E -
PR

NAVAL POSTGRADUATE SCHOOL
Monterey, California

ELECTE B
DECO 41992}

AN OBJECT-ORIENTED SHIP-TQ-SHOKE
MOVEMENT ANALYSIS MODEL
(CUTTER)
by
Scott E. Shaw

September 1992
Thesis Advisor: Michael P. Bailey

THESIS

Approved for public release; distribution is unlimited

92-30842
92 1 e ATAM LAY

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

12. REPORT SECURITY CLASSIFICATION
UNCLASSIFIED

1b. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

Approved for public relesse; distribution is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

S. MONITORING ORGANIZATION REPORT NUMBER(S)

6b. OFFICE SYMBOL
(if applicable)
OR

6a. NAME OF PERFORMING ORGANIZATION
Naval Postgraduate School

7a. NAME OF MONITORING ORGANIZATION
Nyval Postgraduate School

6¢. ADDRESS (City, State, and ZIP Code)
Manterey, CA 93943-5000

7b. ADDRESS (City, State, and ZiP Code)
Montarey, CA 93943-5000

8a. NAME OF FUNDING/SPONSORING
ORGANIZATION

8b. OFFICE SYMBOL
(i applicabie)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

B¢. ADDRESS {City, State, and Zi° Cocle)

10. SOURCE OF FUNDING NUMBERS

Program Elemenmt NO. Project No. Task NO. WOrk Unit Acomsion

11. TITLE (Include Security Classification)

AN OBJECT-ORIENTED SHIP-TO-SHORE MOVEMENT ANALYSIS MODEL (CUTTER)

12. PERSONAL AUTHOR(S) SHAW, Scott E.

13a. TYPE OF REPORT
Master's Thesis

13b. TiIME COVERED
From To

14. DATE CF REPORT (year, month, day)

15. PAGE COUNT
1992 September)

162

16. SUPPLEMENTARY NOTATION

| Government.

The views expressed in this th '3is are those of the author and do not reflect the official policy or position of the Department of Defenss or the U.S,

17. COSATI CODES
FIELD GROUP

SUBGROUP

18. SUBJECT TERMS (continue oh reverse if necessary and identify by biock number)

Object-Oriented, Amphibious Assault, Simulation, Medium lift replacement, MLR,
MODSIM, Simulation

19. ABSTRACT {continue on reverse if necessary and identify by biock number)

This thesis documents the design and implomentation of » simulation of the Ship-To-Shore movement phase of the amphibisus assaultin a
modern, object-oriented, process-based simulation language called MODSIM 1I by CACI Corporation of La Jolls, CA. The main intent of the
simulation is to build a mods! that will allow the Requirementas, Plans and Prograras Branch (RP&P), Headquarters, United States Marine
Corpes (HQMC) to quantitatively compare proposed replacements for the sasault siveraft and amphibinns currently used in the conduct of the
ship-to-shore phase of the amphibious asssuilt. Candidates from the Medium Lift Requirement (MLR) program are compared to identify that
mix of aireraft whick provides the most rapid build-up of combai power ashore,

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

21, ABSTRACT SECURITY CLASSIFICATION

K uwcusureoummren [sameasneeonr [omcusens Unclassified
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area code) 22¢. OFFICE SYMBOL
Michael P, Bailey (408)646-2085 OR/Bs
DD FORM 1473, 84 MAR 83 APR edition may be used until sxhsustad SECURITY CLASSIFICATION QF THIS PAGE
All other editions are obsolete Unclassified

—

Approved for public release; distribution is unlimited.

An Object Oriented Ship-To-Shore
Movement Analysis Model
(CUTTER)

by
Scott E. Shaw

Captain, United States Marine Corps
B.S., University of South Carolina, 1980

Submitted in partial fulfillment
of the reqqirements for the degree of

MASTER OF SCIENCE IN COPERATIONS RESEARCH
from the

NAVAL POSTGRADUATE SCHOOL
September 1992

Author:

Scott E. Shaw

Thesis Advisor

Approved by: /"/4%&4
Mieflael Pt Baille
/,

W S8econd Reader

pefer Purdue, Chairman
Department of Operations Analysis

This thesis documents the design and implementation of a
simulation of the Ship-To-Shore movement phase of an amphibious
assault in a modern, object-oriented, process-based simulation
language called MODSIM II by CACI Corporation of La Jolla, CA. The
main intent of the simulation is to build a model that will allow
the Requirements,. Plans and Programs Branch (RP&P), Headquarters,
United States Marine Corps (HQMC) to guantitatively compare
proposed replacements for the assault aircraft and amphibians
currently used in the conduct of the ship-t.o-shore phase of the
amphibious assault. Candidates from the Medium Lift Requirement
{MLR) ﬁrogram are compared to identify that mix of aircraft which
provides the most rapid build-up of combat power ashore.

- hage _TRES TR N

NTIS CRA&) X
e OTIC TAB £)
gl T NS Unannou:iced Li
Jastitication

AccCesion For \) =~
Y .]

By
Dist. ibution)

Y VIS

Availlability Co:ces

P Avail a0 or 7
Spicial

Dist

_ A-1|

iid

1.

II.

III.

INTRODUCTION

A.

B.

BACKGROUND

THE USERS

THE AMPHIBIOUS ASSAULT .

A.

A.

SHIP-TO-SHORE MOVEMENT
1. Number of Landing Spots Available

2. Aircraft Capabilities and Limitations

3. Ship Movement .

DESIGN DOCUMENT . .

Tim mDEL - - - - - -

AMFHIBIOUS SHIPS .

'THE AIRBOSS

SERIALS s L)] . - -

HELICOPTER DIRECTION CENTER

'LANDING ZONES . . .

AIRCRAFT

1. Transport Aircraft

a..
b.

c.

Initial Launch .

Transit to Shore .

Arrival at the LZ

.

.

*

5
5
6
7
7
8

11

11
12
13
14
14
14

15

16

d. Transit to Amphibious Shipping

e, Shut-down . . .
f. Fuel Usage . . .
2. Attack Aircraft . .
MODEL EXECUTION

. Inmput

2. Scenario Initialization

3. Replication . . .

4 . output - - . - -

IV. ANALYTICAL PROCEDURES .

BACKGROUND
THE COMBAT POWER ASHORE
CCMPARING CPA FUNCTIONS
1. Cage 1
2. Cage 2 . .-

3. Case 3
4. Dominance
5

. Agsumptions

-

-

+

a. Diminishing Marginal

b, Cutter Output
ANALYSIS PROGRAM . . .
1. Imput
2. Data Preparation . .

a. Timex Array . .

b. Yvalue Array . .

-

- - - »

- - . 3

.

21
21
23
25
25
26
28
28
31
31
31
32
32
32
33
33

3. Cage 1 Comparison e e e e 33
4, Case 2 Comparison 33
E. CONTINGENCY TEST . . ¢ v ¢ v 4 o o o o o o o « 34

V. SIMULATION ANALYSIS S I 36
A. MODEL VERIFICATION ¢« « « o« . 36

B. TEST SCENARIOS'. e e e e . 36

1. 8cenariog e e e e e ., 36

2. Mdreraft L L L . oY e e e e e e 37

. CH-46 . . . ¢ v 4 v 4 v o o o o o o o 37

b, CH-60 & & v v v v e s o v o s @ 38

C. 8-92 & v v v et e e h e e e e e e e 38

d. CH-53E T T 38

€. MV-22 it et h e e e e e e e 38

£. CH-47D . . . & v 4 i e v 4 s e o v s o 39

g. BH-101 & & « v v v o« o o « o o« 39

C. SCENARIO RESULTS & 4 ¢ 4 ¢ o o « « o« & 40

l. Scenario X 44 ... 40

2, Scenario 2 ; e e e e e e e 41
3.8cenario 3 L. 00 e e e e e 42

4. Summary of Test Resulté e v e e e e e e e 44
APPENDIX A CUTTER MODBEBL SOURCZ CODE « . . 46

APPENDIX B HARDWARE REQUIREMENTS 140

vi

APPENDIX C SAMPLE SHIP-TO-SHORE PROGRAM INPUT FILES . 141

” APPENDIX D ‘CUTTER SAMPLE QUTPUT 147
LIST OF REFERENCES 4 v ¢« ¢ ¢« ¢« o =« « « « 1831
BIBLIOGRAPHY < o 4 4 v o o o o o6 s o o « « » 152
INITIAL DISTRIBUTION LIST 4+ « ¢« & &« « + + . 1583

vii

I would like to trank my wife Carla, without whose love,
encouragement and assistance I could not have compieted this
program. |

I must also thank my father, for without the first four

years of college, the last two would not have been possible.

viii

A. BACKGROUMD
According to doctrine, the United States Marine Corps
(USMC)} conducts an amphibious 2assault in five phasges:
® Planning
@ Embarkation
® Rehearsal
® Movement to the Objective Area

® Assault (Ship-to-Shore Movement) .

The vehicles currently used to conduct the ship-to-shore

movament phase of the amphibious assault are rapidly becoming
obsolete. There are two reasons for this. First, in the case
of the aviation wvehicles, the primary medium lift assets (CH-
46 and CH-53A/D helicopters) are well past their originally
projected service life. Service Life Extension (SLEP) and
Special Depot Level Maintenance (SDIM) programs somewhat
extended each aircraft type’s service life, but a tremendous
maintenance effort :s raguired on a daily basis to keep these
aircraft flying. -

Second, in the case of the surface vehicles, the recent
change in amphibious doctrine to the Over-The-Horizon (OTH)
[Ref. 1] concept envisions launching amphibious assault

vehicles from distances that were never imagined when the

the current class of assault amphibians was designed and
procured. The slow speeds at which these amphibians swim
ashore render them tactically obsolete in view of the
increased exposure times that result from the OTH concept.

In view of this growing cbsolescence of the ship-to-shore
vehicles, replacements must be procured which are able to
accomplish the ship-to-shore movement as envisioned by the
current OTH concepts. In an effort to meet these OTH
requirements, two programs are currently underway to determine
the raplacement4vehiclea.

Tha Medium Lift Replacement (MLR) program has been tasked
with finding a replacement aircraft for the aging CH-46 and
CH-53A/D aircraft. Among the alternatives that are being
studied are the Mv-22, cn-sé, an improved model of the CH-46
and the 8-92. The aircraft l1ift capability, fuel endurance and
cruise speed-are among the prime considerations in evaluating
the alternatives available. The identification and procurement
of the MLR aircraft is the highest priority item in the Marine
Corps today [Ref. 2:p. 73].

The Advanced Assault Amphibian Vehicle (AAAV) program
seeks to find a suitable replacement for the current LVTP-7
family of assault amphibians. The speed at which the vehicle
transits to shore is the major difference among the models
currently under consideration.

The USMC budget for the next several years will dedicate

a growing share of funds to developing and procuring these

replacement vehicles. In view of this immense investment it is
imperative that the vehicles chosen perform the OTH migsion in
the most efficient and effective manner possible.

A realistic simulation of the ship-to-shore movement would
allow budget planners to evaluate the performance of the
different wvehicles competing for a share of the constantly
shrinking defense budget. Such a simulation could be used to
perform other evaluations as well. For example, a proposed
landing plan could be run in order to identify potential choke
points. The same simulation could be used to identify desired
characteristics of future vehicles, such as fuel loads, cruise
speeds, and cargo capacities.

This thesis documents the ronstruction and use of an
object-oriented ship-to-shore movement simulation in an effort

to identify the superior of aircraft for the MLR program.

B. THS USERS

This model is an outgrowth of six weeks of research at the
Requirements, Plans, and Programs (RP&P) Branch, Headquarters,
United States Marine Corps (HQMC). RP&P is respongible for
developing the Program Objective Memorandum (POM) which is the
USMC ipput to the DoD budget process.

In addition to identifying the preferred MLR aircraft,

this model will assist RP&P in the evaluation of proposed

changes in the equipment and doctrine currently employsd in

the ship-to-shore movement phase of an amphibious assault.

II. THE AMPHIBIOUS ASSAULT

The goal of the amphibious assault is the rapid build-up
of combat power ashore. This model. provides a means to
quantitatively compare the buaild-up of combét power ashore
achieved by differing mixes of ships, assault craft and
aircraft. Assault cfaft and the aircraft that perform the
ship-to-shore movement are identical objects in the eyes of
this model.

This thesis will examine the aircraft currently under
congideration by the MLR program. It should be noted that
these same procedures could be applied to the vehicles under

consideration by the AAAV program.

A. SHIP-TO-SHORE MOVEMENT

The ship-to-shore movement constitutes the fifth phase of
an amphibious assault. The proper execution of the first four
phases has little impact on the ship-to-shore phase. As a
result, the conduct of this simulation disregards the first
four phases.

There are several key factors that affect the rate at
which combat power is built-up ashore during the ship-to-shore
movement. Ignoring the numbers of amphibious ships, assault

craft and aircraft available to conduct the ship-to-shore

movement, the following capabilities must be modeled.

1. Number of Landing Spots Available
All of the amphibious ships in use are capable of
conducting air operations. The number of 1landing spots
available fx':r use on each ship will dlctate the number and
type of aircraft that may be employed. Figure 1 shows the
landing spot configuration for the LHA class of amphibious
ship.

Figure 1: Configuration of landing spots for the LHA class
of amphibious ship.

On the other hand, the types of aircraft employed, due
to their size, could 1limit the nuriver of landing spots
available. It is apparent that the nunbe; of landing spots
available aboard the amphibious ship has a significant impact
on the rate at which combat power is built-up ashore.

The model must account for the proper use of these

landing spots. Aboard an amphibious ship, different aircraft

types are restricted to the use of specific landing spots. For
example, on an LHA the CH-53 can not land on spot ‘one. The
model must allot aircraft a spot that can be utilized by that
aircraft. Chapter III contains a more detailed description of
the allocation and use of these landing spots.

The amount of time that a particular aircraft type
spends in a holding pattern along w'it_h landing spot
utilization rates will indicate the need for different
aircraft mixes or ship designs.

2, Alrcraft Capabilities and Limitations

The model will be used to compare the rate of build-up
using different aircraft. In order to perform this comparison,
the key differences in the aircraﬁt mist be modeled. These
differences include, but are not limited to:

® Airspeed

® Cargo capacity

® Deck Spot restrictions

® Fuel usage and capacity (the "range" of the aircraft).
3. Ship Movement

It will be assumed that after the commencement of the
amphibious assault, the amphibious ships will continue
movement towards the beach until they reach their preset
holding points. At these points the ships will maintain

holding patterns for the duration of the operation. The

initial starting point, the speed at which a ship presses for

its holding point and the holding point location will be
entered by the user. In this way the distance from ship to
shore may be varied in order to test aircraft capabilities

under different scenarios.

B. DESIGN DOCUMENT

Thapter III serves as a design document, describing in
detail the amphibious assault and the actions of the model as
it simulates the ship-to-shore movement. Chapter III is rnot
meant as a detailed user’s guide, but rather as an overview of
model executiron. Appendix A contains a complete listing of the

Cutter model source code. Appendix B lists the minimum

hardware requirements for using the model.

e R LDy, W

II¥X. THE MODBL

The Cutter model is an object-oriented .simulation
[Ref. 3] developed to analyze the ship-to-shore
movement phase of the amphibious assault. In the Cutter lﬁodel
key players within the ship-to-shore movement evolution are
created as object;s. These objects possess the attributes and
actions required to model the ship-to-shore pihase of the
amphiblious assault. As an example, a CH-46 would be modeled as
an alrcraft object, possessing attributes of airspeed and
cargo capacity, among others. The objects and their attributes
may then be altered in order to explore the effect of these
changes on the ship-to-shore movement.

In this thesis, attributes of aircraft objects are.aitered
to reflect those possessed bj aircraft under consideration by
the MLR program. In this way the most effective MLR aircraft
may be identified. The primary objects of the Cutter model,
along with their key attributes and actions are described in

the following sections.

A. AMPHIBIOUS SHIPS

The ships which are used to transport the landing force to
the Amphibious Operations Area (AOA) are referred to as
amphibious shipping. Examples of amphibious ships are the
Landing Ship, Tank (LST), Landing Ship, Dock (LSD) and the

Assault Landing Ship, Helicopter (LHA). Amphibious shipping
constitutes the ship portion of the ship-to-shore movement. A
group of amphibious ships steaming towards the AOA is referred
to as an Amphibious Ready Group (ARG).

As an object within the Cutter model, the amphibious ship
is known as an ARGObj (Amphibious Ready Group Object). The
primary role of the amphibious ship in the ship-to-shore
movement is to sail from an initial starting location to a
selected holding area. During the ship-to-shore movement the
amphibious ship transfers cargo to the embarked aircraft for
movement to shore,

The number of landing spots on an amphibious ship has a
dominant effect on its capability to move personnel and
equipment from the ship to the shore. Each amphibious ship has
deck space for one (an LST) to as many as ten (an LHA) landing
spots. The actual number of landing spots available for use
aboard a ship will vary depending on the number and type of
aircraft embarked. If a large number of aircraft are embarked,
landing spots are required for the storage of those aircraft
not currently employed. As mentioned in the previous chapter,
larger aircraft may be restricted to conducting operations on

certain spots due to a lack of clearance from ship structures

or other gafety considerations.

4 ¥

B. THE AIRBOSS
The Airhoss is responsible for allocating landing spots to
those aircraft preparing for their initial launch and those
requesting permisgsion to land. Aircraft that request
permission to land when no landing spots are available are
sent to a holding queue known as ®"starboard delta®". The
Airboss allocates open landing spots using the following
priorities:
® Aircraft awaiting launch
® Aircraft holding in starboard delta.
The aircraft holding in starboard delta are prioritized
based on the amount of fuel remaining aboard the aircraft.
Each of the:amphibious ships has its own Airboss and
starboard delta gueue. In addition to controlling flow in to
and out of his starboard delca queue, the Airboss ensures that
aircraft only operate from those landing spots that have no
size or safety restrictions for that type of aircraft.
Within the Cutter model, the Airboss is created as a
SpotManObj (Spot Manager Object).

C. SERIALS

A serial is a set of passengers and/or cargo scheduled for
movement ashore aboard a single aircraft. BEach of the serials
is assigned a source (amphibious ship), a destination (Landing
Zone), a priority, and a mode of transportation. The priority

of the serial determines the order in which the serials are

11

transported ashore. The lower the priority of the serial, the
sooner it is scheduled to be sent ashore. .

The mode of transportation, either as internal cargo or
cargo to be carried externally, determines the airspeed of the
aircraft which transports the serial ashore. Depending on the
cargo to be moved externally, the airgspeed cf the aircraft
could be reduced by as much as 60% of that which the aircraft
would normally fly..

The weight _6f the serial will drive the decision as to
which type of helicopter transports it to shore. In practice,
passengers and lightweight cargo are usually broken into
gserials sized to fit onboard the smallest transport aircraft
embarked. Larger transport aircraft combine two serials in
order to exploit their payload advantage over the smaller
transports. Some serials, due to their weight or size, require
larger transports for movement ashore. '

In the Cutter model, a serial to be moved ashorxe is

created as a SerialGbj.

D. HELICOPTER DIRECTION CENTER

The Helicopter Direction Center (HDC) maintains a
prioritized list of all serials to be moved ashore. This
serial list is used to direct the flow of aircraft between the
amphibious ships and the landing zones.

As an aircraft departs the landing zone, it checks in with

HDC to deterrine the location of the next serial to be moved.

In the case of larger transport aircraft, HDC combines two
serials whenever possible to fully utilize these larger

aircraft.

There is only one HDC within the ARG. As an object in the
Cutter model, the Helicopter Direction Center is known as an
HDCODbj .

E. LANDING ZONES .

The Landing 2one (LZ}, modeled as an LZBeachObj,
represents the shore portion of the ship-to-shore movement.
The LZ is the destination for the serials loaded aboard the
transport aircraft. The only attributes that an LZ possess are
location and a preset number of landing bpots. The landing
gpots in the LZ are identical ir nature to those aboard the
amphibious ships. A

EBach of the landing zones contain a Forward Air Controller
(FAC) who performs the same function for the LZ that the
Airboss performs for the amphibious ship. The FAC, also
modeled as a SpotManObj, éperates in the same manner as the
Airboss with one exception. Since all éircraft start the
simulation from the amphibious ships, the FAC does not have to
contend with aircraft preparing for their initial launch.
Therefore, the FAC allocates open landing spots solely to

aircraft within his starboard delta queue.

13

F. AIRCRAPT
There are two types of aircraft utilized in the amphibious
assault; transport aircraét: and attack airc:_r:aft. The transport
aircraft are used to move the serials from the amphibious
ships to the landing zones. Attack aircraft provide covering
fire for the transports as they perform their assigned tasks.
Each of these aircraft and their roles in the amphibious
assault will be described in separate sections.
1. Transport Aircraft
Transport aircraft are the vehicles which move the
serials from the amphibious ships to the landing zones.
Created as a TrangObj within the Cutter wodel, the transport
aircraft are the focus of this thesis. There are many actions
that transport aircraft perform in the execution of their
mission. These actions and some simpliryihg asrumptions are
described in the following sections.
a. Inmitial Launch
The transport aircraft are embarked aboard
amphibious ships for movement to the AOA. At a pre-determined
laur.ch time, the aircraft obtains a landing spot from the
Airboss in order to commence flight operations. Once the
landing spot is obtained, the aircraft is positioned on the
spot, loaded and launched.
The amount of time that an aircraft requires to

load is determined by the serial that is assigned to the

14

aircraft. Serials that consist entirely of passengers or that
are carried externally usually require the least amount of
time to load. Serials that consist entirely of intermally
carried cargo require the greatest amount of time to load. The
Cutter model looks at the contents of the serial assigned to
the aircraft to determine the appropriate loading time.

b. Transit to Shore

An aircraft must meet certain criteria prior to
departing the _émphibious ship. In the Cutter model, the
aircraft ensures that there is enough fuel aboard for a round
trip from the ship to the shore, plus a pre-determined
reserve. If there is not enough fuel aboard the aircraft, the
aircraft is refueled aboard the amphibious ship from which it
is departing. In the Cutter model there are no refueling
facilities ashore; aircraft are required to refuel aboard one
of the amphibious ships. It is assumed that the refueling
system aboard every amphibious ship is functional.

In addition to checking for sufficient fuel, the
aircraft checks that the pilots have sufficient crew day for
the round trip. While crew day is an administrative safety
limitation placed on the aircrew, it could@ have a very
negative effect cn the ship-to-shore movement. If an aircrew
does not have sufficient crew day to complete the round trip,
the aircraft returns to its wrother ship and commences the

shut -down procedures,

15

The speed at which the aircraft transits to the
shore is determined by several factors. The loaded cruise
speed of the aircraft is the maximum speed at which the loaded
aircraft woﬁld normally transit. If the aircraft is assigned
a serial to be carried externally, the transit speed is
reduced considerably.

c. Arrival at the L2

Upon arrival at the destination LZ, the aircraft
requests a landing spot from the FAC. If there are no landing
spots available, the FAC will place the aircraft in his
starboard delta queue. The aircraft will hold in this queue
until cleared fog landing by the FAC.

The time it takes to unlocad the aircraft is
determined in the same manner as the 16ading time. Those
serials composed entirely of passengers and those that are
carried externally are the fastest to unload, with serials
consisting of intermal cargo being the slowest.

At the completion of the unloading evolution, the
aircraft departs the LZ and transits to the amphibious ships.

d. Trangit to Amphibious Shipping

As an aircraft departs the LZ, it will check in
with HDC in order to determine the pick-up location of the
next serial. The aircraft thea transits to the pick-up

location at its normal empty cruise speed.

16

As the aircraft approaches the pick-up ship, it
calls that ships Airboss. The Airboss will either clear the
aircraft to land if a landing spot is available, or direct the
aircraft to enter the starboard delta queue. Upon ianding on
the amphibious ship, the load, transit to shore, unload,
transit to amphibious shipping cycle is repeated until the
aircraft is directed by HDC to shut-down.

e, Shut-down

Aircraft will repeat the cycle described above
until directed by HDC to shut-down. In the Cutter model there
are two reasons that HDC would direct an aircraft to shut-
down. The first would be if the aircrew should exceed crew day
limitations. Secondly, an aircraft would be directed to shut-
down if there were no additional serials requiring movement to
shore.

When directed to shut-down, the aircraft proceeds
to the ship which transported it to the AOA. Upon arrival at
the ship, the aircraft requests a landing spot from the
Airboss and proceeds as directed. When ail of the aircraft
have returned to their mother ship and shut-down, the
simulation is terminated.

f. Fuel Usage
One of the attributes that determines the

effectiveness of an aircraft in the ship-to-shore arena is the

range of that aircraft. The range of the aircraft is a

combination of the amount of fuel an aircraft carries, and the
rate at which the aircraft consumes that fuel (the fuel-flow).
The model "ises three fuel-flow rates; one when the aircraft is
airborne loaded with cargo, one when the aircraft is airborne
with no cargo, and one for ground operations. There are three
periods during winich an aircraft consumes fuel:

® In transit

® Holding in a starboard delta queue

® While loading and unloading cargo.

The Culter model computes the amount of fuel
consumed whenever an aircraft reaches an LZ or an amphibious
ship. For example, an aircraft may 1oad,‘transit to shore,
hold in starboard delta awaiting an LZ landiﬁg spot and
finally land. At this time, Cutter will compute the amount of
fuel consumed based on the loading time, transit time and the
amount of time spent holding. The fuel consumed is then
subtracted from the amount of fuel currently aboard the
aircraft.

2. Attack Alrcratt
Attack aircraft are similar to transport aircraft,
both possessing the same attributeé and actions. In the Cutter
nodel, an attack aircraft is modeled as an AttackObj which
inherits [Ref. 3] the attributes and actions from the
transport aircraft. There is one primary difference'between an

attack aircraft and a transport aircraft.

18

Unlike the transports, attack aircraft are not
required to interact with the landing zones. An attack
aircraft is agsumed to fly for a given period of time and then
return to fhe amphibious ship. The attack aircraft competes
for ship landing spots, refuels, and shuts down in the game

manner as the trangport aircraft.

G. MODEL EXECUTION
There are several phases to the execution of the ship-to-
shore movement simulation. A brief degcription of the methods
that the Cutter model uses to complete these phases is
presented in the following sections.
1. Ingut
The information required to create the desired
scenario is input through the use of six data files. .Each of
the data files contains a- description of each piece of
required data, as well as an example of data used for this
thesis. The FileForm.mod file consolidates this information
for all of the input files. Appendix C contains a description
and examples of the required input files.
2. Scenario Initialiszation
The Cutter model contains several procedures which
create the desired scenario. At the completion of this phase
all of the amphibious ships, their embarked aircraft, landing

zones and serials have been created.

19

3. Replication
The simulation is replicated the requested number of
times, resetting all of the starting values at the end of each
replication. At the end of the final replication, all of the
objects are disposed of, required statistics are computed, and
the final output is created.
4. Output
The model creates several output files for each
scenario. The user inputs the desired name, limited to five
characters, of these output files using the OPplan.dat data
file (described in Appendix C). Appendix D contains a
description and examples of the output files.

20

IV. ANALYTICAL PROCEDURES

A. BACKGROUND

The Cutter model uses recursively generated random number
streams to control the: passage of t;_i.me rt:hrou-g.“nout. its
operation. As a result, the output froﬁi t:he Mel is a random
process, with the | parameters of the parent distribution
unknown. In order to compare the rasﬁlts of two different
aircraft mixes run under the same scenario, a means of
compéring the unknown parent distributions must be found ﬁhich_
identifies the superior distribution. The random variable
which measures the build-up of combat power ashore will be
examined in order to identify the superior mix of aircraft.

This build-up of combat power ashore may be thought of as
a pure birth process, as there are no departures from the
system [Ref. 4:p. 251]. In the ship-to-shoxre
movement, the rate at which the mix of aircraft (the
population) delivers the serials ashore (birche) may be
approximated. The population of serials ashore at any time t,
as a function of the combat powei' possessed by each serial,

may be written as

x{t) : te (0,7, (1)

where X(t) is the amcunt of combat power ashore at time t (¢t

ranging from time 0 to T, the time that the last serial

21

arrived ashore). The amount of combat power ashore is measured
as the percentage of total combat power to be moved ashore.
For purposes of this thesis, these functions will be referred
to as Combat Power Ashore functions.

In order to compare the distributions from two different
random processes, it is typical to compare the measures of
location and spread from the two parent distributions.
Calculating interval and point estimators of a distribution’s
location and séread, using multiple runs of the simulation,
requires several gsimplifying assumptions
[Ref. S5:p. 278]:

® independence between replications
® normality of the output distribution
® constant variance.

It is felt that while these assumptions may serve. to
simplify the comparison of two distributions which occur
naturally, they may not be appropriate when dealing with the
output from a computer simulation.

Additionally, these methods are usually applied to "end"
measures such as the ccmpletion time of a task or the amount
of time spent in a queue. In the case of the build-up of
combat power ashore, the rate of build-up is more important
than the actual completion time. The methods commonly employed
to analyze simulation output are unable to capture a measure

of this rate.

22

B. THE COMBAT POWER ASHORE FUNCTION

Output from the Cutter model may be used to obtain
estimates of the Combat Power Ashore (CPA) function for each
aircraft mix. The CPA function for a specific aircraft defines
the percentage of combat power ashore at every time t, using
that aircraft. In this thesis it is desired to compare the CPA
functions for each aircraft in order to identify the preferred
replacement aircraft for the MLR program.

The CPA function presents two vital pieces of information
concexning combat power ashore. First, the CPA function shows
the amount of combat power ashore (X(t)) at every time ¢t.
Second, the amount of time that the combat power has been
ashore is shown as the ditference between the time that a
serial arrives and the time t of interest. Clearly, the
greater the time a serial is ashore the greater its worth to
the Commander of the Landiag Force (CLF).

Since the goal of the ship-to-shore movement is the rapid
build-up of combat power ashore, the ideal CPA function is
easily visualized. This ideal CPA function delivers all combat
power ashore at time 0. In Figure 2a, it ig clear that under
the ideal CPA function, all combat power is available to the
CLF at every time t. It is also clear that this CPA function
will never be observed in practice.

Figure 2b presents a more probable CPA function. In this
CPA function all serials are considered to possess equal

. combat power. The first serial arrives ashore at time t1, the

23

second serial arrives at time t2 and so forth for all serizls.

Each of the serials is represented by a rectangle, with the

height (h) equal to the combat power of the serial and the

length (1) equal to the amount of time the serial is ashore.

Cal

Cbd

Serial 7
Serial B
Serial S
Serial 4
Seriat 3
Seriat 2
Seriat ° >
t0 t
l Sériatl 7
Serial 6
{ Serial 5
I Seriai 4 .
| Serial 3 :
| Seria) 2 :
Sertal 1 —
112 t3 t

Figure 2 (a) The ideal CPA function. (b) A simplistic CPA

function.

For any time t, the first serial is available for a length

of time equal to t - ti1, the second serial is available for a

24

time of t - t2, and so on for each serial. The aréa of each
rectangle (combat power * time ashore) represents thé worth of
that serial to the CLF at any time t. The gum of the area
within all rectangles (and thus the area under the CPA curve)
presents a measure of the combat power available to the CLF,
at any time t. 7

In order to choose one CPA function over another, the area
under each function must be compared. Furthermore, the method
chosen must account for the area under the function for evexry

time t.

C. COMPARING CPA FUNCTIONS

In this thesis, CPA functions produced by different
aircraft are compared in a pairwise manner to identify the
preferred aircraft for the MLR program. The goal of each
pairwise comparison is to identify that CPA function which
provides the CLF with the most rapid build-up of combat power
ashore.

There are three cases that occur when comparing CPA
functions. Each of these, along with examples, is discussed in
the following sections.

1. Case 1

Suppose thai: the amount of combat power ashore at time
t, using aircraft X, is defined by the CPA function X(t).
Further suppose that the amount ashore using ai.rcr;aft Y is

defined by the CPA functiom Y(t). If the value of X(t) is

25

greater than the value of Y(t) for every t, then aircraft X is

obviously preferred over aircraft Y. This may be written as
X(t) = Y(t) v te [0,T]). (@)

If the conditions of Equation (2) hold, then the area
under X(t) will exceed that under Y(t) for all time ¢t.
Therefore, the CPA function X(ey prd*ii&éi' a greater amount of
combat power to the CLF than CPA fuﬁction Y(t} at every time
t. | |

Figure 3 contains a comparison of the CPA functions
produced by two different aircraft. In this case X(t) is
greater then Y(t) for every time t. Under ‘the CPA ‘function
X(t) the CLF ﬁas more combat power available, at every time ¢,
then would be available under the CPA function ¥(t). Under the
first case, the CLF clearly prefers that CPA function which
has more combat power ashore at every time ¢,

2. Case 2

As shown in Figure 4, when two CPA functions are
compared, it is likely that the conditions in Bquation (2)
will not hold for all time t. In this .case, a different
criteria is used in order to choose one CPA function over
another.

For any time t, the longer a given serial is ashore,
the greater utility (combat power * time asho-re) that serial
has to the CLF. As mentioned earlier, at any time t, the area

under the CPA function presents a measure of the combat power

26

Conat Power Anrore

Tima t Cln sirutew)

FPigure 3 Case 1. The value of CPA function X(t) is greater
than that of CPA function Y(t) for every t. The aircraft
which produced the CPA function X(t) is preferred.

available to the CLF. If the area under X(t) is greater than
the area under Y(t) for all t, then X(t) is preferred over

Y(t). In this case

t t |)
fx(c)dc zfl’(c}dt (VW te [0,7]). (3)
1]]

27

Iat
3

 EBquation (3) implies that CPA function X(t) offers a
_greater ut.ility (in terms of cmbat power) to tha cm' then

the CPA funct:ion Y(t) for every t..

In the ship-to-shore environment, it is always

preferable to have more combat power ashore now, than to have
a prcmise of more later. Figure 4 shows a case where Bquation '
(2) fails to hold, but where the ccnditi.ons of Bquation {3) .

are met., In th_is casge CPA f.unct:.on'__X(t) is preferred over CPA

f.unction Y(t). Note, at some time t, the total amount of

combat power ashore for Y(t) could. exceed that of X(t) (as

shown at time 70) with X(t) being the preferrad CPA function.
3. Case 3 '
I_)uring the conduct of some pairwise comparisons, it
may not be possible to pick one CPFA functior over another.
Figure 5 shows an example where two CPA functions cross each
other several times. In this case, neithe‘r Equation (2) nor
Equation (3) holds at every time t. Therefore, it is not
possible to pick one CPA function over the other. In this
case, it will be assumed that the two CPA functions are equal,
and that neither one is preferred over the other.
4. Dominance '
When two CPA functions are compared, the dominant
function is that which provides the most rapid build-up of
combat power ashore. Throughout the rest of this thesis,

during a pairwise comparison, the preferred CPA functiom will

28

Combat Power Ashore

Timg £ L0 ol raren)

Figure 4 Case 2. The area under the CPA function X(t)is
greater than the area under the CPA function Y(t)} at every
t. X(t) is the preferred CPA function X(t).

be referred to as the dominant of the two CPA functions. In
order for CPA function X(t) to dominate the function ¥(t), one
of the following conditions must be met: .

® X(t) = Y(t) (v t € [0,T])

e [X(t) =2 [Y(t) (v t ¢ [0,T]).

29

Comemt Poww” ARnore

iIxALALilllleixxillltallllilllli

[} S0 o o) 00 0 300

Time v (In tagen)

Pigure 5 Neither function, X(t) nor Y(t), dominates the
other.

If neither CPA function dominates the other, it will
be assumed that either CPA function is acceptable to the CLF.
S. Assumptions
In order for the criteria outlined above to be applied
in the comparison of two CPA functions, two assumptions must

be accepted.

30

a. Diminishing Marginal Returns
The total utility of a gerial to the CLF is a

product of the combat power and the time ashore of the serial.
As a result, two serials may contain the gsame amount of combat
power, yet be of different value to the CLF due to their
respective time ashore.

For example, consider two howitzers, A and B.
Initially, both howitzers possess the same combat power.
However, if A arrives ashore 30 minutes prior to B, then A has
a greater utility to the CLF then B, due to the longer time
spent ashore by howitzer A. Therefore, a serials worth to the
CLF diminishes the longer it takes to deliver that serial
ashore.

b. Cutter Output

Realizing that Cutter output is itself a random
process, it is assumed that the ocutput from each replication
of the simulation is representative of the CPA function for
the particular aircraft used. Under this assumption, the
estimate of the CPA function resulting from the tirst
replication of Aircraft X may be compared to the estimate of
the CPA function resulting from the first replication of
Aircraft Y, and so on for multiple replications of the

simulation for each aircraft.

31

D. ANALYSIS PROGRAM
The Analysisg program is used to compare CPA functions from
each aircraft in the different Cutter scenarios. In order to
estimate the CPA functions, the Cutter médel completes one
hundred repl:cations for each aircraft. In order to compare
two aircraft, the one hundred CPA function estimates for each
aircraft are compared using the Anmalysis program. The
following sections describe the required irput and general
workings of thg‘Analysis program.
1. Input
The Analysis program takes as input the Cutter output
file <filepame>LZ.out (described in Appendix D) from each of
the two aircraft to be compared. The Analysig.dat file is used
.o input the number of comparisons to perform, the names of
the two data files to compare, and the desired name for the
Analysis outpuc file.
2. Data Preparation
The contents of each of the <filename>LZ.out files is
manipulated to create two data arrays for each aircraft. These
arrays contain the data required for the Amalysis program to
perform the required calculations. The following sections list
these arrays, along with a short description of their use.
a. Timex Array
The Timex Array contains the integers from 1 to the

time T that the last serial arrives ashore within the current

32

[N e . 2 HONRE e S

e e e B R i

simulation run. This array provides the t axis values for the
CPA function.
b. Yvalue Arvay

The Yvalue Array contains the total combat power

ashore at the corresponding time in the Timex array. This
array provides the Y axis values for the CPA function.
3. Case ! Comparison

The compariéon procedure for the first case takes the
Yvalue array fo_z': each data set, comparing the values for each
time t. If the elements of the Yvalue array for Aircraft X are
greate: than or equal to the elements of the Yvalue array for
Aircraft Y, at every time t (Eg. 2), then the CPA fﬁnction for
Aircraft X dominates the CPA function for Aircraft Y. In this
example the use of Aircraft X is preferred over the use of
Aircraft Y.

4. Case 2 Comparison

If the conditions in Equation (2) do not hold, a Case
2 comparison is performed in an effort to identify the
dominant CPA function. The comparison procedure for the second
case computes the area under each CPA function for every time
t. If the area under X(t) is larger than the area under Y(t)
at every time t, then X(t) dominates Y(t).

If neither comparison is able tc choose a dominant CPA
function, then Case 3 applies, and neither CPA function

dominates the other.

33

E. CONTINGENCY TEST

The results of the Amalysis program are used to perform a
contingency test. The nuli hypothesis, that the CPA function
for Adircraft X is the same as the CPA function for Aircraft Y
(in & given scenario), is tested against the alﬁernative
hypothesis that the two CPA functions are different. Thig

hypothesis test may be written as
Hy: X(£) =Y(t) vs H,:X(t) = ¥(t). (4)

The results of the CPA function comparisons for any two

aircraft are arranged as shown in Table I.

Table I - CONTINGENCY TABLE FORMAT

| Acft Acft X Either Acft ¥

Jleelt 1) f fcell 2y | (cell 3)

In Table I, the value entered into cell 1 refers to the
number of times that Aircraft X dominates Aircraft Y. The
value entered into cell 3 represents the number of times that
Aircraft Y dominates Aircratt X. The value in cell 2
represents the number of times that neither aircraft dominates
the other. |

The contingency test computes the following value for each

of the cells in Table I:

34

(observed value - expected value)?
expected value

(5)

As mentioned earlier, the output Crom tharsimulétioq is a
random variable. As such, an estimate of the éxpected values
for each sell of Table I must be found. Suppose that a is the
observed value for cell 1, that b is the‘observed value for
cell 2 and that c is the observed value for cell 3. It can be
shown that the Maximum Likelihood Estimator (MLE) for the
expected values, given that HL‘ (Eq. 4) is true, are aa
follows: ' ‘

® 8 = (a+c)/2 for cells 1 and 3
o b = b for cell 2.

The value of Equation (S) for each cell in Table I are
calculated and summed. This final sum is then compared to the
Chi-Square distribution with one degree of freedom (X,) to

test the null hypothesis H,.

35

v. smmxw ANALYSTS

‘A, mnn. WICL‘I‘IW

_ The c:xtber model has been ventied to woz:k while ruxming ‘

a number of aimple test scenarics The cutput. from these test:" "

-8cenarios has been examined and is beheved to he correct 'I'he -

model has not been fvalidated asg this would require ‘comparing.

its results to the results obtained from actual ship-;.o anore"' o

exercises. Since it has not: been validat;ed. these reaulta o

should only be viewed relative to each m:her, and not as

absolute. numbers. Future users .are. encouraged to review the . .
input required and conduct trials to confirm the proper input

parameters.

B. '1'!3‘1‘ SCENARIOS

A brief description of each scenario. anc the different
aircraft capabilities and limitations appear in the following
sections. Appendix C contains the input data for each scenario
and aircralit used. |

1. Scenarios

Bach of the three scenarios consisted of 3 ships (an

LHA, LPD, and LST) and 2 landing zones. The landing zone
locations were fixed for each scenario, while the ship-to-
shore distance varied from scenario to.scenario. In the first

scenario the ships were 5 miles from shore, in the second

36

scenario the ships were 25 miles from shore, while the third
scenarioc had the ships 50 miles from shore. While the Cutter
model has the ability to model ship movément thig feature was
‘not used in'the test scenarios.

‘There are a total of 419 passengers and 97,000 pounds
of cargo to be transported ashore under each scenario. The
serial lists for each of the aircraft mixes were arranged in
order to fully eﬁploit the cargo capacity of the aircraft. For
example, a serial for the MV-22 contains a maximum of twenty
passengers while a serial for the CH-60 contains a maximum of
ten. As a result, the aircraft mix containing MV-22 aireraft
had a total of 39 serials to move ashore while the CH-60 mix
required that 56 serials be transported ashore.

2. Alrcraft

There are seven different aircraft used in the teaﬁ
scenarios. Six of these aircraft are under consideration by
the MLR program. The seventh aircraft, the CH-53E, is included
for reasons to be discussed in a later section. The input
parameters for each of the aircraft were obtained from the
Naval Air Systems Command. The sections below will provide a
brief description of the aircraft involved, with emphasis on
the more important capabilities and 1imit§tiqna of each.

a. CH-46

This is the current medium lift aircraft and is

used as a baseline for aircraft comparisons.

37

b. CH-60
The CH-60 has the smallest payload, .equivalent: to
ten passengers. Thisg aircraft does poséess an airspeed and
range advantage over the CH-46 aircraft. |
c. S-92
At this time, the data for the 3-92 is proprietary
and is therefore omitted from the body of this thesis. This
aircrait does poseesé grgater cargo caracity, range and
airspeed then the CH-46. |
d. CH-53E
This is a much larger aircraft then the CH-46, S-92
and CH-60. The CH-53E will carry more then twice as much as
the CH-46 with an airspeed of 150 kts and a much greater
range. Hoﬁeirer, due to its size, the CH-S53E operates from six
deck spots aboard the LHA, whereas the CH-46, S8-92 and CH-60
aircraft have eight deck spots from which to operate.
e. Mv-22
This is a tilt-rotor aircraft, able to operate in
either the helicopter or fixed-wing mode. The fixed-wing
cruise speed (approximately 250 kts) and the helicopter cruise
speed (180 kts) give this aircraft a tremendous advantage over

the other five candidates. The MV-22 payload is somewhat

larger then the CH-46, but considerably less then the CH-S53E.
This is a large aircraft, and therefore has the same LHA deck
spot limitation as the CH-53E.

38

£. CH-47D
The internal cargo capaéit:.y of- this aircraft is
identical to tha.t of the CH-53E. While the airspeed of the CH-
47 is comparable to that of t:he CH-53E, the range is
significantly legss. Due to its large slze, ‘the CH-47 is
limited to six operating spots aboard the LHA. |
g. EH-101
| This aircraft has the same cax_:g__o' capacity as the
MV-22, but possesses average alrspeed and range when compared
to the other aircraft, : :
The aircraft listed were arranged into ‘the following
mixes and run under each scemario: -
® 12 CH-46 and. 4 CH-53E (Mix 1) |
® 12 CH-60 and 4 CH-53E (Mix 2)
12 ¥H-101 and 4 CH-53E (Mi_x 3)
12 MV-22 and 4 CH-S3E (Mix 4)
12 CH-47D (Mix 5)

12 §-92 and 4 CH-53E (Mix 6).

Note that five of the aircraft mixes include the CH-
53B aircraft. The real world ship-to-shore movement includes
several serials which require ﬁeavy 1ift assets to move
ashore. The CH-47D is capable of 1lifting all loads that
require external transportation to shore, therefore the CH-53E
is not included in the fifth mix.

39

C. SCENARIO RESULTS
 In the following sections the results from each scenario
are discussed, gtressing the ability of the model to evaluate.
the interactions of che.vérious input parameters. Note that
when,rfor example,-refeténce isfmade to the "MV-22%, this
refers to the 12 MV-22/4 CH-S3E mix of aircraft, and not
solely to the MV-22 aircraft. -
1. Scenario 1. 7 7 A
‘ As shown in Table II, the CH-47D Clearly dominéted;all
aircraft in the first sceparic. The CH-47D1ié able to overcome
the landing spot regtrictions aboard the LHA tﬂrough its
superior cargo capacity. ' . ‘
The MV-22 and the EBH-101 were equally effective, a
result that is interesting. While the two aircraft possess the
same cargo capacity, there are two major differences in the
capabilities of the aircraft. The MV-22, with a speed of 180
kts, has a 40 knot advantage over the EH-101.! On the other
hand, the EH-101 has the use of eight landihg spots aboard the
LHA whiie the MV-22 is restricted to six spots.
As expected, the S-92, possessing average range and
cargo capacities, fell in the middle of the six mixes. This

! The MV-22 was limited to 180 kts for this scenario. The
short ship-to-shore distance of the scenario would prevent the
aircraft from completing transition to the fixed-wing mode.
The 180 kts is the maximum airspeed for the aircraft in the
helicopter mode. .

40

aircraft is significantly more effective than the baseline CH-
46 mix. '

The CH-60 is tétally inadequate. The restricted cargo
capacity of the aircraft allows it t¢ ba dominated by all

aircraft mixes.

Table II.-- AIRCRAFT COMPARISONS FOR SCENARIO 1

Scenariol | 1 vgz 1ve3 | Tved | 1ves
Dominates |54 :
Does Not

Séenariol

Note: Mix (1) ... CH-46 Mix (4) ... MV-22
Mix (2) ... CH-60 Mix (S) ... CH-47
Mix (3) ... EH-101 Mix (6) ... 8-92

2. Scenario 2
As shown in Table III, the CH-47 dominance over the
MV-22, while still significant (p-value = .0082), is
dramatically reduced in Scenario 2. The MV-22 top speed of 250
knots, cambined with the ship-to-shore distance of 25 miles is

41

able to offsetAmuch of the cargo capacity advantage of the CH-
47.

At 25 miles, the EH-101 is no longer as effective as
the MV-22. The increased airspeed of the MvV-22 is fully able

. to offset the two additional operating spots from which the

EH-101 is able to operate.

Once again, the §-92 ig the third most effective
aircraft. The CH-60 is still dominated by the CH-46, in spite
of the range aqd airspeed advantagés of the CH-60.

Table III.-- AIRCRAFT COMPARISONS FOR SCENARIO 2 -
Scenario2 -Efgﬁﬁéfﬁé 1 vs 3 Cyve 4. 1 ve 5 |
Dominates |61 - o | 87
Doeg Not 13

i Scenarioz2 ,
! Dominates | 0 |94 0 |97
f Does Not '

Scenario2
Dominates
Does Not
Note: Mix (1) ... CH-46 Mix (4) ... MV-22
Mix (2) ... CH-60 Mix (5) ... CH-47
Mix (3) ... EH-101 Mix (6) ... S-92

3. S8Scenario 3
In the third and final scenario, there 18 no

difference between the MV-22 and the CH-47 aircraft. The fifty

42

mile ship-to-shore distance allows the MV-22 airspeedr
advantage to fully compensate for the carco capacity of the
CH-47.

The EH-101 continues to dominate the other three
aircraft. It is interesting that the dominance of the EK-101
over the CH-46 and the CH-60 decreased between Scenarios 1 and
2, but then increased between Scenarios 2 and 3. This dip can
be explained by examining the range of the aircraft involved.

In Scenario 1 the CH-60 and CH-46 require refueling in
order to complete the evolution. The EH-101, due to ite range
advantage, 1s able to completé the first scenario without
conducting refueling operations. The ship-to-shore distance in
Scenario 2 is such that the BH-101 requires a greater increase
in the number of refueling operations from Scenaric 1 then the
increase in refueling operaticne for the CH-46 and CH-60
aircraft. Therefore, the build-up of combat power with ER-101
decreases at a greater amount then the builid-up using CH-46 or
CH-60 aircraft.

In Scenario 3 the opposite occurred. Due to the
greater range of the EH-101, the CH-60 and CH-46 required more
additional refueling operations from Scenario 2 to camplete
the third scenario then the EH-101 required. These additional
refueling operations slow down the rate at which the CH-60 and
CH-46 build-up combat power ashore.

The S-92 showed the same dominance pattern, to a

lesger degree, between scenarios as did the EH-101. The 8-92

43

is still the dominate airciraft when compared with the CH-46
and CH-60 aircraft.

The CH-60 is almost completely dominated by avery
aircraft iu the study. This would stress the importance of the
aircraft cargo capacity. It takes a major airspeed and/or
range advantage to compensate for a wvery limited cargo
capacity. Table IV contains the complete results for the third
scenario.

Table IV. - COMPARTSONS FOR SCENARTO 3

| Scenario3 1vse 5

Dominates |70 | o b oler: 83

| Does Not |

Scenario3l

Scenariol

Note: Mix (1) ... CH-46 Mix (4) ... MV-22
Mix (2) ... CH-60 Mix (S) ... CH-47
Mix (3) ..

. BH-101 Mix (6) ... S8-92
4. Summary of Test Rasults

The results from the three scenarios confirm the

obvious. The aircratt with the largest paylocad will most

14

likely be the most effective in terms of the rapid build-up of
combat power ashore.

The analysis above also demonstrates the ability of
the Cutter model to quantify the capabiliéy trade-offa among
different aircraft. While one aircraft may possess a speed
advantage and another a larger cargo capacity, both aircraft
may be equally effective. In this case, the MV-22, with the
110 knot airspeed advantage proved as effective as the CH-47,
with a 10 passenger capacity advantage, given a certain fhip-
to-shore distance.

Anotheyr trade-off comparison exists between the CH-46
and the CH-60. The CH-60 has a significantly longer range and
a slightly greater airspeed then the CH-46. The CH-4€, on the
other hand, is able to carry five more passengers than the CH-
60. It was shown that this trade-off between the two aircraft
allowed the CH-46 tc dominate the CH-60 under all three
scenarios.

The ability to quantify these capability trade-offs
proves that the Cutter model is a valuable tool when used to

analyze the ship-to-shore movement.

45

APPENDIX A CUTTER MODEL SOURCE CODE)

MAIN MODULE Cutter;

MODULE NAME: Cutter DATE WRITTEN: 18 Mar 92
AUTHOR: S. E. Shaw LEST MODIFIED:

Capt USMC
DESCRIPTION : Ship-To-Shore movement analysis model.

Simulates the build up of combat power ashore. The user is
able to change the scenario, to include the ship/LZ locations,
as well as the number and type of aircraft employed.

FROM Debug IMPORT TraceStream;

FROM DekugRun IMPORT SetUpD;

FROM SimMod IMPORT StartSimulation, ResetSimTime, SimTime;
FROM CATFMod IMPORT CATFObLJ;

FROM Input IMPORT ReadEmAll;

FROM global IMPORT NewRandoms, repetition, showerrors;
FROM Statistics IMPORT StatisticsObj, lastdeliverytime;
FROM OutputDriver IMPORT OpenFiles, CloseFiles,

EndTimerecoxrder;
VAR
CATF : CATFObj;
Statistician : StatisticsObj;
totalruns : INTEGER;
BEGIN

OUTPUT ("Enter Number of Runs to Cc pplete"});
INPUT (totalruns);

SetUpD (TRUE) ;

showerrors := FALSE;

ReadEZmall;

NewRandoms;

OpenFiles;

NEW (Statistician);

ASK Statistician TO StartStats;

repecition := 1;

WHILE (repetition <= totalruns)
ASK TraceStream TO WriteString ("Starting Cutter");
ASK TraceStream TC Writeln;
NEW (CATF); .

StartSimulation;

ASK Statistician TO CollectRepStats (CATF);

ASK TraceStream TO WriteString ("Destroying CATF");
- ASK TraceStream TO Writeln;

ASK CATF TO DestroyCATF;

OUTPUT ("Repetition := ",repetition," completed");
AS¥ EndTimerecorder TO
WriteString (REALTOSTR (lastdeliverytime));

ASK EndTimerecorder TO WritelLn;
ResetSimTime (0.0);
ASK Statistician TO ResetStats;

INC (repetition);

END WHILE;

ASK Statistician TO StopStats;

CloseFiles;

CUTPUT ("Ending Cutter®);

END { MAIN } MODULE { Cutter }.
DEPINITION MODULE ARGMod;

- ee-ee- - L I . T T I T T T T T I T L iy

MODULE NAME: ARGMod DATE WRITTEN: 18 Mar 92
AUTHOR: S. E. Shaw LAST MODIFIED:
Capt USMC

DESCRIPTION : Defines the Amphibious Ready Group
(ship) objects.

.. }
FROM ResMod IMPORT ResourceObj;
FROM GrpMod IMPCRT QueueObj;
FROM global IMPORT LocationXY;
FROM SpotMan IMPORT SpotManObj;
FROM RGlobals IMPORT SHierRecType;
EXPORTTYPE
ARGObj = OBJECT; FORWARD;
TYPE
ARGObj = OBJECT (QueueObj);
name : STRING; steamspeed : REAL;
airboss : SpotManObj; holdingspeed : REAL;
location : LocationXY; course : REAL;
squadron : QueueObj; steaming : BOOLEAN;
type : STRING;
: holdlocation : LocationXY; pumprate : RBAL;

ASK METHOD ReadData (IN record : SHierRecType);

47

ASK METHOD ObjInit;
ASK METHOD CurrentPos (OUT xcoord : REAL:
OUT ycoord : REAL);

ASK METHOD DestroyARG; -
TELL METHOD SetHoldingTime;
END OBJECT { ARGObj }; X

END { DEFINITION } MODULE { ARGMod }.

IMPLEMENTATION MODULE ARGMod;

T T T A T T T T T T e

MODULE NAME: ARGMod DATE WRITTEN: 18 Mar 92
AUTHOR: S. E. Shaw LAST MODIFIED:
Capt USMC .

DESCRIPTION : Defines the Amphibious Ready Group
(ship) objects.

FROM glcbal IMPORT LocationXY, Distance, DeBug;
FROM RGlobals IMPORT SHierRecType;

FROM MathMod IMPORT SQRT, pi, ACOS, COS, SIN;
FROM SimMod IMPORT SimTime;

FROM Transport IMPORT TransObj;

FROM Debug IMPORT TraceStream;

OBJECT ARGODbjJ ;

ASK METHOD ReadData (IN record : SHierRecType);

VAR
placeholder : INTEGER;

BEGIN

name := record.TopString;
type := record.OwnedString(l];
location.x := STRTOREAL (record.OwnedString {2]) ;
location.y : = STRTOREAL (record,.OwnedString (3]) ;
steamspeed : = STRTOREAL (record.OwnedString (4]) ;
holdingspeed :=

STRTOREAL (record.OwnedString (5]) ;
holdlocation.x :=

STRTOREAL (record.OwnedString (€]) ;
holdlocation.y := '

STRTOREAL (record.OwnedString (7]) ;
pumprate := STRTOREAL(record.Ownedstring(8l);

48

ASK airboss TO PaintSpots (type, name,
OBJTYPENAME (SELF) , placeholder};
ASK airboss TO SetName (name);

END METHOD { ReadData };

ASK METHOD ObjInit;
BEGIN
NEW (airboss);
NEW (squadron);
TELL SELF TO SetHoldingTime;

END METHOD { ObjInit };

TELL METHOD SetHoldingTime;
VAR
dist :+ REAL;
steamtime : REAL;
BEGIN
dist := Distance (location, holdlocation);
steamtime := (dist / steamspeed) * 60.0;

IF (dist >= 0.0)
steaming := TRUE;

WAIT DURATION steamtime;
END WAIT;
END IF;
steaming := PALSE;

END METHOD { SetHoldingTime };

ASK METHOD CurrentPos (OUT xcoord : REAL;
OUT ycoord : REAL); '

VAR
x0coord : REAL;
yOcoord : REAL;
xlcoord : REAL;
ylcoord : REAL;
Angle ¢ REAL;
hyp : RBEAL;

49

xvel, yvel : REAL; .

BEGIN
x0coord := location.x;
yOcoord := location.y;
xlcoord := holdlocation.x;
ylcoord := holdlccation.y; .

IF steaming
hyp := SQRT((xlcoord - xOcoord)*(xlﬂoo:d x0coord)
+ (ylcoord - yOcoord)*(ylcoord - yOcoord));
Angle := ACOS ((ylcooxrd - yOcoord)/hyp);

Angle := Angle;
xvel := SIN(Angie) *steamspeed;
yvel := COS(Angle) *steamspeed;

ELSIP ({(xlcoord >= xOcoord) AND (ylcoord >=
yOcoord)) ’ -
Angle := Angle;
xvel := SIN (Angle) * steamspeed;
yvel := COS (Angle) * steamspeed;

BLSIF ((xlcoord <= x0Ocoord) AND (ylcoord >=
yOcoord))
Angle := (2.0*pi - Angle);
xvel := SIN (Angle) * asteamspeed;
yvel := COS (Angle) * steamspeed;

BLSE {((xlcoord <= x0ccord) AND (ylcoord <=
yOcoord)) }
Angle := {2.0*pi - Angle);
xvel := SIN (Angle) * steamspeed;
yvel := COS (Angle) * steamspeed;

END TF;

xcoord := (SimTime()/60.0)*xvel + xOcoord;
ycoord := (SimTime()/60.0)tyvel + yOcocrd;

ELSE
xcoord := holdlocation.x;
ycoord := holdlocation.y;
END IF;

END METHOD { CurrentPos };

IF ((xlcoord >= x0coord) AND (ylcoord <= yOcoord)\

ASK MBTHOD DestroyARG;
acft : TransObj; : S e e : w LT
BRGIN . : . -
ASK airboss TO DestroySpotMan
IF (ASK squadron numberIn > 0) -
acft := ASK squadron Pirst();
WHILE (acft <> NILOBJ);
"ASK squadron TO RemovaThis(acft), e
ASK acft TO DestroyVehicle; = .
acft := ASK squadron Firat(); .
END WHILE;
END IF;
DISPOSE (squadron);

END METHOD { 'Des’troyg:;g };

END OBJECT { ARGMOd };
B { IMPLEMENTATION } MODULE { ARGMod }.
DEFINITION MODULE Attack;

..

MODULE NAME: AttackActt DATE WRITTEN: .7 Apr 92
AUTHOR: S. B. Shaw LAST MODIFIED:
Capt USMC MODIFIED BY:

DESCRIPTION : Contains the Attack Aircraft Object.

...

FROM RandMod IMPORT RandomObj;
FROM ARGMod IMPORT ARGOD];

FROM LZBeach IMPORT LZBeachObj;
FROM SerialMod IMPORT SerialObj;
FROM HDCMod IMPORT HDCODb];

FROM global IMPORT LocationXY; .
FROM RGlobals IMPORT SHierRecType:;
FROM Transport IMPORT TransObj;

EXPORTTYPE -
AttackObj « OBJECT; PORWARD;

TYPE
AttackObj = OBJECT (TransObj);
returntime : RandomObj;

51

OVERRIDE . | S ERER T SR S
3SK METHOD ObjInit, T e e
TELL METHOD Opera.te, o e o
TELL METHOD Load;:) - LT s
TELL METHOD GetClearance a T R
TRLL MBTHOD- Traneit:’l‘oaeach .- - s LT
TELL METHOD FlyToShip, SRR - : e

BNDQBJEQT{ Attaék()bj}: - T PR
{ DEFINITION } MODULE { AttackAcft }. |

{eeeemee- _-,--'—--"----°-~--------.--‘.r--'-s°-.-_--_-'--- ------------- E :
: ‘MODULE NAME: - AttackAcft. . DATE -‘WRITTEN: - 7. -APE. 93 S e
AUTHOR: S. E. Shaw LAST MODIFIED: - . - R

' Capt USMC MODIFIED BY:

DESCRIPTION : Contains the Attack Aircratt Object:.

o--------------------_-----------‘-‘----------------a----

FROM SimMod IMPORT SimTime;

FROM RandMod IMPORT Randonﬂbj,

FROM ARGMod IMPORT ARGOb];

FROM HDCMod IMPORT HDCObj,BriefingRec;

FROM SerialMod IMPORT SerialObj;

FROM global IMPORT LocationXY, Distance, ReturnTime, -
moreserials;

FROM RGlobals IMPORT SHierRecType;

FROM SpotProcedures IMPORT GetShipSpot, GetLZSpot,
GiveBackShipSpot, GiveBackLZSpot, InitialLaunch;

¥ROM LoadProcedures IMPORT LoadCargo, UnLoadCargo, ReArmActt;

FROM Transport IMPORT TransObj;

FROM Debug IMPORT TraceStream; '

OBJECT AttackObj;

ASK METHOD ObjInit;

BEGIN

NEW (holdingtimestats);

ADDMONITOR (holdingtime, holdingtimestats);

NEW (holdingshipstats);
ADDMONITOR (holdingship, holdingshipstats);

S2

NEW (holdingbeachstats) i '
ADDMONITOR (holdingbeach, holdingbeachstats) :

END METHOD { ObjInit };

TELL METHOD Spot;

VAR

BEGIN .

ship : STRING;
startpoint : LocationXy;
endpoint : LocationXY;
gonpgo : REAL;

newsgerial : Serialobj; ‘
available + BOOLEAN:
loadtime : REAL;
destination :« mymother;

WAIT DURATION 5.0
END WAIT; { spread time wait

airbornetime := SimTime();
TELL SELF TO TransitToBeach:;

END MEBTHOD { Spot };

TBLL METHOD Load;

VAR

BEGIN

rearmtime : REAL;

holding := SimTime() - holding;

ReArmAcft (SELF, rearmtime);

WAIT DURATION rearmtime

END WAIT; { load serial wait }

TELL SELF TO TransitToBeach;

END METHOD { Load };

TELL METHOD Operate;
VAR
available : BOOLEAN;

BEGIN
InitialLaunch (SELF, available);
IF (available)
, - TELL SELF TO Spot;
END IF;

END METHOD { Operate };

e m e e e e m W e o E e M W S a4 T e M M e e W M e e T M OE MW ®E e e W »

" TELL METHOD. TransitToBeach;
VAR
flighttime : REAL;
available : BOOLEAN;
BEGIN

WAIT FOR SELF TO GetClearance;
END WAIT;

IF (cleared) _
GiveBackShipSpot (SELF);

flighttime := ASK ReturnTime
UniformReal (60.0, 120.0);

WAIT DURATION flighttime;
END WAIT; { sortie time to shore }

TELL SELF TO FlyToShip;

ELSE
TELL SELF TO ShutDown;

END IF;

END METHOD { TransitToBeach };

- M @ s e M M W MWW G M MW W WG R E W GG E®EEG®mEE®ER SR R0 "% %%

TELL METHOD FlyToShip;
VAR
available : BOOLEAN;

- BEGIN -

54

holding := SimTime () ;
GetShipspot (SELF, available);
IF (available)

TELL SELF TO Load;
END IF; '

END METHOD { FlyToShip }; °

TELL METHOD GetClearance;

BEGIN
cleared := TRUE;
INC (totalsorties);
IF ((totalsorties > 3)
OR ((SimTime () - airbornetime) >crewday))
cleared := FALSE;
END IF;

END METHOD { GetClearance};

END OBJECT { AttackAcftObj };

END { IMPLEMENTATION } MODULE { AttackAcft }.

DEFINITION MODULE CATFMod;

- e e e e e o e o M W G W e M e W W o e M G M W G M R e o W w w e

MODULE NAME: CATFMod DATE WRITTEN: 18 Mar 92
AUTHOR: S. E. Shaw LAST MODIFIED:
Capt USMC

‘ .DESCRIPTION : Defines the Commander, Amphibious Task Force

object. This object keeps track of all ships, LZs, and HDCobjs
that are created. Primarily, these objects are tracked for
disposal at the end of each replication.

FROM GrpMod IMPORT QueueObj;

~ FROM ARGMod IMPORT ARGObj;

"FROM LZBeach IMPORT LZBeachObj;
FROM SerialMod IMPORT SerialObj;
FROM HDCMod IMPORT HDCObJ;

55

EXPORTTYPE o : o
CATFObj = OBJECT; FORWARD;

TYPE
CATFObj = OBJECT; ,
shiplist : QueueObj;
lzbeachlist : QueueObj;
hdclist - : QueueObj;

ASK METHOD ObjInit;
ASK METHOD AddShip (IN newship : ARGObj;
IN HDC : HDCObj);
ASK METHOD AddLZBeach (IN newlz : LZBeachObj) ;
ASK METHOD DestroyCATF;

END OBJECT { CATFObj };

END { DEFINITION } MODULE { CATFMod }.

IMPLEMENTATION MODULE CATFMod;

e e e e e e e = M e e e e e M R M M M e W M T B W W W AP M WP W T G Um W W e R w v e G e e e e o o o o e

MODULE NAME: CATFMod DATE WRITTEN: 18 Mar 92
AUTHOR : S. E. Shaw LAST MODIFIED:
Capt USMC

DESCRIPTION : Defines the Commander, Amphibious Task Force
objecc. This object keeps track of all ships, LZs, and HDCobjs
that are created. Primarily, these objects are tracked for
disposal at the end of each replication. :

FROM ARGMod IMPORT ARGOb];

FROM LZBeach IMPORT LZBeachObj;

FROM SerialMod IMPORT SerialObj;

FROM Transport IMPORT TransObj;

FROM HDCMod IMPORT HDCObj;

FROM global IMPORT DeBug;

FROM Procedures IMPORT FindSource, FindDestination;

FROM CreateARG. IMPORT Scenario;.

OBJECT CATFODbj;

ASK METHOD ObjInit;

56

VAR
HDC : HDCObj;

 BEGIN
"NEW- (shiplist);
NEW (lzbeachlist);
NEW (hdclist);
NEW (HDC) ;

ASK hdclist TO Add (HDC):;
Scenario (SELF, HDC);

FindSource (HDC, SELF); ,
FindDestination (HDC, SELF);

END METHOD { ObjInit };

e dn e R e e W o M e R W R O W e e e W W O W G @ GGl E G @ WE DD W N WD E e m

- e ey e G e e e M e W M E e EeEm e = W W E G EE W E T GGG GEEG®WwE S ® N e e ® ™

ASK METHOD AddShip (IN newship : ARGODbjJ;
IN HDC : HDCObj);
VAR :
acft : TransObj;
BEGIN
ASK shiplist TO Add (newship);
acft := ASK newship.squadron First(),
WHILE acft <> NILOBJ
'ASK acft TO NewHDC (HDC);
acft := ASK newship.squadron
Next (acft) ;

END WHILE;

END METHOD { AddShip };

o e s e e = W W M e W M W A W e M M W oE E W @ E MGG G EEEG®E®DE®®EnE®DE®SE®®E®®E e

ASK METHOD AddLZBeach (IN newlz : LZBeachObj) ;
" BEGIN

ASK lzbeachlist TO Add (newlz).
END METHOD { AddLZ };

ASK METHOD DestroyCATF;
ship : ARGODb]J;

57

lz : LZBeachObj;
hdc : HDCObj;
" BEGIN R :

IF (ASK shiplist numberIn > 0)
ship := ASK shiplist First();
WHILE (ship <> NILOBJ) .
ASK shiplist TO RemoveThis (ship);
ASK ship TO DestroyARG;
ship := ASK shiplist First();
END WHILE;
END IF;

DISPOSE (shiplist);

IF (ASK lzbeachlist numberIn > 0)
lz := ASK lzbeachlist First{();
WHILE (1z <> NILOBJ)
ASK lzbeachlist TO RemoveThis (12z);

ASK 1z TO DestroyLZ;
lz := ASK lzbeachlist First();

END WHILE;
END IF;

DISPOSE (lzbeachlist);

IF (ASK hdclist numberIn > 0)
hdc := ASK hdclist First();

WHILE (hdc <> NILOBJ)
ASK hdclist TO RemoveThis (hdc) ; .

ASK hdc TO DestroyHDC;
hdc := ASK hdclist First();

END WHILE;
END IF;

DISPOSE (hdclist);

- END METHOD { DestroyCATF };

END OBJECT { CATFObj };
END { IMPLEMENTATION } MODULE { CATFMod }.
DEFINITION MODULE CreateARG;

MODULE NAME: CreateARG DATE WRITTEN: 18 Mar 92

58

AUTHOR: S. E. Shaw LAST MODIFIED:
Capt USMC

DRSCRIPTION : The procedures here are used to create all of
the objects in the simulation and to initialize the current
scenario. _

FROM CATFMod IMPORT CATFObj;

FROM HDCMod IMPORT HDCObj;

FROM RGlobals IMPORT SHierRecType;
FROM ARGMod IMPORT ARGObj;

TYPE

PROCEDURE Scenario (INOUT CATF : CATFObj;
INOUT HDC : HDCObJ);

PROCEDURE MakeShips (INOUT CATF : CATFOb];
INOUT HDC : HDCOb3});

PROCEDURE PlotLZ (INOUT CATF : CATFODbj);

PROCEDURE BuildSerials (INOUT CATF : CATFObj;
| INOUT HDC : HDCObj);

PROCEDURE MakeAcft (INOUT newrec : SHierRecType;
INOUT ship : ARGObj;
INOUT HDC : HDCObj);

{ DEFINITION } MODULE { CreateiArg }.

IMPLEMENTATION KODULE CreateARG;

D T T T T . T T e T T T T T S S e R L T

MODULE NAME: CreateARG DATE WRITTEN: 18 Mar 92
AUTHOR: S. E. Shaw - LAST MODIFIED:

DESCRIPTION : The procedures here are used to create all of
the objects in the simulation and to initialize the current
scenario.

FROM RGlobals IMPORT SHierRecType,
ShipSHArray,
AcftSHArray,

59

LZSHArray,
SerialSHArray;
FROM CATFMod IMPORT CATFObj;
FROM Debug IMPORT TraceStream;
FROM ARGMod IMPORT ARGObj;
FROM HDCMod IMPORT HDCObj;
FROM LZBeach IMPORT LZBeachObj;
FROM SerialMcd IMPORT SerialObj;
FROM Transport IMPORT TransObj;
FROM FindSHRec IMPORT FindSHRec;
FROM global IMPORT mcreserials, totalserials, repetition,
paxtolift, cargotolift;
FROM Attack IMPORT AttackObj;
FROM CutputDriver IMPORT Scenariorecorder;
FROM Statistics IMPORT vehiclestatrec, vehiclestatlist;

PROCEDURE Scenario (INOUT CATF : CATFObj;
INOUT HDC : HDCObj):
BEGIN

MakeShips (CATF, HDC);
PlotLZ (CATF); .
BuildSerials (CATF, HDC);

END PROCEDURE { Scenario };

PRC JEDURE MakeShips (INOUT CATF : CATFObS;
INOUT HDC : HDCObj);

VAR
ship : ARGODbj;
newrec : SHierRecType;
i :INTEGER;
BEGIN
i :=1;

IF (repetition = 1)
ASK Scenariorecorder TO WriteString
(Memmmm e SHIP

ASK Scenariorecorder TO Writeln;

ASK Scenariorecorder TO Writeln;
ASK Scenariorecorder TO WriteString

60

P, coe e e e e ¢ v e i A -

("SKIP NAME SHIP TYPE STARTx STARTY
HOLDx"+" HOLDyY") ;
ASK Scenariorecorder TO Writeln:
ASK Scenarlorecorder TO Writeln;
END IF;

REPEAT
newrec := ShipSHArrayl(i];

IF (newrec = NILREC)
ASK TraceStream TO WriteString ("NILREC in
MakeShips®) ;
ASK TraceStream TO Writeln;

END IF; .

NEW(ship) ;
ASK ship TO ReadData (newrec);

IF (repetition = 1)
ASK Scenaricrecorder TO WriteString (ship name+
*+ship.type+"
+INTTOSTR(ROUND(ship location.x)) +
'+INTTOSTR(ROUND(ship location.y))
+"
+INTTOSTR (ROUND (ship.holdlocation.x))
+" *+INTTOSTR (ROUND (ship.location.y)));
ASK Scenariorecorder TO Writeln;
END IF;

ASK CATF TO Addship (ship, HDC);
MakeAcft (newrec, ship, HDC);
INC(1i);
IF (repetition = 1)
ASK Scenariorecorder TO Writeln;
END 17;
UNTIL (i > HIGH(ShipSHArray}) ;

END PROCEDURE;

PROCEDURE PlotLZ (INOUT CATF : CATFObj) ;

. VAR
L2 : LZBeachObj;
newLZ : SHierRecType;
. i :INTEGER;

61

BEGIN
i :=1;

IF (repetition = 1)
ASK Scenariorecorder TO Writeln;
ASK Scenariorecorder TO WriteLn; -
ASK Scenariorecorder TO WriteString
(" s-ccmcccccanmenna- L2

ASK Scenariorecorder TO WriteLn;
ASK Scenariorecorder TO WriteLn;
ASK Scenariorecorder TO WriteString
("LZ NAME LOCATIONX LOCATIONyY SPOTS") ;
ASK Scenariorecorder TO Writeln;
ASK Scenariorecorder TO WriteLn:
END IF;

REPEAT
newlLZ := LZSHArray(i];
IF newLZ = NILREC
ASK TraceStream TO WriteString("NILREC in
PlotL2ZS") ;
ASK TraceStream TO WriteLn;
END IF;

NEW(LZ) ;

ASK LZ TO ReadData (newlLZ);
ASK CATF TO AddLZBeach (LZ2);
INC(i);

IF (repetition = 1)

ASK Scenariorecorder TO WriteString (LZ.name+
*+INTTOSTR (ROUND (LZ.location.x)) +

" *+INTTOSTR (ROUND (LZ.location.y)) +
" *+INTTOSTR (LZ.numlandingspots)) ;
ASK Scenariorecorder TO Writeln;
ASK Scenariorecorder TO Writeln;

END IPF;

UNTIL (i > HIGH(LZSHArray));
END PROCEDURE { PlotL2 };

PRCCEDURE BuildSerials (INOUT CATF : CATFODbJ;
INOUT HDC : HDCODbJ); -

VAR
serial : SerialObj; -

€2

newserial : SHierRecType;
i +INTEGER; :

BEGIN

i := 1;
REPEAT
newserial := SerialSHArrayl[i];
IF newserial = NILREC
ASK TraceStream TO WriteString
("NILREC in BuildSerials®);
ASK TraceStream TO WriteLn;
END IF; ’

NEW(seriél); .
ASK serial TO ReadData (newserial); - -
ASK HDC.geriallist TO Add (sexial);

TF (repetition = 1)
paxtolift := paxtolitt + serial.pax;
cargotolift := cargotolift + serial.cargo;
END IF; '

INC(1); -

moreserials := TRUE;
UNTIL (i > HIGH(SerialSHArray)),
totalserials := ASK HDC.seriallist numberIn;

END PROCEDURE { BuildSerials };

PROCEDURE MakeAcft (INOUT newrec : SHierRecType;
INOUT ship : ARGOb]; .
INOUT HDC : HDCOb]);

VAR
i : INTEGER;
n : INTEGER;
acft : TransObj;
acftdata : SHierRecType;
transports : BOOLEAN;
attack : BOOLEAN;
attackacft : AttackObij;
record : vahiclestatrec;
BEGIN
1 e 1;
n := 1;

63

transports := TRUE;
WHILE ((newrec.OwnedString[i] <= "H?) AND
(newrec.OwnedString(i] <> '"\\") AND

(i < HIGH(newrec.OwnedString))); ' i
INC (i); .
END WHILE;

INC(i);

IF ((newrec.OwnedString(i-1] = ®*\\") OR
(1 >= HIGH (newrec.OwnedString)))
trangports := FALSE;
END IF;

IF (transports)
IF (repetition = 1)
ASK Scenariorecorder TO WriteString
(" Transports Aboard:");
END IF;

REPEAT
FindSHRec (AcftSHArray, newrec.OwnedStringl[i]
,acftdata) ;

IF (repetition = 1)
ASK Scenariorecorder TO WriteString

(" "+acftdata.TopString+" "
+newrec.OwnedString(i+1]);

END IF;

n := Jl;

WHILE (n <= (STRTOINT (newrec.OwnedString(i+1])))

NEW(acft);

ASK acft TO ReadData (acftdata);
ASK acft TO SetSide (n);

ASK acft TO AssignMother (ship);

ASK acft NewHDC (HDC);

ASK acft TO SetLaunchTime (STRTOREAL
(newrec.OwnedString(i+1+n]));

TBLL acft TO Operate;

ASK ship.squadron TO Add(acft);

IF (repetition = 1)
NEW (record); _
record.name := acft.name;
record.sidenum := acft.sidenumber;
record.mother := acft.mymother.name;
ASK vehiclestatlist TO Add (record); -

64

END IF;

- INC(n);
END WHILE;
~ INC(i,n+1);
n:=1;

) UNTIL ((i > HIGH(newrec. OwnedString)) OR
(newrec.OwnedString(i] = *S*) OR
- {newrec.OwnedString(i)] .= ®"A") OR
(newrec.OwnedString{i]l = *\\"));

IF (repetition = 1) .

ASK Scenariorecorder 0 writeLn
END IF;

END IF;

i
n

= 1;
HL T

attack := TROE; - o g R
WHILE { (newrec. 0wned8tring[i] <> "A") AND

(newrec.OwnedString{i] <> ®"\\") AND

(i < HIGH(newrec.OwnedString))-);
INC (1i); :

END WHILB.
INC(i);

IF ((newrec. OwnedString(i 1] = "\\")

(1 >= HIGH(newrec.OwnedString)))
attack := FALSB

END IF;

IF (attack)

IF (repetition = 1)
ASK Scenariorecorder TO WriteString

(" Attack Acft Aboard:*);
END IPF; :

REPEAT

FindSHRec (AcftSHArray, newrec.OwnedString(i]

;acftdata);
IP (repetition = 1)

‘ASK Scenariorecorder TO WriteString

(* *+acftdata.TopString+" .
+newrec.OwnedsString(i+1]);

END IF;

n :=1;

WHILE (n <« (STRTOINT (newrec.OwnedStringli+1})))
NEW (attackactt) ;

ASK attackacft TO ReadData (acftdata);

65

ASK attackacft TO SetSide (n);

ASK attackacft TO AssignMother (ship) ;

ASK attackacft NewHDC (HDC);

ASK attackacft TO SetLaunchTime (STRTOREAL
(newrec.OwnedString({i+1+n])};

TELL attackacft TO Operate; -

ASK ship.scuadron TO Add(attackacft);

IF (repetition = 1)
NEW (record):;
record.name := attackacft.name;
record.sidenum :=
attackacft.sidenumber;
record.mother :=
attackacft.mymother.name;
ASK vehiclestatlist TO Add (record);
END 1IF;

INC(n) ;
END WHILE;

INC(i,n+1);

n = 1;

UN"IL ((i > HIGH(newrec.OwnedString)) OR
(newrec.OwnedString([i] = *S*) OR
(newrec.OwnedString[i] = *H") OR
(newrec.OwnedString[i] = "\\"));

IF (repetition = 1)
ASK Scenariorecorder TO Writeln;
END IF;
END 1IF;

END PROCEDURE { MakeAcft };

{ IMPLEMENTATIOM } MODULE { CreateARG }.

DEFINITION MODULE DebugRun;

...

MODULE NAME: FindSHRec DATE WRITTEN: 01 Mar 92 .
AUTHOR: M. Bailey LAST MODIFIED: 18 Mar 92
Prof NPGS MODIFIED BY: S. E. Shaw

DESCRIPTION : Used to turn the trouble shooting messages
on and off.

-- -}
PROCEDURE SetUpD(IN Trace : EGOLEAN); -
END { DEFINITION } MODULE { DebugRun }.
IMPLERMENTATION MODULR DebugRun;
MODULE NAME: FindSHRec DATE WRITTEN: 01 Mar 92
AUTHOR: M. Bailey LAST MODIFIED: 18 Mar 92
Prof NPGS MODIFIED BY: S. E. Shaw
Capt USMC

DESCRIPTION : Used to tum the trouble shooting measages
ocn and off.

... }
FROM IOMod IMPORT FileUseType (Output);
FROM UtilMod IMPORT DateTime;
FROM Debug IMPORT TraceStream;
.. }
PROCEDURE SetUpD (IN Trace : BOOLEAN);)

VAR DT : STRING;

BEGIN
NEW (TraceStream) ;
ASK TraceStream TO Open|("debug.out®, Output);

DateTime (DT) ;

ASK TraceStream TO WriteString (OT) ; i
ASK TraceStream TO Writeln;

ASK TraceStream TO Writeln;

ASK TraceStream TO Writeln;

IF Trace
ASK TraceStream TO TraceOff;
ASK TraceStream TO WriteString("Initially, trace is

on.");
ASK TraceStream TO WriteLn;
ELSE
ASK TraceStream TO WriteString("Initially, trace is
off.");

ASK TraceStream TO WriteLn;
END IF;

67

END PROCEDURE;

END { IMPLEMENTATION } MODULE { DebugRun }.

DEFINITION MODULE FindSHRec;

MODULE NAME: FindSHRec DATE WRITTEN: 01 Mar 92
AUTHOR M. Bailey LAST MODIFIED: 18 Mar 92
Prof NPGS MODIFIED BY: S. E. Shaw
Capt USMC

DESCRIPTION : Searches for the requested data record from
the input data array.

... }
FROM RGlobals IMPORT SHierRecType,
SHArrayType;
PROCEDURE FindSHRec (IN SHArray : SHArrayType;
IN TopString : STRING;
OUT SHRec : SHierRecType) ;
END { DEFINITION } MODULE { FindSHRec }. '
IMPLEMENTATION MODULE FindSHRec;
MODULE NAME: FindSHRec DATE WRITTEN: 01 Mar 92
AUTHOR: M. Bailey LAST MODIFIED: 18 Mar 92
Prof NPGS MODIFIED BY: S. E. Shaw
R - - Capt UsSMC

DESCRIPTION : Searches for the requested data record from
the input data array.

.. }
FROM RGlobals IMPORT SHierRecType,

SHArrayType;
FROM global IMPORT DeBug;
oo e e }

PROCEDURE FindSHRec (IN SHArray : SHArrayType;
IN TopString : STRING;

(OUT SHRec : SHierRecType); |

68

ThisRec : SHierRecType;

1 : INTEGER;
BEGIN
i = 0;
REPEAT
INC(1i);

ThisRec := SHArrayl[il];
UNTIL((i >= HIGH(SHArray)) OR (ThisRec.TopString =
TopString)) ;

IF (ThisRec.TopString = TopString)
SHRec := ThisRec;

ELSE)
SHRec

END IF;

NILREC;

1]

END PROCEDURE;

END { IMPLEMENTATION } MODULE { FindSHRec }.

DEFINITION MODULE FuelGuage;

P T T T e T T T T T T T T T T I e

MODULE NAME: FuelGuage DATE WRITTEN: 01 Mar 92
AUTHOR: S. E. Shaw LAST MODIFIED:
Capt USMC 'MODIFIED BY:

DESCRIPTION : Procedures used to track the fuel usage of
the TransportCraft objects.

...)
FROM Transport IMPORT TransObj;
TYPE
PROCEDURE BurnFuel (IN vehicle ¢ TransObj;
IN groundtime : REAL;
IN flighttime : REAL);
PROCEDURE CheckGas (IN vehicle : TransObj;

OUT fuelrequired : BOOLEAN) ;

PROCEDURE Getfuel (IN vehicle : TransObj;
OUT duration : REAL);

END { DEFINITION } MODULE { FuelGuage }.

69

IMPLEMENTATION MODULE FuelGuage;

B I T T Y S S U - - - - meme-
- - A R R I I A T T T T ey

MODULE NAME: FuelGuage DATE WRITTEN: 18 Mar 92
AUTHOR: S. E. Shaw LAST MODIFIED:

Capt USMC MODIFIED BY:
DESCRIPTION : Procedures used to track the fuel usage of

the TransportCraft objects.

FROM SimMod IMPORT SimTime;

FROM global IMPORT LocationXY, Distance;
FROM Transport IMPORT TransObj;

FROM Debug IMPORT TraceStream;

PROCEDURE BurnFuel (IN vehicle : TransObj;
- IN groundtime : REAL;
IN emptytime : REAL:
" IN loadedtime : REAL);
VAR
groundburn : REAL;
loadedburn : REAL;
emptyburn : REAL;
startfuel : REAL;
-endfuel = : REAL;

BEGIN
groundburn := vehicle.groundburnrate;

loadedburn := vehicle.loadedburnrate;
emptyburnrate := vehicle.emptyburnrate;
startfuel := vehicle.fuelonboard;

endfuel := startfuel
- (groundburn * (groundtime/60.0))
- (emptyburn * (emptytime/60.0))
- (loadedburn * (loadedtime/60.0));
ASK vehicle TO UseFuel (endfuel);

END PROCEDURE { BurnFuel };

PROCEDURE Getfuel (IN vehicle : TransObj;
OUT duration : REAL);

VAR
amount + REAL;
refuelrate : REAL;

70

max : REAL;
totfuel : REAL;

BEGIN
amount := vehicle.maxfuel -
vehicle:fuelonboard;

TF ((vehicle.fuelonboard ~= 0.0) AND
(showsrrors))
ASIT TraceStream 'l'U WriteString ("GetFuel
"+vehicle.name+" "+
INTTOSTR (vehicle.sidenumber) +
" QUT OF FUEL");
ASK TraceStream TO erteLn,

END IF;
refuelrate := vehicle.destination.pumprate;
duration := amount / refuelrate;

ASK vehicle TO TakeOnFuel;

END PROCEDURE { Getfuel };

- PROCEDURE CheckGas (IN vehicle : TransObj;
OUT fuelrequired : BOOLEAN) ;

VAR

start : LocationXY;
end : LocationXY;
transitdist : REAL;
requiredfuel : REAL;

BEGIN

fuelrequired := FALSE;
ASK vehicle.serialonboard.source TO CurrentPos (start.x,

start.y);
end := vehicle.serialonboard.destination.location;
transitdist := Distance(start, end);

requiredfuel := (((2.0 * transitdist) /vehicle.loadedspeed)
* vehicle.loadedburnrate) *
1.3+vehicle.minfuel;

IF requiredfuel >= vehicle. fuelonboard
fuelrequired := TRUE;
END IF;

END PROCEDURE { CheckGas };

END { IMPLEMENTATION } MODULE { FuelGuage }.

DEFINITION MODULE global;

S e C e e
MOLTLs NAME: global DATE WRITTEN: 18 Ma~ .y«

AUTHOR: S. E. Shaw LAST MOD1FIED:
Capt USMC MODIFIED BY:

DESCRIPTION : Contains all random number streams, as well
as several control variables. Procedures within create the
random variable streams, as well as empty queues prior to
disposing of them.

FROM RandMod IMPORT RandomObj;
FROM Debug IMPORT DebugStream;
FROM GrpMod IMPORT QueueObj, RankedObj;
FROM StatMod IMPORT RStatObj;

VAR _)
moreserials : BOOLEAN;
showerrors : : BOOLEAN;
InternalStream : RandomObj;
ExternalStream + RandomObj;
FoldStream : RandomObj;
SpreadStream : RandomObj ;
CargoStream : RandomObj;
ReturnTime : RandomObj;
RearmTime : RandomObj ;
totalserials : INTEGER;
repetition : INTEGER;
paxtolift : REAL;
cargotolift : REAL;

TYPE
DeBug = OBJECT (DebugStream) ;
END OBJECT; '

LocationXY = FIXED RECORD
x : REAL;
Yy : REAL;

END RECORD { LocationXY };

PROCEDURE Distance (IN locationl : LocationXY;

72

IN location2 : LocationXY) : REAL;

. PROCEDURE NewRandoms;
PROCEDURE EmptyQ (IN queue : QueueQbj);
PROCEDURE EmptyRankedQ (IN queue : RankedObj};

END { DEFINITION } MODULE { global }.
IMPLEMENTATION MODULE global;

MODULE NAME: global DATER WRITTEN: 18 Mar 92
AUTHOR: S. B. Shaw LAST MODIFIED:
Capt USMC MODIFIED BY: -

DESCRIPTION : Contains all random number streams, as well
as several control variables. Procedures within create the
random variable streams, as well as empty queues prior to

disposing of ;hem.

FROM RandMod IMPORT RandomObj;

FROM ReadSeed IMPORT ReadSeed;

FROM MathMod IMPORT SQRT; -

FROM GrpMod IMPORT QueueObj, RankedObj;

PROCEDURE Distance (IN locationl : LocationXY;
IN location2 : LocationXY) : REAL;
BEGIN
RETURN SQRT ((locationl.x - location2.x) *
(locationl.x - location2.x) + (locationl.y
- location2.y) * (locatioml.y -
location2.y));

PROCEDURE NewRandoms;
BEGIN

NEW (InternalStream);
ASK InternalStream TO SetSeed (ReadSeed());

NEW (ExternalStream);
ASK ExternalStream TO SetSeed (ReadSeed()):;

73

NEW (SpreadStream);
ASK SpreadStream TO SetSeed (ReadSeed());

°, NEW (FoldStream):;

N\ ASK FoldStream TO SetSeed (ReadSeed());
- NEW (CargoStream) ;
. ASK CargoStream TO SetSeed (ReadSeed()};

NEW (ReturnTime);
ASK ReturnTime TO SetSeed (ReadSeed()});

NEW (RearmTime) ;
ASK RearmTime TO SetSeed {(ReadSeed()):;

phe ENC PROCEDURE { NewRandoms };

PROCEDNURE EmptyQ (IN queue : QueueObj) ;

L YAR
i$~ trash : ANYOBJ;
e BEGIN
JF (ASK queue numberIn > 0)
trash := ASK queue First();
WHILE (trash <> NILOBJ)
. ASK queue TO RemoveThis(trash) ;
z trash := ASK queue First();
END WHILE;
B END TF;
S END PROCEDURE { EmptyQ };

FROCEDURE EmptyRankedQ (IN queue : RankedObj) ;

) ‘"\R
.. trash : ANYOBJ;
—
B BEGIN
L IF (A3K queue numberIn > 0)
i trash := ASK queue First(); .
) WHILE (trash <> NILOBJ)
N ASK queue TO RemoveThis(trash);
. trash := ASK queue First();)
o

74

END WHILE;
END IF;

END PROCEDURE { EmptyRankedQ };

END { IMPLEMENTATION } MODULE { global }.

DEFINITION MODULE Input;

P T T T T T A R I I I I i Py

MODULE NAME: Input DATE WRITTEN: 01 Mar 92
AUTHOR: M. Bailey LAST MODIFIED: 18 Mar 92
Prof NPGS MODIFIED BY: S. E. Shaw

Capt USMC

DESCRIPTION : Reads the file containing the names of all
data files used for the simulation.

... }
PROCEDURE ReadEmAll;
END { DEFPINITION } MODULR { Input }.
IMPLEMENTATION MODULE Input;
MODULE NAME: Input DATE WRITTEN: 01 Mar 92
AUTHOR: M. Bailey LAST MODIFIED: 18 Mar 92
Prof NPGS MODIFIED BY: $. E. Shaw
Capt USMC

DESCRIPTION : Reads the file containing the names of all
data files used for the simulation.

FROM RGlobals IMPORT FileNameType;

FROM IOMod IMPORT StreamObj, FileUseType(Input);

FROM RGlobals IMPORT MasterFileName,
AcftSHArray, ShipSHArray, SpotSHArray, LZSHArray,
OutputFileName, SerialSHArray;

FROM RGlobals IMPORT SeedArray;

FROM ReadLst IMPORT ReadLst;

FROM ReadSeed IMPORT ReadTheSeeds;

FROM global IMPORT DeBug;

VAR

75

AcftFileNamz,

ShipFileName,

SpotFiieName,

LZFileName,

SerialFileName,

SeedFileName : FileNameType;

o e m e e e i ciiaecemcccaaeaas
{ PROCEDURE ReadAcft;
BEGIN
ReadLst (AcftSHArray , AcftFileName);

END PROCEDURE { ReadAcft };
e
{ PROCEDURE ReadShip;

BEGIN

Readlst (ShipSHArray , ShipFileName);

END PROCEDURE { ReadShip };
T
{ PROCDURE ReadSpots;

BEGIN

ReadLst (SpotSHArray , SpotFileName);

END PROCEDURE { ReadSpots };
eme e et eeidideciaeeeeeea.
{ PROCEDURE ReadL2Z;

BEGIN

ReadLst (LZSHArray, LZFileName) ;

END PROCEDURE { ReadLZ };
T
{ PROCEDURE ReadSerial;

BEGIN

ReadLst (SerialSHArray, SerialPileName):;

END PROCEDURE { ReadSerial };
R
(PROCEDURE ReadEmAll;

76

VAR

[A S

FPile : StreamObj;
str : STRING;

BEGIN
ASK

ASK
ASK

ASK
ASK

ASK
ASK

ASK
ASK

ASK
ASK

ASK
ASK

ASK
ASK

" ReadAcft;
ReadShip;

File

File
File

File
File

File
File

File
File

File
Pile

File
Pile

File
File

38 43 33 34 33 33 43 3

NEW(File);

ReadSpots;
ReadlZ;
ReadSerial;
ReadTheSeeds (SeedFileName) ;

Open(MasterFileName, Input);

ReadStr*ng(AcftFileName),
ReadlLine(str);

ReadString(ShipFileName).
Readline (str);

ReadString(SpotPileName),
ReadLine (8tr);

ReadString(LZFileName);
ReadLine(str) ;

ReadString(SerialFileName),
ReadLine(str);

ReadsString (SeedFileName) ;
ReadLine(str);

ReadString(Outputrileﬂame),
ReadLine (str);

END PROCEDURE { ReademAll };

END { Implementation } MODULE { Input }.

DEFINITION MODULE HDCMOA)

(= e o e e e iiacicaaes s
MODULE NAMB: HDCMod DATE WRITTEN:
AUTHOR : S. B. Shaw LAST MODIFIED:
Capt USMC MODIFIED BY:
DBSCRIPTION :

_ The Helicopter Direction Center obj is used
to control the TransportCraft movements. This object assigns

77

serials to the craft, as well as direct where the craft go to
pick up their next serial.

FROM GrpMod IMPORT QueueObj, RankedObj ;

FROM SerialMod IMPORT SerialObd; : .
FROM ARGMod IMPORT ARGODb];

FROM LZBeach IMPORT LZBeachObj;

EXPORTTYPE
. HDCObj = OBJECT; FORWARD;
'TYPE '
BriefingRec = RECORD
serial : INTEGER;
dest : ARGObj;
1z : LZBeachObj;
loadsize : INTEGER:
END RECORD;

SerialListObj = OBJECT (RankedObj);

OVERRIDE -

ASK METHOD Rank (IN a, b : ANYOBJ) : INTEGER;
END OBJECT { SeriallistObj };

HDCObj = OBJECT; '
seriallist : SeriallListObj;

ASK METHOD ObjInit;
ASK METHOD GivelLoad (IN serialnum : INTEGER;
OUTnewload : SerialObj);
ASK METHOD GiveFirstLoad (IN ship : STRING;
IN acfteize : INTEGER;
OUT newload : SerialObj;
OUT othership : BOOLEAN) ;
ASK METHOD NewDestination (OUT briefing :
BriefingRec;
IN acftsize :
INTEGER;
OUT assignedaload
: BOOLEAN) ;
ASK METHOD DestroyHDC;
ASK METHOD Combinel.ocads (IN briefing : BriefingRec;
OUT combined : BOOLRAN) ;

END OBJECT { HDCObj };
ENC {DEFINITION } MODULE { HDCMod }.

78

- MODULE NAME: HDCMod DATE WRITTEN: 18 Mar 92
AUTHOR : S. B. Shaw LAST MODIFIED:
Capt USMC MODIFIED BY:

DESCRIPTION : The Helicopter Direction Center obj is used
to control the TransportCraft movements. This object assigns
serials to the craft, as well as direct where the craft go to
pick up their next serial ‘

FROM SerialMod IMPORT SerialObj;

FROM SimMod IMPORT SimTime;

FROM global IMPORT moreserials, EmptyQ, EmptyRankedQ;
FROM RGlobals IMPORT SerialSHArray;

FROM Debug IMPORT TraceStream;

OBJECT SerialListObj;

ASK METHOD Rank (IN a, b : ANYOBRJ) : INTEGER;
VAR
seriala, serialb : SerialObj;

BEGIN
seriala :=

a;z;
serialb := b;

IF seriala.priority < serialb.priority
RETURN -1;

BELSIF seriala priority > serialb.priority
RETURN 1;

END OBJECT { SeriailListObj };

(F4 4444444444444 444404444444+ 2 4440444+ 4 b bt bt bbbttt bbbt etds)

OBJECT HDCObJ;

ASK METHOD ObjInit;
BEGIN

NEW(seriallist);
END METHOD { ObjInit };

ASK METHOD GiveLoad (IN serialnum : INTEGER;
OUT newload : SerialObj);
VAR
thisload : BOOLEAN;
checkthis : SerialObj;

BEGIN
thisload := FALSE;
checkthis := ASK seriallist First();

IF (checkthis <> NILOBJ)
WHILE NOT thisload
IF checkthis.serialnum = serialnum
ASK seriallist TO RemoveThis
(checkthis) ;
thisload := TRUE;
ELSE
checkthis := ASK seriallist Next
(checkthis) ;
END IF;
END WHILE;

END IF;
newload := checkthis;

END METHOD {GiveLoad };

ASK METHOD GivePirstLoad (IN ship : STRING;
IN acftsize : INTEGER;
OUT newload : SerialObj;
OUT othership : BOOLEAN);
VAR

goodload : BOOLRAN;
repositionload : BOOLRAN;

€0

i : ekt S L n ;
- Bmm)) ’ o ‘ o . ':‘-lr) » - - ‘} : . ’:
' i = 1; C I .7 ST TR T
goodload := Eanss. S ,,iil“ e : D
- othership := FALSE; R e
checkthis := ASK seriallist Firsc(). S EUR,
REPEAT ‘ - c e LT
IF ({checkthis.gsource.name « ahip) AND Ce e e T
“NOT checkthig.allocated) AND ST
(checkthis. minliftsize <= acftsize)); S
goodload := TRUE;
newload :» chackthis.
"END IF;
checkthis := ASK seriallist NExt (checkthis); -
INC (i);

UNTIL ((goodlogd} OR (i > ASK seriallist numberrn)).

IF {NOT goodload)
- 1;
checkthis := ASK seriallist First();

REPEAT ‘
IF { (NOF checkthis.allocated) AND
(checkthis.minliftsize <= acftsize))
repositionload := TRUE;
newload := checkthis;

END IFP;
checkthis := ASK seriallist Next (checkthis)
INC (1);
UNTIL ((repositionload) OR (i > ASK seriallist
numberln))};

othership := TRUE;
END IF; ‘
ASK newload TO AllocateSelf;
. END METHOD { GiveFirstLoad };

ASK METHOD NewDestination (OUT briefing : BriefingRec;
IN acftsize : INTEGER;
OUT agssignedalcad : BOCCLRAN);

Cleared : BOOLEAN;
. checkthis : SerialObj;

81

:serialsleft i Asx aexiallisu numbexzn, fg '
aaaignﬁhisload = NILOBJ; = :
;asaign da. oad.-- FALSE '

cleared w BALSE~ _

checkthis- - A§K seriallist First ().

IF serialsleft > 0 _
REDEAT
- IF: {(NOT checkthis allocated) AND
. (checkthis.minliftsize <= acﬁtaize))

; Asx checkthis TO AllocateSelf; ,
briefing.dest :- checkthis.source;)
briefing.serial := -
checkthis.serialnum,
briefing.loadsize :=
checkthis.minliftsize; -
cleared := TRUE;
assignthisload := checkthis;
assignedaload := TRURB;

END IF;
checkthis := ASK seriallist Next (checkthis);
UNTIL ((cleared) OR (checkthis = NILOBJ));
ELSE
moreserials := FALSE;
END IF;
IF (assignthislocad = NILOBJ)
briefing.deat := NILOBJ;
briefing.serial := -100;

cleared := TRUE;
END IF;

END METHOD { NewDestination };

ASK METHOD DestroyHDC; -

edQ» (serialxist) L |

i ~5ni§mss' &edalliatri

ASK

METHOD | COmbineLoads (IN brieﬁng Bri,efﬁgﬂeg;

ouT. comblned BOOLEAN). TR o R
VAR - , : - g
found: : BOOLEAN; :
checkthis ': SerialObij;
firstload :»: SerialObj;
- -secondload . "SexialObj;
match : BOOLEAN;
-~ dest : STRING;
BEGIN

found := FALSE;
checkthis tm asx seriallist First() ¥

IF (checkthis <> NII..OBJ)
REPEAT .
IF (checkthis.serialnum = briefing.serial)
found := TRUE;
firstload := checkthia;
ELSE
checkthig := ASK seriallist
Next (checkthis)
END IF;
UNTIL((checkthis = NILOBJ) OR (found));
END IF;

IF (NOT found)
combined := FALSE;

BLSE

IF (briefing.dest = NILOBRJ);
dest := briefing.lz.name;

RLSE ‘
dest := briefing.dest.name;

END IPF;

checkthis := NILOBJ;

match := FALSE;

checkthis := ASK seriallist First():

83

IF (checkthis <> NILOBJ)
REPEAT
IP((checkthis.destination.name = dest)
AND (checkthis.source.name =
firstload.source.name)
AND (checkthis.minliftgize = 1) -
AND (NOT checkthis.allocated))

secondload := checkthis;
match := TRUE;

ELSE
checkthis := ASK seriallist
. Next (checkthis) ;
END IF;
UNTIL ((match) OR (checkthis = NILOBJ))
END IF;
IF (match)

combined := TRUE;
ASK firstload TO AddPax (secondload.pax);
ASK firstlocad TO AddCargo (secondload.cargo):;
ASK seriallist TO RemoveThis (secondload);
END IF;
END IF;

END METHOD { CoumbineLoads };

END OBJBCT { HDCObj };
{+++§+#+0+++++~+++++++++++++++++++++++++++++++*§++++++++++++++}

END { IMPLEMENTATION } MODULE { HDCMod }.

DEFINITION MCDULE LZBeach;

P I N T T T I A T Tl T T T T T I T e

MODULE NAME: LZ2Beach DATE WRITTEN: 18 Mar 92
AUTHOR : S. B. Shaw LAST MODIFIED:
' Capt USMC MODIFIED BY:

DBSCRIPTION : Defines the landing zone/beach objects.
Tracks the amount of cargo and pax delivered to each LZ. Uses
the OutputDriver to output this data to the output file.

..

K . FROM global IMPORT LocationXY; .

84

etz i . M > ey e SR e A

E o -
e s e e e i e o it e S g 2t et < S £ i = i " < e R e S . o 5 e o et o e M et . et e 3 e A o+ i vt o 0 et 2 o e e 2t et
I P T U B T T e s
B . i o
e et P P R e L T B T o R S T R R
- A -

‘mou Reauod n@an'r mm:caobj
- FROM SpotMan IMPORT - SpotManObij;
FROM RGlobals mponr sxiernec'zype

'moxmn ' . o o
LZBeachObj a omcr- yonwann ’ o

LZBeachObj = OBJECT;

name

location -
paxinzone
totalsortiea
cargoinzone
fac
numlandingspo;:s
priorcargo —
priorpax

ASK MBTHOD ReadData (IN newlz : SHierkoacType);

ASK METHQD ObjInit, ’

ASK METHOD ReceiveLoad (IN pax RERL;
REAL;

IN
INTEGER) ;

cargo
: IN numserials
ASK METHOD DestroyLZ;

END OBJRCT { LZBeachObj
BND { DEFINITION } MODULE { LZBeachObj }.

LA R A et ettt e e T TR S VA P g P

Capt USMC MODIFIED BY:

DESCRIPTION : Defines the landing zone/beach objects.
Tracks the amount of cargo and pax delivered to each LZ. Uses
the OutputDriver to output this data to the ocutput file.

FROM global IMPORT LocationXY, totalserials;
FROM Statistica IMPORT lastdeliverytime;
FROM ResMod IMPORT RescurceObj;

FROM RGlobals IMPORT SHierRecType;

FROM SimMod IMPORT SimTime;

FROM Debug IMPORT TraceStream;

Y ra et

ASK METHOD ObjInit;

BEGIN
NEW (fac);

END METHOD { ObjInit };

ASK METHOD ReadData (IN newlz : SHierRecType);

BEGIN '
name := newlz.TopString;

location.x := STRTOREAL (newlz.OwnedString[1]):
location.y := STRTORBAL (newlz.OwnedStringl[2]);

ASK fac TO PaintSpots (name, name, OBJTYPENAME (SELF),

numlandingspots) ;
ASK fac TO SetName (name) ;

ASK METHOD Receivelcad (IN pax .: REAL;
IN cargo : H
IN numserials : INTEGER);

BEGIN
cargoinzone := cargoinzone + cargo;
paxinzone := paxinzone + pax;
WriteLZData (pax, cargo);
INC (totalsorties);
totalserials := totalserials - numserials;

IF (totalgerials = 0)

lastdeliverytime := SimTime(); -
END IF;
END METHOD { ReceivelLoad }; -

86

ASK. METHOD DestroylZ;

BEGIN
ASK fac TO DestroySpotMan;
DISPOSE (SELF) i

END METHOD { DestroyLZ };

END OBJECT { LZBeachObj };
END { IMPLEMBNTATION } MODULE { LZBeachObj }.

DEFINITION MODULE LoadProcedures;

R e L T T T
MODULE NAME: LoadProcedures DATE WRITTEN: 3 Apr 92
AUTHOR : S. E. Shaw LAST MODIFIED:

Capt USMC _ DDDIFIED BY:

DESCRIPTION : These procedures detemine the time required
to load and unload each serial.

FROM Transport IMPORT TransObj;
FROM Attack IMPORT AttackObj;
TYPR

PROCEDURE LoadCargo (IN vehicle : TransObj;
OUT loadtime : REAL);

PROCEDURE UniLoadCargo (IN vehicle : TransObj;
OUT loadt.ime : REAL);

PROCEDURE ReArmAcft (IN vehicle : AttackObj;
OUT rearmtime : RRAL);

B { DEPINITION } MODULE { LoadProcedures }.

IMPLEMENTAYION MODULE LoadProcedures;

L T T T Tk T T T T MU U U g gy

87

AUTHOR S. E. Shaw LAST MODIFIED:
Capt USMC MODIFIED BY:

DESCRIPTION : These procedures determine the time required
to load and unload each serial.

FROM Transport IMPORT TransObj;

FROM RandMod IMPORT RandomObj;

FROM Attack IMPORT AttackObj;

FROM SimMod IMPORT SimTime;

FROM global IMPORT InternalStream, ExternalStream,
CargoStream, RearmTime;

TYPE

PROCEDURE LioadCargo (IN vehicle : TransObj;
OUT loadtime : REAL);

VAR
loadtype : STRING;
pax : REAL;
cargo : REAL;
ptime : REAL;
ctime : REBAL;
BEGIN

loadtype := vehicle.serialonkoard.lift;

pax := vehicle.serialonboard.pax;

cargo := vehicle.serialonboard.cargo;

ptime := ASK InternalStream UniformReal (1.0,5.0)+
(pax / 160.0) * ASK InternalStream
UniformReal (15.0, 25.0);

ctime := ASK CargoStream Exponential
(vehicle.cargotime) ;

IF (loadtype = "INTERNAL")
loadtime := ((ptime) + (cargo / 1000.0) * ctime);
ELSIF (loadtype = "EXTERNAL")
loadtime := ASK ExternalStream Bxponential
(vehicle.externaltime! ;
END IPF;

END PROCEDURE { LoadCargo };

PROCEDURE UnLoadCargo (IN vehicle : TransObj; :

88

lIIlII-

OUT loadtime : REAL);

VAR
. loadtype : STRING;
pax : REAL;
cargo : REAL;
. ptime ¢ REAL;
ctime : REAL;
BEGIN

loadtype := vehicle.serialonboard.lift;

pax := vehicle.serialonboard.pax;

cargo := vehicle.serialonboard.cargo;

ptime := ASK InternalStream UniformReal (1.0, 5.0);

ctime := ASK CargoStream Exponential
(vehicle.cargotime) ;; ’

IF (loadtype = "INTERNAL")
loadtime := (ptime) + ((cargo / 1000.0) * ctime);
ELSIF (loadtype = "EXTERNAL") |
loadtime := ASK ExternalStream Exponential

(vehicle.externaltime) ;
END IF;

END PROCEDURE { UnLOadCargo };

PROCEDURE ReArmAcft (IN vehicle : AttackObj;
OUT rearmtime : REAL);
BEGIN
rearmtime := ASK RearmTime UniformReal (25.0, 60.0);

END PROCEDURE { ReArmAcft };

END { IMPLEMENTATION } MODULE { LoadProcedures }.

DEFPINITION MODULE OutputDriver);
MODULE NAME: OutputDriver DATE WRITTEN: 4 May 92
AUTHOR : 8. E. Shaw LAST MODIFIED:
Capt USMC MODIFIED BY:

89

DESCRIPTION: Opens all output files, combines files as
necessary to form the final scenario file, then closes all
files.

FROM LZBeach IMPORT LZBeachObj;
FROM IOMod IMPORT StreamObj, FileUseType (Output);
FROM CATPMod IMPORT CATFObjJ;

VAR
LZrecorder : StreamObj;
Scenariorecorder : StreamObj;
StatsRecorder : StreamObj;

FinalOutputFile : StreamObj;
EndTimerecorder : StreamObj;
datestamp : STRING;

TYPE

PROCEDURE OpenFiles;

PROCEDURE WriteLZData (IN pax : REAL;
IN cargo : REAL);

PROCEDURE CombineFiles;

PROCEDURE CloseFiles;

END { Definition } MODULE { OutputDriver }.

%uPLENEHTATION MODULE OutputDriver;
' MODULE NAME: OutputDriver DATE WRITTEN: 18 Mar 92
AUTHOR: S. B. Shaw LAST MODIFIED: 5 Jun 92
Capt USMC

DESCRIPTION : Opens all output files, combines files as
necessary to form the final scenario file, then closes all
files.

FROM IOMod IMPORT StreamObj, FileUseType (Output, Input);
FROM UtilMod IMPORT DateTime;

FROM SimMod IMPORT SimTime;

FROM CATFMod IMPORT CATFObJj;

FROM RGlobals IMPORT OutputFileName;

FROM Statistics IMPORT beforejump; '

FROM global IMPORT paxtolift, cargotolift;

PROCEDURE OpenFiles;
BEGIN

DateTime (datestamp);

NEW (LZrecorder);

ASK LZrecorder TO Open (OutputFileName +°"LZ.out",Output);
ASK LZrecorder TO WriteString (datestamp);

ASK LZrecorder TO WriteString (" *+OutputFileName) ;
ASK LZrecorder TO WritelLn;
ASK LZrecorder TO WriteString(" TIME BEFOREBJUMP

JUMP "+" AFTRRJUMP") ;
ASK LZrecorder TO Writeln;

NEW (Scenariorecorder);

ASK Scenariorecorder TO Open ("Scenario.out”, Output);
ASK Scenariorecorder TO Writeln;

ASK Scenariorecorder TO WritelLn;

NEW (EndTimerecorder); .

ASK EndTimereccorder TO Open (OutputFileName + "Bnd.out",
Output) ;

ASK EndTimerecorder TO WriteString (datestamp);

ASK EndTimerecorder TO WriteString (* "+OutputFileName);

ASK EndTimerecorder TO Writeln;

ASK EndTimerecorder TO Writeln;

NEW (StatsRecorder);

ASK StatsRecorder TO Open ("Stats.out®", Output!;
ASK StatsRecorder TO WriteString("--------c<cce-c---
B R Statg8---------ccccccccereaoo- ")

ASK StatsRecorder TO WriteLn;
ASK StatsRecorder TO WriteLa;

END PROCEDURE { OpenFiles };

PROCEDURE WriteLZData (IN pax : REAL;
IN cargo : RBAL);

VAR

x : REAL;

paxjump : REAL;

cargojump : REAL;

totaljump : REAL;
BEGIN

X := SimTime();
paxjump := ((pax / paxtolift)/2.0);
cargojump := ((cargo / cargotolift)/2.0);

91

I

totaljumr := paxjump + cargojump;

ASK LZrecorder TO WriteString (REALTOSTR(x)+" "4 3
REALTOSTR (beforejump) +" " +REALTOSTR (totaljump)) ;
beforejump := beforejump + totaljump; .

ASK LZrecorder TO WriteString (" "+REALTOSTR (beforejump));
ASK LZrecorder TO Writeln;

END PROCEDURE ({ WriteLzZData };

PROCEDURE CloseFiles;

BEGIN
ASK LZrecorder TO Close;
ASK EndTimerecorder TO Close;
ASK Scenariorecorder TO Close;
ASK StatsRecorder TO Close;

CombineFiles;

DISPOSE (LZrecorder);
DISPOSE (Scenariorecorder);
DISPOSE (StatsRecorder);
DISPOSE (FinalOutputFile);

END PROCEDURE { CloseFiles };

PROCEDURE CombinePiles;

VAR
placeholder : STRING;

BEGIN
ASK Scenariorecorder TO Open ("Scenario.out®", Input);
ASK StatsRecorder TO Open ("Stats.cut", Input);

NEW (FinalOutputFile);
ASK FinalOutputFile TO Open (OutputFileName+".txt",
Output) ;
ASK FinalOutputFile TO WriteString (datestamp); .
ASK FinalOutputFile TO WriteString (* *+OutputFileName) ;
ASK FinalOutputFile TO Writeln;
ASK FinalOutputFile TO Writeln;

92

1

WHILB (NOT Scenariorecorder.eof)
ASK Scenariorecorder TO ReadLine (placeholder);
ASK FinalOutpucFile TC ¥%riteString (placeholder);
ASK FinalOutputFile TO Writeln;

END WHILE;

ASK FinalOutputFile TO WriteLn;
ASK FinalOutpuctFile TO WriteLn;

ASK Scenariorecorder TO Close;

ASK StatsRecorder TO Open ("Stats.out", Input);

WHILE (NOT StatsRecoider.eof)
ASK StatsRecorder TO ReadLine (placeholder);
ASK FinalOutputFile TO WriteString (placeholder);
ASK FinalOutputFile TO WriteLn;

END WHILE;

ASK StatsPRecorder TO Close;

ASK Scenarionreccorder TO Delete;

ASK StatsRecorder TO Delete;

ASK FinalOutputFile TO Close;

END PKOCEDURE { CombineFiles };

END { IMPLEMENTATION } MODULE { OutputDriver }.

DBEFINITION MODULE Procedures;

P T i T T T T T T T T T T S . I TR R R P

MODULE NAME: Procedures DATE WRITTEN: 18 Mar 92
AUTHOR: S. B. Shaw LAST MODIFIRD:
Capt USMC MODIFIED BY:

DESCRIPTION : These 2 procedures assign the source and
destination to each serial as it is read in. This information
is entered as a STRING and must be converted to the
appropriate object.

FROM HDCMod IMPORT HDCOL] ;
FROM CATFMod IMPORT CATFODbj;
TYPE

PROCEDURE FindSource (INOUT HDC : HDCObjJ;

93

IN CATF : CATFObj);

PROCEDURE FindDestination (INOUT HDC : HDCObj;
IN CATF : CATFObj);

END { DEFINITION } MODULE { Procedures }.

IMPLEMENTATION MODULE Procedures;

{ ...
MODULE NAME: Procedures DATE WRITTEN: 18 Mar 92
AUTHOR: S. E. Shaw LAST MODIFIED:

Capt USMC MODIFIED BY:

DESCRIPTION : These 2 procedures assign the source and
destination to each serial as it is read in. This information
is entered as a STRING and must be converted to the
appropriate object.

FROM ARGMod IMPORT ARGObj;

FROM LZBeach IMPORT LZBeachObij;
FROM SerialMod IMPORT SerialObj;
FROM HDCMod IMPORT HDCObJ;

FROM global IMPORT DeBug;

FROM CATFMod IMPORT CATFObJ;

PROCEDURE FindDestination (INOUT HDC : HDCObJ;
IN CATF : CATFOb]j):;

VAR
gohere : STRING;
checkzone : LZBeachObj;
dropoff : LZBeachObj;
load : SerialoObj;
gooddest : BOOLEAN;
i : INTEGER;
BEGIN
i := 0;

load := ASK HDC.seriallist First();

WHILE load <> NILOBJ
INC(1);
gchere := load.goto;
gooddest := FALSE;

94

checkzone := ASK CATF.lzbeachlist First();

REPEAT
IF gohere = checkzone.name
gooddest := TRUB;
dropoff := checkzone;
END IF;
checkzone := ASK CATF.lzbeachlist Next
(checkzone) ;
UNTIL (gooddest):;

IF gooddest
ASF. load TO SetDestination (dropoff):;
ELSE
OUTPUT ("HDC ERROR IN FINDESTINATION °);
OUTPUT (load.goto," @*,load.gofrom,” ",
load.serialnum," *,6load.cargo," ",
load.pax," ",load.priority,”
", load.lift); '
END IF;

load := ASK HDC.seriallist Next (load);
END WHILR;

END PROCEDURE { FindDestination };

PROCEDURE FindSource (INOUT HDC : HDCObj;
IN CATF : CATFObj);

VAR
fromhere : STRING;
checkship : ARGODbJ;
origin : ARGODb];
goodsource : BOOLBEAN;
load : SerialObj;
i : INTEGER;
BEGIN ‘
load := ASK HDC.seriallist First();
i := 0;
WHILE load <> NILOBJ

INC(1i);

fromhere := load.gofrom;

goodsource := FALSE;

checkship := ASK CATF.shiplist Pirst();

REPEAT
IP fromhere = checkship.name

95

goodsource := TRUE;
origin := checkship;

END IF;

checkship := ASK CATF.shiplist

Next (checkship) ;
UNTIL (goodsource); X
IFP goodsource
ASK load TO SetSource (origin);
BLSE

OUTPUT ("HDC ERROR IN FINDSOURCE *;;

OUTPUT (load.goto,® ",load.gofrom," °,
load.serialnum,* *,load.cargo,"™ ",
load.pax," *,load.priority,"

* load.lift); :
END IF;

origin := NILOBJ;
load := ASK HDC.seriallist Next (load);
END WHILE;

END PROCEDURE { FindSource };

END { IMPLEMENTATION } MODULE { Procedures }.
DEPINITION MODULE ReadLst;

...

MODULE NAME: ReadLst DATE WRITTEN: 01 Mar 92
AUTHOR M. Bailey LAST MODIFIED: 18 Mar 92
Prof NPGS MODIFIED BY: S. R. Shaw
Capt USMC

DESCRIPTION : Reads the input data files. Puts all data
into arrays for later use.

FROM RGlobals IMPORT SHArrayType,
FileNameType;

PROCEDURE ReadLst (INOUT SHArray : SHArrayType;
IN FileName : FileNameType);
END { DEFINITION } MODULE ({ ReadLst).

IMPLEMENTATION MODULE ReadLst;

96

...

MODULE NAME: ReadLst DATE WRITTEN: 01 Mar 92
AUTHOR: M. Bailey LAST MODIFIED: 18 Mar 92
Prof NPGS MODIFIED BY: S. B. Shaw
Capt USMC
. DESCRIPTION : Reads the input data files. Puts all data
into arrays for later use.

FROM IOMod IMPORT StreamObj, FileUseType (Input);
FROM RGlobals IMPORT SHArrayType,
FileNameType;
FROM ReadSH IMPORT ReadSH;
FROM global IMPORT DeBug;

PROCEDURE ReadLst (TNOUT SHArray : SHArrayType;
' IN FileNane : FileNameType) ;

File : StreamObj;
numberOfSH : INTEGER;
i : INTBGER;
error : BOOLEAN;
string : STRING;

BEGIN
NEW(File);
ASY. File TO Open(FileName, I:put);

ASK File TO ReadlInt (numberOfSH);
ASK File TO ReadlLine(string);

NEW (SHArray, 1..numberOfSH);

FOR i := 1 TO numberOfSH
ReadSH(File, SHArrayl[i]. ervror);

END FOR;
END PROCEDURE { ReadlLst };

END { IMPLEMENTATION)} MODULE { ReadLst }.

DEFINITION MODULE ReadSeed;

LI AR B A I I R R T T T T T i

MODULE NAME: ReadSeed DATE WRITTEN: 01 Mar 92
AUTHOR : M. Bailey LAST MODIFIED: 18 Mar 92
. Prof NPGS MODIFIED BY: S. B. Shaw

97

Capt USMC

DESCRIPTION : Used to read the initial seeds for the
random variable streams.

.. }
FROM RGlobals IMPORT FileNameType;
PROCEDURE ReadSeed() : INTEGER;
PROCEDURE ReadTheSeeds (IN FileName : FileNameType);
END { DEFINITION } MODULE { ReadSeed }.
IMPLEMENTATION MODULE ReadSeed;
MODULE NAME: ReadSeed DATE WRITTEN: 01 Mar 92
AUTHOR: M. Bailey LAST MODIFIED: 18 Mar 92
Prof NPGS MODIFIED BY: 8. B. Shaw
Capt USMC

DESCRIPTION : Used to read the initial seeds for the
random variable streams.

.. }
FROM global IMPORT DeBug;
FROM IOMod IMPORT FileUseType(Input),
StreamObj ;
FROM RGlobals IMPORT FileNameType,

SeedCount, SeedArray;
A AL e LR L L LIRS L L EEREE RIS)
(PROCEDURE ReadSeed() : INTEGER; }

BEGIN

IF (SeedCount > HIGH (SeedArray))
OUTPUT ("Ran out of seeds with count = " +
INTTOSTR (SeedCount)) ;
OUTPUT ("Ran out of seeds, make more "):
HALT;
RETURN({O) ;
ELSE
IF (SeedCount <= 0)
SeedCount := 1;
END IF;
INC (SeedCount) ;
RETURN (SeedArray (SeedCount - 1});
END IP;

END PROCEDURBE;

98

{ ..
VAR
file : StreamObj;
str : STRING;
i : INTEGER;
NumberOfSeeds : INTEGER;
BEGIN
NEW(file);

ASK file TO Open(FileName, Input);
ASK file TO ReadInt (NumberOfSeeds) ;
NEW(SeedArray, 1..NumberOfSeeds);
FOR i := 1 TO NumberffSeeds
ASK file TO ReadInt (SeedArray(il]);
ASK file TO ReadLine(str);
END FOR;
END PROCEDURE;

END { INPLEMENTATION } MODULE { ReadSeed }.

DEFINITION MODULE ReadSH;

P R e T T T T T e R kT T N R IR I PP PR I N e RPN A

MCDULE NAME: ReadSH DATE WRITTEN: 01 Mar 92
AUTHOR: M. Bailey LAST MODIFIED: 18 Mar 92
Prof NPGS MODIFIED BY: S. E. Shaw
Capt USMC

DESCRIPTION : Reads the data arrays from the input files.

FROM RGlobals IMPORT SHierRecType;
FROM IOMod IMPORT StreamObj;

PROCEDURE ReadSH(IN Pile : StreamObj;
OUT SHeirRec : SHierRecType;
OUT error : BOOLEAN);

END { DEPINITION } MODULE { ReadSH }.

IMPLEMENTATION MODULE ReadSH;

...

MODULE NAME: ReadSH DATE WRITTEN: 01 Mar 92

99

AUTHOR: M. Bailey LAST MODIFIED: 18 Mar 92

Prof NPGS MODIFIED BY: S. E. Shaw
Capt USMC .
DESCRIPTION : Reads the data arrays from the input file?.

FROM IOMod IMPORT StreamObj, FileUseType (Input) ;
FROM RGlobals IMPORT SHierRecType;

FROM global IMPORT DeBug;

FROM IOMod IMPORT ReadKey;

... }
PROCEDURE ReadSH{ IN Pile : StreamObj;
OUT SHierRec : SHierRecType;
{ OUT error : BOOLEAN); }

TYPE
StringRecType = RECORD
String : STRING;
MNext : StringRecType;
END RECORD;

VAR
string : STRING;
numberOfStrings : INTEGER;
StringRec, 0OldStringRec : StringRecType;

first : StringRecType;
arrow : STRING; '
stringRec : StringRecType;
i : INTEGER;
z : CHAR;
BEGIN

NEW (SHierRec) ;

ASK Pile TO ReadString(SHierRec.TopString);
NEW (StringRec) ;

numberOfStrings := 1;

first := StringRec;

ASK File TO ReadString(arrow);

IF arrow <> "->" _

OUTHIT("file not formatted correctly");

error := TRUE;

RETURN;
ELSE

errcr := FALSE; .
END IF;

WHILE string <.» "\\" .

ASK File TO ReadString(string);
IF string = ", ."
R ASK File TO ReadLine(string);
ELSE
0ldStringRec := Stringkec;
- ' StringRec.String := string;
NEW (StringRec) ;
OldstringRec.Next := StringRec;
numberOfStrings := numberOfstrings + 1:
END IF;
END WHILE;

ASK File TO ReadLine(string);

IF (numberOfStrings > 0) AND NOT error
NEW(SHierRec.OwnedString, 1..numberOfStrings - 2);
stringRec := first;

FOR i := 1 TO numberOfStrings - 2
SHierRec.OwnedString[i] := stringRec.String;
stringRec := stringRec.Next;

END FOR;

END IF;

END PROCEDURE { ReadSH };

END { IMPLEMENTATION } MODULE { ReadSH }.

DEFINITION MODULE RGlcbals;

L L T T T R
MODULE NAME: RGlobals DATE WRITTEN: 01 Mar 92
AUTHOR: M. Bailey LAST MODIFIED: 18 Mar 92

Prof NPGS MODIFIED BY: S. E. Shaw
Capt USMC

DESCRIPTION : Contains global variables primarily used for
the input of data.

CONST
MasterFileName = "OPplan.dat";

TYPE
FileNameType = STRING;
SArrayType = ARRAY INTSGER OF STRING;

SHierRecType = RECORD

101

TopString : STRING;
OwnedString : SArrayType;

END RECORD; -

SHArrayType = ARRAY INTEGER OF SHierRecType;

SeedArrayType = ARRAY INTEGER OF INTEGER:; -
VAR

ShipSHArray : SHArrayType;

SpotSHArray : SHArrayType;

AcftSHArray : SHArrayType;

LZSHArray : SHArrayType;

SerialSHArray : SHArrayType;

SeedArray : SeedArrayType;

OutputFileName : FileNameType;

SeedCount : INTEGER;

END { DEFPINITION } MODULE { RGlobals }.

DEFINITION MODULE SerialMod;

MODULE NAME: SeriaiMod DATE WRITTEN: 18 Mar 92
AUTHOR: S. E. Shaw LAST MODIFIED:
- Capt USMC MODIFIED BY:

DESCRiPTION’: Defines the serial objects to be transported
in the simulation.

.. }
FROM LZBeach IMPORT LZBeachObj;
FROM ARGMod IMPORT ARGObJ;
FROM RGlobals IMPORT SHierRecType;
EXPORTTYPE
SerialObj = OBJECT; FORWARD;
TYPE
CargoLiftType =« (internmal, external);
SerialObj = OBJECT;
destination : LZBeachObj;
scurce : ARGODb];
serialnum : INTEGER;
cargo : REAL;
pax : REAL;
priority : INTEGER;
lifceype : STRING;
goto : STRING;
gofrom : STRING;
lift : STRING; *
102

1

allocated : BOOLEAN;
minliftsize : INTEGER;
externalspeed : REAL;

ASK METHOD ReadData (IN newserial : SHierRecType);
ASK METHOD SetDestination (INOUT to : LZBeachObj);
ASK METHOD SetSource (INOUT from : ARGObj);

ASK METHOD AllocateSelf;

ASK METHOD DeAllocateSelf;

ASK METHOD DestroySerial;

ASK METHOD AddPax (IN newpax : REAL);

ASK METHOD AddCargo (IN newcargo : REAL);

END OBJECT { SerialObj };
END { DEFINITION } MODULE { SerialMod }.

IMPLEMENTATION MODULE SerialMod;

LA A 2R 2K I 2R IR 20 K 2K 2K R B IR L A B N AR e e T T T YN N U U g U R gy

MODULE NAME: SerialMod DATE WRITTEN: 18 Mar 92
AUTHOR: S. E. Shaw LAST MODIFIED:
Capt USMC MODIFIED BY:

DESCRIPTION : Defines the serial objects to be transported
in the simulation.

FROM ARGMod IMPORT ARGODbjJ;

FROM LZBeach IMPORT LZBeachObj;
FROM RGlobals IMPORT SHierRecType;
FROM Debug IMPORT TraceStream;

VAR
placeholder : STRING;

OBJECT SerialObj;

ASK METHOD ReadData (IN newserial : SHierRecType);
BEGIN
serialnum := STRTOINT (newserial .OwnedString(1]);
goto := newserial.OwnedString(2];
gofrom := newserial.OwnedString(3];
cargo := STRTOREAL (newserial.OwnedString(4]);
pax := STRTOREAL(newserial.OwnedString(S]);
priority := STRTOINT (newserial.OwnedString(6));
lift := newserial.OwnedString(7];
minliftsize := STRTOINT (newserial.OwnedString(8]);
. externalspeed : = STRTOREAL (newserial.OwnedString [9]);

103

END METHOD { ReadData };

ASK METHOD SetSource (INOUT from : ARGObJ);
BEGIN
gsource := from;

END METHOD { SetSource };

ASK METHOD SetDestination (INOUT to : LZBeachObj);
BEGIN
destination := to;

END METHOD { SetDestination };

ASK METHOD DeAllocateSelf;
BEGIN
allocated := PALSE;'

END METHOD;

ASK METHOD AllocateSelf;
BEGIN
allocated := TRUE;

END METHOD;

ASK METHOD DestroySerial;
BEGIN
destination := NILOBJ;
source := NILOBJ;
DISPOSE (SELF);

END METHOD { DestroySerial }; : .

ASK METHOD AddPax (IN newpax : REAL);
. BEGIN

pax := pax + newpax;
- END METHOD { AddPax};

ASK METHOD AddCargo (IN newcargo : REAL);
BEGIN :
cargo := Cargo + newcargo;

END METHOD { AddCargo};

END OBJECT { SerialObj };
END { IMPLEMERNTATION } MODULE { SerialMod }.

DEFINITION MODULE SpotMan;

D R R R O R R I I R Tk T A T R R A

MODULE NAME: SpotMan DATE WRITTEN: 18 Mar 92
AUTHOR: S. E. Shaw LAST MODIFIED:
Capt USMC MODIFIED BY:

DESCRIPTION : Thia object controls the 1landing and
launching of the TransportCrfat. It tracks the allocation and
use of each landing spot.

FROM GrpMod IMPORT QueueObj, RankedObj;
FRCM SpotObject IMPORT SpotObj;
TYPE
StarboardDObj = OBJECT (RankedObj);
OVERRIDE
ASK METHOD Rank (IN a, b : ANYOBJ) : INTEGER;
END OBJECT { StarboardbDObj };

- SpotManObj = OBJECT

name : STRING;
starboardD : StarboardDObj;
- spotsavail : QueueObj;

105

awaitinglaunch : QueueObj;

ASK METHOD ObjInit;

ASK METHOD SetName (IN newname : STRING) ;

ASK METHOD PaintSpots (IN shiptype : STRING;
IN shipname : STRING; -
IN spottype : STRING;
OUT numspots : INTEGER);

ASK METHOD DestroySpotMan;

END OBJECT { SpotManagerChj };

END { DEFINITION } MODULE { SpotManager }.

IMPLEMENTATION MODULE Spotlan;

MODULE NAME: SpotMan DATE WRITTEN: 18 Mar 92
AUTHOR: S. B. Shaw LAST MODIFIED:

Capt USMC MODIFIED BY:
DESCRIPTION : This object controls the 1landing and

launching of the TransportCraft. It tracks the allocation and
use of each landing spot.

FROM ResMod IMPORT ResourceObj;

FROM GrpMod IMPORT QueueCbj;

FROM FindSHRec IMPORT FindSHRec;

FROM RGlobals IMPORT SHierRecType, SpotSHArray,

FROM SpotObject IMPORT SpotObj;

FROM global IMPORT EmptyRankedQ, EmptyQ, repetition;

FROM Transport IMPORT TransObj;

FROM Statistics IMPORT lzspotatatlist, shipspotstatlist,
spotstatrec;

OBJECT StarboardDObj;

ASK METHOD Rank (IN a, b : ANYOBJ) : INTEGER;
VAR

acfta, acftb : TransObj;

BEGIN :
acfta := a;
acftb := b; -

IF acfta.fuelonboard < acftb. fuelonboard
RETURN -1;) -

106

ELSIF acfta.fuelonmboard > acftb.fuelonboard
RETURN 1;

ELSE
RETURN 0;

END 1F;

END METHOD { Rank };

END OBJECT { StarboardDObj };
{++++++++++++++++++++++++++++++¢+++++++++++++++++++++++++++++}

ORJECT SpotManObj;

ASK METHOD ObjInit;
BEGIN
NEW (awaitinglaunch) ;
NEW (starboardD);
NEW (spotsavail);

END METHOD { ObjInit };

ASK METHOD PaintSpots (IN shiptype : STRING;
IN shipname : STRING;
IN spottype : STRING;
OUT numspots : INTEGER);

VAR
spotdata : SHierRecType;
spot : SpotObj;
i : INTEGER;

record : spotsatatrec;

BEGIN
FindSHRec (SpotSHArray, shiptype, spotdata);
numspots := STRTOINT (spotdata.OwnedString(1l});

FOR i := 1 TO numspots
NEW(spot) ;
ASK spot TO SetNumber (i);
ASK spot TO Size (STRTOINT (spotdata.
. OwnedsString(i+1]));

107

ASK spotsavail TO Add (spot);

IP (repetition = 1)
NEW (record);
record.name := shipname;
record.number := i;
IF (spottype = "ARGObj")
ASK shipspotstatlist TO Add (recorxd);
ELSE
ASK lzsgpotstatlist TO Add (record);
END IF;
END IF;

END FOR;
END MRTHOD { PaintSpots };

ASK METHOD SetName (IN newname : STRING);
BEGIN
name := newname;

END METHOD { SetName };

ASK METHOD DestroySpotMan;
VAR
spot : SpotObj;
BEGIN
EmptyRankedQ (starboardD);
DISPOSE (starboardD);
EmptyQ (awaitinglaunch);
DISPOSE (awaitinglaunch);

spot := ASK spotsavail First();

WHILE (spot <> NILOBJ)
ASK spotsavail TO RemoveThis(spot) ;
ASK spot TO DestroySpot;
spot := ASK spotsavail First();

END WHILE;

DISPOSE (spotsavail); '
DISPOSE (SELF); _ 3

END METHOD { DestroySpotMan };

108

END OBJECT { SpotManagerObj };
END { IMPLEMENTATION } MODULE { SpotMan }.

DEFINITION MODULE SpotObject;

J T T T N . I e R R R SN I A IR IR AR R I A I R

MODULE NAMB: SpotObj DATE WRITTEN: 23 Mar 92
AUTHOR : S. E. Shaw LAST MODIFIED:
Capt USMC MODIFIED BY:

DESCRIPTION : Defines the landing spots for the ARGObj and
for the LZBeachObi.

FROM StatMod IMPORT RStatObj;
TYPE

SpotObj = OBJECT
spotnumber : INTEGER;
spotsize : INTEGER;
open : BOOLEAN;
acftenspot : STRING;
acftsidenum : INTEGER;

inuseat ¢+ REAL;
landings : INTEGER;
allocatedtime LMONITORED REAL BY RStatObj;

allocatedtimestats ; RStatObj;

ASK METHOD ObjInit; .

ASK METHOD SetNumber (IN i : INTEGER);

ASK METHOD Size (IN i : INTEGER);

ASK METHOD Allocate (IN acft : STRING; IN side :
INTEGER) ;

ASK METHOD DeAllocate;

ASK METHOD DestroySpot;

END OBJECT { SpotObj };
END { DEFINITION } MODULE { SpotObj }.

IMPLEMENTATION MODULE SpotObject;

MODULE NAMB: SpotObj DATE WRITTEN: 24 Mar 92

AUTHOR: S. B. Shaw LAST MODIFIED:
Capt USMC MODIFIED BY: -
DESCRIPTION : Defines the landing spots for the ARGObj and
for the LZBeachObj. .
.. }
FROM SimMod IMPORT SimTime;

FROM Debug IMPORT TraceStream;

OBJECT SpotObj;

ASK METHOD ObjInit;
BEGIN
NEW (allocatedtimestats);
ADDMONITOR (allocatedtime, allocatedtimestats);

END METHOD { ObjInit };

ASK METHOD SetNumber (IN i : INTEGER);
BEGIN
spotnumber := i;

END MRTHOD { SetNumber };

ASK METHOD Size (IN i : INTEGER);
BEGIN

spotsize := i;

ASK SELF TO DeAllocate;

END METHOD { Size };

ASK METHOD Allocate (IN acft : STRING; IN side : INTEGER);
BEGIN ‘
INC (landings) ; .
inugeat := SimTime();
open := FALSE;
acftonspot := acft; *

110

acftsidenum := gide;

END METHOD { Allocate };

ASK METHOD DeAllocate;

BEGIN
allocatedtime := SimTime() - inuseat;
open := TRUE;

END METHOD { DeAllocate };

ASK METHOD DestroySpot;
BEGIN
DISPOSE (SELPF);

END MBTHOD { DestroySpot };

END OBJECT { SpotObj };
END { IMPLEMENTATION } MODULE { SpotObj }.

DEFINITION MODULE SpotProcedures;

...

MODULE NAMB: SpotProcedures DATE WRITTEN: 24 Mar 92
AUTHOR: S. B. Shaw LAST MODIPIED:
Capt USMC

DESCRIPTION : The procedures used to allocat2, deallocate
which SpotObjects are in use, which are available for use.

.. B e ee e n R CeEe e %0 N e N T T e EET® oG eeSTe®em T w-EERe ST ee® e ®ew

FROM Transport IMPORT TransObj;
FROM SpotObject IMPORT SpotObj;
FROM HDCMod IMPORT HDCObJ;

FROM SpotMan IMPORT SpotManObj;

TYPE

PPOCEDURE Initiallaunch (IN requestcr : TrunsCbj;
OUT available : BOOLEAN);

111

PROCEDURE GetShipSpot (IN requestor : TransObj;
OUT available : BOOLEAN) ;

PROCEDURE GetLZSpot (IN requestor : TransObj;
OUT available : BOOLEAN) ;

PROCEDURE GetSpot (IN requestor TransObj;
IN controller : SpotManObj;
OUT available : BOOLEAN);

PROCEDURE GiveBackShipSpot (IN requestor : TransObj);
PROCEDURE GiveBackLZSpot (IN requestor : TransObj);

PROCEDURE FindSpot (IN requestor : TransObj;
IN controller : SpotManObij;
OUT spot : SpotObj);

{ DRPINITION } MODULE { SpotProcedures }.

IMPLEMENTATION MODULE SpotProcedures;

I I I T T I A . I T I T T R O I it T I SR R

MODULE NAMR: = SpotProcedures DATE WRITTEN: 24 Mar 92
AUTHOR: S. E. Shaw LAST MODIFIED:
Capt USMC

DESCRIPTION : The procedures used to allocate, deallocate
which SpotObjects are in use, which are available for use.

R I I T T T TR e I it TSP R

FROM Transport IMPORT TransObj;
FROM SpotObject IMPORT SpotObj;
FROM HDCMod IMPORT HDCObJ;
FROM SpotMan IMPORT SpotManObj;
FROM SimMod IMPORT SimTime;
FROM Debug IMPORT TraceStream;

TYPE

PROCEDURE InitialLaunch (IN requestor : Transdbj:;
OUT available :
VAR

checkspot : SpotObj;
i : INTEGER;
controller : SpotManObi;

BEGIN]

112

controller := requestor.mymother.airboss;
1 := 1;
. available := FALSE;
checkspot := ASK controller.sgpotsavail First();
REPEAT
- IF ((checkspot.open) AND (checkspot.spotsize >=
’ requestor.spotsizereqd))
available := TRUE;
ASK checkspot TO Allocate (requestor.name,
requestor.sidenumber) ;

ELSE
checkspot := ASK controller.spotsavail
Next (checkspot) ;
END IF;

INC (1i);
UNTIL ((i > ASK controller.spotsavail numberIn) OR
(available));
IF NOT available
ASK controller.awaitinglaunch TO Add (requesto:); .
END IF;

END PROCEDURE { InitialLaunch };

PROCEDURE GetShipSpot (IN requestor : TransObj;
OUT available : BOOLEAN);
VAR
controller : SpotManObj;

BRGIN
controller := requestor.destination.airboss;
GetSpot (requestor, controller, available);

END PROCEDURE { GetLZSpot };

PROCEDURE GetLZSpot (IN requestor : TransObji;
OUT available : BOOLEAN) ;
VAR
controller : SpotManObj;

. BEGIN

centreller := requestor.serialonboard.destination.fac;
GetSpot (requestor, controller, available);

113

END PROCEDURE { GetLZSpot };

PROCEDURE GetSpot (IN requestor : TransObj;
IN controller : SpotManObj;
OUT available : BOOLEAN) ;

VAR
checkspot : SpotObj;
i INTEGER;
BEGIN
i := 1;

available := FALSE;
checkspot := ASK controller.spotsavail First();

REPEAT
IF ((checkspot.open) AND (checkspot.spotsize >=
requestor.spotsizereqd))
available := TRUE;
ASK checkspot TO Allocate (requestor.name,
requestor.sidenumber) ;
ELSE
checkspot := ASK controller.spotsavail
Next (checkspot) ;
END IF;
INC (i};
UNTIL ((i > ASK controller.spotsavail numberIn) OR
(available));
IF NOT available
ASK controller.starboardD TO Add (requestor);
END IF;

END PROCEDURE { GetSpot };

PROCEDURE GiveBackShipSpot (IN requestor : TransObj);

VAR
spot : SpotObj;
landacit : TransObj;
l.unchacft : TransObj;
waiting : INTEGER;
controller : SpotManObj; » .
i, j : INTEGER;
launchone : BOOLEAN;
landone : BOOLEAN; ‘

114

BEGIN
controller := requestor.destination.airboss;

. FindSpot (requestor, controller, spot);
launchone := FALSE;
landone := FALSE;

ASK spot TO DeAllocate;

IF (ASK controller.awaitinglaunch numberIn >= 1)
launchacft := ASK controller.awaitinglaunch
First () ;
i :=1;

REPEAT
IF (spot.spotsize >= launchacft.spotsizereqd)
launchone := TRUE;
TELL launchacft TO Spot;
ASK spot TO Allocate (launchacft.name,
launchft.sidenumber) ;
EXIT;
END IF;
INC (1);
launchacft := ASK controller.awaitinglaunch
Next (launchacft) ;
UNTIL ((i > ASK controller.awaitinglaunch numberIn)
OR (launchone));
END IF;

IF launchone
ASK controller.awaitinglaunch TC
RemoveThis (launchacft);

END IF;

IF ((ASK controller.starboardD numberIn >= 1) AND
(NOT launchone)))
landacft := ASK controller.starboardd Pirst();

j o= 1;

REPEAT
IF (spot.spotsize >= landacft.spotsizereqgd)

landone := TRUE;

IF (NOT landacft.shutdown)
TELL landacft TO Load;

END IF;

ASK spot TO Allocate (landacft.name,
landacft.sidenumber) ;

EXIT:
. END IF;
INC (J);
landacft := ASK controller.starboardDd
. Next (landacft) ;

115

END

UNTIL ((j > ASK controller.starboardD numberIn) OR
(landone)) ;
END 1F;

IF landone
ASK controller.starbocardD TO
RemoveThis (landacft);

END IF;

IF ((NOT launchone) AND (NOT landone))
ASK spot TO DeAllocate;
END IF;

PROCEDURE { GiveBackSpot };

PROCEDURE GiveBackLZSpot (IN requestor : TransObj);

VAR

spot : SpotObj;
landacftt : TransObj;
launchacft : TransObj;
waiting : INTEGER;

controller : SpotManObj;

BEGIN

controller := requestor.serialonboard.destination.fac;
FindSpot (requestor, controller, spot);

ASK spot TO DeAllocate;

IF (ASK controller.awaitinglaunch numberIn >= 1)
launchacft := ASK controller.awaitinglaunch
Remove () ;
TELL launchacft TO Spot;
ASK spot TO Allocate (launchacft.name,
launchacft.sidenumber) ;

ELSIF (ASK controller.starboardD numberlIn »>= 1)
landacft := ASK controller.starboardD Remove () ;
TBLL landacft TO Unload;

ASK spot TO Allocate (landacft.name,
landacft.sidenumber) ;

ELSE
ASK spot TO DeAllocate;

END IF;

116

- T e o TTER T T " -
Cme - PRSP VIR S SO Gt

END PROCEDURE { GiveBackSpot };

PROCEDURE FindSpot (IN requestor : TransObj;
IN controller : SpotManObj;
OUT spot : SpotObj);

VAR
thisspot : BOOLEAN;
checkspot : SpotObj;
i : INTEGER;
BEGIN
i:=1;

thisspot := FALSE;
checkspot := ASK controller.spotsavail First();

REPEAT
IF ((checkspot.acftonspot = requestor.name) AND
(checkspot .acftsidenum = requestor.sidenumber))
thisspot := TRUE;
spot := checkspot;
ELSE
checkspot := ASK controller.spotgavail
Next (checkspot) ;
END IF; '
INC (i);
UNTIL ((i > ASK controller.spotsavail numberIn) OR
(thisspot));

IF ((NOT thisspot) AND (showerrors))
ASK TraceStream TO WriteString
("NO MATCH FOUND IN FindSpotttw®n).
END IF; '

END PROCEDURE { PindSpot };

END { IMPLEMENTATION } MODULE { SpotProcedures }.

DEFINITION MODULE Statistics;

MODULE NAME: Statistics DATE WRITTEN: 18 Mar 92
AUTHOR: S. B. Shaw LAST MODIFIED: 5 Jun 92
Capt USMC

DESCRIPTION : The procedures used to initialize, reset and
collect the final data.

FROM StatMod IMPORT RStatObj;
FROM ListMod IMPORT Queuelist; .
FROM CATFPMod IMPORT CATFObj;

VAR
lastdeliverytime : LMONITORED REAL BY RStatObj;
lastdeliverytimestats : RStatObj;
vehiclestatlist : Queuelist;
shipspotstatlist : Queuelist;
lzspotstatlist : Queuelist;
beforejump : REAL;
TYPR
vehicleatatrec = RECORD
name : STRING; sorties : INTEGER;
sidenum : INTEGER; cargo : REAL;
mother : STRING; pax : REAL;
totaltime : REAL; reps : INTEGER;
holding : REAL;
shiphold : REAL;
beachhold : REAL;
END RECORD;

spotstatrec = RECORD

name : STRING; landings : INTEGER;
number : INTEGER; reps : INTEGER;
totaltime : REAL;
inuse : REAL;

END RECORD;

StatisticsObj = OBJECT;

ASK MBTHOD StartStats;

ASK METHOD ResetStats;

ASK MBTHOD StorStats;

ASK METHOD CollectRepStats (IN CATF : CATFOb]);

END OBJBCT { StatisticsObj };

PROCEDURE CollectVehicleStats (IN CATF : CATFOb]);

PROCEDURE CollectShipSpctStats (IN CATF : CATFObJ);

PROCEDURE CollectLZtpotftats (IN CATF : CATFOb]);

PROCEDURE PindVehicleRec¢ (IN name : STRING; .
IN side : INTEGER;
IN mother : STRING;
OUT record : vehiclestatrec); -

(1)

118

PROCEDURE FindSpotRec (IN name : STRING;
IN side : INTEGER;
IN list : QueueList;
OUT record : spotstatrec);

PROCEDURE CompileStats;
END { DEFINITION } MODULE { Statistics }.

IMPLEMENTATION MODULE Statistics;

R T I . I T R T T ettt it

MODULE NAME: Statistics DATE WRITTEN: 18 Mar 92
AUTHOR: 8. E. Shaw LAST MODIFIED:
Capt USMC

DESCRIPTION : The procedures used to initialize, reset and
collect the final data.

... }

FROM StatMoa IMPORT RStatObj;

FROM OutputDriver IMPORT StatsRecorder, LZrecorder;
FROM CATFMod IMPORT CATFODbjJ;

FROM ARGMod IMPORT ARGOb];

FROM Transport IMPORT TransoObj;

FROM SpotObject IMPORT Spotlbj;

FROM GrpMod IMPORT QueueObj;

FROM SimMod IMPORT SimTime;

FROM LZBeach IMPORT LZBeachObj;

FROM ListMod IMPORT Queuelist;

OBJECT StatisticsObj;

ASK METHOD StartStats;
BEGIN
NEW (lastdeliverytimestats);
ADDMONITOR (lastdeliverytime, lastdeliverytimestats);
NEW (vehiclestatlist);
NEW (shipspotasatatlist);
NEW (lzspotstaclist);

END METHOD { StartStats };

ASK MITHOD ResetStats;

BEGIN
ASK LZrecorder TO WriteString ("-1 -1 -1 -1 -1 -1);
ASK IZrecorder TO Writeln;

119

beforejump := 0.0;
END METHOD { ResetStats };

ASK METHOD StopStats;
BEGIN .

ASK StatsRecorder TO WriteString
("lastdeliverytime.count := "+INTTOSTR
(lastdeliverytimestats.Count));

ASK StatsRecorder TO Writeln;

ASK StatsRecorder TO WriteString
(*lastdeliverytime.mean := *+REALTOSTR
(lastdeliverytimestats.Mean())) ;

ASK StatsRecorder TO Writeln;

ASK StatsRecorder TO WriteString
("lastdeliverytime .maximum := "+REALTOSTR
(lastdeliverytimestats.Maximum));

ASK StatsRecorder TO Writeln;

ASK StatsRecorder TO WriteString
("lastdeliverytime.minimun := "+REALTOSTR
(lastdeliverytimestats.Minimum));

ASK StatsRecorder TO Writeln;

ASK StatsRecorder TO WriteString
("lastdeliverytime.variance := "+REALTOSTR
(lastdeliverytimestats.Variance()));

hSK StatsRecorder TO Writeln;

CompileStats;

END METHOD { StopStats };

ASK MBTHOD CollectRepStats (IN CATF : CATFObj);
BEGIN
CollectVehicleStats (CATPF);
CollectShipSpciStats (CATF);
CollectLzSpotStats (CATF);
OUTPUT("Collected rep stats");

END METHOD { CollectRepStats };

END OBJECT { StatisticsObj };

120

(#4444t tttttttttststbtbtrtrtttttttttibttsdtttttitbibibttsttt)

PROCEDURE CollectVehicleStats (IN CATF : CATFObj);
VAR
acft : TransObj;
- ship : ARGODbJ;
record : vehiclestatrec;

BEGIN
ship := ASK CATF.shiplist Firsc{};

IF (ship <> NILOBJ)

REPEAT ’
acft := ASK ship.squadron First();

IF (acft <> NILOBJ)

FEPEAT

FindvehicleRec (acft.name,

acft.sidenumber,
. acft.mymother.name, record);

INC (record.reps);

record.totaltime := record.totaltime
+ (acft.shutdowntime -
acft.airbornetime) ;

record.holding := record.holding +
acft.holdingtimestats.Sum;

record.shiphold := record.shiphold +
acft.holdingshipstats.Sum;

record.beachhold := record.beachhold
+acft.holdingbeachstats.Sum;

record.cargo := record.cargo +
acft.totalcargo;

record.pax := record.pax +
acft.totalpax;

record.sorties := record.sorties +
acft.totalsorties;

acft := ASK ship.squadron Next (acft) ;

UNTIL (acft = NILOBJ);
END IF;
ship := ASK CATF.shiplist Next (ship);

UNTIL (ship = NILOBJ);
END IF;

ENC PROCEDURE (CollectVehicleStats };

. PROCEDURE FindVehicleRec (IN name : STRING;

121

ll-lllllllllllllllllllllllllllllll

IN side : INTEGER;
IN mother : STRING;
OUT record : vehiclestatrec);

VAR
checkthis : vehiclestatrec;
found : BOOLEAN;

BEGIN

found := FALSE;
checkthis := ASK vehiclestatlist Pirst();

IF (checkthis <> NILREC);
REPEAT

IF ((checkthis.name = name) AND
(checkthis.sidenum = gide) AND
(checkthis.mother = mother))

record := checkthisg;
found := TRUB;
ELSE
checkthis := ASK vehiclestatlist
Next (checkthis) ;
END IF; .

UNTIL ((checkthis = NILREC) OR (found));
ELSE

OUTPUT ("Error in PindvVehicleRec®);
HALT;

END 1IF;
END PROCEDURE { FindVehicleRec };

PROCEDURE CompileStats;

VAR
record : vehiclestatrec;
spotrecord : spotstatrec;
statl, stat2, stat3 : REAL;

BEGIN
ASK StatsRecorder TO Writeln;
ASK StatsRecorder TO WriteString
("----- Vehicle Holding Stats------- ")
ASK StatsRecorder TO Writeln;
ASK StatsRecorder TO Writeln;

122

ASK StatsRecorder TO WriteString
(» Ship Vehicle TotalHold% Shiphold$
. BeachHold%") ; .
ASK StatsReccrder TO Writeln;
ASK StatsRecorder TO WriteLn;

record := ASK vehiclestatlist First()};
IFP (record <> NILREC)

REPEAT
ASK StatsRecorder TO WriteString
{record.mother+" "s+record.name+" "+
INTTOSTR (record.sidenum)
+']
+INTTOSTR (TRUNC (100.0*
(record.holding/record.totaltime)))
+l "
+INTTOSTR (TRUNC (100.0%
(record.shiphold/record.totaltime)))
+I n
+INTTOSTR {TRUNC(100.0*
~ (record.beachhold/record.totaltime))));
ASK StatsRecorder TO Writelin;
record := ASK vehiclestatlist Next (record);
UNTIL (record = NILREC);

BLSE
OUTPUT ("NO VEHICLE RECORDS TO COMPILE");
END IF;

ASK StatsRecorder TO Writeln;
ASK StatsRecorder TO WriteString
R Vehicle Sortie Statg----------- *);
ASK StatsRecorder TO Writeln; ' :
ASK StatsRecorder TO Writeln;
ASK StatsRecorder TO WriteString
(* Ship Vehicle Cargo Pax Sorties *);
ASK StatsRecorder TO Writeln;
ASK StatsRecorder TO Writeln;

record := ASK vehiclestatlist First()}
IP (record «> NILREC)
. REPRAT
ASK StatsRecorder TO WriteString

(record.mother+*® *s+record.name+" "+
- INTTOSTR (record.sidenum)

123

+" 8 INTTOSTR (TRUNC
(record.cargo/FLOAT (record.reps)))

+" "+ INTTOSTR (TRUNC
(record.pax/FLOAT (record.reps)))
+ll []

+INTTOSTR (record.gorties DIV
record.reps));
ASK StatsRecorder TO Writeln;
record := ASK vehiclestatlist Next (record);
UNTIL (record = NILREC);

ELSE
OUTPUT ("NO VBHICLE RECORDS TO COMPILE");

END IF;

ASK StatsRecorder TO Writeln;
ASK StatsRecorder TO WriteString
(#--v---- Ship Spot Statsg----------- *);

ASK StatsRecorder TO WriteLn;

ASK StatsRecorder TO WritelLn;

ASK StatsRecorder TO WriteString

(* Ship Spot Utilized$ Landings ");
ASK StatsRecorder TO WritelLn;

ASK StatsRecorder TO Writeln;

spotrecord := ASK shipspotstatlist First();

IF (spotrecord <> NILREC)

REPEAT
ASK StatsRecorder TO WriteString
(spotrecord.name+" " +INTTOSTR
(spotrecord.number)
+" .

+INTTOSTR (TRUNC(100.0* (spotrecord. inuse
/spotrecord.totaltime)))
*l []
+INTTOSTR (spotrecord.landings
DIV spotrecord.reps)) ;

ASK StatsRecorder TO Writeln;

spotrecord := ASK shipspotstatlist
Next (spotrecord) ;

UNTIL (spotrecord = NILREC) ;

ELSE
OUTEUT("NO SHIPSPOT RECORDS TO COMPILE");

END 1IF;

LAERIL e b T L aTSeavamTS FNASL LY e | CES T mmas T s wowTal .= e SiResRcwm o
e n A o S 3l bt gt ot AT i Tl i, AR AR bt s e A Pt 7 i P

ASK StatsRecorder TO Writeln;
ASK StatsRecorder TO WriteString
. ("--veeeon- LZBeach Spot Statg------ ")
ASK StatsRecorder TO Writeln;
ASK StatsRecorder TO Writeln;
n ASK StatsRecorder TO WriteString
(*LZBeach Spot Utilized Landings *);
ASK StatsRecorder TO Writeln;
ASK StatsRecorder TO Writeln;

spotrecord := ASK lzspotstatlist Rirst();
IF (spotrecord <> NILRRC) |

REPEAT
ASK StatsRecorder TO WriteString
(spotrecord.name+"® * + INTTOSTR
(spotrecord. number)
+" *+INTTOSTR (TRUNC
(100.0* (spotrecord. inuse
/spotrecord. totaltime)))
+* * +INTTOSTR
(spotrecord.landings DIV
. 8spotrecord.reps));
ASK StatsRecorder TO Writeln;
spotrecord ‘.- ASK l1zspotstatlist
Next (spotrecord) ;
UNTIL (spotrecord = NILREC);

ELSE
OUTPUT ("NO LZBRACH SPOT RECORDS TO COMPILRE®);
END IF;
END PROCEDURE { CompileStats };

PROCEDURB CollectShipSpotStats (IN CATF : CATFObj);

VAR
spot : SpotObj;
ship : ARGODb];
record : spotstatrec;
spotsavail : QueueObj;
BEGIN
’ ship := ASK CATF.shiplist Pirst();

IF (ship <> NILOBJ)

REPEAT

spotsavail := ship.airboss.spotsavail; .

spot := ASK spotsavail PFirst();

IF (spot <> NILOBJ) .
REPEAT

FindSpotRec (ship.name,
spot.spotnumber,
shipspotstatlist, record);

INC (record.reps);

record.totaltime := record.totaltime
+ lastdeliverytime;

record.inuse := record.inuse +
spot.allocatedtimestats.Sum;
record.landings := record.landings +
spot.landings;

spot := ASK spotsavail Next (spot);

UNTIL (spot = NILOBJ);
END IF; '

ship := ASK CATF.shiplist Next (ship);"
UNTIL (ship = NILOBJ);
" END IF;
END PROCEDURE { CollectShipSpotStats };

PROCEDURE FindSpotRec (IN name : STRING;
IN side : INTEGER;
IN list : QueuelList;
OUT record : spotstatrec);

VAR
checkthis : gpotstatrec;
found : BOOLEAN;

BEGIN
found := FALSR; ’ .
checkthis := ASK list First(); .

IF (checkthis <> NILREC);

126

REPEAT
IF ((checkthis.name = name) AND

. (checkthis.number = side))
record := checkthis;
- found := TRUR;
ELSE
checkthis := ASK list Next (checkthisj);
END IF;

UNTIL ((checkthis = NILREC) OR (found));
ELSE

OUTPUT ("Brror in FindShipSpotRec");
HALT; '

END IF;
END PROCEDURE { FindSpotRec };

PROCEDURE CollectLZSpotStats (IN CATF : CATFObj);

VAR
spot : SpotObj; -
iz : LZBeachObj;
record : gpotstatrec;
spotsavail : QueueObj;
BEGIN

1z := ASK CATF.lzbeachlist First();
IF (1lz <> NILOBJ)

REPEAT .
spotsavail := lz.fac.spotsavail;
spot := ASK spotsavail Pirst();

IF (spot <> NILOBJ)

REPEAT
FindSpotRec
(1z.name, spot . spotnumber,
lzspotstatlist, record);

INC (record.reps);
record.totaltime :=
s record.totaltime
+ lastdeliverytime;
record. inuse := record.inuse +
: spot.allocatedtimestats.Sum;

127

record.landings :=
record.landings +
spot.landings;
spot := ASK spotsavail
Next (spot};
UNTIL (spot = NILOBJ);

END IF;

lz := ASK CATF.lz*eachlist Next(lz):
UNTIL (lz = NILOBJ):
END IF;

END PROCEDURE { CollectlLzZSpotStats };

END { IMPLEMENTATION)} MODULE { Statistics }.

DEPINITION KODULE Transport;

MODULE NAME: TransportCraft DATE WRITTEN: 18 Mar 92
AUTHOR: §. E. Shaw LAST MODIFIED:
Capt USMC MODIFIED BY:

DESCRIPTION : Defines the objects used to move pax and
cargo ashore. Z.a be used for either surface craft (LCAC, LCU,
etc) or aircraft.

FROM ARGMod IMPORT ARGObjJ;

FROM LZBeach IMPORT LZBeachObj;
FROM Seriallfod IMPORT SerialObj;
FROM hHDCMod IMPORT HDCODbj;

FROM global IMPORT LocationXY;
FROM RGlobals IMPORT SHierRecType;
FROM StatMod IMPORT RStatObj;

EXPORTTYPE
TransObj = OBJECT; FORWARD;
TYPE
TransObj = OBJECT
name : STRING; location : LocationXy;
sidenumber : INTEGER; launchtime : RBAL;
totalpax : REAL; totalcargo : REAL;
totalsorties : INTEGER; spreadupper : RBAL;
mymnther : ARGObjJ; spreadlower : REAL;
maxfuel : REAL; totalfuel : REAL;

emptyspeed : REAL; myhdc : HDCOéj;

loadedspeed : REAL; emptyburnrate : REAL;

loadedburnrate : REAL; destination : ARGODbj;
serialonboard : SeriaIObj foldlower : REAL;
* fuelonboard : REAL; foldupper : REAL;
acftrange : REAL; groundburnrate : REAL;
- crewday : REAL; shutdowntime : REAL;
serialnum : INTEGER; cleared : BOOLEAN;
minfuel : REAL; holding : REAL;
externaltime : REAL; paxtime : REAL;
cargotime : REAL; spotsreqd : INTEGER;
spotsizereqd : INTEGER; shutdown : BOOLEAN;
maxloadsize :+ INTEGER; numserials : INTEGER;
airbornetime : RBAL; totalholding : REAL;

holdingtime : LMONITORED REAL BY RStatObj;
holdingtimestats : RStatObj;

holdingship : LMONITORED REAL BY RStatObj;
holdingshipstats : RStatObj;

holdingbeach : LMONITORED REAL BY RStatObj;
holdingbeachstats : RStatObj;

ASK METHOD ObjInit;

ASK METHOD ReadData (IN record : SHierRecType);
ASK METHOD NewHDC (IN newHDC : HDCObj);

ASK METHOD SetSide (IN side : INTEGER);

ASK METHOD AssignMother (IN mother : ARGObJ);
ASK METHOD UseFuel (IN amount : REAL);

ASK METHOD TakeOnFuel;

ASK METHOD SetLaunyhTime (IN time : REAL);

ASK METHOD DestroyVehicle;

TELL METHOD Load;

TELL METHOD Operate;

TELL METHOD GetClearance ;

TELL METHOD TransitToBeach;

TELL METHOD FlyToShip;

TELL METHOD Reposition (IN newserial : SerialQObj);
TELL METHOD ReturnToBase;

TELL METHOD Unload;

TELL METHOD Spot;

TELL METHOD ShutDown;

END OBJECT { TransPortObj};
END {DEFINITION} MODULE {TransportCraftMod}.

fMPL!KBNTATION MODULE Transport;

MODULE NAME: TransportCraft DATE WRITTEN: 18 Mar 92
AUTHOR: S. E. Shaw LAST MODIFIED:
Capt USMC MODIFIED BY:

DESCRIPTION : Defines the objects used to move pax and
cargo ashore. Can be used for either surface craft (LCAC, LCU, .
etc) or aircraft.

FROM SimMod IMPORT SimTime;

FROM ARGMod IMPORT ARGODbj];

FROM HDCMod IMPORT HDCObj,BriefingRec;

FROM SerialMod IMPORT SerialObj;

FROM global IMPORT LocationXY, Distance, moreserials,
SpreadStream, FoldStream;

FROM FuelGuage IMPORT BurnFuel, CheckGas, Getfuel;

FROM RGlobals IMPORT SHierRecType;

FROM SpotProcedures IMPORT GetShipSpot, GetLZSpot,
GiveBackShipSpot, GiveBackLZSpot, InitialLaunch;

FROM LoadProcedures IMPORT LoadCargo, UnLoadCargo;

FROM Debug IMPORT TraceStream;

OBJECT TransCbj;

ASK METHOD ObjInit;
BEGIN
NEW (holdingtimestats);
ADDMONITOR (holdingtime, holdingtimestats);
NEW (holdingshipstats);
ADDMONITOR (holdingship, holdingshipstats);

NEW (holdingbeachstats);
ADDMONITOR (holdingbeach, holdingbeachstats);

END METHOD { ObjInit };

ASK METHOD ReadData (IN record : SHierRecType);

BEGIN
name := record.TopString;
maxfuel := STRTOREAL (record.OwnedString(1]);
minfuel := STRTOREAL (record.OwnedString(2]);
emptyspeed := STRTOREAL(record.OwnedString(3]); .
loadedspeed := STRTOREAL (record.OwnedStringi4]);
loadedburnrate := STRTOREBAL (record.OwnedString(S]);
emptyburnrate := STRTOREAL (record.OwnedString(6]); -

130

groundburnrate := STRTOREAL (record.OwnedString([7]);
foldlower := STRTOREAL (record.OwnedString(8]);
foldupper := STRTOREAL (record.OwnedString(9]);

- spreadlower := STRTOREAL (record.OwnedString[10]);
spreadupper := STRTOREAL (record.OwnedString([11]);
acftrange := STRTOREAL (record.OwnedString[12]);

: crewday := STRTOREAL (record.OwnedString[13));
externaltime := STRTOREAL (record.OwnedString(14]);
paxtime := STRTOREAL (record.OwnedString(15]);
cargotime := STRTOREAL (record.OwnedString(16]);
spotsregd := STRTOINT (record.OwnedString([17]);
spotsizereqd := STRTOINT (record.OwnedString(18]);
maxloadsize := STRTOINT (record.OwnedString([19]);

fuelonboard := maxfuel;
serialnum := 0;

cleared := TRUE:

crewday := crewday * 60.0;

END METHOD { ReadData };

TELL METHOD Spot;

VAR
ship : STRING;
startpoint : LocationXY;
endpoint : LocationXy;
gonogo : REAL;
newseriai : SerialObj;
available : BOOLEAN;
othership : BOOLEAN;
loadtime : REAL;
briefing : BriefingRec;
combined ¢ BOOLEAN;

BEGIN

destination := mywmother;

ship := mymother.name;

ASK myhdc TO GiveFirstLoad (ship, maxloadsize,
newserial,othership);

serialonboard := newserial;

numserials := 1;

IF ((serialonboard.minliftsize = 1) AND
(maxloadsize > 1))
NEW(briefing);
. briefing.serial := serialonboard.serialnum;
briefing.dest := NILOBJ;
briefing.lz := serialonboard.destination;

131

briefing.loadsize := serialonboard.minliftsize;
ASK myhdc TO CombineLoads (briefing, combined);

IF (combined)
numserials := 2;
END IF; .
END IF;

WAIT DURATION (ASK SpreadStream UniformReal
(spreadlower, spreadupper));
END WAIT; ({spread acft wait}

IF othership
TELL SELF TO Reposition (newserial);
TERMINATE; ‘
ELSB :
ASK myhdc.seriallist TO RemoveThis (serialonboard);
END IP;

startpoint := mymother.location;
endpoint := newserial.destination.location;
gonogo := Distance (startpoint, endpoint);

WAIT DURATION loadtime
END WAIT; { load serial wait }

BurnFuel (SELF. loadtime, 0.0, 0.0);
airbornetime := SimTime();

TELL SELF TO TransitToBeach;
END METHOD { Spot };

TELL METHOD Reposition (IN newserial : SerialObj);
BEGIN
GiveBackshipSpot (SELF);
destination := newserial.source;
gerialnum := newserial.serialnum;
airbornetime := SimTime();
TELL SELF TO FlyToShip;

END METHOD { Reposition };

TBLL METHOD ReturnToBase; .
BECGIN

GiveBackShipSpot (SELF);

destination :« mymother; -

132

VAR

BEGIN

awaiting

BEGIN

BEGIN

loadtime
newload

IF (serialnum > -1)

END IF;

WAIT FOR SBLF TC FlyToShip;
END WAIT;

END METHOD { ReturnToBase };

TELL METHOD Load;

REAL;
2exriallbi;

" se

holdingtime := SimTime() - holding;
holdingship :« SimTime() - holding; :
BurnFuel (SELF, 0.0, holdingtime, 0.0); {fuel used

deckspot}

ASK myhdc-TD Giveload (serialnum, newload):
serlalonboard := newload;

IF (serialonboard <> NILOBJ)

LoadCargo (SELF, loadtime);
WAIT DURATION loadtime
END WAIT; { load serial wait }
totalpax := serialonboard.pax + totalpax
totalcargo := serialonboard.cargo
+ totalcargo;
BurnFuel (SELF,loadtime, 0.0, 0.0);

END IF;

TELL SELF TO TransitToBeach;
END METHOD { Load };

ASK MBTHOD SetSide (IN side : INTRGER);
sidenumber := side;
END METHOD { SetSide };

ASK METHOD AssignMother (IN mother : ARGOb));
mymother :« mother;

133

TELL METHOD Operate;
VAR -
available : BOOLEAN;

BEGIN
WALT DURATION launchtime;
END WAIT;
Initiallaunch (SELF, availzable);

IF (available)
TELL SELF TO Spot;
END IF;

END METHOD { Operate };

ASK METHOD NewHDC (IN HDC : HDCOb]);
BEGIN
myhdc := HDC;

END METHOD { SetHDC };

ASK METHOD SetLaunchTime (IN time : RBAL);
BEGIN ’
launchtime := time;

END METHOD { SetLaunchTime };

TELL METHOD TransitToBeach;
VAR
start
end
leg

LocationXxy;
LocationXY;
, REAL;
flighttime RRAL;
available BOOLRAN;
airspeed : REAL;

BEGIN
WAIT FOR SELF TO GetClearance; .
END WAIT;

IP (cleared) *

ASK serialonboard.source TO CurrentPos (start.x,
start.y):;

end := serialonboard.destination.location;

leg := Digtance (start, end);

I? (serialonboard.lift = *EXTERNAL")
airspeed := serialonboard.externalspeed;
ELSE
airspeed := cruisespeed;
END IF;

flighttime := (leg / airspeed) * €0.0;
GiveBackShipSpot (SELF);

WAIT DURATION flighttime;
END WAIT; { transit time to shore }
BurnFuel (SBLF, 0.0, 0.0, flighttime);

holding := SimTime();
GetLZSpot (SELFP, available);

IF (available)
TELL SELF TO Unload;
END IF;
ELSE ‘
TELL SELF TO ShutDown:;
END IF;

END METHOD { TransitToBeach };

TELL METHOD Unload;

VAR
briefing : BriefingRec;
unloadtime + REAL;
available : BOOLEAN; .
combined : BOOLEAN;

assignedaload : BOOLEAN;

BEGIN
location := serialonboard.destination.location;
holdingtime := SimTime() - holding;
holdingbeach := SimTime() - holding;

UnLoadCargo (SELF, unloadtime);
INC (totalsorties);

135

END

o

WAIT DURATION unloadtime;
END WAIT; { unload serial wait }

ASK serialonboard.destination TO ReceivelLoad
(serialonboard.pax, serialonboard.cargo,
: numserials);
BurnFuel (SELF, unloadtime, 0.0, holdingtime);

ASK myhdc NewDestination (briefing, maxloadsize,
assignedaload);

IF assignedaload
destination := briefing.dest;
serialnum := briefing.serial;
numserials := 1;

IF ((briefing.loadsize = 1) AND (maxloadsize > 1))
ASK myhdc TO Combineloads (briefing, combined);

IF combined
numserials := 2;
END IF;
END IPF;
ELSE

destination := mymother;
serialnum := -100;

END IF;

DISPOSE (briefing);
GiveBackLzZSpot (SELF) ;

TELL SELF TO FlyToShip;

ASK serialonboard TO DestroySerial;
serialonboard := NILOBJ;

METHOD { Unload };

IIIZIIIIZIIIIZ::ZIIZIIIIIZIIIZIIIZ::ZI;Z:IIIIIII:ZII}

TELL METHOD FlyToShip;

VAR

start : LocationXy;
end : LocationXy;
leg : REAL;
flighttime : RBAL;
available : BOOLRBAN;

136

BEGIN
start := location;
ASK destiration CurrentPos (end.x, end.y);
leg := Distance (start, end);
flighttime := (leg / cruisespeed) *60.0;

WAIT DURATION flighttime;
END WAIT; { transit time to ship }

holding := SimTime();
GetShipSpot (SELF, available);

iF (available)
IF (NOT shutdown)
TELL SELF TO Load;
END IF;
END IF;
BurnFuel (SELF, 0.0, flighttime, 0.0);

END METHOD { FlyToShip };

TBLL METHOD ShutDown;
BEGIN ‘
IF (destination.name <> mymother.name)

WAIT FOR SELF TO ReturnToBase;
-END WAIT;

END IF; 7 _

WAIT DURATION ASK FoldStream UniformReal
(foldlower, foldupper)

END WAIT;

shutdowntime :« SimTime();

GiveBackShipSpot (SELF);

END METHOD { ShutDown };

ASK METHOD UseFuel (IN amount : REAL);
BEGIN
fuelonboard := amount;

137

ASK METHOD TakeOnFuel;
BEGIN
fuelonboard := maxfuel;

TELL METHOD Getllearance;

VAR
needfuel : BOOLEAN;
duration : RRAL;
Transitdist : REAL;
start : LocationXY;
end :+ LocationXY;
BEGIN '

cleared := FALSE;

IF (serialnum > -1)
CheckGas (SELF, needfuel);

. IP needfuel
Getfuel (SELF, duration);
WAIT DURATION duration
END WAIT;
END IF;

cleared := TRUE;

ASK serialonboard.source TO CurrentPos (start.x,
start.y):;

end := serialonboard.destination.locution;

transitdist := Distance(start, end);

IF ((launchtime + crewday) <= (SimTime()
+ 2.0*transitdist/60.0));
cleared := FALSE;
shutdown := TRUB;
END IF;

END IF;
END METHOD { GetClearance };

ASK METHOD DestroyVehicle;
BEGIN

.
T
‘
Y
H
-y
-
4

.- . - ST s S RemartiTa MWL Yol et A
e e s e - ot A et i A

serialonboard tw RILOBJM B

mynother := NIIOBJ o
C = NII:QBJ,

destination te. H-ILOBJ; DR O

_DISPOSE (SELF); SR T S A

| END METHOD { neetrayVehiele»}~ — .

END omcr { 'I‘ransPortobj e

e -
2 < .
s . PR

139

The simulation presentéd will Tun on an Imi.-»caupét/ible
personal computer under 0S/2 with both a hard disk drive and
one floppy drive. For speed considerations, a Fast (204-) 80386'
or higher computer ig recommended. The presence of a math
coprocessor ia not required although the use of a ccproceasorl
would reduce the model run time. The simlatipn it;aelﬁ i.s :
written in MODSIM II, an advanced, object~oriented simlat;ion o
languagea. B N

In the 08/2 (ver. 1.21) environment, the modification and
compilation of the program requires the MODSIM II language
(ver. 1.6) and at least an IEM AT compatible (80386+) computer
with 4 Wes of memory and a hard disk drive. In addition,
the MODSIM II compiler requires the Microsoft C compiler (ver.
€.0). MODSIM compiles to the computer language ‘C’ which is
then compiled by the ‘C’ compiler to the native format of the
personal computer. This represents the minimum configuration
required to modify and compile the model.

140

Acft.dat
Ship.dat
Spot.dat
LZBeach.dat
Sermv22.dat
Seeds.dat
R34A

This data file contains the names of the other input files
as well as the desired name for the cutput files. These input
files may have any name that the user desires, but must appear
in the order given below:

1) The Aircraft data file name.

2) The Ship data file name.

3) The Spot data file name.

4) The Serial file name. .

S) The Seeds file name. Always use 'Seeds dat’, the usger has
no need to charcge this file.

6) The name desired for all of the output files. Allows
output from different scenarios to be saved.

PELELIEU -> LHA 15 50 20 17 15 50 500.0 HMV22 8 00 0 0 0 O
20 20 CHS3AD 4 20 20 20 20 \\

NEWPORT -> LST 10 50 15 10 10 50 300.0 \\

RALIBGH -> LPD 23 50 18 10 23 50 200.0 \\

This file contains input regardixig the operating
characteristics of the amphibious ships. There must be one
record for each ship within the scenario to be run.
numberOfShipsInAll ... The number of ship records to be read.

ShipName -> ... Name of the first ship.
type ... The ship type.

location.x ... The x and y coordinates of the ships start
location.y point

steamspeed ... The ships steaming speed.

141

holdingspeed ... The ships holding speed.

holdlocation.x ... The x and y coordinates for the ships
holdlocation.y holding position.
pumprate ... The rate (in pounds per minute) that the ship can

purp fuel into the aircraft.

<H> ... Signifies the beginning of the transport vehicles
aboard this ship.

TranspcrtAcftTypel ... The type of the first transport
' aircraft. Must match the ones contained
in the Acft.dat file.

#TransportAcftTypel ... Number of type 1 Transportcraft.
launchtimes ... Launch times for each of the type 1

Transportacft listed in minutes from time
zero. MUST BE ONE LAUNCH TIME FOR EACH TYPE 1

TransportAcft.
TransportAcftType2 ... Type 2 TransportAcft.
launchtimes ... Launch times for each of the type

1 Transportacft listed in minutes from time
zero. MUST BE CNE LAUNCH TIME FOR EACH TYPE 2
TransportAcft.

<A> ... Signifies the start of the attack aircraft aboard this
ship.

AtcackAcftTypel ...The type of the first attack aircraft. Must
macch the ones contained in the Ac it.dat

file.
#AttackAcftTypel ... Number of type 1 Attackacft.
launchtimes ... Launch times for each of che type 1 AttackAcft

Listed in minutes from time zeroc. MUST BE ONE
LAUNCH TIME FOR BACH TYPE 1 AttackAcft.

AttackAcftType2 ... Type 2 AttackAcft.
#AttackAcftType2 ... Number of type 2 Attackacft.
launchtimes ... Launch times for each of the type 1 AttackAcft

Listed in minutes from time zero. MUST BE ONE
LAUNCH TIME FOR EACH TYPrE 2 AttackAcft.

< \\ > ... Signifies the end of this ships record.

The above are repeated for each ship in the scenario.

"""""""""""""" Mft.d&t ittt At S il S

CHS3E -> 11000 1200 147 139 2539 2218 1109 10 15 10 15
2008 2.0 2.0 3.0 13 2 \\

CH46 -> 2400 400 132 129 1237 1146 875 10 15 10
15 100 8 1.5 2.0 3.0 1 2 1\\

CHG6O -> 2340 400 131 128 938 856 425 10 15 10
15 100 8 1.5 2.0 3.0 12 1\\

CH47 -> 6700 1100 145 144 2230 1869 935 10 15 10 15
100 8 1.5 2.0 3.0 1 3 2 \\

(The S§-92, MV-22 and EH-101 data is omitted here. At the time
that this thesis was submitted the information was proprietary
in nature.)

1 numberOfAircraftListsInAll

2 AcftName -> maxfuel minfuel emptyspeed loadedspeed
loadedburnrate emptyburnrate groundburnrate foldlower
foldupper spreadlower spreadupper acftrange ' crewday
externaltime paxtime cargotime spotsreqgd spotsizereqgd
maxloadsize < \\ >

P . TN R I IR I R I I N ittt

AcftName -> The name of the aircraft. Must match the name
used in the Ship.dat file.

maxfuel ... The maximum amount of fuel (in pounds) that the
aircraft can carry. This is used when aircraft refuels.

minfuel ... The NATOPS minimum for fuel (in pounds). Used to
determine when an aircraft requires refueling.

emptyspeed ... The speed at which the empty aircraft transits
from the beach to the ship.

loadedspeed ... The speed at which the loaded aircraft
transits from the ship to the beach.

loadedburnrate ... The rate (in pounds per hour) at which the
loaded aircraft burns fuel inflight.

emptyburnrate ... The rate (in pounds per hour) at which thz
empty aircraft burns fuel inflight.

143

groundburnrate ... The rate (in pounds per hour)} at which the
aircraft burns fuel while on the deck.

foldlower ... Used to determine how long it takes to fold the
Foldupper aircraft during shutdown.

spreadlower ... Used to determine how long it takes to spread
spreadlower aircraft prior to launch.

acftrange ... The round trip range of the aircraft. Any number
will do for ncw, not used by this version of the model.

crewday ... The crewday for the pilots. One of the factors
used to determine the time for shutting down the aircraft.

externaltime ... A parameter to determine the amount of time
to hook up an extermal load.

paxtime ... A parameter for determining the amount of time to
load passengers.

cargotime ... A parameter for determining the amount of time
to 1load cargo.

spotsregqd ... The number of landings spots an aircraft
requires. Not used here, should be set to 1.

gpotsizereqd ... The spot size an aircraft requires for
landing. These match with the size of spots contained in
the Spot.dat file. Preverts aircraft from landing on spots
that they are not allowed on.

maxloadsize ... The maximum size load an aircraft can carry.
For example, a CH46 would be set to 1 while a CHS53 would
get a 2. This allows for the combining of serials to take
advantage of the paylocad capacity if larger aircraft.

---------------------- Spot.dat -------cec-ccecccccceanaanaa
7

LHA -> 82 2 3456 6 6 \\

LST -> 1 6 \\

LSD -> 1 6 \\

LPD -> 2 6 6 \\

LPH -> 6 1 1 4 4 6 6 \\

LZOWL -> 4 6 6 6 6 6 6 \\

LZSPARROW -> 3 6 6 6 6 6 6 \\

The number of spots and the size of each spot for all
amphibious ships and each LZ may be altered with this file.

144

numberofShips/LZsinAll ... Number of spot records in the file.

ShipLZTypel -> ... The type of ship, or the LZ name of the
first record. For ships, this must match
the type field in the Ship.dat file.

numspots ... The number of spots available on the ship or in
the LZ.
SizeSpotl ... The size of the first spot. This should match up

with the spotsizereqd field in the Acft.dat
file. For example, if a CHS3 is given a
spotsizereqd of 3, then it would only be allowed
to land on spots with a SizeSpot value of 3 or

greater.
SizeSpot2 Same as for spot 1.
éizeSpotN ... Size of the last spot.

<\\> signifies the end of the current spot record.
There must be one spot rxecord for each Ship type, as well as

one spot record for each LZ. The total number of spot records
must equal the numberofShips/LZsinAll value given.

LZSPARROW -> 23 3 \\
LZOWL -> 8 3 \\

This file contains the attributes for each landing zone.

numberOfLZBeachesInAll ... The total number of LZBeach records
to be read in.

LZBeachName -> ... The name of the LZ or Beach., Must match the
destinations given to the serials in the
Serial.dat file.

location.x ... The x and y coordinates of the LZ or Beach.
location.y

< \\ > ... Signifies the end of the LZ or Beach record.

Repeat the above for every LZ or Beach. The number of records
must match the numberoflLZBeacnesInAll value given.

145

- st U U S PO

14

1 -> 101 LZOWL PELELIEU 0 15 1 INTERNAL 3 0 \\

2 -> 102 LZOWL PELELIEU 0 15 1 INTERNAL 1 0 \\ -
3 -> 103 LZOWL PELELIEU 0 15 i INTERNAL 1 0 \\

4 -> 104 LZOWL PELELIEU 0 15 1 INTERNAL 1 0 \\

5 -> 105 LZOWL PELELIEU 0 15 1 INTERNAL 1 0 \\

44 -> 144 LZSPARROW PELELIEU 4000 0 22 REXTERNAL 2 80 \\

The data required to create the serials within the current
scenario is contained within this file.

number of serials ... The total number of serial records to be
read in.

record number ... The record number for this serial.

serial rumber ... The number assigned to the serial. May be
different from the record number.

destination ... The destination LZ for the serial. Must match
one of the landing zone names in the’
LZBeach.dat file.

source ... The location of the serial when the simulation
commences. Must match one of the ship names in the
Ship.dat file.

external cargo ... The amount of external cargo (in pounds) in
the serial.

passengers ... The number of passengers in the serial.

priority ... The priority of the serial. Determines when the
serial is moved ashore.

mode ... The mode in which the serial is transported ashore.
Must be either INTERNAL or EXTERNAL.

minlift ... Minimum sized aircraft required to move the serial
ashore. Must correspond to one of the maxloadsize fields
of the Acft.dat file. '

externalspeed ... The airspeed limitation on the cargo to be
carried externally.

146

This Appendix cantains emmplee ot the . various cutput
files for one run of the cutter model The <£ilenAme> used
below refers to the user name input threngh the cuzaam dat
file. o |
A. <filepame>.txt

This is the summary file tor the curxent scenario..The'-
file will list the ships used, their locations, the Dumber and
types of aircra.ft aboard each ship and various summary
statistics. '

SHIP NAME SHIP TYPE STARTx STARTy HOLDx HOLDy

PELELIEU LHA 15 5 15 5
Transports Aboard: CH46 12 CHS3AD 4

NEWPORT LST 10 5 10 5

RALEIGH LPD 23 5 23 5

------------------- LZ DATA-----ccccccccccccacncennnncnan

LZ NAME LOCATIONX LOCATIONy SPOTS

LZSPARROW 23 3 3

L2OWL 8 3 4

---------------------------- Stats--------ccccccnccaaaaan.

lagtdeliverytime.count := 1290
lastdeliverytime.mean := 163.945180
lastdelivervtime .maximum :« 2336.245950

147

lastdeliverytime .minimum :s 1002208837
lastdeliverytime.variance := 1435.075719

B, <filename>LZ.out .

This file. cont_ains the data recording the build-up of

combat power ashore. The data within this file is arranged in

four columns. The fiisg’:, Timex, records the time t at which a
serial arrives ashoie, either to an LZ oi' to a beach.
BeforeJump, the second column, records the total combat power
ashore prior to the arrivel of the current serial. The Jump
column contains the combat power value of the arriving serial.
The last cc;lﬁmn, AfterJump, contains the Y_t:otal combat power
ashore including the new arrival. The data from congecutive
replications of the scenarioc are separated by a row ‘of -1'5
which are added by the model. .

These four colu:ﬁns of data are manipuiated by the Analysis
program, described in Chapter IV, to compare two mixes of

aircraft. : o
TIME BEFOREBJUMP JUMP AFTERJUMP

17.452585 0.000000 0.035800 0.035800
18.713340 0.035800 0.0356800 0.071599
18.971841 0.071599 0-.035800 0.107399
19.280203 0.107399 0.035800 ‘0.143198
20.231016 0.143198 0.035800 0.178998
20.625452 0.178998 0.035800 0.214797
29.301536 0.214797 0.032967 0.247764
30.099510 0.247764 0.02472% 0.272489
33.884638 0.272489 0.032967 0.305456
35.876570 0.305456 0.035800 0.341256
37.766903 0.341256 0.043956 0.385212
38.137050 0.385213 0.035800 0.421012
38.1505%43 0.421012 0.021978 0.442990
39.310552 0.442990 0.035800 0.478769
39.464354 0.478789 0.035800 0.514589

148

39.592847
39.733906
45.160249
45.911192
48.103371
56.408952
59.120837
62.442687
66.652223
74.186491
81.357447
81.588816
84.377447
85.622038
88.182672
88.332213
93.830519
114.928264

0.514589
0.539314
0.575113
0.602586
0.641047
0.674015
0.723937
0.756904
0.773860
0.791760
0.808715

0.841682 -

0.879422
0.897322
0.915222
0.948189
0.965145
'0.983044

“0.024725
0.035800
0.027473
0.038462

0.032967

0.049923

0.032967 -

0.016956
0.017900
0.016956
0.032967
0.037740
0.017900
0.017900
0.032967

0.016956

0.017900

0.016956

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

C. <filename>ind.out

0.539314

0.575113
0.602586
0.641047
0.674015
0.723937
0.756904
0.773860
0.791760
0.808715
0.841682
0.879422
0.897322
0.,915222
0.948189.
0.965145
0.983044
1.000000

This file has one column which contains the completion

time for each replication of the current scenario. Like the

<filename>LZ.out file, this file contains data for analytical

purposes.

133.654668
136.116764
109.300731
128.518234
127.457097
147.941331
139.407063
138.621305
126.488858
184.891796
164.029736
121.885986
203.290792
162.114241
162.1446958
118.164527

191.
118
138.
139.
318.
140.
159.

904999
680501
275285
032046
220818
441441
673867

150

1.

LIST OF REFERENCES

U. S. Marine Corps FMFRP 14-7, Over-the-Horizon (OTH)
Amphibious Operations Operational Concept, 15 Mar 91.

United States Marine Corps, Concepts and Issues, 1992.

LeClair, Brian, "Object Oriented, An Overview of Key
Concepts, " OR/MS TODAY, volume 18, number 1, pp.20-24,

Feb 91.

Ross, Sheldon M., Introduction to Probability Models,
Academic Press, Inc., Fourth Edition, 1989.

Welch, Peter, D., Computer Performance Modeling Handbook,
Academic Press, Inc., 1983.

151

BIBLIOGRAPHY

Barlow, Richard E., and Frank Proschan, Statistical
" Theory of Reliahility and Life Testing, McArdle Press,
Inc., 1981.

Bratley, Paul, Bennet L. Fox, and Linus E. Schrage, A Guide
to Simulation, Second Edition, Springer-Verlag New
York, Inc, 1987.

CACI Products Company, MODSIMII, The Language for Object-
Oriented Programming, Reference Manual, 1990 de., 3344
North Torrey Pines Court, La Jolla, CA 92037.

Koopmans, Lambert H., Introduction to Contemporary Statistical
Methods, Duxbury Press, 1991.

Law, Averill M. and David W. Kelton, Simulation Modeling and
Analysis, McGraw-Hill, 1982.

Salt; John, "Tunnel Vision," OR/MS TODAY, volume 18, number
1, pp.42-48, Feb 91.

U. S. Marine Corps FMFRP 14-7, "Over-the-horizon (OTF)
Amphibious Operations Operatioral Concept", 15 Mar 91.

U. S. Navy, NATOPS Flight Manual, Navy Model MV-22A Aircraft,
14 Feb 92.

U. S. Navy, NATOPS Flight Manual, Navy Model CH-53E Aircraft,
.1 May 90. _ , S e :

U. S. Navy, NATOPS Flight Manual, Navy Model VH-60N Aircraft,
15 Sept 91.

U. S. Navy, NATOPS Flight Manual, Navy Model CH-46A/E
Aircraft, 15 Aug 92.

152

1)

2)

INITIAL DISZRIBUTION LIST

Commandant. of the Marine Corps

Code TEO6 ‘
Headquarters, U.S. Marine Corps
Washington, D.C. 20380-0001

Defense Technical Information Center
Cameron Station

" Alexandria, -VA. 22304-6145

3)

4)

5)

6)

7)

8)

9)

10)

Library, Code 52
Naval Postgraduate School
Monterey, CA 93943-5002

Professor Michael P. Bailey Code OR/BA
Naval Postgraduate School
Monterey, CA 93943-5000

Professor William G. Kemple Code OR/Ke
Naval Postgraduate School
Monterey, CA 93943-5000

Capt. Scott E. Shaw

HMX-1 Marine Corps Air Facility

Marine Corps Combat Development Command
Quantico, VA 22134-5061

LtCol. J. V. Orlando
(Code RPR-4)

Headquarters Marine Corps
Washington, D.C. 20380

Vincent M. Balderrama
Sikorsky Aircraft Division S-437A
6900 Main St.

Stratford CT 06601-1381

Anthony Jareb
CNA Representative
MCCDC Quantico VA 22134-5001

Jeffrey Schneider
Sikorsky Aircraft Division S- 322A4

.- 6900 Main St.

Stratford CT 06601- 1381

153

copies

