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ABSTRACT

This thesis Dresents a model which simulates the scattering from a fluid

loaded I-beam and the resultant behavior due to fluid-structire interaction.

Chapter I gives an overview of the problem and describes the characteristics

of the solid and fluid, the aspects of periodicity, boundary conditions and the

coupling of the two media.

The governing equations of motion are scaled in Chapter II. In Chapter

III, the finite-difference formulae fcr these equations are derived, as is the

non-local radiation boundary condition. Difference formulas for typical

boundary points of the solI" and corner nodes are also derived. All finite

difference formulae used are presented in Appendix C. Chapter IV contains

numerical results. Conclusions are drawn and areas of the problem that

would require further study are in Chapter V.
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I. PROBLEM OVERVIEW AND DOMAIN DESCRIPTION

The problem we consider is where an acoustic pressure wave emitted by

an active sonar impinges on a submarine. In our case this is a double-hulled

submarine. Active sonar works on the principle of detecting the reflection off

a solid object of an acoustic pressure wave emitted by a source, by which one

can calculate distance and direction to that object as in Figure 1, but instead of

concentrating on the reflected wave we look at the interaction between the

structure and the incoming wave. This generates scattered pressure waves.

The scattered pressure waves include waves which decay as they travel

through the fluid (evanescent modes), and waves which do not (propagating

modes). Since propagating modes do not decay they can be detected. The

main thrust of this thesis is to determine the characteristics of the propagating

modes, such as amplitude and energy. The optimum situation would be to

perturb the double-hulled structure at a resonance frequency which would

increase the amplitude of the propagating modes making them easier to

detect. We investigate the steady state behavior of the propagating modes and

th~e resultant shecar strain fi.l in& the-bam At steandy -state h

characteristics of the propagating modes stabilize which might be used as an

acoustic signature of the structure. In addition when the shear strain field

reaches steady state its value throughout the solid may be used to isolate areas

of the I-beam where large stresses occur. This information could be useful in

the design of double-hulled veo.rsels.

II
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To reduce the modlel to one where we can apply numerical techniques to

simulate its behavior we must make simplifying assumptions which are

discussed below.

A. ASSUMPTIONS

* The source of the pressure waves is far enough away so that the
impinging wave can be approximated by a normally incident plane
wave.

" There are no other sources present such as might occur with bottom
bounce, surface reflection and the like.

" The area of interest--AOI as shown in Figure 2 where the wave
impinges is where the inner and outer hulls are joined or connected by
a supporting spar forming an I-beam shaped domain.

" The I beam shaped domain is a uniformly continuous linear isotropic
elastic medium with no cracks, welds or other deformities.

"* The dimensions of our AOI are such that any curvature of the surfaces
can be ignored.

"• The center spar or support beam occurs at regular intervals through the
structure as shown in Figure 3 allowing us to truncate the domain to
the left and right of center spar using periodic boundary conditions.

"* The incident wave does not displace the submarine.

• The cavities A and B in Figure 2 enclosed by the inner and outer hulls,
and the center spar is void and contain no sources.

"* We are only interested in displacement in the x and y directions as
given in Figure 2 which reduces our problem to two dimensions.

"* The fluid is seawater, the solid is steel.

Our model is now reduced to one where we have two coupled media--fluid

and solid, and the characteristics of each will now be discussed in turn.

3
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A. THE SOLID

A cross-section of the dcuble hull of length 8a is shown in Figure 3. Note

a is a scaling constant for distance. The domain is essentially infinite in

extent in the x (length) and z (depth) directions. Sirce it is of uniform shape

in the z direction, we can neglect this coordinate and reduce our problem to

two dimensions. Our area of investigation is outlined in Figure 3, and we are

now faced with the problem of providing boundary conditions in the x

domain.

Y

x •AOI

z--- -, -,,;":N' ! " -

-5a -4a -3a. -2a -1a 0 a 2a 3a

Figure 3. Cross-section of Submarire Hull

We have a normally incident plane wave impinging over one boundary

of the domain. Thus the pressure is the same at all points (there is no phase

shift) along the fluid/structure boundary. Due to the periodic nature of the

5



structure we expect the solid to behave the same over given intervals of 2a,

that is

f(x,y,t) = f(x + 2aN,y,t) (1)

where N is an integer and f a function describing the state of the solid such as

displacement, velocity and so on. Using this periodicity we can truncate our

domain at a and -a and use the following periodic boundary conditions

f(-a,y,t) f(ay,t) (2)

Lind

fk(-a,y,t) = k(a,y,t) (3)

where k is a positive integer and can signify the derivative with respect to x, y
Ai t, A on t fu, c.-ion.

OyL L LA-e .Lg n - -

The solid has now been reduced to a two-dimensional linear isotropic

elastic medium whose governing equation of motion for points interior to

the domain is given by the plane strain elastic wave equation which is

Yia 2u + ay2 ) + (Aq + Y.(a)L x2V + -y P • 4

-(Z)

u and v are displacements in the lateral (x) and transverse (y) direction, i and

A are Lam6 constants, and Ps is the density of the solid. The I-beam is

deformed due to the imposed fluid pressure. Balancing normal forces at the

fluid/solid interface we obtain the boundary condition

6



",,(au + 1v) 3v _.Ptotal (6)

where ptotal is the total pressure, and ryy the normal stress component. All

other boundary conditions are either traction free or periodic and are

summarized below.

0 on surface DH and EI in Figure 4, (7)

I on CD, EF, GH, IJ, and KL in Figure 4, (8)
r 0

TYY -Ptotal A1 2A- x

f JI L Z1 dl LL L' 6  
L41~ 

Z &~

periodic1
elsewhere. (10)

conditions

"Cxx, ,yy and "xy are the normal and shear components of stress and are

represented by

<~ ali av (11)

-rxx --- X" ( y +2,4 , and (12)

u V (13)

'ay aX)

7
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Figure 4 is the unscaled domain, in which s, and k are constants used to vary

the size of the cavities A and B of Figure 2. Note: U • s < 1, 0 •< k < 1.

x FLUID

Al IlBN 
T

SOLID • (1-•s)aX
X N

2aD E F±

(1-s)a

K L
FREE SPACE

x=-a x=0 x a

Figure 4. Unscaled Domain

B. THE FLUID

We are interested in the scattered pressure waves generated by

perturbations at the fluid/solid interface. The partial differential equation

8



goverring the propagation of these waves in the fluid is the linear two-

dimensional wave equation given by

1 2p = 2p +2p (14)
2~ at 2  aX2  aY

where cf is the speed of sound in the fluid.

These perturbations arise when a normal plane wave of magnitude P and

frequency o) impinges on the surface of the solid, causing it to deform. Since

the pressure wave is of normal incidence (there is no phase 3hift at points

along the surface of the. solid) and the solid is a periodic structure we can

expect the behavior of the scattered pressure waves to be the same in given

intervais of 2a, thus we can use periodic boundary conditions in the sante

manner as was used for the solid.

Ideally, if the solid were acoustically hard our total pressure would only

have two components, incident and reflected. In reality the solid is perturbed

by the incident wave, generating scattered pressure waves which propagate

out into the fluid domain. The total pressure in the fluid can be represented

by

ptotal = pincident + preflected + pscattered (14)

where pinc n = e-ikfy-it; preflected = eikfy-it and pscattered is to be

determined. To avoid cavitation at the fluid-solid boundary we employ the

inviscid form of the Navier-Stokes equation which we refer to as the

compatibility condition and is given by

9



y -Pf- (15)

where Pf is the density of the fluid. Note that only the scattered term of the

pressure is included in this equation since

i__ -i Cit  and Lpyly=0 = ikfe-it (16)

thus

LP +PR) =0. (17)

The scattered pressure waves generated at the fluid/solid interface are

composed of propagating (non-decaying) and evanescent (decaying) modes

which must be allowed to propagate off to infinity in the positive y direction.

To do this we must employ a non-local radiation boundary condition whose

implementation will be discussed in greater detail in the discretization

section of this paper.

10



I1. NON-DIMENSIONALIZATION OF THE GOVERNING EQUATIONS

OF MOTION AND BOUNDARY CONDITIONS

The problem addressed models the propagation of a scattered pressure

wave in two dimensions. This is described by the two-dimensional scalar

wave equation

i D2P _ (18)
Ic at2 -x2 y2

where p is the pressure and cf the speed of sound in the fluid. To facilitate

implementation and to free ourselves from the requirement of using a given

system of measurement such as metric or imperial we scale or non-

dimensionalize Equation 18 as follows. Let

1 - 2 + 2t (19)

represent the unscaled wave equation. We now use the following

relationships:

t=uCT7; x --Y; y =1-;a P=L" (20)
a a P

Here (o is the scaling constant for time and the frequency of the incident plane

wave, a is the half length of the I-beam and the scaling constaiit for distance

and P is the sca)ing constant for pressure. Note that when taking derivatives

with respect to ji we get

11



d =1 d d2  I d2
= and =- (21)

dY a dx d -2 a2 dx2 "

This also holds true for derivatives with respect to Y, and a similar relation

results when taking derivatives with respect to t. With the above

relationships, Equation 19 is now written as

w 2 P a 2ppa 2 p pa 2p•2p+ -2Tp•2 - (22)

c2 at2  a2 ax2  a2 ay2 (

Cancelling common factors and multiplying Equation 22 by a2 reduces it to

0)2a 2 a2p = a2v D2pc - -t2 L +x •-- (23)

Defining

o)a
kf = -- '(24)

Equation 23 is now written as

at2 
-x2 (y22

The elastic wave equation, which is a vector wave equation is given by

J.(1 al a2u a~v a)U (26)

(a2z) a2  
____ ~u a~

U +) +y + - (2)

12



The following relationships allow us to write Equations 26 and 27 in a more

convenient form,

P 2 and X+2 ?c2" (28)
Ps Ps

The constants CL and CT are the lateral and transverse velocities of the solid.

The unscaled forms of Equations 26 and 27 are now written as

T(2 X2 2 2 -+tk (29)

well a's

u and v=- (31)

which are the scaling relationships for the displacement, and rewrite

Equations 29 and 30 as

-r 2 (D 2 u D a 1 -2 -D2 \( 2 a2 u D xy
2v ) _ t-2 "2

a2 (-a2 T T1

L Ty I-ý(L- ) 'a 2  x-2- -T 'q 2 LJ.w

c2( Da 2 v D a2 v -2 D22 a( (33)
C x2 a2 )(a 2 ayW a2 axay (t2)

Defining

kL = -- and kT = ' (34)

13



and dividing Equations 32 and 33 through by o2 and cancelling common

factors they reduce to

1 (a 2u 1)U 1 1 )(a 2U a2v

T xay2 )k kL T~(5

1,__ ¢al ," + v 1 1 )( a ov a,, a2 V,
) (36)

Collecting like terms gives us the final form

1 a2u I a2u (1 1 a2V =i2U

k DX2  kT ay2  k L2

I aV 1~v 12 +\ a2U aV (38
ka x2 '~ T 2 lYk(T T2 !(-J ~- (38)

The surfaces in contact with free space are stress free. (The fluid/solid

boundary is dealt with separately). Therefore the stresses Txx and rxy on

surfaces El and DH and ryy and Txy on surfaces CD, EF, GH, IJ and KL of

Figure 5 are zero.

These components of the stress tensor can be written

3. U +V (39)

Txx= LU,+L +2/.u = 0(40)

=A(DI +DU+2.ug =0(41)
yy --- D-4y

14



x FLUID

Al B

SOLID (

\ NsC \D E F

2 -.*-(1-k) . -- k(2) -•.-(1-k) *
2 1s(2)

"H H

K FREE SPACE

Sx=Ox

Figure 5. Scaled Domain

where ,, if and V are the unscaled components of distance and

displacement and y and A are the Lazn6 constants. We will now scale

Equations 39 through 41 in turn.

For Equation 39 using the same scaling relationships as before (see

Equations 20 and 31) gives

15



(D au . D v(42)a" ay aDx)

Cancelling common factors reduces it to

du dv
= - + -=0 . (43)

For Equation 40 we first divide through by Ps the density of the solid, and

using the same scaling relationships we get

A_.(D Dcu D 3v 2p D a3u%+ 5)- -=0 (44)
ps'~a ox ahy p a Dx

We know that

2 (,4/ ps 2 T (45)
=/PCT-

Similarly it can be shown that

A, 2 2
s = CL 2 CT (46)

Using Equations 45 and 46, substituting into Equation 44, and cancelling

common factors gives

L2c T - - 2 (47)

or

ý - - 2 +2-x=0. (48)

Using the previous definitions oi kL and kT it can be shown that

16



cI k2
-- 2 / (49)

and when used in Equation 48 it reduces to our final formCT au +kT2- 2 JDu = o. (50)

Following the same procedure for Equation 41 its final form is

T x -2 Ty (51)
k• x k•_ k2 av

At the interface the fluid cannot exert a force tangential to the boundary,

hence the shear component of stress is zero there, and is given by

TXY =P! +J =0. (52)

For the normal component of stress at the interface we refer back to Equation

6, Section B and Equation 15 in Section C of Chapter I to see that the normal

component of stress is given by

•= A(p. + . +P-) (53)

where the superscripts I, R and S signify incident, reflected and scattered

pressures. The incident and reflected pressures are given by

pI = e-'ikfy-it and pR = ikfy-it

"rxy is scaled the same as before. To scale ryy properly we will need the

compatibility condition, whose unscaled form is

17



aps[ a2oý

SY = 0--o/a-V (54)

We refer back to Equation 17, Chapter I, Section C to see that only the

scattered pressure need be considered here.

Scaling Equation 54 we get

P aas 0 = Pfto 2D a2v (55)

or

Sa2v
-Py = f02o aD- (56)

V Y = 0at 2

Equation 56 gives us a convenient choice for the scaling constant for pressure

of

P=w2 aDpf (57)

and when substituted back into Equation 56 cancels as a common factor to

give

aPI a2v (58)ayy y --= at---2'

Dividing Equation 53 by Ps and scaling gives

AD (au + vL 21D Lv -- P p R S(59)

paa ax py y=0a ayp,

Substituting the value of P from Equation 57 we obtain

18



).D (ai, +v"'+2yDiv. Pf r2aD(PI+PR+PS)J (60)
Paax ya-+- Psa y p+ (P y6=0

or

( -2 -+ +2 2•p---=p (61)Lk2 axyD+ ay y = 0

where e = Pf/Ps.

Evaluating the incident and reflected pressures at y = 0 we get

pI = pR = e-it, and when substituted into Equation 61 gives

k -2 = -2eket - p. (62)
San1

19



III. DERIVATION OF THE FINITE DIFFERENCE FORMULAE FOR THE

GOVERNING EQUATIONS

Throughout the derivation of the finite difference approximations we

identify gridpoints of the scaled domain with the subscripts i and j and

superscript n. Variation in the x direction is denoted by i, 1 : i 5 N, where N

is the total number of subdivisions (since we are using a square grid the

number of subdivisions in the y direction is the same), variation in y with j, 1

< j < N, and time with n, 0 < n < . Lower case indices denote varying

nquantities, while upper case letters denote fixed quantities. Pi,K would be the

valve of the scattered pressure for all values of i at the grid level y = KAy, thus
isanelmet

Pi,K iS a vector, while pij is an element.

As discussed above we use the letter i to denote variation in the x

directi, . his is a common convention and we do not wish to deviate from

it. To avoid confusion with the complex quantity, 1-I, also commonly

denoted by i, we state the following rule, that whenever the letter i appears as

a superscript it denotes the complex quantity 4J11 and when appearing as a

subscript it is an index denoting variation in the x direction.

A. FINITE DIFFERENCE APPROXIMATIONS FOR THE EQUATIONS

GOVERNING THE BEHAVIOR OF THE FLUID

The scaled domain of consideration as shown in -:igure 6 has periodic

boundary conditions applied at x = 1 and -1 and a radiation boundary

condition for the propagating modes at y = 2. To model the two-dimensional

20



y=2

S- 101

x '

f at2 = ax2  ay2

p(1,y,t) =p(-1,y,t) 1 Periodic

-p ap Boundary
( -t •"'1y Conditions

a•x ax (-_Byt)a

(p Radiation Boundary Condition for the
i ak(P) a +I k-t kth propagating mode

Figure 6. Fluid Domain
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wave equation numerically we must derive an equivalent finite difference

formula, from which we can solve for the pressure for all subsequent time

levels as follows:

.2 a 2p 2 2p (63)

is the two-dimensional wave equation as derived in Chapter II Section A.

Using central difference approximation for all second order partial

derivatives the equivalent finite difference equation for Equation 63 is

k'- [ -'i l- 2p7. +Pý,-] = 1 ,j-- 2pij +p7 + -P+ j+jy-2Pij+ 1]

(64)

where h = Ax = Ay is the step size and At is the increment in time. The

truncation error for Equation 64 is O(h2) in space and O(At 2) in time. Solving
n+1

for Pijj explicitly we have

n+ (2 4At 2 .'Ln..+ At2  n + 1 j + P t +Pi,-l-PI n-1 (65)
ri,j kTh2  kjh+ k,1-Pi+ _i-, IJ r (65j

2 t2

Letting p = 2 Equation 65 can be written as
k~h2

pi' = 2(1 22p 2)pj + p2[P 1+ ! pn,,+ +P~j+I +P ],j-I ] -P1. (66)

The Von Neumann stability criterion

1•-- ý(67)

22



must be satisfied to ensure the stability of Equation 66.1

Special attention must be paid when applying the wave equation along

the boundaries at x = I and -1 for it is here that we make use of the periodic

boundary conditions. Applying Equation 66 at x = -1, i = 0 and y = jh (see

Figure 7) yields

n+1 = 2(1 2,2)pn P, 2[ný1 pn1 + + po7' (68)Po,j =212}P,1- WijP-~ +o,j+I +Po,j-.-ojk8

This requires the value of p at the point (-1, jh, nAt) which lies outside the

domain. By using the periodic boundary conditions

p(0,y, t)= p(-1, y, t) (69)

ax (+l,y,t) - xI (-_,y,t) (70)

we can substitute the value of ((N-1)h, jh, nAt) (where N is the total number

of subdivisions in the x direction) for the value at (-1,jh, nAt), allowing us to

evaluate the wave equation at the boundary.

B. APPLICATION OF THE RADIATIION BOUNDARY CONDITION IN THE

NUMERICAL SCHEME

As was mentioned at the end of Chapter I (Section C), we apply a non-

local radiation boundary condition (referred to as nlrb) to the fluid to

simulate an infinite domain in the positive y direction. Our domain is

truncated at x=1 and -1, forcing our fluid domain to act as a waveguide. The

scattered pressure can be represented as a series of plane waves which take the

form

1For treatment of the von Neumann Stability Criterion see Appendix A.
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O(-h,jh) (04k)

x=0)

Figure 7. Left Boundary for the Fluid
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' 4k - rT for propagating modes

ei(Ykx -kyt) where A3k = (71)

ii - k- for evanescent modes

and = kir. We note that when 13k - i ý'y -kf Equation 71 yields

e-inkY+i(Ykx-t)

which is an exponentially decaying quantity for positive values of y. This fact

allows us to neglect evanescent modes when applying the radiation boundary

cundition, at y = 2.

The total scattered pressure is given by

00

p ake.(Ykx+PkY-t). (72)

This is composed of propagating and evanescent modes. Far from the fluid

solid interface where only the propagating modes are assumed present (for

reason!' given above) the scattered pressure is written

M

I ake(Yk+ky), (73)
k=-M

where M is the total number of modes (positive or negative) under

consider'ation. At the boundary y = 2, we apply the nlrb operator (Scandrett

and Kriegsmann, 1992, unpublished paper).

Bk(p) =L -+ Ak p (74)

to the individual modes of the scattered pressure of Equation 73 which yields
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X y . a e Y k X 13 kY -) ( - -( ki'k + k ''t ) . ( 5
k=-M k=-(75)

Equation 75 reduces to
M.

B(p) = ik- ik~ake'('kX+fkY). (76)
k=-M

The right-hand side of Equation 76 is identically zero. The boundary operator

has annihilated the propagating modes and since the evanescent modes are

assumed to have negligible magnitude there, any scattered pressure waves

reaching the boundary experience no reflection, simulating an infinite

domain in the positive y direction.

To apply the nlrb operator at the boundary y = 2, we rewrite Equation 75 asI I,
a D filkak(ak(T)e'(klh+rkX) = 0 (77)

py y=Jh ki-M
t=T

where we evaluate the pressure at a constant time T and along the boundary

y = Jh (i.e. at y = 2). We incorporate ak and e-iT as ake-iT and define this to be a

new constant ak(T). Note that jIck(T)- = 114akl since Ie-iTUll = for all values of T.

ak(T) is unknown so we must derive an alternative expression to be able to

evaluate Equation 77. The kth propagating mode can be written as

Pk = akei('kx+Pky-t) (78)

and when evaluated at y=Jh and at t = T and employing our new constant

ak(T) we obtain
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Pk y=Jh = ak(j()eiflkjhei'k". (79)
St=T

To isolate aok(T)eiflklh we multiply Equation 79 by e-i'kX (we apply

orthogonality) and integrate over the x domain to obtain

1

f p(x, Jh, T-i§YkXdx = 2ak (T)eiflklh (80)
-.1

or

cxk(T)ePkIh = 2JpQ1,IhT)C'k'dý,
-1

where ý is a dummy variable of integra'ion. We substitute this value of

ak(T)eifkJh back into Equation 77 to obtain
ap 1 M p `d=:0(2

•Y =J~h + "2k=- k_ (ý,Jh, T)e'yk()d =O (82)

t=T

which allows us to apply the nlrb at the boundary y = 2 and from Equation 81

we will be able to evaluate the amplitudes of the propagating modes of the

scattered pressure.

We now proceed with deriving the finite difference approximation for

the radiation boandary condition. Using a central difference approximation

for P y=jh Equation 82 is written as
a t=T
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pý .+pn_ M
+J+Pi,J-1 + •, y Ih, T)eiYrk(x-0)d4 = 0. (83)

2h 2 -=XI k-1at

The trapezoidal rule for integration is

Jf(x)dx - (fl + 2f2 + 2f3 ... +2fn-. + fn) (84)

and is used for the integral in Equation 83, however it can be more compactly

expressed as

b - Ir or I
fJbaf(x~dx = h . 3rfr where b5r (85)

rl elsewhere,

where I is the total number of nodes in the x direction. When substituted

into Equation 83, using a central difference approximation for o (4, Jh, t)at

Equation 83 can be written

n n M
1hJ-+Pi.V-1 + k1 hX r(xi-+T)(pnr-1pr, 0. (86)

21"; 4-'k=_M 2A •1-1r,

2,At
Multiplying by -•-- we have

2At ( - I M

r=1 k=-M

Define A to be a matrix whose i,r entry is given by

M
A(i,r) = flk6reiYk(xi-r). (88)

k=-M 
_

Upon substitution into Equation 87 we obtain
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2Ait P1+ n nn,+ 1 Ap-1
h-(Pi,+1 -piJ-1 )+APrJ -Ap, =0. (89)

n n n+1 n-1
We note that pi,J+1, PiJ-1 , PrJ and p rJ are all vectors due to the J

subscript as described at the beginning of this chapter. The radiation

boundary condition and the wave equation must both be satisfied at the

artificial boundary y = 2. Applying either of the two conditions will require

the use of pseudonodes which lie outside the domain. Through the

combination of the two equations we will be able to eliminate this

requirement. Reproducing the two-dimensional wave equation and the

radiation boundary condition, (substitute k for all x indices in the wave

equation and radiation boundary condition, since these are dummy indices),

We ha•ve

n+ n n-1 At2 (n n n ) (90)

pk,J -2P, +Pk,l O 2 Pk-, 2 Ph2+,J + k,J+ N- - 4k,J 0
f

2At (Pn1  n~A + Apn4 1 Ap 1 
= 0. (91)7 kj +I Pij I APk~j - pk~j =I

1Notl U-tai LJlt O EqUauLoLit aye beiag eval1uatdU at y -- 2 anU thtat theL veLctoLr

Pn, and Pn+I, have a circular shift and are of the same dimension as the

rest of the vector in Equation 91. Collecting like terms in Equations 90 and 91

we obtain

At 2 n At 2 n + -I Ai 2 [n 1 1', +p l2n r
-• T2- +- PJ T 0

f 1]+1 kkj +;{ Pi,j kT2j k, kk,j - ~

(92)
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2At n 2At n p.jn~ Apn-I 0. (93)--- P~ll -•"k,- +Ak,] - k,j

At
Adding -2 times Equation 93 to Equation 92 yields

2At2

n At 2  n+1 At '1 ( At
-2Pk,J-¶ kj-2- 1+ Pk~j I I+-A +Pk1 'I 1--A

( )h 2kf' ) 2k~ f

"4At2 i At 2 p At 2

+T 2-- 2pkI - k2h2 _k-,1 kh--- k+,/ 0. (94)

n+1
Solving for P k,J in Equation 94 we obtain

Sn+1 =(I + t A]-1 r[2At At2 n + 4At2
p + - A- 1 + -+7+ 2- 2 "

2k i k 2_h2  A12  4At 2

expressed as Tp- where T is a tridiagonal matrix with 2- 4At 2  main
exrse sT'IweeTi tiignlmti ih2 on the mi

diagonal and kf2h- on the sub and super diagonals. We must also allow for

the periodic boundary conditions when constructing T. To do this we replace
At 2

the (N, 2) and the (1, N-1) elements of T with A where T is an N by N

matrix. The general form of T can be seen from Equation 16 Appendix C.

Equation 95 is now written as
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n I+ At -1 2At2

Pk,J - jI +jA) ~ 7 Pkj-1 +T~K Ijj (96)

which satisfies both the wave equation and the radiation condition at the

boundary.

C. FINITE DIFFERENCE APPROXIMATION FOR THE ELASTIC WAVE

EQUATION

To investigate the prepagation of disturbances in an "I-beam"-shaped

domain as shown in Figure 5, it will be necessary to apply the elastic wave

equation to points in the interior of the domain. (The boundaries will be

dealt with in a separate section.) By orly considering displacements in the x

(lateral) and y (transverse) directions, the problem becomes one of plane

strain in two dimensions. Reproducing the scaled equations derived earlier

for motion in the lateral and transverse directions
1 a 3 2u (1 ) a2v a2u

T2 Tx 1 4-( 1 - I xy = (97)

1 a2V 1 a2v . 1 1 ) a2u a2v

T2 +X2  (2 - jk2 =)JXay (t2

we use central difference formulas for the partial derivatives in Equation 97

to get the equivalent finite difference equation

t+ - 2 + U 2 U

L1k2 2 1 - 2u1,j +
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S//T 2tvi+•s+• i-l,j+l _ i+l,j-I + -V7
T2T24h2  j +1~~)

The truncation error for Equation 99 is O(h 2) in space and O(,At 2) in time.
n+ 1

Solving for u ij explicitly in Equation 99 we obtain

11, j 2-2 t+i, 1 + - vLu.J1  + j1+

L T~at2 (ý 1~ Vi n
Vil~~l- i-,j+l Vi I,j-1+ i

r ,,.,.2( i .,
[2 _-_, ' ,, i ,, Jju.n-.1 (100)h2 2 k2 1,j

n+"l
Using the same method for Equation 98 we solve for v 4 to obtain

T, j = • +J~ - .-j 2v,,,,.vj_,)

At 22(I (1 1 _

+2 2-'•-• k ) "2 i,j _ "V (101)

To ensure the stability of Equations 100 and 101 the Von Neumann stability

condition of
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At < -- b (102)

Tl L

must be satisfied.2

D. APPLICATION OF THE STRESS-FREE BOUNDARY CONDITIONS TO

THE SOLID

The boundary conditions of the two-dimensional domain are broken

down into two major categories, those whose normal vector is , where

"TXX= Xy= 0, and those whose normal vector is ( 1)where •'y, 0.xy=0.

These are in turn divided into two classes. For At r,0 )they ?re

al. The boundary whose unit normal is (11, that is facing in the positive x-

direction, the surface EI in Figure 5 and

a2. The boundary whose unit normal is , facing in the negative x

direction, the surface DH in Figure 5.

Similarly for fi = 0

bi. Boundary whose unit normal is f ,the surfaces AB, GH and IJ in
Figure 5 and
FBunre whose unit normal is (01), the surfaces CD, EF and KL in

b2. Boundarywhs(O

Figure 5.

The application of the stiess-free boundary conditions for cases al and bl is

discussed below.

2For a brief treatment of the Von Neumann stability criteria see Appendix
B.
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1. Application of the Stress-free Boundary Condition for the Case of

The boundary under investigation is identified in Figure 8 as XY.

Y

Y<

x

0 4(NPf

xI

Figure 8. Boundary with Normal

" (N~-1)

The governing equations as derived in Chapter II Section A

aX u. av =0(103)
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S = + + (= 0 (105)

k 2 D k2  y 2
1 a2v 1 a2v i a2 V a2v 15

1---i---1 aU 2 (106)
k~aX2  ky Ty2  -2 k -)a Xay 7t2

Concentrating on displacements in the lateral (x) direction, a typical boundary

point as shown in Figure 8 must satisfy the boundary conditions, Equations

103 and 104 and the governing equations of motion, Equations 105 and 106.

If we apply Equations 105 and 106 at the node (Nj) in Figure 8 we will
S. ... . . . . xi ,l y 'n 1,n ,,n _ 7,n _ 71 n _ , nl_n . . .1nZl . . .

which lie outside of the domain and are called pseudonodes. To eliminate

this reliance the technique as developed by Ilan and Lowenthal (Ilan, 1976, pp.

431-453) is followed, and is presented here.

The lateral displacement (u) at the node (N-1,j) in Figure 8 can be

expanded in a Taylor series as

n n (2(,2 higher
UN_l,j = uNJ -h " nI + order , (107)

'(XU)N,j,n L2 Iax JN,y,f terms

where Un.1j denotes the value of u at the node (N-1,j) and at time level n.

au D2u
Alternate expressions for and -x are given by equations 104 and 105, we

have from Equation 104
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du kk -2)av _ k2 ý'L- (108)2 2
ax -2 2k a=(k

From Equation 105,

a 2 U =2ýLu -I 2 u -k(2 1 ___(09

ýX-- - t 2 k2 y2  Lj -2 ak(

2 k2T 2  ( Lj I I

t L)x (110)

Thus the lower order terms of Equation 107 can be written as

:._h2k2L_-Isv h2(22u 20, (k2_12.

UNI n1 n ........ + h (k 2 Ju kL +~ kL _ 2 (111)-1,j =UN , k2 )5y 2 +" L at2 2 ay 2  2 xy 11

Using centered differences for y- , at 2, ay2 and the following difference

formula for the cross derivative term

L -_- j+1 - vNj_l- ±NJ,jq• + vNI,j_1) (112)

the finite difference approximation for Equation 111 is

n2k21I (1 ,, n h2 k L [un+1 ,Un+UN-l'Jk2 TT u~'-• l [N'1 -N'j.-1)' 2 At2' N~j-N jN,j +•)

T-
-kL n -A 

+1 N
1  j 

36
2k 2ý(N'+ N N
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Cancelling comimon factors Equation 113 reduces to

-V' ')+ C k n 1 -v +1 - + (_' -_2u

(114)
ni.1

Solving for u Nj explicitly we obtain

n+l =(2 2At 2 (1.1 uj_U, 2At 2
2N -2  L ~lvJU~ 2k UN..¶,j

At2 t n +n + Mt2 1 1. V n 1'_ _ VN_I,j+l)•
+kT (N 'j+1+Nji+ 2ik k2) N- 'j-1) ny it-T

At 2 (1 3 vn ,n (115)
2h2 kT a I,j+i N (151)

The truncation error for Equation 115 is O(3) (Ilan, 1976, pp. 431-453). Using

the same procedure for the transverse displacement an explicit expression
n+1 .v •,: is eiven as

n (2 2A- 2 (kI I+ n , -1 2At 2 n

iV,] 2- 2  2 +k2 N,j 2VN VNi

+A2 V n +Vn H )+A I_--U

A2  N j1 N, 2 k2 12 1- UN1,j+4I)

At 2(1 3 u)( (116)
2L kT3
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2. Application of the Stress Free Boundary Condition for the Case of

In the case of b2, the governing equations

au4 d"V 0 (117)

ay~x2 u kv
LT -2 -+x = 0 (118)

1 a2u 1 a2 u ( 1 i a2v _2u (119)k2 2 k2 y2 2 •x--'-3'-

+ ~ 1 a2 v+(l 1 D21 -
2 v (120)1,2 :12 T?2 •,,2 T--2 71-, •-:20n-I" -VA. n'L vy rvL #%I . v &vv "

and a typical boundary point is depicted in Figure 9. Expanding in the vertical

direction at the node (i, M+I) and at time level n, and ignoring higher order

terms

. 0U +hat" + h2 a7M (121)
' -" .*l; *Alf 2 (A1,2 A,.d\ " "'v\' 3•. / 6tw '

using the substitution

au -av (122)
ay ac

from Equation 117 and

-)2u ___ (123

=k2- k- " +x2  - x (123)

a~~y 2 T a '8,2 k •X a



from Equation 119, Equation 120 now becomes

Lv• + (_•+h' a u h' kT2 a• h2(k 1
u;M1 UM+ h(?i L-1!~ -e (3,24)1,M+ , 2 at 2  2 k• ax 2 I"• - )axay

x
(i-1,M+1) (i,M+1) (i+IM+1)

SOLID

FREE SPACE

Figure 9. Boundary with Normal (0_1)

aV a 2 u a 2 u
We use central difference formulas for ýx' -•" x2u and for the cross

a2v
derivative term x-a the following finite difference formula is used

a2v 1 nn 1 +~, v V vi+l,M+I) (125)
ý-•;- i+vý1, v ,M -vi-lM+l

The analogous finite difference equation is now

ifn -~ " h( ý 2 (u7+ -n 20 n -1~
i,2h 1+iM 2At2 iz,M 1 i,'M
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h2 J2j1(n I'-2ur +url
2 kh2 1+l I'm 1-1,M)

+i T_ 2 v"1M - vi"+1M - v'in IM+, + vij,-1M+1). (126)

Cancelling conunon factors yields

1,M+1 I'm~ - 1(vin1jM - v'in I'M) + 2At HT ,-u~ u

2k 1+ (u, 4l~ FI)+1 4k2  _I'i1M +I'M _1,M - + Vi+¶,M+1)

(127)

and solving for Uj4explicitly, we obtain

jT2 -u-I + liM+1

At 2  I'M) At n n
hkL2 (1+J 1-]M 2h2~ k2 kT):1,+ +1M1

2 (k2kT2Jui+iM -u-,

n+ I
Similarly for V iM we have

At 24t 2( 1i1
(ViM 1 M + 4TIv- 1, + ) A,
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At)3U (129)
h2 ýk, k ,M

E FINITE DIFFERENCE APPROXIMATIONS FOR THE CORNER NODES

The I beam shaped domain has four 2700 corners which are identified in

Figure 10 as 1, 2, 3 and 4. The treatment of these corners falls into two

categories, a) corners 1,3, and b) corners 2,4. Within each category the finite

difference formula applied is identical, the difference between them comes in

the cross derivative terms of the elastic wave equation. Each category will be

discussed below. It is important to note that only the governing equations of

motion are applied. The stress free boundary conditions are omitted due to

the complexity that arises in trying to apply stress conditions at the corner

node. We assume as in Fuyuki and Matsumoto that the consequences of

neglecting these boundary conditions is minimal. (Fuyuki, 1980, pp. 2051-

2069)

Category a (Corners 1,3): An arbitrary numerical mesh with AX - Ay = h

about corner 1 is presented in Figure 11. The governing equations of motion

are

+ 1 2 DI+(1 I I JIV I2u (130)

1L 2v 1 - 2 v (Y 1 1 3u y 2v

1 DI 1 DIV T• = au D (131)
kqx 2  k 2 I 2 2 -L
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Figure 10. The Corner Nodes
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At time level
t=n.

x ;0i. j+1); -
(i+1,j+1

(i+ j (ij (i+lj

_ m -I . . .. . 0 +m -- "

Figure 11. Corner Node-Category a

II, EqI~uatLion khZVLUL1t ... h-~S~--

a2u -2U D2U
furmulas are used for the -at2, x , terms and for the cross derivative

a2v
term axay the difference formula of Fuyuki and Matsumoto (Fuyuki, 1980,

pp. 2051-2069) is applied at the node (ij) which is

a2  + +

Where D+ is the forward difference fordmula
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Dx= ~[1 0 1,- (133)

and Dx is the backward difference formula

x= [0i - urLj. (134)

The resultant difference formula for the cross derivative term in v at node Qj

is

DIV + r +_ v +0. -0 -n n -vVn  - 2vin] (
DxDy 2h2 [ i+1,j i-lj +l 1,1-1 1+1,1+l i-lj-I (135)

which is O(h 2). The finite difference equivalent of Equation 124 is

i1 J- 2uý +U 1 .. .I+ . .1. -.. . 1 j

¶ ( 1 n-K v ; + v.) -v
2h 22kvk 1

At2  -ur +U.- (136)

Solving explicitly for u from Equation 130 we obtain

o+= At2 0 i ( 2A t21 1)_ nu+ At2 U n +n

-i'j+2-Vijj-2 - +l-2Vj-n1

1+ ± +0- -v n1-2I)2h -L2 k•T 1,j, + Vi-i,j jv+I+ -V _ v
(137)

n+l

Similarly for Equation 125 an explicit expression for vI+1 is
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,.;, =At' . +v f 2A, 2, 1 &)V•'j ,,(V,,, +7-,)
k, 2 ( 1+1h k k~Ll k 2h/

,,s~ ~ 1 -T v,,sv-,)+ IF- TL2+ if' ,,kL,--:ts

±T(T"i2 + i- 1, ij+1 ij-1 i+,J+1 i-Ij- -Ui,jV,"

(138)

For Category b), the governing equations of motion are the same. The finite

difference approximation of all terms with the exception of the cross

derivative are done in the same manner. For the cross derivative term in the

case of Equation 124, the difference formula applied at the node (ij) is

a2 1

- - _~ + DXDfl (139)

p277
Thus -x---y at that node in Figure 12 is represented by

1 [2vn', + vn"~ v+ 0v -v7 _v,~~ n]
2h2 [ ij +l 1 + - v,j+l -+,j i-lj v i - vj-1 (140)

The finite difference approximation to Equation 124 is now

U n + u 01)1,2L, i ]i+l, j-2un 1j)un 2,j 72 -1- (i,j+I - 2u +U i'j-1

2k0 k+) 2 i+,,j-+ n 1 ,j -vij+l - V0p-)

T2 1 -1nl u,j+ 1n+1j (141)

- t2 \,Jh L+ ,,) J
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(i-i 4+1) (ij+1)

Figure 12. Corner Node-.Cateogory b

n+1
Solving epnicitly fnr u, enWM

zJ+~2L (1? . zU ))Ž -U7j + At 2 (7 +ij. + )
zA-1,j k ~ ~ kTy'hk~

At 2 ( ( 1-4Vnl~ _V Jj2vj +t? IjlVj~ i~)U

n+1.
in the same manner an explicit expression for vjis
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.n+i A 2  + in 2At2(1 nVj At 2

-2  0 Ij 2- - i+-V,+

Ij ýTf (1 h-2-•v+, 02 Of• h , 1+

Aitu2( 1 1 )2 un u7 --~j-1)-n+2h2 2 k• (:.) I 'j - ,+- i+¶,,-i-; -k2 1 +, 14) 1-1

L T (143)

F. BOUNDARY CONDITIONS AT THE FLUID/SOLID INTERFACE

The boundary conditions at the fluid/solid interface are modified by the

introduction of a normal plane wave ii'Kident on the surface of the solid. As

a retsult the normal component of stress is no longer zero. We must allow for

ti'e effect of the scattered pressure at the interface, which is a result of the

compliance of the I-beam structure and reflections of displacement waves

from intprnml hnindaries, This is done by use o; the compatibility condition

as derived earlier. Our necessary equations are

~3u 3v

1y = Du+ = (144)

k 2 J~ 2 a' _2Ek2 -it -)uL rk -pS (145)

I a2u + I au +( 1 1 a~v a2u(16

kf Dx2  kT y IkV kT2 ýXaY =P- 16

1 a2v4 1 a2v (1 1 a2u -a2v (.7

k2 DX2  k2 y2  7 k2 Txy at
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ap -= -V (148)
ay -"I at2

ia 2p a2p + 2!P-19• 2 02P 2P 4 32p(149) -'-fs -t -= a-X- aY2

where c = pf/ps and pS is the scattered pressure along the boundary y = Kh (at

the interface, see Figure 13), and at time level n.

Explicit expression for u0+, and 0+ are derived in the same manner as

before and they are

Uin+ ( 2 A t 2 ( 1 + - n -, 2 A t2
-

a~ f.'.... . " 2,hk kf) I..... .k7'

At2  n 22

h,•k 2 2h- tk- kf,

At 2 1 3 )t(1 .n n(5

2h2 kh 2- T IK 1,K)

+1(2 2At2 ( 1+ vnfy +~ ~2At2
(2 ~ ~ ~ I 2 2 )iKKL VinK-

+ - vi'ix 1-,) + A2 -2i]K.I

h k7, h (2IkŽ T~

A t ' _( ( 1 . _ 3 2 A t 2 C( 2 e - n (1 5 1 )

2h2 k 2 k~ jý+],K u~inK)--+e PiKr4
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(i-1,K+1) (i,K+1) 0+1,K+l)

I I

I I I fluid
I I

(i-1,K) GK) 0+1,K)

(i-1,K-1) O/,K-1) (i+IK-1)

Figure 13. Fluid-Solid Interface

Looking at the compatibility condition, Equation 142 we use central difference

approximations to obtain

IKAt 2,K-1 vý+' - 2vgK + Vy) (152)2h At 2,K K (152)

assuming that it is applied at the boundary y = Kh in Figure 13.

Solving for Pi;K-1 we obtain

pK 2h - vn+1 __n2 v;+V7+ (153)

all quantities on the right hand side are known. We now have a method of

calculating P7K-1 which is required when applying Equation 149 at the

boundary y = Kh.

Solving for the pn+I term of Equation 149 we have
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2- At2 ýIK + At2 ( Ki

n+ 4_4 n r pn 1
h2 kfh2 +1,K +,PK+ +K1PK. (15-4)

The components of the right-hand side with the exception of Pi,K-1 lie in the

interior or on the boundary of the fluid domain and can be evaluated,

however PnK1 is essentially a pseudonode for the fluid and is determined

from Equation 153 above. By this method we have now generated the

scattered pressure waves caused by the vibration of the solid at the fluid/solid

surface.

G. PROGRAMMING CONSIDERATIONS

The program for this thesis was written entirely in Matlab 4.0 Beta

version for two reasons,

* Ease of programming

• The ability to generate quality graphics.

Although originally intended as a linear algebra toolkit the above features

have caused it to be used more and more as a high level programming

language. In our case Matlab was convenient since the fluid and solid

domains are square matrices, which are easily manipulated in Matlab.

Updating values is done somewhat differently than in FORTRAN or C and is

discussed below.

Equation 66 of this section updates the interior points of the fluid domain

and is given by
2ý nP)~ +n pn "1 ,j+P n-1

-= 2(1- 2p2 )p_,j +P+[Pi+~ + P!-Ij+ ij+l+ pji1j-1]-Pi,j

an equivalent FORTRAN statement might look like
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DO 10 I 2,K

DO 20 J = 2,K

P(I,J,N+I) - 2,.0*(1.0-2.0*(RHO**2))*P(I,J,N)

& +(RHO**2)*(P(I-1,J,N) +P(I+1,J,N)+P(I,J-1,N)+P(I, J+1,N))

& -P (I, J,N-1))

20 CONTINUE

10 CONTINUE

Here each value is updated individually by using a double DO loop. In

Matlab this is done by "shifting" a grid the size of the interior around the

appropriate matrix and weighting terms. The equivalent code in MATLAB

would be

PNEW(2:K,2:K) = 2*(1-2*RIOA^2)*PCURR(2:K,2:K)

+(RHOA2)*(PCURR(1 :K-1,2:K) +PCURR(3:K+1,2:K) +PCURR(2:K,1 :K-1)

+PCURR(2:K,3:K+1))-POLD(2:K,2:K).

where PNEW contains the new values, PCURR the current values and so on.

All updating is done in this manner eliminating the requirement for

multiple do loops.
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IV. NUMERICAL RESULTS

In an effort to verify our code we checked the behavior of the fluid and

employed energy conservation methods to check for the consistency of the

coupled domain. For the fluid waveguide we want to ensure that the

propagating modes behave as expected, that is, they should not reflect from

the artificial boundary. This was done by placing a driving force of the form

p = Anei(Jny+V"Xt) (155)

where f k2 = 2- r and yn = ng and kf _ (Ref. Equation 24, Chapter 1,

Section A) at the boundary y = 0, which excited the fundamental, first and

second modes (n - 0, 1, 2). The coefficients An had value 1 for all n. The

amplitude of each mode was measured at the boundary. As can be seen from

Figures 14 a, b, and c the fundamental and first mode approach the value 1

with the second mode showing the same behavior but at a much slower rate.

To check that the coupling of the two domains was working correctly we

eliminated the cavities of the I.-beam which reduced our problem to one

which could be solved analytically. For a normally incident plane wave only

the fundamental mode was excited. Since the incident wave displaces the

solid only in the y direction v has no x dependence and u is identically zero.

The values of A0 wid v are given by (Scandrett, 1992, interview),

A r = i(1 + m4 ,1 52 v = ei cieliy -ikr)
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For kf=1 and kL = 0.2542, ci and c2 were given by 0.0625 + 0.03i and

0.0585 - 0.0374i respectively. In this case the magnitude of IIAoII of 0.1211

compared favorably with the numerical solution of 0.1255. A major

discrepancy lay in the numerical and analytical values of v (transverse

displacement). The average absolute value for the numerical solution was

13.12 while the average absolute value for the analytical solution was 0.0965.

They exhibited similar behavior but the numerical solution was translated by

a constant term. We believe this to be a result of there being no displacement

term to compensate for the effect of imposing a periodic pressure

instantaneously in time which has caused our solid domain to drift or

displace, violating one of our initial assumptions (see Chapter I, Section A).

To nullify this effect we take the time derivative of our steady state solution

for v and then compare with our analytic value as can be seen in Figure 15.

Again the numerical and analytical solutions give close asreement. A second

check was to apply energy conservation methods to our steady state solution,

from which it can be shown (Scandrett, 1992) that the propagating modes

must satisfy

XMh~nI 1= -2flO Re(AO) -1Im JPI 0=UI =dx. (156)
n=M -1

Thequnttis ~M1IAnIad -213O Re(AO) for the various values of kf

are listed in Table 1. Considerable discrepancies exist throughout, which may

indicate either an error in the code or the inability of our simulation to model

the high frequency comnponents which exist at the interface. Another factor

which may contribute to the failure of the integral is the translation of v

which was discussed previously. With this in mind we must possibly

consider the following results as being inaccurate.
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The first aspect we look at is the amplitude of the propagating modes of

the scattered pressure. For kf = 7, (this we call our original system) the time

history of the amplitudes for the fundamental, first and second modes are

shown in Figures 16, 17, and 18 respectively. These indicate roughly the rate

of convergence of the numerical method.

TABLE 1. ENERGY CONSIDERATIONS

kfPY=O'Y= odx1 , -n=-M nhAn12 -210 Re(Ao)

0.5065 -0.1735 0.022 0.0003

1 0.475 0.0279 -0.2138

1.2516 0.12965 0.0006 0.055

2.026 40.5886 2.135 3.782
3.3446 -0.6093 0.5380 -1.3844

4 2.6288 0.2179 -0.6506

4.5585 7.6195 0.2967 0.5685

6.5572 -5.72 0.0835 -0.4053

7 4.0212 0.0644 0.0667

7.5 0.18715 0.0846 0.6723

8 4.13916 0.5225 0.2738

1 9 4.8779 0.0742 -1.5974_

To gain insight into the characteristics of the solid, we treated the flange at

the fluid-solid interface as a thin plate and tried different values of kf

corresponding to the resonant frequencies of a thin plate with prescribed

boundary conditions. The first case was a plate with the fixed (referred to as

FF) boundary conditions given by

v(-1) v(1) = v"(-1) = v"(1) = 0.
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The resonant frequencies are

= CThn21r2 (157)(n=4a46(1 - v)'

(Lalanne, 1982, p. 103) where v is Poisson's ratio, h is the thickness of the

plate, CT is the transverse velocity of the solid and a is a scaling constant for

distance.

For the second case, damped (referred to as CC) boundary conditions were

prescribed, which are given by

v(-1) = v(1) = v'(-1) = v'(1) = 0.

The resonant frequencies of this system are given by
cThX2

• = r., (158)

4ajbt I- V)

where X2 = 92.37, X2 = 61.67 and X2 = 120.9. (Lalanne, 1982, p. 103)

The purpose of this experiment is to determine whether the I-beam

exhibits behavior similar to a clamped or fixed plate, since it would be

advantageous (numerically) if we could substitute a periodically placed

Vu nLlLdar CondILLit ionfrte tL k iI L•L6 kUI VI klWVZ J LL£,5 "L L-, 7k1-

of the I-beam rather than having to calculate finite difference approximations

for the entire I-beam.

We do this by plotting the amplitudes versus the corresponding values of

kf for the fundamental, first, and second modes. The presence of any peaks

would indicate a resonant type behavior. If any of these peaks corresponds to

a particular value of kf for a clamped or fixed plate we say that for that value

of kf (and hence 0), the I-beam behaves in a manner similar to a plate with
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clamped or fixed boundary conditions. This gives us a possible range for kf

values on which to concentrate when looking for resonant frequencies.

The values of kf are given in Table 2. The quantities in parentheses are

the modes that propagated for a particular value of kf which is determined by

the maximum integer value n can take sud-t that 3n is real (Ref. Equation 71).

TABLE 2, kf VALUES

SYSTEM

CATEGORY ORIGINAL C-C F-F

1 1 (0) 1.2516 (0) 0.5265 (0)

2 4 (0, ±1) 3.3446 (0, ±1) 2.026 (0)

3 7 (0, ±1, ±2) 6.5572 (0, ±1, ±2) 4.558 (0, ±1)

We divide our values of kf into three categories (for identification

purposes) In the first category we include the values of kf corresponding to

the first resonant frequency of the clamped and fixed plates and the values of

kf for our original system which allows only the fundamental mode to

propagate. In the second category are values of kf that correspond to the

second resonant frequency of the clamped and fixed plates as well as the value

of kf which allow only the fundamental and first modes to propagate. The

third category corresponds to the third resonance of the clamped ard fixed

plates and the first three modes in our original system. Also included in this

final category are the values of k1 = 7.5, 8 and 9 which will allow us to study

the behavior of the second mode at higher frequencies in greater detail.
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In Figure 19 we show a plot of kf values versus the amplitude of the

fundamental mode. Computed values are shown in black. A cubic spline of

the points involved is shown in red. We must note however that this spline

is only a possible representation of the behavior of the amplitude for different

values of kf, since time constraints did not allow us to conduct a more

comprehensive set of simulations from which we could obtain an accurate

picture of the behavior.

It can be seen that for kf = 0.5065 and 2.026 (the points labeled FF1 and FF2,

the I-beam is exhibiting a resonant type behavior. These values correspond to

the first and second resonant frequencies of a fixed plate. It can also be seen

that for values of kf greater than 3.5 there is little va-.2ation in the amplitude

of the fundamental model since we are now past the first cutoff value (after

which three modes propagate) of kf = n. This leads us to believe that at these

higher frequencies most of the activity takes place in the higher modes.

However the total energy calculation shifts from fundamental to first and

back to fundamental as can be seen in Table 3.

In Figure 20 the only resonant behavior is exhibited for the value

kf = 3.446 (the point labelled CC2). This frequency is just past the first cutoff

value (7) and the amplitude of the first mode is double that of the

fundamental (compared with the corresponding value in Figure 19) which

confirms that at higher frequencies energy is being propagated in the higher

modes.

In Figure 21 we plot the amplitude of the second mode against kf. The

only resonant type behavior which exists here is for the kf = 8, but since the

amplitudes involved aie so small it would be difficult to draw an accurate
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conclusion about the existence of a resonant frequency. Another aspect we

investigate is the proportion of the total energy carried by each propagating

mode which is given by the formula

n m 2(159)1i jd
p=-Ml

where En is the energy of the nth mode and An the amplitude of the nth mode

(Kinsler, 1982, p. 110). These quantities are summarized in Table 3.

TABLE 3. ENERGY CONSIDERATIONS

kf EO El E2  E-1 E-2

0.5056 100 N/A N/A N/A N/A

1 100 N/A N/A N/A N/A

1.2516 100 N/A N/A N/A N/A

nTIA ,KT A TOIA W i A

3.3446 13.04 43.47 N/A 43.47 N/A

4 13.36 40.82 N/A 40.82 N/A

4.5535 7-47 46.26 N/A 46.26 N/A

6.5572 82.43 2.29 6.5 2.29 6.5

7 58.23 8.08 12.81 8.08 12.81
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We can see that the proportion of energy carried by the fundamental mode

varies from 100% to 12.04% as kf goes from 2.026 to 3.3446. This can be

accounted for as a redistribution of energy that takes place as the frequency of

the waves passing through the fluid wave guide pass the first cutoff value of

kf = 2r. Similar arguments hold for higher values of kf.

Finally we take a brief look at the shear strain field generated in the solid.

We do this for two reasons, one to check the behavior at the corner nodes and

two, to find out where the maxim-tum shear strain occurs.

When treating the corner points we neglected applying the stress free

bu ..... y conditions there assuming this woAlld haup no adver,, effect on

the behavior of the solid. Were this assumption invalid we would expect to

observe singularities or other irregular behavior. Provided in Figures 22, 23

and 24 are snapshots of the solid at different time levels which display no

unusual behavior at the corner nodes, leading us to accept the assumption as

valid.

From an engineering standpoint we are interested in where the

maximum shear strain occurs for possible failure analysis. As can be seen

from Figure 25 the maximum occurs along the transverse borders of the

I-beam cavity, We must note that the amplitudes and frequencies of the

acoustic pressure waves involved in our study are not comparable to those
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which would cause permanent deformation or failure, but which could result

in fatigue cracking if subjected to prolonged periods of stress.
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V. CONCLUSIONS

Several problems arose in implementing the numerical scheme. It was

found that the non-local radiation boundary condition did not completely

annihilate the initial wavefront and a small amount of reflection took place,

but over time the effect of this reflection became negligible. Evanescent

modes did not decay sufficiently and were reflected at the boundary adding to

the overall noise of the problem.

When calculating the amplitudes of the propagating modes at steady state

we applied the formula

Ak = JPjy=2 eik2xdx (161)
-1

which should yield consistent results for any y values in the fluid domain. In

the neighborhood of the fluid/solid interface this was not the case as can be

seen from Figure 26. We believe this is due to the presence of high frequency

components in this region and having too coarse a mesh to effectively

evaluate the integral there.

With a stepsize h of 1/40 our truncation error was on the order of 10-3.

To increase the accuracy we can perform Romberg extrapolation or decrease

the stepsize, thereby increasing the dimensions of the matrices involved. The

latter was not an option due to the construction of the code and machine

limitations, in that a simulation which involved 10 to 15 thousand time steps

took from 10 to 12 hours to perform. Increasing the size of the matrices
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involved, thereby increasing the required time, would not make it a suitable

code for experimentation and timely results.

Amplitude of fundamental mode
0.55,•
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Figure 26. Amplitude of Propagating Modes in the Y-domain

Aspects of the problem which deserve further study would be the use of

obliquely incident waves vice normal as was used here. Variation of the

cavity size and its effect on the amplitude of the propagating modes should

also be considered. As a simplifying assumption the cavities were considered

to be void. It would be realistic to expect that they may contain fluid

(seawater) or an acoustic dampening material. Modifying the model to
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account for such conditions warrants further study. A final aspect that could

be considered is a resonance analysis.

Thr-oughout all of our finite difference approximations we were able to

maintain second order accuracy in space and time. We did not have to resort

to the use of pseudonodes outside of our fluid-solid domain. Finally the

possibility of being able to establish an acoustic signature for a double-hulied

structure could open up a new avenue of submarine detection for which this

thesis could be considered a starting point

75



APPENDIX A. VON NEUMANN STABILITY ANALYSIS FOR THE 2-D

SCALAR WAVE EQUATION

The general form of the scalar wave equation being used is

1 &2u a2 u 32U
(A-1)

Cf 2 - T72-+ 5a-l)

whose equivalent difference equation, given Ax = Ay = h is

1~ [j -~_u, 2n0l 1 4-i147j_2U)+,j++ l - ,+Un
cIAt Iu' 'l , 1- h2 • ijj i,j-1)

(A-2)

The error function takes the form

4 = E~rei(fPp+Wq)h. (A-3)

This is substituted into Equation A-2 and common terms are cancelled to give

1 (ý 2+ý_1) = 1_(eilh _ 2+e-flh)+-12(ei1,,_2+e-i'h)" (A-4)
c 2At 2 h 2

Using the following identity,

.'al: + --iax
COS M =e (A-5)

2

letting 3Pi = *b and defining p = cAIt/h, Equation A-4 reduces to

4 -2+ ý-1 =p 2 (4 cosI3h -- 4). (A-6)

Multiplying Equation A-6 thiougi. by ý and collecting like terms gives
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or equivalently

ý2-2<1-4p2 sin 2(1ii'i + 1 0. (A-8)

The roots of this quadratic are

1-P 2} 214 2,J

For stability we require

which forces

4( 1 - 4p 2 sin 2(, ) -4 <0. (A-10)

Solving for p2 in Equation A-10 gives

p 2 < (A-1i1)

which reduces to our final stability criterion of

-- (A-12)

2 sin2(~

* or
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APPENDIX B. VON NEUMANN STABILITY ANALYSIS FOR THE ELASTIC

WAVE EQUATION

In this section weŽ give a brief outline of the stability analysis required for

the elastic wave equation, whose general form is

T. -_. + L _ = 2T (B-1)

5hcy axy Wt

C 2V 2 2V( 2 ( 2 a2u 2 (a271

.~CL rCL a)y -2)t
CT ýx2 + cL -y2 + L • ,.

The finite difference approximation for Equation B-1 is

CL/fn -2A +!L 4 +0

|CL -C )T 
)h = 2t .(U uP-• ) (B-3) 

h+ 2

We use the following error functions

U =U rei(pp+pq)h and v = V~rei(flP+rj)h (B-4)

which are substituted into Equation B-3, common terms are cancelled and

complex exponentials are gathered into trigoncmetric quantities to give

-4r2 c2L sin2 Ph.+ 2 sin2 2 - r2(cC2 )(sinphsi )V= -2+ -. U.(5)

Following the same procedure for Equation 11-2 we obtain
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2 CSn '2)

Equations B-5 and B-6 can be written in matrix form which is

-4 2CL sn 2.P C~i2 7) -r 2 (C2-cT2)sinI3hsin*'
CL Si L+ s 2) = 3 ('

-r(2-42) sinflh sin 7h -4r2(CTIsin' Ph. + C2 si_2 =A (B7
2 2

(B-7).

where A = -2 + --1. The eigenvalues of matrix in Equation B-7 are
22 2

2 2 2) r(C 2 - CT) 2)
2r2(c[ + c2)(coslh+cosh - 2) + ----- •-- (cos(Iph - )h) + cos(/3h + )h)- 2)2 )

(B-8).

they take on a maximum value when f=h = z, and we obtain

We are now left with the identity

4-2+4-1=-4r (CL +C2) (B3-10)

or

27 + (4r 2(CL2+cT2)-2) 0 (B- =1.

For stability we require

which forces
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(rr2(c' + cT)-2)2 -4•0 (B-12)

or
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APPENDIX C. FINITE DIFFERENCE FORMULAE FOR THE EQUATION OF

MOTION AND BOUNDARY CONDITIONS

This appendix contains the finite difference approximations of all the

equations required for the simulation.

Solid

1) Ejastic Wave Equation

kALj t22 (Iý + + A2( j

Aj T2h 2 1+1,jJ1) Ti
Atl2 At 1/( n

4h' =k2 k2  1i-1,j+l 1-1,j +1 1+U1,j-1 *'1i,j-I1

A ( 2 - 2--At ( 1 - 0-. (Ci- 1)

hf2 T2A

Vn+l _ At2 -z! + At2 7 , ,n

"Q 117 , 1- t 1-• it'*i j1-1,}-1] 8

2(

+ 2 - ý•t2q j2 2 (C 2)

h2 1k



Stress-free Boundary Conditior

Surfaces withi e. = (1)0
=~ 2.14 1...ij 2At 2  +At 2 ( +

+At2(1 1n t2 1 3

2h 2 k 2 1. kZ i~}j '4 2h 2kj i- j iIj+ I ,j- ) (C 3

( 2At2 (1 n--i 2&t2  
, At 2

Z)7+1-~ 2Z -U j Vi +O

(~ 2At-_,j2 2 ( i -l 2 v7j1 )
h2 kL- r) T' TT 2hkL

At 2( 1( _ At 2 ( 31 3
-U \ _I1*l+)ThI. k o (C- 4)

(h1k ¶ l,j-2h2 k2 k , sj - 141+j

L2



Surfaces with A -- (0)

-~ +UT +3At un,_ At2 (U7 J1 1 + U
'4j h2 T2 ) 2 4 1, h 2k ' h 2 kL2 +

At 2 (iV At2 n(1 3)(,i n-7

( iljl 1 + I nj _j(

))Vn _At 1i- + 2 At2 At 2 *

nJ2 (c k 7- kT h2 k hk

At 2 ( I 1 ý .j U / At 2 (i1_3_U 82jU 4i T- jT2 I1+2k I)(u1+1, 1-u1,j)(C8

Surfaces with Ai

014 2- 2 L~~ 2  -- '4 I + ' ' h 2kb i+1 i-1j

At ,V At' 3 _~1 1 ±) 1 -JVin -Vin ) (C -9)
T2 1- 1+1-L 4~j _~

v9;Af 2id( 1 +1Y~ )). - At2 +

( 2- +k - )JO,Ji - +ý- 2 k T h2k2 Vij+1 + h 2kT2ý11j 11j

At 2 . 1 1 t2 1 - (C -10)
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Corners 2 and 4

nfl+.(2 2At2 (1 +i 1 + At 2 ( At2 1,h22u +
ijj +v1h2 k k + hkLv 1  +1,j 1<-1,j) At2'" i) Q-i)

j-2 (2 +J~ ~ + ViT~~t"'j+' J•,J-')_1

2 L At 2  2 n Vn

2 2 dA 2 1 + 1 , + - At 2 (n,) , in

At 2 ~ ~ V (i VV1 ý (V -UtU.-u 1  ~ ( Ci+ -12~)

+ j 2- --- j + vi+ L1 -h ( i - -13)

h22v 2 2 ),

+ t2- (t I I 2u n +.j J,i j_l + U n-l~j+l _ U7lJj _ i-7 j _ U j+l _U j (C - 12)

2h kL k)(-L ;2 i 1 ~+ 1 + -

Corner nodes 1, and 3

S 1 1 n 1 
2 2 ( 1 1(At 2 A t+2=j 2 + 2+ + + --' -tui j+l - u j-1l

= L T h L i ,) k 1)-2, , z

At2(1. 1)(v vn v v+ 1 -vn 1 .- V - 2vi (C -13)2• , T2 I+,s ,-,+ ,s, ,- -,- +,,,+l i ).(

2hT 2  1+ ,J 2+ 4 2-,)-Zi7+ t 2 - k2 T2 i,s- e 1s+ h- -v+J,,+v,,S)+v+l t ( _v8j_l)

At[; 2 1,+1,U7 +0¢ , +"1'4 + +U ?I,- ,,,-- 0 , +,,l" _-Un2 (C- 14- )
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APPENDIX D. COMPUTER CODE

% function basel - base for the 'I - beam ' shaped domain
% written by: Lt. Hugh Mc Bride USNR
% date : Apr 92
% constructs a grid in the shape of an I beam

function (b,rows, pcoll,pcolr,fill,coll,colrj - basel(n)
% variables
% rows - identifies the rows to be zeroed to form the I beam
% coil - identifies the columns to be zeroed to the left of the center spar
% coir - identifies the columns to be zeroed to the right of the center spar
% pcolr - identifies the columns to be zeroed to the right of the center spar
% includir- the boundary values.
% pcoll - Jentifies the columns to be zeroed to the left of the center spar
% includii.. the boundary values.
% bb - building block of the correct size
% cc - dimension of the blocks to be zeroed out on either side of the center
% spar

a e - variable to adjust the size of the zero blocks and keep it symmetric
% fill - block of zeros of appropiate size to fill in the spaces on
I either side of center spar i.e. zeroing out,at every time step.

m a - no. of divisions in the half length of the dowain.
% cr - variable used to pick the columns to the right of the spar

% build a grid of the correct size.
bb - crnes(2*n+l);

% the basic variables required to build the I - beam shaped grid
m - nfl;
& = 1092(n);
cc - (s-1)*(log2(n));

I determine the row numbers to be zeroed out.
rows- m-(cc-l) :m+(cc-l);

% columns to the left of the center spar, pcoll includes the boundary points
I coll does not.

coll - 1:cc+l;
pcoll - i:cc+2;

% columns to the right of the center spar, pcolr includes the boundary points
I colt does not.

cr - 2*n+l - (cc);
colr cr:2*n+l;
pcolr - cr-l:2*n+l;

4 construct the block of zeros used to fill in the spaces on either side
% of the center spar at every time step.

e - eize(rows); e - e(2);
d - size(coll); d - d(2);
fill - zeros(e,cc+l);
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bb(rows,coll) - fill;
bb(rows,colr) - fill;

b=bb;
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%function bndf mx -boundary facing in the negative x direction
4 i.e unit normal =(-1,0)

% written by: Lt. Hugh Mc Bride USNR
% date :Apr 92

% bndfnx applies the traction free boundary and the elastic
% wave equation a long the boundary of the I-beam with unit normal
% (-1,0) the technique used is that as developed by Ilan and Lowenthal
% and is not discussea here.
% the columns containg the nodes on the surface in question and
% the required neighbours (those one cc~lumn in from the surface)
% are picked off from the current and old values of u and v
% the shifted and weighted with curistants fronm the vectors
% cunx (Constants for 17-values for the Negative X boundary)
% and cvnx (Constants for V-values fo~r the Negative X boundary)
% and inserted in the correct positicvi of the updated u and v.

function puri ,vn] - bndfnx(uc,vc,uo,vo,un,vn,rows,pcoll,c,d);

% variables
% un updated values of u vn : updated values of v
% uc :current values of u vc : current values of v
% uo old values of u vo : old values of v
% rows : used to identify the elements of the matrix which
t are zero for all times they ýl~so contain the row location of
% the nodes on the boundary.
% pcoll carries out the same function as rows for
% the columns, and the contains the column location of the
% of the boundary facing the negative x direction

Ic = cunx;
Id = cvnx;

(i3,j3) =size(rows);
mnrows = Crows(i3)-1 rows rows(j3)-tl);
[i4,j4) -size(mrows);
[i5,j5) =size(p'Zoll);

% Cul cU2 cvi cv2 co cov contain the necessary u and v values
% for our calculations

cu2 = uc(mrows,pcoll(j5)+l);
cul = uc(mrows'pcoll(j5fl;

cv2 = vc(mroWs,pcoll(j5)+1);
cv1 = vc(mrows,pcoll(j5));

co = uo(mrows,pcoll(j5));
coy = vo(mrows,pcoll(j5));

% the updated values are calculated

ucl = c(l)*cui(2:j4-1) - Co(2:j4-1) + c(2)*cu2(2:j4.-l) ...
+c(3)*(cul(3:j4) + cual(l:j4-2)) ...
+c(4)*(cv2(1,j4-2) - cv2(3:j4))...
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+c(5)*(cvl(3:j4) -cvl(l:j4-2));

vol w d(l)*cvl(2:j4-l) - cov(2:j4-i) + d(2;*cv2(2:j4-l)..
+d(3)*(cvl(3:j4) + cvl(l:j4-2))...
+d(4)*(cu2(l:44-2) -cu2(3:j4)) ...
+d(5)*(cul(3:j4) -cul(l:j4-2));

4and put in their proper place in tan and vn

pb= size(xnrows);
pbc = mrows(2:pb(2)-l);

un(pi~c,pcoll(15)) = ta;
vn(pbc,pcoll(j5)) =vcl;
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% function bndfny - boundary facing in the negative y direction
% i.e unit normal = (0,-i)
% writtan by: Lt. Hugh Mc bride USNR
% date Apr 92
%
% bndfny applies the traction free boundary and the elastic
% wave equation along the boundary of the I-beam with unit normal
% (0,-i) the technique used is that as developed by Ilan and t-Owenthal
% and is not discussed here.
% the rows containg the nodes on the surface in question and
% the required neighbours (those one row in from the surface)
% are picked off from the current and old values of u and v
A the shifted and weighted with constants from the vectors
% cuny (Constants for U-values for the Negative Y boundary)
% and cvny (Constants for V-valuer ior the Negative Y boundary)
% and inserted in the correct position of the updated u and v.

function (un ,vn) = bndfny(uc,vcuo,vo,un,vn,rows,pcoll,pcolr,c,d);

I variables
% un : updated values of u vn : updated values of v
* uc : current values of u vc : current values of v
% u: old val.es of u vo : old values of v
% rows : used to identify the elements of the matrix which
% are zero for all times they also contain the row location of
t the nodes on the boundary.
% pcoll and polor are both required as there are twe regions,one on
% either side of the center spar of the I -beam whicn require
% our attention and they contain the location of the nodes in question

% c = cuns
I d = cvny;

[il,jl) = size(pcoll);
(i2,j2) = size(rows);
[sr sc] = sizn(uc);

% rl** ru* rv* and ro* pick off the rows on either side of the
% center spar of the necessary u and v values.

rlul = uc(rows(j2)+l,pcol1);
rlu2 = uc(rows(j2)+2,pcoll);
ru2 = uc(rows(j2)+2,pcolr);
rul = uc(rows(j2)+l,pcolr);

rlvl vc(rows(j2)+i,pcoll);
rlv2 = vc(rows(j2)+2,pcoll);
rv2 = vc(rows(j2)+2,pcolr);
rvi = vc(rows(j2)+1,pcolr);

rol = uo(rows(j2)+l,pcoll);
ro = uo(rows(j2)+l,pcolr);
rolv = vo(rows(j2)+l,pcoll);
roy = vo(rows(j2)+l,pcolr);
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% the updated values are calculated

ul - c(l)*rlul(2;jl-l) - rol(2:jl-i) + c(2)*rlu2(2:jl-l)..
-.c(3)*(rlul(3:)l) + rlul(l:jl-2)) ...
+c(4)*(riv2(1:jl-.2) -rlv2(:3:jlfl ...
.4c(5)*(rlvl(3:jl)- rlvl(l:jl-2));

ur - c(1)*rul(2:jl-l) - ro(2;jl-l) +. cC2)*ru2(2:jl-l)...
+c(3)*(rul(3:jll + rul(l:jl-2)) ...
+c(4)*(rv2(1:jl-2) - rv2(3:jlfl...*
+c(5)*(rvl(3:jl) rvl(l:jl-2));

vl = d(l)*rlvl(2:.jJ-l) -rolv(2:jl-l) + d(2)*rlv2(2:jl-l)...
+d(3)*(rll?1(3:jl) + rlvl(1:jl-2)) ...
+d(4)*(rlu2(l:jl-2) -rlu2(3:jl)) ...
4-d(5)*(rlul(3:jl) -rlul(l:jl-2) );

yr = d(l)*rvl(2!jl-'L) - rov(2:)i-l) + d(2)*rv2(2:jl-l)...
+d(3)*(rvl(3:jl) + rvl(1:jl-2)) ...
+d(4)*(ru2(1:jl-2) - ru2(3:jl)) ...
4-d(5)*(rui(3:ji) - rul(1:jI-2));

4and put in their proper place in un and vn

pb= size(pcoll) ;
pbl = pcoll(2:pb(2)-1);
pbr = pcolr(2:pb(2)-1);

un(rows(j2)+I,pbl) = ul;
un(rcwr:(12)+1,p!br)I = ur;

vn(rows(j2)+i,pbl) =vi;

vn(rows(j2)+l,pbr) = vr;

% the same procedure is reppeated for the 'bottom' of thxB 7-beam

un(1,2:sc-1) = c(1)*uc(1,2:sc-1) - uo(1,2:sc-l) ...
+ c(2)*uc(2,2:sc-1)..
+c(3)*(uc(l,3:sc) + uc(1,1:sc-2))..
+c(4) *(vc(2, 1.sc-2) -vc(2,3:sc)) ..

vn(1,:sc-= d(1)tvc(1,2:bu-i) - vo(1,2:sc-I) ...
+ d(2)*vc(2,2:sc-1)...

+d (4) *(uc (2,1:sc-2) -uc(2 ,3: sc)) ..
+d(5)*(uc(1,3:sc) -uc(l,l:sc-2)) ;
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% function bndfpx - boundary facing in the positive x direction
% i.e unit normal (1,0)
% written by: Lt. Hugh Mc Bride USNR
% date Apr" 92

% bndfnx applies the traction free ioundary and ths elastic
% wave equation along the boundary )f the I-beam wit'h unit normal
% (0,i) the technique used is that as developed by 1l"n and Lowenthal
% and is not discussed here.
% the columns containg the nodes on the surface in question and
% the required neighbours (those one column in from the surface)
% are picked off from the current and old values of u and v
% the shifted and weighted with constants from the ve~tors
% cupx (Constants for U-values for the Positive X Lzbundary)
% and cvpx (Constants for V-valua2- for the Positive N boundary)
% and inserted in the correct position of the updated u and v.

function fun ,vn] = bndfpx(uc,vc,uo,vo,un,vn,rows,p:;uli:,c,d)

% variables
% un : updated values of u vn : updated values ,.- v
% uc current values of u vc : current valuqr *f v
% uo : old values of u vo : old values oni
% rows : used to identify the elements of the miaLr;.x which
% are zero for all times they also contain the row jocation of
% the nodes on the boundary.
% pcolr carries out the same function as rows f,,r
% the columns, and the contains the column ioca.-Jnr; of the
% of the boundary facing the positive x direction

Sc =cupx;
Sd =cvpx;

[i3,j3] = size(rows);
mrows = (rows(i3)-l rows rows(j3)+l);
[i4,j4] = size(mrows);

% cul cu2 cvl cv2 co coy contain the necessary u and v values
% for our calculations

cu2 = uc(mrows,pcolx (1)-i);
cul = uc(mrows,pcolr(1));

cv2 = vc(mrows,pcolr(1)-l);
cv! .... , prOCCO~r 1) ;

co = uo(mrows,pcolr(1));
coy = vo(mrows,pcolr(1));

% the updated values are calculated

ucr = c(1)*cu1(2:j4-1) - co(2:j4-1) + c(2)*cu2(2:j4-1)...
+c(3)*(cul(3:j1) + cu!(I:j4-2))...
+c(4)*(cv2(l:j4-2) - zv2(3:j4))...
.c(5)*(cvl(3:jl) - cv1(1:j4-2));
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vcr d f 1) *cv1 (2: j 4--) - COV (2:ji4-1) + d (2)*cv2 (2: jA4--l).
+d(3)'(cvl.(3:j4) + CV1l1:j4-2)).-
.sd(4)*(cu2Cl:j4-2) -cuz(3:j4))..

-fd(5)*(cul(3:j4) -cul(i:j4-2)J;*

%and put in their proper place in vi. and vn

pb=- size (mrows);
pbc = mnrows(2:pb(2)-1);

un(pbc;,pcolr(l.)) =ucr;

vnlpbc,pcolr(lwj) = vor;
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% function bndfny - boundary facing in the positive y direction
% i.e unit normal - (0,1)
t written by: Lt. Hugh Mc Bride USNR
% date Apr 92

% bndfpy applies the traction free boundary and the elastic
% wave equation along the boundary of the I-beam with unit normal
* (0,I) the technique uced is that as developed by Ilan and Lowenthal
* and is not discussed here.
* the rows containg the nodes on the surface in question and
* the required neighbours (those one row in from the surface)
% are picked off from the current and old values of u and v
% the shifted and weighted with constants from the vectors
1 cupy (Constants for U-values for the Positive Y boundary)
I and cvpy (constants for V-values for the Positive Y boundary)
I and inserted in the cotrect position of the updated u and v.

function [un ,vn] = bndfpy(uc,vc,uo,vo,un,vn,rows,pcoll,pcolr,c,d);

% variables
% un updated values of u vn : updated values of v
I uc : current values of u vc : current values of v
% uo : old values of u vo : old values of v
* rows : used to identify the elements of the matrix which
* are zerc for all times they also contain the row location of
I the nodes on the boundary.
% pcoll and pclor are both required as there are two regions,one on
* either side of the center spar of the I -beam which require
% our attention and they contain the location of the nodes in question

* c = cupy;
I d = cvpy;

[iljl] - size(pcoll);
[i2,j2) = size(rows);

% rl** ru* rv* and ro* pick off the rows on either side of the
% center spar of the necessary u and v values.

rlul = uc(rows(1)-lpcoll);
rIu2 = ukc(rows(l)-2,pcoll);
ru2 = uc(rows(1)-2,pcolr);
rul = uc(rows(1)-1,pcolr);

ru.a =u
rlv2 = vc(rows(l)-2,pcoll);
rv2 = vc(rows(1)-2,pcolr);
rvl m vc(rows(1)-l,pcolr);

rol - uo(rows(l)-1,pcoll);
ro = uo(rows(1)-1,pcolr);
rolv = vo(rows(l)-1,pcoll);
rev vo(rows(l)-l,pcolr);
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%the updated values are calculated

ul -c(l)*rlul(2:jl-l) - rol(2:Jl-l) + c(2)*rlu2(2:jl-1,1...
+C(3)*(rliiI(3:jl) +t rlul(l:jl-2))...
+c(4)*(rlv2(l:jl-2) -rlv2(3:jl)) ...
+c(5)*(rlvl(3:jl) -rlvl(l:jl-2)) ;

ur c(l)*rul(2:jl-1) - ro(2:jl-l) + c(2)*ru2(2:jl-l) ...
+C(3)*(rul(3;jl) + rul(l:jl-2))...
+C(4)*(rv2(1:jl-2) -rv2(3:1l))...

*C(5)*(rvl(3:jl) -rvl(l:jl-2));

vl = d(l)*rlvl(2:jl-l) -rolv(2:jl-l) + d(2)*rlv2(2:jl-1)...
+d(3)*(rlvl(3:jl) + rlvl(l~jl-2)) ...
+d(4)*(rlu2Cl:jl-2) - rlu2(3:jl)) ...
-td(5)*(rlul(3:jl)- rlul(1:-jl )) ;

yr = d(l)*rvl(2:j1--1) - rov(2:jl-l) + d(2)*rv2(2:jl-1) ...
+d(3)*(rvl(3:jl) + rvl(l:jl-2)) ...
+d(4)*(ru2(1:jl-2) -ru2(3:jl)) ...
±d(5)*(rulC3:jl) -rul(l:jl-2));

*and put in their proper place in un and vn

pb= size(pcoll);
pbl = pcoll(2:pbC2)-1);
pbr = pcolr(2:pb(2)-l);

un(rows(l.)-l,rvbl) = ul;:
un(rows(l)-l,pbr) =ur;

vn(rows(l)-l,pbl) = vl;
vn(rows(l)-l,pbr) = vr;
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% function cmodck - checks the amplitude of the propagating mode
% written by: Lt. Hugh Mc Bride USNP
% date : Apr 92
%
% emodck is the driver program for the problem.All the vaue of the constants
I are defined here and all quantities are scaled before they are fed into the

4 decks are cleared before calculation
record('erase')

clear
clg
axis('auto')

dx = input('step size = 1);
a = input(' length scaling factcr -
omg = input(' time scaling factor (omega) =

% constants
I ct: tranverse velocity of the solid (steel)
% cl: longitudinal velocity of the solid (steel)
I dnss: density of the solid (steel)
% cf : speed of sound in fluid (seawater)
% dnsf : density of fluid (seawater)
% epss: ratio ot fluid to solid densities

ct - 3200; cl = 5900; cf ý 1500; dnsf = 1026; dnrs = 7700;
epss = dnsf/dnss;

% the determination of the scaled variables
% dxs scaled distance
I dts scaled time
dxs = dx/a;
kf = omg/cf;kt = (omg*a),'ct; kl = (cmg*a)/cl;

% dtsl and dts2 are the stability criteria for the solid and fluid
I always choose the minimum
dtsl = (kl*dxs)/(sqrt(l + (ct^2/cl^2)));
dts2 = .5*((kf*a*dxs)/sqrt(2));

(dtsl dts2J

dts = input(' desired time step = ');
nn input(' number of timesteps = ' );

4 st - when to stop building the radiation boundary condition
I for in the construction of the matrix A each loop thru the construction
% cylce allows another mode to propagate

i = sqrt(-l);
% x a vector the length of the domain used in several places
% i.e. when integrating etc.
I mm - the mode being checked 0-fundamental etc.
I nt - no of intervals in domain
I tt weighting factor for the trapezoidal rule

x = -l:dxs:l ;
m = size(x) ; M - m(2) ; ml = zeros(m)

rm a 0
nt = (l/dxs);
tt = (m-l)/2;
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(un,vn,rn~n,zOJ cwJv4(Ti1,kl,kt~kf,dts,dxs,x,nn,st,epss,tt,nt,min);

% un displacxnent in the x dirn
% vn displacment in the y dimn
4 mn displacment of the fluid
% zO vector containing the amplitude of the propagating mode
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% function coupl - couples the two media at the fluid solid interface
% written by: Lt. Hugh Mc Bride USNR
% date Apr 92

% coupl applies the traction boundary conditions at the fluid solid
% interface where the shear component is zero but the normal component is
% given by tau(yy) = -p(total) ,which causes the I beam to deform
% and causing the propagation of scattered pressure waves to propagate in
% fluid. To prevent cavitation at the interface we apply the inviscid
% form of the Navier-Stokes equation ( or Euler's equation ) at the
% the boundary

function [un ,vn,mnpd) - coupl(uc,vc,uo,vo,un,vn,c,d,k,dts,dxs,all,bll,epss);
1 variables
I un : updated valueo of u vn : updated values of v
I uc : current values of u vc : current values of v
% uo : old values of u vo : old values of v

4 c = cupy;
% d - cvpy;

i = sqrt(-l);
[sr sc] = size(uc);

% the forcing function
time = exp(-i*k*dts)*ones(l,sc);

% the u component reauires no modification and is treat-Pd in the
% usual fashion.
un(sr,2:sc-1) = c(l)*uc(sr,2:sc-l) - uo(sr,2:sc-l)...

+ c(2)*uc(sr-1,2:sc-l)...
+ c(3)*(uc(sr,3:sc) + uc(sr,l:sc-2))...

+ c(4)*(vc(sr-l,l:sc-2) - vc(sr-1,3:sc))...
+ c(5)*(vc(sr,3:sc) - vc(sr,l:sc-2));

% the periodic boundary condition for u
un(sr,l) = c(l)*uc(sr,l) - uo(sr,l)...

+ c(2)*uc(sr-l,l) ...
+ c(3)*(uc(sr,2) + uc(sr,sc-l))...

+ c(4)*(vc(sr-l,sc-l) - vc(sr-l,2))...
+ c(5)*(vc(sr,2) - vc(sr,sc-l));

un(srscI = un (qr. 1

% the normal component of stress plus the incident,reflected
% and scattered pressures
vn(sr,2:sc-l) = d(1)*vc(sr,2:sc-1) - vo(sr,2:sc-l)...

+ d(2)*vc(sr-l,2 .sc-l)...
+d(3)*(vc(sr,3:sc) + vc(sr,l:sc-2))...
+d(4)*(uc(sr-l,1:sc-2) - uc(sr-1,3:sc))...
+d(5)*(uc(sr,3:sc) - uc(sr,l:sc-2))...

+ ((2*dts-2)/dxs)*(2*epss*time(2:sc-l) + epss*all(2:sc-l));

% the periodic boundary condition for v
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vn(sr,1) - d(1)*vc(sr,1) - vo(sr,1) ...
*i d(2)*vc(sr-1..1)...

.sd(3)*Cvc(sr,2) + vc(sr,sc--1)) ...
+d(4)*(uc(sr-1,sc-1) - uc(sr-1,2)) ...
4d(5)-(uc(sr,2) - ucksr,sc-I)J...

+ ((2*dts^2)/dxs)*(2tcipss*tinie(1) * epss*all(1,1));

vri(sr~sc) -vn(5r,3);

%the cozupatability condition.
znnpd (-(2*dxs)/(dts^z))*(vn(sr,:)- 2*vc(sr,:) +vo(sr,:)) + ll,)
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% function cwv4 - coupled waves version 4
% written by: Lt. Hugh Mc Bride USNR
% date Apr 92

% cwv4 is the main program which couples the behaviour of the 'I-beam' shaped
% solid medium with the fluid medium. The elastic wave equation and the boundary
% conditions ,periodic and traction free are are satisfied for the solid, while
I the scalar wave equation and the periodic and radiating boundary conditions ar
% applied to the fluid.

% The general steps of the program are as follows

% 1. The basic parameters are determined ,that is the size of the domains
% as passed to it by the driver program cmodck.m

% 2. All the global variables are calculated for both the fluid and the solid
I including the matrices required for the radiation boundary condition.
%
1 3. vl and v3 are vectors used to find the amplitude, vi is the
I weighting vector 1/2 1 1 1 .... 1 1/2 for the trapezoidal rule
% and v3 = exp(i*n*pi*x) , the othhogonal vector.%
1 4. The I beam is built by basel%
1 5. The initial values of the u and v for the solid (un,vn,uc,vc,uo,vo)
% and m (mn mc and mold) for the fluid are set to zero.
%
t 6. The &lastic wave equation and the periodic boundary conditions
% are applied to u and v
%
% 7. The boundary conditions for the solid are applied
%
1 8. The fluid and solid are coupled

1 9. The freespace portions of the I beam are zeroed out
%
% 10. Tne scalar wave equation and the periodic boundary conditions for
% the fluid are applied.
%
1 11. The values of the amplitude are calculated and accumulated
%
1 12. u, v and n are updated ,that is the new values become
% the current values and the current values become the old values.
%
I

function [v,un,vn,mn,z2J = cwv4(m,kl,kt,kf,dts,dxs,x,nn,st,epss,tt,nt,mm);

% variables
I un : updated values of u vn : updated values of v
I uc : current values of u vc : current values of v
I uo : old values of u vo : old values of v
% rows : used to identify the elements of the matrix which
I are zero for all times they also contain the row location of
I the nodes on the boundary.
I pcoll and pclor are both required as there are two regions,one on
% either side of the center spar of the I -beam which require
I our attention and they contain the location of the nodes in question
1 kl - scaled longitudina.l speed
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% kt - scaled transverse speed
% dxs - scaled spacing
% dts - scaled time step
% x - vector of length of the interval
% nn - no of timesteps
% st - stopping criteria for radiation boundary condition
% epss - ratio of solid density to fluid density
% nt - no of intervals in domain
% mm - prpoagating mode under investigation ,mm = 0 fundamental
% mm = 1 first and so forth
% - amplitude of propagating mode

% Step 1 : r,c the dimensions of the domain, r-1 ,c-1 and n-1
% the dimensions of the interior

[r c] = size(m);
n - r-l; r = r-l;c = c-1;
axis('xy')

% Step 2: 'The global variables

% For the solid
rho = rhov(kl,kt,dxs,dts); ccs = (2 - 2*rho(1)-2*rho(2));
cunx = ucnx(kl,kt,dxs,dts); cvnx - vcnx(kl,kt,dxs,dts);
cuny = ucny(kl,kt,dxs,dts); cvny = vcny(kl,kt,dxs,dts);
cupx = ucpx(kl,kt,dxs,dts); cvpx = vcpx(kl,kt,dxs,dts);
cupy = ucpy(kl.kt,dxs,dts); cvpy - vcpy(kl,kt,dxs,dts);

% For the fluid
rhof =(dts^2)/(kf^2*dxs-2); ccf - (2 - 4*rhof);
rcl - (2*dts'2)/(kf^2*dxs^2) ;

% The matrices for the radiation boundary condition allowing the propagating
% modes to pass through the artificial boundary.

anew = zeros(c+l);

for pm = O:st

acurr = rbc(r+l,c+l,pm,dxs,kf);

anew - anew+acurr;

end

ml = (eye(c+l) + (dts/(2*kf^2))*anew); ml = inv(ml);

m2 = (eye(c+l) - (dts/(2*kf^2))*anew);

t - trid(dxs,dts,c+l,kf);
S Step 3: vl and v3 calculated so as to be able to determine the amplitude
vl = del2(2*nt);
v3 = exp(i*mm*pi*x');

% Step 4: basel builds the I -beam pclor,pcoll ,coll,colr and fill

101



4 allow us to identify the boundaries of the solid domain and the
%corner nodes.

(b,rows, pcoll,pcolr~fill,coll,colrJ basel(n/2);

4 Step 5: All values for the fluid and the solid are initially
I set. to zero.

ti zeros(size(m)); uc =un; uo - un;

vn - zeros(size(m)); vc vn; vo = vn;

mnn- zeros(size(1m)); mc =inn ;mold = mnf;

for k = l:nn

%Step 6: The elastic wave equation is aipplied to the interior
4 of the solid

un(2:n,2:n) = ccs*uc(2:n,2:n) - uo(2:n,2:n) ...
+ rho(2)*(uc(l:n-1,2:n) + uc(3:ni-i,2±n))...

+ rho(l)*(uc(2:n,l:n-1) + uc(2:n,3:n+li)) ...
+- rho(3)*(vc(l:n-l,1:n-l) + vc(3:n+l,3:n~lfl ...

- rho(3)*(vc(l:n-l,3:n+l) + vc(3:n-tlA:n-1.))

vn(2:n,2:n) - ccs*vc(2:n,2:n) - vo(2:n,2:n) ...
+ rho(l)*(vc(l:n-l.2:n) + vc(3:n-s-,2:n)) ...

+4 rho(3)-(uc'(1:n-l,lzrn-1) + uc(3:n+l,3:n4ý1))...
- rho(3)*(uc(l:ri-l,3:.n.4l) +~ uc(3:n+l,l:ni-!))

&The periodic boundary conditions for the solid

un(2:n,l) - ccs*uc;(2:n~l) - uo(2,n~l) ...
+ rho(2)*(Uc(!:n-1,1) + uc(3:n.4-,1)) ...

4 rho(l)*(uc(2:n,2) + uc(2-n,n)) ...
+ rho(3)*(vc(l~n-l,n) + vc(3;n+1,2)) ...

- rho(3)*(vc(l:n-l,2) + vc(3:n+l,n))

Un(2:n,n+l) = un(2:n,l);

vn(2:n,l) = ccs*vc(2.*n,l) - vo(Z:n,1) ...
+ rho(1)*(vc(iL:rn-,l) + vc(3:n+l,l))...

+ rho(2)*(vc(2:n,2) + vc(2:n,n)) ...
+ rho(13)*(uc(l:n-l,n) + uc(3:n+l,2)) ...

- x,-ho(3)*(uc(l:n-1,2) + uc(3:n+l,n));

vn(2:n,n+l) -vn(2:n.l);

4 Step 7: The boundaries of the I beam and including the corner nodes
t are treated.
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(un ,vnJ = bndfnx(uc,vc,uo,vo,un,vn,rows,pcoll,cunx,cvnx);
[un ,vn] - bndfny(uc,vcuo,vo,un,vn,rows,pcoll,pcolr,cuny,cvny);
[un ,vn] = Icorny(uc,vc,uo,vo,un,vn,rows,pcoll,cuny,cvny);
[un ,vnj = bndfpx(uc,vc,uo,vo,un,vn,rowspcolr,cupx,cvpx);
[un ,vn] - bndfpy(uc,vc,uo,vo,un,vn,rows,pcoll,pcolrcupy,cvpy);
(un ,vn] = Icorpy(uc,vcuo,vo,un,vn,rows,pcoll,cupy,cvpy);
[un,vn) = tcorl3(uc,vc,uo,vo,un,vn,rows,pcoll,pcolr,rho);
[un,vnJ - tcor24(uc,vc,uo,vo,un,vn,rows,pooll,pcolr,rho);

% Step 8 : The solid and the fluid are coupled (Note the is where the forcing
% function of the problem is contained

all = mc(l,:); bll - mc(2,:);
[un ,vn,mnpd] = coupl(uc,vc,uo,vo,un,vn,cupy,cvpy,k,dts,dxs,all,bll,epss);

% Spep 9: Both sides of the center spar for all values of u and v are zeroed
% out so as to prevent pollution

un(rows,coll) = fill; vn(rows,coll) - fill;
uc(rows,coll) = fill; vc(rows,coll) = fill;
un(rows,colr) - fill; vn(rows,colr) t fill;
uc(rows,colr) = fill; vc(rows,colr) = fill;
uo(rows,colI) = fill; vo(rows,coll) = fill;
uo(rows,colr) = fill; vo(rows,colr) = fill;

% Step 10: The scalar wave equation for the fluid

% First the fluid/solid interface
mn(l,2:c) = rhof*(mnpd(2:c) + mc(2,2:c)...

+mc(l,l:c-l) + mc(l,3:c+l)) +ccf*mc(l,2:c)...
-mold(l,2:c);

% and it's periodic boundary condition
mn(l,l) = rhof*(mnpd(l,l) + mc(2,1)...
+mc(l,c) + mc(l,3)) +ccf*mc(l,l)...
-mold(l,l) ;

mn(l,c+l) = mn(l,l);

% The interior points of the fluid
mn(2:r,2:c) = rhof*(mc(l:r-1,2:c) t mc(3:r+l,2:j)...

+mc(2:r,l:c-1) + mc(2:r,3:c+l)) +ccf*mc(2:r,2:c)...
-mold(2:r,2:c);

% The radiation boundary condition
% Note: We are required to multiply a matrix by a row vector,but to do this
% it must be transposed to a column . Matlab takes the Hermitian transpose
% by default , so to ensure the correct signs we must void this effect by
% taking the conjugate of the transpose before we do our calculations.
% The process is then reversed so as the updated value has the correct dimension

1
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&I - conj(mc(r. 1');
s2 - conjcmc(r+l,:)');
s3 - conj(mold(r+i,:1');
int -ml*(rcl*sl + t*sZ m2*s3);
inn(r+l,:) -conj(int');

% the periodic boundary condition for the artificial boundary

mn(2:r,i) =rhof*(mc(l:r-l,l) + mc(2:r,2) +..
Mc(3:r+ll)+ mc(2:r,c)) + ccf*mc(2:r,l) - mold(2:r,l);

mn(2:r,c+l) -=mn(2:r,l);

% Step 11: calulates amd accumulates the values of the amplitude
as - abs((mn(r,:).*vi)*v3);

z2= (z2 aaj;

IStep 12: The values for u,v and in are updated.

UO uc; uc -un;
vo-uc; vc -vn;
mnold -mc; inc - inn;

end
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I function del2 - del funtion used for thr trapezoidai rule
* written by: Lt. Hugh Mc Bride USNR
* date : Apr 92
* bulids a vector of appropiate length ur-ed to weight the elements of the
% quantity being integrated

function d - del2(n)
a - ones(l,n+l);
a(l) - .5; a(n+l) - .5;

a2 = ones(l,n+l)/n;

d a.*a2;
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t function loorny - left corner facing in the negative y direction
% i.e unit normal = (0,-I)
% written by: Lt. Hugh Mc Bride USNR
* date Apr 92

% lcorny performs the same function as bndfny except it only operates on
% 4 points , thojse which lie at the extremities of the domain, the points
% as if fig( ) Periodicity is used for pseudonodes which lie outside the domain.
% This requires us to pick out each nodes individually (9 for each 4 points
% making a total of 36 ) they are weighted in the same fashion
I as in bndfny and the updated values for u and v are calculated for both sides

function [un ,vn] = loorny(uc,vc,uo,vo,un,vn,rows,pcoll,c,d);

% un : updated values of u vn : updated values of v
% uc : current values of u vc : current values of v
% uo : old values of u vo : old values of v
% rows : used to identify the elements of the matrix which
% are zero for all times they also contain the row location of
% the nodes oil the boundary.
% pcoll allows us to pick out the column location of those nodes
% to the left of centerline and using the periodicity we substitute
% this value into the corresponding point on the right of
% centerline.

* c = cuny;
% d - cvny;

(il,ill = size(pcoll);
[i2,j2] = size(rows);
[i3,j3) = size(uc);

% the updated values of u to the left of centerline are
* calculated

ucc = uc(rows(j2)+l,pcoll(1));
uccl = uc(rows(j2)+2,pcoll(l));
ucr uc(rows(j2)+l,pcoll(2));
ucl = uc(rows(j2)+l,j3-1);

vcr = vc(rows(j2)+l,pcoll(2));
vru = vc(rows(i2)+-pnnoh(2))
vlu vc(rows(j2)+2,j3-1);
vcl = vc(rows(j2)+l,j3-1);

uol = uo(rows(j2)+l,pcoll(1));

ul = c(l)*ucc - uol + c(2)*uccl +c(3)*(ucr + ucl)...
+c(4)*(vlu - vru) + c(5)*(vcr- vcl);

uccl = uc(l,pcoll(1));
ucul uc(2,pcoll(l));
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ucri - uc(l,pcoll(2));
UC11 - UC(l,j3-l);

vcrl vc(lfpcoll(2fl.;
vrul vc(2,pcoll(2));
vlul vc(2,j3-l);
VCll VC(l,j3-1);

Uo11 - uO(l'pcoll(l));

ull -c(l)*uccl - ucli + C(2)*ucul +C(3)*(ucrl + ucli) ...
+c(4)*(VlUl - vrul) + c(5)*(vcrl- vcli);

%the updated values of v to the left of centerline are
%calculated

vucc = vc(rows(j2)+l,pcoll(l));
vucci = vc(rows(j2)+2,pcoll(l));
vucr - vc(rows(j2)+l,pcoll(2));

vuci - vc(rows(j2)+l,j3-1);

vvcr UC(rows(j2)+1,pcoll(2));
vvru =uc(rows(j2)+2,pcoll(2));

vvlu =uc(rows(j2)+2,j3-l);

vvcl =uc(rows(j2)+l,j3-1);

vuol = vo(rows(j2)+1,pcoll(I));

vul -d(l)*v-ucc -vuol + d(2)*Vuccl + d(3)*(vucr + vucl) ...

+d(4)*(vvlu - vvru) + d(5)*(vvcr- vvcl);

vucci =vc(l'pcoll(i));

vucul =vc(2,pcoll(l));

v'ucrl =vc(i,pccll(2));

vuCli = VC(l,j3-1);

vvcrl =uc(l,pcoll(2));

vvrul =uc(2,pcoll(2));

vvlul =uc(2,j3-1);

VVCll =UC(1,j3-l);

vuoll vo(i'pcoll(l));

vull = d(l)*vuccl - vuoll + d(2)*vucul +d(3)*(vucrl +- vucli) ...
+d(4)*(vvlul - vvrui) + d(5)*(v-vcrl-. vvcll);

% the values put in the correct positions
% and since we have periodic boundary conditions, we insert the left
% hand value into the cortespondding right hand position

un(rows(j2)+1,pcoll(I)I - ul;
un(rows(j2)+l,j3) = ul;
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vnfrows(j2)4-1,pColl(l)) VUl;
vn(rows('12)+l,j3) - vul;

un(1~peoll(l)) - ull;
un(1,j3) - ull;

vn(1,pcoll(1)) = Vull;
vn(1,j3) = vull;
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% function icorpy - left corner facing in the positi,.e y direction
% i.e unit normal - (0,1)
% written by: Lt. Hugh Mc Bride USNR
% date Apr 92

% Icorpy performs the same function as bndfpy except it only operates en
% 2 points , those which lie at the extremities of the domain, the pointL
% as in fig( ) Periodicity is used for pseudonodes which lie outside the domain.
% This requires us to pick out each nodes individually (9 for each 2 points
% making a total of 18 ) they are weighted in the same fashion
% as in bndfpy and the updated values for u and v are calculated for both sides

function fun ,vn] = lcorpy(uc,vc,uo,vo,un,vn,rows,pcoll,c,d);

% un : updated values of u vn : updated values c.f v
u tc : current values of u vc : current values of v

% uo : old values of u vo : old values of v
% rows : used to identify the elements of the matrix which
I are zero for all times they also contain the row location of
% the nodes on the boundary.
% pcoll allows us to pick out the column location of those nodes
1 to the left of centerline and using the periodicity we substitute
% this value into the corresponding point on the right of
I centerline.

% c = cupy;
% d cvpy;

% there are now only two values wnicf need to be calculated
% as the other boundary facing in the positive
% y direction is at the fluid/solid interface and requires
I a special treatment

[ii,jl] = size(pcoll);
[12,j2] = size(rows);
[i3,j3) = size(uc);

% the updated u value

ucc = uc(rows(l)-l,pcoll(l));
ucu uc(rows(l)-2,pcoll(1));
ucr = uc(rows(1)-l,pcoll(2));

ucl ý uc(rows(1)-l,j3-1);

vcr = vc(rowsl)-l,pcoll(2));
vru vc(rows(l)-2,pcoll(2));

vlu = vc(rows(l)-2,j3-1);
vcl = vc(rows(l)-l,j3-1);

uol = uo(rows(l)-l,pcoll(I));

ul = c(1)*ucc -- uol + c(2)*ucu +c(3)*(ucr + ucl)...
4c(4)*(vlu - vru) + c(5)*(vcr- vcl);
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4 the updated v value

vucc vc(rows(1)-l,pcol1(l));
vucu =vc(rows(1.)-2,pcoll(lfl;

vucr vc(rows(l)-l,paoll(2));
vuci - vc(rows(1)-l,j3-1);

vvcr uc(rows(l)-l,pcoll(2));
vvru =uc(rows(l)-2,pcoll(2));

vvlu =uc(rows(l)-2,j3-1);

vvel =uc(rows(l)-l,j3-l);

vuol -vo(rows(l)-I,pcoll(lfl;

vul - d(i)*vucc - vuol + d(2)*vucu + d(3)*(vucr + vucl)....

+d(4)*(vvlu - vvru) + d(5)*(vvcr- vvcl);

4 using periodicity we update the values to the left and right of

%the center spar

un(rows(l)-l,pcoll(l)) = iii;
uvn(rows(i)-1,j3) - Ul;

vn(rows(l)-l,j3) VUl;
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% function rbc - radiating bondary condition
% written by: Lt. Hugh Mc Bride USNR
t date : Mar 92
4
% rbc builds the matrix A(i,k) which is required by the radiation

% boundary condition

function v - rbc(j,lpm,dxs,kf)

% variables
% j,l -dimensions of the matrix
% pm - propagating modes

a = zeros(j);

for i = l:j,

for k = 1:1,

a(i,k) = exp(sqrt(-l)*pm*pi*(i-k)*dxs);

end

end

a(:,l) .5*a(:,1) ; a(:,k) = .5*a(:,k);

v = sqrt(kf^2-(pm*pi)^2)*a;

i]i



% function rho- del funtion used for thr trapezoidal rule
% written by: Lt. Hugh Mc Bride USNR
% date : Apr 92
% generates a vector containing constants used repeatedly throughout
% the program.

function rho - rhov(klkt,dxs,dts);

rhol =(dts^2)/(kl^2*dxs^2);

rho2 =(dts-2)/(kt^2*dxs^2);

rho3 = (dtsA2/(4*dxs^2))*((l/kl^2)-(i/kt^2));

rho = [rhol rho2 rho3];
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% function stop - dnfines the stopping criteria for constructinq the radiation
% boundary condition i.e if the result of stop is 0 then only the fundamental mo
% is allowed to propagate, I only the fundamental and the first mode are allowed
% to prpogate and so on.
% written by: Lt. Hugh Mc Bride USNR
% date Mar 92
I
function v = stop(k)

I variables
kk-

I n - nth propagating mode
n =0 ; m - -1;
while (k-2 - n^2*pi-2) > 0.

m = m+l; n = n+l;
end
V = IL;
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% function tcorl3 - treatment of corners 1 and 3
% written by: Lt. Hugh Mc Bride USNR
% date : Apr 92

% tcorl3 epplies the elastic wave equation at
4 corners 1 and 3 as per fig( ) since they use the
4 same difference formula.
% the corner nodes are located (I first then 3)
% identified as p and q (pl ,ql in the case of corner 3)
% the necessary neighbours are picked off from the u and v
% matrices and weighted accordingly and the new updated values
% for u and v are computed.

function (un,vn] = tcorl3(uc,vc,uo,vo,un,vn,rows,pcoll,pcolr,rho);

% variables
% un updated values of u vn : updated values of v
% ue : current values of u vc : current values of v
I uo : old values of u vo : old values of v
I rho : vector containing global constants
% rows : used to identify the elements of the matrix which
% are zero for all times they also contain the row location of
% the corner nodes.
% pelor and pcoll carries out the same function as rows for
% the columns, and the contain the column location of the
% corner nodes.

fil,jl] - size(rows);
ti2,j2j -size(pcoir);
(i3,j3] = size(pcoll);

I we pick off the elments of rows and pcolr which
I identify the location of corner 1.

p rows(il)-i;

q = pcoll(j3);

t generate any required local constants

cc - (2 - 2*rho(l)-2*rho(2));

I the updated values of the corner nodes for u and v are
% calculated

un(p,q) = cc*uc(p,q) - Uo(p,q)...
+ rho(l)*(uc(p,q-l) + uc(p,q+l))...

+ rho(2)*(uc(p-l,q) + uc(p+l,q))...
- 2*rho(3)*(vc(p-l,q-l) + vc(p+l,q-l) + 2*vc(p,q))...

2*rho(3)*(vc(p,q+l) + vc(p,q-l) + vc(p+l,q) + vc(p-l,q));

vn(p,q) = cc*vc(p,q) - vo(p,q)...
+ rho(2)*(vc(p,q-l) + vc(p,q41))...

+ rho(1)*(vc(p-l,q) + vc(p+l,q))...
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- *JJto(3)-(uc(p-l,q--i) + uc(p+l,q-l) + 2*uc(p,q)) ...

+2*rho(3)*(uc(p,q4-X) + uc(p~q-1) + uck'p-l,q) + uc(p-1,q));

%the same process is repeated for corner 4 below

pl rows(jl)+l;
qI pcolr(i2);

un(pl,ql'h ucc*uc(pl,ql) - uo(pl,ql) ...
+ rho(I)th(uc(pl,qI-1) + uc(p1,ql+l) ...

+ rho(2)*(uc(pl-l,ql) + uc(pl+l,ql))...
- 2*1rho(3)*(VC(p1-I,ql-I.) +- vc(pl-$l,ql+l) + 2*vc(pl,qI))-..

+ 2*rho(3)*(vc(pl,ql+l) + VC(pl,ql-l) 4- VC(pl-sl,ql) + vc(pl-l,qtl);

vn(pl,ql) -cc*vc(pl,ql) - vo(pl,ql) ...
+ rho(2)*(vc(pl,ql-l) + vc(pl,ql+l)) ...

+ rho(1)*(vc(pI-1,q1) + vc(pl+l,ql)) ...
-2*srho(3)*(uc(pl-l,ql-l)+uc(p,1+l,ql+1)+2*uc(p1,ql) )-
+ 2*rlio(3)*(uc(pl,ql+l) + uc(pl,ql-l) + uc(pl~el,ql) + uc(pl-l,ql));
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% function tcor24 - treatment of corners 2 and 4
% written by: Lt. Hugh Mc Bride USNR
% date : Apr 92

% tcor24 applies the eJastic wave equation at
% corners 2 and 4 as per figt ) since they use the
% same difference formula.
% the corner nodes are located (2 first then 4)
% identified as p and q (pl ,ql in the case of corner 4)
% the necessary neighbours are picked off from the u and v
% matrices and weighted accordingly and the new updated values
% for u and v are computed.

function fun,vnj - tcor24(uc,vc,uo,vo,un,vn,rows,pcoll,pcolr,rho);

% variables
% un : updated values of u vn : updated values of v
% uc current values of u vc : current values of v
% uo : old values of u vo : old values of v
% rho vector containing global constants
% rows : used tn identify the elements of the matrix which

are zero for ali times they also contain the row location of
the corner nodes.

% pclor and pcoll carries out the same function as rows for
% the columns, and the contain the column location of the
% corner nodes.

[il,jl] size(rows);[i2,j2] : - ( c l )
[i3,j3l * pcoll);

% we pick off t.. ...,ents of rows and pcolr which
% identify the ictation of corner 2.

p = rows(il)-l;

q = pcolr(i2);

% generate any required local constants

cc = (2 - 2*rho(l)-2*rho(2));

% the updated values of the corner nodes for u and v are
% calculated

un(p,q) = cc*uc(pq) - uo(p,q)...
+ rho(l)*(uc~p,q-1) + uc(p,q+l))...

+ rho(2)*(uc(p-l,q) + uc(p+l,ql)...
+ 2*rho(3)*(vc(p+l,q-l) + vc(p-l,q+l) + 2*vc(p,q))...

- 2*rho(3)*(vc(p,q~l) + vc(p,q-lj) -t v;(p+l,q) + vc(p-l,q));

vn(p,q) - cncvc(p,q) - vomp,q)...
+ rho(2)*(vc(p,q-l) + vc(p,q+l))...

+ rho(1)*(vc(p-l,q) + vL(pý).,g))...
+ 2*rho(3)*(uc(p+l,q-l) + uc(p-l,q+l) + 2*uc(p,q))...

- 2*lho(3)*(uc(p,q+l) + uc(p,q-l) 1- uc(p+l,q) + uc(p-l,g));
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t the s~me process is repeated for corner 4 below

p1 rows (jl)+1;
q1- pcoll(j3);

un(pl,ql) -cc*uc(pl,ql) - uo(pl,ql) ...
+ rho(l)*(uc(pl,ql-1) + uc(pl,ql+l)) ...
+ rho(2)*(uc(pl-l,ql) + uc(pl+l,ql)) ...

+ 2*rho(3)*(vc(pl+1,ql-l) + vc(pl-l,ql+l) + 2*vc(pl,ql)) ...
- 2*rho(3)*(vc(pl,ql+l) + vc(pl,ql-l) + vc(pl+l~ql) + vc(pl-l,qlfl;

vn(pl,ql) - cc*vc(pl,ql) - vo(pl,ql) ...
+ rho(2)*(vc(pl,ql-l) + vc(pl,ql+l)) ...

+ rho(l)*(vc(pl-l,ql) + vc(pl+l,ql)) ...
+ 2*rho(3)*(uc(pl+l,ql-l) + uc(pl-l,ql+l) + 2*uclpl,ql)) ...

-2*rho(3)*(uc(pl,ql+l) + uc(pl,cl-l-) + uc(pl+1,ql) + uc(pl-l,ql));
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% function trid - tridiagonal
% written by: Lt. Hugh Mc Bride USNR
% date Mar 92

% trid generates a tridiagonal matrix for the
% radiation boundary condition of the fluid
% the elements of the sub and super diagonal are (dts/kf*dxs)^2
% the main diagonal component is 2 - 4(dts/kf*dxs)^2
% the (n,2) and (1,n-l) contain (dts/kf*dxs)^2 to satisfy the
% periodic boundary conditions.

function m = trid(dxs,dts,n,kf)

% variables
% dxs : scaled spacing
% dts ; scaled time step
% n : dimension of matrix
% kf : scaled constant

an identity matrix for the elements of the main diagonal

dl - eye(n);

. the sub and super diagonals

d2 = dgq(cnes(n-, l),i.) + diag(ones(n-l1,1),-1);

thp requtire o-eAcet

rho - dts!(kf*dxs); rho - (rho-2);

generates the requ•ired matrix

d =2*dl -4*rho*dl +rho*d2;

d(l,n-l)= rho ; d(n,2) = rho;

m d;
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* function ucnx - u coefficients/constants for the boundary facing the
% negative x direction.
% written by: Lt. Hugh Mc Bride USNR
a date : Apr 92
% provides the coefficients developed by applying the Ilan and Lowenthal
% technique to the boundary with unit normal(-1,0) for the coriesponding u
% and v values.a

function cunx - ucnx(kl,kt,dxs,dts)

% variables
% kl - scaled longitudinal speed
% kt - scaled transverse speed
% dxs - scaled spacing
% dts - scaled time step

% the coefficients are calculated and stored in the vector cunx
% for use in bndfnx

cl - 2 - 2*(dts^2/dxs^2)*((l/kl^2)+(l/kt^2));

c2 = 2*dts^2/(dxs^2*kl'2);

c3 (dts^2)/(dxs^2*kt^2);

c4 = -(dts^2/(2*dxs^2))*((l/kl^2)-(l/kt^2));

c5 - (dts^2/(2*dxs^2))*((l/kl^2)-(3/kt^2));

cunx = [Cl C2 C3 C4 c5];
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% function ucny - u coefficients/constants for the boundary facing the
% neq.Ntive y direction.
% written by: Lt. Hugh Mc Bride USNR
; date : Apr 92
V provides tbt coefficients developed by applying the Ilan and Lowenthal
? technzque to the boundary with unit normal(O,-1) for the corresponding u
'cand ¢ valuas.

function cuny - ucny(kl,kt,dxsdts)

k variables
% kl - scaled longitudinal speed

ht - scaled transverse speed
1 dxs - scaled spacing
I dts - scaled time step

* the coefficierts are calculated and stored in the vector cuny
1 for use in bndfny

cl = 2 - 2*(its^2/dxs^2)*((l/kl^2)+(l/kt^2));

c2 - 2*(dts^2/(dxs^2*kt^2));

c3 - (dts^2)/(dxs^2*kl^2);

c4 = -(dts-2/(2*dxs^2))*((1/kl^2)-(l/kt^2));

c5 = (dts^2/(2*dxs^2))*((3/kt-2)-(1/kl^2)) ;

cuny = [cl c2 c3 c4 c5];

1
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% function ucpx - u coefficients/constants for the boundary facing the
% positive x d-tztion.
% written by: Lt. Hugh Mc Bride USNR
% date : Apr 92
% provides the coefficients developed by applying the Ilan and Lowenthal
% technique to the boundary with unit normal(l,0) for the corresponding u
I and v values.

function cupx - ucpx(kl,kt,dxs,dts)

% variables
& kl - scaltd longitudinal speed
% kt - scaled transverse speed
% dxs - scaled spacing
% dts - ucaled tine step

% the coefficients are calculated and stored in the vector cupx
I for use in bndfpx

cl = 2 - 2*(dts^2/dxs^2)*((1/kl^2)+(l/kt^2));

c2 = 2*(dts^2/(dxs^2*kl^2));

c3 = (dts^2)/(dxs^2*kt^2);

C4 - (dts^2/(2*dxs-2))*((i/kl^2)-(I/kt-2));

c5 = -(dts^2/(2*dxs^2))*((i/kl^2)-(3/kt^2));

cupx = [cl c2 c3 c4 c5];
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% function ucny - u coefficients/constants for the boundary facing the
% positive y direction.
% written by: Lt. Hugh Mc Bride USNR
% date : Apr 92
% provides the coefficients developed by applying the Ilan and Lowenthal
% technique to the boundary with unit normal(o,l) for the corresponding u
% and v values.

function cupy = ucpy(kl,kt,dxs,dts)

% variables
% k1 - scaled longitudinal speed
% kt - scaled transverse speed
4 dxs - scaled spacing
I dts - scaled time step

% the coefficients are calculated and stored in the vector cupy
% for use in bndfpy

cl - 2 - 2*(dts'2/dxs^2)*((l/kl^2)+(l/kt^2));

c2 = 2*(dts^2/(dxs^2*kt^2));

c3 = (dts^2)/(dxs^2*kl^2);

c4 - (dts^2/(2*dxs^2))*((i/k3^2)-(l/kt^2));

c3 = (dts'2/(2*dxs^2))*((i/kl^2)-(3/kt^2));

Cupy - [cl c2 c3 c4 c5];
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4 function vcnx - v zoeffricients/constants for the boundary facing the
% negative x directi7r•.
% written by: Lt. Hugh ws Bride USNR
% date : Apr 92
% provides the coefficientL developed hy applying the Ilan and Lowenthal
% technique to the boundary vith unit normal(-1,0) for the corresponding u
% and v values.

function cvnx = vcnx(kl,kt,dxs,dts)

% variables
% k1 - scaled longitudinal speed
' kt - scaled transverse speed
% dxs - scaled spacing
% dts - scaled time step

4 the coefficients are calculated and stored in the vector cvnx
% for use in bndfnx

dl = 2 - 2*(dts-2/dxs'2)*((I/klJ2)+(l/kt'2));

d2 2*(dts^2/(dxs"2*kt^2));

= (dts'2)/(dxs^2*kl^2);

d4 = -(dts^2/(2*dxs^2))*((i/kl^2)-(I/kt^2));

d5 (dts^2/(2*dxs^2))*((3!kt^2)-(1/kl2));

cvnx = [dl d2 d3 d4 d5);
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% function vcny - v coefficients/constants for the boundary fecing the
% negative y direction.
% written by: Lt. Hugh Mc Bride USNR
% date : Apr 92
% provides the coefficients developed by applying the Ilan and Lowenthal
% technique to the boundary with unit normal(O,-l) for the corresponding u
% and v values.

function cvny - vcny(kl,kt,dxs,dts)

% variables
% kl - scaled longitudinal speed
% kt - scaled transverse speed
% dxs - scaled spacing
% dts - scaled time step

% the coefficients are calculated and stored in the vector cvny
% for use in bndfny

dl = 2 - 2*(dts^2/dxs^2)*((l/kl^2)+(l/kt^2));

d2 = 2*(dts^2/(dxs^2*kl^2));

d3= (dts-2)/(dxs'2*kt^2);

d4 = -(dts^2/(2*dxs^2))*((l/kl^2)-(l/kt^2));

d5 - (dts'2/(2*dxs^2))*((l/kl^2)-(3/kt^2));

cvny = [d! d2 d3 dd d5l;
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% function vcpx - v coefficients/constants for the boundary facing the
* positive x direction.
% written by: Lt. Hugh Mc Bride USNR
I date : Apr 92
I provides the coefficients developed by applying the Ilan and Lowenthal
% technique to the boundary with unit normal(l,0) for the corresponding u
I and v values.
I
function cvpx - vcpx(kl,kt,dxs,dts)

% variables
% kl - scaled longitudinal speed
% kt - scaled transverse speed
% dxs - scaled spacing
% dts - scaled time step

% the coefficients are calculated and stored in the vector cvpx
% for use in bndfpx

dl - 2 -2*(dtsa2/dxs^2)*((i/klA2)+(i/kt^2));

d2 - 2*(dts^2/(dxs-2*kt^2));

d3 - (dts^2)/(dxs'2*kl^2);

d4 - (dts^2/(2*dxs^2))*((i/kl^2)-(i/kt'2));

d5 = (dts%/(2*dxs^2))*((l/kl^2)-(3/kt^2));

cvpx - [dl d2 d3 d4 d5J;
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% function vcny - v coefficients/constants for the boundary facing the
4 negative y direction.
% written by: Lt. Hugh tc Bride USNR
% date : Apr 92
% provides the coefficients developed by applying the Ilan and Lowenthal
I technique to the boundary with unit normal(0,1) for the corresponding u
I and v values.
I

function cvpy = vcpy(kl,ktdxs,dts)
% variables
I kl - scaled longitudinal speed
k kt - scaled transverse speed

% dxs - scaled spacing
I dts - scaled time step

I the coefficients are calculated and stored in the vector cvpy
* for use in bndfpy

dl - 2 - 2*(dts^2/dxsr2)*((I!kl^2)+(I/kt^2)):

d2 - 2*(dts-2/(dxs^2*kl^2));

d3 = (dts-2)/(dxs^2*kt-2);

d4 = (dts'2/(2*dxs^2))*((i/kl^2)-(l/kt-2));

d5 - -(dts'2/(2*dxs^2))*((i/klD2)_(3/kt^2));

cvpy - Cdl d2 d3 d4 d5);
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