitude should be considered for proper

operation in the test phase. Therefore, the input and desired output values are scaled and

biased from the physical values to fall within the acceptable range of the network, usually

[0,1] or [-1,1]. If the energy content of certain inputs differ from others, say greater,

it should be further compensated by the scaling or by selecting a smaller learning rate,

to let the input equally effect the network. The relative significance will eventually be

seen by the final values of the weights. Failing to correctly scale and normalize the

network in its interface with the environment, may prohibit successful training within a

reasonable long training period, if at all.

C. NETWORK STRUCTURE SELECTION

The specific structure of ANN per problem is generally the choice of the designer.

This selection is not unique as will be shown below. The structural constraints and

options are discussed in this section.
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, One constraint is defined by the interface with the environment which specifies the

number of input and output nodes in the network. The inner structure is more problem

dependent. As explained in Chapter IV, it is desirable to have the inner structure similar

to the class of model to which the system is suspected to belong. The resemblance gives

a better insight to the system when analyzing the resultant network, i.e., there is more

to a network than just a mesh. In some cases it can lead to almost perfect representation

with full physical interpretation of the weights, as demonstrated with the LTI systems

(IV.C). In reality noise is present in the measurements, as well as in the process, in

which case the "perfect" is in the mean-square sense.

The similarity between the emulation and control network structures, led to the

formation of a general structure, suitable to generalize the procedure for emulation,

control and related processes.

A general ANN structure is introduced in this section. The structure embodies the

general interface needed for emulation, identification, classification or control of

dynamical systems, given in state-space or time series form. The general structure is

presented in Figure 6. 1.

The input layer may consist of any or all of the following parameters:

0 Forced excitation - used to drive the dynamical system with the suitable inputs,
discussed in subsection B.

0 Unforced excitation - other inputs to the network, which are not the direct
excitation, but may result from the forced excitation. For example, an output of
a reference model.

* Type - information used to indicate a certain system. Used especially in multiple-
system networks.
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Any portion or combination of the input layer may be passed to the variable-order input-

regression layer as shown in Figure 6.1.

The output layer may consist of any or all of the following parameters:

* Dynamic output - used for varying outputs, such as the output of a dynamical
system.

* Static output - used e.g., for classification, or other non-varying output parameters.

Any portion or combination of the output layer may be passed to the variable-order

output-regression layer.

Dynamic Static
outputs outputs

Output Layer 0 0 0 0 0
1 1

Regressed Outputs

Effector Layer Q Q Q 0<

Regressed Inputs

inpu•La,.er 0 0 0 0 0 0 0 0

1 Forced excitation LUniorce L I

excitation Type

Exciting Inputs

Figure 6. 1: A General Structure for Multi-Layer ANN

The effector layer seen in Figure 6.1 is introduced if some intermediate values

were needed to describe a more complex system. For example, combining two networks

where one feeds the second, as in control problems. This layer is also regressible

through the output regression or via the unforced excitation.
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Different structural combinations are possible to solve the same problem. The

inner structure, as discussed earlier is the choice of the designer, and problem dependant.

A program to interface with NeuralWare's software was written in C, based on this

general framework for a multi-layer ANN, with easy accessible user-defined functions

to accommodate a variety of systems, structural combinations and excitations. This

USERIO program appears in Appendix D, along with a dedicated control strategy that

monitors the execution of the USERIO program.

This section established this structure of artificial neural networks in conjunction

with non-linear dynamical systems. A new method is now proposed to define minimal

realization of the inner structure.

D. MINIMAL REALIZATION OF A MULTI-LAYER ANN

Multi-layer networks consist of an input layer, an output layer, and at least one

hidden layer. A typical feed-forward network with two hidden layers is presented in

Figure 2.2. The layers are fully connected, and the connections form a weight matrix

W. Theoretically, there is no limit on the number of hidden layers or the order of layer

connection, i.e., the connected layer does not have to be consecutive. A bias term is

usually added to each PE with an associated non-zero weight that can be considered as

a threshold of that PE. The number of inputs and outputs is dictated by the nature of the

problem which the network has to solve or represent. The number of hidden layers.

their arrangements, the number of PEs in each layer, and their connections are the

designer's choice.
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Separate theorems express the existence of artificial neural networks as mapping

devices from a finite dimensional space to another to any desired degree of accuracy with

only one hidden layer, as discussed in section II.E. Kolmogorov's theorem [HN90, pp.

122-124] gives an upper limit to the number of hidden nodes needed for the mapping

(2n+ 1, where n is the number of input nodes). However, for every mapping task a

different unknown activation function is needed. It has also been shown [HSW89], that

ANN are general approximators of a bounded function using an arbitrary squashing

activation function, i.e., sigmoid or hyperbolic tangent, in an unknown but large enough

number of PEs to get the desired accuracy. However, neither theorem really helps to

build a "correct" structure of the network.

An understanding of the physical nature of the problem may assist in choosing a

"good" number of hidden layers and hidden nodes. Until the present, choosing network

parameters was a kind of art usually done by trial and error. A more rigorous way of

selecting the number of hidden layers and how many nodes each layer should include is

presented in this dissertation.

Although the method cannot predict in advance a good choice for the number of

layers and PEs, the rationale for going through the procedure of finding minimal

realization of the network is to achieve the same accuracy with less network con' plexity.

It is especially useful in recall mode by having less computation and less parameters in

the network, which leads to easier implementation and faster reaction. In training mode

however, there is no distinctive conclusion on total time required for complete training.

For off-line training there is no major impact but it may be useful in on-line processes
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if it can be found that a much simpler network, which trains faster, can still do the job.

Tests showed that usually the minimized network needed more iterations to converge but

the overall training time has to be examined per task, and might even be shorter since

less computation per iteration are involved.

1. Selection of Number of PEs in Hidden Layers

The method developed finds a minimal realization of the network, by means

of number of hidden layers and number of PEs in each layer. It is assumed that there

exist a network, trained to the desired accuracy, containing a large enough number of

layers and PEs. The assumption is based on the results of Honik, Stinchcombe and

White [HSW89]. Thus, the network is assumed to have an adequate number of hidden

layers, each containing large enough number of PEs, where every PE incorporates a

squashing activation function. The idea is to find how many PEs carry most of the

activation level from one layer to the next. It is done by examining the singular values

of the weight matrix connecting the two layers.

The singular values of a rank q matrix WE RX"D, denoted by ai, are the

non-negative square root of the eigenvalues of WrW ordered such that a, > ýa,-... > an.

If q<n, (n-r) singular values are zero, i.e., aq+1=oq+,=...an=O. There exist two

unitary matrices UER"xm, VERn"x and a diagonal matrix LERII" such that,

W u= [u]T07 (6.1)
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where Eq =ediag(or,o 2,. ..o). This partition is called the singular value decomposition

(SVD) of the matrix W. The greatest singular value a. is given by or.

Since the weight matrix contains the information on how the data is passed

from source layer to the target, the singular values of the matrix are indicative of the

characteristics of the matrix and hence serve as a feature detection process. The specific

features embedded in the weight matrix need to be extracted. To identify the features,

a trace of the singular values of the weight matrix is calculated while training progress.

Figure 6.2 shows a typical trace of the singular values of the weight matrix

as a function of training iterations, where the unrediuced target layer has seven PEs. The

traces of each singular value is denoted by SI,S2 .... s7. The singular values carrying the

important information will develop and can be identified from the rest that do not carry

significant information. In a multi-layer network , the weights are usually given a

random initialization within a specified range, carrying values other than zero. To be

able to identify even very small but significant feature, the initial randomization should

be small enough to let the small singular values emerge above the initial values. The

trace marked by S6 is an example of a significant singular value that pops-up over

singular values that initially were bigger but do not carry significant information.

It should be noted that the singular values are traced continuously, and not

necessarily sorted in descending order as defined by eq. (6.1). ANN that are trained

using the back-propagation algorithm must have initial values other than zero. Small

initial values are theoretically acceptable but may cause difficulties at starting the training

process.
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Based on the singular values an approach to select the number of PEs needed,

is to define a threshold X, above which the contribution to the inputs to the target layer

is considered significant, and set the number of PEs in the target layer as the number of

singular values above the threshold. The threshold is usually related to a. by a

variation ratio - P as,

nPF,= max {ilo,ŽX} (6.2)
i-1,2,...,n

-a.. (6.3)

In the example given in Figure 6.2, the estimated number of PEs needed is four out of

seven initially set.

However, using the singular value decomposition to determine the number

of PEs needed in the target layer, implies that initially the number of PEs in the source

layer must be greater or equal to the number of PEs at the target layer.

The plot of singular values can also serve as a useful tool to determine if the

training is completed, by noticing that the singular values have reached their steady state

values, and more training will not give any improvement.

-- ......................------------------- ------------

----------------------------- 
-------- ----

- - - - - -

Figure 6.2: Singular Values of a Weight Matrix as a Function of Training Iteration
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2. Selection of Number of Hidden Layers

The number of hidden layers needed is determined experimentally in the

following way. It is assumed that the network was previously constructed and

successfully trained with an adequate number of layers. A layer is said to be redundant

when the SVD plots of consecutive layers show the same number of significant singular

values, and their traces are identical up to a scale factor.

3. Selection of Regression Order

The order of the regression layer, i.e., the number of previous measurements

taken into account as an input to the network, should first be based on physical or

theoretical reasoning. If no information on the order were given, the initial regression

layer would have to be of large enough order assumed to be sufficient, e.g., estimated

order of the system. The number of input and output histories is determined by

observing the weight matrix connecting the regression layer to the hidden layer. Figure

6.3 shows a trained weight matrix from a regression layer of order eight, with three

regressed values, to a hidden layer with five PEs.

The height of each box is the value of the specific -

weight, and the same shading pattern refer to the

same regressed variable. From Figure 6.3 it is 9 -

seen that the contribution of regressed values prior -

to t-4 are negligible, and thus can be eliminated Figure 6.3: A Weight Matrix From

leaving the regression layer of order four only. Regression Layer to Hidden Layer
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E. VALIDATION ISSUES

To conclude the design considerations, one must define a design criterion, and

supply the means to verify that indeed the goal has been achieved. It is not sufficient to

require that some norm of the output error, for either emulation or control, will meet

some threshold. It has to be proven that the task is fulfilled over the whole domain of

interest. The concept of consistency of excitation holds here as well as some other

measures to verify the results.

In dynamical systems, a common way is to check the response in the time domain,

to some known test cases and analyze them. Common time-domain tests are pulse, step,

ramp or dipole commands, as well as checking the performance in presence of noise and

evaluating the results statistically. A complimentary evaluation is done to verify the

spectral properties. A frequency response is calculated in parametric or non-parametric

means, and compared to previous knowledge on the system. The location of poles and

zeros can be extracted, to give more physical interpretation on the system.

With neural networks, another means to evaluate the results is done by examining

the weight matrices of the trained network, assuming that there is some correspondence

between the network structure and the physical behavior of the system. An example is

given in the minimal realization procedure (VI.C), and by the LTI system emulation (see

IV.C). For example, from the weight matrices one can estimate the number of previous

measurements needed to represent the system, which gives information on the order of

corresponding ARMAX model.
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Most of the above criteria and techniques are used in this research to verify the

results, as demonstrated in Chapter VIII.

Up until now, the theory behind neural networks and training mechanisms was

established. It was shown how ANN can be utilized to emulate and control non-linear

MIMO dynamical systems. Ways to construct a suitable network, train and evaluate the

results were discussed. It is now appropriate to demonstrate all the above in an example,

and show the strength and capabilities of artificial neural networks in emulation and

adaptive control. The rest of the dissertation involves the presentation and the evaluation

of a representative test case.
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VII. ANN EMULATION AND CONTROL DEMONSTRATION

This chapter presents a test case to examine implementation of emulation and

control using artificial neural networks as developed in the previous chapters.

The F/A-18A fighter aircraft was chosen as a demonstration MIMO dynamical

system due to the availability of multiple control surfaces to a rather co..iplex dynamics,

see Figure 7.1 below. A damaged aircraft was assumed to represent a change in the

system, which the neural network emulates and controls. Thus, the neural network

forms a reconfigurable adaptive controller for an impaired aircraft. The closed-loop

performance is dictated by a reference model that meets the conditions required by

military specification MIL-F-8785C. The discussion continues with a description of the

open-loop dynamic model of the F/A-18 followed by specific damage mechanism which

were treated in this research.

A. F/A-18A LONGITUDINAL DYNAMICAL MODEL

The F/A-18A linearized longitudinal dynamics with asymmetrically-saturated

control inputs, provides a 25' order dynamical system with six control inputs and three

output variables. The dynamical model includes the airframe dynamics as well as

actuator and sensor dynamics. The continuous state-space model was developed from

data in [MDC82] for a flight condition of Mach 0.6 and altitude 10000 feet, in escort

configuration. The aircraft equations of motion are taken from [MAG90, pp. 256-260,
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296-298] in stability axes and trim conditions, assuming no gusts. The actuator and

sensor models are based on the model developed by Rojek [RF86].

Figure 7.1 shows the F/A-18 with the control surfaces and describes the sign

conventions for both deflections and aerodynamic coefficients. The terms in body axes

are denoted (*)B and (e)s denote stability axes. The control surfaces affecting the

longitudinal dynamics are the stabilators (dst), leading edge flaps (dle) and trailing edge

flaps (dte).

y y$ RIGHbT SIDE

Zse

Figure 7.1: F/A-18A Axes, Control Surfaces and Sign Conventions
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The continuous state-space representation of the aircraft, which includes the

sixteenth order actuator dynamics, fourth order airframe dynamics, and fifth order sensor

dynamics is given in the 25' order augmented system as follows.I Fx + xG u
= +(7.1)

Hx + Du

The control vector, u, is the actuator deflection commands [deg],

u at., 5, " a J, (7.2)

where st, le and te denote the stabilators, leading edge and trailing edge, and the

subscripts r,I refer to the right and left sides respectively. The deflections of the surfaces

are limited to:

"* Stabilators [+10.50,-240]

"* Leading edge flaps [+34* ,-3* 1

"* Trailing edge flaps [+45* ,-8*]

The measurable output, y, consists of,

y = {q n. ctr (7.3)

where q is the pitch rate [deg/sec], the normal acceleration n, [g's] and a is the angle of

attack [deg].

The numerical values of the aerodynamic stability derivatives together with the

actuator and sensor dynamics appear in a MATLAB" script file, fl8longN.m, that

calculates the augmented system, and are given in Appendix A, with the eigenvalues and

the corresponding damping and frequencies appearing in Table 7. 1. The program also

calculates the matrices for the impaired model described next.
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Table I EIGENVALUES, FREQUENCIES AND DAMPING RATIOS OF
UNDAMAGED F/A-i 8A LONGITUDINAL CONTINUOUS MODEL

S-Plane roots Damping Frequency Mode
[rad/sec]

-0.0054 + 0.0569i 0.095 0.057 Phugoid
-0.0054 - 0.0569i 0.095 0.057 Phugoid
-0.9786 + 2.6341i 0.348 2.810 Short Period
-0.9786 - 2.6341i 0.348 2.810 Short Period
-14.000 1.000 14.00 AoA Sensor
-14.924 + 33.2001 0.410 36.40 Stab. Act. right
-14.924 - 33.2001 0.410 36.40 Stab. Act. right
-14.924 + 33.200i 0.410 36.40 Stab. Act. left
-14.924 - 33.200i 0.410 36.40 Stab. Act. left
-24.850 + 24.647/ 0.710 35.00 TE Flap Act. right
-24.850 - 24.647i 0.710 35.00 TE Flap Act. right
-24.850 + 24.647i 0.710 35.00 TE Flap Act. left
-24.850 - 24.647i 0.710 35.00 TE Flap Act. left
-26.900 1.000 26.90 LE Flap Act. right
-26.900 1.000 26.90 LE Flap Act. left
-62.127 + 85.020i 0.590 105.3 Stab. Act. right
-62.127 - 85.020i 0.590 105.3 Stab. Act. right
-62.127 + 85.020i 0.590 105.3 Stab. Act. left
-62.127 - 85.020i 0.590 105.3 Stab. Act. left
-82.900 1.000 82.90 LE Flap Act. right
-82.900 1.000 82.90 LE Flap Act. left
-167.80 1.000 167.8 Pitch Rate Gyro Sensor
-379.49 + 110.68i 0.960 395.3 Normal Accel. Sensor
-379.49 - 110.68i 0.960 395.3 Normal Accel. Sensor
-461.70 1.000 461.7 Pitch Rate Gyro Sensor

B. DAMAGED F/A-18A MODEL

The damage mechanism considered in this example is a malfunction in the actuator

of the left stabilator. The left stabilator does not respond to actuation commands and

remains fixed at trim condition. This is modeled by nullifying the corresponding actuator

dynamics in the actuators model, as shown in Appendix A.
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C. CONTROL REFERENCE MODEL

The reference model for the model-following controller is based on the military

specification for flying qualities of piloted airplanes, MIL-F-8785C. The general

configurations is shown in Figure 7.2. The same reference model is selected for both

damaged and undamaged F/A-18 models.

S. RFERENCE MODE"Ly

!""u•-......................................... Y

SCONTROLLER Fki'ArTUATORS • ONroINAL SEINISORS

•.- K/I-I6A LONGTUDINAL. DYNAMICAL. KID

Figure 7.2: Model-Reference Control Architecture for the F/A-18A

The reference is a forth order linear model, that defines desirable behavior for the

short period and phugoid modes [MS80, pp. 12-16]. The frequency and damping are

"* Short period - wP=4.3 [rad/sec]; r=0.6

"* Phugoid - wp=0.02 [rad/sec]; rh=0.4

The reference model is given in discrete state-space form as

z(k+1) = Fz(k) + Gr(k)
(7.4)

y'(k) = Hz(k) + Dr(k)

The input command, r, is the pilot pitch stick commands p,- The output vector, yd,

consists of,

yd = {qd n. cd}dj (7.5)
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where qd is the reference pitch rate [deg/sec], the desired normal acceleration n d [g's]

and ad is the reference angle of attack [deg]. The reference model is scaled such that at

full range pilot command p,= I generates a normal acceleration of n d=5g in magnitude.

D. DESIGN PARAMETERS AND CONDITIONS

This section gives the test case specific parameters and conditions for topics

discussed in Chapter VI as design considerations. The fact that the basic aircraft model

is linear makes it easier to apply the conditions set in Chapter VI, but neural networks

have been shown to successfully work with non-linear functions as well.

1. Plant Properties

Both the undamaged and damaged aircraft models are bounded MIMO

systems. The models are reachable as required for emulation, and output-controllable

as required for control application.

2. Spectrum and Amplitude Ranges

The frequency band of interest is taken to be the same for emulation and

control. It is chosen to cover the open-loop and closed-loop aerodynamic modes. The

poles of the actuators and sensors are much faster and left out of this range. The

frequency band of interest covers three decades from f,=0.005 Hz tof.4 h=5 Hz. The

sampling rate in this work is 50 Hz, which lets the Nyquist frequency be five times

larger than the highest frequency of interest, and about ten times the short period mode

and therefore aliasing is greatly suppressed. This sampling rate causes the discretized

plant to become non-minimal phase. Non-minimum zeros are accounted for in the
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control phase by resetting the simulation, to prevent modelling errors from growing

unbounded.

The exciting signal follows the concept of persistence of excitation. A

random binary sequence (RBS) is used, shaped such that the energy content of the signal

will be distributed across the desired spectrum. The exciting signal coincide with the

sampling rate. Since the network is non-linear the exciting signal should cover the whole

amplitude range of interest. The RBS signal was found suitable for persistently exciting

the network range, and was set to span [-1,1].

The characteristics of the RBS signal are shown in Figure 7.3 in the time

domain. Figure 7.4 shows the spectral characteristics of the RBS signal used for training

(order of 500k presentations). The drop in the spectral energy above five Hertz was

intended to limit the excitation to the desired range and prevent high frequency

corruption. For testing the trained network it was impractical to use such long

sequences, and the shortest sequence (16384) capable of spanning the desired range of

[0.005,5] Hz was used. The spectrum of a testing sequence appears in Figure 7.5, which

is less uniform then the training spectrum. It should be noted that it is very difficult to

properly excite the very low end of the frequency range (f=0.005 Hz is a cycle time of

200 sec. which is 10000 samples), therefore some mismatch might be expected in the low

range due to insufficient excitation from practical reasons.

The amplitude bound brings up the issue of scaling. The desired range of

signals for a successful learning of the network is [-1,1]. Therefore the models of the

plants and the reference model were scaled and biased from the physical range to the
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network range. The biasing eliminated the non-linearity in the actuator's deflection

range. The non-linearity of the network is expressed in multiple models handled in a

single network.

Random Binary Sequence Sample. T3-0O.02 sec.

'55
-013

0 2 4 6 310 12 14
Time [s.]

Figure 7.3: Time Domain Sample of Random Binary Sequence

20 Px - Inpu Power Spectral Dewnsty

10 .. . ... . .TI

-10 . . .

10's 10171 0,1requency [HzJ

Figure 7.4 Power Spectrum of Training RBS, Signal (512k presentations)

P=x - input Power Spectrum Density
40

0-

-40r

10 1W. 'IV 10,
Frequency CHzJ

Figure 7.5: Power Spectrum of Test RBS, Signal (16k presentations)
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3. Network Structure for Emulation and Control of the F/A-18 Model

The multiple-plant model belongs to the class of models which are

represented by model M as of section IV.A. The corresponding structure was selected

as appears in Figures 4.2 and 5.9 with the appropriate number of inputs and outputs, as

will be seen in the result chapter next.
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VIII. SIMULATIONS, RESULTS AND ANALYSIS

This chapter describes the different experiments done with the aircraft models

described in Chapter VII. The results are shown and analyzed, both in the frequency and

time domains. The spectral plots of the neural network response and the desired output,

used FFT analysis of the input and output sequences. The data was windowed using

Hanning window. The system Bode plot is the analytic spectrum of the simulated

system, which is used for generating the desired output. The neural network results are

given for every relation between the input and output of the M[MO dynamical system,

and compared with the theoretical and desired values.

In the following plots, Plant #1 refers to the undamaged aircraft model, whereas

Plant #2 refers to the damaged left stabilator actuator impaired aircraft model. The

experiments start with the emulation process and are followed by the adaptive controller.

The emulation results includes three parts. First the undamaged and damaged

aircraft models are emulated separately in the proposed network structure that contains

feedforward and recurrent sub-networks, corresponding to model IMI (see section IV.A

and Figure 4.2). In the second part, a single network is used to emulate both aircraft

models using a random balanced presentation procedure as described in section IV.D.

The multiple-plant emulation in a single network is repeated with a minimized network.

The minimal realization is done via the singular value analysis of the weight matrices and

evaluating the minimal regression order by analyzing the weights from the regression

layer to the first hidden layer as described in section VI.D.
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Since the F/A-18 aircraft used in the analysis is a MTMO system with six inputs

and three outputs, many plots are needed to completely describe the behavior of the

system. Therefore the results shown in the following A, B and C sections are for

representative variables, and the rest of the results, when appropriate, are gathered in

Appendix B. The representative inputs are the right and left stabilators, noted in the

graphs as dst,. and dit,, respectively. These inputs were selected to emphasize the

differences between the damaged and undamaged plants. Recall that the damage is a

malfunction in the left stabilator actuator. The output variable selected is the normal

acceleration n-. Note: the results due to the selected variables are not necessarily the best

among the rest of the inputs and outputs.

A. EMULATION OF A SINGLE MIMO DYNAMICAL SYSTEM

The experiment started with an initial network that had regression layers of 2 5 '

order (same order as the plant, as might theoretically be required). Examining the

weight matrix from the regression layer to the first hidden layer showed that the three

most recent regressions carried most of the activation and the weights of prior

measurements were rather small compared to the first three. Based on this observation

the regression layers were reduced to be of order three, as in Figure 8.1 for the multi-

plant emulation structure, and is the network used for the results presented here. The

order reduction of the regression layer greatly reduced the complexity of the network and

the training time, with no loss in the accuracy of the training. This was the first

reduction of the network structure, but the hidden layers were not minimized.
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The input regression layer denoted as ComReg, is a third order regression of the

six control inputs containing 18 nodes. The input regression layer is fully connected to

the first hidden layer coinhl which is further fully connected to the second input hidden

layer comh2, each containing 36 PEs. The second hidden layer is fully connected to an

output-buffer layer, OutBuf, through a connecting Layer with unit-valued fixed

corresponding weights, for visual separation of forward portion of the network from the

recurrent portions of the network. In Figure 8. 1, the connections between layers are

symbolically illustrated by the connection from a single PE at a source layer fully

connected to the target layer. Showing the full connectivity will make the drawing too

complex to visualize.
4 n 2 alphaO t t k l

)Out Buf

SLayer i Layer
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Figure 8. 1: Network Structure for a Multiple-Plant FIA-18 Emulation
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The recurrent sub-network starts with a third order output regression layer OutReg

which obtains the inputs via a feedback from the output layer. The use of the output-

buffer layer was required due to limitation of the current software from NeuralWare that

was used in this research. The OutReg layer consists of nine PEs and is fully connected

to the first hidden layer of the recurrent portion outhl, which is further connected to the

second hidden layer outh2, each containing 36 PEs. The second hidden layer is

connected to the output through Layer, for better visualization. In the recurrent sub-

network connections are also shown only schematically, since all the layers are fully

connected.

In this section each plant, the undamaged and damaged aircraft are emulated

separately on two different networks structured as in Figure 8.1.

1. Single Plant Emulation - Frequency Domain Results and discussion

The examination starts with spectral analysis of the network compared to the

desired model. Figure 8.2 shows the spectral response of the pitch rate q, the normal

acceleration n. and the angle of attack AoA of the undamaged aircraft due to the right

stabilator dst, (upper plots) and the left stabilator dst, (lower plots). Each graph shows

the analytic frequency response in the solid line, which is the Bode plot of the outputs

due to the corresponding input, together with the desired outputs in the dashed line, and

network output values in the dash-dot line, analyzed using FFT, while exciting the input

with random binary sequence (RBS). Analogous plots for the other inputs to the system,

i.e., the leading edge and trailing edge control surfaces, appear in Appendix B, Figures

B. I and B.2 correspondingly.
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The figures show almost perfect match between the system Bode plot, the

desired output and network output frequency response over the range of 0.03 Hz to 5 Hz.

The deviation between the network output and the desired output is mainly a problem of

persistent excitation. Two factors contribute to that difference. First it is very difficult

to properly excite at such low frequencies (0.01 Hz is a cycle time of 100 seconds and

in 5000 learning iterations only one change is expected). The other factor is the inherent

fact that as the frequency goes down, the number of presentations of data information due

to that frequency goes down. The less a feature is presented to a network, the less

trained the network is to correctly respond to similar excitation.

The deviation of the network output and the desired output from the analytical

Bode plot is due to the coarse resolution at the low frequency. Since the spectral

responses of the network and the desired output are done using FF1 analysis, the

spectrum is linearly spread. In order to get better resolution over a range of three

decades, the amount of data needed to be collected becomes prohibitive with respect to

the capabilities of the current analyzing tools (software and computer memory). Due to

the reasons mentioned above and the random nature of the input signal, at the low

frequencies the general trend of the spectral behavior curve should be compared to the

analytical system Bode, and not the exact numerical value.

The two dominant modes of the aircraft at the frequency range of interest,

i.e., the phugoid at the low frequencies and the short period at the high frequencies are

clearly characterized by the neural network as can be seen in all the spectral plots in

Figures 8.2 and B. 1, B.2.
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Figure 8.3 and the corresponding Figures B.3 and B.4 in Appendix B.

presents the same information as Figures 8.2, B. 1 and B.2, but for the damaged aircraft

trained in a separate neural network. The spectral results obtained for the undamaged

aircraft hold for the damaged aircraft as well. In Figure 8.3 the damage effect is clearly

seen in that there is no response of the aircraft to excitation due to the left stabilator

(dstl) over the whole frequency range. The residual value of the network output at about

-80dB in the lower part of Figure 8.3 is due to the initial weight randomization and

numerical noise. The system Bode and the Desired value spectrum is minus infinity and

thus do not appear on the graph.

Looking at all six figures, Figures 8.2, 8.3 and Figures B. 1-B.4 some general

observations from the results are emerging.

1. The network learns the transfer function of each of the six inputs. This can be
seen by comparing the upper and lower graphs of each figure. Since each figure
shows the corresponding right and left surfaces, the results should be symmetrical
for both, apart from Figure 8.3 where the damage is seen. The slight differences
between the right and left surfaces of each of the three pairs indicate the
individual treatment of each input.

2. The network is able to resolve the similar input pairs for example left and right
stabilators, leading or trailing edge flaps, although each is treated separately.
This is seen by the very close resemblance of the spectrums of each pair, right
and left inputs, which in the undamaged plant are identical, and also for the
damaged plant except for the stabilators.

3. The network is clearly able to identify the damage in the second plant as seen in
the lower part of Figure 8.3.

4. There is a very good agreement between the desired response and the network
response over almost all the frequency range. The desired and network responses
were calculated using the same random input sequence.
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5. There is a very good agreement between the network response and the analytical
Bode plot over about the upper two and a half decades. It can be said to have
exact match over frequencies from 0.03 to 5 Hz. The differences are due to the
random nature of the input signal used to generate the network response. The
difference is also due to the difficulty to practically excite the very low
frequencies, and the lower number of presentations of the phugoid mode relative
to the short period mode.

6. The networks have learned the spectral behavior of the two plants as presented
in Figures 8.2, 8.3, B. I-B.4.
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2. Single Plant Emulation - Time Domain Results and Discussion

The time domain analysis shows the response of the outputs of the system,

i.e., q, n. and a, to a dipole test signal driving each input. Due to the multiplicity of

inputs and outputs, and in order not to disrupt the flow of reading, representative figures

follow here, and the rest are gathered in Appendix B. and referenced accordingly. The

organization of all figures in the appendix is identical to the figures shown and described

here.

Figure 8.4 shows the normal acceleration response, n., of the undamaged

aircraft due to a dipole input command at the right stabilator dst, (upper plots) and at the

left stabilator dst1 (lower plots). The dipole presents a full deflection in the positive

direction for one second followed by a full deflection command in the negative direction

for a duration of another second, and then reset to zero deflection. The dotted line

represents the dipole and is indicative of the switching times (the magnitude is ± 1 and

out of scale). The solid line is the desired behavior, and the dashed line in the neural

net output. The response of the normal acceleration due to leading edge flaps dle,, and

die,, and due to trailing edge flaps dte, and d&e1 appear in Appendix B. Figures B.8-B.9

respectively. The pitch rate response of the undamaged aircraft to a dipole command in

all inputs is in Figures B.5-B.8. The corresponding angle-of-attack response appears in

Figures B. 10-B. 12.

Each graph shows the desired and network output for the command. The

error between the two is presented in the lower plot of each pair. Note that the output

are on the order of tenths while the errors are at the order of 10"3. The relative error of
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all input-output relations is about 1 %, which was the criterion for successful learning.

It is interesting to see that the network which was trained by exciting all inputs

simultaneously was equally trained on all inputs regardless of the individual behavior and

amplitudes. Moreover, each input is interpreted individually as can be seen from the

different error of similar control surfaces pairs (left and right), in Figures B.7, B.8 and

B.9 (it is impossible to resolve this from the actual response because of the very small

difference).

The damaged aircraft was trained on a separate network. Figure 8.5 presents

the normal acceleration response of the damaged aircraft due to the stabilators. The

graphs of n, due to leading and trailing edge flaps appear in Figures B. 16, B. 17

respectively, the corresponding plots of the damaged aircraft pitch rate response to a

dipole command in the various control surfaces are in Appendix B, Figures B. 13 - B. 15.

The effects of the inputs on a - AoA, appear in Figures B. 18 - B.20. One should be

noted to the scale of the damaged stabilator output - 10 in Figure 8.5 which is about

three orders of magnitude smaller than the right stabilator response. In the damaged

stabilator it is not surprising that the error is at the same magnitude as the actual output

since the desired value is zero. The output of 10' is effectively zero.

The capability of the network to react to individual input separately is even

more emphasized in the damaged model. Although there is a totally different dynamics

of the damaged input - left stabilator, as seen in Figure 8.5, it does not effect the training

of the network to respond correctly to the rest of the inputs. Comparing Figures B.5-

B.12 with B.13-B.20 one by one shows almost identical network behavior as was
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expected from the similarities between the two models. Thus the observations on the

undamaged aircraft hold to the damaged aircraft as well.

Examining the results shown on Figures 8.4, 8.5 and Figures B.5-B.20 as a

complete set describing the two networks used to emulate the undamaged and damaged

aircraft separately, brings the following general observations.

1. The network resolves the relative influence of each input separately although
while training in parallel the outputs included the cumulative contribution of all
inputs.

2. The network is able to resolve the similarities in the left and right control surface
pairs, although each is treated separately. This is seen by the very close
resemblance of the responses of each pair of inputs, which in the undamaged
plant are identical, and also for the damaged plant except for the stabilators.

3. The network is clearly able to identify the damage in the second plant as seen in
Figures 8.5, B.13 and B.18 in comparison to Figures 8.4, B.5 and B.10.

4. There is almost perfect agreement between the desired response and the network
response. Practically they can be considered identical. For most cases the
difference is less than 1 %.
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B. EMULATION OF MULTIPLE PLANTS IN A SINGLE NETWORK

For multiple-system emulation the same network structure as seen in Figure 8.1 is

used for the results presented here, with p] = 1, p2=-i for undamaged plant and pl =-I,

p2 = 1 for damaged plant. The network structure deliberately has had the same

configuration as for a single plant emulation, so that comparisons can be made. Both the

damaged and undamaged models were used to simultaneously train the single network

via the procedure described in section IV.D. The results shown here are for the two 251

order models emulated together in a single network. It is important to mention that the

procedure is general for any number of models, and two models were used here merely

for demonstration, without any restrictions.

1. Multiple-Plant Emulation - Frequency Domain Results and discussion

The examination starts with spectral analysis of the network compared to the

desired model. Figure 8.6 shows the spectral response of the pitch rate q, the normal

acceleration n, and the angle of attack AoA of the undamaged aircraft due to the right

stabilator dst, (upper plots) and the left stabilator dst, (lower plots). Each graph shows

the analytic frequency response in the solid line, which is the Bode plot of the outputs

due to the corresponding input, together with the desired outputs in the dashed line, and

network output values in the dash-dot line. Analogous plots for the leading edge and

trailing edge control surfaces of the undamaged plant, appear in Appendix B, Figures

B.21 and B.22 correspondingly. Figure 8.7 and the corresponding Figures B.23 and

B.24 in Appendix B. presents the same information as Figures 8.6, B.21 and B.22, but

for the damaged aircraft trained on the same network used for the undamaged aircraft.
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The results from the spectral analysis obtained for the single-plant emulation

for both undamaged and damaged aircraft hold for multiple plants emulated in a single

network as well. The main results from Figures 8.6, 8.7, B.21 and B.22 show almost

perfect match between the system Bode plot, the desired output and network output

frequency response over the range of 0.03 Hz to 5 Hz. In Figure 8.7 the damage is

clearly seen where there is no response of the aircraft to excitation due to the left

stabilator (dstl) over the whole frequency range.

Looking at Figures 8.6, 8.7 and Figures B. 21-B.24 some general observations

from the results are emerging.

1. The network learns the transfer function of each input individually.

2. The unified network learns the full input-output transfer function of each plant
individually.

3. The network is able to resolve the similar input pairs such as left and right
stabilators, leading and trailing edge flaps, although each is treated separately.
This is seen by the very close resemblance of the spectrums of each pair, right
and left inputs, which in the undamaged plant are identical, and also for the
damaged plant except for the stabilators. This holds also for comparing the
corresponding undamaged and damaged plots, i.e., the right stabilator part of
Figures 8.6 and 8.7, as well as comparing Figure B.21 to B.23 and B.22 to B.24.

4. The results of the multi-plant network are very similar compared to the results
obtained from the single-plant network. Differences are due to the same
reasoning given for the single-plant network in VII.A. 1.a.

5. The network is clearly able to identify the damage in the second plant as seen in
Figure 8.7.

6. There is a very good agreement between the network response and the analytical
Bode plot over frequencies from 0.03 to 5 Hz. The differences are due to the
insufficient persistent excitation in the input signal.

7. The single network has learned the spectral behavior of the two plants as
presented in Figures 8.6, 8.7, B.21-B.24.
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2. Multiple-Plant Emulation - Time Domain Results and Discussion

The time domain analysis shows the response of the outputs of the system,

i.e., q, n, and a, to a dipole test signal driving each input. Due to the multiplicity of

inputs and outputs, and in order not to disrupt the flow of reading, representative figures

follow here, and the rest are gathered in Appendix B, and referred accordingly. The

organization of all figures is identical to the ones shown and described here.

Figure 8.8 shows the normal acceleration response, n, of the undamaged

aircraft due to a dipole input command at the right stabilator dst,. (upper plots) and at the

left stabilator dst, (lower plots). The dotted line represents the dipole and is indicative

of the switching times (the magnitude is ± 1 and is out of scale). The solid line is the

desired behavior, and the dashed line in the neural net output. The response of the

normal acceleration due to leading edge flaps die,. and die1, and due to trailing edge flaps

dte, and dte, appear in Appendix B, Figures B.28-B.29 respectively. The pitch rate

response of the undamaged aircraft to a dipole command in all inputs is in Figures B.25-

B.28. The corresponding angle-of-attack response appears in Figures B.30-B.32.

The damaged aircraft was trained simultaneously on the same network.

Figure 8.9 presents the normal acceleration response of the damaged aircraft due to the

stabilators. The graphs of n, due to leading and trailing edge flaps appear in Figures

B.36, B.37 respectively. The corresponding plots of the damaged aircraft pitch rate

response to a dipole command in the various control surfaces are in Appendix B, Figures

B.33 - B.35. The effects of the inputs on a - AoA, appear in Figures B.38 - B.40. One
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should be noted to the scale of the damaged stabilator output - 10' in Figure 8.9 which

is about three orders of magnitude smaller than the right stabilator response.

Each graph shows the desired and network output for the command. The

error between the two is presented in the lower plot of each pair. Note that the output

errors are at the order of 10-2. The relative error of input-output relations is from about

5 % down to 2 %. It is interesting to see that the network which was trained by exciting

all inputs simultaneously was equally trained on all inputs and both plants, regardless of

the individual behavior and amplitudes.

Examining the results shown on Figures 8.8, 8.9 and Figures B.25-B.40 as

a complete set describing the single network used to emulate the undamaged and

damaged aircraft together, brings the following general observations.

1. The results obtained for the single-plant network generally apply to the multiple-
plant emulation as well as shown in Figures 8.8, 8.9, and Figure B.25-B.40.

2. The output errors are greater than the errors achieved using a single plant
emulation, and valued at about 2-5%. The differences are due to the grcater
complexity of the overall transfer function the network represents.

3. The network is clearly able to distinguish the damaged plant from the undamaged
model as of Figures 8.9, B.33 and B.38.

4. There is almost perfect agreement between the desired response and the network
response. Practically they can be considered identical.

5. A single network is capable of emulating multiple systems with only a very small
loss of accuracy due to the greater complexity.
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Figure 8.10 shows the normal acceleration response, nk, due to a random

binary excitation of all inputs simultaneously. At the point indicated on the middle of

the graph there is a transition from one model to the other. Observe that the time

response is continuous in both cases. Each graph shows the desired and network output

for the command five seconds before and after the switch. The error between the two

is presented in the lower plot of each pair. Again plant #1 is the undamaged aircraft and

plant #2 is the impaired model. The corresponding graphs for the pitch rate q and angle

of attack a appear in Appendix B, Figures B.41 - B.42.

The observations from the results in Figures 8.10, B.41 and B.42 are the

following.

1. There is a smooth continuous behavior of the output variables at the transition.

2. The output error for a particular output is at the same level for both plants.

3. The network is clearly able to distinguish the damaged plant from the undamaged
model and respond accordingly.

4. There is almost perfect agreement between the desired response and the network
response when exciting all six control surfaces. This means that the network has
learned the overall complex transfer function from the six inputs to the three
outputs altogether and not only per each individual input.

5. The error at the transition point is slightly higher due to the regression, until the
layer fills with data corresponding to the current model. Nevertheless, the error
at the switch is at the same order of magnitude as in the normal operation.
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C. MINIMAL REALIZATION OF A SINGLE-NETWORK MULTIPLE-PLANT

EMULATOR

It has been shown that a single ANN is capable of emulating multiple-plants. A

minimal realization of the multiple-plant network is now derived. The initial network

shown in Figure 8.1 has two sub-networks, the forward on the left and the recurrent on

the right. Each sub-network has two hidden layers with each hidden layer constructed

of 36 PEs. This structure was successfully trained to emulate the two different aircraft

models. This network served as the starting point for the minimal realization procedure.

The regression layers, ComReg and OuaReg of Figure 8. 1, were already reduced

based on observation of the decreasing valued of the regressed weights of more prior

samples. The singular values of the weight matrices from the regression layers and

through successive hidden layers were analyzed. Figure 8.11 shows the singular value

plot of the initial weight matrix (36 x 36), connecting the two hidden layers of the

recurrent sub-network. There are three dominant singular values and the rest are spread

below 0.1. Close examination of Figure 8.11 shows that there are more significant

singular values hiding in the initial range due to the random initialization. The number

of PEs needed was estimated using equations (6.2), (6.3) with variation ratio of V=,500.

The resultant layer needs only nine PEs. The singular values of the weight matrix

connecting the same hidden layers in the minimal network are traced, as the network

trains, in Figure 8.12. It can be seen that the same three dominant singular values

appear in the minimal network, with the other six spread over the initial values. A lower
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variation ratio would have predicted less PEs. It is the choice of the designer to set the

threshold, with post-training examination of the achieved accuracy.

A similar procedure was followed for the other three hidden layers. The singular

values plots of the other weight matrices appear in Appendix C. On the recurrent side,

the singular values of the weight between OutReg and outhl appear in Figures C.5

before, and in Figure C.6 after training with similar behavior.

In the forward sub-network, the singular values of the weight matrix between

ComReg and comhl before minimization appear in Figure C. 1, with values spread up to

2.5. Using the same variation ratio, ,=500, in equation (6.3) yields an estimation of 20

PEs out of 36. The singular values of the minimized network are shown in Figure C.2,

showing that the selection was quite cautious, and a smaller number might have been

good enough for successful training. The Singular values of the weight matrix between

comhl and comh2 are traced in Figures C.3 and C.4 respectively.

The minimized network appear in Figure 8.13. The squares represent the

processing elements. According to the current input value and the weights connecting

to a PE the output value is viewed by size and color, converted here to shades of grey.

It is seen that the activation from one layer to another is transferred differently by the

PEs. This is clearly seen in ComReg and comhl layers. Given an input in terms of

control commands at time (t=k) at the In layer of Figure 8.13, and a model selection at

the input nodes denoted pl or p2 , the network is trained to generate an otitput of the

selected aircraft model at time (t=k+l).
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Looking at the singular values plots in Figures 8.11, 8.12 and C.1-C.6, the

following observations are drawn.

1. The singular values plot express the number of PEs carrying the activation levels
between two successive layers.

2. The singular values plots trace the dynamics of the training, and may supply an
estimation on when the network is trained, by the fact that the singular values
converged to their final values. The slopes of the curves need to be divided by
the temporal learning rate to show convergence. Figure 8.11 reflect convergence
after about 500k iterations, whereas in the minimized network, as seen in Figure
8.1?, after about 800k the network is not well converged yet.

3. The plots should be carefully examined for small but important singular values
that might hide in the initial randomization values. This has happened i.e., in
Figure C.3 and extracted also using equations (6.2) and (6.3).

4. The network should be trained long enough for the number of significant singular
values to become evident, depending of course on the learning rate and initial
randomization. This phenomenon is clearly seen in Figure 8.11 and 8.12 where
the third dominant singular value emerge after about 100k iterations.

5. The singular values plots act as a feature detector, and can give physical
explanation to the training characteristics of the network. In the current example
the third dominant singular value in Figures 8.11, 8.12 C.5 and C.6, probably
can be associated with the phugoid mode, which needed more iterations to have
a significant number of presentations (about 10) for the network to respond to that
mode. Once the network sensed this mode the adaptation of the weight to include
the phugoid mode information was rather quick. The short period mode was
probably related to the quick rising singular values.
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Figure 8.11: Singular Values Plot of the Non-Minimized Network

116



Troe. of slngular ýs.-E3 of .*Iqhtg n-otrl betw~el 14Y.,u 5 dn a

0.6

0.4

0 100 200 300 A00 S00 S00 700 S00

4i of It....tlae., C 10.31

Figure 8.12: Singular Values Plot of the Minimized Network

a U t outhr

1119



1. Minimal Realization of a Multiple-Plant Network - Frequency Domain

Results and Discussion

The spectral analysis compares the network with the desired model and with

the performance of the non-minimized network. Figure 8.14 shows the spectral response

of the pitch rate q, the normal acceleration nk and the angle of attack AoA of the

undamaged aircraft due to the right stabilator dst, (upper plots) and the left stabilator dst,

(lower plots). Each graph shows the analytic frequency response in the solid line, which

is the Bode plot of the outputs due to the corresponding input, together with the desired

outputs in the dashed line, and network output values in the dash-dot line. Analogous

plots for the leading edge and trailing edge control surfaces effects on the undamaged

plant, appear in Appendix B, Figures B.43 and B.44 correspondingly. Figure 8.15 and

the corresponding Figures B.45 and B.46 in Appendix B, presents the same information

as Figures 8.14, B.43 and B.44, but for the damaged aircraft trained on the same

minimized network used for the undamaged aircraft.

The results from the spectral analysis obtained for the multiple-plant

emulation of both undamaged and damaged aircraft in a single network, summarized in

section B, hold for the minimized network emulator as well. The main results from

Figures 8.14, 8.15, B.43 and B.44 show almost perfect match between the system Bode

plot, the desired output and network output frequency response over the range of 0.03

Hz to 5 Hz. In Figure 8.15 the damage is clearly seen where there is no response of the

aircraft to excitation due to the left stabilator (dstl) over the whole frequency range. The

fluctuations seen in Figure 8.15 are due to initial randomization, numerical noise and the
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random nature of the test signal. The values are at the order of -80dB, which can be

neglected.

The results here are to be compared to the multiple-plant emulation in Figures

8.6,8.7 and Figures B.21 - B.24 correspondingly. The combined network is representing

now a minimal network realization of the non-linear functional relationship between the

inputs and outputs of the network that describes the damaged and undamaged aircraft.

Looking at Figures 8.14, 8.15 and Figures B.43-B.44, some general

observations from the results are drawn.

1. The observations for the Multiple-plant emulation generally apply to the minimal
realized multiple-plant emulation as well. There are instances that the minimized
network shows even better results over the spectrum, like in the leading edge
surfaces effect on both undamaged and damaged aircraft, as seen in comparing
Figures B.21 for the multiple-plant emulation, and in Figure B.43 for the minimal
realization. The improved behavior is probable due to the elimination of excess
PEs and excessive connections in the minimized neural network.

2. The single minimized network has learned the spectral behavior of the two plants.
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Figure 8.14: Spectral Response of Undamaged Aircraft Due to Stabilators in a

Minimally Realized Multiple-Plant Single Network Emulator
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2. Minimal Realization of a Multiple-Plant Network - Time Domain Results

and Discussion

The time domain analysis compares the response of the outputs of the system,

i.e., q, n. and ax, with the network reaction to a dipole test signal driving each input.

Figure 8.16 shows the normal acceleration response, n., of the undamaged aircraft due

to a dipole input command at the right stabilator dst, (upper plots) and at the left

stabilator dstt (lower plots). The dotted line represents the dipole and is indicative of the

switching times (the magnitude is ± I and is out of scale). The solid line is the desired

behavior, and the dashed line in the neural net output. The response of the normal

acceleration due to leading edge flaps die,. and die,, and due to trailing edge flaps dte,. and

dtet appear in Appendix B. Figures B.50-B.51 respectively. The pitch rate response of

the undamaged aircraft to a dipole command in all inputs is in Figures B.47-B.49. The

corresponding angle-of-attack response appears in Figures B.52-B.54.

The damaged aircraft was trained simultaneously on the same minimized

network. Figure 8.17 presents the normal acceleration response of the damaged aircraft

due to the stabilators. The graphs of nz due to leading and trailing edge flaps appear in

Figures B.58, B.59 respectively. The corresponding plots of the minimized network

representation of the damaged aircraft pitch rate response to a dipole command in the

various control surfaces are in Appendix B, Figures B.55 - B.57. The effects of the

inputs on a - AoA, appear in Figures B.60 - B.62. One should be noted to the scale of

the damaged stabilator output - l103 in Figure 8.17 which is about three orders of

magnitude smaller than the right stabilator response.
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Each graph shows the desired and network output for the command. The

error between the two is presented in the lower plot of each pair. Note that the output

errors are at the order of 10-. The relative error of input-output relations is about 5 %

at most down to 1 %. The network was trained by exciting all inputs simultaneously and

equally performs on all inputs of both plants, regardless of the individual behavior and

amplitudes.

Examining the results shown on Figures 8.16, 8.17 and Figures B.47-B.62

as a complete set describing the single minimal network used to emulate the undamaged

and damaged aircraft together, and comparing to the non-minimal single network for

multiple-plant emulation in Figures 8.8,8.9 and Figures B.25-B.40 correspondingly,

brings the following general observations.

1. The results obtained for the single network of multiple-plant generally apply to
the minimally realized single network of multiple-plant emulation as well.

2. The output errors are at the same level as the errors achieved using a mom-
minimal single network for multiple-plant emulation, and valued at about 1-5 %.
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Figure 8.16: Normal Acceleration Response of the Undamaged Aircraft Due to
Dipole Stabilators Command in a Minimized Multiple-Plant Network
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Figure 8.18 shows the normal acceleration response, nL., due to a random

binary excitation of all inputs simultaneously. At the point indicated on the middle of

the graph there is a transition from one model to the other. Each graph shows the

desired and network output for the command five seconds before and after the switch.

The error between the two is presented in the lower plot of each pair. Plant #1 is the

undamaged aircraft and plant #2 is the impaired model. The corresponding graphs for

the pitch rate q and angle of attack a appear in Appendix B, Figures B.63 - B.64. The

results here are to be compared to the non-minimal single network for multiple-plant

emulation in Figure 8.10 and Figures B.41 - B.42 correspondingly.

The observations from the results in Figures 8.18, B.63 and B.64 in

comparison to the results of the non-minimal network in Figures 8.10 and B.41, B.42

are the following.

1. The observations for the non-minimal single network for multiple-plant emulation
also hold for the minimal realization case.

2. There is no degradation in performance due to the less complex network achieved
by the minimal realization procedure.
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Figure 8.18: Normal Acceleration Response of a Minimally Realized Single Network
Emulating Two Plants Due to RBS Excitation of All Inputs

127



D. EMULATION ANALYSIS

The capabilities of an artificial neural network to emulate MIMO dynamical

systems have been shown. The main results are the following.

1. A combination of feedforward and recurrent networks is used to emulate MIMO
dynamical systems.

2. The network structure is selected to match the class that the system belongs to.

3. A single network is capable of emulating multiple plants under proper training
scheme.

4. More presentations are needed to emulate multiple plants.

5. A minimal realization of a network can be found, with no degradation in
performance. Corollary: there is no unique solution to the emulation /
identification problem.
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E. ADAPTIVE CONTROL OF MIMO DYNAMICAL SYSTEM

The control results include two parts. Initially a model follower controller is

designed for each of the undamaged and damaged aircraft separately. Then the two

controllers are combined into a single network. The unified network is an adaptive

controller. Based on the input information, the network generates the required control

actions such that the plant output will behave similar to the reference model. The input

information includes the pilot command p., the plant output feedback, and prior

measurements of plant input (network output) and output as indicators of plant type, of

either undamaged or damaged aircraft.

1. Model-Reference Controller - Frequency Domain Results and Discussion

The spectral response of the pitch rate q, the normal acceleration n and the

angle of attack AoA of the undamaged (plant #1) and damaged (plant #2) aircraft due to

pilot commands p, is given in Figure 8.19. Each graph shows the analytic frequency

response - the solid line, which is the Bode plot of the reference system outputs due to

the input, together with the desired values and network output values, both analyzed

using FFT, while exciting the input (pilot) command with random binary sequence

(RBS). The desired value shown by the dashed line is calculated using the reference

model, and the dash-dot line is the neural network output. Figure 8.20 presents the

same information using the unified controller, which is capable of controlling both the

undamaged and damaged plants simultaneously. The normalization of the models to ± 1

cause the shift of about -15dB from the zero dB line.
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The observations from the spectral results in Figures 8.19 and 8.20 are

the following.

1. Each plant is controlled such that the overall system behave very close to the
reference model over the entire spectral range of interest. The difference at the
low frequencies is a problem of persistent excitation. For piloted aircraft control
usually the indicated difference at the low end does not present a control problem.
The human pilot compensate for the low frequency dynamics with no accessional
control effort.

2. The spectral behavior of the unified controller in Figure 8.20 is similar for both
models, with good agreerment to the analytical reference, although less accurate
than the single controller shown in Figure 8.19. The difference between the
unified and single controllers is due to the greater complexity of the unified
controller.
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2. Model-Reference Controller - Time Domain Results and Discussion

The time domain analysis shows the response of the outputs of the system to

a dipole test signal at the pilot command p,. The dipole presents a one second full stick

movement that demand a 5g acceleration from the aircraft, in both directions. Each

graph shows the reference, which is the desired output, and the network output q, ni and

a for the dipole command. The error between the two is presented in the lower plot of

each pair. Figure 8.22 presents the same information on the damaged aircraft, each

controlled with a separate neural network controller. The stabilators, leading and trailing

edge flaps actuators commands in response to a dipole input are shown in Figure 8.23

for the undamaged aircraft, and in Figure 8.24 for the damaged aircraft.

The performance of the unified controller in the time domain is tested by

presenting a full stick RBS input as the pilot command. The response of the network

compared to the reference model is presented in Figure 8.25 with the corresponding

actuators commands in Figure 8.26.

Each graph shows the desired and network output for the command. The

error between the two is presented in the lower plot of each pair. Note that the output

errors are at the order of 10.2 or less. The relative error of all input-outr-it relations is

about 1-5 %.
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Examining the results shown on Figures 8.22 - 8.26 as a complete set

describing the neural network controlled undamaged and damaged aircraft, brings the

following general observations.

1. A neural network based controller was designed for the undamaged as well as the
damaged aircraft.

2. The network finds a suitable solution, although not unique. In the undamaged
aircraft the three control pairs are symmetric. Depending on the initial weights
randomization the network is trained to find an equilibrium solution which is not
necessarily symmetric as one could expect in Figure 8.23.

3. The network is clearly able to identify the damage in the second plant and
disregard the malfunctioning surface (the left stabilator command is practically
zero). The neural network learns to compensate for the loss of control surface
with the rest of the actuators, mainly with the adjacent right stabilator as can be
clearly seen in Figures 8.24 and 8.26.

4. The unified controller is able to identify the change in the plant and switch over
to generate the required control commands. The physical output variables remain
continuous, while the behavior of the control surfaces changes dramatically.

3. Control Analysis

In this section the capabilities of an artificial neural network to adaptively

control a time-varying MIMO dynamical systems have been shown. The main results

are the following.

1. An artificial neural network was trained as controller to drive a plant in a model
following scheme.

2. The neural network controller was able to compensate for a loss of control action.

3. A single network is capable of controlling multiple plants in an adaptive fashion.
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IX. CONCLUSIONS AND RECOMMENDATIONS

This work considered dynamical systems in association with artificial neural

networks. The basic theory of neural network was presented. Methods for emulation

and control of dynamical systems using neural networks were developed. The important

results are summarized here and some recommendations for further research are

highlighted.

A. MAIN RESULTS

This research established a general approach for identification and emulation of

non-linear MIMO time-varying dynamical system. Four general MIMO dynamical

models are presented. Based on the selected model a corresponding network structure

was introduced. The structure associated a combination of feedforward and recurrent

artificial neural networks. A serial-parallel training scheme was used to train the

network. A single network was shown to be capable of representing multiple dynamical

systems from the same class, under the balanced random training procedure. The model

switching in the procedure did not affect the accuracy of the network.

An algorithm to find minimal realization of a neural network was also presented.

It was shown that there was no loss in performance of the reduced neural network,

comparing to a more complex network that does the same task.

Further in the research a neural network was trained to control a MIMO dynamical

system using a back-propagation approach through the plant training procedure, which
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is a variation of the basic back-propagation algorithm. The network was trained in a

model-follower control architecture without a direct access to the desired values and

without the need for specific knowledge on the controlled system. A single network

controller was trained to represent multiple controllers, thus forming an adaptive

controller. No estimation process was involved in the procedure.

Artificial neural networks were found to be a powerful tool for system

identification and in designing adaptive controllers.

B. RECOMMENDATIONS FOR FURTHER RESEARCH

Several topics that were addressed in the research need to be further investigated.

The issues are discussed below with possible directions of approach.

In the minimal realization procedure, singular values of a weight matrix were

involved. In the LTI system emulation the singular values had physical meaning. It

seems that the singular values may give more information about the system. It can also

serve as an indicator of network training progress and also as a feature detector. The

singular value analysis of the weight matrix needs more investigation in the above

directions as well as in improving the minimization procedure to more definite results.

Training recurrent networks has still many open aspects. Since recurrent networks

are vital in association with dynamical system, more research is needed in the theoretical

and practical aspects of the training. Methods for stable algorithms of training hidden

recurrent layers are affiliated with this direction of research as well. General constraints

on the learning rate for stable training are greatly desired. Proper learning rate may also
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improve convergence rate. Methods involving numerical analysis in stability theory may

be an approach.

Algorithms for utilizing adaptive neural networks controller in real time and on-line

applications may be seen as a direct extension of this work. This area of research may

fined many current applications, especially in the non-linear regime.
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APPENDIX A. F/A-18A MATHEMATICAL MODEL

The F/A-18A mathematical model for the damaged and undamaged configurations

is given this MATLAB" script file. The aerodynamical stability derivatives are shown

in the body of the program.

% flSongN.m

% This file calcuLates the continuous state space representation of the
% longitudinal modes of the f18 (with or without malfunctions)
% fighter aircraft.
% Then the matrices are balanced and discretized according to a given
% sampling interval - ts. The results are to be loaded to file:
% fl~tong modeL.h
% The state vector: xfiu(ft/sec),w(ft/sec),q(rad/sec),theta(rad)]I
X The control vector: delf(dstr,dstl,dler,dtel,dterdtel]' (deg)
% The calculation assumes that the gusts are negligible.
% Trim AOAzalphaO=arctan(W/U), and theta0=gammaO+alpha0.
% This uses cscaLeb.m
cs= r;
Xdirectoryu,/fi L669/home/adlr/fl8/Emunt/'I;
directory-'/fi L669/home/dror/f18/CntrL/P;
ts=O.02; % Esecl- Sampling interval
aLphaOf2.6184*pi/180; % (rad] - Trim angle of attack
gammaOfO.0; % Crad] - Path angle
theta0fatpha0+gamma0; % [red] - a/c body angle
U=646.42; % Eft/sec] - True airspeed
alttlO000; % Eft] - altitude
M=0.6; % #]0 Mach number
g=32.174; % Cft/sec^2] - gravity constant
W=U*tan(alphaO);
W20; % In trim axes
%thetaOgammaO; % In trim axes

disp(' Definitions of dimensional stability derivatives')

% Name Value Units Partial deriv, of With respect to
2

xu= -0.13257e-1; Itl/sec] Longitudinal force Forward velocity
xw= 0.71265e-1; 2[l/sec] Longitudinal force Vertical velocity
xql 0.0; %Eft/(rad-sec)] Longitudinal force Pitch rate
xwdz 0.0; U(--1 Longitudinal force Vertical acceLer
xdsbz 0.0; %(ft/sec^2)/rad Longitudinal force Speed brake
xdth= 0.14257; %tpct/sec^2] Longitudinal force Throttle
xds= 0.0; %(ft/sec^2)/rad Longitudinal force Noriz stabitator
xdtf= 0.0; %(ft/sec^2)/red Longitudinal force Lead edge flap
xdtf: 0.0; %(ft/sec^2)/rad Longitudinal force Trail edge flap
zu= -0.73337e-1; 2(l/sec] Vertical force Forward velocity
zwz -1.1526; %(1/sec] Vertical force Vertical velocity
zq- -5.6525; %Cft/(rad-sec)] Vertical force Pitch rate
zwdz -0.006917; 21--] Vertical force Vertical acceLer
zdsb= 0.0; %(ft/sec^2)/rad Vertical force Speed brake
zdthf 0.0; %[pct/sec^21 Vertical force Throttle
zdsm -129.5; %(ft/sec^2)/rad Vertical force Noriz stabilator
zdLfs 19.43; %(ft/seOc2)/rad Vertical force Lead edge flap
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zdtf= -149.0; %(ft/sec^2)/rad Vertical force Trait edge ftap
mu= -0.12988e-4; Z[1/sec-ft] Pitching moment Forward velocity
mw= -0.11331e-1; %[1/sec-ft] Pitching moment Vertical velocity
mq= -0.59346; %(1/sec] Pitching moment Pitch rate
mwda -0.34049e-3; %[/ft] Pitching moment Vertical acceler

cmdsb= 0.0; %(l/sec^2)/rad Pitching moment Speed brake
mdth= 0.0; %[pct/(sec^2-ft)]Pitching moment Throttle
mds= -15.6; %(l/sec^2)/rad Pitching moment Horiz stabitator
mltf= -1.609; %(C/sec^2)/rad Pitching moment Lead edge flap
mdtf= 1.499; %(l/sec^2)/rad Pitching moment Trait edge flap

modeL=input(CENTER MODEL # P,'sf);

% --------------------------------------------------------
disp('actuators transfer functions, and their state space representation')

% Actuators are scaled to +/-1

% STABILATOR
stLn=t1/(82.9)^2, 2"(0.068)/(82.9), 1];% Left side numerator
sttd=conv([1/(36.4)A2a2*(0.41)/(36.4),1],[1/(105.3)^2o2*(0.59)/105.3,1]);

mxstL=10.5; % maximum positive deflection of Left stabitator (deg]
mnstL=-24; % minimum negative deflection of Left stabilator [deg]
strnstLn; % right side numerator
strd=sttd; % right side denominator
mxstr=lO.5; % maximum positive deflection of right stabitator [deg]
mnstrz-24; % minimum negative deflection of right stabitator [deg]
if(modetl='2') sttn=O; end;
[FstLGstt,HstL,Dstt]=tf2ss(sttn,sttd);
[Fstr,Gstr,Hstr,Dstr]:tf2ss(strn,strd);
nustL=(mxstl-mnstt)/2; % Left stabitator scaler
bistt=(mxstt+mnstt)/(2*nustl); % Left stabilator bias
nustr=(mxstr-mnstr)/2; % Right stabilator scaler
bistr:(mxstr+mnstr)/(2*nustt); % Right stabilator bias

% LEADING EDGE FLAP
tern=l;
letd=conv([1/(26.9), 1],[11/(82.9), 11);
mxteL134; % maximum positive deflection - left leading edge flap (deg]
rnietl-3; % minimum negative deflection - Left Leading edge flap (deg]
Lernlteln;
terdlteld;
mxLer=34; maximum positive deflection of right leading edge flap [deg]
mnter:-3; % minimum negative deflection of right Leading edge flap (deg]
(FtelGlet,Htel,Dtet]=tf2ss(Leln, teld);
(Fler,Gter,Hler,Dter]=tf2ss(lern, lerd);
nuLeL=(mxLet-mnLeL)/2; % Left Leading edge flap scaler
bilelt(mxLet+mrtet)/(2*nutet); % Left Leading edge flap bias
nuLer=(mxter-mnter)/2; % Right Leading edge flap scaler
biter=(mxLer+mnter)/(2*nuteL); % Right Leading edge flap bias

% TRAILING EDGE FLAP
teLrnl;
tetdu[1/(35)^2, 2*(0.71)/(35), 1];
mxteL=45; % maximum positive deflection -Left trailing edge flap (deg]
mntet=-8; % minimum negative deflection -Left trailing edge flap (deg]
tern=tetn;
terduteld;
mxter=45; % maximum positive deflection -right trailing edge flap[deg]
mnter=-8; % minimum negative deflection -right trailing edge flapfdeg]
[FteL,Gtet,Htet,Dtetl]=tf2ss(tetn~tetd);
CFter,Gter,Hter,Dter]=tf2ss(tern,terd);
nutet=(mxtet-mntet)/2; % Left trailing edge flap scaler
bitel=(mxtet+mntet)/(2*nutet); % Left trailing edge flap bias
nuterx(mxter-mter)/2; Z Right trailing edge flap scaler
biter=(mxter+mnter)/(2*nutet); % Right trailing edge flap bias
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%Scaling and biasing
NU=w(nustl nustr nulet nuter nuteL nuter]; % scale input from./-l to physical
binCbistt bistr bitet biter biteL biter]; % input shift (bias)
NUiffax(abs( CcnucstL;mnustt], Emxstr;wnstrl, EmxteL;ImnetlI E Cxter;.mterl,
tnucte(;imntel3,* mxter;mnvter]11);
biuzeros(bi);
disp(' sensors transfer functions, and their state space representation')
% 3 2 U U 2 2 U 2Z 2 Z 2 Z z

% RATE GYRO
rgcn=E1/(131.7), 13; % Pitch rate rate-gyro
rgqd-conv(EI/(167.8), 13,01/(461.7), 1]);
EFrgq,Grgq. Hrgq,Drgq ztf2ss( rgci. rgq);

% ACCELEROMETER
ac~znC¶I(235.8), 11; % Normal accelerometer
aczdw[1/(395.3)^2, Z*(O.96)1C395.3), 1];
CFacz,Gacz, Hacz.Oaczl atf2ss~aczn.aczd);

% ANGLE OF ATTACK
aaninl;
aadzEI/(lt.), 11;
CFaa,Gaa,Haa,Dasal tf2ss~san,aad);

% ----------------------------------------------------------

disp(' CalcuLation of longitudinal matrices')
% calculating continuous Longitudinal dynamic matrix.
% In:Xxz~u.w~q,theta3', Out:Xxd

FxC2,:)=Ezu zw U"eI) -g~sin(thetaO)1/(I-zwd);
Fx(1. :)sfxu xu (xq-W) -g'cos(thetaO)]+xwd*Fx(2,:);
Fx(3,:)=Dma mw aq 0 Ilfhd*Fx(2,:);
Fx(4,:)zCO. 0, 1, 0 1;

% calculating continuous Longitudinal control matrix.
% In:Dxz~dstx,dtex,dtexl', Out:Xxd

Gx(2,:)=Czda zdtf zdtf]/(l-zwd);
Gx~l,:)*Cxds xdtf xdtf]eGxC2,:)*xwd;
Gx(3,:)uzimds mdtf mdtf]4.GxC2,:)*,mid;
Gx(4.:)=CO, 0, 0 1;

% calculating Longitudinal measurement matrix. In:Xx, Out:Yx=Cq~nz,alphajI

Hx(1,:)uCO, 0, 1, 01;
Hx(2,:)xFxCZ,:)-Nx(1 ,:)*U; Xnzzwdot-U*q=IJ*(atphadot-q)
Hx(3,:)=(O, 1/U, 0, 01;

% calculating Longitudinal control feedforward matrix.
% in:OxwCdstx,dtex,dtex]', out:Yx

Dx(1,:)=CO. 0, 01;
Dx(2,:)~(,)
Dx(3,:)t0,. 0, 01;

% --- ----- ---- ----- ----- ---- ----- ---- ----- ----- ---- ----- ----

% calculating longitudinal controls distribution.
% [n:O=(dstr,dstL,dter,dlel,dter,dtell ',Out:Dx=Edstx,dlex,dtexl'

Inguzeros(3,6);
lng(l ,1)=0.5; Lng(1 ,2)=O.5;lngC2,3)=O.5; lng(2.4)zO.5; lng(3,5)2O.5; Lng(3,6)=0.5;
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disp(' appending system matrices')
% system dynamic matrix. In:X=[u,w,q,theta]I, Out: Xd.
% control matrix. |n:D=[dstr,dstt,dler,dLet,dter,dtet]', Out:Xd
X measurement matrix. In:X, Out:Y=fq,nz,atpha]'.
% control feed-forward matrix. In:D, Out:Y

Fm=Fx;
GopGx*tng;
Hmzx;
Dm=Ox*lng;
% ----------------------------------------------------------------------

% convert from (per radian) to (per degree) and from (ft/sec^2) to (g)
disp('convert (/rad) to (Ideg) & (ft/secA2) to (g)0);
Cnxnu] size(Gm); [nynu]=size(Dm);
r2d=180/pi;
d2r=l/r2d;
Mu=eye(nu)*d2r; % Get inputs in degrees
Nx=diag( C1,U, 1,11); Z change w to alpha
Ny-diag([d2rgd2r]); % convert to degrees and g's
Fm-Nx\Fm*Nx;
GnwNx\Gm*Nu;
Hm=Ny\Hmg*Nx;
Dm=Ny\Dm*Nu;
end;

% -----------------------------------------------------------

disp(' actuators state variable model')

rFA,GAHADA]=append(FstrGs trHstrDstr,FstLGstltHstLDstL);
EFA,GAHA,DA]=append(FA,GA,HA,DA, FLer,GLer,NLer,DLer);
(FA,GA, HA,DAI =append(FA, GA, HA,DA, F tet, Gte, Ie ,D LeL);
(FA,GA,HA,OAI=append(FAGANAOA,FterGter,HterDter);
(FA, GA, HA,DA] =append( FA, GA, HADA, Ftet, Gtel, Htel ,Dtet);
% Scale inputs
GA=GA*diag(NU); DA=)A*diag(NU);

disp(' sensors state variable model')

CFSGSHSDSI=append(FrgqGrgqHrgqDrgqFaczGaczHaczDacz);
[FSGSHSDSI append(FSGSHSDSFaaGaaHNaDaa);

disp('check and balance matrices')
EFmGmmH]=ckbal('Fm,'Gm ''Hmm' ,FmGmHm);
EFAGAHA]=ckbaL('FAI',GA' ,'HA',FAGAHA);
[FSGSHS]=ckbal('FS','GS', 'HS',FSGSHS);

% -----------------------------------------------------------
disp('cascading the system')
[FpsGpsHpsDps]=series(FAGAHADAFmGmHmDm);
[FpsGpsHpsDps]=series(FpsGpsHpsDpsFSGSNSDS);

5% must discretize AFTER cascading continuous systems
disp('discretize the matrices')
[FpdGpd =c2d(FpsGps.ts);

% ----------------------------------------------------------------------
% find the extrinum values of each output due to each controller and

of % normalize to */- 1.
by=zeros(1 ,ny);
cs=ones(1,ny);
ii=input([(EDo you wish to normalize outputs to +/-1? Cy]/n '],'s');
if isempty(ii), iih'y';end;
if iiHu'y' %normalize
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dispc'Normulizing...'1)
format compact

if(modet-u'1') evaL('ltoad I directory 'zcsl.mat']);% get cs,by
cscaLeb('d' ,Fpd,Gpd,diag(cs)\Hps,diag(cs)\Dps,bi,by,ts,1,1);
by,cs % show by and cs
else
Lzinput(C'Enter 0 of iterations C1e6]: '1);

if isempty(L), Ll~e6;end;
white 1
Ecs,by]=cscateb('d' ,Fpd.Gpd.Hps,Dps,bi ,by,ts,1 , );
ininput(IDo you want to recalculate cs, by? y/Eni ',Is,);

if (iseflpty(i)) break;end;
Mifnin') break;end;

end;
izinput('Do you want to edit cs, by (via .mxy.,iny)? y/Enl ',Is,);

if (isempty(i)) izln$;end;
Mifiu'nl);

else
keyboard;
by--0.95*(nmxy~mjny) .I(maxy-miny)
cs= (mmxy-miny)/(2*0.95) % The 0.95 is 5% safety factor
end;

format;
end;

Hpsudiag(cs )\Hps;
Dpsadiag(cs)\Ops;
end;
%x----------------------------------------------------------

uiunput(['Do you want to save matrices to I directory I for NH use? Eyl/n %Is,');
if isegipty(i), iz'y';end;
if iza'y'% Save
evai(C'save I directory 'ZFdld model '.mat Fpd']);
evat(C'save I directory 'zGld' model '.mat Gpd'1);
evaL&I'save I directory 1zHLd' model '.mmt Hps']);
eval(C'save I directory 'zDLd' model '.mat Dps'l);
evaL(Crsave I directory 'zBiL' model '.mat bill);
evat(E'save I directory 'z~oL' model '.mat by']);
evaL(C'save I directory 'zcs' model. '.mat Cs by MU Mu Mx My']);
end;
format

148



APPENDIX B. TIME AND FREQUENCY RESPONSES OF
ARTIFICIAL NEURAL NETWORK EMULATION OF
DAMAGED AND UNDAMAGED F/A-18A AIRCRAFT

The graphs in Appendix B are referenced in chapter VIII. The reader is

referred to chapter VIII for comprehensive explanation and related discussion

regarding the plots that appear in this appendix.
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Figure B.8: Normal Acceleration Response of Undamaged Aircraft Due to Leading
Edge Flaps Dipole Command, Single Plant, Single Network Emulation
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Figure B.9: Normal Acceleration Response of Undamaged Aircraft Due to Trailing

Edge Flaps Dipole Command, Single Plant, Single Network Emulation
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Figure B. 10: Angle of Attack Response of Undamaged Aircraft Due to Stabilators,
Dipole Command, Single Plant, Single Network Emulation
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Figure B. 11: Angle of Attack Response of Undamaged Aircraft Due to Leading
Edge Flaps Dipole Command, Single Plant, Single Network Emulation

160



ACA Desired & NN Time response due to dter Plant #10.1
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Figure B. 12: Angle of Attack Response of Undamaged Aircraft Due to Trailing
Edge Flaps Dipole Command, Single Plant, Single Network Emulation
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Figure B. 13: Pitch Rate Response of Damaged Aircraft Due to Stabilators Dipole

Command, Single Plant, Single Network Emulation
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Figure B. 14: Pitch Rate Response of Damaged Aircraft Due to Leading Edge Flaps

Dipole Command, Single Plant, Single Network Emulation
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Figure B. 15: Pitch Rate Response of Damaged Aircraft Due to Trailing Edge Flaps

Dipole Command, Single Plant, Single Network Emulation
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Figure B. 16: Normal Acceleration Response of Damaged Aircraft Due to Leading
Edge Flaps Dipole Command, Single Plant, Single Network Emulation
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Figure B. 17: Normal Acceleration Response of Damaged Aircraft Due to Trailing

Edge Flaps Dipole Command, Single Plant, Single Network Emulation
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Figure B. 18: Angle of Attack Response of Damaged Aircraft Due to Stab2ilators

Dipole Command, Single Plant, Single Network Emulation
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Figure B. 19: Angle of Attack Response of Damaged Aircraft Due to Leading Edge

Flaps Dipole Command, Single Plant, Single Network Emulation
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Figure B.20: Angle of Attack Response of Damaged Aircraft Due to Trailing Edge
Flaps Dipole Command, Single Plant, Single Network Emulation
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Figure B.21: Spectral Response of Undamaged Aircraft Due to Leading Edge Flaps,
Multiple-Plant, Single Network Emulation
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Figure B.22: Spectral Response of Undamaged Aircraft Due to Trailing Edge Flaps,
Multiple-Plant, Single Network Emulation
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Figure B.23: Spectral Response of Damaged Aircraft Due to Leading Edge Flaps,
Multiple-Plant, Single Network Emulation
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Figure B.24: Spectral Response of Damaged Aircraft Due to Trailing Edge Flaps,
Multiple-Plant, Single Network Emulation
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Figure B.25: Pitch Rate Response of Undamaged Aircraft Due to Stabilators Dipole

Command, Multiple-Plant, Single Network Emulation
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Figure B.26: Pitch Rate Response of Undamaged Aircraft Due to Leading Edge

Flaps Dipole Command, Multiple-Plant, Single Network Emulation
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Figure B.27: Pitch Rate Response of Undamaged Aircraft Due to Trailing Edge
Flaps Dipole Command, Multiple-Plant, Single Network Emulation
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Figure B.28: Normal Acceleration Response of Undamaged Aircraft Due to Leading
Edge Flaps Dipole Command, Multiple-Plant, Single Network
Emulation
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Figure B.29: Normal Acceleration Response of Undamaged Aircraft Due to Trailing
Edge Flaps Dipole Command, Multiple-Plant, Single Network
Emulation
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Figure B.30: Angle of Attack Response of Undamaged Aircraft Due to Stabilators
Dipole Command, Multiple-Plant, Single Network Emulation

179



0AoA Desired & NN rime response due to dler Plant #1
0.1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time [see] DO[-], NN[--], lNunit(:]

X1O-3 AoA Time response Error due to dier Plant #1
2

-2'
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (seC]

AoA Desired & NN Time response due to dlel Plant #1
0.1

--0.11• i•*i

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time [see] 00[-], NN[--], INunit[:]

10-3 AoA Time response Error due to dlld Plant #1

2

0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time [see] 3

Figure B.31: Angle of Attack Response of Undamaged Aircraft Due to Leading
Edge Flaps Dipole Command, Multiple-Plant, Single Network
Emulation
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Figure B.33: Pitch Rate Response of Damaged Aircraft Due to Stabilators Dipole

Command, Multiple-Plant, Single Network Emulation
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Figure B.34: Pitch Rate Response of Damaged Aircraft Due to Leading Edge Flaps
Dipole Command, Multiple-Plant, Single Network Emulation
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Figure B.35: Pitch Rate Response of Damaged Aircraft Due to Trailing Edge Flaps
Dipole Command, Multiple-Plant, Single Network Emulation
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Figure B.36: Normal Acceleration Response Damaged Aircraft Due to Leading Edge
Flaps Dipole Command, Muitipl.Pl~ant, Single Network Emulation
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Figure B.37: Normal Acceleration Response Damaged Aircraft Due to Trailing Edge
Flaps Dipole Command, Multiple-Plant, Single Network Emulation
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Figure B.38: Angle of Attack Response of Damaged Aircraft Due to Stabilators

Dipole Command, Multiple-Plant, Single Network Emulation
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Figure B.39: Angle of Attack Response of Damaged Aircraft Due to Leading Edge
Flaps Dipole Command, Multiple-Plant, Single Network Emulation
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Figure B.40: Angle of Attack Response of Damaged Aircraft Due to Trailing Edge
Flaps Dipole Command, Multiple-Plant, Single Network Emulation
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Figure B.41: Pitch Rate Response to RBS Excitation of All Inputs, Multiple-Plant,

Single Network Emulation
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Figure B.42: Angle of Attack Response to RBS Excitation of All Inputs, Multiple-
Plant, Single Network Emulation

191



Pdant #1 Freq, response of q due to dier Pont #1 Freq. response of nz due to dier

-20 2

.- 40 -7.. -40

1-S 10 -60 . ..... • . .

10-3 10-2 1o-1 100 101 10-3' 10-2 10-1 100 101

Frequency (Hz) Frequency (Hz)

Pleit #1 Freq. response of AoA due to dier PMont #1 - LEGEND

-- -~Desired Output

"c - •0 '. ... . NN Output

Sys Bode

-;001 01
10-3 10-2 10-' 100 101 0 5 10

Frequency (HZ) 3mf

Polat #1 Freq. response of q due to diel Pont #1 Freq. response of mz due to diel

~~-50

~-40 N

-60 .. . ............................. ~i0...................
10-31 10-2 10-1 100 101 10-31 10-2 10"1 100 101

Frequency (Hz) Frequency (Hz)

Piet #1 Freq. response of AoA due to di, o Plant #1 - LEGEND

D"_-,. esired Output

.50 . . ', NN OutputS-50 ... .. "5 -- . . . .

S\ .Sys Bode

-100 0
10-3 10-2 *0O 100 10' 0 5 10

Frequency (Hz) 3rf

Figure B.43: Spectral Response of Undamaged Aircraft Due to Leading Edge Flaps,
Multiple-Plant, Minimized Network Emulation
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Figure B.44: Spectral Response of Undamaged Aircraft Due to Trailing Edge Flaps,
Multiple-Plant, Minimized Network Emulation
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Figure B.45: Spectral Response of Damaged Aircraft Due to Leading Edge Flaps,
Multiple-Plant, Minimized Network Emulation
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Figure B.46: Spectral Response of Damaged Aircraft Due to Trailing Edge Flaps,
Multiple-Plant, Minimized Network Emulation
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Figure B.47: Pitch Rate Response of Undamaged Aircraft Due to Stabilators Dipole

Command, Multiple-Plant, Minimized Network Emulation
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Figure B.48: Pitch Rate Response of Undamaged Aircraft Due to Leading Edge
Flaps Dipole Command, Multiple-Plant, Minimized Network
Emulation
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Figure B.49: Pitch Rate Response of Undamaged Aircraft Due to Trailing Edge
Flaps Dipole Command, Multiple-Plant, Minimized Network
Emulation
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Figure B.50: Normal Acceleration Response of Undamaged Aircraft Due to Leading
Edge Flaps Dipole Command, Multiple-Plant, Minimized Network
Emulation
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Figure B.51: Normal Acceleration Response of Undamaged Aircraft Due to Trailing
Edge Flaps Dipole Command, Multiple-Plant, Minimized Network
Emulation
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Figure B.52: Angle of Attack Response of Undamaged Aircraft Due to Stabilators

Dipole Command, Multiple-Plant, Minimized Network Emulation
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Figure B.53: Angle of Attack Response of Undamaged Aircraft Due to Leading
Edge Flaps Dipole Command, Multiple-Plant, Minimized Network
Emulation
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Figure B.54: Angle of Attack Response of Undamaged Aircraft Due to Trailing
Edge Flaps Dipole Command, Multiple-Plant, Minimized Network
Emulation
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Figure B.55: Pitch Rate Response of Damaged Aircraft Due to Stabilators Dipole
Command, Multiple-Plant, Minimize Network -Emulation
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Figure B.56: Pitch Rate Response of Damaged Aircraft Due to Leading Edge Flaps
Dipole Command, Multiple-Plant, Minimized Network Emulation
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Figure B.57: Pitch Rate Response of Damaged Aircraft Due to Trailing Edge Flaps

Dipole Command, Multiple-Plant, Minimized Network Emulation
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Figure B.58: Normal Acceleration Response Damaged Aircraft Due to Leading Edge
Flaps Dipole Command, Multiple-Plant, Minimized Network
Emulation
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Figure B.59: Normal Acceleration Response Damaged Aircraft Due to Trailing Edge
Flaps Dipole Command, Multiple-Plant, Minimized Network
Emulation
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Figure B.60: Angle of Attack Response of Damaged Aircraft Due to Stabilators
Dipole Command, Multiple-Plant, Minimized Network Emulation
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Figure B.61: Angle of Attack Response of Damaged Aircraft Due to Leading Edge
Flaps Dipole Command, Multiple-Plant, Minimized Network
Emulation
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Figure B.62: Angle of Attack Response of Damaged Aircraft Due to Trailing Edge
Flaps Dipole Command, Multiple-Plant, Minimized Network
Emulation
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Figure B.63: Pitch Rate Response to RBS Excitation of All Inputs, Multiple-Plant,

Minimized Network Emulation
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Figure B.64: Angle of Attack Response to RBS Excitation of All Inputs, Multiple-
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APPENDIX C. SINGULAR VALUES PLOTS

The graphs in Appendix C are referenced in chapter VIII. The reader is

referred to chapter VIII for comprehensive explanation and related discussion

regarding the plots that appear in this appendix.
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Trace of singular values of weights matrix between layers I and 3
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Figure C. 1: Singular Values Plot of Weight Matrix from ComReg to comhl, Before
Minimization
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Figure C.2: Singular Values Plot of Weight Matrix from ComReg, to comhl, After

Minimiation
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Trace of singular values of weights matrix between layers 3 and4
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Figure C.3: Singular Values Plot of Weight Matrix from comhl to comh2, Before
Minimization
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Figure C.4: Singular Values Plot of Weight Matrix from comhl to comh2, After
Minimization
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Trace of singular values of weights matrix between layers 2 ano 5
2

1.5 z

0.5

0 100 200 300 400 500 600 700 800 900 1000

# of iterotions (10.3]

Figure C.5: Singular Values Plot of Weight Matrix from OutReg to outhl, Before
Minimization
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Figure C.6: Singular Values Plot of Weight Matrix from OutReg to outhl, After
Minimization

217



APPENDIX D. USERIO EMULATION PROGRAMS

The programs in this appendix were written in C to interface with the main

software - NeuralWorks Professional JI/PLUS' by NeuralWare, Inc. that used in this

research. There are seven programs involved here. The main program emul. c is the

USER[O program and is based on the general network structure described in Chapter

VI. There are five dedicated header-files included.

The first is matlablink.h which makes the interface with MATLAH' as a

server program to calculate the singular values of the weight matrices while the main

program is running. The second header file is task depended. The task shown here

is emulation. The F/A-18A undamaged and damaged plant that were emulated are

simulated in a user defined header-filefl81_modeLVh. This file may be edited for

different plants with the restriction described in the program listing.

The third header-file is netparamN.h includes all the user accessed parameters

that influence the network structure and task dependent calculation. The forth header-

file net.udil.h defines parameters and functions necessary for the main program. The

last file, window dat.h defines parameter and user graphic routines. All the

parameters and variables are explained in the body of the program mostly with self-

explanatory names.

The control strategy program emulbpt.nnc controls the flow of the main

USERIO program, and applies the back-propagation algorithm. The use of emul.c

must be in conjunction with this control strategy.
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/* SAuthor S Shahar Dror */
/* SOate S 22 Sep 1991 */
/* $Source S emut.c */

$* SRevision S 16 Jun 1991
/* The NN is trained to produce the next plant state based on */
/* the current and past input commands and real-pLant outputs */
/* Whenever adding/changing Tasks, search for 'Task, to */
/* accommodate/verify correct interpretation! Search also aLl */
/* #include files as well!! '/

#include <stdio.h>
#include <math.h>
#include <sys/types.h>
#include <string.h>
#incLude <mattoc.h>

/* Definitions */
/* ==========
#define UIO SERVER 1
#define SERVER EMULATOR FILE 1
#define SKIP C6NPAT DATA 1
#define BEEP-(printtr("^G"),fflush(stdout)) /* Sound a Beep */
#define SET 1
#define RESET 0
#define LEARN 0 /* LEARN mode indicator */
#define TEST 1 /* TEST mode indicator */
#define ICLearn 2 /* Initial conditions in LEARN mode indicator */
#define ICtest 3 /* Initial conditions in TEST mode indicator */
#define TEST1 4 /* TEST mode, input type is RBS indicator */
#define JACOB 5 /* Jacobian calculation identifier '/
#define Inlay 0 /* Input layer */
#define ComReg Lay 1 /* Comrmand(input) regression Layer */
#define OutReg-Lay 2 /* Network output regression layer */
#define classification 5 /* Define task mode W/
fdefine emulation 1 /* Define task mode */
#define combined cl em 2 /* Define task mode '/
#define controtlTng- 3 /* Define task mode W/

#define cntrlThruPlant 4 /* Define task mode */
/*#define Task classification /* Define operating task mode */
#define Task emulation /* Define operating task mode */

#incLude "userutL .h"
#include "uio strc.h"
#include "uio-tran.h"
#include "uio-reqs.pro"
#include "uio-cmds.pro"
#include "matTab link.h"
#if Task==emulatTon /* Set up emulation mode */
#include "f18atmodetN.h"
#endi f
#if Task==controtting /* Set up controlling mode */
#include "ref moderN.h"
#endif
#include "net.paramN.ih"
#include "net utit.h"
#include "wintdow.dat. h"

#define MAXRAND (Ox4fffffffl)
#define Out Lay (nlayp-1) /* Output Layer number */
#define OutBuf_Lay (Outlay-I) /* Output buffer Layer number '/

/* Declarations /
/* ========*

extern long random(o; /* Random number generator */
int Lcycte=O,Rcycte=O; /* Learning, Recall/Testing cycles counter, */
int LR flag; /* Learn(1)/RecalL(O) flag */
char *sp; /* String pointers */
time-t *tLoc; /* Pointer to current time for random # initialization
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/* Functions necessary for handting the User I/O package itsetf, t/
/t•ttt•tttt•tt•ttttttt•t•ttt•t•t•t•tt•tt•ttt•ttt•ttt•tt/

N•NT U•O [nit(file)
TEXT *fi•e;

(
MINT ret vat = UIO OK;

int mnr; /• Model • r index */
tong ctrp(8]; /* An array of 8 to interact uith control-strategyt/

srandom(time(ttoc)); /, Random # initialization, using a new seed each start t/
/* Initialize counters which interact with controt strategy */
ugctrio(ctrp, O);ctrp[7]=ctrp[6]=ctrp[•]=O;ugctrio(ctrp,1);/*aux2=urkl=•rkZ=Ot/

if(checknet()==UlOERROR) return(UlOERROR); /t Netuork vatidation */
if(start mattab()==UlO..ERROR) return(UlO ERROR); /* Linking to mattab t/
for(rmr=T;mnr<=Nmodets;mnr+÷)( /*Loading models matrices*/

if(toadmodet(mnr)=--'tJlOERROR) return(UEOERROR);
)
/e Load system I•)det if exists t/
if(effector Lay Length>O)(

f or (mnr=•; rmr <=N telmode t s; mnr++)(
if(toedrefmodet(mnr)==UiOERROR) return(U[OERROR);

)
)

setnet(); /* Set and initialize netuork and model related parameters t/
retvat=U;O Attention(); /t Establishing •orking format t/

if(retvat==UlO..ERROR) PutStr("Exiting... Restart the run.");

return(ratvat);
)

MiNT UlOTerm(process)
NINT process;
(
close files(); /t CLose all opened files */
stop•attab(); /* Untinkfng matlab and closing relevant rites and pipes t/

if(LRfLag==LEARN) PutFmt("\nTnaining cycles: •i",Lcycte);
if(LR ftag==TEST ) PutFmt("\nTest cycles: •i",Rcycte);

PutStr( " bye bye\n" );
)

MINT UlOAttention()
(

NINT ret vat = UiO OK;
int tmintmax; /* Hi• & max time levels for N->L suept square •eve t/
int tastLR; /t The value of LRftag uhen entering UIOAttention. */

intrrpt flag=SET; /. Setting interrupt flag. Causes network checking t/
close fTles(); /* If files •ere open, close them */
/t [nquiremode type LEARN/TEST t/
tastLR=LRftag;
LRagain:
PutFmt("\nls this run a LEARN(O) or TEST(l) <#!=001 - quit> ? [•i] ",LRftag);
sp=GetStr();

if(tsp) sscanf(sp,"•i",&LRftag);
if(!(LRftag==O II LRftag==l))(
PutStr("\nLRftag must be 0 or 1. Do you want to quit? [y]/n ");
sp=GetStr();
LR flag=Last LR;

-- * it= II•f(. sp • *sp=='y') return(UlO ERROR);
else goto LRagain;

)

modeinbr=l; /t start training .ith unimpaired (first) model */
randmodets[O]=O;

if(Nmodets>l)(
model nbr=O;
Again:
PutF•("\•nter NOdeL # to train/test (I-%i), O-for art [•i] ",
N•ts,•etnlor);
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sp=GetStro;
ifC*sp) sscanf( sp, "%d", £I iodeL nbr);
if( modeL nbr >NmodeLs :'modelnbrcO A(
PutFmtC' Xslo input name(O] )
goto Again2;

Almodet~ftag=((modeL nbr' =O)?SET:RESET);
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if(LR-flag==TEST)( /* TEST mode ~
/*uuz== z=\I=start=====TESTazzz==\I====2R TEST===ztart\I==/==*I

/* User select input to be used ~
Input Type again:
PutFmt("\n~nter Input Type 1) %s, 2) %s, 3) Xs",
input nameti] ,input nerawC23 , input name [31)
PutFmtC"\n4) %s, 5) %s, 6) %s ri] -8,
input tnaie (4] input name (5] ,input-namne 6],*iniput);
sp=GetStro;

if(*sp) sscanf( sp, "W'*, &input);
if( input >Ninput types '1 inputcl XC
PutFmtC' X", inpuit nameE63 )
goto Input Type-again;

PutFmt(H\nlniput: %s selectedu,iniput-name(iniput] );/*Oisptay seLectionl*I

netSave flag=RESET; /* Resetting best network saving flag */
RcycLen'; /* Initializing test cycles counter
min-RNSsl.O; max RMSzO.O; /* Initializing ret err extrimums ~
ifinput==1)( /* Random Binary Sequence *

if( NmodeLs~l && model nbr=O)(
if(NmodeLs>2) raWnd arrayCNmodets,rand models);
el se(
rand-models[0W=2; rand-modeisls(1W;

PutFmt("\nEnter max random cycles to switch models (Xi] ",rnmC);
sp=GetStro;
if(*sp) sscanf(sp,"Xi"',&rnmC);
MRC~rwnRC;

else nRC=Large number;/* Se'lect a Large 9 .
inTest=O; /4 Test on all inputs on all inputs ~

if~model-nbr==O) model nbr-t;I' Start with original model (for test) *

if(input-=2 11 inputz=3 11 inpujt=-4 1:input==5)(
/*SequentiaL Random Binary, Swept square/sine wave inputs *
PutFmtC"\nEnter upper TEST frequency [%f Hz] "1,Fmax); sp=GetStrC);

if (*sp) sscanf(sp,"XLf"',&Fmax);
if(Fmax> O.5/ts)
PutFmt("l\ripper freq exceeded. Fmax set to %f Hz"l,FmexO0.5/ts);

PutFmt("\nEnter Lowest TEST frequency [%f Hz] 1",Fmin); sp=GetStro;
it(*sp) sscanf~sp,"XtLf',&Fmin);

mRC=(int)(exp2(ceiIC- Log2(ts*Fmin))));
PutFmt("\nSet Test cycles >= Mil,

tmin=fLoor(O.5lFmaxlts);
tmaxxcei lCO.5/Fminlts);

if~tnmx~mRC*O.15) tmaxzceit(mRC*O.15);
if(sweepNHL(tmin, tmax,meC,sweep change times)==tJIO ERROR)
return(UIO ERROR);

sweep coumtzl;Nswieep-change-O; /* initializing sweep counmters*/

if(inputz=4 11 input-z5)(
dmnzinogIu(Fmin);
dftoguC Log1O(Fmax)-dmin)/(mRC-1);
dflin=(Fmax-Fmin)/(mRC-1);

inTest-O;

ifinput==6) /* One second dipole input *

Put~mt("\nSet Test cycles - %tll,

inTest-0; fA~ocdectto-egh(md~!ONoesl

PutStr("\n~o you want to save TEST results? (y]/n 11); sp=GetStro;
if("sp 4 *gpM'1y1)( I* open files for test results

i (openTEST~fi leso==UIO ERROR) return(UIO ERROR);
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if(InPut && N~o UL DESo) TestOataSaveJftag=SET;

eLse TestDataSave-fLag=RESET; I* Don't save TEST resuits *

/*======/\z=end-------==TEST==== I==\-------=TEST- ==end== I=\==*
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1* Funlctions necessary for handling a Learning session. 0

MINT UIO Learn Start()
/* Learn start;1 occurs once at each start (also after intermediate interruption.
Prepares data for next coming cycle 0

MINT ret vat = UIO OK;
int hist,hist_1in,hist out; /0 input data vector initialization counters 0

mnt mnr; /* Model number -counter ~
int i,j,k; /* General indices 0/

£Long ctrp(B]; /* An array of 8 to interact with controL-strategyW
error fLag=RESET; /* Resetting error f lag. No error yet! */

/* Check compatibility of initialization and session type CL/R) ~
if(LR ftagl!LEARN && Rstart fLag==RESET)C /* Wrong, exit! */
PutStr("\nfl You run a LEARN session, but initialized for RECALL.");
BEEP; /* sound a warning Beep */
PutStr("\nFor LEARN, run 1/0O...>Attention I/0. For RECALL, run Run..>RecaL I");
PutStr(". Press <RETURN0.");
GetStro; return(UIO EXIT);

if(intrrpt fLag==SET)( /* Validate network compatibility *
-hcleck neto==-UIO ERROR) return(UIO ERROR);

intrrptj Lag=RESET;

if(LR-fLag==LEARN)C /* Learning mode 0

if(LcycLeXImCzzO netReset fLag==SET)(
for(mnr=1;mnr<NmodeLg;1mnr4)( /* Load I.C. 0

desired output(ICtearn,mnr,excite,&desoutcnmr-1] (01);
/* Checi for errors in desired Outputo) 0/

if(error ftag==SET) return(UIO ERROR);
if( ffecTor Lay tength>O)(10 I~itial Effector 0

for0izO:1<effector Lay Length;i-M)
Effectoronmr-1] [1;0.O7

if(LR~fLag-TEST)( /* Testing mode 0

ifCRcycte~mRC==O && input1=1)(
if( inTest-:forced excitation Length)(

if((Almodet ftagzSET 11 ;4moel nbr>Nmodets) &&
UIO Attention0==UIO ERROR) - return(UIO ERROR);

else in'testzO; -

/*Load test IC*/
desired output(ICtest,modet nbr,excite,&desout(modet-nbr-1J [0]);
/* Checf for errors in desirFed-outputo) ) 0/

if(error ftag-=SET) return(UIO ERROR);
if( ffecTor Lay Length>O)( /0 Initialize Effector*/

for(P10; 1 'effector Lay Length; i6)
Effector (modeL nbr-:1[T3l=O.0;

if~input-3) C/0 initializing sweep counters*/
sweep count=1 Nswepchane=O;

if(input-4 :1 input-5)(
fftog=dnin; P Initializing (LoglO) frequency '
fLin=Fmin; /0 Initializing linear frequency 0

T=O; /* Initializing Time/

i f (i xnput6) T-0; /0 Initializing Time 0

4 ~/0 Place the initial (measurements) conditions in the input data vector 0

if((LR fiag==TEST LI RcycLenMC==O) ::(LR Lag==LEA1FM LI
(Lcycti~ff~C==O ::netReset~ftag==SET)))(

for(mnr-((LR ftag-LEARN LI AlmodeL ftag==RESET)?1 :modeL nbr);
mnr'((LR-ftig=tEARNLIAlmode-ftag--RESET)?Nmodets:moet-nbr);umr+.)(
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I' Set counters for cases in which input historyl=output history *
if(in-history~out history)(
histain history; hist in=O; hist outuout history- in history;

.1 se{(
hist-out history; hist-out=0; hist minn nhistory- out history;

)V

for(jz0;jBzhist;i4.)C 1* Fill in input and regression Layers*/
/* Last pass a ja-hist is preparing for first presentation, not Loaded to REG
UCO) and Y(O) (initial values/conditions) are Lost ~

I' Create excitations */
for(-hist in,i=O;icforced excitation tength;i+4+)(

ifcr-nputzal U (j1R&UId)-z0)/*-kandom Binary Sequence .&
excitetilaC inTesta=ORBS:(inrestza( i41)?RBS:0.0));
if(iriput-2 &U (jXRbsUd)-O)
excitetila=inTest-aiRBS:0.0); /*Seq RBS*/

if(input-a4) excitetilz(inTestaui?1.O:O.0);I*SwL.HSqr*I
if(inputza5) excitetil=0O0; /*Swept L-H Sine Wave ~
/* To induce real zero, subtract the bias. .
if(*xcite~jiI:O.0) excite~ils-bias I (nmr-1] (iI;

input _data[mnr-11 (ilxexcitefi];

tMwnforced excitation length:'0)(
unforcedexcitationCOi ftag,mnr,&iniput datamnmr-13CW3,

&iniput data (iwr-li (forced excitation length] );
/. Check for errors in unmforced excitafion())o

fMerror-t ag-SET) retui~(UIO ERROR);

if(type tength0O)( /* Set to Active the model in tact1
Type((LIF ftag==LEARN?ICtearn:ICtest),mnr,Zdesouttanr-lI WI,

&Ef~ector~wir-11 (01,&input data~mir-1I (excitation lengthl);
/* Check f or errors in Type() )-*I

i f(error-ftag==SET) return(U]O-ERPOR);

/* Now toad into Coa~eg the relevant inputs1
if(hist in0 U& j'hist)(

for~i=O;i~cregressed input tength;ie')(
km(hist in-W)regreised input Length~i;
Conegviir-lI (kininput asta~ulr-1I (Rlsort till;

/1 Put previos output values int Outfteg ~
if(hist out>0)(

for'(i=0;i~regressed outputlength; i'-)(
if( j<h ist)(
kzi+(hi st out-i )*regressed output length;
OutReg~rmnr-1I Ck]=desout (nw-r-1I MRiort (ill;

else
desoutOLd~mnwr-11 (ilzdesout(,unr-1I (ROsortlilI;

I. Using current excitation, calculate desired output at ta(current.1)*/
desired output(L.R-fag,mmr,&input data(mnr-1I (01 ,&desout Ciwr-11 (01);

P (end for-j) Do unitil both regression vectors are filled *
) /* (end for-mnr) 0o for all relevant models ,

ug~ctrio(ctrp,0); /* read counters content */
ctrp(61=1; /* Set wrk1=1 to toad Regressors values *
ug~ctrio(ctrp,i); P. write counters content ~

P / (end if-XARCx-0) */
netReset ftag=RESET; 1. Do not reset network next time *
P. DispLay the starting condition */

if(LR ftag-LEARN) PutFmtC"NnTraining cycles: %i",LcycLe);
if(R-flag-TEST) Putftt("Wnesting cycles: %i",RcycLe);

PutFmt(II, Iriput type: %s, model #: Mi, input 0 in effect: %ill,
input nmet~input] ,modeL-nbr,(iniputaul?inTest:(inyest~l)));

return( ret valt);
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MINT UlO Learn Input(LayM, rUEs, Datap)
MINT LayMl;
MINT nPEs;
SREAL *Datap;

MINT ret vat = UIO-OK;
* mt i; /F Counter inidex *

/* WARNING: Layers that are not to be fiLted, are to be control led via the
control-strategy, and not by not fiLting them in UIO Learn Input, since
this function wilt '-ite the last data that was addressed in this function ~

1* FitL the input Layer with the required input data vector "
if(LayN-=In Lay)(

£ for(i'0;icnPEs;Datap~ilzinput..data~modet-nbrl]i3 Ci]. -');

/* FiLL the Coummnd Regression Layer with the Last output(modeL#) data vector ~
if(LayMz=Cou~eg Lay && regressed input tength>O)(

if( regressed input historjlengtli-cnPEs)(
PutFmt(ll~n ConReg v;ector too small. Vector Length :%i, nP~s=%ill,
regressed-i nput -hi story tengt,riPEs);
PutStr("\nPress RETURN to stop and exit"); GetStrC);
return(UIO-ERROR);

for~i=O;icnPEs;Datap~i]=Com~eg~modeL..nbr-1] Ci], ii'+);

1* FiLL the Output Regression Layer with the last output(modet#) data vector ~
if(LayN==OutReg Lay && regressed output tength>O)(

if Cregres'sed output histoiry engtli~nPEs)(
PutFmtC"I\n Ou-tReg v-ector too small. Vector length AXi, nPEs=%i11,
regressed output history Length,nPEs);
PutStr("\n~ress IRETURN to stop and exit"); GetStro;
return(UIO ERROR);

for(iuO;icnPEs;Datap(iI=utReg~modeL-nbr-1] [i], i-');

1* FiLL the Output Buffer layer with last desired output~model#) data vector/
if(LayNzzOutBuf Lay && regressed output Length>O)(

for i =0; -<nPEs;Datapti] d~ioutoLJcTmodeL nbr-1II C], i-');

return( ret va I);

MINT UIO Learn Output(LayN, rtEs, Datap)
MINT Layti;
MINT nPEs;
SREAL *Datap;

MINT ret vat = UIO-OK;
mnt i; /1 Counter index '

1* Fitl output Layer with the desired output data (sensors measurements) *
f or( i0; i <nPEs; i-')
Datapti]=desoutOtdtuodet nbr-1] (i]=desout CmodeL nbr-1] Ci3;

return(ret-vaL);
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HiNT UJO Learn -Resutt(Layt4, nPEs, Datap)
HINT LayN;
HINT nPEs;
SREAL *Datap; / ~Datap =pointer to array that contains output data *

HINT ret vaL x U1O OK;
double ret err,err NS; I' Relative output error *1
double abs mar; - /* Absolute value of the measurement ~
static int cycL(Nmodelsel2,input index=O Iuodel index=D; 1* Cycles counter ~
static int his -cycLC23CNmodets+1T;/* History cycLe counter for Learn and Test *
tong ctrPU8], /* A pointer to array of 8 coun~ters that control MW run
mnt Last-model; /* In TEST, & input x1,.saves previos model number *
mnt iJj; 1* Counter index *

double nntoutputLayLength];

/* This function reads th* output of the current step,
and prepares the input for the next step

if(error,,flazST r 0unC ERROR);
if( ffec orLyenhOI LaiNazeffector tay)X/*Get control outputs*/

if(nPs fco Layength)( I* 'Check matching */
PutStr(UnWrong control- Layer or control- Length mismatch");
PutFmtc N. Layt4=%i nPEs=2i * effector-tIengthill,

LayN,nPEs,effector lay length);
efLay -ftag==SET; /* Enable setting Effector lay # 'Il
check neto; /* Resetting effector lay I *
PutStrF("Rer~un after termination. 10);
return(UIO EXIT);

for(izO;i'niPEs;Effectorcmodel~nbr-1] Ci]=Datapil *-)
/* if effector layer is the output layer, continue ~
ifeffector Lay 1x Out lay) return~ret vat);

1* increment the counter and u.pdate the display as necessary ~
if(LR~ftag=SLEARN)( /* Display Learn cycles in LEARN mode *

if(ResetLimit fLag=SET U& LayNz=Out Lay &
Limi tsrmodetlnbr,Datap)zxO)(

ug~ctrio(ctrp.O); 1* read counters content ~
ctrp[7]z1; /* Set wrk2=1 to reset network *
ug ctrio~ctrp,1); P write counters content */
Pu7tstrC"\rutput Limit Exceeded. Resetting...");
netReset ftIag=SET;
return(UlOtLearn-Starto);

if(LayNzxConiegLay)( /* Save Coffleg(modeM# output for next*/
if(ResetTrain flag=zSET "a LcyctenR~TC:=O)(
netReset~flagaSET;
return(UIO Learn Starto); /* Reset plant/ref *

for(i=O;i~nPEs;Coa~eg~modetlnbr-1(] C:=Oataplil,i..);
return(ret vat);

I' Save OutReg(modei#) output for next*/
i f(LayN==OutReg lay)(

if(Resetfrainjltagu=SET Ui Lcycte~nRTCa=O)

if(regressed output tength;,O) - =Otaphil , at)
for(izo;TlnPEs;OutRegtmodet nbr-11(] Ci a~i~i

return(ret-vaL);

LIcyc t e4-;
if((cycte%5OO)-c1) PutFmt("\nTraining cycles-. Vi",Lcycle);

if(LR~ftag==TEST)(
if(TestDataSave flag==SET)( /* Save data for analyzing results*/

/*Save iirput coemmands, in TEST mode*/
Mfinput==1) /* Store all inputs *I

for(i=O;iforced excitation length;i)

elefprintf(InPut,"Z'%1.Se "~injpiit datalmodel nbr-11 Ci]);

fprintf(InPut,"V. 1.5e ". input datatmodel rbr-l] (InTest]);
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/*Save desired-outputs in TEST mode*/
for( izO; i-cnoutp; i++)

fprintf(DESo,"% 1.5e l",desout~modet nbr-11 Ci]);
fprintfCDESo, IS\nlh);
/* Save the NN outputs ~

for(i=O;iknPEs;fprintf(NNo,'SX 1.5e "',Datap~iI),i..);
fprintf(NNo, "\nl);

ug~ctrio(ctrp,O); /* read couters content ~
ctrPE6]aO; I* Set wrkl=O. Do not Load Regressors values ~
ug~ctrio(ctrp,l); /* write couters content '
Rcyc Le4-.;

if(Rcycte1ARC==O)(
if(inputmal U NModets'l)(
Last .odetzmodet nbr;
.odeT nbrarand modeLs (modeL index+.);
Put~mt_("\nTes~t_1n cycles: XTl",RcycLe);
PutFmt(", model M: %i,' input N in effect: %ill,
model nbr, Ciniputaul?inTest:(CinTest.1 )));
/* Prepare values for Outluf Layer

(for test with desired values!) *
for(izO;i~output Lay length;i4.)
desoutOLdEmodeL Abr-T] (i3=desout[Last model-i] (i;

ifCmodeL inidexzmoaet indexXNmodels)0= U& NmodeLs>2)
rand-array(NmodeLs, raiidmodeLs) ;/*new rand modetseq*/

else(
inTest+.;
return(UIO-Learn-Starto);

if(CRcycteX500)<1) PutFmt("\nTest cycles: %i",Rcycte);

cycltmodet nbrj..; I' Incremient excitation update cycle counater/
I' Generate new control-input and place it in the first elements of input-data*/

if(input-u1) / Random binary sequence */
if(CcYcl (model nbr1=cycl (model nbr] XRbsUd)==O)(

for0i=O.-i~orced excitation Length;i4-)(
exci te(i]x( inTest:=O?RBS:(CiiiTestuai+1?RBS:O.O));
/* To induce real zero, subtract the bias. */

if(exciteli]=0.O) excite~iW=-bias -I (model nbr-1] Ci;
input dmta(modeL nbr-1] (iJzexcite~i];

if(input-=2 U (CyCl(rmodeL nbr]=cycL (model nbrIXRbsUd)==0)
exci te~inTestl=RBS;

ifinput:=3) excitelinTest] =SweptSquare~,aveH2Lo;
ifinput==4) excite~inTest]=SweptSquareiiaveL2HcRcycie);
if(input==5) excite~inTest]=SweptSine~aveL2H(Rcycie);
if(input==6)(

T.=ts;
excite~inTest]=OIPOLEC(T)); /* 1 second dipole *

ifinput!=1) 1* update input data with the new control *
/* To induce real zero, subtract the bias. */

if(excite~inTest]==O.O) excitetinTestil-bias I (model nbr-1] (inTest];
inp~ut data(modeL nbr-1] (inTest]2excitecinTest].

/* If input consist of unforced excitation, calculate it.
* if~Muforced exci tation length'O)

wiforced-exEi tati on( LR~f ag,modeL nbr,&input data (model nbr-'.j,
&input -data(model nbr-1] (forced-excitation Ltength]);

/* if input consist of type inJication, catcliate it. ~
if(type length'0)( /* Set to Active the model in tact *

lror~i=O;i.cnPEs;m(i]2Datap~i].i4+);/*convert float to double *
Type(LR~ftag,model-nbr,nn.&Effectortmodel -nbr-1] (0].

&iniput data (model nbr-1] (excitation Length]);

I' Save best network if desired (convergence test)
if(((netsave ftag==SET ::(Nmodels>1 U rand~models(0]!=0))"inTest==0)
ULR -fag=LEARN U& Lcycte>NErrConv)(

for( i=O,err M5=0.0; i~noutp; 14-4)(

229



ret -err=(desouttmodetlnbr-1] Ci]-(double)Datap~i]);
err MS,=ret err*ret err;

if((err RNS~sqrt(err NS))r'convergence)(
rf(.+cotv test WI ==Lcycle)(

for~i=NErrConv;i~l;sun~il~sLuI~i-1I~i-);
sunCO].=(sun(ll=err RMS);

if(44conv test ET]>=NErrConv)(
if(suutO] ~min suml && netSave flag==SET)(
SaveNet(Iest~etName.NetSavel4ode);
mi n sumuswi[O];
Putfhit("\nTraining cycles: %i",Lcycte);
PutFmt(", Input type: %s, model #: %ill,

input nune~input] ~modetlnbr);
printf(n\nTraining cyclei: %i",LcycLe);
printf('I, model #: %i, m~ean min RM4S=f",

fflus~stdut); model nbr~mrin sui/NErrConv);

sunCEl -usuiCNErrConvi;

else(
cony test 101 4cycLe;
conv test t131;
sLnEIt1=err-RMS;

/* Prepare output for next presentation of that model *
desired output(Cinlput==l&&LR ftag==TEST)?TEST1 :LEARN,modeL...nbr,
&input aata~modet nbr-I3 (01,ldesout~modet nbr-1] WI);
/* Switch models Tf it is the time to do so. *I

if(inputlz && IR fLag==LEARN "& LcycLe~fndC==O U& Nmodels>1)(
model nbrarand moaelstmodet index];

f(Cmodel index=((e'.modeI index)XNmodeLs))=0 U& Nmodets'-2)
rand arrai(Nmodels,randmnodets);/*new random modet-seq*/

nRC=JLeycle-;minSII+randomo%)(max'SW-minSW);

return(ret-vat);

HINT UJO Learn End()

HINT ret Yet = UIO OK;
if(LR -ftig=LEARN)?
I' Save matLab workspace containing SVDs matrices *
fputs(I"save "l,matlab);fputs( svdn ,matLab);fputs("\n",mattab);/* save ~
PutFmt("\nTraining cycles: %i",Lcycle);

if(LR~flag=zTEST) PutFmt("\nTest cycles: %i".Rcycie);
intrrpt 'rflag=SET; /* An interrupt occurred. Check network. *
PutStr(l. To terminate press -cRETURN> 00);
GetStro;PutStr("\b ... Done! 4);
returnC ret val);

230



1* Functions necessary for handling a recall or testing session. *

MINT UIO RecaLl Start()

MINT ret vatL UIO UPDATE;
1* Check compatilbiLity of initiatization and session type Cu/R) *

if(LR fLag!=TEST)C 1* Wrong. Exit! *I
PutStr("\n!! You run a RECALL session, but initialized for LEARN.");
BEEP; /* sound a warning Beep */
PutStr("\nFor RECALL, run 1/0O.. >Attention I/0. For LEARN, run Run... .>Learn");
PutStr(". Press (RETURN>.");
GetStro); return(UIO._EXIT);

Rstart~ftag=SET;
return(UIO Learn Startfl);

MINT UIO -Read(LayN, nPEs, Datap)
MINT LayN;
MINT nPEs;
SREAL *Datap;

/* In TEST mode Load desired outputs ~
if(LayN==Out lay) return(UIO Learn-Output(LayN, nPEs, Datap));
/* In TEST/RecaLL mode get Las~t values */
else return( UIO Learn Iniput(LayN, nPEs, Datap));

?IINT UIO -Write(LayN, nPEs, Datap)
MINT LayN;
MINT nPEs;
SREAL *Datap;

MINT ret val UIO OK;
return( UIO Learn Resutt(Laytd, nPEs, Datap));

MINT UIO -Write -Step(LayN, nPEs, Datap) /* Not used in BackPropagation *
MINT LayM;
MINT nPEs;
SREAL *Datap;

MINT ret vaL = UIO OK;
return(r-et-vaL);

MINT UIO RecaLLTest(LayN, nPEs, Datap)
MINT LayN;
MINT nPEs;
SREAL *Datap;

returnCUlO-Learn-Output(LayN, nPEs, Datap));

MINT UIO RecaLL End()

MINT ret vatL UIOOK;
Rstart~fLag=RESFET;

ret urn(UIO-Learn End());
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1* Other miscellaneous functions. *

NINT UIO -Instrwuent(Instruiient id, r~ataEtems, DataEteap)
NINT instriument id;
HINT roataELems;,
SREAL *DataElemp;

NINT ret vaL UIO OK;
double cffE~nInstELint1; I' an array to convert DataEteap from float to double *
char insttmaxlnst~amej,c; I* Variable of an instrument name
int i; /* Counter index */
int rows,cols; /* # rows, # column~s in weight matrix ~

if(n~ataEtems'nlnstELmnt)( I' Check dDE is big enough '
PutFmt(
"\nnstrument transfers too many points. nlnstELmnwt=%i,but has to be:%i"l
,nInstELmnt,n~ataELems);
printf(
"\nnstriument transfers too many points. nlnstElnmt=%i,but has to be:%iu
,nlnstELnnt,r~ataEtems);
error -fLagxSET; PutStr("\nPress RETURN to stop and exit"); spaGetStro;
return(UIO ERROR);

/* convert float Data to double *
for(i=O;ictrOataELems;c3)E~il=DataEtemplil ,i+);

rows~coLs2O;
/~From the instrument name, extract rows, cots and weight matrix name.
* The name of instrument is in the format:
* "rows(any non number character)cots~tname", i.e. 245.12W011
* =2 rotis=245, cotsl12, Wtname-IjOll *

sscanf(ug~getinstrtC),"%d~c~d~s",&rows,&c,&cots. inst);

/* Check for consistency between instrument name and its data size ~
if(r~ataElems! z(rows*cots))(
PutFmt("Instrument n~ataPoints/name error. coLs=%i, rowsz~i. n~ata=%i",
rows,cots,rOataELems);
printf("Instrtunent nrctaPoints/name error. coLs=%i, rows=%i, r~ata~xill,
rows,coLs,rOataElemb); SEEP;
error ftag=SET; PutStr("1\nPress RETURN to stop and exit"); sp=GetStro;
returnCUIO EXIT);

rewind(mat i f); I* to p;.event over fitting mat i f file *
/* Here is es-sentially a smaelt matatb code that caTcULates and saves the SYDs of

"* the weight matrices. Assuming the name of the weight matrix is UtName, the
"* code is:
- save matif UtName
>>' load matif ;
- s~t Name.CsWtName svd(WtName)];
>>~ clear UtName ; % this is not a must. It is for Wt matrices will not

* appear when saving the matlab workspace at UIO Learn Endo.

svemt(mat if,1OOO0inst,rows,caLs,O,c1E, (double *)O); /* save ~
fputsCI'Load "l, matlab);fp~uts(MATLABIF, mattab);fputsC"l \n", matLab); /* load *
fputs("ls",mat lab); fputs( inst ,mat lab) ;fputs("= Cs" ,mat Lab);
fputs(inst,matLab);fputsC"l svd("l,matlab);fputs(inst,matlab);
fputs("1)];\n11,matLab); /* s..C[s.. svd(wt)]; *
fputs("cLear "1, mattab);fputs(inst, matLab);fputs("l \n", matlab); 1* c.ear *

return( ret vat);

MINT UJO-Rewind()

MINT ret vat x UIO OK;
return(ret vaL);

MINT UlO ExpLainCLayN, nPEs, Datap)
MINT Lay;N;
NINT nPEs;
SREAL *Datap;

MINT ret vat = UIOOK;
return( ret vat);
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/' Suthor :S Shahar Dror *
P IWate :S 22 Sep 1991 *

$* Source :S matlab Link.h *

#include <sys/types.h>
#include <sys/stat.h>
#include 'cstdio.h>

#define MATLASPIPE "mattab.pipe"*

FILE *matLab;
FILE *matpipe;
FILE *miat i f; I' matLab interface file '
char *MATt.AII=almatLablFN; /* Location of interface file for matLab*/
char svckiC20O]"S1; I' file name of SVD resuLts*/

int start matLab()

tinmet *ttc; /* pointer to current time in sec from GMTOO:OO:OO 170*1
char tstrC5]; I' pointer to hold integer to string conversion '
int fd;
mnt flags;

if(mattab = popen(I"mattab >/dev/nuLL 2A111, 11w19))NULL)
printf ("error invoking mattab\n"1);exit(1);

setbuf(matLab, (char *) NULL);

I'mknod(M4ATLABPIPE, SIFIFO ISIREAD ISIWRITE);
if((matpipe a fopen(MATLABPIPE, ur+"))=NULL)(

PutFmt("error opening Xs",MATLABPIPE); return(uIO ERROR);

setbuf(matpipe, (char *) NULL); '

strcat(MATLABIF,tstr);strcatCM4ATLABIF,"1.mat'l); I' get a unique name '
Mmrif~fopenC 14ATLABIF, 'aw'))-NULL)C
Aujtfmtt(error opening Xs",MATLABIF); retUrn(UIO ERROR);

setbuf~mat i~f, (char *) NULL);
return(UIO OK);

void stopnmattab()

fcLose~mat i f);
fputs(C"deLite 11, mattab);fputs(MATLASIF, mattab); fputsQ'1\n0, mattab);

fputs("lquit\nn, mattab);
pciose(mat lab);
fctose(matpipe);
uni ink(MATLABPIPE);

typedef struct C
long type; /- type '
Long nurows; /* row dimension '
long ncoLs; /* column dimension '
long imagf; I' flag indicating imag part '
long namlen; I' name length (including NULL) '

)Fmatrix;

/* Here is an example that uses 'savemat' to save two matrices to disk,
*the second of which is complex:

* FILE *fp;
*double xyzC5001, ar[5OO], ai(5003;
* fp = fopen("foo.mat11,"wb"1);
* savemat(fp, 1000, 11xyz11, 2, 3, 0, xyz, (double *)O);
* savemat(fp, 1000, "all, 5, 5, 1, ar, ai);
* fctosecfp);

*See ... /mattab/Loadsave/savemat.c for more details. '
void savemat(fp, type, pname, mrows, ncots, imagf, preaL, pimag)
FILE *fp; I' Fite pointer *I
mnt type; P* Type flag: 1000 for Sun '
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char *pname; /* pointer to matrix name ~
int mrows; /* row dimension */
int ncols; /* column dimension ~
int imagf; 1* imaginary flag */
double *preat; /* pointer to real data *
double *pimag; /* pointer to imag data *

Fmatrix x;
mnt tin;

x.type = type;
x.mrows = mrows;
x.ncots zncots;
x.imagf = imagf;
x.namlen a strten(pname) + 1;
vmn = x.mrows * x.ncots;

fwrite(&x, sizeof(Fmatrix), 1, fp);
fwrite(pname, sizeof(char), (int)x.namten, fp);
fwrite(preaL, sizeof~dot.ble), in, fp);
if (imagf) (

fwrite(pimag, sizeof~doubte), imn, fp);

/* Here is an example that uses 'loadmat' to Load a matrix from a MAT-file:

* FILE *fp;
* char namec2O];
* mt type, mrows, ncots, imagf;
* double *xr, *xi;
*fp = fopen("lfoo.mat'l,'*rbi");
* oadmat~fp, &type, name, Lanrows, &ncols, &imagf, Uxr, &xi);

* fclose(fp);
* free(xr);
* if (immgf) free(xi);

*See ... /matLab/Loadsave/loadmat.c for more details.
mnt Loadmat(fp, type, pnaiue, mrows, ncols, imagf, preaL. pimag)
FILE *fp; /* File pointer */
int *type; /* Type flag: see reference section of guide *
int *mrows; /* row dimension *I
mnt *ncots; /* column dimension ~
int *imagf; /* imaginary flag *I
char *pname; /* pointer to matrix name ~
double *"preal; /* pointer to real data ~
double **pimag; /* pointer to imag data '

char *mattoco;
Fmatrix x;
mnt vmn, namlen;
if (fread((char *)&x, sizeof(Fmatrix), 1, fp) !=1)(

return( 1);

*type =x.type;
*mrows x.mraws;
*ncots x.ncots;
*imagf =x.imagf;
namler, x.namlen;
vmn z x.mrows * x.ncols;

if (fread(pname, sizeof(char), namlen, fp) 1= namterv) return(l);
if (!(preal = (double *)malloc~imnsizeof(double))))(

printf(oo\nError: Variable too big to load\n");
return(l);

if (fread(*preal. sizeof(double), tin, fp) != mn)
free(*preal);
return( 1);

if (x.imagf)(
if (W(pimag =(double *)matloc(in,*sizeof(double))))(

printiC'\nirror: Variable too big to load\n");
treeC*preaL);
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return( 1);

if Cfread(*pimnag, sizeof(doubte), mn, fp) !2 imn)
free(*pilnag);
free(*pre& A);
return( 1);

return(O);
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/* file: f181 modeLN.h
* date: 8 FeS 1992
* revised: 28 March 1992
* programmer: Shahar Dror

* This file contains the definitions and the model of the f18 fighter
* aircraft. Also it defines initial conditions.

* The names of the functions appearing in this file must remain unchanged!

/* ALL definitions in this box MUST appear!! If don't care set to defautt=l(one)
unless otherwise specified by: "!def=... */:• • : •: :\:a=: •a\: a == • : \I: *:

#define plant input order 6 /* order of plant inputs vector "1
#define plant output order 3 /1 order of plant outputs */
#define in history 3 /* # of delayed input parameters */
Ddefine out history 3 1" # of delayed output parameters */
#define Nmoaets 2 /* # of models to train on(>=1). !def=l

1-5_==5==1=55=5=5/====55=15======\==-===5/\5~======I\====1

/*2 The following definitions are in effect ONLY in this header file. The a
a names can be changed, after checking that the desired name does not exist@
& in other files that are in use together with this header-file !*

#define plant order 25 /* order of plant model */

/* Declarations */
/* ======555== -1
/* The values under declarations MUST appear!! If "don't care" set to default,
which is 0 (zero) in the correct type, unless otherwise specified by "defa.. ."*/

double ts=O.02; I" Sampling interval for discretization. def=1. *l
double tau=17.74; /* Characteristic(longest) time constant (sec](Phugoid)*/
/* Frequency band of interest [HzJ in the current model */
double Fmax=5.O; /* Upper frequency (used for swept wave test) */
double Fmin=O.005; /* Lowest frequency (used for swept wave test) */
double exciteEpLant input order]=(O.O);/* Plant input commands = NN outputs */
double bias_ [NmodeTs][plint input order]=(O.O); /*Plant input bias matrix*/

:*5=:===:=5=555=\===55=====/\ \==555:=\=:====:/\ ... ===/\==*

/1" The following declarations are in effect ONLY in this header file. The a
a names can be changed, after checking that the desired name does not existS
a in other files that are in use together with this header-file !!! 2*/

double excite ampLitudelpLant input order] = /* Scaling the input commands */

/* Initial conditions. If !=0 put them here! */
double plantstate ic(plantorderl](.O);/* Plant initial conditions vector "1

double plant A(Nmodets] (plant order*pLant order];/* Plant dynamic matrix */
double plant gBNmodeLs] [plant order*ptant-input order];/* Plant control matrix*/
double plant-C(Nmodels] (p1ant-output.*order*pLant order] ;/*PLant measure matrix*/
double plant D(Nmodets] (pLant output order*pLant input order];/*Ptant ff matrx*/
double bias..CNmodels] [plantoutputorder]=(O.O);/*Ptalt output bias matrix*/

load modeL(mnr) /* Loading matrices of current model to work with 4/

int inr; 1" Model number, 1,2,...,Nmodels "1
(
double *xr,*xi; l* Real and imaginary parts of the loaded matrix /
int type, mrows, ncols, imagf;
int ret vaL=UI OK;
int ,j; /* Indexes */
char name(201; /* Name of loaded matrix. Not used. "1
char intstr[l0]; /* String to hold integer to string conversion 4/

char matfite[251; /1 string to .mat file name for model matrices "/
FILE *ckopenf fileo,*fp;
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sprintf( intstr,tXiII,mnr);
strcat(intstr,".nat"); 1* Create extension to model matrices as XXX#.mat ~

strcpy~matfl e,"zFtd");strcat(matfi Le, intstr);
ifC(fp=ck open fi le(matfi Le,I"rI))==NULL) return(UIO ERROR);

Loadhnt(fp,&typeiý6nam,&mnrows,&ncots,&imagf,&xr,&xi); fctose(fp);-
if((mrows != plant order) :(ncots != plant order))
PutFmt("\n!!Ptant mnismatch. pLantA~model %i] isC~ix~i], ptant order=%ill,
mnr,mrows,ncots,ptant order);
PutStrC"I\nError 'in Load model(). Press RETURN to stop and exit");
GetStro; return(UIO ERROR);

for(i=O;i~cmrows*ncois;ptant-Atmr-1) Ci]~xr~i],i44);

strcpy(nmtfi j*, zGtdH);strcat~flatfi ., intstr);
if((fp=ck openfi Le(niatfi Le,I"rI))==NULL) return(U!O ERROR);

loadeat(fp,&typei~namei,&mroiis,&ncots,&imagf,&xr,&xi); fcL65ie~p);
if((mrows != plant order) ::(ncots != plant input order))
PutFiutC"\nlPiant mismatch. plant Bcmodet~i~is(i[%xT],but set to M~ixli"
Imnr,mrows,ncols,ptant order,pLant input order);

PutStr(U\nirror in Loaa-modet(o. Press RETURN to stop and exit");
GetStro; return(UIO ERROR);

for(i=O;iqnrows*ncots;ptant-Bmnmr-1]Ci]=xr~i] ,i++);

strcpy(matfi Le,"zHtd");strcat(matfi Le, lntstr);
ifC(fp=ck open fi Le(matfi le,I"rI))==NULL) return(UIO ERROR);

Loadmat~fp,&typeiýname,&mrows,&ncots,&immgf,&xr,&xi); fclase(fp);
if(cmrows !=plant output order) 1: (ncots != plant order))
PutFmt("l\nlPtant m~smatch-.ptant C (modeL %i] is[%ix~iT,but set to CWIxli]
,mnr,mrous,ncots,ptant output oirder,pLant order);
PutStr("\nError in Ioaaamodel!). Press RETURN to stop and exitu);
GetStro; return(UIO ERROR);

for(i=O;ikmrows*ncots;pLant..Cmnmr-l] il~xr~i],i44);

strcpy(.atfi Le,"zDtdu);strcat(matfi Le,intstr);
if((fp=ck open fi Le(mmtfi~e,I"r"))IENULL) return((JEO ERROR);

Loadmat(fp,&type-,name,&inrows,&ncots,&imagf,&xr,&xi). fctdse(fp);
if((mrows != plant output order) 11(ncots != plant input order))
PutFmtC"\n!Ptant mismatch~ptant )(modeL %i] is[Xix~iT,but set to MXx~i]"l
,fmnr,mrows,ncols,plant output order,ptant input order);
PutStr("\nError in tLoaa-modeto). Press RETURN t5 stop and exit");
GetStro; return(UIO ERROR);

for(i=O;iqnrows*ncots;pLant-D(mnwr.1](ilzxr(i],i+4);

strcpy(matfi Le,"IzBi L");strcat~matfi Le, intstr);
if((fp=ck openfi Le(matfti e,"rII))==NULL)(
PutStrC"-\nAssuiing no iniput-biasing^G");
printf("\M~ssuming no input-biasing^GII);

else(
loadmat(fp,&type,name,aarows,&ncoLs,&imagf,&xr,&xi); fctose(fp);

if(! (((mrows==ptant input order)II(ncots == ptant input order))
Ii, ((mrows -7 1)::(ncots == 1))

PutFmt("\n!Bias ,nismatch.bias ItmodeL %iihsCix~i3,but set to (Xix~i]"l
,mnr,mrows,ncoLs,l1,ptant input order);
PutStr("I\nError in Load modeLOT. Press RETURN to stop & exit");
GetStr(); return(UJO FERROR);
Wend if*/
for(i=O;i~cmrows*ncots;bias~l tnrr-1] Ci]=xrti] ,i..);

* )/*en eLse*/

strcpy(matfi Le,"'zBotL");strcat(matfi Ic, ntstr);
if((fpzck open fi Le(matfi Le,I"rI))=NULL)(
PutStr(I"\nAssunming no output-biasing^G");
printf("\nAssuming no output-biasing'G");

else(
Loadmat(fp,&type,name,&airows,&ncoLs,&imagf,&xr,&xi); fctose(fp);

if(!M((mrows==ptant output. order) I 1(ncoLs =ptant output order))
&& ((mrows =47 1M(ncols == 1))

PutFmt("\n!Bias mismatch.bias-OlmodeL %i] is(Xix~i3,but set to E~ix~il"
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,mnur,mrows~ncots,l1,ptant output-order);
PutStr("\nError in Load model(). Press RETURN to stop & exit");
GetStro; return(UIO ERROR);
)/*end if*/
for(i=O;i-cmrows~ncoLs;bias-o~mir-1J Ci]=xr~i],i4-');

)/*end else*/

return( ret vaL);

PLANT~ic,mnr*PLant input,PLant out)/*NathematicaL description of plant output *
int ic; /* (InitiaL) condritions type indicator. ICLearn,ICtest, TEST or LEARN 4

int mnr; /4 Model 0 in effect for current desired output calculation 4

/* I - non d ama ged, original. >=2 - i "aired, other '1
double Plant -inputtplant input order]; /* Control inputs vector 4

double Plant-out CpLantou-tputo'rderl; /*f 18 measurements'iiodet coding 4

/4 This function is written in details in order to be able to put in any non-linearities at any
point in the calcuLation*/
static mnt nrlrLast=1; /4 previos model number. Initially the first. 4

static double plant state(Nmodetsl (pLant order]; /* f 18 state-vectors 4

double plant msr state~plant output order]; /4 f18 mar vector 4

double wv (plant order]; /'iiorkini vector*/
mnt i~j;
/4 First X(k+l) is calculated using X(k), U(k), then - Y(k~1) using X(k.1). 4
/* For initial conditions don't update the states 4

if(ic==ICtearn ::ic=lICtest)(
for(i0; icplant -order; i-.)
plant -statemnmr-1] Ci]=( (icz==Ctest) ? 0.0 :pLant~state-ic~i]);

goto iCjump;-

/4 For continuous RBS input (=I) start new model with Last state value of
previous model. 4/

Mfic-TESTI " wirlawr Last)(
for~i0; i-cpLant order; i.+)
plant statelmnrir-lli i]plant statemnmr last-i] Ci];

mnrlast:4mir

/4 Plant state update*/
forC iO; i plant order; is-.)(
wv Ci]=0.0;

forcj:0;jtplant order; 1-) /4 Ax/
wvti].=(plant Amnmr-1] Ci~plant order~j]4plant state~mnr-11[U]);
for( 1=0; ~pplait input order; j4~) /*+B(u~bi) 4

wv~i].z(pLantlB~mor.1] Ciep~ant order~j]
*(PLant inputtlj+bias-l tnr-1] U] )*excite~amplitude~ijD;

for(i=0;icplant-order;ptant~statemn.r-1] Ci]=wvti],i4-); /4 X(kel) 4

ICj wip:

/* Plant measurement update*/
for(i=O;i<plant output order;i4-)( /4 Cx'eDu~bo 4

Plant out CiW0.5;
for~ji0; j'ptant~order;j..)
Plant out Ci] ~
(plant -Cmnmr-1] ti+ptant output order~jI~plant state~imnr-li Ci);

P4 in my case = 0 for(jzO;j~plant i-nput order; j4)7
Plant -outCi]+=(plant Dmnr.1:fi+pLnt output order~j]
*(Planit input~j]+bias I(mnr-i]ECi])*excite anpýlitude~j] );'/

Plant out~i]+m~ias o~mnrr-1] 7i];
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' PFile: net paramNtp.h */
/* Author: Shahar Dror */
P* Date: 9 mar 92
1* Revised:17 Jun 92 '/
/ Subject: This header file contains declarations and
/* definitions of parameters that are used in the USRIO. */
1* It comes before net utit.h and after ref modeLN.h,*/
P* and uses parameteri/vaLues declared there.
1* This header file also contains functions*/

used by the USRIO program for .its execution. Parameters */
1* declared here are global, and accessible to every
1* function in the USRIO, and also to every function

hereafter. Declarations and definitions here should not */
1* be deleted.

This file creates the base parameters that describe the */
1* problem being worked on. Their VALUES may be altered */
1* (but not their names). Default values (i.e if ,'don't- */
1* care") are zero (0), unless otherwise specified. 3/6/92 */

1* */

/* Essential definitions. Provide work base for the current problem. !Default=O*
* The variables are usually self-explanatory by their names. */

#if Task==ctassification /* Set up classification mode */
#define forced excitation length plant input order
#define unforced excitati on length plant output order
#define type length 0
#define excitation length (forced-excitation Length+unforced excitation length)
#define regressed T nput Length excitation Length
#define input laylength regressed Tnput Length
#define regressedi nput hi story_ length regressed-i nput- length*inh i story
#define dynamic output Tength 0
#define regressed output Length 0
#define static output length Nmodels
#define output tay tength NmodeLs
#define regressed output history length regressed output length*out history
#define effectorLayLingth 0
#endi f

#if Task==emutation /* Set up emulation mode */
#define forced excitation length plantinput order
#define unforced excitation Length 0
#define type tength Nmodets
#define excitation Length forced excitation Length
#define regressed Tnput length forced-excitationltength
#define input Lay:length regressed input length+type length
#define regressed input history length regressed input Length*in hTstory
#define dynamic output Tength plant output order
Odefine static output Tength 0
#define regressed output Length plant output order
#define output t ay ength pt ant-output order
#define regressed output history length regressed output_Length*out history
#define ef fctorayength 0
#endif

#if Task=:combined ct em /* Set up classification and emulation mode */
#define forced excTtation length plant input order
#define unforced excitation length 0
#define type length Nmodets
Ndefine excitation length forced excitation Length
#define regressed Tnput length forced-excitation-tength
#define input tay-tength regressedi nput L ength+type length
#define regressed input history length regressed input length*in history
#define dynamic output Tength plant output oraer
#define static_-&tputjlength Nmodets -
#define regressed output Length plantoutputorder
#define outputt a_te ngth p1 antoutputorder+typet Iength
#def ine regressed output hi story Length regressed output_ Iength*out_hi story
#define effector TayLenith 0
#endi f
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#if Task==controtting /* Set up controlling mode *
#define model input length 6
ffdefine model-output Length plant output order
#define forcea cxci tation length ptant iniput order
#def ine unforced cxci tation length 0
#def ine type length (model-i nput_1ength+model output tength+Nmodel 5)
#define excitation Length forcedrexc ita~ i on Length
#def in. regressed Tniput Length excitajtion length-

#def ine regressed input history Length rersedi 9-tnt~n-~tr
#defne ynamc outpu Tegthplant outpuit.9raer

Odefine static output Tength. 0
#define regressed output Length plant output order
#define output laý lengtR plant output order
#def ine regressed output hi story Length regressed..output tength*out.h i story
fdef ine effector~ayjenith model iip~uteng-th
#endi t

fif Task=-cntrlThruPLant I' Set up controlling mode *
Odefine ref in length ref input order
#def ine ref-oui I ength/*eq plant out*I ref-output~order
#def ine plant ini Length/* 1 1 plant input order
#def ine plant out- tength/*eq ref OUt*/ plant output order
#dcf inc forceaIex~iftat ion length ref in~put oraer
#def ine unforced cxci tat i onlength ref output order
#def ine type length (p1lant input orderept ant output order)
ffdef inc excitation Length (forced-excitation Lengthe+unforýced excitation leng~th)
#def ine regressed -Tniput Length -(cxci tat ion length~type Lenigth)
#define inputLay~tengtli (exci tation length~type length)
#def inc regressed input hi story length regressed iinput I ength* in-h istory
#define dynamic oUtput Tength plant input orde-r
Odefine static output jength 0
ffdefine regressed output length 0
#define outputjaajLengtR dynamic output length
#dcf ine regressed output hi story-Length regressed outpUt length~out-h istory
#define effector tay length output lay...engtk
#endi f

1* If the regressed values are not consequent and as described here,*
*indicate the sorting in the functions regress input sorto, and
*regress output sorto. These appear down in this header file.

* Thc user must take care and connect the relevant input nodes to
*the commanid regression Layer in the network (while building it)'!!

#def ine RbsUd 4 P' RBS update divisor/
#define NErrConv 20 /* # of converged RMS error for best network check '
#define NetSa~oefilode 0 /* O=binary, 1=ascii, 2xannotated, 3=screen dump/
#define nlnstElnmt 8190 P max # of elements sent by an instrument '
#define maxl-,stName 25 P" Max Length of instriument nae
fdefinc Ninput types: 6 1" # of input types (see *input name -1)/
#define meaxsweep change 700 /* Max # of sign switching for W-~L swept wave*/
double dpt[fl=(0.57,1.5,2.5,5.0); /* dipole switching times for 0,e.1*-1,0,end.
double conve gence=2e-3; P" Total error RAMS convergence criterion */
double ha0.01; /* Spatial step size for Jacobian calculation *
float min Lima-2.0,mxlinw2.O; P* Limit values for network outputs */
char Nl~rSTtr01zhaNout.dat"; P. file name of MN results in TEST mod*/
char OesOC~li'Des~ut.dat"; /* file name of desired outputs in TEST mode*/
char Inp[20>,-8UInput.dat4$; /* file name of inputs in TEST mode*/
char *inputinamefl=( P !!!check (#def ine Minput types) up here!!!

"Illegal Input", /W input=0 *
"Random Binary-, /* input= 1
"Sequential Random Binary", I. inputs220
"Swept H-'L Square Wave", /* inputs3 *
"Swept L-3H Square Wave", /* inputz4 '
"Swept L-H Sin. Wave,, /* input=5/
"NI sec dipole,,); I" input-6 *

int inputzl; /* Input type indicator, initially set to RBS (=1) *
mnt ruMC=1000; I" Divisor of RBS random TEST cycles model switching O

mnt nnaxSU=2 minSW=l; /* Divisor,bias of RBS random cycles model switching .
mnt nRTC,RZsetTC-lOOOO; /* Reset-training-cycles mode divisor ~
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1' Place here global parameters that are needed for the specific implementation.
Check that they don't exist in the program, including all include files.
These parameters are to be used within functions present in this
header file (net~parauXXX.h). *

/* ---------- V----------....V ------------V------------V------------V----------
#if Task==cntrtThruPtant

W double refoutCHref modets] Cref out Length];
double plantout CNn~deLs] (pLant out length];
double outerr~ptant out ILength];
double U~plant outTengihl=(1 .0,1.0,1.0); 1* Output weighting vector ~
#endif

regress input sort(ReglnSort) /- Input sorting funiction ~
int RegTnSortlregressed input length];

int i; /* Index counter ~
/* Default sorting is in sequentiaL order

for(i=O; i'cregressed iniputlength;ReglnSort~i]=i ,i44);

regress output sort(Reg~utSort) /* output sorting function *
mnt Regi~utsortlregressed outputLength+1];

mnt i; /* Index counter ~
/* Default sorting is in sequential order ~

for( i=O; i cregressed output length;RegOutSort Ci] =i *-

int Limitsimnr,out val) 1* Returns 1 if inside Limits. Else returns 0 *
/* User can write any Limit function, per each output, or common to all outputs,
with min/max or abs values, etc. */
mnt mnr; /* Model # in effect for current Jacobian calculation

1 - non d ama ged, original. -2 - other
float out val (outputlaylength];

mnt i; /* counter ~
mnt Lim; /* if=1, within Limits, if=O, out of limits *

for(i0O;(i~output Lay Length && lim!=O);i++)
Lim=((out-vaL~i>=min-Ii. && out val C] maxl im)?1 :0);

return(tIim);

jacobian(mnur,plant input,plant output,jacb) P~ Jacobian calculation *
double jacb~pLant output order~pLant input order]; P Jacobian matrix *
double plant inpuT~ptant input-order]- /* Control inputs vector ~
double plant output (plant output order] ; I' Current plant outputs vector/
mnt mnar; /* Model # in effect for current Jacobian calculation

I - non damaged, original. >=2 - other *

static double old~plant input(Nmodets] (plant in Length3=(O.O);/* Last inputs *
double dh; /* spatial7 increment including -sign *I
double plant out (plant output order]; /* plant output a perturbated inputs ~
int i~j; 1* indexes */

for~izO; icplant input order; i4-)(
/* Choose the sT~gn of-increment to ensure staying in the domain *
dhzcopysign(h,(oLd~pLant-input~mnar-1] il-plant iniput~i]));
plant input Ci]~d
PLANT( JACOB,mnr,ptant input *plant out)

for(j=O;j~plant output order; j+)(
jacb(i*plant-ouiput~or~er~i]=(plant~out(j] -plant output~jjl)Idh;

oLd~pLant input ,mnr-1] 0i]=(pLantinput Ei -=dh);

desired output(ic,mnr,Ptant input,dso) /* Get desired output '
mnt ic;- / (Initial) conditions, type indicator. ICLearn, ICtest, TEST, LEARN,

TESTI or JACOB to indicate Jacobian calculation. *f
mnt flar; /* Model # in effect for current desired output calculation ~

1* 1 - non damaged, original. -2 - imrpaired, other */
double Plant input~forced excitation-Length]; /* Control inputs vector ~
double dso(cotput lay len~gth];
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extern double EffectorC~models] Ceffector lay Length+l];
double jac~ptant -output -order*pLant...npuI..oraer]; /* Jacobian matrix ~
extern int error-f lag;
int i~j; /* Index counxter *

i f(Task==euL at ion) PLANT(ic,mnr,Plant~ifput,dso);
else if(Task==combined-cL-em)(

PLANT( ic,mnhr,Ptant~input,dso);
for(izO;i~type Length;i'-')

dsotdynauhic output tength~iIz(i=(Imrl)l0-i.;
BCDmnmr,&dso~dynanic-outputjtength]);

else if(Taskz-controtting)(
REF(ic,amrPlant input,dso);
PLANT(ic,mnr,&Ef~ectorimnr-1J (01,&plantout Cmnr-11 C0]);

else if(Task==cntrLThru~lant)(
/* In this inpLementation, for every plant there is a corresponding
reference. If the situation is not so, there should be a matching
between the plant 5 (mnr) and the value sent to REF().
REF(ic,iuirPtant input,&refoutmnmr-1] COD;
PLANT(ic,imr,&Ef'fector~nmr-11 WI .&plantout Cnnr-1I COD;

for( izO; i plant out Length; i+)
outerrli32refoutmnmr-11 ti3-plantoutmnmr-11 Ci];

jacobian(mnr,&Effectormn~r-l]E(01,&ptantoutmnmr-1] tO],jac);
for(i=O; ipLant in length;ii-.1(
dsoCii =0.0;

forc jzO; ~ptpant out length; j4)
dso~i],=(WCI]*o-uterrtj]*jac~i*plant..out_.lengthej]);

dso~il.zEffectormnmr-1] Ci];

/* User put before this Line more tasks if desired. The "else" muist be Last! .
else(
PutFmt("\n!!No desired output() for specified Task (z %i)wTash.);
printf("\n!!Mo desired output() for specified Task (= Mi)",Task);
error-f ag=SET; BEEP;

unforced excitat ion(ic,mnr,Plant input,ue) /* Get unforced excitation ~
int ic; /* (Initial) condiflons type indicator. ICLearn, TEST or LEARN ~
mnt mnr; /* Model # in effect for current desired output calculation *

/* I - non damaged, original. -2 - impaired, other */
double Plant input~forced excitation length]; /* Control inputs vector ~
double uet~rlTorced excita-ti onlength4:1];

static double ueOldtWmodels] (unforced excitation I ength11];
extern double desout0LdCMmodels] (outp~ut layltength];
extern mnt error flag;
mnt i;

if(Taskzzclassi fication)(
for(i=O;icunforced excitation length;ue!i=ueOld~mnwr-¶] CiJ,i+41;
PLANT(ic,wir,Plant.1nrput,Iue0lamnmr-11 (01);

else if(Taskz=controtting)(/* The prior value of the reference model *
/*for( iO; i(Lrforced excitation length; i++)
uetiI~desoutOLdmn~r-T] (iI;1

else if(Taskzemuilation); 1* No unforced-excitation in emutjation*/
else if(Taskx=cntr(Thru.Plant)(

for(i=0;i~unforced excitation length; i4)(
1*if(ic==ICleairn 1,1 ic=LCEARN)*/

ue~i1:refouttmnwr-1]Ci]; 1* it is the old value *
1*ificaniCtest ::ic==TEST)

ueNi=plantout~mnur.1](i1;/* it is the old value *
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/* User put before this Line more tasks if desired. The "else" must be Last! *
else(
PutFmt("\nI'No unforced -excitation() for specified Task (= i)",Task);
printfC'\n!!No unforced excitation() for specified Task (% i)",Task);
error~f Lag=SET; BEEP;

Type~ic,mnwr,nnout,effect out,mtype) I* Model type identification *
int ic; 1* (InitiaLl) conditions type indicator. ICLearn, TEST or LEARN *
mnt Iwnr; /* The model 0 *I
double nntout [output Lay Length]; /* Network output. Not always needed. ~
double effect out[e'ffecTor Lay length+l];/* Effector value. Not always needed.*/
double mtype~type-Length+1T; I' Its representation *

extern int error flag;
mnt i; /* Index counter ~

if(TaskamenuLation)
for(i0O;i~type length;mtype~i]=(i=(mnr-1)?1.O:-1.O), i4);

else if(Task==controfl'ing)(
for~i=O; i~effector Lay length;mtypeti3=effect out~li)
for~i=0;icoutput lay length; i4) -ti

mtyipe~ie+effectorlaylength] =nnout Ci];
for( i0; vcNmodeLs; i-)
mtype~i~type-tength-Nmodesls](i==(Iwr-1)?1 .0:-i .0);

else if(Taskz=cntrlThruPLant)(

for(i0O; keffector Lay Length;i4+)(
*typeci1zeffect~out`(i];,

for(i=0;ikpLant out Length;i++) 1* it is the old value *
mtypeEi+effector Lay length] pLantout [nr-i] Ci];

/* User put before this line more tasks if desired. The "else" must be Last! *
eLse(
PutFmt("\n!!No Type() for specified Task (=0i",Task);
printf("\n!!No Typeo) for specified Task ( i)",Task);
error~f ag=SET; BEEP;
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/' File: net utiL.h */
/' Author: Shahar Dror */
/1 Date: 9 Mar 92
/* Revised: */
/' Subject: This header file contains declarations and
/* definitions of parameters that are used in the USRIO. */
/* It comes after net param.h, and uses parameters/values */
/* declared there. This header file also contains functions*/
/* used by the USRAO program for its execution. Parameters */
/* declared here are global, and accessible to every */
/* function in the USRIO, and also to every function */
/* hereafter. Declarations and definitions here should not */
/* be deleted./* */

#define RBS (2.0*(random()&01)-1.O) /* Random Binary Sequence */
#define DIPOLE(T) (T>=dpl[0]&&T<dp*l[1)?1.0:((T>=dp~l1]&&T<dpl2])?-1.0:0.0)
#define Large nu.mber (int)(exp2(31.0)-1) /* Large integer # 0/
#define Pi 3.T4159265358979 /* The constant pi */
double desout[Nmodels] (output lay length]; /* Desired output 1
double desoutOtd[Nmodels] [output Tay length]; /P Last desired output *1
double unfexcfNmodels] (unforced excitation length+1]=(O.O);/*Unforced excitaln*/
double ComReg[Nmodels] Eregresseainput hislory length];/*Command regres output*/
double OutReg (Nmodet s] (regressedoutput hi story I ength+1] ;/*Out- regress output*/
double EffectorCNmodels] (effector Lay length*l]=(O.O);/*Effector/Controler out*/
double input data[Nmodels] [input TayTength]=(O.O); /* Input-layer data */
double err RMS,max RMS=O.O,min RRS=1.0; /* Relative mean square output error */
double dmin,dff,T•" /* loglO(Fiin), deltaF,F and Time for swept wave */
double dflog,dflin,fflog,flogflin; /* Frequences for swept wave '/
double oneul.0; /P unit value for H-'L swept square wave */
double min sum,sum[NErrConvel]=(O.O); /* RM4S error convergence parameters */
char *BestietName; /* file name of the best network results */
mnt effector layz7; /* Controller output layer # (initial guess) */
int rand inputstforced excitation length] ;/*Array of random unrepeated inputs */
mnt rand models[Nmodels-15; /* Array of randomly unrepeated model #s. /
mnt Rlsort~regressed inputlength]; /*Ordering input units for regression*/
int ROsort[regressedcoutputjength+l]; /*Ordering output units for regression*/
mnt Tau; /* the value "tau- measured in ts units ==tau/ts*/
mnt ntayp,ninp,noutp; /* Pointers to: # of layers,# of input/output nodes */
mnt history; /* # of cycles w/o learning to fill regression layers */
mnt inTest; /* # of input under test, or training input in LEARN */
mnt model nbr; /* # of model under test, or training */
int mRC; /* minimum Recall/test/learn-switching Cycles */
mnt einErTC,MaxErTC; /* min/max error training/testing cycles indicator */
mnt cony test[2]=(O,1); / Convergence test counters */
mnt Nsweep change,sweep count; /* High->Low swept square wave counters */
int sweep. change times[maxNsweep change]; /* H-L switching times vector */
mnt netSaive.flag:RESET; /* Flag when (RESET)/SET (don't)/save best network /
mnt TestDataSave flag=RESET; /* Flag (RESET)/SET (don't)/save TEST results */
int error flag=RESET; /* Flag when (RESET)/SET an error (didn't) occurred */
int intrrpt flag=SET; /* Flag when (RESET)/SET run was (not) interrupted */
int Almodel-flag=SET; /* Flag when (RESET)/SET (more than) one model active */
int Rstart lag=RESET; /* Flag when (RESET)/SET (not) passed UIO Recall Start*/
int ResetTrain flaguSET; /* Flag when (RESET)/SET (dont) use Reset-trainig mode*/
mnt ResetLimit flag=RESET; /*(RESET)/SET (dont) Reset when output exceed Limits*/
int netReset fTag=RESET; /*(RESET)/SET (dont) Reset network */
int efLayflag=RESET; /* Flag when (RESET)/SET (dont) recheck effectorlay #*/
FILE *NNo; /* NN output file in TEST mode */
FILE *DESo; /* Desired output file in TEST mode /
FILE *InPut; / Input data file in TEST mode */

/ In order to prevent compiling errors */
#ifndef Nref models
#define Nref models 0
Load ref modelt(O
#endTf
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int check net()
/* This routine checks that the # of input/ouput PEs match the desired in the USRIO program. If
there is a match the routine returns UIO_OK, on failure it returns UIOERROR h/

(
/* Network parameters h-

int Itype; /* Network parameters */
static int nlays=O; /* # of layers reminder */
char *csp,*netnp; /* Network pointers*/
char *sp; /* pointer to a string h/

long ctrp[8]; /* An array of 8 to interact with control-strategy*/

/* Read network parameters */
ug rdnetinf( &nLayp, &ninp, &noutp, &Ltype, &csp, &netnp );

/* Check if the built network fits the current plant, control and history */
if(ninp != input Lay Length)(
PutFmt("\n!! The-network doesn't match. nPEsin=%i, but has to be :Ai",
ninp, inputLay_tength);
PutStr("\nPress RETURN to stop and exit"); GetStro;
return(UIO ERROR);
)

if(noutp 1= output Lay Length)(
PutFmt("\nI! The network doesn't match. nPEs-out=%i, but has to be :Xi",
noutp, outputlayLtength);
PutStr("\nPress RETURN to stop and exit"); GetStro;
return(UIO ERROR);
)
/* Check consistency between parameters and network structure h/

if(nLayp<5 && regressed output Length>O)(
PutFmt("\n!! OutReg layer requested. At least 5 layers needed. nLays=%i"
,nLayp); BEEP;
PutStr("\nPress RETURN to stop and exit"); GetStro;
return(UIOERROR);
)

/* Set Effector output Layer #, and specify it to the control strategy via AUX2
counter */

if(effector Lay tength>O && (nLays!=ntayp 1 efLay ftag==SET))(
PutFmt("\nlEnter effector-Layer # (input_tay=O) WTi1 ",effector tay);
sp=GetStro;

if(*sp) sscanf(sp,"2i",&effector Lay);
ug ctrio(ctrp,O); /* read counters content h/

if(effector Lay==(nLayp-1)) ctrp[4]=O;
else ctrpc4]=(Long)effector Lay;/* Set Aux2= effector-Layer # h/

ugctrio(ctrp,1); /* write counters content */
ntays=ntayp; /* Set # of layers reminder to # of Layers h/

efLay_ftag==RESET; /* Reset effectorLay # checking h/
)

/* save network name for storing best network results h/

BestNetName=strcat(netnp,,"Bst");

return(UlO OK);
I

void set net()
C

/* Setting and initializing different network and other related parameters */
/* THIS FUNCTION MAY BE EDITED (BY ADDING!!) BY USER -/

Tau=(int)(ceiL(tau/ts)); /* Setting time constant-tau in units of ts h/
/* Sort the # if the output units to be regressed if not consecutive */

regress outputtsort(ROsort);
/h Sort the # if the input units to be regressed if not consecutive h/

regress inputsort(Rlsort);
)

FILE *ck open fite(fpn,type)
char *fpn, *type;
/h Opens a file for r/w

fpn - is the name of the file to be open.
type - is "r" for read, "w" for write.
On success, it return the file pointer. If the file can not be open it
gives a statement and returns NULL. h/

(
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FILE *fp;
if((fpefopen(fpn, type))==NULL)(
printf(of Can't open (for Xs) file: Xs", type,fpn);
PutFmt(11 Can't open (for %s) file: %s", type,fpn);

return( fp);

int open TEST fiteso) /* Open files for saving TEST results *

char *sp;

PutFmt("\nfnter file name to save inputs [Us] 11,lnp);
sp=GetStro;

if(*sp) sscanf(sp,0%s1, Inp);
if((lnPutuck openfi Le( Inp,11wh))=zNULL) return(UIO ERROR);

PutFmtQ'1\nEnter fil~e nans to save NM output C%s] U,NMrsit);
sp=GetStro;

if(*sp) sscanf(sp,11%s'1,N~rstt);
ifCCNNo-ck open fi le(NNrstt,11w1))==NULL) return(UIO ERROR);

PutFmtC"\nEnter file name to save desired output [%sJ 11,DesO);
sp=GetStro;

ifC'sp) sscanf(sp,uis",DesO);
if((DESo=ck~openjfi e(DesO,u"wa))=NULL) return(U[O ERROR);

return(UIO OK);

void close files()
I ~Ctoies ail opened files *

fcoe( ~ t; / lsngiptfl i xss
fctose(IN~u); 1* Closing inouput file (if exists) */
fclose(NE~o); /* Closing desNe output file (if exists) '

return;

void rand array(N, rnd vec)
f* This function gene~rates iuirepeated (N) integer randiom #s valued 1 to N. *1
mnt N; /* # of elements in the random vector.(==forced Iexcitation-length)*/
mnt *rnd-vec; /* Array contaiiiing unrepeated random #s/

int i~j;
rnd-vec[ 1(0]randomC )N)*1;

for(j=l;j<;j44)(
do( /* generate new non repeateti ye random input *
rnd-vec~j]z(randomoN)4.1;

for0i=O;(kj && rnd-vectj3 1= rnd-vec~ifl;i-);
Iwhile(i 1wI)

BCD(N,Nbcd) /* Convert N to its Binary Coded Decimal representation *
mnt N; /* The # to be converted */
double Nbcd~typeliength+1]; I' its BCD representation ~
int i; /* index/
int nc; P copy of N*
ncz2*(N-1);

for(i=O;ictypeliength;Nbcd~i]2(double)(Cnc=nc/2)XZ)*2-1.i.+);

/* From here on are function of different input-counands for testing. *
/*1

mnt sweep HL(tmin,tmax,s,Ltn)
mnt tnmin,tmax,s;
mnt lItn;

char *sp;a
int i,tsum~sum,n22;
double dt,tn~mexNsweep change];
tnEOI~ttn(1]2tmin;
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do(
if( (+.en)>=maxNsweep change)(
PutFmt(

"1\nToo few H-L sweep changing points. Increase max~sweep-change=%ill,
maxNsweep change);
PutStr(H\nPress RETURN to stop and exit"); sp=GetStro;

IF error ftag=SET;
return(UIO ERROR);

lsunr-sufi;
suapttn(1P
dt=((doubte)(1 .O/tmax)-(doubLe)(1.O/tmin))/(n-1);

for(is;icn;i.)(
I tn~i+13=nint~tnEi3)
tn~i3=1.0/(1.O/tn[i-1]+dt);
sum4=nint(tn~i]);

Iwhite(sunc~s);
ltnt--n]+=(s-lsum);
Ltn[O]=n;
return(UIO OK);

double SweptSquarel~aveH2L()
1* Generating alternating swept square wave starting with high frequency
down to the tow frequency*/

M~we ont)=we change times(Nsweepcýhange+1])(
Nsweep change=(++Nsweep~c~iange)Xsweep change~times[WI;
sweep count=1; /* renew counting for the next step ~
one=-o5ne; /* switching state +/- 1 ~

return(one);

double SweptSquarei~aveL2H~cycLe)
mnt cycle;
/* Generating alternating swept square wave starting with low frequency
up to the high frequency *

/* Shaping the spectrum, of the swept wave ~
fflog+=dflog; /* Incrementing Logarithmic frequency *
flog=explO(ffltog); /* Logarithmic frequency */
flin+=dflin; 1* Incrementing Linear frequency ~
df=pow((double)(mRC-1-cycLe~mRC)/(doubLe)(mRC-1 ),3.0)*60.O;
f=(df*fLog+ftin)/(df+1 .0);
T.=ts; /* Incrementing Time *
return(copysign(1 .O,sin(Z*PI*f*T)));

double SweptSineWaveL2H(cycle)
mnt cycle;
/* Generating alternating swept sine wave starting with tow frequency
up to the high frequency ~
1* Shaping the spectrum of the swept wave '
ffLog.=df log; /* Incrementing logarithmic frequency *
ftog=explO(fftog); 1* Logarithmic frequpency */
flin.=dftin; /* Inc rementing Linear frequency ~
df~pow((double)(mRrC-1-cycle~fiReC)I(doubLe)(nrMC-1),3.0)*6O.0;
f=(df~flog+fl in)I(df.1 .0);
T.=ts; I* Incrementing Time *
return(sin(2*PI*f*T));
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/* file: window dat.h
* date: 14 Oct 1991
* revised: 14 Oct 1991
* programmer: Shahar Oror

* This file contains the definitions for windowing and plotting relative
* errors of the output Layer.

#define Ytop 800 /* Topmost window place ~
#define Ybot 450 /* Bottommnost window place '
#define Yspace 10 /* Horizontal window spacing ~
#define Xstart 10 /* Left-most window place */
#define Xmsg Xstart+1OO 1* Left-most message window place *
#define Ymsg Ytop /* Bottommost message window place *
#define Hmsg 20 /* Height of message window ~
#def ine Lmsg 500 /* Length of message window ~
#define window -Length 400 /* Window length */
#define window height ((Ytop-Ybot)-(No of windows-1)*Yspace)/No of windows
#def ins max Nw-indows 8 /* maximum Ifof windows ~
#define msg win 8 /* Message window # *I
#define max win height 75 1* maximum window height *
#def ins xen2 (Xitart+window length)
#define back color 0 7;k black *
#define msg Zolor 3 /* orange *
mnt No of wTnidows=output lay Length; /* initial # of windows *
mnt wiAFl~ig=RESET; I' flag (SET) indicating windows are open *
int PointlFlag(max Nwindows]=(0}; /* first plotting point flag (SET) *
double Yscale~max - windows]; /* Y-coordinate scale factor *
double Yoffset~max Nwindows]; /* Y-coordinate offset *
mnt Line CoLor~max-Nwindows];

void open windows()

mnt wi; /* window index ~
char *sp~bf[903;
double min-val,max vat;/*Window limits values*/
mnt xLL~ytl,/*lo~wer Left coordinate*/

xur,yur;/*upper right coordinate*/

fo~iOw<oofwnosw+)
yur=Ytop-wi*(w~ndow height4Yspace);
xur=Xstart+wi ndow I ingth+1;
xL L=Xstart;
ytLl=yur-window-height;

ugwindow(wi+1,back-color ,xtL. yll,xur,yur);L4box(wie1,7,0,xttL(,ylxur,yur,0);
sprintf(buf."\flhindow Vi min-vat (01 11,(wi+1));
PutStr(buf);spuGetStro;

if(!*sp) sprintf(sp,1"0");
s-canf(sp,"%f",&min vat);
uqjputs(wi+1 ,7,O, 1 ,T,sp,0);
sprintf(buf,"\nuindow %i max vat. [1] ",(wi+1));
PutStr(buf);spoGetStro;

if(!*sp) sprintf(sp,fi1");
sscanf(sp, "%f",&max vat);
ug..puts(wi+1,7,0,1,Twindow~hei ght-15),sp,0);
Yscale~wi]=window-height/(max~val,-min-val);
PutStr(buf);
Yoffset~wij--min vat;
Line Color~wi]=_wi+1;

winFLag=SET;

void Ptot~ata(wi,YvaL) I* plot next data point *
double Yval;
mnt wi;

int y; /*(relative) y-coordinate ~
static int Xold~max -Nwindows]=(0); /*previous X plotting point*/
static int YotdfmaxwNwindows]; /*previous Y plotting point*/

P' compute where the point should be plotted *
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y-(Yval-Yoffset~wij )*Yscate(wi];
if(y~1) Yl-;
if(y~zwindow height) y--window height-i;

/* clear oLd cursor out */
if(Xotd~wi]) ug~tine(wi.1,back~coior,O,Xoidrwil,1,Xotd(wi],window..height-1,O);

V /* plot new data point *I
if(xotd~wi]==O 11 Point1Ftag~wi]==RESET)
ug~point(wi+l,Line Cotor~wi] ,O,Xo~d~wil .y);
else ug-ine( i+1,Line-CoLor~wi],OXotd~wil-1,YoLd~wi],Xotd~wi],y,O);

1* save values for posterity ~
* YoLd~wil~y;

PointlFtag~wi]=SET; /* indicate that first point already plotted *

/* comupte next curser Location ~
Xotd~wi]++;
if(Xold~wi3>=window Length) XoLd~wiJ=O;

/* draw new curser Line */
ug-tine(wi+1,15,O,Xotd~wi].1,Xotdtwi] ,window-height-1,O);
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csv3.1 !file format is Control Strategy Version 3.1
Feb 92 (emulbpt.nnc) Back Propagation Network

I* *

Back Propagation Network Control Strategy, with inupt and output*
!* Regression layers. Suitable for N models (N>=I).3* *

1* Modified by: Shahar Dror. February 26th 1992. *
1.This control strategy allows to test in recall mode, while loading*
the desired output via the 'read' function. In Learn mode it works*

i* identically to the original backprop control strategy. *

1* Here is an example how to utilize it: *
!* MINT UIORead(Layt, nPEs, Datap) *
1* MINT LayN; *
I* MINT nPEs; *
!* SREAL *Datap; *1* ( *

* if(LeyN=--Out lay) return(UIO LearnnOutput(LayNt,nPEs,Datap));*
i* else return( UIO Learn Input(LayN,nPEs,Datap)); *1* ) *
3* *

I' Revision date: 2 March 92 *
1* 2. The control strategy supports a network with built in delay line*
* (regressor) form the output nodes and from the input nodes. *

In the learning phase, the desired output (in USRIO) and the *
outputs of the regressors are saved (io lrnrslt for layers 1&2). *
Before the next learning presentation of that same model, the values*

3* are fed into these layers as if they were there for normal BackProp*
• operation. .

The values are loaded to the output field of the PE. *
!* Revision date: 31 March 92

3. The network has to have an output buffer layer, and the regressmn*
are taken from the buffer layer (not from the output). This is due*
to NeuralWare implementation (feedback from the output layer always*

* takes the desired value and not the output value. *
o*....

!* A similar control strategy is used for training controllers. For*

uniformity, the AUX2 counter comparison was put so that the CS will *
* in cases where there is no need to extract information from a middle*

l* layer. The USRIO program controls the value of AUX2 counter. *
!* 4. In testing the CS supplies "correct" values to the output regress*
1: layer, to check if the Learning was ok. In the real game there is a*
!* direct feedback from the output (practically from the output buffer*

layer), but since the training is not always 100% accurate and the*
recurrent nature of the network, it causes the results to wonder.!* *

!* Revision date: 8 April 92 *

!* 5. In Recall/Test mode, when a new input is tested, the regressors*
f* (OutReg & Coaeg), that con;ain the regressed data of the previous*
!* input that was under test, are initialized. The counter WRK1 is used*
!* as a switch to determine when to initialize the regressors, and is*
!* controlled from the USRIO program. *

07-Sep-90 Modified to work in Learn mode with confusion matrices

'MASK label op-code operands comment
LsaR-sa trace aux3 ! 0 set trace option to aux3
!L saR-sa optclr op:bknc ! 1 do not BKp to PEs w/o corns. BUG!sd
Li-aRsa cset recatt,O ! 2 recall count

Get input (learn and recall) and desired output (learn only)

L saR sa lset in ! 3 input layer
L" R sa io read ! 4 get input data (recall)
L saR io knnin 5 get input data (learn)
L saR I -t cur,! ! comnand(input) regression layer(rev.2)
L saR i-, rnin ! get ComReg(model#) last output(!) data
L saR Iset cur,1 I output regression layer (rev.2)
L saR_ io rnin get OutReg(modeL#) last output(!) data

! On the start of test of new coemand input, initialize Coa~eg & OutReg. L
The counter wrkl serves as the switch and is controlled from the USRIO.

! (rev. 5)
L R-sa ccmp wrkl,1 !is wrkl<1
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L R sa bit anoreg !do not initaitize ComReg & OutReg
L R-sa (set in, 1 command(input) regression layer
L R-sa io read [initialize ComReg(modet#,input#) (test)
L R-sa tset cur,1 ! output regression layer
L R sa io read [initialize OutReg(model#,input#) (test)

L saR sa Snoreg Iset out,-1 ! output buffer Layer
L saR. io min ! get output(modet#)(!) data (learn)
L R sa io read I get output(model#) data(recatL,rev. 4)
LsaRsa Iset out 1 6 output Layer
L-saRi- io lrnout i 7 get desired output (learn)
L R sa io read ! 8 get desired output (test) (rev. 1)
IL_ R sa io rcltst 1 8 get desired output (test)

Start with the first layer for a forward pass through network

L saR sa Iset in i 9 input Layer
L R sa arloop math sumlrnoise:tranloutputle=O 1 10
L-saR- math sumjLnoisejtranloutpute-Ofire ! 11
L saR-sa lset cur,1 1 12 next layer
L saRsa Lcap out ! 13 at output layer ?
L saRsa bit arloop ! 14 loop till done

Compute final outputs

L R sa math sumrnoiseltran outputle-=w !15 Recall
L saRR- math sum tnoise tran output e-=wie*=eflfire ! 16 Learn

I Write results to userio

L saR tset in,1 Iset cormand(input) regressor tayer(rev2
LsaR io lrnrstt !save output for next team of that mod(
L-saR Iset cur,1 !set output regressor Layer (rev.2)
L-saR-- io trnrslt Isave output for next learn of that modi
L saR sa ccmp aux2,2 His aux2<2 (rev. 3)
LsaR sa bIt anoeff !go to output layer (no effector Layer)
LsaR sa (set in,aux2 !set effector layer
L saR sa io Lrnrstt Iwrite its values (for control purposes)
L-saR-sa anoeff iset out !set output layer
L R-sa math ce=e ! 17 Recall
L R sa io write ! 18 recall
LsaaR 1 trnrslt ! 19 Learn

Learn cycle - back propagate error. Store unscaLed error in
current error field.

L saR Iset out i 20 set output layer
L saR alloop math ce-eje*=f',backpLearnfire ! 21
L-saR- Iset cur,-1 ! 22 previous Layer
L-saR lcmp in ! 23 at input Layer ?
L-saR bgt Mttoop ! 24 loop till done
LTsaRis'a trace 0 i 25 turn off any trace function
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