
NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A2 5 7 578

DTIC
ELECTE ff•
DECO 41992A D

THESIS
AN OBJECT-ORIENTED SHIP-TO-SHORE

MOVEMENT ANALYSIS MODEL
(CUTTER)

by

Scott E. Shaw

September 1992

Thesis Advisor: Michael P. Bailey

Approved for public release; distribution is unlimited

92-30842

Unclau.fied
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
SIa. REPORT SECURITY CLASSIFICATION I b. RESTRICTIVE MARKINGS

UNCLASSIE

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTIO/AVAILABILITY OF REPORT

2"b. DECLASSIFICATIONDOWNGRADING SCHEDULE Approved for public release; distribution is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

6.& NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Naval Postgraduate School (Wifpplkabld) W2Wva Postgraduate School

_______________________ OR
6c. ADDRESS (City, State, and2lPCode) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 939434000 Mont erey, CA 939434000

Bo. NAME OF FUNDING)SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION [(i/f ajp/•cabit)

S. ADDRESS (City, State, andZIP Code) 10. SOURCE OF FUNDING NUMBERS

ptowam Elemu No. Pro0ec Nosa. Tuk No. Wok UNit Aaftponf
Number

11. TITLE (InCude Secur-ty Clasm ation)

AN OBJECT-ORENTED SHIP-TO-SHORE MOVEMENT ANALYSIS MODEL (CUTr IR)

12. PERSONAL AUTHOR(S) SHAW, Scott E.

13a. TYPE OF REPORT 113b. TIME COVERED 14. DATE OF REPORT (yoai, month, daY) 15. PAGE COUNT
mutesThesis From TO 1992 September

16. SUPPLEMENTARY NOTATION
The views ezpresse in this th tis ar these of the author and do not reflect the official policy or position ofthe Department of Defense or the U.
GovernmenL
17. COSATI CODES I8. SUBJECT TERMS (continue on reverse if necemary and idenify by block number)

FIELD GROUP SUBGROUP Object-Oriented, Amphibious Amsult, Simulation, Medium lift replacement. MLR,
MODSIM, Simulation

19. ABSTRACT (co•tnue on reverls If neceny andkIentlfy by block number)

This thesis documenta the design and implemeatation of a simulation of the Ship-To-Shore movement phase of the amphibious sulaut in a
modem, object-oriented. process-based simulation language called MODSIM 11 by CACI Corporation of La Jolla, CA. The main intent of the
simulation is to build a model that will allow the Requirements, Plans and Prograca Branch (RP&P). Headquarters, United States Marine
Corps (HQMC) to quantitatively compare proposed replacementa for the smasult aircraft mid amphibiuns currently used in the conduct of the
ship-to-shore phase ofthe amphibious assault. Candidate from the Medium Lift Requirement (MLR) program are compared to identify that
mix ofaircraft which provides the most rapid build-up of combii, power ashore.

20. DISTRIBUTIONJAVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

Ml UNCLASSIFIEDRAJLUITEO 13SAME AS REPOAT 3 oIC USERs Unclassified
22a, NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Inciude Area code) 22c. OFFICE SYMBOL
Michael P. Bailey (W046.2088 OR/Ba

DO FORM 1473,84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OFTHIS PAGE
AU other editions ar obsolete Unclasified

Approved for public release; distribution is unlimited.

An Object Oriented Ship-To-Shore
Movement Analysis Model

(CUTTER)

by

Scott E. Shaw
Captain, United States Marine Corps
B.S., University of South Carolina, 1980

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRAD)UATE SCHOOL
September 1992

Author:Se ___9
Scott E. Shaw

Approved by: Mi4 e- i; •aa Thesis Advisor

Wili KO)eondReader,
Peter Purdue, Chairman

Department of Operations Analysis

ii

ABSTRACT

This thesis documents the design and implementation of a

simulation of the Ship-To-Shore movement phase of an amphibious

assault in a modern, object-oriented, process-based simulation

language called MODSIM II by CACI Corporation of La Jolla, CA. The

main intent of the simulation is to build a model that will allow

the Requirements, -Plans and Programs Branch (RP&P), Headquarters,

United States Marine Corps (HQMC) to quantitatively compare

proposed replacements for the assault aircraft and amphibians

currently used in the conduct of the ship-to-shore phase of the

amphibious assault. Candidates from the Medium Lift Requirement

(MILR) program are compared to identify that mix of aircraft which

provides the most :apid build-up of combat power ashore.

Accesion,
Fo~rr

OTIC TAB

B Y _ --

Di~t. ibdtioa

Availability Cod.'es

Dist AvV i {,Oi ;or

fl-IJ_ _ _

iii

TUDLZ OF CONTDrs

I. INTRODUCTION 1

A. BACKGROUND 1

B. THE USERS 3

II. THE AMPHIBIOUS ASSAULT 5

A. SHIP-TO-SHORE MOVr•MENT 5

1. Number of Landing Spots Available 6

2. Aircraft Capabilities and Limitations . . . 7

3. Ship Movement 7

B. DESIGN DOCUMENT... 8

III. THE MODEL 9

A. AMFHIBIOUS SHIPS 9

B. THE AIRBOSS 11

C. SERIAL S 11

D. HELICOPTER DIRECTION CENTER 12

E. LANDING ZONES 13

F. AIRCdRFT 14

1. Transport Aircraft 14

a. Initial Launch 14

b. Transit to Shore 15

c. Arrival at the LZ 16

iv

d. Transit to Amphibious Shipping 16

e. Shut-down 17

f. Fuel Usag. 17

2. Attack Aircraft 18

G. MODEL EXECUTION 19

1. Input 19

2. Scenario Initialization 19

3. Replication 20

4. Output 20

IV. ANALYTICAL PROCEDURES 21

A. BACKGROUND 21

B. THE COMBAT POWER ASHORE FUNCTION 23

C. COMPARING CPA FUNCTIONS 25

2. Case 2 26

3. Case 3........... 28

4. Dominance 28

5. Assumptions 31

a. Diminishing Marginal Returns 31

b. Cutter Output 31

D. ANALYSIS PROGRAM 32

1. Input 32

2. Data Preparation. 32

a. Timex Array............... 33

b. Yvalue Array 33

v

3. Case I Comparison 33

4. Case 2 Comparison 33

E. CONTINGENCY TEST *. 34

V. SIMULATION ANALYSIS 36

A. MODEL VERIFICATION 36

B. TEST SCENARIOS 36

1. Scenarios 36

2. Aircraft 37

a. CH-46 37

b. CH-60 38

c. S-92 38

d. CH-53E. 38

e. MV-22........................... . 38

f. CH-47D 39

g. EH-101 39

C. SCENARIO RESULTS 40

1. Scenario 1 40

2. Scenario 2 41

3. Scenario 3 42

4. Summary of Test Results 44

APPENDIX A CUTTER MODEL SOURCE CODE 46

APPENDIX B HARDWARE REQUIREMENTS 140

vi

APPENDIX C SAMPLE SHIP-TO-SHORE PROGRAM INPUT FILES . 141

APPENDIX D CUTTER SAMPLE OUTPUT 147

LIST OF REFERENCES •. 151

BIBLIOGRAPHY 152

INITIAL DISTRIBUTION LIST 153

vii

I would like to thank my wife Carla, without w~hose love,

encouragement and assistance I could not have completed this

program.

I must also thank my father, for without the first four

years of college, the last two would not have been possible.

viii

I. 3 TlDUCTICN

A. Bj=CKROnDI

According to doctrine, the United States Marine Corps

(USMC) conducts an amphibious assault' in five phases:

* Planning

* Embarkation

* Rehearsal

* Movement to the Objective Area

* Assault (Ship-to-Shore Movement).

The vehicles currently used to conduct the ship-to-shore

movement phase of the amphibious assault are rapidly becoming

obsolete. There are two reasons for this. First, in the case

of the eviation vehicles, the primary medium lift assets (CH-

46 and CH-53A/D helicopters) are well past their originally

projected service life. Service Life Extension (SLEP) and

Special Depot Level Maintenance (SDLM) programs somewhat

extended each aircraft type's service life, but a tremendous

maintenance effort ..s :rquired on a daily basis to keep these

aircraft flying.

Second, in the case of the surface vehicles, the recent

change in amphibious doctrine to the Over-The-Horizon (OTH)

[Ref. 1] concept envisions launching amphibious assault

vehicles from distances that were never imagined when the

1

the current class of assault amphibians was designed and

procured. The slow speeds at which these amphibians swim

ashore render them tactically obsolete in view of the

increased exposure times that result from the OTH concept.

In view of this growing obsolescence of the ship-to-shore

vehicles, replacements must be procured which are able to

accomplish the ship-to-shore movement as envisioned by the

current OTH concepts. In an effort to meet these 0TH

requirements, two programs are currently underway to determine

the replacement vehicles.

Tha Medium Lift Replacement (MLR) program has been tasked

with finding a replacement aircraft for the aging CE-46 and

CH-53A/D aircraft. Among the alternatives that are being

studied are the MV-22, CH-60, an improved model of the CH-46

and the S-92. The aircraft lift capability, fuel endurance and

cruise speed are among the prime considerations in evaluating

the alternatives available. The identification and procurement

of the MLR aircraft is the highest priority item in the Marine

Corps today [Ref. 2:p. 73].

The Advanced Assault Amphibian Vehicle (AAAV) program

seeks to find a suitable replacement for the current LVTP-7

family of assault amphibians. The speed at which the vehicle

transits to shore is the major difference among the models

currently under consideration.

The USMC budget for the next several years will dedicate

a growing share of funds to developing and procuring these

2

replacement vehicles. In view of this immense investment it is

imperative that the vehicles chosen perform the OTH mission in

the most efficient and effective manner possible.

A realistic simulation of the ship-to-shore movement would

allow budget planners to evaluate the performance of the

different vehicles competing for a share of the constantly

shrinking defense budget. Such a simulation could be used to

perform other evaluations as well. For example, a proposed

landing plan could be run in order to identify potential choke

points. The same simulation could be used to identify desired

characteristics of future vehicles, such as fuel loads, cruise

speeds, and cargo capacities.

This thesis documents the construction and use of an

object-oriented ship-to-short movement simulation in an effort

to identify the superior of aircraft for the MLR program.

a. TUN USERS

This model is an outgrowth of six weeks of research at the

Requirements, Plans, and Programs (RP&P) Branch, Headquarters,

United States Marine Corps (HQMC). RP&P is responsible for

developing the Program Objective Memorandum (POM) which is the

USMC input to the DoD budget process.

In addition to identifying the preferred MLR aircraft,

this model will assist RP&P in the evaluation of proposed

3

changes in the equipment and doctrine currently employed in

the ship-to-shore movement phase of an amphibious assault.

4

I1. TREA1MPIBIOUS ASSAULT

The goal of the amphibious ass&ult is the rapid build-up

of combat power ashore. This model provides a means to

quantitatively compare the baild-up of combat power ashore

achieved by differing mixes of ships, assault craft and

aircraft. Assault craft and the aircraft that perform the

ship-to-shore movement are identical objects in the eyes of

this model.

This thesis will examine the aircraft currently under

consideration by the MLR program. It should be noted that

these same procedures could be applied to the vehicles under

consideration by the AAAV program.

A. SHIP-TO-SKORE MOVEMNT

The ship-to-shore movement constitutes the fifth phase of

an amphibious assault. The proper execution of the first four

phases has little impact on the ship-to-shore phase. As a

result, the conduct of this simulation disregards the first

four phases.

There are several key factors that affect the rate at

which combat power is built-up ashore during the ship-to-shore

movement. Ignoring the numbers of amphibious ships, assault

craft and aircraft available to conduct the ship-to-shore

movement, the following capabilities must be modeled.

5

1. Number of Landing Spot. Available

All of the amphibious ships in use are capable of

conducting air operations. The number of lemding spots

available for use on each ship will d.Lctate the number and

type of aircraft that may be employed. Figure 1 shows the

landing spot configuration for the LHA class of amphibious

ship.

Figure 1: Configuration of landing spots for the LHA class
of amphibious ship.

On the other hand, the types of aircraft employed, due

to their size, could limit the nu3-ber of landing spots

available. It is apparent that the number of landing spots

available aboard the amphibious ship has a significant impact

on the rate at which combat power is built-up ashore.

The model must account for the proper use of these

landing spots. Aboard an amphibious ship, different aircraft

6

types are restricted to the use of specific landing spots. For

example, on an LHA the CH-53 can not land on spot one. The

model must allot aircraft a spot that can be utilized by that

aircraft. Chapter III contains a more detailed description of

the allocation and use of these landing spots.

The amount of time that a particular aircraft type

spends in a holding pattern along with landing spot

utilization rates will indicate the need for different

aircraft mixes or ship designs.

2. Aircraft Capabilities and Limitations

The model will be used to compare the rate of build-up

using different aircraft. In order to perform this comparison,

the key differences in the aircraft must be modeled. These

differences include, but are not limited to:

"* Airspeed

"* Cargo capacity

"* Deck Spot restrictions

"* Fuel usage and capacity (the "range" of the aircraft).

3. Ship Movment

It will be assumed that after the commencement of the

amphibious assault, the amphibious ships will continue

movement towards the beach until they reach their preset

holding points. At these points the ships will maintain

holding patterns for the duration of the operation. The

initial starting point, the speed at which a ship presses for

7

its holding point and the holding point location will be

entered by the user. In this way the distance from ship to

shore may be varied in order to test aircraft capabilities

under different scenarios.

B. DESIGN DOCMOEIM

Chapter III serves as a design document, describing in

detail the amphibious assault and the actions of the model as

it simulates the ship-to-shore movement. Chapter III is not

meant as a detailed user's guide, but rather as an overview of

model execution. Appendix A contains a complete listing of the

Cutter model source code. Appendix B lists the minimumn

hardware requirements for using the model.

8

zMx. TUNO1 L

The Cutter model is an object-oriented simulation

[Ref. 31 developed to analyze the ship-to-shore

movement phase of the amphibious assault. In the Cutter model

key players within the ship-to-shore movement evolution are

created as objects. These objects possess the attributes and

actions required to model the ship-to-shore piase of the

amphibious assault. As an example, a CH-46 would be modeled as

an aircraft object, possessing attributes of airspeed and

cargo capacity, among others. The objects and their attributes

may then be altered in order to explore the effect of these

changes on the ship-to-shore movement.

In this thesis, attributes of aircraft objects are altered

to reflect those possessed by aircraft under consideration by

the MLR program. In this way the most effective MLR aircraft

may be identified. The primary objects of the C*tter model,

along with their key attributes and actions are described in

the following sections.

A. AMPNIBZOUB 8NIPS

The ships which are used to transport the landing force to

the Amphibious Operations Area (AOA) are referred to as

amphibious shipping. Examples of amphibious ships are the

Landing Ship, Tank (LST), Landing Ship, Dock (LSD) and the

9

Assault Landing Ship, Helicopter (LHA). Amphibious shipping

constitutes the ship portion of the ship-to-shore movement. A

group of amphibious ships steaming towards the AOA is referred

to as an Amphibious Ready Group (ARG).

As an object within the Cutter model, the amphibious ship

is known as an ARGCbJ (Amphibious Ready Group Object . The

primary role of the amphibious ship in the ship-to-shore

movement is to sail from an initial starting location to a

selected holding area. During the ship-to-shore movement the

amphibious ship transfers cargo to the embarked aircraft for

movement to shore.

The number of landing spots on an amphibious ship has a

dominant effect on its capability to move personnel and

equipment from the ship to the shore. Each amphibious ship has

deck space for one (an LST) to as many as ten (an LHA) landing

spots. The actual number of landing spots available for use

aboard a ship will vary depending on the number and type of

aircraft embarked. If a large number of aircraft are embarked,

landing spots are required for the storage of those aircraft

not currently employed. As mentioned in the previous chapter,

larger aircraft may be restricted to conducting operations on

certain spots due to a lack of clearance from ship structures

or other safety considerations.

10

B. TM AIRBOSS

The Airboss is responsible for allocating landing spots to

those aircraft preparing for their initial launch and those

requesting permission to land. Aircraft that request

permission to land when no landing spots are available are

sent to a holding queue known as 2starboard delta". The

Airboss allocates open landing spots using the following

priorities:

"" Aircraft awaiting launch

"* Aircraft holding in starboard delta.

The aircraft holding in starboard delta are prioritized

based on the amount of fuel remaining aboard the aircraft.

Each of the amphibious ships has its own Airboss and

starboard delta queue. In addition to controlling flow in to

and out of his starboard delta queue, the Airboss ensures that

aircraft only operate from those landing spots that have no

size or safety restrictions for that type of aircraft.

Within the Cutter model, the Airboss is created as a

SpotKanObJ (Spot Manager Object).

C. SERIALS

A serial is a set of passengers and/or cargo scheduled for

movement ashore aboard a single aircraft. Each of the serials

is assigned a source (amphibious ship), a destination (Landing

Zone), a priority, and a mode of transportation. The priority

of the serial determines the order in which the serials are

11

transported ashore. The lower the priority of the serial, the

sooner it is scheduled to be sent ashore.

The mode of transportation, either as internal cargo or

cargo to be carried externally, determines the airspeed of the

aircraft which transports the serial ashore. Depending on the

cargo to be moved externally, the airspeed of the aircraft

could be reduced by as much as 60% of that which the aircraft

would normally fly.

The weight of the serial will drive the decision as to

which type of helicopter transports it to shore. In practice,

passengers and lightweight cargo are usually broken into

serials sized to fit onboard the smallest transport aircraft

embarked. Larger transport aircraft combine two serials in

order to exploit their payload advantage over the smaller

transports. Some serials, due to their weight or size, require

larger transports for movement ashore.

In the Cutter model, a serial to be moved ashore is

created as a SerialObj.

D. M.ICOPTER DTIXCTZ0X Ctr

The Helicopter Direction Center (HDC) maintains a

prioritized list of all serials to be moved ashore. This

serial list is used to direct the flow of aircraft between the

amphibious ships and the landing zones.

As an aircraft departs the landing zone, it checks in with

HDC to determine the location of the next serial to be moved.

12

In the case of larger transport aircraft, HDC combines two

serials whenever possible to fully utilize these larger

aircraft.

There is only one HDC within the ARG. As an object in the

Cutter model, the Helicopter Direction Center is known as an

IMCObj.

X. LUNDING ZOUS

The Landing Zone (LZ j, modeled as an rZ3eachObj,

represents the shore portion of the ship-to-shore movement.

The LZ is the destination for the serials loaded aboard the

transport aircraft. The only attributes that an LZ possess are

location and a preset number of landing spots. The landing

spots in the LZ are identical in nature to those aboard the

amphibious ships.

Each of the landing zones contain a Forward Air Controller

(FAC) who performs the same function for the LZ that the

Airboss performs for the amphibious ship. The FAC, also

modeled as a Spot~KnC•j, operates in the same manner as the

Airboss with one exception. Since all aircraft start the

simulation from the amphibious ships, the FAC does not have to

contend with aircraft preparing for their initial launch.

Therefore, the FAC allocates open landing spots solely to

aircraft within his starboard delta queue.

13

F. AIRCRAFT

There are two types of aircraft utilized in the amphibious

assault; transport aircraft and attack aircraft. The transport

aircraft are used to movt the serials from the amphibious

ships to the landing zones. Attack aircraft provide covering

fire for the transports as they perform their assigned tasks.

Each of these aircraft and their roles in the amphibious

assault will be described in separate sections.

1. Transport Aircraft

Transport aircraft are the vehicles which move the

serials from the amphibious ships to the landing zones.'

Created as a TransObj within the Cutter model, the transport

aircraft are the focus of this thesis. There are many actions

that transport aircraft perform in the execution of their

mission. These actions and some simplifying assumptions are

described in the following sections.

a. Initial Launch

The transport aircraft are embarked aboard

amphibious ships for movement to the AOA. At a pre-determined

lauLch time, the aircraft obtains a landing spot from the

Airboss in order to commence flight operations. Once the

landing spot is obtained, the aircraft is positioned on the

spot, loaded and launched.

The amount of time that an aircraft requires to

load is determined by the serial that is assigned to the

14

aircraft. Serials that consist entirely of passengers or that

are carried externally usually require the least amount of

time to load. Serials that consist entirely of internally

carried cargo require the greatest amount of time to load. The

Cutter model looks at the contents of the serial assigned to

the aircraft to determine the appropriate loading time.

b. fTransit to Shore

An aircraft must meet certain criteria prior to

departing the amphibious ship. In the Cutter model, the

aircraft ensures that there is enough fuel aboard for a round

trip from the ship to the shore, plus a pre-determined

reserve. If there is not enough fuel aboard the aircraft, the

aircraft is refueled aboard the amphibious ship from which it

is departing. In the Cutter model there are no refueling

facilities ashore; aircraft are required to refuel aboard one

of the amphibious ships. It is assumed that the refueling

system aboard every amphibious ship is functional.

In addition to checking for sufficient fuel, the

aircraft checks that the pilots have sufficient crew day for

the round trip. While crew day is an administrative safety

limitation placed on the aircrew, it could have a very

negative effect on the ship-to-shore movement. If an aircrew

does not have sufficient crew day to complete the round trip,

the aircraft returns to its mother ship and commences the

shut-down procedures.

15

The speed at which the aircraft transits to the

shore is determined by several factors. The loaded cruise

speed of the aircraft is the maximum speed at which the loaded

aircraft would normally transit. If the aircraft is assigned

a serial to be carried externally, the transit speed is

reduced considerably.

c. Arrival at the LZ

Upon arrival at the destination LZ, the aircraft

requests a landing spot from the FAC. If there are no landing

spots available, the PAC will place the aircraft in his

starboard delta queue. The aircraft will hold in this queue

until cleared for landing by the FAC.

The time it takes to unload the aircraft is

determined in the same mnner as the loading tim&. Those

serials composed entirely of passengers and those that are

carried externally are the fastest to unload, with serials

consisting of internal cargo being the slowest.

At the completion of the unloading evolution, the

aircraft departs the LZ and transits to the amphibious ships.

d. ?ranuit to Aaghdbiouw ShiPPin

As an aircraft departs the LZ, it will check in

with HDC in order to determine the pick-up location of the

next serial. The aircraft then transJts to the pick-up

location at its normal empty cruise speed.

16

As the aircraft approaches the pick-up ship, it

calls that ships Airboss. The Airboss will either clear the

aircraft to land if a landing spot is available, or direct the

aircraft to enter the starboard delta queue. Upon landing on

the amphibious ship, the load, transit to shore, unload,

transit to amphibious shipping cycle is repeated until the

aircraft is directed by HDC to shut-down.

e. Shut-down

Aircraft will repeat the cycle described above

until directed by HDC to shut-down. In the Cutter model there

are two reasons that EDC would direct an aircraft to shut-

down. The first would be if the aircrew should exceed crew day

limitations. Secondly, an aircraft would be directed to shut-

down if there were no additional serials requiring movement to

shore.

When directed to shut-down, the aircraft proceeds

to the ship which transported it to the AOA. Upon arrival at

the ship, the aircraft requests a landing spot from the

Airboss and proceeds as directed. When all of the aircraft

have returned to their mother ship and shut-down, the

simulation is terminated.

f. Fuel Usage

One of the attributes that determines the

effectiveness of an aircraft in the ship-to-shore arena is the

range of that aircraft. The range of the aircraft is a

17

combination of the amount of fuel an aircraft carries, and the

rate at which the aircraft consumes that fuel (the fuel-flow).

The model uses three fuel-flow rates; one when the aircraft is

airborne loaded with cargo, one when the aircraft is airborne

with no cargo, and one for ground operations. There are three

periods during which an aircraft consumes fuel:

"* In transit

"* Holding in a starboard delta queue

"* While loading and unloading cargo.

The Cutter model computes the amount of fuel

consumed whenever an aircraft reaches an LZ or an amphibious

ship. For example, an aircraft may load, transit to shore,

hold in starboard delta awaiting an LZ landing spot and

finally land. At this time, Cutter will compute the amount of

fuel consumed based on the loading time, transit time and the

amount of time spent holding. The fuel consumed is then

subtracted from the amount of fuel currently aboard the

aircraft.

2. Attack Aircraft

Attack aircraft are similar to transport aircraft,

both possessing the same attributes and actions. In the Cutter

_o•del, an attack aircraft is modeled as an AttackObj which

inherits [Ref. 3] the attributes and actions from the

transport aircraft. There is one primary difference between an

attack aircraft and a transport aircraft.

18

Unlike the transports, attack aircraft are not

required to interact with the landing zones. An attack

"aircraft is assumed to fly for a given period of time and then

return to the amphibious ship. The attack aircraft competes

for ship landing spots, refuels, and shuts down in the rame

manner as the transport aircraft.

G. KODEL EMICUTION

There are several phases to the execution of the ship-to-

shore movement simulation. A brief description of the methods

that the Cutter model uses to coin)lete these phases is

presented in the following sections.

1. Influt

The information required to create the desired

scenario is input through the use of six data files. Each of

the data files contains a description of each piece of

required data, as well as an example of data used for this

thesis. The Fileform.mod file consolidates this information

for all of the input files. AppenCix C contains a description

and examples of the required input files.

2. Scenario Initialization

The Cutter model contains several procedures which

create the desired scenario. At the completion of this phase

all of the amphibious ships, their embarked aircraft, landing

zones and serials have been created.

19

3. Replication

The simulation is replicated the requested number of

times, resetting all of the starting values at the end of each

replication. At the end of the final replication, all of the

objects are disposed of, required statistics are computed, and

the final output is created.

4. Output

The model creates sevwral output files for each

scenario. The user inputs the desired name, limited to five

characters, of these output files using the OPplan.dat data

file (described in Appendix C). Appendix D contains a

description and examples of the output files.

20

*V. ANALYTZCCL PROcED S

A. 3&CGROUND

The Cutter model uses recursively generated random number

streams to control the- passage of -time throughout its

operation. As a result, the output from the model is a random

process, with the parameters of the parent distribution

unknown. In order to conmpare the results of two different

aircraft mixes run under the same scenario, a meaps of

comparing the unknown parent distributions must be found which

identifies the superior distribution. The random variable

which measures the build-up of combat power ashore will be

examined in order to identify the superior mix of aircraft.

This build-up of combat power ashore may be thought of as

a pure birth process, as there are no departures from the

system [Ref. 4:p. 251]. In the ship-to-showe

movement, the rate at which the mix of aircraft (the

population) delivers the serials ashore (bir'he) may be

approximated. The population of serials ashore at any time t,

as a function of the combat power possessed by each serial,

may be written as

X)• t (0,2') (1)

where X(t) is the amount of combat power ashore at time t (t

ranging from time 0 to T, the time that the last serial

21

arrived ashore). The amount of combat power ashore is measured

as the percentage of total combat power to be moved ashore.

For purposes of this thesis, these functions will be referred

to as Combat Power Ashore functions.

In order to compare the distributions from two different

random processes, it is typical to compare the measures of

location and spread from the two parent distributions.

Calculating interval and point estimators of a distribution's

location and spread, using multiple runs of the simulation,

requires several simplifying, assumptions

(Ref. 5:p. 278]:

"* independence between replications

"• normality of the output distribution

* constant variance.

It is felt that while these assumptions may serve, to

simplify the comparison of two distributions which occur

naturally, they may not be appropriate when dealing with the

output from a computer simulation.

Additionally, these methods are usually applied to wend"

measures such as the completion time of a task or the amount

of time spent in a queue. In the case of the build-up of

combat power ashore, the rate of build-up is more important

than the actual completion time. The methods commonly employed

to analyze simulation output are unable to capture a measure

of this rate.

22

B. TME COMM. POWER A IORN FUNCTZOK

Output from the Cutter model may be used to obtain

estimates of the Combat Power Ashore (CPA) function for each

aircraft mix. The CPA function for a specific aircraft defines

the percentage of combat power ashore at every time t, using

that aircraft. In this thesis it is desired to compare the CPA

functions for each aircraft in order to identify the preferred

replacement aircraft for the MR program.

The CPA function presents two vital pieces of information

concerning combat power ashore. First, the CPA function shows

the amount of combat power ashore (X(t)) at every time t.

Second, the amount of time that the combat power has been

ashore is shown as the difference between the time that a

serial arrives and the time t of interest. Clearly, the

greater the time a serial is ashore the greater its worth to

the Commander of the Landing Force (CL~P).

Since the goal of the ship-to-shore movement is the rapid

build-up of combat power ashore, the ideal CPA function is

easily visualized. This ideal CPA function delivers all combat

power ashore at time 0. In Figure 2a, it is clear that under

the ideal CPA function, all combat power is available to the

CLF at every time t. It is also clear that this CPA function

will never be observed in practice.

Figure 2b presents a more probable CPA function. In this

CPA function all serials are considered to possess equal

combat power. The first serial arrives ashore at time tU, the

23

second serial arrives at time t2 and so forth for all serials.

Each of the serials is represented by a rectangle, with the

height (h) equal to the combat power of the serial and the

length (1) equal to the amount of time the serial is ashore.

Ser Ia 1 7

Ser ial S

CaI Ser ial 1
Serial1 4
Se• ial 3

Ser(al 2

r Serial -
to t

I f Serial 7

Serial 3
(b Serral 2

Serial 1

tl t2 t3 t

Figure 2 (a) The ideal CPA function. (b) A simplistic CPA
function.

For any time t, the first serial is available for a length

of time equal to t - t1, the second serial is available for a

24

time of t - t2, and so on for each serial. The area of each

rectangle (combat power * time ashore) represents the worth of

that serial to the CLF at any time t. The sum of the area

within all rectangles (and thus the area under the CPA curve)

presents a measure of the combat power available to the CL?,

at any time t.

In order to choose one CPA function over another, the area

under each function must be compared. Furthermore, the method

chosen must account for the area under the function for every

time t.

C. CCfPflXVG CPA FUNCTIONS

In this thesis, CPA functions produced by different

aircraft are compared in a pairwise manner to identify the

preferred aircraft for the MLR program. The goal of each

pairwise comparison is to identify that CPA function which

provides the CLF with the most rapid build-up of combat power

ashore.

There are three cases that occur when comparing CPA

functions. Each of these, along with examples, is discussed in

the following sections.

1. Case 1

Suppose that the amount of combat power ashore at time

t, using aircraft X, is defined by the CPA function X(t).

Further suppose that the amount ashore using aircraft Y is

defined by the CPA function Y(t). If the value of X(t) is

25

greater than the value of Y (t) for every t, then aircraft X is

obviously preferred over aircraft Y. This may be written as

z (t) a r(t) (V t e [o, TI). (2)

If the conditions of Equation (2)hold, then the area

under X(t) will exceed that under Y(t) for all time t.

Therefore, the CPA function X(t) provides a greater amount of

combat power to the CLP than CPA function Y(t) at every time

t.

Figure 3 contains a comparison of the CPA functions

produced by two different aircraft. In this case X(t) is

greater then Y(t) for every time t. Under the CPA function

X(t) the CLF has more combat power available, at every time t,

then would be available under the CPA function Y(t). Under the

first case, the CLF clearly prefers that CPA function which

has more combat power ashore at every time t.

2.. Case 2

As shown in Figure 4, when two CPA functions are

compared, it is likely that the conditions in Equation (2)

will not hold for all time t. In this case, a different

criteria is used in order to choose one CPA function over

another.

For any time t, the longer a given serial is ashore,

the greater utility (combat power * time ashore) that serial

has to the CLF. As mentioned earlier, at any time t, the area

under the CPA function presents a measure of the combat power

26

. .. -

..

...

4=. ,1. . . .4

......

.._.., -.. .-

.. ,.. . . . -- - -"T -Ai

a 30 IN W W IM

Tim It Cin &MI.U%)

Figuro 3 Case 1. The valu~e of CPA function X(t) is greater
than that of CPA function Y(t) for every t. The aircraf
which produced the CPA function X(t) is preferred.

available to the CLF. If the area under X(t) is greater than

the area under Y(t) for all t, then X(t) is preferred over

Y (t). In this case

SX(.dt -f Y(..d. (V. .t: [.041). (3)

00

27

Squation (3) implies that CPA function X(t) offers a

greater utility (in terms of coubat power) to tbe CUL then

the CPA function Y(t) for every t.

In the ship-to-shore environment, it is always

preferable to have more combat power ashore now, than to have

a promise of more later. Figure 4 shows a case where Equation

(2) fails to hold, but where the conditions of Equation (3)

are met. In this case CPA function X(t) is preferred over CPA

function Y(t). Note, at some time t, the total amount of

combat power ashore for Y(t) culd exceed that of X(t) (as

shown at time 70) with X(t) being the preferred CPA function.

3. Case 3

During the conduct of some pairwise comparisons, it

may not be possible to pick one CPA function over another.

Figure 5 shows an example where two CPA functions cross each

other several times. In this case, neither Equation (2) nor

Equation (3) holds at every time t. Therefore, it is not

possible to pick one CPA function over the other. In this

case, it will be assumed that the two CPA functions are equal,

and that neither one is preferred over the other.

4. Daminance

When two CPA functions are compared, the dodmiant

function is that which provides the most rapid build-up of

combat power ashore. Throughout the rest of this thesis,

during a pairwise comparison, the preferred CPA function will

28

NCO

.i---.--.... "

..

., - -. ... -....... i............... .. -....

'- is.th..e.p- oS.,L .: " ~~........... ! z......... _

berefterre toas the areanaundof thetv CPA functions In) tevr

order for CPA function X(t) to dominate the function Y(t), one

of the following conditions must be met:

"* X() a Y M) (V t e to, TI

"" !o X(t) a 0 Y(t) (V t f [0,T)

29

- .---......----..-- : ..;.... _

0.- -- - - -.

: : -. i!!

S• ..-• • •............ , ..-...... -.. -....... •..

a so 2. 3/0 am am

TIM I CIO MINI~M)

Figiixe 5 Neither function, X (t) nor Y (t), dominates the
other.

If neither CPA function dominates the other, it will

be assumed that either CPA function is acceptable to the CLE.

5. ag m t""tioIn

In order for the criteria outlined above to be applied

in the comparison of tvo CPA functions, two assumptions must

be accepted.

30

a. iM~n~shLn MazrgInal Returng

The total utility of a serial to the CLF is a

product of the combat power and the time ashore of the serial.

As a result, two serials may contain the same amount of combat

power, yet be of different value to the CLF due to their

respective time ashore.

For example, consider two howitzers, A and B.

Initially, both howitzers possess the same combat power.

However, if A arrives ashore 30 minutes prior to B, then A has

a greater utility to the CLF then B, due to the longer time

spent ashore by howitzer A. Therefore, a serials worth to the

CLF diminishes the longer it takes to deliver that serial

ashore.

b. Cutter Output

Realizing that Cutter output is itself a random

process, it is assumed that the output from ee.ch replication

of the simulation is representative of the CPA function for

the particular aircraft used. Under this assumption, the

estimate of the CPA function resulting from the first

replication of Aircraft X may be compared to the estimate of

the CPA function resulting from the first replication of

Aircraft Y, and so on for multiple replications of the

simulation for each aircraft.

31

D. ANALYSIS PROGRAM

The Analysis program is used to compare CPA functions from

each aircraft in the different Cutter scenarios. In order to

estimate the CPA functions, the Cutter model completes one

hundred replucations for each aircraft. In order to compare

two aircraft, the one hundred CPA function estimates for each

aircraft are compared using the Analyrfs program. The

following sections describe the required input, and general

workings of the Analysis program.

1. Input

The Analysis program takes as input the Cutter output

file <fileuame>LZ.out (described in Appendix D) from each of

the two aircraft to be compared. The Analysis.dat file is used

-o input the number of comparisons to perform, the names of

the two data files to compare, and the desired name for the

Analysis output file.

2. Data Preparation

The contents of each of the <filenamem>LZ.out files is

manipulated to create two data arrays for e&ch aircraft. These

arrays contain the data required for the Analysis program to

perform the required calculations. The following sections list

these arrays, along with a short description of their use.

a. Timex Array

The Timex Array contains the integers from 1 to the

time T that the last serial arrives ashore within the current

32

"simulation run. This array provides the t axis values for the

CPA function.

b. Yvalue Array

The Yvalue Array contains the total combat power

ashore at the corresponding time in the Timex array. This

array provides the Y axis values for the CPA function.

3. Case 2, Comparison

The comparison procedure for the first case takes the

"Yvalue array for each data set, comparing the values for each

time t. If the elements of the Yvalue array for Aircraft X are

greater than or equal to the elements of the Yvalue array for

Aircraft Y, at every time t (Eq. 2), then the CPA function for

Aircraft X dominates the CPA function for Aircraft Y. In this

example the use of Aircraft X is preferred over the use of

Aircraft Y.

4. Case 2 Comparison

If the conditions in Equation (2) do not hold, a Case

2 comparison is performed in an effort to identify the

dominant CPA function. The comparison procedure for the second

case computes the area under each CPA function for every time

t. If the area under X(t) is larger than the area under Y(t)

at every time t, then X(t) dominates Y(t).

If neither comparison is able to choose a dominant CPA

function, then Case 3 applies, and neither CPA function

dominates the other.

33

Z. CONTflIGCY TEST

The results of the Analysis program are used to perform a

contingency test. The null hypothesis, that the CPA function

for Aircraft X is the same as the CPA function for Aircraft Y

(in a given scenario), is tested against the alternative

hypothesis that the two CPA functions are different. This

hypothesis test may be written as

"Hg : X(t) - Y(t) VS Ha :X(t) 0 Y(t). (4)

The results of the CPA function comparisons for any two

aircraft are arranged as shown in Table I.

Table I.-- CONTINGENCY TABLE FORMAT

Acft Acft X Either Acft Y

Dominant (cell 1) (cell 2). (cell 3)

In Table I, the value entered into cell 1 refers to the

number of times that Aircraft X dominates Aircraft Y. The

value entered into cell 3 represents the number of times that

Aircraft Y dominates Aircraft X. The value in cell 2

represents the number of times that neither aircraft dominates

the other.

The contingency test computes the following value for each

of the cells in Table I:

34

(observed value - expected value)2 (5)

expected value

As mentioned earlier, the output from the simulation is a

random variable. As such, an estimate of the excpected valuee

for each cell of Table I must be found. Suppose that a is the

observed value for cell 1, that b is the observed value for

cell 2 and that c is the observed value for cell 3. It can be

shown that the Maximum Likelihood Estimator (MLN) for the

expected values, given that HI (Eq. 4) is true, are ao

follows:

_ & - (a+c)/2 for cells I and 3

S b -bor cell 2.

The value of Equation (5) for each cell in Table I are

calculated and summned. This final sum is then compared to the

Chi-Square distribution with one degree of freedom (12t) to

test the null hypothesis H,.

35

V. ~WAXSihI

A. .OD M VW .1V CATZO. .

The Cutter model has been verified to vork while ru"-ning

a number of siple test scenarios. The output from these -.test

.scenarios has been examined and is believed to :be correct. The

model has not been validated, as this would.require comparing,

its results to the results obtained from actual ship-to-shors°

exercises. Since it has not been validated, these results

should only be viewed relative to each other, and not as

absolute numbers. Future users are encouraged to -review. the

input required and conduct trials to confirm the proper input

parameters.

B. TEST SCMA=IOS

A brief description of each scenario and the different

aircraft capabilities and limitations appear in the following

sections. Appendix C contains the input data for each scenario

and aircraft used.

1. Sc•narios

Each of the three scenarios consisted of 3 ships (an

LHA, LPD, and LST) and 2 landing zones. The landing zone

locations were fixed Zor each scenario, while the ship-to-

shore distance varied from scenario to scenario. In the first

scenario the ships were 5 miles from shore, in the second

36

scenario the ships were 25 miles from shore, while the third

scenario had the ships 50 miles from shore. While the Cutter

model has the ability to model ship movement this feature was

not used in the test scenarios.

There are a total of 419 passengers and 97,000 pounds

of cargo to be transported ashore under each scenario. The

serial lists for each of the aircraft mixes were arranged in

order to fully exploit the cargo capacity of the aircraft. For

example, a serial for the MV-22 contains a maximum of twenty

passengers while a serial for the CH-60 contains a maximum of

ten. As a result, the aircraft mix containing MV-22 aircraft

had a total of 39 serials to move ashore while the CH-60 mix

required that 56 serials be transported ashore.

2. kAircaft

There are seven different aircraft used in the test

scenarios. Six of these aircraft are under consideration by

the MLR program. The seventh aircraft, the CH-53E, is included

for reasons to be discussed in a later section. The input

parameters for each of the aircraft were obtained from the

Naval Air Systems Comaand. The sections below will provide a

brief description of the aircraft involved, with emphasis on

the more important capabilities and limitations of each.

a. Cff-46

This is the current medium lift aircraft and is

used as a baseline for aircraft comparisons.

37

b. CF-60

The CH-60 has the smallest payload, equivalent to

ten passengers. This aircraft does possess an airspeed and

range advantage over the CH-46 aircraft.

c. B-92

At this time, the data for the S-92 is proprietary

and is therefore omitted from the body of this thesis. This

aircraft does possess greater cargo capacity, range and

airspeed then the CH-46.

d. CH-53B

This is a much larger aircraft then the CH-46, S-92

and CH-60. The CH-53E will carry more then twice as much as

the CH-46 with an airspeed of 150 kts and a much greater

range. However, due to its size, the CH-53B operates from six

deck spots abiard the LHA, whereas the CH-46, S-92 and CH-60

aircraft have eight deck spots from which to operate.

e. XV-22

This is a tilt-rotor aircraft, able to operate in

either the helicopter or fixed-wing mode. The fixed-wing

cruise speed (approximately 250 kts) and the helicopter cruise

speed (180 kts) give this aircraft a tremendous advantage over

the other five candidates. The MV-22 payload is somewhat

larger then the CH-46, but considerably less then the CH-53E.

This is a large aircraft, and therefore has the same LHA deck

spot limitation as the CH-53E.

38

f. CU-47D

The internal cargo capacity oft this aircraft is

identical to that of the CH-533. While the airspeed of the CH-

47 is comparable to that of the CH-533, the range is

significantly less. Due to its large size, the CE-47 is

limited to six operating spots aboard the LEA.

g. JAf-1O

This aircraft has the same cargo capacity as the

MV-22, but possesses average airspeed and range when compared

to the other aircraft.

The aircraft listed were arranged into the following

mixes and run under each scenario:

@ 12 CH-46 and. 4 CH-533 (Mix 1)

@ 12 CH-60 and 4 CH-531 (Mix 2)

0 12 SEH-101 and 4 CM-S3E (Mix 3)

* 12 MV-22 and 4 CH-S3H (Mix 4)

0 12 CH-47D (Mix 5)

0 12 S-92 and 4 CH-533 (Mix 6).

Note that five of the aircraft mixes include the CH-

533 aircraft. The real world ship-to-shore movement includes

several serials which require heavy lift assets to move

ashore. The CE-47D is capable of lifting all loads that

require external transportation to shore, therefore the CH-533

is not included in the fifth mix.

39

C. SCemRIO uSMTS

In the following sections the results from each scenario

are discussed, stressing the ability of the model to evaluate

the interactions of the various input parameters. Note that

wheni for example, reference is made to the OMV-22w- this

refers to the 12 MV-22/4 CH-53E mix of aircraft, and not

solely to the XV-22 aircraft.

1. Soenazio 1

As shown in Table II, the CH-47D clearly dominated all

aircraft in the first scenario. The CH-471D is able to overcome

the landing spot restrictions aboard the LHA through its

superior cargo capacity.

The MV-22 and the EH-101 were equally effective, a

result that is interesting. While the two aircraft possess the

same cargo capacity, there are two major differences in the

capabilities of the aircraft. The MV-22, with a speed of 180

kts, has a 40 knot advantage over the EH-101.1 On the other

hand, the REH-101 has the use of eight landing spots aboard the

LHA w.dile the MV-22 is restricted to six spots.

As expected, the S-92, possessing average range and

cargo capacities, fell in the middle of the six mixes. This

I The MV-22 was limited to 180 kts for this scenario. The
short ship-to-shore distance of the scenario would prevent the
aircraft from completing transition to the fixed-wing mode.
The 180 kts is the maximum airspeed for the aircraft in the
helicopter mode.

40

aircraft is significantly more effective than the baseline CH-

46 mix.

The CH-60 is totally inadequate. The restricted cargo

capacity of the aircraft allows it tvc ba dominated by all

aircraft mixes.

Table II.-- AIRCRAFT COMPARISONS FOR SCENARIO 10[Scenariol -I. vs. 2- 1 vs 3 1v--4- 1 vs 5 1.w

EDo~minates 0 144 0Z17I
Does Not I6 74Iz.E , .22IScenariol 2-'-, 2vs4. 1'ý0-Q 2 vs 6

Doinmates z0i~ 0soj~ L 4lK
Doe Not .. 2 262..... •

Scenariol 3 vs 5 3 vs 6 4-Vs 4 4 vs 6

Dominates -2Sj i IZ ZL af 62,- 1
Doe, Not j 45. 74 e3 8s

Note: Mix (1) ... CH-46 Mix (4) ... MV-22Mix (2) ... CH-60 Mix (5) ... CH-47
Mix (3) ... EH-101 Mix (6) ... S-92

2. Scenario 2

As shown in Table III, the CH-47 dominance over the

MV-22, while still significant (p-value - .0082), is

dramatically reduced in Scenario 2. The MV-22 top speed of 250

knots, combined with the ship-to-shore distance of 25 miles is

41

able to offset much of the cargo capacity advantage of the CH-

47.

At 25 miles, the EB-101 is no longer as effective as

the MV-22. The increased airspeed of the MV-22 is fully able

to offsee the two additional operating spots from which the

EB-101 is able to operate.

Once again, the S-92 is the third most effective

aircraft. The CH-60 is still dominated by the CH-46, in spite

of the range and airspeed advantages of the CH-60.

Table III.- AIRCRAFT COMPARISONS FOR SCENARIO 2

_ _Scenario2 1__i_ -1''I vs3 1--v 4., I V6 5

Dominates I 1-.-. 0 7 0 87 -__

DoeNot __. 26_ 13

Scenario2 2 Vs. 3 2 vs 4 2VS•5." 2 vs 6

Do i a e .0:i 0":50. 9,:018-•"

IDoes Not is 61 3 : 13 :.: 16....

Scenario2 3 ve 5 3 vs 6 4 vs 5: 4 vs 6 S:vs..:6

D -oes Not 41 71 93 :. 67 ;•;::::32: :

_ ~Iii" L

Note: Mix (1) ... CH-46 Mix (4) ... MV-22
Mix (2) ... CH-60 Mix (5) ... CH-47
Mix (3) ... EH-101 Mix (6) ... S-92

3. S inazro 3

in the third and final scenario, there is no

difference between the MV-22 and the CH-47 aircraft. The fifty

42

mile ship-to-shore distance allows the MV-22 airspeed

advantage to fully compensate for the cargo capacity of the

CH-47.

The EH-101 continues to dominate the other three

aircraft. It is interesting that the dominance of the EU-10i

over the CH-46 and the CH-60 decreased between Scenarios 1 and

2, but then increased between Scenarios 2 and 3. This dip can

be explained by examining the range of the aircraft involved.

In Scenario 1 the CH-60 and CH-46 require refueling in

order to complete the evolution. The EH-101, due to its range

advantage, is able to complete the first scenario without

conducting refueling operations. The ship-to-shore distance in

Scenario 2 is such that the EH-101 requires a greater increase

in the number of refueling operations from Scenario 1 then the

increase in refueling operations for the CH-46 and CH-60

aircraft. Therefore, the build-up of combat power with EH-101

decreases at a greater amount then the build-up using CH-46 or

CH-60 aircraft.

In Scenario 3 the opposite occurred. Due to the

greater range of the EH-101, the CH-60 and CH-46 required more

additional refueling operations from Scenario 2 to complete

the third scenario then the EH-101 required. These additional

refueling operations slow down the rate at which the CH-60 and

CH-46 build-up combat power ashore.

The S-92 showed the same dominance pattern, to a

lesser degree, between scenarios as did the EH-101. The S-92

43

is still the dominate aircraf t when compared with the CH-46

and CH-60 aircraft.

The CH- 60 is almost completely dominated by every

aircraft in the study. This would stress the importance of the

aircraft cargo capacity. It takes a major airspeed and/or

range advantage to compensate for a v,.ery limited cargo

capacity. Table IV contains the complete results for the third

scenario.

Table rV. -- AIRCRAFT COMPARISONS FOR SCENARIO 3 ____

Scenaxio3 I. vs; 21 1 vs 3 1 vsS I 1V

FDoes Not .- 30.u.[29 37 I 17

Scenario3 2 2vs 3 2 vs;4 2 vo5 2 vs6 1-va4

Dominates 0 9 0 196 0 ~ 1 0 0 97
Does Not 4 4±..1___ 0 j 3 60

Scenario3 3 vs 5 3 vs 6 4 vs, 4 vs 6 5v.

DominateD i 1S 4 1 5 1 0 i~i~ Se
IDoes Not 55 58 100__ 47__ __2:

Note: Mix (1) ... CH-46 Mix (4) .. V-22
Mix (2) ... CH-60 MiX (5) . CE-47
Mix (3) ... HE-101 Mix (6) ... S-92

4. Sumary of Test Results

The results from the three scenarios confirm the

obvious. The aircraft with the largest payload will most

44

likely be the most effecti-e in terms of the rapid build-up of

combat power ashore.

The analysis above also demonstrates the ability of

the Cutter model to quantify the capability trade-offs among

different aircraft. While one aircraft may possess a speed

advantage and another a larger cargo capacity, both aircraft

may be equally effective. In this case, the MV-22, with the

110 knot airspeed advantage proved as effective as the CH-47,

with a 10 passenger capacity advantage, given a certain ship-

to-shore distance.

Another trade-off comparison exists between the CH-46

and the CH-60. The CH-60 has a significantly longer range and

a slightly greater airspeed then the CH-46. The CH-46, on the

other hand, is able to carry five more passengers than the CH-

60. It was shown that this trade-off between the two aircraft

allowed the CH-46 to dominate the CH-60 under all three

scenarios.

The ability to quantify these capability trade-offs

proves that the Cutter model is a valuable tool when used to

analyze the ship-to-shore movement.

45

APPENDIX A CUTTER MODEL SOURCE CODE

MAIN MODULE Cutterl

MODULE NAME: Cutter DATE WRITTEN: 18 Mar 92
AUTHOR: S. E. Shaw U.ST MODIFIED:

Capt USMC
DESCRIPTION Ship-To-Shore movement analysis model.

Simulates the build up of combat power ashore. The user is
able to change the scenario, to include the ship/LZ locations,
as well as the number and type of aircraft employed.
--------------------------------- -----------------}

FROM Debug IMPORT TraceStream;
FROM DebugRun TMPORT SetUpD;
FROM SimMod IMPORT StartSimulation, ResetgimTime, SimTime;
FROM CATFMod IMPORT CATFObj;
FROM Input IMPORT ReadEmAll;
FROM global IMPORT NewRandoms, repetition, showerrors;
FROM Statistics IMPORT StatisticsObj, lastdeliverytime;
FROM OutputDriver IMPORT OpenFiles, CloseFiles,

EndTimerecorder;

VAR
CATF : CATFObj;
Statistician : StatisticsObj;
totalruns : INTEGER;

BEGIN

OUTPUT("Enter Number of Runs to Co iplete");
INPUT (totalruns);
SetUpD (TRUE);
showerrors :- FALSE;

ReadEmnA1l;
NewRandoms;
OpenFiles;
NEW (Statistician);
ASK Statistician TO StartStats;

repetition :- 1;
WHILE (repetition <- totalruns)

ASK TraceStream TO WriteString ("Starting Cutter');
ASK TraceStream TC WriteLn;
NEW (CATF);

46

StartSimulation;
ASK Statistician TO CollectRepStats (CATF);
ASK TraceStream TO WriteString ("Destroying CATF");
ASK TraceStream TO WriteLn;
ASK CATF TO DestroyCATF;

OUTPUT ("Repetition :- ",repetition," completed");
ASK EndTimerecorder TO

WriteString (R.EALTOSTR (lastdeliverytime));
ASK EndTimerecorder TO WriteLn;
ResetSimTime (0.0);
ASK Statistician TO ResetStats;

INC (repetition);
END WHILE;
ASK Statistician TO StopStats;
CloseFiles;
OUTPUT ("Ending Cutter");

END { MAIN } MODULE { Cutter 1.
DEFINITION MODULE ARG(od;

MODULE NAME: ARGMod DATE WRITTEN: 18 Mar 92
AUTHOR: S. E. Shaw LAST MODIFIED:

Capt USMC

DESCRIPTION : Defines the Amphibi6us Ready Group
(ship) objects.

--

FROM ResMod IMPORT ResourceObj;
FROM GrpMod IMPORT QueueObj;
FROM global IMPORT LocationXY;
FROM SpotMan IMPORT SpotManObJ;
FROM RGlobals IMPORT SHierRecType;

EXPORTTYPE

ARGObJ - OBJECT; FORWARD;

TYPE

ARGObj - OBJECT (QueueObj);
name STRING; steamspeed : REAL;
airboss SpotManObj; holdingspeed : REAL;
location LocationXY; course : REAL;
squadron : QueueObj; steaming : BOOLEAN;
type STRING;
holdlocation LocationXYi pumprate : REAL;

ASK METHOD ReadData (IN record : SHierRecType);

47

ASK METHOD ObjInit;
ASK METHOD CurrentPos (OUT xcoord : REAL;

OUT ycoord : REAL);
ASK METHOD DestroyARG;
TELL METHOD SetHoldingTime;

END OBJECT { ARGObJ };

UW DIPINITION)} ODULB { ASo).

InPLIENTATION MODULE ARIlodi

MODULE NAME: ARGMod DATE WRITTEN: 18 Mar 92
AUTHOR: S. E. Shaw LAST MODIFIED:

Capt USMC

DESCRIPTION : Defines the Amphibious Ready Group
(ship) objects.

FROM global IMPORT LocationXY, Distance, DeBug;
FROM RGlobals IMPORT SHierRecType;
FROM MathMod IMPORT SQRT, pi, ACOS, COS, SIN;
FROM SimMod IMPORT SimTime;
FROM Transport IMPORT TransObj;
FROM Debug IMPORT TraceStream;

OBJECT ARGObJ;

{---
ASK METHOD ReadData (IN record : SHierRecType);

VAR
placeholder : INTEGER;

BEGIN
name :- record.TopString;
type :- record.OwnedString(1";
location.x :- STRTOREAL(record.OwnedString [2]);
location. y :- STRTOREAL (record. OwnedString (3]) ;
steamspeed : - STRTOREAL (record. OwnedString (4]) ;
holdingspeed :-

STRTOREAL (record.OwnedString [51);
holdlocation.x :-

STRTOREAL (record. OwnedString [61);
holdlocation.y :-

STRTOREAL (record.OwnedString [7]);
pumprate :- STRTOREAL(record.OwnedString[8]);

48

ASK airboss TO PaintSpots (type, name,
OBJTYPENAME(SELF), placeholder);

ASK airboss TO SetName(name);

END METHOD { ReadData };

ASK METHOD Objlnit;
BEGIN
NEW (airboss);

NEW (squadron);
TELL SELF TO SetHoldingTime;

END METHOD { ObjInit };----------- --------..- -
TELL METHOD SetHoldingTime;
VAR

diet : REAL;
steamtime : REAL;

BEGIN
diet :- Distance (location, holdlocation);
steamtime :- (dist / steamspeed) * 60.0;

IF (dist >- 0.0)
steaming :- TRUE;

WAIT DURATION steamtime;
END WAIT;

END IF;

steaming :- FALSE;

END METHOD { SetHoldingTime 1;

------------.---------------------------------.

ASK METHOD CurrentPos (OUT xcoord : REAL;
OUT ycoord : REAL);

VAR
xOcoord : REAL;
yOcoord : REAL;
xlcoord REAL;
ylcoord REAL;
Angle : REAL;
hyp : REAL;

49

xvel yvel REAL; . " .

BEGIN
x0coord ;- location.x; -

yocoord :- location.y;
xlcoord :- holdlocation.x-
ylcoord := holdlocation.y;

IF steaming
hyp - SQRT((xlcoord - x0coord) * (xlcoord - xOcoord)

+ (ylcoord - yOcoord)*(ylcoord - yocoordf);
Angle :- ACOS ((ylcoord - yocoord)/hyp);

IF ((xlcoord >.- xOcoord) AND (ylcoord <- y0coord)),
Angle := Angle;
xvel : SIN (Angle) *steampeed;
yvel - COS (Angle) *steam peed;

ELSIP ((xlcoord >- xOcoord) AND (ylcoord >-
yocoord))

Angle :- Angle;
xvel := SIN (Angle) * steamspeed;
yvel :- COS (Angle) * steamspeed;

ELSIF ((xlcoord <- xOcoord) AND (ylcoord >-
yOcoord))

Angle := (2.0*pi - Angle);
xvel :- SIN (Angle) * steamspeed;
yvel :-COS (Angle) * bteamapeed;

ELSE {((xlcoord c- x0coord) AND (ylcoord <-
yOcoord)))

Angle :- '2.0*pi - Angle);
xvel :- SIN (Angle) * steamopeed;
yvel :- COS (Angle) * steamspeed;

END IF;

xcoord :- (SimTimeo/60.0)*xvel + xOcoord;
ycoord :- (SimTimeo/60.0)*yvel + y0cocrd;

ELSE

xcoord :- holdlocation.x;
ycoord :- holdlocation.y;

END IF;

END METHOD (CurrentPos);

50

.ASK METHOD DastroyARG;

.VAR
acft :Transob];

BEGIN
ASK airboss TO D)estroySpotMan;.
IF -(ASK squadron. nwumbrIn> -or)
acft :- ASK squadron FirstM0

WHILE (acft .c> NILOBJ);
ASK-:squadron TO RemoveThis (acft) ;
ASK acft TO DeptroyVehicle;
acft :-P ASK squadron First().

END wHILE;
EDIF;-

DISPOSE (psquadron);

END METHOD (-DestroyArg }

eeeeeeeeeeeeeee- ------------ --

END OBJECT {ARGMcod

DZ7ZWITI~ CK 30=2 Attaicks

-----f--------------------------------- ----------
MODDLE NAME: Attackkcft DATE WRITTEN: .7 Apr 92
AU.THOR: S. R. Shaw LAST MODIFIED:

Capt USMC MODIFIED BY:

DESCRIPTION : Contains the Attack Aircraft Object.

FROM RandMod IMPORT RandtonObj;
FROM AR(G4od I3MPRT ARGObj;
FROM LZBeach IMPORT LEBeachObji;
FROM Serialt~od IMPORT SerialObj;
FROM HDC~od IMPORT HDCObJ;
FROM global IMPORT LocationXY;
FROM RGlobals IMPORT SliierRecTyp.,;
FROM Transport IMPORT TransObj;

EXPO? YP
AttackObj - OBJECT; FORWARD;

TYPE

AttackObj - OBJECT (TransObj);

returnt ine : Rafldombj;

51

OVERRIDXE
UK~ METHD QbJlnit;_-:• .- TBLt .MET.OD Operat~e;-.
TELL METHOD Load;
TELL M3MW ZetClearance ;
TELL MXTOD -TransitToBeawh;,
TELL METHOD FlyToShip;-
TELL METHOD Spot;

END AttackObj ; -

D { DEInITIcw) KDuLx { ttaakAeft }

~x.UuNTO 1MUL3 &ttaaki

{ ------------------------ -----------------------------
-ULS -NAM.-- AttackAcft D&TRI- E:. --7p.9.
AUTHDR: S. E. Shaw 1AST MODIFIED:

Capt USHC MODIFIED BY:

DESCRIPTION Contains the Attack Aircraft:Object.
-- ----------

FROM SimMod •GOR•T SimTime; -

FROM RandWod IMPORT Randon•bJ;
FROM ARG(od IMPORT ARGObJ;
FROM HDCMod IMPORT HDCObj ,BriefingRec;
FROM SerialMod IMPORT SerialObj;
FRO- global IMPORT LocationXY, Distance, ReturnTime,-

moreserials;
FROM RGlobals IMPORT SHierRecType;
FROM SpotProcedures IMPORT GetShipSpot, GetLZSpot,

GiveBackShipSpot, GiveBackLZSpot, Initial Launch;
FROM LoadProcedures IMPORT LoadCargo, UnLoadCargo, ReArmAcft;
FROM Transport IMPORT TransObj;
FROM Debug IMPORT TraceStream;

OBJECT AttackObJ;

ASK METHOD ObjInit;
BEGIN
NEW (holdingtimestats);
ADDMONITOR (holdingtime, holdingtimeatats);

NEW (holdingshipstats);
ADDMONITOR (holdingship, holdingshipstats);

52

NEW (holdingbeachstats);
AD M NITOR (holdingbeach, holdingbeachstate);

END MEHOD { Objlnit };

TELL METHOD Spot;
VAR

ship STRING;
startpoint : LocationXY;
endpoint : LocationXY;
gonogo : REAL;
newserial : SerialObj;
available : BOOLEAN;
loadtime : REAL;

BEGIN
destination :- mymother;.

WAIT DURATION 5.0
END WAIT; - spread time wait }

airbornetime :- SimTime();

TELL SELF TO TransitToBeach;

END METHOD { spot);

TELL METHOD Load;
VAR

rearmtime : REAL;

BEGIN
holding :- SimTime() - holding;
ReArmAcft (SELF, rearmtime);

WAIT DURATION rearmtime

END WAIT; { load serial wait }

TELL SELF TO TransitToBeach;

END •MTOD { Load);

53

TELL METHOD Operate;
VAR

available BOOLEAN;

BEGIN
InitialLaunch (SELF, available);
IF (available)

TELL SELF TO Spot;
END IF;

END METHOD { Operate };

TELL METHOD.TransitToBeach;
VAR flighttime : REAL;

available : BOOLEAN;
BEGIN

WAIT FOR SELF TO GetClearance;
END WAIT;

IF (cleared)

GiveBackShipSpot ('SELF);

flighttime := ASK ReturnTime
UniformReal (60.0, 120.0);

WAIT DURATION flighttime;
END WAIT; { sortie time to shore }

TELL SELF TO FlyToShip;

ELSE
TELL SELF TO ShutDown;

END IF;

END METHOD { TransitToBeach };
I -'- - -' ' " -. . .-- --- --- - - - - -- - -- - -- - -- - -- - -

TELL METHOD FlyToShip;
VAR

available : BOOLEAN;

BEGIN

54

holding := SimTime);

GetShiDpot (SELF, available);
IF (available)

TELL SELF TO Load;
END IF;

END METHOD { FlyToShip };

TELL METHOD GetClearance;

BEGIN
cleared TRUE;
INC (totalsorties);
IF ((totalsorties > 3)

OR ((SimTime() - airbornetime) >crewday))
cleared := FALSE;

END IF;

END METHOD { GetClearance};

- I ----------------------
END OBJECT { AttackAcftObj };

END { IMPLEMENTATION } MODULE { AttackAcft }.

DEFINITION MODULE CATFMod;

- ---- -- --.- -. . .-- - - - - - - - - - - - - - - - -

MODULE NAME: CATFMod DATE WRITTEN: 18 Mar 92
AUTHOR: S. E. Shaw LAST MODIFIED:

Capt USMC

DESCRIPTION : Defines the Commander, Amphibious Task Force
object. This object keeps track of all ships, LZs, and HDCobjs
that are created. Primarily, these objects are tracked for
disposal at the end of each replication.
---}

FROM GrpMod IMPORT QueueObj;
FROM ARGMod IMPORT ARGObj;
FROM LZBeach IMPORT LZBeachObj;
FROM SerialMod IMPORT SerialObj;
FROM HDCMod IMPORT HDCObj;

55

EXPQRTTYPE

CATFObj = OBJECT; FORWARD;

TYPE

CATFObj = OBJECT;
shiplist : QueueObj;
lzbeachlist : QueueObj;
hdclist : QueueObj;

ASK METHOD ObjInit;
ASK METHOD AddShip (IN newship ARGObj;

IN HDC : HDCObj);
ASK METHOD AddLZBeach (IN newlz : LZBeachObj);
ASK METHOD DestroyCATF;

END OBJECT { CATFObj };

END { DEFINITION } MODULE { CATFMod }.

IMPLEMENTATION MODULE CATFMod;

MODULE NAME: CATFMod DATE WRITTEN: 18 Mar 92
AUTHOR: S. E. Shaw LAST MODIFIED:

Capt USMC

DESCRIPTION : Defines the Commander, Amphibious Task Force
objec.. This object keeps track of all ships, LZs, and HDCobjs
that are created. Primarily, these objects are tracked for
disposal at the end of each replication.

---}

FROM ARGMod IMPORT ARGObj;
FROM LZBeach IMPORT LZBeachObj;
FROM SerialMod IMPORT SerialObj;
FROM Transport IMPORT TransObj;
FROM HDCMod IMPORT HDCObj;
FROM global IMPORT DeBug;
FROM Procedures IMPORT FindSource, FindDestination;
FROM CreateARG IMPORT Scenario;

OBJECT CATFObj;

ASK METHOD ObjInit;

56

VAR
HDC : HDCObj;

BEGIN
SNEW (shiplist);

NEW (lzbeachlist);
NEW (hdclist);
NEW(HDC);

ASK hdclist TO Add (HDC);
Scenario(SELF, HDC);

FindSource (HDC, SELF);
FindDestination (HDC, SELF);

END METHOD { ObjInit };

---I
ASK METHOD AddShip (IN newship : ARGObJ;

IN HDC : HDCObj);
VAR

acft : TransObj;
BEGIN

ASK shiplist TO Add (newship);
acft := ASK newship.squadron Firsto;
WHILE acft <> NILOBJ

ASK acft TO NewHDC (HDC);
acft :- ASK newship.squadron

Next (acft);
END WHILE;

END METHOD { AddShip };

ASK METHOD AddLZBeach (IN newlz : LZBeachObj);
BEGIN

ASK lzbeachlist TO Add (newlz);
END METHOD { AddLZ };

ASK METHOD DestroyCATF;
VAR

ship : ARGObJ;

57

lz : LZBeachObj;
hdc : HDCObj;

BEGIN

IF (ASK shiplist numberIn > 0
ship ASK shiplist First();
WHILE (ship <> NILOBJ).,

ASK shiplist TO RemoveThis(ship);
ASK ship TO DestroyARG;
ship := ASK shiplist Firsto;

END WHILE;
END IF;

DISPOSE (shiplist);

IF (ASK lzbeachlist numberIn > 0)
lz := ASK lzbeachlist First();
WHILE (lz <> NILOBJ)

ASK lzbeachlist TO RemoveThis (1z);
ASK lz TO DestroyLZ;
lz := ASK lzbeachlist Firsto;

END WHILE;
END IF;

DISPOSE (lzbeachlist);

IF (ASK hdclist numberIn > 0)
hdc := ASK hdclist Firsto;
WHILE (hdc <> NILOBJ)

ASK hdclist TO RemoveThis (hdc);.
ASK hdc TO DestroyHDC;
hdc := ASK hdclist Firsto;

END WHILE;
END IF;

DISPOSE (hdclist);

...,END METHOD { DestroyCATF };

--- I
END OBJECT { CATFObj };

END { IMPLEMENTATION } MODULE { CATFMod }.

DEFINITION MODULE CreateARG;

MODULE NAME: CreateARG DATE WRITTEN: 18 Mar 92

58

AUTHOR: S. E. Shaw LAST MODIFIED:
Capt USMC

DESCRIPTION The procedures here are used to create all of
the objects in the simulation and to initialize the current
scenario.

-----------------!-------------------------------------

FROM CATFMod IMPORT CATFObj;
FROM HDOMod IMPORT HDCObj;
FROM RGlobals IMPORT SHierRecType;
FROM ARGMod IMPORT ARGObj;

TYPE

PROCEDURE Scenario (INOUT CATF : CATFObJ;
INOUT HDC : HDCObJ);

PROCEDURE MakeShips (INOUT CATF : CATFObj;
INOUT HDC : HDCObJ);

PROCEDURE PlotLZ (INOUT CATF : CATFObj);

PROCEDURE BuildSerials (INOUT CATF : CATFObj;
INOUT HDC : HDCObJ);

PROCEDURE MakeAcft (INOUT newrec SHierRecType;
INOUT ship : ARGObj;
INOUT HDC HDCObJ);

NMW (Dh XITION I EOMMDZ (Createrg .

IXP-MMLTATIOE MODWLa CreateAflGi

MODULE NAME: CreateARG DATE WRITTEN: 18 Mar 92
AUTHOR: S. E. Shaw LAST MODIFIED:

Capt USMC

DESCRIPTION : The procedures here are used to create all of
the objects in the s.mulation and to initialize the current
scenario.

--

FROM RGlobals IMPORT SHierRecType,
ShipSHArray,
AcftSHArray,

59

LZSHArray,
SerialSHArray;

FROM CATFMod IMPORT CATFObj;
FROM Debug IMPORT Trace~tream;
FROM ARGMod IMPORT ARGObj;
FROM HDCMod IMPORT HDCObj;
FROM LZBeach IMPORT LZBeachObj;
FROM SerialMod IMPORT SerialObj;
FROM Transport IMPORT TransObj;
FROM FindSHRec IMPORT FindSHRec;
FROM global IMPORT moreserials, totalserials, repetition,

paxtolift, cargotolift;
FROM Attack IMPORT AttackObJ;
FROM OutputDriver IMPORT Scenariorecorder;
FROM Statistics IMPORT vehiclestatrec, vehiclestatlist;

I---I

PROCEDURE Scenario(INOUT CATF : CATFObJ;
INOUT HDC : HDCObj).

BEGIN

MakeShips (CATF, HDC);
PlotLZ (CATF);
BuildSerials (CATF, HDC);

END PROCEDURE { Scenario };

PRC.2EDURE MakeShips(INOUT CATF CATFObj;
INOUT HDC HDCObj);

VAR
ship : ARGObj;
newrec : SHierRecType;
i :INTEGER;

BEGIN

i :- 1;

IF (repetition - 1)
ASK Scenariorecorder TO WriteString
-------------------- SHIP

DATA ------------------------------)
ASK Scenariorecorder TO WriteLn;
ASK Scenariorecorder TO WriteLn;
ASK Scenariorecorder TO WriteString

60

(wSHIP NAME SHIP TYPE STARTx STARTy
HOLDx"+" HOLDy) ;

ASK Scenariorecorder TO WriteLn;
ASK Scenariorecorder TO WriteLn;

END IF;

REPEAT
newrec :. ShipSHArray [i];

IF (newrec - NILREC)
ASK TraceStream TO WriteString(ONILREC in
.MakeShipsa);
ASK TraceStream TO WriteLn;

END IF;

NEW(ship);
ASK ship TO ReadData (newrec);

IF (repetition - 1)
ASK Scenariorecorder TO WriteString (ship.name+

"O+ship. type+w x
+INTTOSTR (ROUND (ship. location.x)) +

"+INTTOSTR(ROUND(ship.location.y))

+INTTOSTR(ROUND (ship.holdlocation.x))
+" "+ INTTOSTR(ROUND (ship.location.y)));
ASK Scenariorecorder TO WriteLn;

END IF;

ASK CATF TO AddShip (ship, HDC);
MakeAcft (newrec, ship, HDC);
INC (i);

IF (repetition - 1)
ASK Scenariorecorder TO WriteLn;

END I .;

UNTIL (i > HIGH(ShipSHArray));

END PROCEDURE;

PROCEDURE PlotLZ (INOUT CATF : CATFObJ);

VAR
LZ : LZBeachObj;
newLZ : SHierRecType;
i :INTEGER;

61

BEGIN i :-I1;

IF (repetition - 1)
ASK Scenariorecorder TO WriteLn;
ASK Scenariorecorder TO WriteLn;
ASK Scenariorecorder TO WriteString
(------------------- LZ

DATA -------------------------------.);
ASK Scenariorecorder TO WriteLn;
ASK Scenariorecorder TO WriteLn;
ASK Scenariorecorder TO WriteString
(OLZ NAME LOCATIONx LOCATIONy SPOTSw);

ASK Scenariorecorder TO WriteLn;
ASK Scenariorecorder TO WriteLn.

END IF;

REPEAT
newLZ :- LZSHArray(i];
IF newLZ - NILREC

ASK TraceStream TO WriteString(ONILREC in
PlotLZS"); .
ASK TraceStream TO WriteLn;

END IF;

NEW(LZ);
ASK LZ TO ReadData (newLZ);
ASK CATF TO AddLZBeach (LZ);
INC(i);

IF (repetition - 1)
ASK Scenariorecorder TO WriteString (LZ.name+
"* "+INTTOSTR(ROUND(LZ.location.x)) +

"+INTrOSTR(ROUND(LZ.location.y)) +
"* •+INTTOSTR(LZ.numlandingspots));
ASK Scenariorecorder TO WriteLn;
ASK Scenariorecorder TO WriteLn;

END IF;

UNTIL (i > HIGH(LZSHArray));

END PROCEDURE { P1otLZ };

I --

PROCEDURE BuildSerials (INOUT CATF CATFObJ;
INOUT HDC HDCObj');

VAR
serial SerialObJ;

62

newserial : SMierRecType;
i : INTEGER;

BEGIN

*i :- 1;

REPEAT
newserial : SerialSHArray[i];
IF newserial - NILREC

ASK TraceStream TO WriteString
_(NILREC in BuildSerialso);

ASK TraceStream TO WriteLn;
END IF;

NEW (serial) ;
ASK serial TO ReadData (newserial);
ASK HDC,seriallist TO Add (serial);

IF (repetition - 2)
paxtolift :-paxtolift + serial.pax;
cargotolift :- cargotolift + serial.cargo;

END IF;

INC(i);
moreserials :- TRUE;

UNTIL (i > HIGH(SerialSHArray));

tota~lserials :- ASK HDC.seriallist numberIn;

END PROCEDURE { BuildSerials };

--
PROCEDURE MakeAcft (INOUT newrec : SHierRecType;

INOUT ship : ARGObJ;,
INOUT HDC : HDCObj);

VAR
i : INTEGER;
a : INTEGER;
acft : TransObJ;
acftdata : SHierRecType;
transports : BOOLEAN;
attack : BOOLEAN;
attackacft : AttackObj;
record : vehiclestatrec;

BEGIN
i :- 1;
n :- 1;

63

transports :- TRUE;
WHILE ((newrec.OwnedString(i] <. "HO) AND

(newrec.OwnedString(i] <> '\\,) AND
(i < HIGH(newrec.OwnedString)));

INC (i);

END WHILE;

INC(i);

IF ((newrec.OwnedString[i-11 - \\') OR
(i >- HIGH(newrec.OwnedString))

transports :- FALSE;
END IF;

IF (transports)
IF (repetition - 1)

ASK Scenariorecorder TO WriteString
(a •Transports Aboard:*);

END IF;

REPEAT
FindSHRec (AcftSHArray, newrec.OwnedString [i]

,acftdata);

IF (repetition - 1)
ASK Scenariorecorder TO WriteString

(+acftdata.TopString+"
+newrec.OwnedString[i+1]);

END IF;

n :- I;
WHILE (n <-(STRTOINT(newrec.OwnedString[i+l])))

NEW(acft);
ASK acft TO ReadData (acftdata);

ASK acft TO SetSide (n);
ASK acft TO AssignMother(ship);
ASK acft NewHDC (HDC);

ASK acft TO SetLaunchTime (STRTOREAL
(newrec.OwnedString(i+l+n]));
TELL acft TO Operate;
ASK ship.squadron TO Add(acft);

IF (repetition - 1)
NEW (record);
record.name :- acft.name;
record.sidenum :- acft.sidenumber;
record.mother :- acf t.mymother. name;
ASK vehiclestatlist TO Add (record);

64

INC~n);

INC(in+l);
n1 :-j 1;
UNTIL (>. • HIGH(newrec.OwnedString)) OR

(newrec.OwnedString[i] 'SN) OR
(newrec.OwnedString~i] - 'A') OR
(newrec.Ownedftring[il 'V\'));

IF (repetition -I)
ASK Scenariorecorder To WriteLu;

END IF;
END IF;

± :-i1;
• n1 :- 1;

a attack := TRUE;
WHILE ((newrec.OwnedString[i] <> ,A*) AND

(newrec.OwnedString[i] c> ,*) AND
U(c HIGH(newrec.OwnedStriun)))) ;
INC (1);

END WHILE;
INC();

IF ((newrec.OwnedString[i-i] - ,\\,) OR
Ui >- HIGH(newrec.OwnedString))

attack :- FALSE;
END IF;

IF (attack)
IF (repetition - 1)

ASK Scenariorecorder TO WriteString
(" *Attack Acft Aboard:');

END IF;

REPEAT
FindSHRec (AcftSHArray, newrec.OwnedString [i]

,acftdata);
IF (repetition - 1)

ASK Scenariorecorder TO WriteString
(a • +acftdata.TopString+÷
+newrec.OwnedString[i+1]);

END IF;

fl :- 1;
WHILE (n <-(STRTOINT(newrec.OwnedString[i.l])))

NEW(attackacft);
ASK attackacft TO ReadData (acftdata);

65

ASK attackacft TO SetSide (n);
ASK attackacft TO AssiggnMother(ship);
ASK attackacft NewHDC (HDC);

ASK attackacft TO SetLaunchTime (STRTOREAL
(newrec.OwnedString[i+1+n]));

TELL attackacft TO Operate;
ASK ship.squadron TO Add(attackacft);

IF (repetition - 1)
NEW (record);
record.name :- attackacft.name;
record.sidenum :=

attackacft sidenumber;
record.mother :-

attackacft .mymother. name;
ASK vehiclestatlist TO Add (record);

END IF;

INC(n);
END WHILE;

INC(i,n+l);
n :- 1;
UNTIL ((i > HIGH(newrec.OwnedString)) OR

(newrec.OwnedString[i] - *Sm) OR
(newrec.OwnedString[i] - *HU) OR
(newrec.OwnedString[i] - N\\N));

IF (repetition - 1)
ASK Scenariorecorder TO WriteLn;

END IF;

END IF;

END PROCEDURE { MakeAcft };

END (IMPLUUUATIGN) MODULE (Creat&ARM }

DEFINITION MODULE DebugRun;

{---
MODULE NAME: FindSHRec DATE WRITTEN: 01 Mar 92
AUTHOR: M. Bailey LAST MODIFIED: 18 Mar 92

Prof NPGS MODIFIED BY: S. E. Shaw

66

Capt
DESCRIPTION : Used to turn the trouble shooting messages

on and off.
--

PROCEDURE SetUpD(IN Trace : BOOLEAN);

MD (DvnuW xou } N{M, Deu•R,= }.

IMPL'•AM'TION XODULN Debuggn;

-------------------------------------- ------------------
MODULE NAME: FindSHRec DE WRITTEN: 01 Mar 92
AUTHOR: M. Bailey LAST MODIFIED: 18 Mar 92

Prof NPGS MODIFIED BY: S. E. Shaw
Capt USm

DESCRIPTION : Used to turn the trouble shooting messages
on and off.
-- -- }

FROM IOod IMPORT FileUseType(Output);
FROM UtilMod IMPORT DateTime;
FROM Debug IMPORT TraceStream;

.------------------- w ----------------------------------- }
PROCEDURE SetUpD(IN Trace : BOOLEAN);

{ --- }
VAR DT : STRING;

BEGIN
NEW (TraceStream);
ASK TraceStream TO Open(-debug.outs, Output);

DateTime (DT);
ASK TraceStream TO WriteString (DT);
ASK TraceStream TO WriteLn;
ASK TraceStream TO WriteLn;
ASK TraceStream TO WriteLn;

IF Trace
ASK TraceStream TO TraceOff;
ASK TraceStream TO WriteString (0 Initially, trace is

on.O)
ASK TraceStream TO WriteLn;

ELSE
ASK TraceStream TO WriteString (Initially, trace in

off.0);
ASK TraceStream TO WriteLn;

END IF;

67

END PROCEDURE;

END { IMPLEMENTATION } MODULE { DebugRun }.

DEFINITION MODULE FindSHReci

- - - - - - - - - - - - - - - - - -. . . .-- - - .-- - - - - - -. - .-- -

MODULE NAME: FindSHRec DATE WRITTEN: 01 Mar 92
AUTHOR: M. Bailey LAST MODIFIED: 18 Mar 92

Prof NPGS MODIFIED BY: S. E. Shaw
Capt USMC

DESCRIPTION : Searches for the requested data record from
the input data array.
--- ---}
FROM RGlobals IMPORT SHierRecType,

SHArrayType;

PROCEDURE FindSHRec(IN SHArray : SHArrayType;
IN TopString : STRING;
OUT SHRec : SHierRecType);

END { DEFINITION } MODULE (FindSHRec 1.

IMPLEMENTATION MODULE FindSHRec;

--- ----- -------- --- ----- --- ------- {- --
MODULE NAME: FindSHRec DATE WRITTEN: 01 Mar 92
AUTHOR: M. Bailey LAST MODIFIED: 18 Mar 92

Prof NPGS MODIFIED BY: S. E. Shaw
Capt USMC

DESCRIPTION : Searches for the requested data record from
the input data array.
---- ---I

FROM RGlobals IMPORT SHierRecType,
SHArrayType;

FROM global IMPORT DeBug;

--- I
PROCEDURE FindSHRec(IN SHArray : SHArrayType;

IN TopString : STRING;
OUT SHRec : SHierRecType);

-- I
VAR

68

ThisRec : SHierRecType;
i : INTEGER;

BEGIN
0;

REPEAT
INC(i);
ThisRec := SHArray[i];

U-NTIL((i >= HIGH(SHArray)) OR (ThisRec.TopString =
TopString));

IF (ThisRec.TopString = TopString)
SHRec := ThisRec;

ELSE
SHRec := NILREC;

END IF;

END PROCEDURE;

END { IMPLEMENTATION } MODULE { FindSHRec }.

DEFINITION MODULE FuelGuage;

--
MODULE NAME: FuelGuage DATE WRITTEN: 01 Mar 92
AUTHOR: S. E. Shaw LAST MODIFIED:

Capt USMC MODIFIED BY:

DESCRIPTION : Procedures used to track the fuel usage of
the TransportCraft objects.

----- --- }

FROM Transport IMPORT TransObj;

TYPE
PROCEDURE BurnFuel (IN vehicle : TransObj;

IN groundtime : REAL;
IN flighttime : REAL);

PROCEDURE CheckGas (IN vehicle : TransObj;
OUT fuelrequired : BOOLEAN);

PROCEDURE Getfuel (IN vehicle : TransObj;
OUT duration : REAL);

END { DEFINITION } MODULE (FuelGuage }.

69

IMPLEMENTATION MODULE FuelGuage;

-- -- - -- -- -
MODULE NAME: FuelGuage DATE WRITTEN: 18 Mar 92
AUTHOR: S. E. Shaw LAST MODIFIED:

Capt USMC MODIFIED BY:

DESCRIPTION : Procedures used to track the fuel usage of
the TransportCraft objects.

---}

FROM SimMod IMPORT SimTime;
FROM global IMPORT LocationXY, Distance;
FROM Transport IMPORT TransObj;
FROM Debug IMPORT TraceStream;

PROCEDURE BurnFuel (IN vehicle : TransObj;
IN groundtime : REAL;
IN emptytime : REAL:

IN loadedtime : REAL);

VAR
groundburn : REAL;
loadedburn : REAL;
emptyburn : REAL;
startfuel : REAL;
endfuel. : REAL;

BEGIN
groundburn := vehicle.groundburnrate;
loadedburn := vehicle.loadedburnrate;
emptyburnrate :- vehicle.emptyburnrate;
startfuel :- vehicle.fuelonboard;
endfuel := startfuel

- (groundburn * (groundtime/60.0))
-(emptyburn * (emptytime/60.0))
- (loadedburn * (loadedtime/60.0));

ASK vehicle TO UseFuel (endfuel);

END PROCEDURE { BurnFuel 1;

-1..............---------------------------------------
PROCEDURE Getfuel (IN vehicle : TransObj;

OUT duration : REAL);

VAR
amount : REAL;
refuelrate : REAL;

70

max : REAL;
totfuel : REAL;

BEGIN
amount := vehicle.maxfuel -

vehicle. fuelonboard;

TR ((vehicle. fuelonboard -= 0.0) A;ND)

3i2" TraceStrearn 1u WriteString("GetFuel"+vehicle. name+" 11+

INTTOSTR (vehicle. sidenumber) +

" OUT OF FUEL");
ASK TraceStream TO WriteLn;

END IF;

refuelrate := vehicle.destination.pumprate;
duration := amount / refuelrate;
ASK vehicle TO TakeOnFuel;

END PROCEDURE { Getfuel };

PROCEDURE CheckGas (IN vehicle : TransObj;
OUT fuelrequired : BOOLEAN);

VAR
start : LocationXY;
end : LocationXY;
transitdist : REAL;
requiredfuel : REAL;

BEGIN

fuelrequired := FALSE;
ASK vehicle.serialonboard.source TO CurrentPos (start.x,

start.y);
end := vehicle.serialonboard.destination. location;
transitdist := Distance(start, end);
requiredfuel: (((2.0 * transitdist)/vehicle.loadedspeed)

* vehicle.loadedburnrate) *

1. 3+vehicle.minfuel;

IF requiredfuel >= vehicle.fuelonboard
fuelrequired := TRUE;

END IF;

END PROCEDURE { CheckGas };

{ . ---------------------- --------------------- }

71

END (IMPLEMENTATION) MODULE { FuelGuage 1.

DEFINITION MODULE global;

I.----------------------- -- --------------- ---------
MO•ULX NAME: global DATE WRITTEN: 18 Ma. :;4
AUTHOR: S. E. Shaw LAST MODIFIED:

Capt USMC MODIFIED BY:

DESCRIPTION Contains all random number streams, as well
as several control variables. Procedures within create the
random variable streams, as well as empty queues prior to
disposing of them.

.... ..---

FROM RandMod IMPORT RandomObj;
FROM Debug IMPORT DebugStream;
FROM GrpMod IMPORT QueueObj, RankedObj;
FROM StatMod IMPORT RStatObj;

VAR
moreserials : BOOLEAN;
showerrors : BOOLEAN;
InternalStream : RandomObj;
ExternalStream : RandomObj;
FoldStream : RandomObj;
SpreadStream : RandomObj;
CargoStream : RandomObj;
ReturnTime : RandomObj;
RearmTime : RandomObj;
totalserials : INTEGER;
repetition : INTEGER;
paxtolift : REAL;
cargotolift : REAL;

TYPE

DeBug = OBJECT(DebugStream);
END OBJECT;

LocationXY = FIXED RECORD
x : REAL;
y : REAL;

END RECORD { LocationXY I;

PROCEDURE Distance (IN locationl : LocationXY;

72

IN location2 : LocationXY) : REAL;

PROCEDURE NewRandoms;
PROCEDURE EmptyQ (IN queue : QueueObj);
PROCEDURE EmptyRankedQ (IN queue : RankedObJ);

aM (DINIION) UODMZ (global 1.

nI.,.k OKZ T ODULN global;

-- - - - - - - - - - - - - -- - - - - - - - - - - - - -- -
MODULE NAME: global DATE WRITTEN: 18 Mar 92
AUTHOR: S. Z. Shaw LAST MODIFIED:

Capt USMC MODIFIED BY:

DESCRIPTION.: Contains all random number streams, as well
as several control variables. Procedures within create the
random variable streams, as well as empty queues prior to
disposing of them.

FROM RandMod IMPORT Eandcbj;
FROM ReadSeed IMPORT ReadSeed;
FROM MatbMod IMPORT SQRT;
FROM GrpMod IMPORT QueueObj, Rankedobj;

PROCEDURE Distance (IN locationl : LocationXY;
IN location2 : LocationXY) : REAL;

BEGIN
RETURN SQRT ((locationl.x - location2.x) *

(locationi.x- location2.x) + (locationl.y
location2.y) * (locationl.y -

location2 .y));
END PROCEDURE;

PROCEDURE NewRandoms;
BEGIN

NEW (InternalStream);
ASK InternalStream TO SetSeed (ReadSeed));

NEW (ExternalStream);
ASK ExternalStream TO SetSeed (ReadSeed(0);

73

NEW (SpreadStream);
ASK SpreadStream TO SetSeed (ReadSeed());

NEW (FoldStream);
ASK FoldStream TO SetSeed (ReadSeed();

NEW (CargoStream);
ASK CargoStream TO SetSeed (ReadSeedo();

NEW (ReturnTime);
ASK ReturnTime TO SetSeed (ReadSeed());

NEW (RearmTime) ;
ASK RearmTime TO SetSeed (ReadSeed(o);

END PROCEDURE { NewRandoms);

I ---
PROCEDURE EmptyQ (IIN queue : QueueObj);

"JAR
trash : ANYOBJ;

BEGIN

"IF (ASK queue numnberIn > 0)
trash :- ASK queue Firsto;
WHILE (trash <> NILOBJ)

ASK queue TO RemoveThis(trash);
trash :- ASK queue Firsto;

END WHILE;
END !F;

END PROCEDURE { EmptyQ };

i---

PROCEDURE EmptyRankedQ ?IN queue : RankedObj),

trash : ANYOBJ;

BEGIN
IF (ASK queue numberIn > 0)

trash :- ASK queue First(;
WHILE (trash <> NILOBJ)

ASK queue TO RemoveThis(trash);
trash :- ASK q.eue Firsto;

74

END WHILE;
END IF;

END PROCEDURE { EmptyRankedQ };

ND { fnwLUI=TATIOK } MODULE (global }.

DEVINITION MODULE Input;

MODULE NAME: Input DATE WRITTEN: 01 Mar 92
AUTHOR: M. Bailey LAST MODIFIED: 18 Mar 92

Prof NPGS MODIFIED BY: S. E. Shaw
Capt USMC

DESCRIPTION : Reads the file containing the names of all
data files used for the simulation.
-- }

PROCEDURE ReadEmAll;

END { DFYINITION } MODULE Input).

IMPLUUZNTATION MODULE Inputs

--
MODULE NAME: Input DATE WRITTEN: 01 Mar 92
AUTHOR: M. Bailey LAST MODIFIED: 18 Mar 92

Prof NPGS MODIFIED BY: S. E. Shaw
Capt USMC

DESCRIPTION : Reads the file containing the names of all
data files used for the simulation.
--}
FROM RGlobals IMPORT FileNameType;
FROM IOMod IMPORT Streamnbj, FileUseType(Input);
FROM RGlobals IMPORT MamterFileName,

AcftSHArray, ShipSHArray, SpotSHArray, LZSHArray,
OutputFileName, SerialSHArray;

FROM RGlobals IMPORT SeedArray;
FROM ReadLst IMPORT ReadLst;
FROM ReadSeed IMPORT ReadTheSeeds;
FROM global IMPORT DeBug;

VAR

75

AcftFileName,
ShipFileName,
Spot FileName,
LZFileName,
SerialFileName,
SeedPileName : FileNameType;

PROCEDURE ReadAcft;
--- }

BEGIN
ReadLst(AcftSHArray , AcftFileName);

END PROCEDURE { ReadAcft };

PROCEDURE ReadShip;

--- I
BEGIN

ReadLst (ShipSHArray , ShipFileName);

END PROCEDURE { ReadShip };

PROCDURE ReadSpots;

--
BEGIN

ReadLst (SpotSHArray , SpotFileName);

END PROCEDURE (ReadSpots };

-- I
PROCEDURE ReadLZ;

-- I
BEGIN

ReadLet (LZSHArray, LZFileName);

END PROCEDURE { ReadLZ };

-- IPROCEDURE ReadSerial;
-- IBEGIN

ReadLst(SerialSHArray, SerialFileName):

END PROCEDURE (ReadSerial };

--
PROCEDURE ReadEmAl 1;

--

76

VAR

Pile : StreamtObj;
str' : STRING;

BEGIN
NEW (File) ;
ASK File TO Open(MasterFileName, Input);

ASK File TO ReadString(AcftFileName);
ASK File TO ReadLine(str);

ASK File TO ReadString(ShipFileName);
ASK File TO ReadLine(str);

ASK File TO ReadString(SpotFileName);
ASK File TO ReadLine(str);

ASK File TO ReadString(LZlileName);
ASK File TO ReadLine(str);

ASK File TO ReadString(SerialFileName);
ASK File TO ReadLine(str);

ASK File TO ReadString(SeedFileName);
ASK File TO ReadLine(str);

ASK Pile TO Readtring(OutputFileName);
ASK File TO ReadLine(str);

ReadAcft;
ReadShip;
ReadSpots;
ReadLZ;
ReadSerial;
ReadTheSeeds (SeedFileName);

END PROCEDURE { ReademAll });

_ . (Iplmntation) MOnULZ (Input).

DZ7InITIOK IQUA EDOodi

MODULE NAME: HNo•d DATE WRITTEN: 18 Mar 92
AUTHOR: S. S. Shaw LAST MODIFIED:

Capt USNC MODIFIED BY:

DESCRIPTION : The Helicopter Direction Center obj in used
to control the TransportCraft movements. This object assigns

77

serials to the craft, as well as direct where the craft go to
pick up their next serial.
--- }
FROM GrpMod IMPORT QueueObj,RankedObj;
FROM SerialMod IMPORT SerialObj;
FROM ARGMod IMPORT ARGObJ;
FROM LZBeach IMPORT LZBeachObj;

EXPORTDYPE

HDCObj - OBJECT; FORWARD;

TYPE

BriefingRec - RECORD
serial : INTEGER;
dest : ARGObj;
lz : LZBeachObj;
loadsize INTEGER;

END RECORD;

SerialListObj - OBJECT (RankedObJ);
OVERRIDE
ASK METHOD Rank (IN a, b : ANYOBJ) : INTEGER;

END OBJECT (SerialListObj };

HDCObj - OBJECT;
seriallist SerialListObJ;

ASK METHOD ObjInit;
ASK METHOD GiveLoad (IN serialnum : INTEGER;

OUT newload : SerialObj);
ASK METHOD GiveFirstLoad (IN ship : STRING;

IN acftsize : INTEGER;
OUT newload : SerialObj;

OUT othership : BOOLEAN);
ASK METHOD NewDestination (OUT briefing

BriefingRec;
IN acfteize :

INTEGER;
OUT assignedaload

: BOOLEAN);
ASK METHOD DestroyHDC;
ASK METHOD CombineLoads (IN briefing : BriefingRec;

OUT combined : BOOLEAN);

END OBJECT (HDCObj };

r {DDEVINITI ' MODULE { EDmCod }.

78

W=ZMflOUTQ KODULI UDOUodi

MODULE XMN: HDOKod DATE 'WRITTEN: 18 Mar 92
AUTHOR: S. E. Shaw LAST MODIFIED:

Capt USMC MODIFIED BY:

DESCRIPTION : The Helicopter Direction Center obj is used
to control the Transportdraft movements. This object assigns
serials to the craft, as well as direct where the craft go to
pick up their next serial.
--- }
FROM SerialMod IMPORT SerialObj;
FROM S imNod IMPORT SimTime;
FROM global IMPORT moreserial 5, EmptyQ, RmptyRankedQ;
FROM RGlobals IMPORT SerialSHAxray;
FROM Debug IMPORT TraceStream;

OBJECT SerialListObj;

----- --- ------------------------- a----------------------------

ASK METHOD Rank (IN a, b : ANYOBJ) : INTEGER;
VAR

seriala, serialb :SerialObj;

BEGIN
seriala :=a;
seria~lb b;

IF seriala.priority <serialb.priority
RETURN -1;

ELSIF seriala.priority >serialb.priority
RETURN 1;

ELSE
RETURN 0;

END Ii';

END METHOD (Rank 1

E1D OBJECT (Seria'LListObi 1

OBJECT HDCObj;

79

ASK METHOD ObjIfit;

BEGIN

NEW(seriallist);
END METHOD { Obj Init 1

ASK METHOD GiveLoad (IN serialnum : INTEGER;
OUT newload SerialOoj);

VAR
thisload : BOOLEAN;
checkthis SerialObj;

BEGIN
thisload :- FALSE;
checkthis - ASK seriallist First 0;

IF (checkthis <> NILOBJ)
WHILE NOT thisload

IF checkthis.serialnum - serialnum
ASK seriallist TO RemoveThis

(checkthis);
thisload :- TRUE;

ELSE
checkthis :- ASK seriallist Next

(checkthis);
END IF;

END WHILE;

END IF;

newload :- checkthis;

END METHOD {GiveLoad };

ASK METHOD GiveFirstLoad (IN ship : STRING;

IN acftuize : INTEGER;
OUT newload : SerialObJ;
OUT othership : BOOLEAN);

VAR
goodload : BOOLEAN;
repositionload : BOOLEAN;

Go

pheckthis : eias~

goodload - . . .
othership :. - _AI$;
checkthis :- ASK seriallist Firgt ()-;
RRVE&T

IF. ((checkthis.9source. nae. -. Ship)- AND
"(NOT dheckthip.Allocated) AW-
"(checkt.his.mi-liftsize <. acftsize));

goodload :- TRus;
newload ;m c1.mckis;

END IF;
-chckthi :- ASK seriallist.Next (checkthis);
INC (i);

UNTIL ((good1od)d OR (i : ASK seriallist numberln));

IF (NOT gOoKU4lod)
i :- 1;
checkthis : - ASK seriallist First 0;
REPEAT

IF .(NOT checkthis. allocated) AND
(checkthia.minliftsize <- acftpize))

repositionload - TRUE;
nevload :- checkthis;

END IF;
checkthis :- ASK seriallist Next (checkthis);
INC (i);

UNTIL ((repositionload) OR (i > ASK seriallist
numberIn));

othership :- TRUE;

END IF;

ASK newload TO AllocateSelf;

END METHOD { GiveFirstLoad };

- ------------------------------------

ASK METHOD NewDestination (OUT briefing BriefingRec;
IN acftsize INTEGER;

VAR OUT assignedaload : BOOLEAN);VAR
cleared : BOOLEAN;
checkthis : SerialObj;

81

o -':•' - -' - .-.. . 'c;. - " . " -o. . - .

-,:

a~Agi oada

sexialw-1 t -:- ASK iýI]Xiot niumberln,

clered- :jALSE;,
WK sez±aclJ4.at First'(;

IF serialuleft > 0
REPEAT

IF (fNOT checktbas . allocatedY AMD
(checicthis TOm1inhtittlze <- ac~teize))

ASK check-thia TO Alloca eS1;
brie in.4eu :mcheckthioa.souxce;

brief tig. serial :
checkhA~soerialnum;

brief iing.;oadsize :a
che'ckthia .minliftuize;_
cleared :- TRUE;
assignthisload ,-checiitbis
assignedaload :-TRUE;

END IF;

cbeckthis : - ASK seriallist Next (checkth±:);

UNTIL ((cleared) OR (checkthis - ILODJ));

ELSE

moreserials :- FALSE;

END IF;

IF (assignthisload - NILOBJ)
brief ing.deat :- NILOBJ;
briefing .serial :- -100;
cleared :- TRUE;

END IF;

END METHOD f NewDestination }

ASK METHOD DeatroyflDC;

S2

21. . -

AS RyD:a*omb(eriad1(I biefn t)fige

OUT -combined. : OOLEM~)
VAR

foundý : BOOLAN;
cbecktb4 S -eialObjl;

firstload, z-: oeriaJor
usecondload -z -Serial-06J;
match : BOQOaAWJ
dest : STRMGl;

BEGIN
found :-FALSE&-
checkthis :-ASM seriallist Firsto0;

IF (chockthiu < NILOWJ)
REPRkT

IF (oheckthis.serialnuim - briefing-serial)
found :- TRUE;
tirstload :-checkthias;

checkthis ~-ASK seriallist
Next (checkthis)

END IF;
UNTIL ((checktbis - NILOBJ) OR (found));

END IF;

IF (NOT found)
combined : - FALSE;

ELSE

IF (brief ing.deut - NILOBJ);
dest :-briefing.lz.name;

ELSE
dest :-brief ing.dest.name,

END IF;
checkthis :-NILOBJ;
match :- FALSE;
ckieclcthis n ASK seriallist Firsto;

83

IF (checkthis <> NILOBJ)
REPEAT

IF((checkthis.destination.name - dest)
AND (checkthis.sourcename -
firstload. source .name)
AND (checkthis.minliftslze - 1)
AND (NOT checkthis.allocated))

secondload :- checkthis;
match :- TRUE;

ELSE
checkthis :- ASK seriallist

Next (checkthis);
END IF;

UNTIL ((match) OR (checkthis - NTLOBJ))
END IF;

IF (match)
combined :- TRUE;
ASK firstload TO AddPax (eecondload.pax);
ASK firstload TO AddCargo (econ11Uoad.cargo);
ASK seriallist TO RemoveThis(secondload);

END IF;

END IF;

END METHOD { CombineLoads 1;

END OBJECT { HDCObj);

{+÷÷+÷÷+*++++++÷+÷++÷÷÷+÷++++++÷4+++++++++++÷+++÷÷++++÷÷++++++++}

._.......................... _......-..-.

M- (Dfl'LMinTXTI) NODULI { EDCK3.

DUJINITION MODULE LZ24%oh1

MODULE NAME: LZBeach DATE WRITTEN: 18 Mar 92
AUTHOR: S. E. Shaw LAST MODIFIED:

Capt USMC MODIFIED BY:

DESCRIPTION : Defines the landing zone/beach objects.
Tracks the amount of cargo and pax delivered to each LZ. Uses
the OutputDriver to output this data to the output file.
-- }
FROM global IMPORT LocationXY;

84

.w .r .'. r. .u -----

F4OK 40~0o WiwRT uaix* r j
FROM4 SpotMan IMPORT -Spo~tVbfObj;
FRQ4 AGlob~1, IZ4PORTSEtiezrleeype;

EXPORTTYps'

LZBeachObJ OBJECT;-FORMARD;

TYPE
LZBeachObj - OBJECT;

name .STRING;
location : LocationKY;
"paxingone : REAL;
totatsorties : INTEGER;
cargoinzone : REAL;
fac : SpotManObj;
n•m--lamingspots : IIT ...;
priorcargo : REAI-
priorpax REAL;

ASK METHOD Rea4Data .(IN newlz : Sie•eýcType);
ASK METHOD Objlnit;
ASK METHOD ReceiveLoad (IN pax : REEL;

IN cargo :RM~;
IN numserials INTEGER);

ASK METHOD DestroyLZ;

RND OBJECT (LZBeachObj };

OW{ DZMNIMC } NULE (LZ.hW).

IKPLTATIW NODULE LZIWaoh;

MODULE NAME: LZBeach DATE WRITTEN: 18 Mar 92
AUTHOR: S. . Shaw LAST MODIFIED:

Capt USMC MODIFIED BY:

DESCRIPTION : Defines the landing zone/beach objects.
Tracks the amount of cargo and pax delivered to each LZ. Uses
the OutputDriver to output this data to the output file.
----.--

FROM global IMPORT LocationXY, totalserials;
FROM Statistics IMPORT lastdeliverytime;
FROM ResMod IMPORT ResourceObJ;
FROM RGlobals IMPORT SHierRecType;
FROM SiMod IMPORT SimTime;
FROM Debug IMPORT TraceStream;

85

FROM OutputDriver IMPORT WitoLZbe• • ,.

oSJRCT LZ2eachObj;

--- ------------

ASK METHOD ObjInit;

BEGIN
mm1 (fac);

"MND METHOD { Obj-Int i ;

ASK METHOD ReadData (IN newlz : SHierRecType);

BEGIN
name : - nevlz.TopString•
location.x : STRTOREAL(ne!zi.Ovzed•tring[I]);
location.y - STROý (newlz.OwnedString[2]);

ASK fac TO PaintSrots (name, name, .(SEW),
ralml azdingspots);

ASK fac TO SetName(name);

EMD METHOD (ReadData };

-- I--------------------------
ASK METHOD ReceiveLoad (IN pax REAL;

IN cargo : REAL;
IN numaerials : INTEGER);

BEGIN

cargoinzone :- cargoinzone + cargo;
paxinzone :- paxinzone + pax;
WriteLZData (pax, cargo);

INC (totalsorties);

totalserials :- totalserials - numserials;

IF (totalserials - 0)
lastdeliverytime := SimTimeo;

END IF;

END METHOD { ReceiveLoad };

86

------- ---------------------------------

ASX. METHOD Des troyLZ;

BEGIN
ASK fac TO Destroyfpotlian.
DISPOSE (SELF);

END METHOD { DestroyLZ 1

END OBJECT { LZBeachObj }

mm { I@LUTinTIWN } moCULU { L-7Banc)2hj

DEFINITION 360DULE Lcadftoceduzea;

MODULE NAME: LoadProcedures DATE WRITTEN: 3 Apr 92
AUTHOR: S. E. Shaw LAST MODIFIED:

Capt, USMC MODIFIED BY:

DjESCRIPTION : These procedures determine the time required
to load and unload each serial.

FROM Transport IMPORT TransObj;
FROM Attack IM4PORT AttackObj;

TYPE

PROCEDURE LoadCargo (IN vehicle :. TransObj;
OUT loadtinie : REAL);

PROCEDURE UnLoadCargo (IN vehicle : TransObj;
OUIT loadtime : REAL);

PROCEDURE ReArmAcft (IN vehicle : AttackObj;
OUT rearmtime : REAL);

-W { DEFINITION) MODULE (LoaGProOmS }.

flWL3EinTAT10* MODULE Loadrzocedueum;

--
MODULE NAME: LoadProcedures DATE WRITTEN: 3 Apr 92

87

AUTHOR: S. E. Shaw LAST MODIFIED:
Capt USMC MODIFIED BY:

DESCRIPTION : These procedures determine the time required
to load and unload each serial.
-- }
FROM Transport IMPORT TransObj;
FROM RandMod IMPORT RandomObj;
FROM Attack IMPORT AttackObj;
FROM SimMod IMPORT SimTime;
FROM global IMPORT InternalStream, ExternalStream,

CargoStream, RearmTime;

TYPE

PROCEDURE LoadCargo (IN vehicle : TransObj;
OUT loadtime : REAL);

VAR
loadtype : STRING;
pax : REAL;
cargo : REAL;
ptime : REAL;
ctime : REAL;

BEGIN
loadtype :- vehicle.serialonboardlift;
pax :- vehicle.serialonboard.pax;
cargo :- vehicle. serialonboard. cargo;
ptime :- ASK InternalStream UniformReal (1.0,5.0)+

(pax / 100.0) * ASK InternalStream
UniformReal(15.0, 25.0);

ctime := ASK CargoStream Exponential
(vehicle. cargotime);

IF (loadtype "INTERNAL")

loadtime :- ((ptime) + (cargo / 1000.0) * ctime);

ELSIF (loadtype - "EXTERNAL")

loadtime :- ASK ExternalStream Exponential
(vehicle. externaltime) ;

END IF;

END PROCEDURE { LoadCargo };

PROCEDURE UnLoadCargo (IN vehicle : TransObj;

88

OUT loadtime REAL);
VAR

loadtype : STRING;
pax : REAL;
cargo : REAL;
ptime : REAL;
ctime : REAL;

BEGIN
loadtype : - vehicle. serialonboard. lift;
pax :- vehicle.serialonboard.pax;
cargo - vehicle. serialonboard. cargo;
ptime :- ASK InternalStream UniformReal (1.0, 5.0);
ctime :- ASK CargoStream Exponential

(vehicle.cargotime);;

IF (loadtype = "INTERNAL')

loadtime :- (ptime) + ((cargo / 1000.0) * ctime);

ELSIF (loadtype = "EXTERNAL")

loadtime :- ASK ExternalStream Exponential
(vehicle.externaltime);

END IF;

END PROCEDURE { UnLOadCargo };

--I
PROCEDURE ReArmAcft (IN vehicle : AttackObj;

OUT rearmtime : REAL);
BEGIN

rearmtime :- ASK RearmTime UniformReal (25.0, 60.0);

END PROCEDURE { ReArmAcft);

--- I
ND (IMPLfEMTAT ION) MODULE (Loadfrocedurem 1.

DEFINITION MODULE OutputDrivezr

MODULE NAME: OutputDriver DATE WRITTEN: 4 May 92
AUTHOR: S. E. Shaw LAST MODIFIED:

Capt USMC MODIFIED BY:

89

DESCRIPTION: Opens all output files, combines files as
necessary to form the final scenario file, then closes all
files.

FROM LZBeach IMPORT LZBeachObj;
FROM IOMod IMPORT StreamObj, FileUseType (Output);
FROM CATFMod IMPORT CATFObj;

VAR
LZrecorder : StreamObj;
Scenariorecorder : StreamObj;
StatsRecorder : StreamObj;
FinalOutputFile : StreamObj;
EndTimerecorder : StreamObj;
datestamp : STRING;

TYPE

PROCEDURE OpenFilies;
PROCEDURE WriteLZData (IN pax : REAL;

IN cargo REAL);
PROCEDURE CombineFiles;
PROCEDURE CloseFiles;

END (Definition } MODULE { OutputDriver }.

IXPLEKNTATION MODULE OutputDriver;
--

MODULE NAME: OutputDriver DATE WRITTEN: 18 Mar 92
AUTHOR: S. E. Shaw LAST MODIFIED: 5 Jun 92

Capt USMC

DESCRIPTION : Opens all output files, combines files as
necessary to form the final scenario file, then closes all
files.

--- }

FROM IOMod IMPORT StreamObj, FileUseType (Output, Input);
FROM UtilMod IMPORT DateTime;
FROM SimMod IMPORT SimTime;
FROM CATFMod IMPORT CATFObj;
FROM RGlobals IMPORT OutputFileName;
FROM Statistics IMPORT beforejump;
FROM global IMPORT paxtolift, cargotolift;

90-

I I i I I I I I I I I I I I i I I l90

PROCEDURE OpenFiles;

BEGIN

DateTime (datestamp);
NEW (LZrecorder);
ASK LZrecorder TO Open (OutputFileName +OLZ.outm, Output);
ASK LZrecorder TO WriteString (datestamp);
ASK LZrecorder TO WriteString (" +OutputFileName);
ASK LZrecorder TO WriteLn;
ASK LZrecorder TO WriteString(" TINE BEFOREJUMP

JUMP "+" AFTERJUMP,) ;
ASK LZrecorder TO WriteLn;

NEW (Scenariorecorder);
ASK Scenariorecorder TO Open (,Scenario.outm, Output);
ASK Scenariorecorder TO WriteLn;
ASK Scenariorecorder TO WriteLn;

NEW (EndTimerecorder);
ASK EndTimerecorder TO Open (OutputFileName + "Bnd.out",

Output);
ASK EndTimerecorder TO WriteString (datestamp);
ASK EndTimerecorder TO WriteString (" +OutputFileName);
ASK EndTimerecorder TO WriteLn;
ASK EndTimerecorder TO WriteLn;

NEW (StateRecorder);
ASK StatsRecorder TO Open ("Stats.out", Output);
ASK StatsRecorder TO WriteString(" ----------------------- ----- Stats --------------------------
ASK StatsRecorder TO WriteLn;
ASK StatsRecorder TO WriteLn;

END PROCEDURE { OpenFiles);

i ---
PROCEDURE WriteLZData (IN pax : REAL;

IN cargo : REAL);
VAR

x : REAL;
paxjump : REAL;
cargojump : REAL;
totaljump : REAL;

BEGIN
x :- SimTime()o;
paxjump :- ((pax / paxtolift)/2.0);
cargojump :- ((cargo / cargotolift)/2.0);

91

totaljumx, := paxjump + cargojump;

ASK LZrecorder TO WriteString(REALTOSTR(Y)+" N+
REALTOSTR(beforejump)+" O+REALTOSTR(totaljump));

beforejump :- beforejump + totaljump;

ASK LZrecorderTOWriteString(' "+REALTOSTR(beforejump));
ASK LZrecorder TO WriteLn;

END PROCEDURE { WriteLZData };

PROCEDURE CloseFiles;

BEGIN
ASK LZrecorder TO Close;
ASK EndTimerecorder TO Close;
ASK Scenariorecorder TO Close;
ASK StatsRecorder TO Close;

CombineFiles;

DISPOSE (LZrecorder);
DISPOSE (Scenariorecorder);
DISPOSE (StatsRecorder);
DISPOSE (FinalOutputFile);

END PROCEDURE { CloseFiles };

I
PROCEDURE CombineFiles;

VAR
placeholder : STRING;

BEGIN
ASK Scenariorecorder TO Open ("Scenario.out", Input);
ASK StatsRecorder TO Open ("Stats.cut", Input);

NEW (FinalOutputFile);
ASK FinalOutputFile TO Open (OutputFileName÷".txt",

Output);
ASK FinalOutputFile TO WriteString (datestamp);
ASK FinalOutputFile TO WriteString (6 *+OutputFileName);
ASK FinalOutputFile TO WriteLn;
ASK FinalOutputFile TO WriteLn;

92

WHILE (NOT Scenariorecorder.eof)
ASK ScenariorecoAder TO ReadLine (placeholder);
ASK FinalOutpucFile TO XWriteString (placeholder);
ASK FinalOutputFile TO WriteLr;

END WHILE;

ASK FinalOutpdtFile TO WriteLn;

ASK FinalOutpucFile TO WriteLn;

ASK Scenariorecorder TO Close;

ASK StatsRecorder TO Open ("Stats.out", Input);

WHILE (NOT StatsRecorder.eof)
ASK StatsRecorder TO ReadLine (placeholder);
ASK FinalOutputFile TO WriteString (placeholder);
ASK FinalOutputFile TO WriteLn;

END WHILE;

ASK StatsRecorder TO Close;

ASK Scenariorecorder TO Delete;
ASK StatsRecorder TO Delete;
ASK FinalOutputFile TO Close;

END PROCEDLTRE { CombineFiles 1;

END { IXPLEIENTATION } MODULE { OutputDriver }.

DEFINITION MODULE Proceduresa;

MODULE NAME: Procedures DATE WRITTEN: 18 Mar 92
AUTHOR: S. E. Shaw LAST MODIFIED:

Capt USMC MODIFIED BY:

DESCRIPTION : These 2 procedures assign the source and
destination to each serial as it is read in. This information
is entered as a STRING and must be converted to the
appropriate object.
-- ------ ---

FROM HDCMod IMPORT HDCObj;
FROM CATFMod IMPORT CATFObj;

,TYPE

PROCEDURE FindSource (INOUT HDC : HDCObj;

93

IN CATF : CATFObj);

PROCEDURE FindDestination (INOUT HDC : HDCObj;
IN CATF CATFObj);

MID (DEYINITION } MODULE (Procedures }.

- PLmIINTATION MODULE Procedures;

MODULE NAME: Procedures DATE WRITTEN: 18 Mar 92
AUTHOR: S. E. Shaw LAST MODIFIED:

Capt USMC MODIFIED BY:

DESCRIPTION : These 2 procedures assign the source and
destination to each serial as it is read in. This information
is entered as a STRING and must be converted to the
appropriate object.
-- }

FROM ARGMod IMPORT ARGObj;
FROM LZBeach IMPORT LZBeachObj;
FROM SerialMod IMPORT SerialObj;
FROM HDCMod IMPORT HDCObj;
FROM global IMPORT DeBug;
FROM CATFMod IMPORT CATFObj;

PROCEDURE FindDestination (INOUT HDC : HDCObj;
IN CATF ; CATFObJ);

VAR
gohere : STRING;
checkzone : LZBeachObj;
dropoff : LZBeachObj;
load : SerialObj;
gooddest : BOOLEAN;
i : INTEGER;

BEGIN
i :- 0;
load :- ASK HDC.seriallist Firsto;

WHILE load <> NILOBJ
INC(i);
gohere :- load.goto;
gooddest :- FALSE;

94

checkzone :- ASK CATP.lzbeachlist Firsto;

REPEAT
IF gohere - checkzone.name

gooddest :- TRUE;
dropoff := checkzone;

END IF;
checkzone :. ASK CATF.lzbeachlist Next

(checkzone);
UNTIL (gooddest);

IF gooddest
ASK load TO SetDestination (dropoff);

ELSE
OUTPUT (wHDC ERROR IN FINDESTINATION 0);
OUTPUT (load.goto," I load.gofromu n,

load.serialnum,' ",load.cargo, ",
load.pax,' ",load.priority, "
0,load.lift) ;

END IF;

load :- ASK HDC.seriallist Next (load);
END WHILE;

END PROCEDURE { FindDestination 1;

PROCEDURE FindSource (INOUT HDC : HDCObj;
IN CATF : CATFObj);

VAR
fronihere : STRING;
checkship : ARGObJ;
origin : ARGObJ;
goodsource : BOOLEAN;
load : SerialObj;
i : INTEGER;

BEGIN
load :- ASK HDC.seriallist Firsts);
i :- 0;
WHILE load <> NILOBJ

INC(i);
fromhere :- load.gofrom;
goodsource :- FALSE;
checkship :- ASK CATF.shiplist Firsto;

REPEAT
IF fromhere - checkship.name

95

goodsource :- TRUE;
origin :- checkship;

END IF;
checkship :- ASK CATP.shiplist

Next (checkship);
UNTIL (goodsource);

IF goodsource
ASK load TO SetSource (origin);

ELSE
OUTPUT ("HDC ERROR IN FINDSOURCE 0;
OUTPUT (load.goto, ",load.gofrou, U,

load. serialnum, 0 ",load.rcargo," ii,

load.pax, g,load.priority,"
", load.lift);

END IF;

origin :- NILOBJ;
load :- ASK HDC.seriallist Next (load);

END WHILE;

END PROCEDURE { FindSource };

,m I IIWLUTATON) MODULE (Poceduw 1.
DEIMTION MODULE ReadLst;

--
MODULE NAME: ReadLst DATE WRITTEN: 01 Mar 92
AUTHOR: M. Bailey LAST MODIFIED: 18 Mar 92

Prof NPGS MODIFIED BY: S. E. Shaw
Capt USMC

DESCRIPTION : Reads the input data files. Puts all data
into arrays for later use.
--

FROM RGlobals IMPORT SHArrayType,
FileNameType;

PROCEDURE ReadLst(INOUT SHArray : SHArrayType;
IN FileName : FileNameType);

END { DIFIWITION) MODULE { ReadL-t I.

XWLXK=TATZON MODULE ReadLa t,

96

-- - - - - - - - -- - - - - - - - -- - - - - - - - - -- - -
MODULE NAME: ReadLst DATE WRITTEN: 01 Mar 92
AUTHOR: M. Bailey LAST MODIFIED: 18 Mar 92

Prof NPGS MODIFIED BY: S. E. Shaw
Capt USMC

DESCRIPTION : Reads the input data files. Puts all data
into arrays for later use.

FROM IOMod IMPORT StreamObj, FileUseType(Input);
FROM RGlobals IMPORT SHArrayType,

FileNameType;
FROM ReadSH IMPORT ReadSH;
FROM global IMPORT DeBug;

--
PROCEDURE ReadLst (INOUT SHArray : SHArrayType;

IN FileName : FileNameType);
--

VAR
File : StreamObj;
numberOfSH : INTEGER;
i : INTEGER;
error : BOOLEAN;
string : STRING;

BEGIN
NEW(File);
ASK File TO Open(FileName, Input);

ASK File TO Readlnt(numberOfSH);
ASK File TO ReadLine(string);

NEW(SHArray, 1..numberOfSH);

FOR i := 1 TO numberOfSH
ReadSH(File, SHArray[i>. error);

END FOR;

END PROCEDURE { ReadLst };

END{ (DOLENTATION) MODULZ { ReadLut }.

DEFINITION MODULE ReadSeed,

MODULE NAME: ReadSeed DATE WRITTEN: 01 Mar 92
AUTHOR: M. Bailey LAST MODIFIED: 18 Mar 92

Prof NPGS MODIFIED BY: S. E. Shaw

97

Capt USMC

DESCRIPTION : Used to read the initial seeds for the
random variable streams.
---I

FROM RGlobals IMPORT FileNameType;

PROCEDURE ReadSeed () : INTEGER;
PROCEDURE ReadTheSeeds(IN FileName : FileNameType);

END (DEFINITION I KODULB { ReadSeod

IMPLE3ENTATIOR MODULE ReadSeed;

MODULE NAME: ReadSeed DATE WRITTEN: 01 Mar 92
AUTHOR: M. Bailey LAST MODIFIED: 18 Mar 92

Prof NPGS MODIFIED BY: S. E. Shaw
Capt USMC

DESCRIPTION : Used to read the initial seeds for the
random variable streams.
---I

FROM global IMPORT DeBug;
FROM IOMod IMPORT FileUseType(Input),

StreamObj;
FROM RGlobals IMPORT FileNameType,

SeedCount, SeedArray;

PROCEDURE ReadSeed () : INTEGER;

BEGIN

IF (SeedCount > HIGH(SeedArray))
OUTPUT('Ran out of seeds with count - +

INTTOSTR(SeedCount));
OUTPUT('Ran out of seeds, make more ');
HALT;
RETURN (0) ;

ELSE
IF (SeedCount <- 0)

SeedCount :- 1;
END IF;
INC (SeedCount) ;
RETURN(SeedArray(SeedCount -]);

END IF;

END PROCEDURE;

98

PROCEDURE ReadTheSeeds(IN FileName : FileNameType);
--- }

VAR
file : StreamObj;
str : STRING;
i : INTEGER;
NumberOfSeeds : INTEGER;

BEGIN
NEW(file);
ASK file TO Open(FileName, Input);
ASK file TO ReadInt(NumberOfSeeds);
NEW(Seer.A•rray, l..NumberOfSeeds);

FOR i := 1 TO NumberOfSeeds
ASK file TO ReadInt(SeedArrayti]) ;
ASK file TO ReadLine(str);

END FOR;

END PROCEDURE;

MD { IMLEU, TATIO3 }) MODULE RadSeed .

DEPINITION MODULE Rsad.-H;

MCDULE NAME: ReadSH DATE WRITTEN: 01 Mar 92
AUTHOR: M. Bailey LAST MODIFIED: 18 Mar 92

Prof NPGS MODIFIED BY: S. E. Shaw
Capt USMC

DESCRIPTION : Reads the data arrays from the input files.

FROM RGlobals IMPORT SHierRecType;
FROM IOMod IMPORT StreamObj;

PROCEDURE ReadSH(IN File : StreamO:)j;
OUT SHeirRec : SHierRecType;
OUT error : BOOLEAN);

MW { DWINIRTION) MODULE { R~adBN 1.

IN&MATION MODULE ReadSE;

MODULE NAME: ReadSH DATE WRITTEN: 01 Mar 92

99

AUTHOR: M. Bailey LAST MODIFIED: 18 Mar 92
Prof NPGS MODIFIED BY: S. E. Shaw

Capt USMC
DESCRIPTION : Reads the data arrays from the input files.

--

FROM IOMod IMPORT StreamObj, FileUseType(Input);
FROM RGlobals IMPORT SHierRecTyve;
FROM global IMPORT DeBug;
FROM IOMod IMPORT ReadKey;

{---}
PROCEDURE ReadSH(IN File : StreamobJ;

OUT SHierRec : SHierRecType;
OUT error : BOOLEAN);

--- {.------------------------ --------------------.

TYPE
StringRecType - RECORD

String : STRING;
Next : StringRecType;

END RECORD;

VAR
string : STRING;
numberOfStrings : INTEGER;
StringRec, OldStringRec : StringRecType;
first : StringRecType;
arrow : STRING;
stringRec : StringRecType;
i : INTEGER;
z : CHAR;

BEGIN
NEW(SHierRec);
ASK File TO ReadString(SHierRec.TopString);
NEW (StringRec) ;
numberOfStrings :- 1;
first :- StringRec;

ASK File TO ReadString(arrow);

IF arrow <> "->m
OUTITIT(Ofile not formatted correctly");
error :- TRUE;
RETURN;

ELSE
errcr :- FALSE;

END IF;

WHILE string <.>

100

Mi Mý

ASK File TO ReadString(string);
IF string - n.."

ASK File TO ReadLine(string);
ELSE

OldStringRec :- StringRec;
StringRec.String :- string;
NEW(StringRec);
OldStringRec.Next :- StringRec;
numberOfStrings :- numberOf~trings + 17

END IF;
END WHILE;

ASK File TO ReadLine(string);

IF (numberOfStrings > 0) AND NOT error
NEW(SHierRec. OwnedString, 1.. numberOfStrings -2);
stringRec :- first;

FOR i :- 1 TO numberOfStrings - 2
SHierRec.OwnedString [i] !- stringRec.String;
stringRec :- stringRec.Next;

END FOR;
END IF;

END PROCEDURE { ReadSH };

END{ (CPLZTATION } MODULE (ReadSH .

DEFINITION MODULE RGlobalsi

MODULE NAME: RGlobals DATE WRITTEN: 01 Mar 92
AUTHOR: M. Bailey LAST MODIFIED: 18 Mar 92

Prof NPGS MODIFIED BY: S. E. Shaw
Capt USMC

DESCRIPTION : Contains global variables primarily used for
the input of data.

CONST
MasterFileName - "OPplan.dat";

TYPE
FileNameType - STRING;
SArrayType - ARRAY INTEGER OF STRING;

SHierRecType - RECORD

101

TopString : STRING;
OwnedString : SArrayType;

END RECORD;

SHArrayType - ARRAY INTEGER OF SHierRecType;
SeedArrayType = ARRAY INTEGER OF INTEGER;

VAR
ShipSHArray SHArrayType;
SpotSHArray SHArrayType;
AcftSHArray SHArrayType;
LZSHArray : SHArrayType;
SerialSHArray : SHArrayType;
SeedArray : SeedArrayType;
OutputFileName :FileNameType;
SeedCount : INTEGER;

END { DEFINITION } MODULE { RGlobale 1.

DEFINITION MODULE SerialMod;
--

MODULE NAME: SerialMod DATE WRITTEN: 18 Mar 92
AUTHOR: S. E. Shaw LAST MODIFIED:

Capt USMC MODIFIED BY:

DESCRIPTION Defines the serial objects to be transported
in the simulation.
---------------------- -------------------------------

FROM LZBeach IMPORT LZBeachObj;
FROM ARGMod IMPORT ARGObJ;
FROM RGiobals IMPORT SHierRecType;

EXPORTI"YPE
SerialObj - OBJECT; FORWARD;

TYPE
CargoLiftType - (internal, external);

SerialobJ - OBJECT;
destination : LZBeachObj;
source : ARGObJ;
serialnum : INTEGER;
cargo : REAL;
pax : REAL;
priority : INTEGER;
lifttype : STRING;
goto : STRING;
gofrom : STRING;
lift : STRING;

102

allocated : BOOLEAN;
minliftsize : INTEGER;
externalspeed : REAL;

ASK METHOD ReadData (IN newserial : SHierRecType);
ASK METHOD SetDestination (INOUT to : LZBeachObj);
ASK METHOD SetSource (INOUT from : ARGObj);
ASK METHOD AllocateSelf;
ASK METHOD DeAllocateSelf;
ASK METHOD DestroySerial;
ASK METHOD AddPax (IN newpax : REAL);
ASK METHOD AddCargo (IN newcargo REAL);

END OBJECT { SerialObj };

END { DEFINITION } MODULE (SerialMod }.

IMPLEMENTATION MODULE SerialMod;
--

MODULE NAME: SerialMod DATE WRITTEN: 18 Mar 92
AUTHOR: S. E. Shaw LAST MODIFIED:

Capt USMC MODIFIED BY:

DESCRIPTION :. Defines the serial objects to be transported
in the simulation.
---}

FROM ARGMod IMPORT ARGObj;
FROM LZBeach IMPORT LZBeachObj;
FROM RGlobals IMPORT SHierRecType;
FROM Debug IMPORT TraceStream;

VAR
placeholder : STRING;

OBJECT SerialObj;

--

ASK METHOD ReadData (IN newserial : SHierRecType);
BEGIN

serialnum := STRTOINT(newserial.OwnedString(i]);
goto :- newserial.OwnedString(2];
gofrom :- newserial.OwnedString[3];
cargo := STRTOREAL(newserial.OwnedString[4]);
pax :- STRTOREAL(newserial.OwnedString[5]);
priority :- STRTOINT(newserial .OwnedString [6]);
lift :- newserial.OwnedString(7];
minliftsize :- STRTOINT (newserial.OwnedString[8]);
externalspeed : - STRTOREAL (newserial .OwnedString [9]);

103

END METHOD { ReadData 1;

ASK METHOD SetSource (INOUT from : ARGObj);
BEGIN

source :- from;

END METHOD { SetSource };

--------------------------------- -------------- I
ASK METHOD SetDestination (INOUT to : LZBeachObj);
BEGIN

destination :- to;

END METHOD { SetDestination };

---..-
ASK METHOD DeAllocateSelf;
BEGIN

allocated :- FALSE;

END METHOD;

ASK METHOD AllocateSelf;
BEGIN

allocated := TRUE;

END METHOD;

ASK METHOD DestroySerial;
BEGIN

destination :- NILOBJ;
source :- NILOBJ;
DISPOSE (SELF);

END METHOD { DestroySerial };

--................................---------------------.... 1
104

ASK METHOD AddPax (IN newpax : REAL);
BEGIN

pax :- pax + newpax;

END METHOD { AddPax);

ASK METHOD AddCargo (IN newcargo : REAL);
BEGIN

cargo :- cargo + newcargo;

END METHOD { AddCargo);

END OBJECT { SerialObj);

M_ ({ IMLUUTATION } ODULE { srialMod .

DZl'MIT'IOR MODUL. Spotuan,

MODULE NAME: SpotMan DATE WRITTEN: 18 Mar 92
AUTHOR: S. E. Shaw LAST MODIFIED:

Capt USMC MODIFIED BY:

DESCRIPTION This object controls the landing and
launching of the TransportCrfat. It tracks the allocation and
use of each landing spot.

FROM GrpMod IMPORT QueueObj, RankedObj;
FRUM SpotObject IMPORT SpotObJ;

TYPE

StarboardDObj - OBJECT (RankedObJ);
OVERRIDE
ASK METHOD Rank (IN a, b : ANYOBJ) : INTEGER;

END OBJECT { StarboardDObj };

SpotManObj - OBJECT
name : STRING;
starboardD : StarboardDObj;
spotsavail : QueueObj;

105

awaitinglaunch : QueueObj;

ASK METHOD ObjInit;
ASK METHOD SetName (IN newname : STRING);
ASK METHOD PaintSpots (IN shiptype : STRING;

IN shipname.: STRING;
IN spottype : STRING;
OUT numspots : INTEGER);

ASK METHOD DestroySpotMan;

END OBJECT { SpotManagerObj };

ME { DEFINITION } XODU { Spotanager }.

IMPLEMENTATION MODULE Spot3an;

.--
MODULE NAME: SpotMan DATE WRITTEN: 18 Mar 92
AUTHOR: S. E. Shaw LAST MODIFIED:

Capt USMC MODIFIED BY:

DESCRIPTION This object controls the landing and
launching of the TransportCraft. It tracks the allocation and
use of each landing spot.

--}

FROM ResMod IMPORT ResourceObj;
FROM GrpMod IMPORT QueueObj;
FROM FindSHRec IMPORT FindSHRec;
FROM RGlobals IMPORT SHierRecType, SpotSHArray,
FROM SpotObject IMPORT SpotObj;
FROM global IMPORT EmptyRankedQ, EmptyQ, repetition;
FROM Transport IMPORT TransObJ;
FROM Statistics IMPORT lzspotstatlist, shipspotstatlist,

spotstatrec;

OBJECT StarboardDObj;

ASK METHOD Rank (IN a, b : ANYOBJ) : INTEGER;
VAR

acfta, acftb : Transobj;

BEGIN
acfta :- a;
acftb :- b;

IF acfta.fuelonboard < acftb. fuelonboard
RETURN -1;

106

ELSIF acfta.fuelonboard > acftb.fuelonboard
RETURN 1;

ELSE
RETURN 0;

END IF;

END METHOD { Rank }

END OBJECT { StarboardDObj };

÷ .+++++++++++÷+.++.++++÷++.+++++.++++++....++++.+......++}

OBJECT SpotManObj;

ASK METHOD ObjInit;
BEGIN

NEW (awaitinglaunch);
NEW (starboardD);
NFW (spotsavail);

END METHOD { ObjInit);

--

ASK METHOD PaintSpots (IN shiptype : STRING;
IN shipname : STRING;
IN spottype : STRING;
OUT numspots : INTEGER);

VAR
spotdata : SHierRecType;
spot : SpotObJ;
i : INTEGER;
record : spotstatrec;

BEGIN
FindSHRec (SpotSHArray, shiptype, spotdata);
numspots :- STRTOINT (spotdata.OwnedString (13);

FOR i :- 1 TO numspots
I4EW(spot);
ASK spot TO SetNumber (i);
ASK spot TO Size (STRTOINT(spotdata.

OwnedString[i+1));

107

ASK spoteavail TO Add (spot);

IF (repetition = 1)
NEW (record);
record.name :- shipname;
record.number :- i;
IF (spottype - 'ARGObjl)

ASK shipspotstatlist TO Add (record);
ELSE

ASK lzspotstatlist TO Add (record);
END IF;

END IF;

END FOR;

END METHOD { PaintSpots };

ASK METHOD SetName (IN newname STRING);
BEGIN

name :n newname;

END METHOD { SetName };

ASK METHOD DestroySpotMlan;
VAR

spot : SpotObJ;
BEGIN

EmptyRankedQ (starboardD);
DISPOSE (starboardD);
EmptyQ (awaitinglaunch);
DISPOSE (awaitinglaunch);

spot :- ASK spotsavail Firsto;

WHILE (spot <> NILOBJ)
ASK spotsavail TO RemoveThis(spot);
ASK spot TO DestroySpot;
spot :- ASK spotsavail Firsto;

END WHILE;

DISPOSE (spotsavail);
DISPOSE (SELF);

END METHOD { DestroySpotMan };

108

END OBJECT { SpotManagerObj };

m { MmTO } MOD) { (SpotRan.

DEIINVITZO MODULE SpotObfject

- ---- - . . . -. -..-- - - - - - .-- - - - - - - -

MODULE NAME: SpotObj DATE WRITTEN: 23 Mar 92
AUTHOR: S. E. Shaw LAST MODIFIED:

Capt USMC MODIFIED BY:

DESCRIPTION : Defines the landing spots for the ARGObJ and
for the LZBeachObj.
--}

FROM StatMod IMPORT RStatObj;

TYPE

SpotObj - OBJECT
spotnumber : INTEGER;
spotsize : INTEGER;
open : BOOLEAN;
acftonspot : STRING;
acftsidenum : INTEGER;
inuseat : REAL;
landings : INTEGER;

allocatedtime : LMONITORED REAL BY RStatObj;
allocatedtimestats : RStatObj;

ASK METHOD ObjInit;
ASK METHOD SetNumber (IN i : INTEGER);
ASK METHOD Size (IN i : INTEGER);
ASK METHOD Allocate (IN acft STRING; IN side :

INTEGER);
ASK METHOD DeAllocate;
ASK METHOD DestroySpot;

END OBJECT f SpotObj };

END (DEWNITION) MODULE (SpotObi }.

I3WL3NTATION MODULE SpotOb ect;

109

MODULE NAME: SpotObj DATE WRITTEN: 24 Mar 92
AUTHOR: S. E. Shaw LAST MODIFIED:

Capt USMC MODIFIED BY:

DESCRIPTION : Defines the landing spot, for the ARGObj and
for the LZBeachObj.
--- }
FROM S imMod IMPORT SimTime;
FROM Debug IMPORT TraceStream;

OBJECT SpotObj;

ASK METHOD ObjInit;
BEGIN

NEW (allocatedtimestats);
ADDMONITOR (allocatedtime, allocatedtimestats);

END METHOD { ObjInit);

ASK METHOD SetNumber (IN i : INTEGER);
BEGIN

spotnumber :- i;

END METHOD { SetNumber };

--
ASK METHOD Size (IN i : INTEGER);
BEGIN

spotsize :- i;
ASK SELF TO DeAllocate;

END METHOD { Size);

ASK METHOD Allocate (IN acft : STRING; IN side : INTEGER);
BEGIN

INC (landings);
inuseat := SimTimeo;
open :- FALSE;
acftonspot := acft;

110

acftsidenum :- side;

END METHOD { Allocate };

ASK METHOD DeAllocate;
BEGIN

allocatedtime := SimTime() - inuseat;
open :- TRUE;

END METHOD { DeAllocate };

ASK METHOD DestroySpot;
BEGIN

DISPOSE (SELF);

END METHOD { DestroySpot };

- -- --------------- W---------------
END OBJECT { SpotObJ };

NED (IPLNUNTLTION) MODULE { Spotftj }

DNIZNITION MODULE Spotfrocedouex

------------------------------------- t- ---------------
MODULE NAME: SpotProcedures DATE WRITTEN: 24 Mar 92
AUTHOR: S. 8. Shaw LAST MODIFIED:

Capt USMC

DESCRIPTION : The procedures used to allocate, deallocate
which SpotObjects are in use, which are avaiJable for use.
--)
FROM Transport IMPORT TransObj;
FROM SpotObJect IMPORT SpotObJ;
FROM HDCMod IMPORT HDCObj;
FROM SpotMan IMPORT SpotManObj;

TYPE
PPOCEDURE InitialLaunch (IN requestor TrzansObj;

OUT available BOOLEAN);

iii

PROCEDURE GetShipSpot (IN requestor TransObj;
OUT available BOOLEAN);

PROCEDURE GetLZSpot (IN requestor : TransObj;
OUT available : BOOLEAN);

PROCEDURE GetSpot (IN requestor : TransObj;
IN controller : SpotManObj;
OUT available : BOOLEAN);

PROCEDURE GiveBackShipSpot (IN requestor : TransObJ);

PROCEDURE GiveBackLZSpot (IN requestor : TransObj);

PROCEDURE FindSpot (IN requestor : TransObj;
IN controller : SpotManObj;
OUT spot : SpotObj);

MW { D31ITION) MODUM (Spottoceura}.

IPWLEUTZ N MODULE SpotProcedura

MODULE NAME: SpotProcedures DATE WRITTEN: 24 Mar 92
AUTHOR: S. E. Shaw LAST MODIFIED:

Capt USMC

DESCRIPTION : The procedures used to allocate, deallocate
which SpotObjects are in use, which are available for use.
--

FROM Transport IMPORT TransObJ;
FROM SpotObject IMPORT SpotObJ;
FROM EED4od IMPORT HDCObj;
FROM SpotMan IMPORT SpotManObj;
FROM SinMod IMPORT SimTime;
FROM Debug IMPORT TraceStream;

TYPE

PROCEDURE InitialLaunch (IN requestor : Trans:)bj;
OUT available : BOOLEAN);

VAR
checkspot : SpotObj;
i : INTEGER;
controller : SpotManObJ;

BEGIN

112

controller : requestor.mymother.airboss;
i :- 1;
available := FALSE;
checkspot :- ASK controller.spotsavail Firsto;
REPEAT

IF ((checkspot.open) AND (checkspot.spotsize >-
requestor.spotsizereqd))

available :- TRUE;
ASK checkspot TO Allocate(requestor.name,
requestor. sidenumber);

ELSE
checkspot :. ASK controller.spotsavail

Next (checkspot);
END IF;

INC (i);
UNTIL ((i > ASK controller.spotsavail numberIn) OR

(available));
IF NOT available

ASK controller.awaitinglaunch TO Add (requesto,');
END IF;

END PROCEDURE { InitialLaunch };

PROCEDURE GetShipSpot (IN requestor : TransObJ;
OUT available BOOLEAN);

VAR
controller : SpotManObj;

BEGIN
controller - requestor.destination.airboss;
GetSpot (requestor, controller, available);

END PROCEDURE { GetLZSpot };

PROCEDURE GetLZSpot (IN requeetor : TransObJ;
OUT available BOOLEAN);

VAR
controller SpotManObj;

BEGIN
controller = requestor. serialonboard.destination. fac;
GetSpot (requestor, controller, available);

113

END PROCEDURE { GetLZSpot };

PRlOCEDURE GetSpot (IN requestor : TransObj;
IN controller : SpotManObJ;
OUT available : BOOLEAN);

VAR
checkspot SpotObj;
i INTEGER;

BEGIN
i :- 1;
available :- FALSE;
checkspot :- ASK controller.spotsavail Firsto;

REPEAT
IF ((checkspot.open) AND (checkspot.spotsize >-

requestor. spotsizereqd))
available :- TRUE;
ASK checkspot TO Allocate(requestor.name,

requestor. sidenumber);
ELSE

cneckspot :- ASK controller.spotsavail
Next (checkspot);

END IF;
INC (i' ;

UNTIL ((i > ASK controller.spotsavail numberIn) OR
(available));

IF NOT available
ASK controller.starboardD TO Add (requestor);

END IF;

END PROCEDURE f r-etSpot 1;

PROCEDURE GiveBackShipSpot (IN requestor TransObJ);

VAR
spot : SpotObJ;
1,adacft : TransObJ;
liunchacft : TransObj;
waiting : INTEGER;
controller : SpotManObJ;
i, j INrEGER;
launchone : BOOLEAN;
landone : BOOLEAN;

114

BEGIN
controller : = requestor.destination.airboss;
FindSpot(requestor, controller, spot);
launchone :- FALSE;
landone :- FALSE;

ASK spot TO DeAllocate;

IF (ASK controller.awaitinglaunch numberIn >= 1)
launchacft :- ASK controller.awaitinglaunch

First);
i :- 1;

REPEAT
IF (spot.spotsize >- launchacft.spotsizereqd)

launchone :- TRUE;
TELL launchacft TO Spot;

ASK spot TO Allocate (launchacft.name,
launchft sidenumber);
EXIT;

END IF;
INC (i);
launchacft :- ASK controller.awaitinglaunch

Next (launchacft);
UNTIL ((i > ASK controller.awaitinglaunch numberIn)

OR (launchone));
END IF;

IF launchone
ASK controller.awaitinglaunch TO

RemoveThis (launchacft);
END IF;

IF ((ASK controller.starboardD numberIn >- 1) AND
(NOT launchone))

landacft :- ASK controller.starboardD Firsto;
j :- 1;

REPEAT
IF(spot.spotsize >- landacft.spotsizereqd)

landone :- TRUE;
IF (NOT landacft.shutdown)

TELL landacft TO Load;
END IF;
ASK spot TO Allocate (landacft.name,

landacft .sidenumber);

EXIT:
END IF;
INC (j);
landacft :- ASK controller.starboardD

Next(landacft);

-- 115

UNTIL ((j > ASK controller.starboardD numberIn) OR
(landone));

END IF;

IF landone
ASK controller.starboardD TO
RemoveThis (landacft);

END IF;

IF ((NOT launchone) AND (NOT landone))
ASK spot TO DeAllocate;

END IF;

END PROCEDURE {. GiveBackSpot };

PROCEDURE GiveBackLZSpot (IN requestor TransObj);

VAR
spot : SpotObj;
landacft : TransObj;
launchacft : TransObJ;
waiting : INTEGER;
controller : SpotManObj;

BEGIN
controller :m requestor. serialonboard.destination. fac;
FindSpot(requestor, controller, spot);

ASK spot TO DeAllocate;

IF (ASK controller.awaitinglaunch numberIn >- 1)
launchacft :- ASK controller.awaitinglaunch

Remove);
TELL launchacft TO Spot;
ASK spot TO Allocate (launchacft.name,

launchacft sidenumber);

ELSIF (ASK controller.starboardD numberIn >- 1)
landacft :- ASK controller.starboardD Remove(;
TELL landacft TO Unload;
ASK spot TO Allocate (landacft.name,

landacft sidenumber);

ELSE
ASK spot TO DeAllocate;

END IF;

116

END PROCEDURE { GiveBackSpot 1;

PROCEDURE FindSpot (IN requestor TransObj;
IN controller SpotManObJ;
OUT spot : SpotObj);

VAR
thisspot : BOOLEAN;
checkspot : SpotObj;
i : INTEGER;

BEGIN
i :- 1;
thisspot :- FALSE;
checkspot := ASK controller.spotsava.1 Firsto;

REPEAT
IF ((checkspot.acftonspot - requestor.name) AND

(checkspot.acftsidenum - requestor.sidenumber))
thisspot :- TRUE;
spot :- checkspot;

ELSE
checkspot :- ASK controller.spotoavail

Next(checkspot);
END IF;
INC (i);

UNTIL ((i > ASK controller.spotsavail numberIn) OR
(thisspot));

IF ((NOT thisspot) AND (showerrors))
ASK TraceStream TO WriteString
("NO MATCH FOUND IN FindSpot****");

END IF;

END PROCEDURE { FindSpot };

RND { IMPLXINTATION) 36ODWL (SpotProcodeu }.

DUIWITION MODULE Statistics;

.--- - - - - - - - - -- - --- -. .--- - -- - - - - - - - - - - - - -- -- - - - -.- - -- - - - - - - - -.

MODULE NAME: Statistics DATE WRITTEN: 18 Mar 92
AUTHOR: S. E. Shaw LAST MODIFIED: 5 Jun 92

Capt USMC

117

DESCRIPTION : The procedures used to initialize, reset and
collect the final data.

FROM StatMod IMPORT RStatObj;
FROM ListMod IMPORT QueueList;
FROM CATFMod IMPORT CATFObj;

VAR
lastdeliverytime : LU4ONITORED REAL BY RStatObj;
lastdeliverytimestats : RStatObj;
vehiclestatlist : QueueList;
shipspotstatlist : QueueList;
lzspotstatlist : QueueList;
beforejump : REAL;

TYPE

vehiclestatrec = RECORD
name STRING; sorties : INTEGER;
sidenum INTEGER; cargo : REAL;
mother STRING; pax : REAL;
totaltime : REAL; reps : INTEGER;
holding : REAL;
shiphold: REAL;
beachhold : REAL;

END RECORD;

spotstatrec - RECORD
name : STRING; landings : INTEGER;
number : INTEGER; reps : INTEGER;
totaltime : REAL;
inuse : REAL;

END RECORD;

StatisticsObj - OBJECT;

ASK METHOD StartStats;
ASK METHOD ResetStats;
ASK METHOD StopStats;
ASK METHOD CollectRepStats (IN CATF : CATFObJ);

END OBJECT (StatisticsObJ };

PROCEDURE CollectVehicleStats(IN CATF : CATFObJ);
PROCEDURE CollectShipSpctStats (IN CAT? : CATPObj);
PROCEDURE CollectLZ~potitats (IN CATF : CATFObJ);
PROCEDURE FindVehicleRec (IN name : STRING;

IN side : INTEGER;
IN mother : STRING;
OUT record : vehiclestatrec);

118

PROCEDURE FindSpotRec (IN name : STRING;
IN side : INTEGER;
IN list : QueueList;
OUT record : spotstatrec);

PROCEDURE CompileStats;

ED{ DEFINITION } MODULE - Statistics).

IMPLUEENTATION MODULE Statistics;
--{--

MODULE NAME: Statistics DATE WRITTEN: 18 Mar 92
AUTHOR: S. E. Shaw LAST MODIFIED:

Capt USMC
DESCRIPTION : The procedures used to initialize, reset and

collect the final data.

FROM StatMoa IMPORT RStatObj;
FROM OutputDriver IMPORT StatsRecorder, LZrecorder;
FROM CATFMod IMPORT CATFObJ;
FROM ARGMod IMPORT ARGObj;
FROM Transport IMPORT TransObj;
FROM SpotObject IMPORT SpotObJ;
FROM GrpMod IMPORT QueueObj;
FROM SimMod IMPORT SimTime;
FROM LZBeach IMPORT LZBeachObj;
FROM ListMod IMPORT QueueList;

OBJECT StatisticsObj;--- ----------- --------- ---- -- ------------------- ------------..- 3
ASK METHOD StartStats;
BEGIN

NEW (lastdeliverytimestats);
ADDMONITOR (lastdeliverytime, lastdeliverytimestats);
NEW (vehiclestatlist);
NEW (shipspotatatlist);
NEW (lzspotstaclist);

ElD METHOD { StartStats };

ASK MOTHOD ResetStats;
BEGIN

ASx LZrecorder TO WriteString ("-1 -1 -1 -1 -1 -1);
ASK iZrecorder TO WriteLn;

119

beforejump :- 0.0;

END METHOD { ResetStats };

ASK METHOD StopStats;
BEGIN

ASK StatsRecorder TO WriteString
(alastdeliverytime.count :-- +I1TTOSTR
(lastdeliverytimestats.Co, nt));

ASK StatsRecorder TO WriteLn;
ASK StatsRecorder TO WriteString

(Olastdeliverytime.mean :=- +REALTOSTR
(lastdeliverytimestats.Mean()));

ASK StatsRecorder TO WriteLn;
ASK StatsRecorder TO WriteString

("lastdeliverytime.maximum :- "+RBALTOSTR
(lastdeliverytimestats.Maximum));

ASK StatsRecorder TO WriteLn;
ASK StatsRecorder TO WriteString

(Olastdeliverytime.minimun :- .+REALTOSTR
(lastdeliverytimestats.Minimum));

!kSK StatsRecorder TO WriteLn;
ASK StatsRecorder TO WriteString

(olastdeliverytime.variance :- I+REALTOSTR
(lastdeliverytimestats.Variance(0));

ASK StatsRecorder TO WriteLn;

CompileStats;

END METHOD { StopStats 1;

ASK METHOD CollectRepStats (IN CATF : CATFObJ);
BEGIN

CollectVehicleStats (CATF);
CollectShipSpotStats (CATF);
CollectLZSpotStats (CATF);
OUTPUT("Collected rep stats");

END METHOD (CollectRepStats };

END OBJECT (Statisticsobj };

120

{++++++++++++++++++++++++++++÷+++++++++++++++÷+++.++++++++++}

PROCEDURE CollectVehicleStats(IN CATF : CATFObj);
VAR

acft : TransObj;
ship : ARGObj;
record : vehiclestatrec;

BEGIN
ship :- ASK CATF.shiplist First,!);

IF (ship <> NILOBJ)

REPEAT
acft :- ASK ship.squadron Firsto;

IF (acft <> NILOBJ)

PEPEAT
FindVehicleRec(acft.name,

acft.sidenumber,
acft.mymother.name, record);

INC (record.reps);
record.totaltime:- record.totaltime

+ (acft.shutdowntime -
acft.airbornetime);

record.holding :- record.holding +
acft.holdingtimestats.Sum;

record.shiphold :- record.shiphold +
acft.holdingshipstats.Sum;

record.beachhold :- record.beachhold
+acft.holdingbeachstats.Sum;

record.cargo :- record.cargo +
acft.totalcargo;

record.pax :- record.pax +
acft.totalpax;

record.sorties :- record.sorties +
acft.totalsorties;

acft :-ASK ship.squadron Next(acft);
UNTIL (acft - NILOBJ);

END IF;
ship :- ASK CATF.shiplist Next(ship);

UNTIL (ship - NILOBJ);
END IF;

END PROCEDURE (CollectVehicleState };

PROCEDURE FindVehicleRec (IN name : STRING;

121

IN side INTEGER;
IN mother STRING;
OUT record : vehiclestatrec);

VAR
checkthis : vehiclestatrec;
found : BOOLEAN;

BEGIN
found := FALSE;
checkthis :- ASK vehiclestatlist Firsto;

IF (checkthis <> NILREC);

REPEAT

IF ((checkthis.name - name) AND
(checkthis.sidenum = side) AND
(checkthis.mother - mother))

record :- checkthis;
found :- TRUE;

ELSE
checkthis :- ASK vehiclestatlist
Next(checkthis);

END IF;

UNTIL ((checkthis - NILREC) OR (found));

ELSE

OUTPUT (wError in FindVehicleRecO);
HALT;

END IF;

END PROCEDURE { FindVehicleRec };

PROCEDURE CompileStats;
VAR

record : vehiclestatrec;
spotrecord : spotstatrec;
stati, stat2, stat3 REAL;

BEGIN
ASK StatsRecorder TO WriteLn;
ASK StatsRecorder TO WriteString

(" ----- Vehicle Holding Stats .);
ASK StatsRecorder TO WriteLn;
ASK StatsRecorder TO WriteLn;

122

ASK StatsRecorder TO WriteString
(H Ship Vehicle TotalEold% Shiphold%
BeachHoldtN);

ASK StatsRecorder TO WriteLn;
ASK StatsRecorder TO WriteLn;

record :- ASK vehiclestatlist Firsto;

IF (record <> NILREC)

REPEAT
ASK StatsRecorder TO WriteString

(record.mother+o O+record.name+" w+
INTTOSTR (record. sidenum)
+w w

+INTTOSTR (TRUNC (100.0*
(record.holding/record. totaltime)))
+8 a

+INTTOSTR (TRUNC (100.0*
(record. shiphold/record. totaltime)))

+m a

+INTTOSTR(TRUNC (100.0*
(record.beachhold/record.totaltime))));

ASK StatsRecorder TO WriteLn;
record :- ASK vehiclestatlist Next(record);

UNTIL (record - NILREC);

ELSE

OUTPUT('NO VEHICLE RECORDS TO COMPILEN);

END IF;

ASK StatsRecorder TO WriteLn;
ASK StatsRecorder TO WriteString

(- ---------- Vehicle Sortie Stats ----------- 9);
ASK StatsRecorder TO WriteLn;
ASK StatsRecorder TO WriteLn;
ASK StatsRecorder TO WriteString

(0 Ship Vehicle Cargo Pax Sorties •);
ASK StateRecorder TO WriteLn;
ASK StatsRecorder TO WriteLn;

record :- ASK vehiclestatlist Firsto(;

IF (record <> NILREC)

REPEAT
ASK StatsRecorder TO WriteString

(record.mother+ O+record.name+* w+
INTTOSTR (record. sidenum)

123

+ "+'+I~rMTOSTR (TRUNC
(record. cargo/FLOAT (record. reps)))
+" "+INTTOSTR (TRUNC
(record.pax/FLOAT (record. reps)))
+0 a

.INTTOSTR (record. sorties DIV
record.reps));

ASK StatsRecorder TO WriteLn;
record :- ASK vehiclestatlist Next(record);

UNTIL (record -NILREC);

ELASE

OTrPUT ("NO VEHICLE RECORDS TO COMPILE");

END IF;

ASK StatsRecorder TO WriteLAn;
ASK StatsRecorder TO WriteString

-Ship Spot State ----------- H);
ASK StatsRecorder TO WriteLn;
ASK StatsRecorder TO WriteLrn;
ASK StatpRecorder TO WriteString

S Ship Spot Utilizedr Landings
ASK StatsRecorder TO WriteLn;
ASK StatsRecorder TO WriteLn;

spotrecord :- ASK shipspotstatlist First();

IF (spotrecord <> NILREC)

REPEAT
ASK StatsRecorder TO WriteString

(spotrecord. name+m *+INTTOSTR
(spotrecord .number)

+INTTOSTR (TRUNC (100.0* (spotrecord. inuse
/spotrecord.totaltime)))

+INTrOSTR (spotrecord. landings
DIV spotrecord, reps));

ASK StatsRecorder TO WriteLn;
spotrecord :- ASK shipspotstatlist

Next(spotrecord);
UNTIL (spotrecord - NILREC);

ELSE

OWUTt'J("NO SHIPSPOT RECORDS TO COMPILE");

END IF;

124

I k I I I I I I I I I I I I I I I II

ASK StatsRecorder TO WriteLn;
ASK StatsRecorder TO WriteString

(.---------- .LZBeach Spot State ------ 0);
ASK StatsRecorder TO WriteLn;
ASK StatsRecorder TO WriteLn;
ASK StatsRecorder TO WriteString

(NLZBeach Spot Utilized Landings ');
ASK StatsRecorder TO WriteLn;
ASK StatsRecorder TO WriteLn;

spotrecord :- ASK Izspotatatlist Firsto;

IF (spotrecord <> NILREC)

REPEAT
ASK StatsRecorder TO WriteString

(spotrecord. name+l +INTTOSTR
(spotrecord. number)
+* E+II'I'OSTR (TRUNC
(100.0* (spotrecord.inuse
/spotrecord. totaltime)))
+2 • +INTTOSTa
(spotrecord.landings DIV
spotrecordreps));

ASK StatsRecorder TO WriteLn;
spotrecord ASK lzspotstatlist

Next (spotrecord);
UNTIL (spotrecord - NILREC);

ELSE

OUTPUT('NO LZBEACE SPOT RECORDS TO COMPILE");

END IF;

END PROCEDURE { CcupileStats };

PROCEDURE CollectShipSpotStats (IN CATF : CATFObj);
VAR

spot : SpotObJ;
ship : ARGObj;
record : spotstatrec;
spotsavail : QueueObj;

BEGIN
ship :- ASK CATF.shiplist Pirsto;
IF (ship < NILOBJ)

125

REPEAT

spotsavail : ship.airboss.spotsavail;
spot :- ASK spotsavail Firsto;

IF (spot <> NILOBJ)

REPEAT

FindSpotRec (ship. name,
spot. spotnumber,
shipspotstatlist, record);

INC (record.reps);
recordtotaltime :- record.totaltime
+ lastdoliverytime;
record. inuse := record. inuse +
spot. allocatedtimestats Sum;
record.landings :- record.landings +
spot. landings;

spot :- ASK spotsavail Next(spot);

UNTIL (spot - NILOBJ);
END IF;

ship :- ASK CATF.shiplist Next(ship);

UNTIL (ship - NILOBJ);

END IF;

END PROCEDURE (CollectShipSpotStats };

PROCEDURE FindSpotRec (IN name : STRING;
IN side : INTEGER;
IN list : QueueList;
OUT record : spotstatrec);

VAR
checkthis : spotstatrec;
found : BOOLEAN;

BEGIN
found :- FALSE;
checkthis :- ASK list Firsto;

IF (checkthis <> NILREC);

126

REPEAT
IF ((checkthis.naae- name) AND

. (checkthis number a side))

record :- checkthis;
* found :a TRUE;

ELSE
Chackthia :- ASK list Next(checkthis);

END IF;

UNTIL ((checkthits - NILREC) OR (found));

ELSE

OUTPUT ("Error in Find hipSpotRec) ;
SHALT;

END IF;

END PROCEDURE { FindSpotftec)

--

PROCEDURE CollectLZSpotStats (IN CATF : CATFObj);
VAR

spot : SpotObj;
lz : LZBeachObj;
record : spotstatrec;
spotsavail : QueueObj;

BEGIN
lz :- ASK CATF.lzbeachlist Firsto;

IF (lz <> NILOWBJ)

REPEAT
spotsavail :- lz.fac.spotsavail;
spot :- ASK spotsavail First();

IF (spot c> NILOBJ)

REPEAT
FindSpotRec
(lz.name, spot. upotnumber,
izapotstatlist, record),

INC (record.rep);
record. totaltims : =

record. totaltime
+ lastdeliverytime;

record.inuse :- record.inuse +
spot. allocatedtimestats. Sum;

127

record.landings :-

record.landings +
spot. landings;

spot :- ASK spotsavail
Next (spot);

UNTIL (spot - NILOBJ);

END IF;

1z := ASK CATF.lzleachlist Next(lz);
UNTIL (lz = NILOBJ):

END IF;

END PROCEDURE { CollectLZSpotStats };

MW (IMPLEMETATION } MODULE { Statistics 1.

DEFINITION MODULE Transport;

MODULE NAME: TransportCraft DATE WRITTEN: 18 Mar 92
AUTHOR: S. E. Shaw LAST MODIFIED:

Capt USMC MODIFIED BY:

DESCRIPTION Defines the objects used to move pax and
cargo ashore. '-,n be used for either surface craft (LCAC, LCU,
etc) or aircraft.
--------------- -- }

FROM ARGMod IMPORT ARGObJ;
FROM LZBeach IMPORT LZBeachObj;
FROM SerialMod IMPORT SerialObj;
FROM fDCMod IMPORT HDCObj;
FROM global IMPORT LocationXY;
FROM RGlobals IMPORT SHierRecType;
FROM StatMod IMPORT RStatObj;

EXPORTTYPE
TransObj = OBJECT; FORWARD;

TYPE
TransObj - OBJECT

name STRING; location : LocationXY;
sidenumber : INTEGER; launchtime : REAL;
totalpax REAL; totalcargo : REAL;
cotalsorties : INTEGER; spreadupper : REAL;
mymrther : ARGObj; spreadlower : REAL;
maxfuel : REAL; totalfuel : REAL;
emptyspeed : REAL; myhdc : HDCObj;

128

loadedspeed REAL; emptyburnrate REAL;
loadedburnrate REAL; destination ARGObj;
serialonboard SerialObj; foldlower : REAL;
fuelonboard REAL; foldupper : REAL;
acftrange REAL; groundburnrate : REAL;
crewday : REAL; shutdowntime : REAL;
serialnum : INTEGER; cleared : BOOLEAN;
minfuel : REAL; holding : REAL;
externaltime : REAL; paxtime : REAL;
cargotime : REAL; spotsreqd : INTEGER;
spotsizereqd : INTEGER; shutdown : BOOLEAN;
maxloadsize : INTEGER; numserials : INTEGER;
airbornetime : REAL; totalholding REAL;

holdingtime : LMONITORED REAL BY RStatObj;
holdingtimestats : RStatObj;

holdingship : LMONITORED REAL BY RStatObj;
holdingshipstats : RStatObj;

holdingbeach : LMONITORED REAL BY RStatObj;
holdingbeachstats : RStatObj;

ASK METHOD Objlnit;.
ASK METHOD ReadData (IN record : SHierRecType);
ASK METHOD NewHDC (IN newHDC HDCObj);
ASK METHOD SetSide (IN side INTEGER);
ASK METHOD AssignMother (IN mother : ARGObj);
ASK METHOD UseFuel (IN amount : REAL);
ASK METHOD TakeOnFuel;
ASK METHOD SetLaunchTime (IN time REAL);
ASK METHOD DestroyVehicle;
TELL METHOD Load;
TELL METHOD Operate;
TELL METHOD GetClearance ;
TELL METHOD TransitToBeach;
TELL METHOD FlyToShip;
TELL METHOD Reposition (IN newserial SerialObj);
TELL METHOD ReturnToBase;
TELL METHOD Unload;
TELL METHOD Spot;
TELL METHOD ShutDown;

END OBJECT { TransPortObj};

END {DEFINITION] MODULE {TransportCraftMod).

IMPLUIENTATION MODULE Transport;

129

MODULE NAME: TransportCraft DATE WRITTEN: 18 Mar 92
AUTHOR: S. E. Shaw LAST MODIFIED:

Capt USMC MODIFIED BY:

DESCRIPTION : Defines the objects used to move pax and
cargo ashore. Can be used for either surface craft (LCAC, LCU,
etc) or aircraft.

FROM S imMod IMPORT S imTime;
FROM ARGMod IMPORT ARGObj;
FROM HDCMod IMPORT HDCObj,BriefingRec;
FROM SerialMod IMPORT SerialObj;
FROM global IMPORT LocationXY, Distance, moreserials,

SpreadStream, FoldStream;
FROM FuelGuage IMPORT BurnFuel, CheckGas, Getfuel;
FROM RGlobals IMPORT SHierRecType;
FROM SpotProcedures IMPORT GetShipSpot, GetLZSpot,

GiveBackShipSpot, GiveBackLZSpot, InitialLaunch;
FROM LoadProcedures IMPORT LoadCargo, UnLoadCargo;
FROM Debug IMPORT TraceStream;

OBJECT TransObj;

-- I
ASK METHOD ObjInit;
BEGIN

NEW (holdingtimestats);
ADDMONITOR (holdingtime, holdingtimestats);
NEW (holdingshipstats);
ADDMONITOR (holdingship, holdingshipstats);

NEW (holdingbeachstats);
ADDMONITOR (holdingbeach, holdingbeachstats);

END METHOD (ObjInit };

------------.-------------------------------------

ASK METHOD ReadData (IN record : SHierRecType);

BEGIN
name :- record.TopString;
maxfuel :- STRTOREAL(record.OwnedString (i[);
minfuel :- STRTOREAL (record.OwnedString (2]);
emptyspeed : - STRTOREAL(record.OwnedString [3]); ;
loadedspeed : - STRTOREAL (record.OwnedString (4]);
loadedburnrate :- STRTOREAL (record.OwnedString (5]);
emptyburnrate - STRTOREAL (record.OwnedString [61);

130

groundburnrate :- STRTOREAL (record.OwnedString [7]);
foldlower :- STRTOREAL(record.OwnedString (8]);
foldupper : STRTOREAL(record.OwnedString[9]);
spreadlower := STRTOREAL(record.OwnedString[lo0]);
spreadupper STRTOREAL (record.OwnedString [II]);
acftrange :- STRTOREAL(record.OwnedString[12]);
crewday := STRTOREAL(record.OwnedString [131);
externaltime :- STRTOREAL (record.OwnedString[14]);
paxtime :- STRTOREAL(record.OwnedString [15]);
cargotime := STRTOREAL(record.OwnedString[16]);
spotsreqd := STRTOINT(record.OwnedString[171);
spotsizereqd : STRTOINT(record.OwnedString [18]);
maxloadsize := STRTOINT(record.OwnedString[19]);

fuelonboard :- maxfuel;
serialnum := 0;
cleared := TRUE;
crewday :- crewday * 60.0;

END METHOD { ReadData };

--

TELL METHOD Spot;
VAR

ship : STRING;
startpoint ? LocationXY;
endpoint : LocationXY;
gonogo : REAL;
newserial : SerialObj;
available : BOOLEAN;
othership : BOOLEAN;
loadtime : REAL;
briefing : BriefingRec;
combined : BOOLEAN;

BEGIN
destination :- myinother;
ship :- mymother.name;
ASK myhdc TO GiveFirstLoad (ship, maxloadsize,

neweerial, othership);
serialonboard : newserial;
numserials :- 1;

IF ((serialonboard.minliftsize - 1) AND
(maxloadsize > 1))

NEW(briefing);
briefing.serial :- serialonboard.serialnum;
briefing.dest :- NILOBJ;
briefing.lz :- serialonboard.destination;

131

briefing.loadsize :- serialonboard.minliftsize;
ASK myhdc TO CombineLoads (briefing, combined);

IF (combined)
numserials :. 2;

END IF;
END IF;

WAIT DURATION (ASK SpreadStream UniformReal
(spreadlower, spreadupper));

END WAIT; {spread acft wait)

IF othership
TELL SELF TO Reposition (newserial);
TERMINATE;

ELSE
ASK myhdc. seriallist TO RemoveThis (serialonboard);

END IF;

startpoint :- mymother.location;
endpoint :- newserial.destination, location;
gonogo :- Distance (startpoint, endpoint);

WAIT DURATION loadtime
END WAIT; { load serial wait }
BurnFuel (SELF; loadtime, 0.0, 0.0);

airbornetime :- SimTimeo;

TELL SELF TO TransitToBeach;

END METHOD { spot 1;

TELL METHOD Reposition (IN neweerial : SerialObj);
BEGIN

GiveBackShipSpot (SELF);
destination :- newserial.source;
serialnum :- newserial.serialnum;
airbornetime :- SimTimeo;
TELL SELF TO FlyToShip;

END METHOD (Reposition };

TELL METHOD ReturnToBase;
BEGIN

GiveBackShipSpot (SELF);
destination :- mymother;

132

WAIT FOR SELF TO FlyToShip;
END WAIT;

ME M•TOD { ReturaToBase };

TELL METHOD Load;
VAR

loadtime : REAL;
newload : SerialObW;

BEGIN
holdingtime :- SimTime() - holding;
holdingship :- SimTime ()- holding;
BurnFuel (SELF, 0.0, holdingtime, 0.0); {fuel used

awaiting deckpot }
IF (serialnum > -1)

ASK myhdc TO GiveLoad (serialnum, newload);
serialonboard :- newload;
IF (serialonboard <> NILOBJ)

LoadCargo (SELF, loadtime);
WAIT DURATION loadtime
END WAIT; { load serial wait }
totalpax :- serialonboard.pax + totaljax;
totalcargo :- serialonboard.cargo

+ totalcargo;
BurnFuel (SELF,loadtime, 0.0, 0.0);

END IF;

END IF;

TELL SELF TO TransitToBeach;

END METOD (Load);

ASK METHOD SetSide (IN side : INTEGER);
BEGIN

sidenumber :- side;

ME METHOD (SetSide };8:> --------------------------------------
ASK METHOD AssignMother (IN mother : ARGObj);
BEGIN

mymother :- mother;

133

END METHOD (AssignXother };

TELL METHOD Operate;
VAR -

available BOOLEAN;

BEGIN
WAIT DURATION1 launchtime;
END WAIT;
InitialLaunch (SELF, available);

IF (available)
TELL SELF TO Spot;

END IF;

END METHOD { Operate };

ASK METHOD NewHDC (IN HDC : HDCObJ);
BEGIN

myhdc :- HDC;

END METHOD { SetHDC);

ASK METHOD SetLaunchTime (IN time : REAL);
BsGnz

launchtime :- time;

END METHOD (SetLaunchTime };

TELL METHOD TransitToBeach;
VAR

start : LocationXY;
end : Location'Y;
leg : REAL;
flighttime : REAL;
available : BOOLEAN;
airspeed : REAL;

BEGIN
WAIT FOR SELF TO GetClearance;
END WAIT;

IF (cleared)

134

ASK serialonooard.source TO CurrentPos(start.x,
start.y);

end - serialonboard.destination.location;
leg :- Distance (start, end);

IP (serialonboard.lift - KTERNAL')
airspeed : - serialonboard. externalspeed;

ELSE
airspeed := cruisespeed;

END IF;

flighttime :- (leg / airspeed) * 60.0;
GiveaackShipSpot (SELF);

WAIT DURATION flighttime;
END WAIT; { transit time to shore }
BurnFuel (SELF, 0.0, 0.0, flighttime);

holding :- SimTimeo;
GetLZSpot (SELF, available);

IF (available)
TELL SELF TO Unload;

END IF;

ELSE

TELL SELF TO ShutDown;

END IF;

END METHOD { TransitToBeach };

TELL METHOD Unload;
VAR

briefing : BriefingRec;
unloadtime : REAL;
available : BOOLEAN;
combined : BOOLEAN;
assignedaload : BOOLEAN;

BEGIN
location :- serialonboard.destination.location;
holdingtime : SimTimeo(- holding;
holdingbeach :- SimTime() - holding;

UnLoadCargo (SELF, unloadtime);
INC (totalsorties);

135

WAIT DURATION unloadtime;
END WAIT; { unload serial wait }

ASK serialonboard.destination TO ReceiveLoad
(serialonboard.pax, serialonboard. cargo,
numserials);

BurnFuel (SELF, unloadtime, 0.0, holdingtime);
ASK myhdc NewDestination (briefing, maxloadsize,

assignedaload);

IF assignedaload

destination :- briefing.dest;
serialnum : briefing. serial;
numserials : 1;

IF ((briefing.loadsize - 1) AND (maxloadsize > 1))
ASK myhdc TO CombineLoads (briefing, combined);

IF combined
numserials :- 2;

END IF;

END IF;

ELSE

destination :- mymother;
serialnum :- -100;

END IF;

DISPOSE (briefing);
GiveBackLZSpot (SELF);
TELL SELF TO FlyToShip;
ASK serialonboard TO DestroySerial;
serialonboard :- NILOBJ;

END METHOD { Unload };

TELL METHOD FlyToShip;
VAR

start : LocationXY;
end : LocationXY;
leg : REAL;
flighttime : REAL;
available : BOOLEAN;

136

BEGIN
start :- location;
ASK destination CurrentPos (end.x, end.y);
leg :- Distance (start, end);
flighttime :- (leg / cruisespeed) *60.0;

"WAIT DURATION flighttime;
END WAIT; { transit time to ship }

holding :- SimTimeo;

GetShipSpot (SELF, available);

IF (available)

IF (NOT shutdown)
TELL SELF TO Load;

END IF;

END IF;

BurnFuel (SELF, 0.0, flighttime, 0.0);

END METHOD { FlyToShip };

TELL METHOD ShutDown;
BEGIN

IF (destination.name <> mymother.6ame)
WAIT FOR SELF TO ReturnToBase;

END WAIT;

END IF;

WAIT DURATION ASK FoldStream UniformReal
(foldlower, foldupper)

END WAIT;

shutdowntime :- SimTime ();
GiveBackShipSpot (SELF);

END METHOD { ShutDown };

ASK METHOD UseFuel (IN amount REAL);
BEGIN

fuelonboard :- amount;

137

END METHOD;

ASK METHOD TakeOnFuel;
BEGIN

fuelonboard : maxfuel;

END METHOD;

TELL METOD GetClearance;
VAR

needluel : BOOLEAN;
duration : REAL;
Transitdist : REAL;
start LocationXY;
end LocationXY;

BEGIN
cleared :- FALSE;

IF (serialnum > -1)
CheckGas (SELF, needfuel);

IF needfuel
Getfuel (SELF, duration);
WAIT DURATION duration
END WAIT;

MED IF;

cleared :- TRUE;
ASK serialonboard.source TO CurrentPos (start.x,

start.y);
end :- serialonboard.destination. locdtion;
transitdist :- Distance(start, end);

IF ((launchtime + crewday) <- (SimTime()
+ 2.0*transitdist/60.0));

cleared :- FALSE;
shutdown :- TRUE;

END IF;

END IF;

HID METHOD { GetClearance };8---------------------------------------
ASK METHOD DestroyVehicle;
BEGIN

138

IFI

aerialNbLOard - NWY

1-immic NTTILJ;

ENm METHOD I DestroyVehitae'-} .-

139

A•nD I 3 , RDW A.t a,,.

The simulation presented i~ll run on an nN compatible

personal computer under OS/2 with both a hard disk drive -and

one floppy drive. For speed considerations, a fAst (20+)i 80386

or higher computer is recommended. The presence of a math

coprocessor is not required, although the use of a coprocessor

would reduce the model run time. The simulation itself to

written in !VDSMI II, an advanced, object-oriented- simulation

language.

In the OS/2 (ver. 1.21) environment, the modification and

compilation of the program requires the 141DSM 11 language

(ver. 1.6) and at least an IW4 AT compatible (80386+0 cmputer

with 4 megabytes of memory and a hard disk drive. In addition,

the MODSIM II compiler requires the Microsoft C compiler (ver.

6.0). MD!SIM compiles to the computer language 'C" which is

then compiled by the 'C' compiler to the native foznat of the

personal computer. This represents the mini== configuration

required to modify and compile the model.

140

A2PPUMZ C SAM" anI-TO-8EO13 PR001W ZPUT WXLN

------------------------------------ O ~a~a----------------------------
Act t.dat
Ship. dat
Spot.dat
LZBeach. dat
Sermv22.dat
Seeds.dat
R34A

This data file contains the names of the other input files
as well as the desired name for the output files. These input
files may have any name that the user desires, but must appear
in the order given below:

1) The Aircraft data file name.
2) The Ship data file name.
3) The Spot data file name,
4) The Serial file name.
5) The Seeds file name. Always use 'Seeds. dat', the user has

no need to change this file.
6) The name desired for all of the output files. Allows

output from different scenarios to be saved.

---------------------- Ship.dat----------------------------
3
PELBLIZU -> LRA 15 50 20 17 15 50 500.0 H XV22 8 0 0 0 0 0 0
20 20 CH53AD 4 20 20 220
NEWPORT ->LST 10 50 15 10 10 50 3000 \\
RALIUGR -> LPD 23 50 18 10 23 50 200.0 \\

This file contains input regarding the operating
characteristics of the amphibious ships. There must be one
record for each ship within the scenario to be run.

numberOfShipslnAll ... The number of ship records to be read.

ShipName -> ... Name of the first ship.
type ... The ship type.

location.x ... The x and y coordinates of the ships start
location.y point

steamspeed ... The ships steaming speed.

141

holdingspeed ... The ships holding speed.

holdlocation.x ... The x and y coordinates for the ships
holdlocation.y holding position.

pumprate ... The rate (in pounds per minute) that the ship can
puxrp fuel into the aircraft.

<H> ... Signifies the beginning of the transport vehicles
aboard this ship.

TranspcrtAcftTypel ... The type of the first transport
aircraft. Must match the ones contained
in the Acft.dat file.

#TransportAcftTypel ... Number of type I Transportcraft.

launchtimes ... Launch times for each of the type 1
Transpurtacft listed in minutes from time
zero. MUST BE ONE LAUNCH TIME FOR EACH TYPE 1
TransportAcft.

TransportAcftType2 ... Type 2 TransportAcft.

launchtimes ... Launch times for each of the type
1 Transportacft listed in minutes from time
zero. MUST BE ONE LAUNCH TIME FOR EACH TYPE 2
TransportAcft.

<A> ... Signifies the start of the attack aircraft aboard this
ship.

AttackAcftTypel ... The type of the first attack aircraft. Must
match the ones contained in the Ac tt.dat
file.

#AttackAcftTypel ... Number of type 1 Attackacft.

launchtimes ... Launch times for each of the type 1 AttackAcft
Listed in minutes from time zero. MUST BE ONE
LAUNCH TIME FOR EACH TYPE 1 AttackAcft.

AttackAcftType2 ... Type 2 AttackAcft.

#ALtackAcftType2 ... Number of type 2 Attackacft.

launchtimes ... Launch times for each of the type I AttackAcft
Listed in minutes from time zero. MUST BE ONE
LAUNCH TIME FOR EACH TYPE 2 AttackAcft.

142

... Signifies the end of this ships record.

The above are repeated for each ship i4 the scenario.

------------- --------- Acft.dat ------------------------------
7
CH53E -B 11000 1200 147 139 2539 2218 1109 10 15 10 15

200 8 2.0 2.0 3.0 1 3 2 \\

CH46 -, 2400 400 132 129 1237 1146 575 10 15 10
15 100 8 1.5 2.0 3.0 1 2 1 \\

CHGO -> 2340 400 131 128 938 856 425 10 15 10
15 100 8 1.5 2.0 3.0 1 2 1\\

CH47 -> 6700 1100 145 144 2230 1869 935 10 15 10 15
100 8 1.5 2.0 3.0 1 3 2 \\

(The S-92, MV-22 and ER-101 data is omitted here. At the time
that this thesis was submitted the information was proprietary
in nature.)

1 numberOfAircraftListsInAll
2 AcftName -> maxfuel mintuel emptyspeed loadedspeed

loadedburnrate emptyburnrate groundburnrate foldlower
foldupper spreadlower spreadupper acftrange crewday
externaltime paxtime cargotime spotsreqd spotsizereqd
maxloadsize < \\

AcftName -> The name of the aircraft. Must match the name
used in the Ship.dat file.

maxfuel ... The maximum amount of fuel (in pounds) that the
aircraft can carry. This is used when aircraft refuels.

minfuel ... The NATOPS minimum for fuel (in pounds). Used to
determine when an aircraft requires refueling.

emptyspeed ... The speed at which the empty aircraft transits
from the beach to the ship.

loadedspeed ... The speed at which the loaded aircraft
transits from the ship to the beach.

loadedburnrate ... The rate (in pounds per hour) at which the
loaded aircraft burns fuel inflight.

emptyburnrate ... The rate (in pounds per hour) at which ths
empty aircraft burns fuel inflight.

143

groundburnrate ... The rate (in pounds per hour) at which the
aircraft burns fuel while on the deck.

foldlower ... Used to determine how long it takes to fold the
Foldupper aircraft during shutdown.

spreadlower ... Used to determine how long it takes to spread
spreadlower aircraft prior to launch.

acftrange ... The round trip range of the aircraft. Any number
will do for now, not used by this version of the model.

crewday ... The crewday for the pilots. One of the factors
used to determine the time for shutting down the aircraft.

externaltime ... A parameter to determine the amount of time
to hook up an external load.

paxtime ... A parameter for determining the amount of time to
load passengers.

cargotime ... A parameter for determining the amount of time
to load cargo.

spotsreqd ... The number of landings spots an aircraft
requires. Not used here, should be set to 1.

spotsizereqd ... The spot size an aircraft requires for
landing. These match with the size of spots contained in
the Spot.dat file. Preverts aircraft from landing on spots
that they are not allowed on.

maxloadsize ... The maximum size load an aircraft can carry.
For example, a CH46 would be set to 1 while a CH53 would
get a 2. This allows for the combining of serials to take
advantage of the payload capacity if larger aircraft.

---------------------- Spot.dat ------------------------------

7
LHA -) 8 2 2 3 4 5 6 6 6 \\
LST -> 1 6 \\
LSD - 1 6 \\
LPD - 2 6 6 \\
LPH -> 6 1 1 4 4 6 6 \\
LZOWL -> 4 6 6 6 6 6 6 \\
LZSPARROW -> 3 6 6 6 6 6 6 \\

The number of spots and the size of each spot for all
amphibious ships and each LZ may be altered with this file.

144

numberofShips/LZsinAll ... Number of spot records in the file.

ShipLZTypel -> ... The type of ship, or the LZ name of the
first record. For ships, this must match
the type field in the Ship.dat file.

numspots ... The number of spots available on the ship or in
the LZ.

SizeSpotl ... The size of the first spot. This should match up
with the spotsizereqd field in the Acft.dat
file. For example, if a CH53 is given a
spotsizereqd of 3, then it would only be allowed
to land on spots with a SizeSpot value of 3 or
greater.

SizeSpot2 Same as for spot 1.

SizeSpotN ... Size of the last spot.

<\\> signifies the end of the current spot record.

There must be one spot record for each Ship type, as well as
one spot record for each LZ. The total number of spot records
must equal the numberofShips/LZsonAll value given.

----------------------- LlDach.dat --------------------------

2
LZSPARROW -> 23 3 \\
LZOWL -> 8 3 \\

This file contains the attributes for each landing zone.

numberOfLZBeachesInAll ... The total number of LZBeach records
to be read in.

LZBeachName -> ... The name of the LZ or Beach. Must match the
destinations given to the serials in the
Serial.dat file.

location.x ... The x and y coordinates of the LZ or Beach.

location.y

< \\ > ... Signifies the end of the LZ or Beach record.

Repeat the above for every LZ or Beach. The number of records
must match the numberofLZBeachesInAll value given.

145

----------.----- -----. . Serial.dat --------------------------

44
1 -> 101 LZOWL PELELIEU 0 15 1 INTERNAL 1 0 \\
2 -> 102 LZOWL PELELIEU 0 15 1 INTERNAL 1 0 \\
3 -> 103 LZOWL PELELIBU 0 15 1 INTERNAL 1 0 \\
4 -• 104 LZOWL PELELIEU 0 15 1 INTERNAL 1 0 \\
5 -• 105 LZOWL PELELIEU 0 15 1 INTERNAL 1 0 \\

44 -> 144 LZSPARROW PELELIEU 4000 0 22 EXTERNAL 2 80 \\

The data required to create the serials within the current
scenario is contained within this file.

number of serials ... The total number of serial records to be
read in.

record number ... The record number for this serial.

serial number ... The number assigned to the serial. May be
different from the record number.

destination ... The destination LZ for the serial. Must match
one of the landing zone names in the*
LZBeach.dat file.

source ... The location of the serial when the simulation
conmences. Must match one of the ship names in the
Ship.dat file.

external cargo ... The amount of external cargo (in pounds) in

the serial.

passengers ... The number of passengers in the serial.

priority ... The priority of the serial. Determines when the
serial is moved ashore.

mode ... The mode in which the serial is transported ashore.
Must be either INTERNAL or EXTERNAL.

minlift ... Minimum sized aircraft required to move the serial
ashore. Must correspond to one of the maxloadsize fields
of the Acft.dat file.

externalspeed ... The airspeed limitation on the cargo to be
carried externally.

146

APPUDZX D TTZSmt OW-

This Appendix cC42tains. examnples -of tbe .va'rio6us Output

files for one run of the 4atter momdl. -The efilezame> used

below refere to the user, nam iput through the 040AUi.dat

file.
&, :•le~e>.tzt:

This is the summary file for t1M cur n sCenario. The

file will list the-ships used, their locations, the nwobr zn

types of aircraft aboard each .hiP ad various summary

statistics.

------------------- SHIP DATA -----------------------------

SHIP NAME SHIP TYPE STARTx STARTy HOLDx HOLDy

PELELIEU LHA 15 5 15 5

Transports Aboard: CH46 12 CH53AD 4

NEWPORT LST 10 5 10 5

RALEIGH LPD 23 5 23 5

-------------------- LZ DATA

LZ NAME LOCATIONX LOCATIONy SPOTS

LZSPARROW 23 3 3

LZOWL a 3 4

----------------------------- State -------------------------

lastdeliverytime.count :. 120
lastdeliverytime.mean :1 163.945180
lastdelivervtime.maximum :a 336.245950

147

lastdeliverytime.minlmum :- 100.208837
lastdeliverytime.variance : 1435.075719

5. cfilemie>S . out

This file containS the data recording the build-up of

combat power ashore. The data within this file is arranged in

four columns. The first, Timex, records the time t at which a

serial arrives ashore, either to an LZ or to a beach.

BeforeJump, the second column, records the total ccmbat power

ashore prior to the arrival of the current serial. The Junp

column contains the combat power value of the arriving serial.

The last column, AfterJump, contains the total combat power

ashore including the new arrival. The data from, consecutive

replications of the scenario are separated by a row of -I's

which are added by the model.

These four columns of data are manipulated by the Analysis

program, described in Chapter IV, 'to compare two mixes of

aircraft.
TIME BEFORBJMP JUMP APTERJUNP

17.452585 0.000000 0.035800 0.035800
18.713340 0.035800 0.035600 0.071599
18.971841 0.071599 0>.035800 0.107399
19.280203 0.107399 0.035800 0.143198
20.231016 0.143198 0.035800 0.178998
20.625452 0.178998 0.035800 0.214797
29.301536 0.214797 0.032967 0.247764
30.099510 0.247764 0.02472S 0.272489
33.884638 0.272489 0.032967 0.305456
35.876570 0.305456 0.035800 0.341256
37.766903 0.341256 0.043956 0.385212
38.137090 0.385213 0.035800 0.421012
38.150543 0.421012 0.021978 0.442990
39.310552 0.442990 0.035800 0.478789
39.464394 0.478789 0.035800 0.514589

148

39.592847 0.514589 10.024725 0.539314
39.739906 0.539314 0.035800 0.575113
45.160249 0.575113 0.027473 0.602586
"45.911192 0.602586 0.038462 0-641047
48.103371 3.641047 0.032967 0.674015
56.408952 0.674015 0.049923 0.723937
59.120837 0.723937 0.032967 0.756904
62.442687 0.756904 0.016956 0.773860
66.652223 0.773860 0.017900 0.79i760
74.186491 0.791760 0.016956 0.808715
81.357447 0.808715 0.032967 0.a41682
81.588816 0.841682 0.03-7740 0.879422
84.377447 0.879422 0.017900 0.897322
85.622038 0..897322 0.017900 0.915222
88.182672 0.915222 0.032967 0.948189
88.332213 0-.948189 0.016956. 0.965145
93.830519 0.965145 0.017900 0.983044
114.928264 0.983044 0.016956 1.000000
-1 -1 -1 -1 -1 -i -1 -1 -1 -1 -1

C. icf11em*>Mzd.out

This file has one column which contains the completion

time for each replication of the current scenario. Like the

<filename,>L.out file, this file contains data for analytical

purposes.

133.654668
136.116764
109.300731
128.518234
127.457097
147.941331
139.407063
138.621305
126.488858
184.991796
164.029736
121.885986
203.290792
162.114241
162.144698
118.164527

149

191.904999
118-680501
138.275285
139.032046
318.220818
140.441441
159.673867

150

LIST OF REFERENCES

1. U. S. Marine Corps FMFRP 14-7, Over-the-Horizon (OTH)
Amphibious Operations Operational Concept, 15 Mar 91.

2. United States Marine Corps, Concepts and Issues, 1992.

3. LeClair, Brian, "Object Oriented, An Overview of Key
Concepts," OR/MS TODAY, volume 18, number 1, pp.20-24,
Feb 91.

4. Ross, Sheldon M., Introduction to Probability Models,
Academic Press, Inc., Fourth Edition, 1989.

5. Welch, Peter, D., Computer Performance Modeling Handbook,
Academic Press, Inc., 1983.

151

BIBLIOGRAPHY

Barlow, Richard E., and Frank Proschan, Statistical
Theory of Reliability and Life Testing, McArdle Press,
Inc., 1981.

Bratley, Paul, Bennet L. Fox, and Linus E. Schrage, A Guide
to Simulation, Second Edition, Springer-Verlag New
York, Inc, 1987.

CACI Products Company, MODSIMII, The Language for Object-
Oriented Programming, Reference Manual, 1990 de., 3344
North Torrey Pines Court, La Jolla, CA 92037.

Koopmans, Lambert H., Introduction to Contemporary Statistical
Methods, Duxbury Press, 1991.

Law, Averill M. and David W. Kelton, Simulation Modeling and
Analysis, McGraw-Hill, 1982.

Salt, John, "Tunnel Vision," OR/MS TODAY, volume 18, number
1, pp.42-48, Feb 91.

U. S. Marine Corps FMFRP 14-7, "Over-the-horizon (OTV-)
Amphibious Operations Operational Concept", 15 Mar 91.

U. S. Navy, NATOPS Flight Manual, Navy Model MV-22A Aircraft,
14 Feb 92.

U. S. Navy, NATOPS Flight Manual, Navy Model CH-53E Aircraft,
1 May 90.

U. S. Navy, NATOPS Flight Manual, Navy Model VH-60N Aircraft,
15 Sept 91.

U. S. Navy, NATOPS Flight Manual, Navy Model CH-46A/E
Aircraft, 15 Aug 92.

152

INITIAL DISTRIBUTION lIST
copies

1) Commandant of the Marine Corpq 1
Code TE06
Headquarters, U.S. Marine Corps
Washington, D.C. 20380-0001

2) Defense Technical Information Center 2
Cameron Station
Alexandria, -VA*22304-6145

3) Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5002

4) Professor Michael P. Bailey Code OR/BA 4
Naval Postgraduate School
Monterey, CA 93943-5000

5) Professor William G. Kemple Code OR/Ke 1
Naval Postgraduate School
Monterey, CA 93943-5000

6) Capt. Scott E. Shaw 1
HMX-1 Marine Corps Air Facility
Marine Corps Combat Development Command
Quantico, VA 22134-5061

7) LtCol. J. V. Orlando 1
(Code RPR-4)
Headquarters Marine Corps
Washington, D.C. 20380

8) Vincent M. Balderrama 1
Sikorsky Aircraft Division S-437A
6900 Main St.
Stratford CT 06601-1381

9) Anthony Jareb 1
CNA Representative
MCCDC Quantico VA 22134-5001

10) Jeffrey Schneider 1
Sikorsky Aircraft Division S-322A4

..... 6900 Main St.
Stratford CT 06601-1381

153

