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ABSTRACT

This thesis vresents a model which simulates the scattering from a fluid
loaded I-beam and the resultant behavior due to {luid-structure interaction.
Chapter I gives an overview of the problem and describes the characteristics

of the solid and fluid, the aspects of periodicity, boundary conditions and the

coupling of the two media.
The governing equations of motion are scaled in Chapter II. In Chapter

III, the finite-difference formulae fcr these equations are derived, as is the
Difference formulas for typical

non-local radiation boundary condition.
boundary points of the soiid and corner nodes are also derived. All finite
Chapter IV contains

difference formulae used are presented in Appendix C
Conclusions are drawn and areas of the problem that

numerical results.
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I. PROBLEM OVERVIEW AND DOMAIN DESCRIPTION

The problem we consider is where an acoustic pressure wave emitted by
an active sonar impinges on a submarine. In our case this is a double-hulled
submarine. Active sonar works on the principle of detecting the reflection off
a solid object of an acoustic pressure wave emitted by a source, by which one
can calculate distance and direction to that object as in Figure 1, but instead of
concentrating on the reflected wave we look at the interaction between the
structure and the incoming wave. This generates scattered pressure waves.
The scattered pressure waves include waves which decay as they travel
through the fluid (evanescent modes), and waves which do not (propagating
modes). Since propagating modes do not decay they can be detected. The
main thrust of this thesis is to determine the characteristics of the propagating
modes, such as amplitude and energy. The optimum situation wouild be to
perturb the double-hulled structure at a resonance frequency which would
increase the amplitude of the propagating modes making them easier to

detect. We investigate the steady state behavior of the propagating modes and

he resultant shear strain fi
characteristics of the propagating modes stabilize which might be used as an
acoustic signature of the structure. In addition when the shear siraiu field
reaches steady state its value throughout the solid may be used to isolate areas

of the I-beam where large stresses occur. This information could be useful in

the design of double-hulled ve«sels.
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To reduce the moriel to one where we can apply numerical techniques to
simulate its behavior we must make simplifying assumptions which are

discussed below.

A, ASSUMFPTIONS

* The source of the pressure waves is far enough away so that the
impinging wave can be approximated by a normally incident plane
wave.

¢ There are no other sources present such as might occur with bottom
bounce, surface reflection and the like.

¢ The area of interest-—AOI as shown in Figure 2 where the wave
impinges is where the inner and outer hulls are joined or connected by
a supporting spar forming an I-beam shaped domain.

* The I beam shaped domain is a uniformly continuous linear isotropic
elastic medium with no cracks, welds or other deformities.

¢ The dimensions of our AOI are such that any curvature of the surfaces
can be ignored.

* The center spar or support beam occurs at regular intervals through the
structure as shown in Figure 3 allowing us to truncate the domain to
the left and right of center spar using periodic boundary conditions.

¢ The incident wave does not displace the submarine.

¢ The cavities A and B in Figure 2 enclosed by the inner and outer hulls,
and the center spar is void and contain no sources.

* We are only interested in displacement in the x and y directions as
given in Figure 2 which reduces our problem to two dimensions.

* The fluid is seawater, the solid is steel.

Our model is now reduced to one where we have two coupled media~fluid

and solid, and the characteristics of each will now be discussed in turn.
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A. THESOLID

A cross-section of the dcuble hull of length 8a is shown in Figure 3. Note
a is a scaling constant for distance. The domain is essentially infinite in
extent in the x (length) and z (depth) directions. Sirce it is of uniform shape
in the z direction, we can neglect this coordinate and reduce our problem to
two dimensions. Our area of investigation is outlined in Figure 3, and we are
now faced with the problem of providing boundary conditions in the x

domain.
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Figure 3. Cross-section of Submarire Hull

We have a normally incident piane wave impinging over one boundary
of the domain. Thus the pressure is the same at all points (there is no phase

shift) along the fluid/structure boundary. Due to the periodic nature of the




structure we expect the solid to behave the same over given intervals of 2a,

that is
f(x,y,t)=f(x+2aN,y,¢t) 1)

where N is an integer and f a function describing the state of the solid such as
displacement, velocity and so on. Using this periodicity we can truncate our

domain at a and —« and use the following periodic boundary conditions
f(—a,y,t) = f(a,}’,t) (2)
and

fH(-a,y.t)=fXa,y.1) 3)

where k is a positive integer and can signify the derivative with respect to x, y

nnnnn ding on the funciion f.

N
Al svaa

The solid has now been reduced to a two-dimensional linear isotropic
elastic medium whose governing equation of motion for points interior to
the domain is given by the plane strain elastic wave equation which is

9%u . o%u { 6% , 0% 3%y
+— [+(A+ )| —+— 4
“(ax By] ( “)L 2" axoy ) P @

QJ

(5)

MEEEIR (i+u) i R
gy’ J Toxay )P a2

u and v are displacements in the lateral (x) and transverse (y) direction, y and
A are Lamé constants, and ps is the density of the solid. The I-beam is

deformed due to the imposed fluid pressure. Balancing normal forces at the

fluid/solid interface we obtain the boundary condition




u o v total
Ty = A —+=— [+ 2u=—==-p"°" (6)
G
where ptotal js the total pressure, and 7y the normal stress component. All
other boundary conditions are either traction free or periodic and are

summarized below.

Tax =0
on surface DH and El in Figure 4, (7)
Ty =0
Tyy = 0
on CD, EF, GH, IJ, and KL in Figure 4, (8)
Ty = 0
total
T —-—
y_'/ P ] v AR v Cirriwn A ~wd £\
_ I VL W 111116\415 Xy kAL \7,
Txy = 0
periodic
elsewhere. (10)
conditions

Txx, Tyy and Tyy are the normal and shear components of stress and are

represented by

Ty = (% + %} + m(g—;-) (11)
Tyx = A(%%+g—;)+2u(—g%), and (12)
Ty = p(\%4g—:) (13)

7



Figure 4 is the unscaled domain, in which s, and k are constants used to vary

the size of the cavities A and B of Figure 2. Note: u<s<1, 0<k<1.
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Figure 4. Unscaled Domain
B. THE FLUID

We are interested in the scattered pressure waves generated by

perturbations at the fluid/solid interface. The partial differential equation




governing the propagation of these waves in the fluid is the linear two-

dimensional wave equation given by

2 2 2
19p _297p 9

= (14)
c% a? % Iy’

where ¢f is the speed of sound in the fluid.

These perturbations arise when a normal plane wave of magnitude P and
frequency w impinges on the surface of the solid, causing it to deform. Since
the pressure wave is of normal incidence (there is no phase shift at points
along the surface of the solid) and the solid is a periodic structure we can
expect the behavior of the scattered pressure waves to be the same in given
intervals of 2a, thus we can use periodic boundary conditions in the same
manner as was used for fite soiid.

Ideally, if the solid were acoustically hard our total pressure would only
have two components, incident and reflected. In reality the solid is perturbed
by the incident wave, generating scattered pressure waves which propagate
out into the fluid domain. The total pressure in the fluid can be represented

by

ptotal = pincident + preﬂected + pscattered (14)

where pincident = e—ikfy_it; preflected = eikfy_it and pscattered iS to be
determined. To avoid cavitation at the fluid-solid boundary we employ the

inviscid form of the Navier-Stokes equation which we refer to as the

compatibility condition and is given by




ap° o%v
Tl = (15)
0y 'y=0 Pf ot?

where py is the density of the fluid. Note that only the scattered term of the

pressure is included in this equation since :
1 _ R .
-a-”—l = -ikee™ and i = ike™ (16)
0y ly= 9y ly=0
thus
1 R
(éri_ﬁp_} -0 )
dy 9y y=0

The scaitered pressure waves generated at the fluid/solid interface are
composed of propagating (non-decaying) and evanescent (decaying) modes
which must be allowed to propagate off to infinity in the positive y direction.
To do this we must employ a non-local radiation boundary condition whose
implementation will be discussed in greater detail in the discretization

section of this paper.

- VTR E —

ML
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L. NON-DIMENSIONALIZATION OF THE GOVERNING EQUATIONS
OF MOTION AND BOUNDARY CONDITIONS

The problem addressed modeis the propagation of a scattered pressure
wave in two dimensions. This is described by the two-dimensional scalar
wave equation

1% % %
2ol o 52
f X oy

(18)

where p is the pressure and ¢f the speed of sound in the fluid. To facilitate
implementation and to free ourselves from the requirement of using a given
system of measurement such as metric or imperial we scale or non-
dimensionalize Equation 18 as follows. Let
13% 9% 0%

2P 19)
cf oF* oxt oy’

represent the unscaled wave equation. We now use the following

relationships:

t’-—"-(l)?; X=—, y= (20)

n =)
D«

~
W
=i

Here o is the scaling constant for time and the frequency of the incident plane
wave, a is the half length of the I-beam and the scaling constant for distance
and P is the scaling constant for pressure. Note that when taking derivatives

with respect to & we get

11




2 2

_— 21
A%  adx dv2 a2 dx? 1)

This also holds true for derivatives with respect to 7, and a similar relation
results when taking derivatives with respect to t. With the above
relationships, Equation 19 is now written as

w?P 9%p =_1182p+_P_82p.
Cjzr o2 atax? 42 ay2

(22)

Cancelling common factors and multiplying Equation 22 by a2 reduces it to

= +—5. (23)

Defining
wa
kf = Tf , (24)
Equation 23 is now written as
*p 3%  3p
k = + . (25)
} a2 ax?  oy?

The elastic wave equation, which is a vector wave equation is given by

%u 9% % 9% o%u

e+ IS [+ (A )| =+ o= |= ps— (26)

azv azv 32'0 82u a?.v

et |+ (A + 1) =+ —— | = ps—. (27)
'“(axz asz ( )(ayz 0xdy i ot

12




Tt.e following relationships allow us to write Equations 26 and 27 in a more
convenient form,

A+2p

M 2
s Ps

=¢f and =C I,- (28)

The constants ¢ and cT are the lateral and transverse velocities of the solid.

The unscaled forms of Equations 26 and 27 are now written as

3 %) (2 N0 % | %
_ - 29
(8 5 8}72 )+(cL cT)La]72 + 555 | o2 (29)

(%5 0%5) (o o\0% 3% ) 9%
2(d’v J0 — =27 30
CT(afz + ayz)'i-(CL CT) ayz + afa:l;] at?- €l0))

We use the same scaling relationships as before for x, y and t (Equation 20) as

Tt
well as

(1)

Ol
-

and v=

=
1
Ol =

which are the scaling relationships for the displacement, and rewrite

Equations 29 and 30 as

oD D) 2 (D% D) 232

Nz o) o @5y ) % on
2 2 2 2 2
% _12__@__+R8 +(c%-—c]) Do +—l% ou =Dw2—a—§v. (33)
a? ax? 42 ay a ay a“ dxdy ot
Defining
kL=?—f and krs%, (34)

13




and dividing Equations 32 and 23 through by @? and cancelling common

factors they reduce to

(azu L9 o%u + 1 1 o%u + 0%v - o%u (35)
Klax2 a?) \k k3 \ax? axdy ) 3
1(a% o%) (1 1\o%w 2% ) _o%
-—2- ———2—+-—2 + —-i-——z- 2+ = 5 (36)
ki\ox®  ay? ) \kf Kk \oy* 9xdy) of°

Collecting like terms gives us the final form

1% 1% (1 1Y a% )| o -
o ' Bar T\ i \amy )" o7 >
L 9x° Kkt oy L K \o*9Y )

1% 1% (1 1Y) o% 39
k% ox®  kf oy? kkﬁ K foxdy )

The surfaces in contact with free space are stress free. (The fluid/solid
boundary is dealt with separately). Therefore the stresses 7xyx and 7xy on
surfaces EI and DH and Tyy and Txy ON surfaces CD, EF, GH, IJ] and KL of
Figure 5 are zero.

These components of the stress tensor can be written

ou o7 .

= 39

Tey = ,u(ay axJ 0 (39)
ou 97 ou

| A —_— 40

Tax = A(ax“”ay) z“af 0 “0)
au oy dJb

] Pl — (41

Tyy ;L(aeray) +2u ay 0 )

14
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Figure 5. Scaled Domain

Equations 39 through 41 in turn.

Equations 20 and 31) gives

displacement and u and A are the Lamé constants.

15

where %, y, ¥ and U are the unscaled components of distance and

We will now scale

For Equation 39 using the same scaling relationships as before (see




Dou Doav
Tl =0. 42
#(a 8y+aax) 0 “2)

Cancelling common factors reduces it to

ou o
Txy=ay +ax=0- (43)

For Equation 40 we first divide through by ps the density of the solid, and

using the same scaling relationships we get

Ps

+—— |+ ———=0. (44)

A(Dou Dov| 2uDoau _
aox ady) ps aox

We know that

2
,U/ Ps = CT- (45)
Similarly it can be shown that
A2 2
s =L 2cT. (46)

Using Equations 45 and 46, substituting into Equation 44, and cancelling

common factors gives

) 2\(ou dv 20U _
(CL - ZCT)(gx-'l' —a;J'i- 2CT —a—; =0 47)
or
d Yo, ), 2 a
c* ox dy) ox

Using the previous definitions oi ki, and kr it can be shown that

16




(49)

Sl
il
ENEN

and when used in Equation 48 it reduces to our final form

kpou (K \ou
—+|+-2{—=0. (50
k% x (kl% )ay )

Following the same procedure for Equation 41 its final form is

k¥ . \ou  kfov _
L 2= +=L===0. 51
(kﬁ )ax+k 7 oy v

At the interface the fluid cannot exert a force tangential to the boundary,
hence the shear component of stress is zero there, and is given by

{ ~— uu\
by = ”tax oy J 0- 52)

For the normal component of stress at the interface we refer back to Equation
6, Section B and Equation 15 in Section C of Chapter I to see that the normal

component of stress is given by

/L(au E)v\+Z _8:__ + R 4 S 53
Tyy = kax ayJ lua—' \P porp (53)

where the superscripts I, R and S signify incident, reflected and scattered
pressures. The incident and reflected pressures are given by

I_ e--ikfy—it ikcy—it

)/ and pR=e

Txy is scaled the same as before. To scale 7yy properly we will need the

compatibility condition, whose unscaled form is

17




_op°
ay y=0 pfafZ' (54)

We refer back to Equation 17, Chapter I, Section C to see that only the
scattered pressure need be considered here.

Scaling Equation 54 we get

s 2
a9yly=0 ot
or
op° 3%
-pL_ = prw2aD (56)
a}/ y= 0 pf atz

Equation 56 gives us a convenient choice for the scaling constant for pressure

of

— 2
P = w"aDpy 7)

and when substituted back into Equation 56 cancels as a common factor to

give
AR (58)
oy ly=0 ot
Dividing Equation 53 by ps and scaling gives
o) L], o

Substituting the value of P from Equation 57 we obtain

18




AD(ov dvi 2uDdv  Pf o I. . R. .S
—| =+ — [+ == =—-—w%D|p' +p " +p (60)
psa(ax @J psa oy ps | )y=0
or
572"—-—2 a—u+-a—v-\+2§2=—.c:kr%( Iy pR 4 pS (61)
AC ayJ oy~ VT o

where €= py/ ps.
Evaluating the incident and reflected pressures at y = 0 we get

p! = pR = -1, and when substituted into Equation 61 gives

K du ov). ,ov 2 it 2.
=2 —+— [+2—=-2¢k - &kTp°.
(kz ][a;ay] oy T TE «

19




III. DERIVATION OF THE FINITE DIFFERENCE FORMULAE FOR THE
GOVERNING EQUATIONS

Throughout the derivation of the finite difference approximations we
identify gridpoints of the scaled domain with the subscripts i and j and
superscript n. Variation in the x direction is denoted by i, 1 <i < N, where N
is the total number of subdivisions (since we are using a square grid the
number of subdivisions in the y direction is the same), variation in y with j, 1
£j< N, and time with n, 0 £n <e. Lower case indices denote varying
quantities, while upper case letters denote fixed quantities. p: kx would be the
value of the scattered pressure for ali values of i at the grid level y = KAy, thus
sz is a vector, while P:ij is an element.

As = - discussed above we use the letter i to denote variation in the x
directi. . his is a common convention and we do not wish to deviate from
it. To avoid confusion with the complex quantity, V-1, also commonly
denoted by i, we state the following rule, that whenever the letter i appears as
a superscript it denotes the complex quantity y-1, and when appearing as a

subscript it is an index denoting variation in the x direction.

A. FINITE DIFFERENCE APPROXIMATIONS FOR THE EQUATIONS
GOVERNING THE BEHAVIOR OF THE FLUID
The scaled domain of consideration as shown in Zigure 6 has periodic
boundary conditions applied at x = 1 and -1 and a radiation boundary

conditior. for the propagating modes at y =2. To model the two-dimensional
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wave equation numerically we must derive an equivalent finite difference
formula, from which we can solve for the pressure for all subsequent time
levels as follows:

Pp_d%p %
MEL=2L, (63)
Fat?~ ax? ay?

is the two-dimensional wave equation as derived in Chapter II Section A.
Using central difference approximation for all second order partial
derivatives the equivalent finite difference equation for Equation 63 is

k% ntl _ 4. n n-1 1 n n n 1 n n n
Y [P,,, 2p;itpi |= ;i'[piﬂ, o2t Pi—l,j] + h_z[pi, 41 2Pt pi,j—l]

(64)

where h = Ax = Ay is the step size and Af is the increment in time. The

truncation error for Equation 64 is O(h2) in space and O{A#2) in time. Solving

for p':;l explicitly we have
2 2
1 _ 4 At At 1 .
p;i; -(2 k}?hz)’/']+k%h2 [pl+1] pl 1,]sz,]+1+pl,]_ p::] (65)

2
Letting p2 = ﬁ%—z- Equation 65 can be written as
f

n+l

plj ‘2(1 2p )p”'*'P [p:+1]+pl 1}+pl]+1+pl,] 1] pz,] ) (66)

The Von Neumann stability criterion

1
<= 6
p N3 (67)




must be satisfied to ensure the stability of Equation 66.!

Special attention must be paid when applying the wave equation along
the boundaries at x = 1 and -1 for it is here that we make use of the periodic
boundary conditions. Applying Equation 66 at x =-1,i = 0 and y = jh (see
Figure 7) yields

1_ 2 2 -1 ‘
o = 2(1-2p )pa‘,,- -p [p,ff,- ~pls,j +Po,j1 +p3,,-_1]—173,,- {68)

This requires the value of p at the point (-1, ji, nAt) which lies outside the

domain. By using the periodic boundary conditions

p(Ly )=p-1,y.t) (69)
9P _o
ox|(+1yt) ~ ax|(-Ly.t) (70)

we can substitute the value of ((N-1)h, jh, nAt) (where N is the total number
of subdivisions in the x direction) for the value at (-1,jh, nAt), allowing us to

evaluate the wave equation at the boundary.

B. APPLICATION OF THE RADIATION BOUNDARY CONDITION IN THE
NUMERICAL SCHEME
As was mentioned at the end of Chapter I (Section C), we apply a non-
local radiation boundary condition (referred to as nlrb) to the fluid to
simulate an infinite domain in the positive y direction. Our domain is
truncated at x=1 and -1, forcing our fluid domain to act as a waveguide. The
scattered pressure can be represented as a series of plane waves which take the

form

1For treatment of the von Neumann Stability Criterion see Appendix A.
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. t \fk}% ~y#  for propagating modes
A EBry-1)  hare Br = 1)

i,l y}% - kf for evanescent modes

and % = kn. We note that when [k = iw/yk —k% Equation 71 yields
¢~Bry+i(rex-t)

which is an exponentially decaying quantity for positive values of y. This fact
allows us to neglect evanescent modes when applying the radiation boundary
condition, aty = 2.
The total scattered pressure is given by
p= Zakel(’n(x*'ﬁky—t)’ (72)
k=—o0
This is composed of propagating and evanescent modes. Far from the fluid
solid interface where only the propagating modes are assumed present (for
reasons given above) the scattered pressure is written
M . t\
p= zakel(v’kﬁﬂky‘ ), (73)
k=—M
where M is the total number of modes (positive or negative) under

consideration. At the boundary y = 2, we apply the nlrb operator (Scandrett

and Kriegsmann, 1992, unpublished paper).

: 9
Bilp)= 5+ P, 74)

w the individual modes of the scattered pressure of Equation 73 which yields




M
d - -
Bp)= 3 S{ae P )

M
J i Yiex+Biy-t)
> ﬁk(_ ae!\ TRITPRY ) (75)
k=-M M at( )

k=

Equation 75 reduces to

M )
B(p)= (iBk - iBcJae™ V¥ Pryt), 76)

k=-M
The right-hand side of Equation 76 is identically zero. The boundary operator
has annihilated the propagating modes and since the evanescent modes are
assumed to have negligible magnitude there, any scattered pressure waves
reaching the boundary experience no refleciion, simulating an infinite
domain in the positive y direction.

To apply the nlrb operator at the boundary y = 2, we rewrite Equation 75 as

3p| & 3( i(Bih+7kx)
£ - T)e'\PkIn+ Tk ) =0 77
3 +k=§_ Bi = ay(T)e (77)

y=Ih
t=T
where we evaluate the pressure at a constant time T and along the boundary
y=]Jh (i.e. at y = 2). We incorporate ax and 7T as axe~iT and define this to be a
new constant ax(T). Note that o (T)]=]lay|| since "e’iT“=1 for all values of T.

ak(T) is unknown so we must derive an alternative expression to be able to

evaluate Equation 77. The k* propagating mode can be written as

Pk = akgi( ykx"'pky_t) (78)

and when evaluated at y=Jh and at t =T and employing our new constant

ox(T) we obtain
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= oy (1) PrlPe %, 79)

To isolate ak('}")eiﬂk’h we multiply Equation 79 by e VE (we apply
orthogenality) and integrate over the x domain to obtain

1

jr’(x,]h,T)e_iy"xdx =20, (T)e'PrlH (80)
-1 _
or
. '1 1 .
oy (T)e Pl = 5 [p(&,jh,T)e7rode, (81)
|

where £ is a dummy variable of integration. We substitute this value of

ak(T)eiﬁkjh back into Equation 77 to obtain

op M

1
ylv=tn 3 kj‘aﬁé‘ i, T)e e (2dag = 0 (62)
t=T

k=-
which allows us to apply the nirb at the boundary y = 2 and from Equation 81
we will be able to 2valuate the amplitudes of the propagating modes of the
scattered pressure.

We now proceed with deriving the finite difference approximation for

the radiation boundary condition. Using a central difference approximation

for gg y=Jh’ Equation 82 is written as
y|y=

27




Pl tPla
IR BEAR Zﬁk j (&, 7n, T)eM =803z = 0. 83)
2h 2, &0

The trapezoidal rule for integration is
jf 1+2f2+2f3 A2y 1+ fn) (84)

and is used for the integral in Equation 83, however it can be more compactly

expressed as

r=1 or I

1
j:f(x)dx=h§5,f, where 8, = (85)

elsewhere,

N

[T

where I is the total number ¢of nodes in the x direction. When substituted

into Equation 83, using a central difference approximation for % 3¢ (é Jh, 8,

Equation 83 can be written

pl’]-’] pl'] 1 1 S V iyg(xi— gr) n+1 n~1\ __
e Y, Sy Lt (s U
24t
Multiplying by , we have
2At _ 1 4
72 (Va,]+1 240 1)+‘$‘ kxjg 6,6 7e(xi Ck)(p;”]’ ~p"; ):0_ (87)
r=1

Define A to be a matrix whose i,r entry is given by

Ali,r) z B, 6,¢ Mk(xi=6r), (88)
k=-M

Upon substitution into Equation 87 we obtain
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2At
_,;T(px,lﬂ P; ]—1)+AF’";1‘AP = (89

We note that p; J+17 pln J-1" p:;l and pr;:il are all vectors due to the J
subscript as described at the beginning of this chapter. The radiation
boundary condition and the wave equation must both be satisfied at the
artificial boundary y = 2. Applying either of the two conditions will require
the use of pseudonodes which lie outside the domain. Through the
combination of the two equations we will be able to eliminate this
requirement. Reproducing the two-dimensional wave equation and the
radiation boundary condition, (substitute k for all x indices in the wave

equation and radiation boundary condition, since these are dummy indices),

wo havo
wo have

2
1 -1_ At _
Pl’:”} ZPI':,} +P1':,] - kfhz (plrcl—l,] +PZ+1,/ +P2,}+1 +P2,1—1 ‘4P1'<1,]) =0 (90)

24t

2 2 (PR e = PR+ APES - ApE =0 1)

Noie thai both equations are beii
Pr i and pj,, ] have a circular shift and are of the same Jdimension as the
rest of the vector in Equatiori 91. Collecting like terms in Equations 90 and 91

we obtain

i 5Pk AZP +Pey +pE [P +Pes1) ~ Pk ] 2p; ;=0
k}ZhZ kJ+1— k%hz kJ-17Fk,] k] kfzhz k-1,] k+1,] k,] k.

92)
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2At 2At i i
“2 Pk T Pt AP - ARy =0 (93)

At
Adding — times Equation 93 to Equation 92 yields
2

At? il At At
_2pl'("]_1[—-——k%h2 J+ P/’ch; [I + :'ZI?A}Jr Pe 5 [I - FA}

4442 At? At?
'{_— 2}’1’:‘ i kfhz 55 Pk-1,] = . =T Pks1, =0 (94)

Solving for p',i}l in Equation 94 we obtain
-1 2 2
n+1l At ZAt n A ‘ 4At 7
Py, = (1 +—2k—? A] Lzhz Prj-1t i 7Pk, t (2 _k‘%hz ]pk,]

At At
k}ﬂp e [I 2k}A]p

The terms differenced in x, that is p}, k-1,] * Py %) Py k+1,] ©an be more compactly
2

expressed as Tpk ;. where T is a tridiagonal matrix with 2- 42At2 on the main

f

i ;1} 95)

AL

diagonal and ——; on the sub and super diagonals. We must also allow for
kzh
the pericdic boundary conditions when constructing T. To do this we replace
2
the (N, 2) and the (1, N-1) elements of T with %—2- where T is an N by N
1
matrix. The general form of T can be seen from Equation 16 Appendix C.

Equation 95 is now written as
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-1
71+1 At 2At2 n At
Pk = (1 212 A) [k}hz Prj-1+ TPk - (I‘-kf?“]l’k ] (96)

which satisfies both the wave equation and the radiation condition at the

boundary.

C. FINITE DIFFERENCE APPROXIMATION FOR THE ELASTIC WAVE

EQUATION

To investigate the prepagation of disturbances in an “I-beam”-shaped
domain as shown in Figure 5, it will be necessary to apply the elastic wave
equation to points in the interior of the domain. (The boundaries will be
dealt with in a separate section.) By orly considering displacements in the x
(lateral) and y (transverse) directions, the problem becomes one of plane
strain in two dimensions. Reproducing the scaled equations derived earlier
for motion in the lateral and transverse directions

1% 1% (1 1)o% d%
PV Iy I Il v ey il Evewhiew ©7)
kf ox* ki dy ki Kkt axa}/ ot

—1-&+_1-?_2_7i+(,1___1.\_afl _3%
K ox?  kf oy? tk% k%}axay o2’

Ffata)y

\70)

we use central difference formulas for the partial derivatives in Equation 97

to get the equivalent finite difference equation

1 1 »
hzki [ui+1,j

"zun un]+1_2uni+u

n 1
ot gl
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1 _ 1)1 (» n n n
'{[Lz' - jg)[ a2 (vm, 1~ limj4 T Vi, jm Vs i

_ 1 [ g n-1
‘At2["'f -2+l (99)

The truncation error for Equation 99 is O(h2) in space and O(42) in time.

Solvirg for u explicitly in Equation 99 we obtain

]

2
n+l _ A2 [ n n ] At [ n n ]
u; R TI Ee m LR
i,j k2h2 1+'l,] 1-1,j k%hz iLj+1 " ",

2
L 1 n n " 7
* 4h? (ZE B E}viﬂ,jﬂ ~Uia,j+1 " Vi1 MY, j-l]

~ 4 1 'I \-]
H2-25 | =2 u" ~ul'7h (100)
[ K LkE K )| T
Using the same method for Equation 98 we solve for 01! to obtain

’J

v ~-—-———(v +0] )+ at? ( )
i,j - kTh i+1,j i-Lj kthz ,}+1 ,j—l

A1 1), " "
+ 42 ;g“;? (“z+1,,+1 My 1,j+1 "%, i1 "i—l,j-—l)

2417 1 1 n~1
»{2 7 (ki kz)}}’i' v,]. (101)

To ensure the stability of Equations 100 and 101 the Von Neumann stability

condition of
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At < e (102)

must be satisfied.2

D. APPLICATION OF THE STRESS-FREE BOUNDARY CONDITIONS TO

THE SOLID
The boundary conditions of the two-dimensional domain are broken

*1
down into two major categories, those whose normai vector is (0 ) , where

0
Tex = Try = 0, and those whose normal vector is (ﬂ) where tyy = 7xy = 0.

These are in turn divided into two classes. For 7 = (\0 ]they are

1
al. The boundary whose unit normal is (n‘ , that is facing in the positive x-
' N

direction, the surface EI in Figure 5 and

-1
a2. The boundary whose unit normal is (0 ) , facing in the negative x
direction, the surface DH in Figure 5.

0
Similarly for #i = (111.
/
J
bl. Boundary whose unit normal is .(1) , the surfaces AB, GH and IJ in
i\
Figure 5 and
0
b2. Boundary whose unit normal is (_1) , the surfaces CD, EF and KL in
Figure 5. '

The application of the stiess-free boundary conditions for cases al and bl is

discussed below.

2For a brief treatment of the Von Neumann stability criteria see Appendix
B.

33




1. Application of the Stress-free Boundary Condition for the Case of

=) .

The boundary under investigation is identified in Figure 8 as XY.

1 ?

Y
N

o ML L N ()
N
A, \
x N
N

(N-1,

e (i ])’ :\? N,
N\
N

— e (N—l,]'—g N (N,j1)

~,
X

1
Figure 8. Boundary with Normal (0)

The governing equations as derived in Chapter II Section A

Ju Jv
_ou ov

Yy =—t—=0 10
Tay EVAE> (103)
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N

K \ou [k} \ov
. o LA LS S LA 104

19% 19% (1 1)d% %

_2__,2_.,.._2‘___2_ -y la= Ty (105)
kL ox k’] ay kL kT axa]/ 0

1% 1 0% 1 1)2%u %

— r— s e —— e | — I e— (106)
ki ox?  k? oy? (kl% k%)axay ot?

Concentrating on displacements in the lateral (x) direction, a typical boundary
point as shown in Figure 8 must satisfy the boundary conditions, Equations
103 and 104 and the governing equations of motion, Equations 105 and 106.

If we apply Equations 105 and 106 at the node (N,)) in Figure 8 we will

n

n no no nooooyno d u?
UN+1,jON+1,j41 PN+, -1 PN L YN e 3RS Y

YN+1,j-17
which lie outside of the domain and are called pseudonodes. To eliminate
this reliance the technique as developed by Illan and Lowenthal (Ilan, 1976, pp.
431-453) is followed, and is presented here.

The lateral displacement (u) at the node (N-1,j) in Figure 8 can be

expanded in a Taylor series as

u?\l—l = u;;, , - h(é-u-] + -a—-lzi + order | (107)
/ /] ox N, jm 2\0x° )N,jn terms

where u';\,_,l',- denotes the value of u at the node (N-1,j) and at time level n.
_ ou o2y i ,
Alternate expressions for 3.~ and 352 ve given by equations 104 and 105, we

have from Equation 104

35



1JT". (108)

From Equation 105,

2%u 2 9% k% du o1 1 ] 0% )
% AL AL | N KR 109
ol LT Ko HkE K Jaxdy (109)
2u Kot (K)o ‘
M ¥ Sl AL L A ) 110
o o (B axdy (110

Thus the lower order terms of Equation 107 can be written as

2k? av h2 82u k? 82u k:2 0%v
ut o o=ut —p =L o1 KL ——1 . (111

: . on 32y Q2u
Using centered differences for ’a? ro9r2 83,42 and the following difference

formula for the cross derivative term

% 1
a0y 212 (”N,,+1 VN, j-1 = UN-1,j41 * UN-1,j- 1) (112)

the finite difference approximation for Equation 111 is

un = uj -h—z—ﬁ%--l 1(;" —ph ) hz kL(n+‘l a4y
N-1 = uN M 2 T N g i AR )
Wikt 1, 0
T 7 e 2R+ )
ik )1 .
+—2—Lg -1 oh? (vN j+1 z)N j-1 ~UN_ 1]+1+UN -1,j- 1) (113)
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Cancelling common factors Equation 113 reduces to

1 k hk}
n — N L o n AL n+l_
UN-1,§ UN,j +(2 K2 J(UN,]H ']"‘1) 2 A2 (uN,] 2uy Jd +uN'])

kl% n n n kE 1Y n n n n o
EETZ-(uN o1 7 2N 'f+uN'f‘1)+ 43 4 (UNJH UN,j-1 ”N—Ljn“’N-Lj-l)'
(114)
Solving for u';\;; explicitly we obtain
\
ultl = 2————2At2 —]—~+—1— \ur‘ gyl ———2At2 THA
LA At? (u u" )+L4_t_‘2_(_}__j_ (vn e )
thZ N,}+1 N,j-1 op2 \‘k_% k]2~ N-1,j-1  “N-1,j+l1
2
A1 3,
2K (kz K2 J( Ry =R ) (115
The truncation error for Equation 115 is O(h3) (Ilan, 1976, pp. 431-453). Using

the same procedure for the transverse displacement an explicit expression

n+l . .
V.- 15 glven as
1V ,j ~

2 2
n+l 2At 1 1 n n—1 2At
o=l 2 - S | O vl 0l
N,j { h2 [AE k% N,j YN, h2 2 “N-1,j

At2 a1 1), .
h2k2 (UN ]+] + vN,] 1) t—35 2}'12 kL kT (uN—l,j—l —uN“l,j*'l)

A2(1 3 )

+-2-ZT(Z;%- k2 )( h i+1 uN,] ]) (1163
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2. Application of the Stress Free Boundary Condition for the Case of

)

In the case of b2, the governing equations

~

1=

ou dv
Ty =5 +5-=0 117
xy ay ox ( )
k2 _You k&
Ty =Ty~ 2|50t r = 118
v (k% )ax ki 9y (118)
2 2 2 2
Sou, 1o, I ) KA (119)
ki ox° ki oy- \k[ Kkt 0xdy ot
1 9? 1 9% ( 1 1 } Py o
Rl 2o 272l a2 (120)
AT A N Uy \ N KT jOACH o H

and a typical boundary point is depicted in Figure 9. Expanding in the vertical

direction at the node (i, M+1) and at time level n, and ignoring higher order

terms
2(~2
o u h*| 0‘u
hz'M 1 ui’M +h(31:') iR a +—(3112 ]l.- A o (121
\ v / l,l""l \“J / & yd "
using the substitution
ou _ dv
———— 122
dy  ox (122
from Equation 117 and
D% 2 3%u _!c_%_azu L‘lz“__ o )
=k -5+ 5 -1l (123)
oy ol ki ox ki dxdy




from Equation 119, Equation 120 now becomes

(124)

av\ hikF *u K2 kE 0%u K kT 0%
1M+1 1"M+h( ) +

_—2.57_ 2 k2 ax? K2 Joxoy

yL_l 4 > mmem

X

(i-1,M+1) (M+1) | (+1M+1)

SOLID

AREEF{EEEEERRTHH NGRS NSRS SNNSSNSS TS

£ 1 AN (I AM
\i—41,1v1) REAVY

FREE SPACE

0
Figure 9. Boundary with Normal (_1)

ov 902u o2u
We use central difference formulas for 3%’ 327 92 and for the cross

a2y
derivative term axdy the following finite difference formula is used

azv — 1 n n n ,n (125)
= “’“("i—l,M “Yir,M " Vi, me zi+1,M+1)

The analogous finite difference equation is now

2
n N 1(n n h kI n+1 n-1
UiM+1 =¥ M ‘h(ﬂ("in,m "vi—l,M))"' > Atz( ™M 2U )
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N
[l 1 o [

h

2

1 n n n
;2‘(“:'+1,M = 2u;pm t ui—l,M)

W2 (k3 1, . . ]
i) k2 -1 Eh_z(v"‘l:M “UiaMTV%iamat vi+1,M+1)' (126)

Cancelling common factors yields

n ) hkT(n+1

1

n n n

u; =u; ~——(v- -0; 2ul, +ul )
iM+1 iM 2 i+1,M i-1,M 2“2 i,M 1’\4

k’12‘ n n n kT n
’z_kz.‘(“m,m —2u; 6+ ui~1,M)+ ) ( Mt UM T Y, me1 vi+l,M+l)
(127)

and solving for u:l;,} explicitly, we obtain

2 3 2
Uu. =2 u -Uu —U;
I,M ( h2 ( 2 2 M,] V’,] hzka- i,M+1

ki kt)
LA 221 1), "
hz 2( Uivi,m TH z—l,M)“th ;;'ky ( i—-l,M+l"vi+1,M+1)

At2(1 3V n ,

£170\
\120)
ZhZUcL kz}\ z+1M z 1M}

Similarly for v’:;; we have
2
: 2411 1 2442
ol | 2400 1 of, —pnd 24
i,M ( B2 (kz k2 )J iM™YiM h2k2 Ui, M1

2 2

At n n At 1 1 n n

= (VP g + VI AT AT
hzk%( i+1M TV I.M) ) (‘k'jL' kT)( i~1,M+1 “1+1,M+l)
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a2(1 3
-72-(,(—%' - g)(“?n,m -ul3m) (129)

E. FINITE DIFFERENCE APPROXIMATIONS FOR THE CORNER NODES

The I beam shaped domain has four 270° corners which are identified in
Figure 10 as 1, 2, 3 and 4. The treatment of these corners falls into two
categories, a) corners 1,3, and b) corners 2,4. Within each category the finite
difference formula applied is identical, the difference between them comes in
the cross derivative terms of the elastic wave equation. Each category will be
discussed below. It is important to note that only the governing equations of
motion are applied. The stress free boundary conditions are omitted due to
the complexity that arises in trying to apply stress conditions at the corner
node. We assume as in Fuyuki and Matsumoto that the consequences of
neglecting these boundary conditions is minimal. (Fuyuki, 1980, pp. 2051-
2069)

Category a (Corners 1,3): An arbitra‘ry numerical mesh with Ax = Ay =h
about corner 1 is presented in Figure 11. The governing equations of motion

are

2 2 2, 2
e (130)
ki ox* kt oy
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Figure 10. The Corner Nodes
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At time level
t=n.

v
" @i,j+1)

®—
(+1,j+1

+ (+1,j

//////rr?7///‘}7//l?f/f/////

(i+1,

~~
=
.

—
(-1,-1 (i+1,j~1

Figure 11. Corner Node—Categury a
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f 1 d for th ’ o2 * t d for th derivativ
S
uI'muias are usea ior the at2 ) 27 92’ erms ana tor the Cross derivative

02y
term 5}3}7 the difference formula of Fuyuki and Matsumoto (Fuyuki, 1980,

pp- 2051-2069) is applied at the node (i j) which is

a2
oxay

T
= —ElDsz + DfD_y_]. (132)

Where Di is the forward difference fornula
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1

and Df is the backward difference formula

1
D* = z[u;j =) (134)

The resultant difference formula for the cross derivative term in v at node i,
is

a2y 1 [,, y

X9y “Eh‘z" Uis1, +vi-—l,j 1]+1 +’IJ'] 1 va+1,]+1 1 1,j-1 —20; ]] (135)

which is O(h2). The finite difference equivalent of Equation 124 is

=—l—( "j] 2u" +u"]1). (136)

~ . . .. - n+l . - . “mn
bowmg expncmy tor uid,- trom hquanon 130 we Oobtain

2 2 2
n+1 At ( n ) _ 2At _1__ i n At ( n )
u ,} kzhz l+1,} i"l,j + 2 h2 kE + k% ui,j + k%hz ,]+1 +ui,j"1

2
At 1 1 n n n n o n n~1
+§P(_k? - ;?](”m, iV U e F O o~ V1~ Vi, o1~ 20 j)_ Y

is

. . - . 1
Similarly for Equation 125 an explicit expression for v,

ij




2 a2 2
n+1 At‘- ( n ) 2At~ 1 ] n At ( )
o, D e—— + —_—r—] — o —— .. .
vl,] k%hZ l+],] +vl 1 ] 2 h2 k% + k% vl,] t == k2} 2 ,]+1 U ,]-l

+£—2— IR B N +ul —ul —2u. | -or71
. W\ KR N i-1,j* z,+1 i,j-1" i+1,j+1 i-1,j-1 7 “4,; )7 Y,
(138)

For Category b), the governing equations of motion are the same. The finite
difference approximation of all terms with the exception of the cross
derivative are done in the same manner. For the cross derivative term in the
case of Equation 124, the difference formula applied at the node (i))) is

2. _p*p¥+D*DY ]

axay [ =T (139)

32v
Thus X3y al that node in Figure 12 is represented by

] n n n n n n
200+ Vg i+ ULy 1~ Va1, T Yii1 Y4 T Y j ) (140)
o2 /J j j i Y j

The finite difference approximation to Equation 124 is now

1 n 1 n ﬁ
L ~i

G

111 1 n n n n n n no\
t PY%3 [g - ;%‘J(Zz’i, i1 Vie,j-1 T Vi e T Vi, T VoL T Y T Y

-__1___ n+l n-1
= (u r o oul ) (141)
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Figure 12. Corner Node—Cateogory b

2 2 5
n+1 _ 4t ( n n ) _2a°1 1 14| n At ( n n )
Y j hzk% u1+1,j+u,;1,j +|2 2 kz% k% u”j+——h2k% U iv1 F U5

2
At 1 1 n n n n n n n n-1
AETY] (}c'z' - p‘)(zvi, i ¥ Pia1,j-1 1 Vicy, i1 T Ve, j T lien,j T YL T Y, j~1) U
L 7T ' (142)
. _ . n+l .,
in the same manner an explicit expression for v;j Is
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& 2 2 2
1 Al ( ) (__2At 1 1) 4t ( . )
e % if h2k2 H']-] +'01 1,j +\2 h2 k2 * k% vi,j h2k2 i,j+1 + Di,j—l

+At2 1 1 2" + + -yt ut n  _.n —pn-1
- w2\ K2 k2 T I Uio1,j Wi T 1) T Y

(143)
;
‘ - F. BOUNDARY CONDITIONS AT THE FLUID/SOLID INTERFACE
‘/1 | The boundary conditions at the fluid/solid interface are modified by the
// introduction of a normal plane wave ir:ident on the surface of the solid. As

a result the normal component of stress is no longer zero. We must allow for
tre effect of the scattered pressure ai the interface, which is a result of the
compliance of the I-beam structure and reflecticns of displacement waves
from internal boundaries, This is done by use o1 the compatibility condition

as derived earlier. Our necessary equations are

_du  dv
—+—=0 144

fry = ox dy (149
: K \ou K 2 -t 42 s
a T -2 = -2¢kte ek 145
- - {kl }ax % ay ~ERTP (145)
L L e (146)

kL dax kT ay UCL kT y axay at

R 1% 13% (1 1) 9%u 2%
- PRAEWIREY I Il by ety Ewcwiadew 3 (147)
- krox® k{dy® \k{ kf)oxoy ot
;
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ap o%v
i AN pfs-t-z- (148)

9%

%y %y 22
k2 F = p p (149
Fo? ™ ar? ay* -

where & = pf/ ps and p* is the scattered pressure along the boundary y = Kk (at

the interface, see Figure 13), and at time level ».

Explicit expression for /3! and o'} are derived in the same manner as

144 1,

before and they are

2 2
1 24171 1 1 ] 24t
uk = (2 - —*—(‘:oj |k TWK T Mk

2 2
a2 #l1_ 1
ik T z)*;ﬁ@z“k—z)\”ﬂ ¢ 1= %)
‘L ’ ¥ L B ’ ! Y
A1 3), no) 150
v (o= 1o

24t2(1 1 2At2
Pl =120 | 4 1~ e St
I,K ( h2 (kE k%JJ I,K l,K hzkE 1,}\"'1

2 2
At n 71 At 1 1 n n At
+—=—\7; -0;_ t—=| 5~ 5 \Ui_1 k-1 %i+1 K-
th'Iz_( -H‘l,K ! l,K) 2h2 [kf k’%‘ J( 1 I,K 1 l+l,K 1) ;
—-——Atz 1.3 (u" - )———2At_28(2e—it+ p! ) (151)
2}12 k}% k% i+1,K 1-1,K h i,K/)
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Figure 13. Fluid-Solid Interface

Looking at the compatibility condition, Equation 142 we use central difference

approximations to obtain

Pik+1~PiK-1 1
i, K+ i, K- n+1 -1

assuming that it is applied at the boundary y = Kh in Figure 13.

Solving for p;' "k—1 We obtain

2h ( n4l
Pik1= -Atz( vik 20k +Uik )+Pz K+1 (153)

all quantities on the right hand side are known. We now have a method of
calculating p xK 1 Which is required when applying Equation 149 at the

boundary y = Kh.

Solving for the pn+1 term of Equation 149 we have
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2 2
; 44t At
Prx = [2 K ]Vz K¥75,3 k}hz (pz—l K +PiLK tPika HPLK- 1) Pl (154)

The components of the right-hand side with the exception of pfy_; lie in the

interior or on the boundary of the fluid domain and can be evaluated,
however pl'y_, is essentially a pseudonode for the fluid and is determined

from Equation 153 above. By this method we have now generated the
scattered pressure waves caused by the vibration of the solid at the fluid/solid

surface.

G. PROGRAMMING CONSIDERATIONS
The program for this thesis was written entirely in Matlab 4.0 Beta

version for two reasons,
* Ease of programming

¢ The ability to generate quality graphics.

Although originally intended as a linear algebra toolkit the above features
have caused it to be used more and more as a high level programming
language. In our case Matlab was convenient since the fluid and solid
domains are square matrices, which are easily manipulated in Matlab.
Updating values is done somewhat differently than in FORTRAN or C and is
-discussed below.

Equation 66 of this section updates the interior points of the fluid domain

and is given by

n+l

pl] --2(1 2[) p,]‘*'P [px+1)+p1— ,]+p1,]+]+pt,] 1] pl] ’

an equivalent FORTRAN statement might look like
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DO 10 I = 2,K
DO 20 J = 2,K
P(I,J,N+1) = 2.0*(1.0-2,0% (RHO**2))*P(I,J,N)
& +(RHO**2) * (P (I-1,J,N)+P (I+1,J,N) +P (I,J-1,N)+P (I, J+1,N))
& -P(I,J,N-1))

20 CONTINUE
10 CONTINUE

Here each value is updated individually by using a double DO loop. In
Matlab this is done by “shifting” a grid the size of the interior around the
appropriate matrix and weighting terms. The equivalent code in MATLAB

would be

PNEW(2K,2:.K) = 24(1-2*RHO*2)*PCURR(2:K,2:K)
+(RHOM2)*(PCURR(1:K-1,2:K)+PCURR(2:K+1,2:K)+PCURR(2:K,1:K-1)
+PCURR(2:K,3:K+1))-POLD{2:K,2:K).

where PNEW contains the new values, PCURR the current values and so on.

All updating is done in this manner eliminating the requirement for

multiple do loops.




IV. NUMERICAL RESULTS

In an effort to verify our code we checked the behavior of the fluid and
employed energy conservation methods to check for the consistency of the
coupled domain. For the fluid waveguide we want to ensure that the
propagating modes behave as expected, that is, they should not reflect from

the artificial boundary. This was done by placing a driving force of the form
p - Anei(ﬁny+7ﬂx—t) (155)

wu

where ﬁnr-,,kf—'yg and y, =nm and k¢ = o

Section A) at the boundary y = 0, which excited the fundamental, first and

(Retf. Equation 24, Chapter 1,

second modes (n = 0, 1, 2). The coeificients A, had value 1 for all n. The
amplitude of each mode was measured at the boundary. As can be seen from
Figures 14 a, b, and ¢ the fundamental and first mode approach the value 1
with the second mode showing the same behavior but at a much slower rate.
To check that the coupling of the two domains was working correctly we
eliminated the cavities of the I-beam which reduced our problem to one
which could be solved analytically. For a ncrmally incident plane wave only
the fundamenial mode was excited. Since the incident wave displaces the
solid only in the y direction v has no x dependence and u is identically zero.

The values of Ap and v are given by (Scandrett, 1992, interview),

and v= e"“( cle""l.y + c._,_e—iki.y )
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For kf =1 and k1 = 0.2542, c1 and c2 were given by 0.0625 + 0.03i and
0.0585 — 0.0374i respectively. In this case the magnitude of |Aq| of 0.1211
compared favorably with the numerical solution of 0.1255. A major
discrepancy lay in the numerical and analytical values of v (transverse
displacement). The average absolute value for the numerical solution was
13.12 while the average absolute value for the analytical solution was 0.0965.
They exhibited similar behavior but the numerical solution was translated by
a constant term. We believe this to be a result of there being no displacement
term to compensate for the effect of imposing a periodic pressure
instantaneously in time which has caused our solid domain o drift or
displace, violating one of our initial assumptions (see Chapter I, Section A).
To nullify this effect we take the time derivative of our steady state solution
for v and then compare with our analytic value as can be seen in Figure 15.
Again the numerical and analytical solutions give close agreement. A second
check was to apply energy conservation methods to our steady state solution,
from which it can be shown (Scandrett, 1992) that the propagating modes

must satisfy

M ) 1 1 i
ZBnHAnllz = -2fyRe(Ap) = ——Z—Im jply =Y y= de' (156)
Q1

n=-M

The quantities Zﬁi_ MﬁnﬂAnllz and -2fyRe(4;) for the various values of kf

are listed in Table 1. Considerable discrepancies exist throughout, which may
indicate either an error in the code or the inability of our simulation to model
the high frequency components which exist at the interface. Another factor
which may contribute to the failure of the integral is the translation of v
which was discussed previously. With this in mind we must possibly

consider the following results as being inaccurate.
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The first aspect we look at is the amplitude of the propagating modes of
the scattered pressure. For k¢ = 7, (this we call our original system) the time
history of the amplitudes for the fundamental, first and second modes are
shown in Figures 16, 17, and 18 respectively. These indicate roughly the rate

of convergence of the numerical method.

TABLE 1. ENERGY CONSIDERATIONS

kf —llm[j.P) _o7, dx] e aePlanl’ | 28y Re(40)
2 | w=0y=0)
0.5065 ~0.1735 0.022 0.0003
1 0.475 0.0279 —0.2138
1.2516 0.12965 0.0006 0.055
2.026 405886 2.135 3782 |
33446 ~0.6093 0.5380 ~1.3844
4 2.6288 0.2179 -0.6506
4.5585 7.6195 0.2967 0.5685
6.5572 -5.72 0.0835 -0.4053
7 4.0212 0.0644 0.0667
7.5 0.18715 0.0846 0.6723
'8 413916 0.5225 0.2738 )
9 4.8779 0.0742 ~1.5974

To gain insight into the characteristics of the solid, we treated the flange at
the fluid-solid interface as a thin plate and tried different values of k¢
corresponding to the resonant frequencies of a thin plate with prescribed
boundary conditions. The first case was a plate with the fixed (referred to as

FF) boundary conditions given by

v(=1) = v(1) = v"(-1) = (1) = 0. -
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The resonant frequencies are

2,2
w, = crhn’n , (157)
4a,/6(1- v)

(Lalanne, 1982, p. 103) where v is Poisson’s ratio, h is the thickness of the
plate, cT is the transverse velocity of the solid and a is a scaling constant for
distance.
For the second case, ciamped (referred to as CC) boundary conditions were
prescribed, which are given by
v(-1) = (1) =v'(-1) =v'(1) = 0.

The resonant frequencies of this system are given by

__crhxi

Oy = —p==—= (158)
4a,/6(1- V)

where Xi'Z =22.37, X% =61.67 and X% =120.9. (Lalanne, 1982, p. 103)

The purpose of this experiment is to determine whether the I-beam
exhibits behavior similar to a clamped or fixed plate, since it would be
advantageous (numerically) if we could substitute a periodically placed
boundary condition fo
of the I-beam rather than having to calculate finite difference approxirnations
for the entire I-beam.

We do this by plotting the amplitudes versus the corresponding values of
kf for the fundamental, first, and second modes. The presence of any peaks

would indicate a resonant type behavior. If any of these peaks corresponds to

a particular value of ks for a clamped or fixed plate we say that for that value

of kf (and hence ), the 1-beam behaves in a manner similar to a plate with




clamped or fixed boundary conditions. This gives us a possible range for k¢
values on which to concentrate when looking for resonant frequencies.

The values of k¢ are given in Table 2. The quantities in parentheses are
the modes that propagated for a particular value of kf which is determined by

the maximum integer value 7 can take such that f3, is real (Ref. Equation 71).

TABLE 2. k¢ VALUES

SYSTEM
CATEGORY ORIGINAL C-C F-F
1 1(0) 1.2516 (0) 0.5265 (0)
2 4 (0, 1) 3.3446 (0, 1) 2.026 (0)
3 7 (0, 1,12} 6.5572 (0, £1, +£2) 4.558 (0, 1)

We divide our values of kf into three categories (for identification
purposes) In the first category we include the vulues of kf corresponding to
thie first resonant frequency of the clamped and fixed plates and the values of
ks for our original system which allows only the fundamental mode to
propagate. In the second category are values of ky that correspond to the
second resonant frequency of the clamped and fixed plates as well as the value
of k¢ which allow only the fundamental and first modes to propagate. The
third category corresponds to the third resonance of the clamped ard fixed
plates and the first three modes in our original system. Also included in this

final category are the values of k= 7.5, 8 and 9 which will allow us to study

the behavior of the second mode at higher frequencies in greater detail.




In Figure 19 we show a plot of ks values versus the amplitude of the
fundamental mode. Computed values are shown in black. A cubic spline of
the points involved is shown in red. We must note however that this spline
is only a possible representation of the behavior of the amplitude for different
values of kyf, since time constraints did not allow us to conduct a more
comprehensive set of simulations from which we could obtain an accurate
picture of the behavior.

It can be seen that for k¢ = 0.5065 and 2.026 (the points labeled FF1 and FF2,
the I-beam is exhibiting a resonant type behavior. These values correspond to
the first and second resonant frequencies of a fixed plate. It can also be seen
that for values of ks greater than 3.5 there is little variation in the amplitude
of the fundamental model since we are now past the first cutoff value (after
which three modes propagate) of ks = n. 'This leads us to believe that at these
higher frequencies most of the activity takes place in the higher modes.
However the total energy calculation shifts from fundamental to first and
back to fundamental as can be seen in Table 3.

In Figure 20 the only resonant behavior is exhibited for the value
kf=3.446 (the point labelled CC2). This frequency is just past the first cutoff
value (n) and the amplitude of the first mode is double that of the
fundamental (compared with the corresponding value in Figure 19) which
confirms that at higher frequencies energy is being propagated in the higher
modes.

In Figure 21 we plot the amplitude of the second mode against k. The

only resonant type behavior which exists here is for the k¢ = 8, but since the

amplitudes involved are so small it would be difficult to draw an accurate
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conclusion about the existence of a resonant frequency. Ancther aspect we

investigate is the proportion of the total energy carried by each propagating

mode which is given by the formula

E,

M

Al

Yl
p=-M

(159)

where Ej, is the energy of the nth mode and A, the amplitude of the nth mode

(Kinsler, 1982, p. 110). These quantities are summarized in Table 3.

TABLE 3. ENERGY CONSIDERATIONS

E,(%)

k¢ o Ex E; E Eo
0.5056 100 N/A N/A N/A N/A
i 100 N/A N/A N/A N/A
1.2516 100 N/A N/A N/A N/A
2.026 100 N/A N/A N/A N/A
3.3446 13.04 43.47 N/A 47 N/A
4 13.36 40.82 N/A 40.82 N/A
45535 7.47 46.26 N/A 46.26 N/A

6.5572 82.43 2.29 6.5 2.29 6.5
7 58.23 8.08 12.81 8.08 12,81

66




We can see that the proportion of energy carried by the fundamental mode
varies from 100% to 12.04% as ks goes from 2.026 to 3.3446. This can be
accounted for as a redistribution of energy that takes place as the frequency of
the waves passing through the fluid wave guide pass the first cutoff value of
k¢ = z. Similar arguments hold for higher values of ky.

Finally we take a brief look at the shear strain field generated in the solid.
We do this for two reasons, one to check the behavior at the corner nodes and
two, to find out where the maxirnium shear strain occurs.

When treating the corner points we neglected applying the stress free
boundary conditions there assumin
the behavior of the solid. Were this assumption invalid we would expect to
observe singularities or other irregular behavior. Provided in Figures 22, 23
and 24 are snapshots of the solid at different time levels which display no
unusual behavior at the corner nodes, leading us to accept the assumption as
valid.

From an engineering standpoint we are interested in where the
maximum shear strain occurs for possible failure analysis. As can be seen
from Figure 25 the maximum occurs along the transverse borders of the
I-beam cavity. We must note that the amplitudes and frequencies of the

acoustic pressure waves involved in our study are not comparable to those
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which would cause permanent deformation or failure, but which could result

in fatigue cracking if subjected to prolonged periods of stress.
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V. CONCLUSIONS

Several problems arose in implementing the numerical scheme. It was
found that the non-local radiation boundary condition did not completely
annihilate the initial wavefront and a small amount of reflection took place,
but over time the effect of this reflection became negligible. Evanescent
modes did not decay sufficiently and were reflected at the boundary adding to
the overall noise of the problem.

When calculating the amplitudes of the propagating modes at steady state

we applied the formula

1, .
Ap= | pl yz?_e’k’”‘dx (161)
-1

which should yield consistent results for any y values in the fluid domain. In
the neighborhood of the fluid/solid interface this was not the case as can be
seen from Figure 26. We believe this is due to the presence of high frequency
components in this region and having too coarse a mesh to effectively
evaluate the integral there.

With a stepsize h of 1/40 our truncation error was on the order of 10-3.
To increase the éccuracy we can perform Romberg extrapolation or decrease
the stepsize, thereby increasing the dimensions of the matrices involved. The
latter was not an option due to the construction of the code and machine

limitations, in that a simulation which involved 10 to 15 thousand time steps

took from 10 to 12 hours to perform. Increasing the size of the matrices




involved, thereby increasing the required time, would not make it a suitable

code for experimentation and timely results.
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Figure 26. Amplitude of Propagating Modes in the Y-domain

Aspects of the problem which deserve further study would be the use of
obliquely incident waves vice normal as was used here. Variation of the
cavity size and its effect on the amplitude of the propagating modes should
also be considered. As a simplifying assumption the cavities were considered

to be void. It would be realistic to expect that they may contain fluid

(seawater) or an acoustic dampening material. Modifying the model to

R




account for such conditions warrants further study. A final aspect that could
be considered is a resonance analysis.

Thzoughout all of our finite difference approximations we were able to
maintain second order accuracy in space and time. We did not have to resort
to the use of pseudonodes outside of our fluid-solid domain. Finally the
possibility of being able to establish an acoustic signature for a double-hulied
structure could opern up a new avenue of submarine detection for which this

thesis could be considered a starting point

3

Gt




APPENDIX A. VON NEUMANN STABILITY ANALYSIS FOR THE 2-D
SCALAR WAVE EQUATION

The general form of the scalar wave equation being used is

1 o%u Bzu 2%u
+
cf 7% ox?  oy?

(A-1)

whose equivalent difference equation, given Ax =Ay =} i3

__1__(ur+1__2u +un 1) -

1 ( n n 1 n n
u: . .—2u; +u )+ ( -2u; U )
C%Atz 1,j 1,j 1,j hz i+1,j i-1,j h i,j+1 1,] i,j-1

(A-2)

The error function takes the form
k= Eérez(ﬁp+m)h' (A-3)
This is substituted into Equation A-2 and common terms are cancelled to give

Qm S(6-2+¢7)= -5 (1Bh 2+e—1ﬁh) hz(zm 2“-1-;;1). (A-d)

Using the following identity,
Cos oY = —————— (A-5)

letting Bl = ¥ and defining p = cAt/h, Equation A-4 reduces to
&2+ &7 = p?(acosBh - 4). (A-6)

Multiplying Equation A-6 thiougt. by £ and collecting like terms gives
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&2 —25(1 - 2p2(cos,8p-1))+l =0

or equivalently
‘52 - 245(1 - 4p2 Sinz(—%}-‘—)) +1=0.

The roots of this quadratic are

£, =1—4pzsin2(%}—z)i%\[4(1—4;)2sin2(l—3§]) -4 .

For stability we require
£<1

which forces

. 2
s
4('1 —4p? sinz(%—‘)) —4<0.

Solving for p? in Equation A-10 gives
A<

o BF
=0

which reduces to our final stability criterion of

1

or

(A-7)

(A-8)

(A-9)

(A-10)

(A-11)

(A-12)




APPENDIX B. VON NEUMANN STABILITY ANALYSIS FOR THE ELASTIC
WAVE EQUATION

In this section we give a brief outline of the stability analysis required for
the elastic wave equation, whose general form is

k]

2 2 2
U 20U (2 92\0°V OJUu
.. FHF—s+lc[-CF|—=—% (B-1)
“ocl oyl ( L T) oxdy ot
o%v o%v u 9%
c%—7+c%—-2—+(c%—c%)—-=—5 (B-2)
ox dy d9xdy ot
The finite difference approximation for Equation B-1 is =
3, o
(2 2
(CL-—CT {,n n n n 1 ( nel -1
+‘Tz"‘“("i+1,,'+1 ~Pi41,j-1 7 Vi1 +Ui—1,j—1) = ‘A“t‘z‘(”i,j — 2y ;*“u ) (B-3)
We use the following error functions
u=UE" PR and o= Vﬁrei(p” 1) (B-4)

which are substituted into Equation B-3, common terms are cancelled and

complex exponentials are gathered into trigoncmetric quantities to give

—4r (czsm:’ﬁz +¢% sin® m)ll—r (CL c%)(smﬁhsmyh) (Jf é‘l)-u.(B—S)

Following the same procedure for Equation B-2 we obtain
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—4r (c sin? ﬂzh -s~cLszm2 ?)V rz(c% —c%-)(sinﬁhsin Wl = (5 -2+ éj'l).V.(B-G)

Equations B-5 and B-6 can be written in matrix form which is

~4r (c smz'B +c% 2 sin2 ﬁ) -rz(c%—c%)sinﬁhsinyh (u} [U)
) A

-rz(c% —CT)sinﬂhsin 1 —4r ( sin? 2= ﬁ v cfsin? L= i 14
(B-7)
where A = -2+ &1, The eigenvalues of matrix in Equation B-7 are
rz(cz - c%) 1
2r (cL +cf )(cos Bh+cosh-2)t --—-———-——~((cos(ﬁh 7h) + cos(fh + ¥h)~2) )
(B-8).
they take on a maximum value when Sk = y1 = 7, and we obtain i
AM=4y = —4r2(cf +c} ) (B-9)
We are now left with the identity
£-2+¢7 = —ar(} +c}) (B-10)
or f;;‘-
£2 (4r (ct+cF)- )g +1=0. (B-11)
For stability we require ‘
§<1,
. which forces §
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(4r2(c§ +cf)- 2)2 -4 (B-12)

or

At S

2 : - (B13) 7:'2‘ i
Nei +cf | | B
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APPENDIX C. FINITE DIFFERENCE FORMULAE FOR THE EQUATION OF
MOTION AND BOUNDARY CONDITIONS

This appendix contains the finite difference approximations of all the

equations required for the simulation.

Solid
1) Eilastic Wave Equation
n+l n n t2 n
uj = W("m, it ui—l,j) + 'k?};i(“i, j+1

K2 i)
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1,] k]""h 11’1’
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Stress-free Boundary Conditior -

1

Surfaces with fi = (0) - >

gt [, 248(1 1)), 1,248 . A -, )

i) 12 k% k% i,j Yi,j kfhz i-—l} kzhz 1]+1 ,j~1 -

2 2 . :
A1 1 ] " ) A1 3 ( " " )

t—| - 1=V i1~ —5~5~ = (VPR (C-3)

2k2 (k% k7 j( i-1,j-1  Yi+l,j-1 ZhZ(oE k%) i+l vi,j-1

24¢°( 1 1 -1, 248 A2
ottt 288 | 2 L 3 en 155 o £ ( +o )
1) ( h? [;\% k%)) 1) 1} k%h:) 1-1,j h2k2 i,j+1 ’] -1

2 \ 2
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..n+1 R let— 1 ] q n -1 2At n Ath
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Ton2| 12 1% U -1 T T T T [\ Vi T Y (C-5)
2k kL k:r/ 2h Ikl_, kT ’ 7=

o - ? - 2
v = [2“'2‘4'5 . +‘12" o= vi 4 ‘—ftz Vi1, AL'(U? 1t '~-1)
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Corners 2 and 4

2482( 1 1 1. A At?
Wl oo 28 | S o~ u” 1, _-—-—(uf’ Ul .)+-——-(u.". -yl ) .
1] hz k% k% 1,j i,j hzkﬁ i+1,j " Ti-1,j k72~h2 iLj+1 M,j-1
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+ ("‘ - “](2"1', i Vi1, -1 Uiy 41 T i, T Vo1, T Y e T vi,j—l)‘ (C-11)

202\ &k}
2 2

n+l _ 24t 1 n n-1, 4t n n At

Yii “(2 ) (k- +7c?})vi'f—vi'f +_h2k% (vi+1,j+vi-—l,j) k%hz( i1 ',j-l)
A1 1 nom

APYY 2 K (2“ iU e U e Y i+1,j““i—1,j‘“i,j+1‘“i,j-])- (C-12)

Corner nodes 1, and 3

u"”— 2~ 241 1 1,1 uY’-—uf’Tl+—4t—2—(u?‘ Ul -)+~A—t-2~(u?’- ul )
1] h2 k% k% 1,j 1] hzkf i+1,j ' "i-1,j k%hz i,j+1° ,] -1

A1 1), " ) b | o
* 2772 (vi+1,j+vi—1,j ,+1"”’;, 17 i-1,,-_1 TVi1je1 L,-,j). (C-13)
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;) (C-19)
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Fluid
1) Wave Equation

2 2
1_ 4At 1. 4t
p:;- - (2— k%hz }F’:t] _p:i] + kjghz (pln-f-'l] +p?—1,j +p1':]+1 +p:]._1) (C-15)

Radiation Boundary Condition

-1
n+l _ At 24t? n n |, At -1 )
pi,j = [I + Zk;‘ A] [hzkfz P,"]'_l + Tp,;] [I ;’;?A}pz'] ] (C 16)

Kh: kh _k%h2
2
Azt 2 0
ksh
ken
0
T=
0
at?
(C-17)
212
.kfh
0 . —%t—z 0 vee _%t_z 2~ 42At2
kfh kfk kfh
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APPENDIX D. COMPUTER CODE

% function basei - base for the ’I - beam ’ shaped domain
t written by: Lt. Hugh Mc Bride USNR

t date s Apr 92

% constructs a grid in the shape of an I beanm

function ([b,rows, pcell,pcolr,fill,coll,colr) = basel(n)

varizbles

rows - identifies the rows to be zeroced to form the I heam

coll - identifies the columns to be zeroed to the left of the center spar
colr - identifies the columns tc be zeroed to the right of the center spar
pceolr - i{dentifies the columns to be zeroed to the right cf the center spar
includir~ the boundary values.

pcoll - Jdentifies the columns to be zerced to the left of the center spar
including the boundary values.

bb ~ building block of the correct size

cc - dimension of the blocks to be zeroed out on elther side of the center
spar

8 - variable to adjust the size of the zero blccks and keep it symmetric
£111 - block of zercs of appropiate size to fill in the spaces on

either side of center spar i.e. zeroing out,at every time step.

®» - no. of divisions in the half lengthk of the domain.

cr - varliable used to pick the columns to the right of the spar

P rr r 2 K2 8y gy

% build & grid of the correct size.
bh = ovnes{2*n+l);

% the bagic variables required to build the I - beam shaped grid
m = n+l;
s = log2(n);
cc = (s-1l)*(log2(n));

%t determine the row numbers to be zeroed out.
rows= m-{cc-1):m+(cc-1);

% columns to the left of the center spar, pcoll includes the bcundary points
% coll does= not.

coll = 1l:cc+l;

pcoll = 1:cc+2;

$ columns to the right of the center spar, pcolr includes the bourndary points
% colr does not,

cr = 2%n+l - (cc);
colr = cr:2+n+l;
pcolr = cr-1:2#n+1;

% construct the block of zeros used to £ill in the spaces on either side
% of the center spar at every time step.

e - gize(rows); e = e(2);

d = size(coll); d = d(2);

£ill = zeros(e,cc+l);
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bb(rows,coll) = £ill;
bb(rows,coly) = £ill;

b = bb;
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function bndfnx - boundary facing in the negative x direction
i.e unit normal = (-1,0)

written by: Lt. Hugh Mc Bride USNR

date : Apr 92

bndfnx applies the traction free boundary and the elastic

wave equation zlong the boundary cf the I-beam with unit normal
(-1,0) the technigne used jis that as develcped by Ilan and Lowenthal
and is not discussed here.

the columns containg the nodes on the surface in question and
the required neighbours (those one cclumn in from the surface)
are picked off from the current and old values of u and v

the shifted and weighted with cunstants fron the vectors

cunx (Constants for lU-values for the Negative X boundary)

and cvnx (Constants for V-values for the Negative X boundary)
and inserted in the correct positicn of the updated u and v.

unction [un ,vn] = bndfnx{uc,vc,uo,vo,un,vn,rows,pcoll,c,d);
variablas

un : updated values of u vn : updated values of v

uc : current values of u vc : current values of v

uo : old values of u vo : old values of v

rows : used to identify the elements of the matrix which
are zero for all times they also contain the row location of
the nodes on the boundary.

pcoll carries out the same function as rows for

the columns, and the contains the column location of the

of the boundary facing the negative x direction

¥ ¢ = cunx;

% d = cvnx;

[(13,73] = size(rows);
mrows = [rYows(i3)-1 rows rows({j3)+1];
[i4,j4) = size(mrows);
(i5,35) = size(pzoll);

cul cu2 cvl cv2 co cov contain the necessary u and v values
for our calculations

cu2
cul

uc(mrows,pcoll (j5)+1);
uc(mrows,pcell(j5));

cv2 = ve(mrows,pcoll(jS)+1);
cvl = ve(mrows,pcoll(j5));

co = uo(mrows,pcoll(js))
)

B
cov = vo(mrows,pcoll(j5));

the updated values are calculated
»

ucl = ¢(1)*cul(2:j4-1) - co(2:34-1) + c(2)*cu2(2:34-1)...
+c{3)*(cul({3:34) + cul(l:34-~2))...
+c(4)*(cv2(1:34~2) ~ cv2(3:34))...




vel =

¥ and

pb=
pbe

+c(5)*(cv1(3:j4) - cvi(1:3j4-2));

d(l)*cvl(2:j4-1) - cov(2:34-1) + A(23%*cv2(2:34-1)...
+d(3)*(cv1(3:34) + cvl(1:34-2))..
+d(4)*(cu2(1:54=-2) - cu2(3:34))..

+d({S)*(cul(3:j34) - cul(i:j4-2));

put in their proper place in un and vn

size (nrows);
= mrows(2:pb(2)-1);

un{pbc,pcoll(is5)) = ucl;
vn(poc,pcoll(j5)) = vel;
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furiction badfny - boundary facing in the negative y direction
i.e unit normal = (0,-1)

writtan by: Lt. Hugh Hc bride USNR

date s Apr 92

bndfny applies the traction free boundary and the elastic

wave eguation along the boundary of the I-beam with unit normal -
(0,-1) the technique used is that as Jeveloped by Ilan and .owenthal

and is not discussed here.

the rows containg the nodes on the surface in question and

the required neighbours (those one row in from the surrace) -
are picked off from the current and o¢ld values of u and v

the shifted and weighted with constants from the vectors

cuny (Constants for U-values for the Negative Y boundary)

and cvny (Constants for V-valuer 1or the Negative Y boundary)

and inserted in the correct nosition of the updated u and v.

LG I R

function (un ,vn} = bndfny(uc,vc,uo,vo,un,vn,rows,pcoell,pcolr,c,d);

% variables
% un : updated values of u vn : updated values of v
% uc : current values of 1 ve : current values of v
% uo : old valu:s of u vo : old values of v
% rows : used to identify the elements of the matrix which
% are zero for ail times they also contain the row location of
% the ncides on the boundary.
% pcoll and pclor ave both required as there are twe reginns,one on
%t either side of the center spar ¢of the I -beam which require
% our attention and they contain the location of the nodes in guestion
¥ ¢ = cuny;
% d = cvny;
(311,31) size(pcoll);

[i2,32) = size(rows);
[sr sc] = sizn(uc);

% rl** ru*x rv* and ro* pick off the rows on either side of the
% center spar of the necessary u and v values.

rlul = uc(rows{j2)+1,pcoll);
rlu2 = uc(rows({j2)+2,pcoll);
rul = uc(rows(j2)+2,pcolr);
Tuli = uc{rouws(j2)+1,pcolr);

rlivl vo(rows{j2)+1i,pcoll);

rlvz vc(rows(32)+2,pcoll);

rv2 = vc(rows(jz)+2,pcolr);
= vc(rows(j2)+1,pcolr};

[}

rol = uvo(rows{j2)+1,pcoll);
ro = uwo(rows(j2)+1,pcolr);
rolv = vo(rows(j2)+1,pcoll);
Yov = vo(rows(j2)+1,pcolr);




% the

ul

ur

vl

vr

¥ and
pb=

pbl
pbr

un(rows(j2)+1,pbhl)

un({rowe(3i2)+1,pbr)

vn(rows(j2)+1,pbl)
vn{rows(j2)+1,pbr)

% the same procedure is repp2ated for the ’'bottom’ of thz I-beam

un(

vii i

updated values are calculated

= c(1)*rlul(2:j1~1) = rol(2:ji-1) + c(2)*rluz(2:jl-1)...

+C(3)*(rlul(3:j1) + rlul(l:ji-2))...

+c(4)*(rlv2(i:j1-2) - riv2(3:j1))...
+c(5)%(rlvi(3:31) - rivl(i:§1-2));

c(1l)*rul(2:j1-1) - ro(2:j1-1) + c(2)*ruz(2:3j1-1)...

+c(3)*(rul(3:31) + rul(i:jl-2))...

+c(4)*(rv2(1:31-2) = rv2(2:31))...
+C(S)*(rvi(3:3i) - rvi(1l:31-2));

A(l)*rlvi(2:31-1) -~ rolv(2:3j1-1) + d(2)*rlv2(2:j1-1)...
+d(3)*(r1vl(3:31) + rivi(1:31-2))...
+A(4) *(rlu2(1:j1-2) = riu2(3:31))...

+d(5)*(rlud(3:j1) - riul(i:ji-2));

d(l)*rvi(2:jl-1) - yrov(2:j1-1) + d(2)*rv2(2:j1-1)...
+d(3)*(rv1(3:31) + rvi(1:31-2))...
+d{4)*(ru2(l:31~-2) - ru2(3:31))...

+d(5)*(rul(3:j1) = rui(l:ji-2));

put in their proper place in un and vn
size(pcoll);

pcoll(2:pb(2)-1);
peolr(2:pb(2)-1);

= ul;
= ur;

= vl;
vr;

1,2:5¢~1) c(l)*uc(l,2:sc=-1)
+ c(2)*uc(2,2:s¢c~1)...
+c(3)*(uc(l,3:8¢c) + uc(1,1:s8¢c-2))...
+c(d4)*(ve(2,1:8¢-2) - vc(2,3:8C) ).
+c(5)*{vc(l,3:s¢) - vc(l,1l:sc=2));

- uo(l,2:sc-1)...

1,2:8¢c-1) = Q{1)*vc({1,2:i5¢c=-1) - vo(l,z:sc-1)...
+ d(2)*ve(2,2:sCc=1) ...
+d(3)*(vec(l,3:8c) + vc(l,1:s¢c-2))...

+d (4)*(uc(2,1l:sc-2)
+d(S5)*({uc(l,3:5¢C)

- uc(2,3:sC))...
= uc(l,1:sc=2));




function bndfpx - boundary facing in the positive x divection
i.e unit normal = (1,0)

writter by: Lt. Hugh Mc Bride USNR

date : Apy 92

bndfnx applies the traction free lhioundary and the slastic

wave eguation along the boundary >f the I-beam wit® unit normal -
(0,1) the technique used is that as developed by Iluan and Lowenthal

and is not discussed here.

the columns containg the nodes on the surface in question and

the required neighkours (those one column in from the surface) -
are picked off from the current and old values of u and v

the shifted and weighted with constants from the veztors

cupx (Coastants for l-values for the Positive X Lkoundary)

and cvpx (Censtants for V-valuzs for the Positive ¥ boundary}

and inserted in the correct position of the updat:d u and v.

90 O JO IP JO IP 3P IO @GP IS P IO P IO M I

function [un ,vn) = bndfpxiuc,vc,uw,vo,un,vn,rows,prolr,c,d)

variables

un : updated values of u vn : updated values .7 Vv
uc : current values of u ve : current valuss <f v
uo : old values of u vo : old values of v

rows : used to identify the elements of the mair.x which

are zero for all times they also contain the row iocation of
the nodes on the boundary.

pcolr carries out the same function as rows fur

the columns, and the contains the column leca“iorn of the

of the boundary facing the positive x direction

90 0 df 90 IP IO I IP I dP

= cupx;
% d = cvpx;

{i3,)3) = size(rows);
mrows = {rows(i3)-1 rows rows(j3)+1);
[i4.J4) = size(mrows);

$ cul cu2 cvl cv2 co cov contain the necessary u and v values
% for our calculations

cu2 = uc(mrows,pceclr (1)=1});
cul = uc{mrows,pcolr(1)});
cv2 = vec(mrows,pcolr(i)-1);
cvl = ve{mrows,poclr{li));

Co = uo(mrows,pcolr(l));
cov = vo(mrows,pcolr(i));

% the updated values are calculated

ucr = ¢(1)*cul(2:jd4-1) - co(2:j4=-1) + c(2)*cu2(2:j4-1)...
+C(3)*(cul(3:34) + cul(l:34-2))...
+c(4)*(cv2(1:34~2) - 2v2(3:74))...
+c(S)*(cvl(3:j4) - evl1(1:34-2));
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ver = d{1)*cvl(2:j4~1) ~ cov(2:j4-1) + A(2)*cv2(2:34~-1)..,.
+d(3)*(cv1(3:34) + evi(l:ja-2})...
+d(4)®(cu2(1:j4-2) -~ cu2{3:j4))..
+d(5)*(cul{3:j4) = cul(l:34-2));

% and put in their proper place in ui and vn
Pb= size(nmrove);

phe = mrows(2:pb(2)-1);

un{pkc,ncol2 (1)) = ucr;
vnipbec,pcolr(i}) = ver;
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functjon bndfny - boundary facing in the positive y direction
i.e unit normal = (0,1)

written by: Lt. Hugh Mc Bride USNR

date ; Apr 92

bndfpy applies the traction free boundary and the elastic

wave equation along the boundary of the I-beam with unit normal -
(0,1) the technique used is that as developed by Ilan and Lowenthal
and is not discussed here.

the rows containg the nodes on the surface in question and

the required neighbours (those one row in from the surface)

are picked off from the current and old values of u and v

the shifted and weighted with constants from the vectors

cupy (Constants for U-values for the Positive Y boundary)

and cvpy (Constants for V-values for the Positive Y boundary)

and inserted in the correct position of the updated u and v.

OO OB d0 dC IO O 4O dP 90 I IC IP I I IC o

function [un ,vn] = bndfpy(uc,vc,uo,vo,un,vn,rows,pcoll,pcolr,c,d);

% variables

$ un ; updated values of u vn : updated values of v

% uc : current values of u ve : current values of v

% uo : old values of u vo : old values of v

% rows : used to identify the elements of the matrix which

% are zerc for all times they also contain the row locaticn of

% the nodes on the boundary.

% pcoll and pclor are both required as there are two regions,one on

1 either side of the center spar of the I -beam which require

% our attention and they contain the location of the nodes in question
% ¢ = cupy;
¥ d = cvpy;

(i1,31) = size(pcoll);
{i2,32) = size(rows);

% rl** rux rv* and ro* pick off the rows on either side of the
% center spar of the necessary u and v values,

rlul = uc(rows(1l)-1,pcoll);
rluz = uc(rows(1l)-2,pcoll);
ru2 = uc{rows(1l)-2,pcolr};
rul = uc(rows(l)-1,pcolr);

rlyl

= vo{rows{l)-1,pcollj;
rlvz = ve(rows(1l)-2,pcoll);
rv2 = vc(rows(l)=-2,pcolr);
rvl = ve(rows(l)-1,pcolr);

rol = uo(rows(l)=-1,pcoll);
Yo = uo(rows(1l)-1,pcolr);

rolv = vo(rows(1)=-1,pcoll);
rov : vo(rows(l)-1,pcolr);




% the updated values are calculated

ul = ¢c(1)*rlul(2:ji-1) - rol(2:3i1-1) + c(2)*rlu2(2:j1-1)..,
+C(3)*(riul(3:ji) + riul(1:j1-2))...
. +C(4)*(riv2(1:j1~-2) - rlv2(3:31))...
+C(S)*(rivi(3:31) = rlvi(1:31-2));

ur = ¢(1)*rul(2:j1-1) - ro(2:ji-1) + ¢(2)*ru2(2:ji-1)...
. +c(3)*(rui(3:3j1) + rul(1:j1-2))...
+c(4)*(rv2(1:j1-2) - rv2(3:j1))...
+C{5)*(rvi(3:31) = rvl(1l:j1-2));

vl = d(1)*rlvi(2:j1-1) = rolv(2:ji-1) + d(2)*rlv2(2:jl-1)...
+d(3)*(rivl(3:j1) + rivi(1:j1-2))...
+d{4)*(rlu2(1:31-2) - rlu2(3:31))...
+d(5)*(rlul(3:j1)~ rlul(1:j1-2));

vr = d(1)*rv1(2:j1~1) = rov(2:j1~1) + d(2)*rv2(2:j1-1)...
+3d{2)*(rvi(3:31) + rvi(1:j1-2))...
+d{(4)*(ru2(1:31-2) - ru2(3:jl))...
+d(5)*(rul(3:j1) - rui(i:ji-2));

$ and put in their proper place in un and vn
pPb= size(pcoll);

pkl = pcoll(2:pb(2)~-1);
pbr = pcolr(2:pb(2)-1);

un{rows(i)-1l.pbl) = ul;
un{rows{1l)-1,pbr) = ur;

vn(rows(1l)-1,pbl) = vl;
vn(rows(l)-1,pbr) = vr;




¥ function cmodck - checks the amplitude of the propagating mode
¥ written by: Lt. Hugh Mc Bride USNR
¥ date : Apr 92
3
%t cmodck is the driver program for the problem.All the vaue of the constants
% are defined here and all quantities are scaled befcre they are fed into the )
3 decks are cleared bhefore calculation
record(‘erase’)
clear
clg -

axis(’autc’}

dx = input(’step size = /);
a = dinput(’ length scaling factcr = ’);
omg = input(’ time scaling factor (cmega) = ‘};

constants

ct: tranverse velocity of the solid (steel)
cl: longitudinal velocity of the solid (steel)
dnss: density of the solid (steel)

cf : speed of sound in fluid (seawater)

dnsf : density of fluid (seawater)

epss: ratio ot fluid to solid densities

a0 JP R N I P P

ct = 3200; cl = 5900; cf = 1500; dnsf = 1026; dnss = 7700;
epss = dnsf/dnss;

% the determination of the scaled variables

% dxs scaled distance

%t dts scaled time

dxs = dx/a;

kf = omg/cf ;kt = {omg*a),/ct; kl = (cmg*a)/c);

% dtsl and dts2 are the stability criteria for the solid and fluid
% always choose the minimum

dtsi (kl*dxs)/(sqrt(1 + (ct*2/cl~2)));

dts2 5% ((kf*a*dxs) /sqrt(2));

{dtsl dts2)

dts = input(’ desired time step = ’);
nn = input(’ number of timesteps = ¢ );

4 st - when to stop building the radiation boundary condition
% for in the construction of the matrix A each loop thru the construction
% cylce allows another mode to propagate

oF = eranm k€l .
st STop{il,;;

i sqrt (=1} ;

% X a vector the length of the domain used in several places
¥ i.e. when integrating etc.
¥ mm - the mode being checked O-fundamental etc.
2 nt - no of intervals in domain
¥ tt weighting factor for the trapezoidal rule
X = =-l:dxs:1 ;
m = size(®) ; m = m(2) ; ml = zeros(m) ;
mm = 0
nt = (1/dxs);
tt = (m-1)/2;




(un,vn,mn, 20} = cwv4(ml, kl, kt, kf,dts,dxs,x,nn,st,epss,tt, nt,mm);

% un displacment in the x dirn
- % vn displacment in the y dirn
% mn displacment of the fluid
% z0 vector containing the amplitude of the propagating mode
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function coupl - couples the two medi& at the fluid solid interface
written by: Lt. Hugh Mc Bride USNR
date : Apr 92

coupl applies the traction boundary conditions at the fluid solid
interface where the shear component is zero but the normal component is
given by tau(yy) = -p{total) ,which causes the I beam to deform

and causing the propagation of scattered pressure waves to propagate in
fluid. To prevent cavitation at the interface we apply the inviscid
form of the Navievr-Stokes equation ( or Euler’s equation ) at the

the boundary -

GO S8 IO 48 I I IO I8 I I I

function (un ,vn,mnpd]} = coupl(uc,vc,uo,vo,un,vn,c,d, k, dts,dxs,all,bll,epss);
% variables

f un : updated values of u vn : updated values of v
% vc : current values of u vc : current values of v
% uo : old values of u ve : old values of v

% c = cupy;

% d = cvpy;

i = sqrt(-1);
[sr sc) = size(uc);

% the forcing function
time = exp(-i*k*dts)*ones(l,sc);

$ the u component requires no modification and is treated in the
% usual fashion.
un{sr,2:sc-1) = c(1)*uc(sr,2:sc-1) - uo(sr,2:sc-1)...
+ c(2)*uc(sr-1,2:sc-1)...
+ €(3)*{uc(sr,3:sc) + uc(sr,l:sc-2))...
+ ¢c(4)*{vc(sr~1,1:sc~2) =- vc(sr-1,3:s8c))...
+ c(5)*(vcysr,3:sc) = vc(sr,lisc=2));

% the periodic boundary condition for u
un(sr,1l) = c(1l)*uc(sr,1) - uo(sr,1l)...
+ c(2)*uc(sr-1,1)...
+ c(3)*(uc(sr,2) + uc(sr,sc-1))...
+ c(4)*(ve(sr-1,sc-1) - vec(sr=1,2))...
+ c(5)*(vc(sr,2) - vc(sr,sc-1));

un(sr.sc) = un(sr.1):

¥ the normal component of stress plus the incident,reflected
$ and scattered pressures

vn(sr,2:sc-1) = d(1l)*vc(sr,2:sc~1) - vo(sr,2:sc-1)...

+ d(2)*vc(sr=-1,2:sc-1)...
+d(3)*(ve(sr,3:8c) + vc(sr,l:sc~2))...
+d(4)*(uc(sr-1,1:sc-2) =~ uc(sr-1,3:sc))...
+d(5)*(uc(sr,3:sc) - uc(sr,l:sc=-2))...
+ ((2*dts"2)/dxs)*(2*epss*time(2:sc-1) + epss*all(2:sc-1));

% the periodic boundary condition for v
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vn(sr,l) = d(l)*vc(sr,1) = vo(sr,1l)...
+ d(2)*vc(sr-1,1)...
+d(3) *(vc(sr,2) + vc(sr,sc-1))...
+d (4) *(uc(sr-1,sc-1) - ucisr-1,2))...
+d(5)*(uc(sr,2) - uc{sr,sc-1))...
+ ((2*dts*2) /dxs)*(2*opss*time(l) + epss*all(l,1));

vn(sr,sc) = vn(sr,1j};

- % the compatability condition.
mnpd = (- (2*dxs)/(dts"2))*(vn(sr,:)=- 2%vc(sr,:) +vo(sr,:)) + bli(1,:);
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function cwv4 - coupled waves version 4

written by: Lt. Hugh Mc Bride USNR

date : Apr 92

cwvéd is the main program which couples the behaviour of the ‘I-beam’ shaped

s0lid medium with the fluid medium. The elastic wave equatien and the boundary

conditions ,periecdic and traction free are are satisfied for the solid, while -
the scalar wave equation and the periodic and radiating boundary conditions ar

applied to the fluid.

The general steps of the program are as follows .

1. The basic parameters are determined ,that is the size of the domains )
as passed to it by the driver program cmodck.m Y

2. All the glokal variables are calculated for both the fluid and the solid
including the matrices required for the radiation boundary condition.

3. vl and v3 are vectores used to find the amplitude, vl is the 3
weighting vector 1/2 1 1 1 .... 1 1/2 for the trapezcidal rule R
and v3 = exp(i*n*pi*x) , the othhogonal vector. .

4. The I beam is built by basel

5. The initial values of the u and v for the solid (un,vn,uc,vc,uo,vo)
and m (mn mc and mold) for the fluid are set to zero.

6. The elastic wave equation and the periodic boundary conditions .
are applied to u and v -

7. The boundary conditions for the solid are applied
8. The fluid and solid are coupled
S. The freespace portions of the 1 beam are zeroed cut

10. Tne scalar wave equation and the periodic boundary conditions for
the fluid are appliied.

11. The values of the amplitude are calculated and accumulated

k2. u, v and m are updated ,that is the new values become A
the current values and the current values become the old values.

I A0 N M I M IO KO G NN IO N P I I I NN I IO N NI DI R IO I A M IO I IR A SO

function ([v,un,vn,mn,z2] = cwv4(m,kl, kt, kf,dts,dxs,x,nn,st,epss,tt,nt,mm); :

variables .?G
un : updated values of u vn : updated values of v S
uc : current values of u vc : current values of Vv KE
uo : old values of u vo 1 old values of v

rows : used to identify the elements of the matrix which .
are zero for all times they also contain the row location of )
the nodes on the boundary. i‘
pcoll and pclor are both required as there are two regions,one on "
either side of the center spar of the I -beam which require

our attention and they contain the location of the nodes in question

kl - scaled longitudina. speed

A M IO I IO IO N PP PO I8
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$ kt - scaled transverse spead

t dxs - scaled spacing

% dts - scaled time step

§ x - vector of length of the interval

% nn - no of timesteps

t st - stopping criteria for radiation boundary condition

% epss - ratio of solid density to fluid density

% nt - no of intervals in domain

% mm - prpoagating mode under investigation ,mm = 0 fundamental
t mm = 1 first and so forth

% z? - amplitude of propagating mode

t Step 1 : r,c the dimensions of the domain, r-1 ,c-1 and n-1
% the dimensions of the interior

[r c] = size(m);
n=yr-l; r =r-1;c = ¢c-1;
axis(’xy’)

% Step 2: 'The glohal variables

% For the solid

rho = rhov(kl,kt,dxs,dts); ccs = (2 - 2*rho(l)-2*rho(2));
cunx = ucnx(kl,kt,dxs,dts); cvnx = vcnx(kl,kt,dxs,dts);
cuny = ucny(kl, kt,dxs,dts); cvny = veny(kl,kt,dxs,dts);
cupx = ucpx(kl,kt,dxs,dts); cvpx = vcpx(kl,kt,dxs,dts);
cupy = ucpy(kl,kt,dxs,dts); cvpy = vcpy(kl, kt,dxs,dts);

% For the fluid :

rhof =(dts*2)/(kf"~2#*dxs"2); ccf = (2 - 4*rhof);

rcl = (2#*dts*2)/(kf~2*dxs"2) ;
t The matrices for the radiation boundary condition allowing the propagating
$ modes to pass through the artificial boundary.

anew = zeros(c+l);

for pm = 0:st
acurr = rbc(r+1,c+l,pm,dxs, kf);
anew = anew+acurr;

end

ml = (eye(c+l) + (dts/(2*kf~2))*anew); ml = inv(ml);

m2 = (eye(c+l) - (dts/(2*kf~2))*anew);

t = trid(dxs,dts,c+1,kf);
$ Step 3: vl and v3 calculated so as to be able to determine the amplitude

vl = del2(2+¢nt);
v3 = exp(i*mm*pi*x’);

%t Step 4: basel builds the I =-beam pclor,pcoll ,coll,colr and fill
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& a2llow us to identify the boundaries of the solid domain and the
% corner nodes.

[b,rows, pcoll,pcolr,fill,coll,colr) = basel(n/2);

% Step 5: All values for the fluid and the solid are initially -
% set to zero.
un = zeros(size(m)); uc = un; un” = un;

vh = zeros(size(m)); vc = vn; vOo = vn; .

mn = zeros{size(m)); mc = mn ;mold = mn;

for Xk = 1:nn

% Step 6: The elastic wave equation is applied to the interior
% of the solid

un(2:n,2:n) = cecs*uc(2:n,2:n) - ue(2:n,2:n)...
+ rho(2)*{uc(l:n~1,2:n) + uc(3:n+x,2:n)}...
+ rho(l)*(uc(2:n,1:n-1) + uc(2:n,3:n+1))...
+ rho(3)*(ve(l:n=1,1:n=1) + vc(3:n+l,3:n+1))...
- rho(3)*(ve(l:in-1,3:n+l) + vec(3:n+1l,1:n-1)) ;

vn(2:n,2:n) = ¢ccs*ye(2:n,2:n) = vo(2:n,2:n)...
+ rho(1)*(vc{l:n-1,2:n) + vc(3:n+l1,2:n))...
+ rho(2;*(vc(Z:n,1l:n-1) + ve(2:n,3:n+l)).,...
+ rho(3)*(uc(l:n-1,1:n=1) + uc(3:n+1,3:n+1))...
- rho(3)*(uc{l:n-1,3:n+l) + uc(3:n+l,1l:n-1)) ;

* The periodic boundary conditions for the solid

un{2:n,1) = eccs*uc(2:n,1) - vwo(<!n,l)...
+ rho(2)*{uc(i:n-1,1) + uc(3:n+1,1))...
+ rho(l)*(uc(2:n,2) + uc(2:n,n))...
+ rho(3)*(vc(l:in-1,n) + vc(3:n+l1,2))...
= rho(3)*(vc(1l:n=-1,2) + vc(3:n+l,n)) ;

un(2:n,n+l) = un{2:n,1);

vn(2:n,1) = ccs*vc(2:n,1) - vo(2:n,L)...
+ rho(1)*(ve(i:n-1,1) + vc(3:n+1,1)}...
+ rho(2)*(va(2:n,2) + ve(2:n,n))...
+ rho(3)*(uc(l:n=-1,n) + uc(3:n+1,2))...
~ Yho(3)*(uc(l:n-1,2) + uc(3:n+l,n)) ;

vn(2:n,n+l) = wvn(2:n,1);

% Step 7: The boundaries of the I beam and including the corner nodes
% are treated.




{un ,vn) = bndfnx(uc,vc,uo,vo,un,vn,rows,pcoll,cunx, cvnx) ;
{un ,vn] = bndfny(ug,vc,uo,ve,un,vn,rows,pcoll,pcolr,cuny,cvny) ;
[un ,vn] = lcorny(uc,vc,uc,vo,un,vn,rows,pcoll,cuny,cvny) ;
[urt ,vn) = bndfpx(uc,vc,uo,vo,un,vn,rows,pcolr,cupx, cvpx);
[un ,vn] = bndfpy(uc,vc,uo,vo,un,vn,rows,pcoll,pcolr, cupy,cvpy);
fun ,vn] = lcorpy(uc,vc,uo,vo,un,vn,rows,pcoll, cupy,cvpy)

[un,vn)} = tcoril(ue¢,vc,uo,vo,un,vn,rows,pcoll,pcolr,rho);
[un,vn) = tcor24(uc,ve,wo0,vo,un,vn,rows,pcoll,pcelr,rho);

%+ Step 8 : The solid and the fluid are coupled (Note the is where the forcing
% function of the problem is contained )
all = mc(l,:); bll = mc(2,:);

{un ,vn,mnpdj = coupl(uc,vc,uo,ve,un,vn,cupy,cvpy,k,dts,dxs,all,bll,epss);

% Spep S: Both sides of the center spar for all values of u and v are zeroed
%t out s0 as to prevent pollution

un(rows,coll) = fill; va(rows,coll; = fill;
uc(rows,coll) = fill; vc(rows,coll) = fill;
un({rews,colr) = f£ill; vn{rows,colr) = fill;
uc(rows,colr) = £fill; vec(rows,colr) = fill;
uo(rows,coll) = fill; vo(rows,coll) = fill;
uo(rows,colr) = £fill; vo(rows,colr) = fill;

$ Step 10: The scalar wave equation for the fluid

% First the fluid/solid interface
mn(l,2:c) = rhof*(mnpd(2:c) + mc(2,2:C)...
+mc(l,1:c~1) + mc(1,3:c+l)) +ccf*mc(l,2:c)...
-mold{1l,2:¢};

% and it’s periodic boundary condition
mn{l,1) = rhof*(mnpd(1,1) + mc(2,1}...
+mc(l,c) + mc(1l,3)) +ccf*mc(l,1)...
-mold(1,1);

mn(l,c+l) = mn(l,1);

% The intcrior points of the fluid
mn(2:r,2:c) = rhof*{mc(l:r-1,2:c) + mec(3:r+1,2:7)...
+mc(2:xr,1:c-1) + mc(2:r,3:c+l)) +ccf*mc(2:r,2:¢)...
-mold(2:r,2:¢);

The radiation boundary condition

Note: We are required to multiply a matrix by a row vector,but to do this

it must be transposed to a column ., Matlab takes the Hermitian transpose

by default , so to ensure the correct signs we must void this effect by
taking the conjugate of the transpose before we do our calculations.

The process is then reversed so as the updated value has the correct dimension

O GO N I I ¢ IO
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1 = conj{mc(r,:)’);
82 = conj(me(r+l,:)’);
83 = conj(mold(r+1,:)’);
int = ml®*(rci*sl + t*s2 - m2+%s3);
mn{r+l,:) = conj(int’);

% the periodic boundary condition for the artificial boundary

mn(2:r,1) = rhof*(mc(l:r-1,1) + mc(2:r,2) + ...
me(3:r+l1,1)+ mc(2:r,c)) + ccf*me(2:r,1) - mold(2:r,1);

mn(2:r,c+l) = mn(2:r,1);
% Step 11:; Calulates amd accumulates the values cf the amplitude
aa = abs((mn(xr,:).*vl)#v3);

22 = {22 aa]);

% Step 12: The values for u,v and m are updated.

uo = uc; uc = un;
vo = vC; vC = vn;
mold = mc; mec = mn;




%t function del2 - del funtion used fo
% written by: Lt. Hugh Mc Bride USNR
% date : Apr 92

% bulids a vector of appropiate lengt
% quantity being integrated

function d = del2({n)
a = ones(1l,n+l);
a(l) = .5; a(n+l) = .5;
a2 = ones(1,n+l)/n;

4 = a.%az2;

r thr trapezoidai rule

h ured to weight the elements of the
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function lcorny - left corner facing in the negative y direction
i.e unit normal = (0,~1)

written by: Lt. Hugh Mc Bride USNR

date T Apr 92

lcorny performs the same function as bndfny except it only operates on

4 points , those which lie at the extremities of the domain, tke points

as if fig( ) Periodicity is used for pseudonodes which lie outside the demain.

This requires us to pick out each nodes individually (9 for each 4 points , -
making a total of 36 ) they are weighted in the same fashion

as in bndfny and the updated values for u and v are calculated for both sides

L I

function [un ,vn) = lcorny(uc,ve,ue,vo,un,vn,rovs,pcoll,c,d);

% un : updated values of u vn : updated values of v
% uc : current values of u vc : current values of v
% uo : old values of u vo : old values of v
%2 rows : used to identify the elements of the matrix which
% are zero for all times they also contain the row location of
%t the nodes on the boundary.
%t pcoll allows us to pick out the column location of those nodes
% to the left of centerline and using the pericdicity we substitute
% this value into the corresponding point on the right of
% centerline,
¥ c = cuny:
¥ d = cvny;
{i1,3i1) size(pcoll);

[i2,32] = size(rows);
[i13,33)]) = size(uc);

the updated values of u to the left of centerline are
calculated

o de

ucc = uc(rows(j2)+1,pcoll(l)};
uccl = uc(rows(j2)+2,pcoll(1));
ucr = uc(rows(j2)+1,pcoll(2));
ucl = yc(rows(j2)+1,33-1);

ver = ve(rows(j2)+1,pcoll(2));
vru = vc(rows{i2)+? .ncall(2});
vlu = vc(rows(i2)+2,33-1);
vcl = ve(rows(3j2)+1,33-1);

uol = uo(rows(j2)+1,pcoll(l));

ul = ¢c(l1l)*ucc - uol + c(2)*uccl +c(3)*(ucr + ucl)...
+c(4)*(vlu - vru) + c(5)*{vcr- vcl);

i

))
1))

ucel = uc(l,pcell(l
ucul = uc(2,pcoll(




ucrl = uc{l,pcoll(2)};
ucll = uc(1,j3-1);

verl = ve(l,pcoll(2))

vrul = vc(2,pcoll(2)

viul = ve(2,33-1);

- vecll = vc(1,33~1);

)i

woll = uwo(l,pcoll(1));

ull = c(1l)*uccl -~ uoll + c(2)*ucul +c(3)*(ucrl + ucll)...
+c(4)*(viul = vrul) + c(5)*(vcrl- vell);

% the updated values of v to the left of centerline are
% calculated

vucc = ve(rows(j2)+1,pcoll(l));
vucel = ve(rows({j2)+2,pcoll(l));
vucr = ve(rows(j2)+1,pcoll(2));

vucl = vc(rows(j2)+1,3j3-1);

vver = uc(rows(j2)+1,pcoll(2));

vvru = uc(rows(j2)+2,pcoll(2));
vvlu = uc(rows(j2)+2,33-1);
vvcl = uc{rows(j2)+1,j3~1);

vuol = ve(rows(j2)+1,pcoll(1));

vul = d(1)*vucc - vuol + d(2)*vuccl + d(3)*(vucr + vucl)...
+d(4)*(vvliu - vvru) + d(5)*(vver- vvcl);

vucecl = ve(l,pcoll(l));

vucul = vc(2,pcolli(l));
vucrl = vc(l,pcecll(2));

vucll = vc(l,33-1);

vverl = ue(l,pcoll(2));

vvrul = uc{2,pcoli(2));
vvlul = uc(2,33-1);
vvell = uc(1,j3-1);

vuoll = vo(l,pcoll(l));

vull = d(1)*vuccl - vuoll + d(2)*vucul +d(3)*(vucrl + vucll)...
+d(4)*(vvlul - vvrul) + d(5)*(vvcrl~ vvcll);

% the values put in the correct positions

% and since we have periodic boundary conditions, we insert the left

% hand value into the cerrespondding right hand position

un{rows(j2)+1,pcoll (1), = ul;
un({rows(j2)+1,33) = ul;
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vn’rows(j2)+1,pcoll(1)) = vul;
vn(rows(32)+1,33) = wvul;

un(l,pcoll(l)) = ull;
un(1,3j3) = ull;

vn(l,pcoll(l)) = vull;
vn(l,33) = vull;
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function lcorpy - left corner facing in the positive y direction
i.e unit normal = (0,1)

written by: Lt. Hugh Mc Bride USHKR

date : Apr 92

lcorpy performs the same function as bndfpy except it only operates en

2 points , those which lie at the extremities of the domain, the pointe

as in fig( ) Periodicity is used for pseudonodes which lie outside the domain.
This requires us to pick out each nodes individually (9 for each 2 points ,
making a total of 18 ) they are weighted in the same fashion

as in bndfpy and the updated values for u and v are calculated for both sides

function [un ,vn] = leorpy(uc,vec,uo,vo,un,vn,rows,pcoll,c,d);

OF OF 9P JF OP 8 IO M I I

W IO o o

un : updated values of u vn : updated values cf v

uc : current values of u vc @ current values of v

uo : old values of u vo : old values of v

rows : used to identify the elements of the matrix which

are zero for all times they also contain the row location of
the nodes on the boundary.

pcoll allows us to pick out the column location of those nodes
to the left of centerline and using the periodicity we substitute
this value into the corresponding point on the right of
centerline.

% ¢ = cupy;

¥ d = cvpy;

there are now only two values which need to be calculatad
as the other boundary facing in the positive

y direction is at the fluid/solid interface and requires
a special treatment

[i1,31) = size(pcoll);
[i2,32] = size(rows);
[(1i3,33] = size(uc);

the updated u value

ucc = uc(rows(l)=-1,pcoll(1})
ucu = uc(rows(l)-2,pcoll(1l)
ucr = uc(rows(1l)=-1,pcoll(2
ucl = uc(rows(1)-1,33-1)

)i
i

ver = vc(rows 1l)=-1,pcoll(2));

viu = vc(rows{l)-2,pcoll(2));
vliu = ve(rows(1)=-2,33-1); '
vel = ve(rows(1)-1,33-1);

ucl = uo(rows(lj=-1,pcoll(1));

ul = c(l)*ucc ~ uol + c(2)*ucu +c(3I)*(ucr + ucl)...
tc(4)*(vlu - vru) + c(5)*(ver~ vecl);
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% the updated v value

vuce = ve(rews(l)-1,pcoll(1l));
vucu = vc(rows(l)-2,pcoll(l)};
vucr = vo(rowe(1)~1,pcoll(2));

vucl = ve(rows{1l)-1,33-1);

vver = uc(rows(l)-1,pcoll(2));

vvru = uc{rows(1l)~2,pcoll(2));
vvlu = uc(rows(1l)=-2,3j2-1);
vvel = uc(rows(1l)-1,33-1);

vuol = vo(rows(1l)-1,pcoll(l));
vul = d(1)*vucc - vuol + d(2)*vucu + d(3)*(vucr + vucl)...

+d(4)*(vviu - vvru) + d(5)*(vver- vvecl);

%t using periodicity we update the values to the left and right of
% the center spar

un(rows(1l)-1,pcoll(1)) = ul;
un(rows(1)-1,33) = ul;
vn(rows(l)-1,pcoll (1)) = wvul;
vn(rows(l)-1,33) = vul;




function rbc - radiating bondary condition
written by: Lt. Hugh Mc Bride USNR
date : Mar 92

rbc builds the matrix A(i,k) which is required by the radiation
boundary condition

%
3
3
E
%
function v = rbec(j,1l,pm,dxs,kf)
% variables
. % j,1 -dimensions of the matrix
% pm - propagating modes
a = zeros(j});
for i = 1:3,
for k = 1:1,
a(i,k) = exp(sqrt(-1) *pm*pi*(i-k)*dxs);
i end

end

a(:,1) = .5%a(:,1) ; a(:,k) = .5%a(:,k);

v = sqrt(kf~2-{pm*pi)~2)*a;
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%t function rho- del funtion used for thr trapezoidal rule

f written by: Lt. Hugh Mc Bride USNR

¥ date : Apr 92

% generates a vector containing constants used repeatedly throughout
% the progranm,

function rho = rhov(kl,kt,dxs,dts); .

rhol =(dts~2)/(k1~2%dxs"2);
rhoz =(dts~2)/(kt~2*dxs"2);
rho3 = (dts~2;7(4*dxs~2))*((1/kl~2)-(1/kt"2});

rho = {rhol rho2 rhol};
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function stop - defines the stopping criteria for constructing the radiation
boundary condition i.e if the result of stop is 0 then only the fundamental mo
is allowed to propagate, 1 only the fundamental and the first mode are allowed
to prpogate and so on.

written by: Lt. Hugh Mc Bride USNR

date : Mar 92

L X K N K K J

function v = stop(k)

’ % variables
T k -
$ n - nth propagating mode
n=0,;m= -1;
while (k~2 - n~2%pi~2) > 0.
m=m+l; n = n+l;

end
v =




function tcorl3 -~ treatment of corners 1 and 3
written by: Lt. Hugh Mc Bride USNR
date : Apr 92

tcorlld applies the elastic wave equation at

corneys 1 and 3 as per fig( ) since they use the

same difference formula.

the corner nodes are located (1 first then 3)
identified as p and q (Pl ,q1 in the case of corner 3)
the necessary neighbours are picked off from the u and v .
matrices and weighted accordingly and the new updated values

for u and v are computed.

L X B N K N NN N N

function (un,vn) = tcorl3(uc,vg,uo,vo,un,vn,rows,pcell,pcolr,rho);

variables

un : updated values of u vn : updated values of v

uc : current values of u vc : current values of v

ue : old values of u vo : old values of v

rho : vector containing global constants

rows : used to identify the elements of the matrix which
are zero for all times they also contain the row location of
the corner nodes.

pclor and pcoll carries out the same function as rows for
the columns, and the contain the column location of the
corner nodes.

LA X N K N N N N

[i1,91) = size(rows);
i{i2,32) = size(pcoirj;
{i3,33) = size(pcoll);

% we pick off the elments of rows and pcolr which
t identify the location ot corner 1.

p = rows(il)-1;
q = pcoll(3i3);

¥ generate any required local constants
¢c =« (2 - 2*rho(1)=2*rho(2));

¥ the updated values of the corner nodes for u and v are
§ calculated

un(p,q) = cc*uc(p,q) ~ uo(p.q)...
+ rho(l)*(uc(p,g-1) + uc(p,q+l))...
+ rho(z)*(uc(p-1,q) + uc{p+i,q))-..
= 2*rho(3)*(vc(p=-1.9~1) + vc(p+l,q+l) + 2*ve(p,g))... )
2*rho(3)*(vc(p,q+1) + ve(p,q-1) + vc{ptl,q) + vc(p-1,q9)); .

'

vn(p,q) = cc¥vc(p,q) - vo(p,q)...
+ rho(2)*{vc(p,g-1) + vc(p,g+1l))...
+ rho(l)*(ve(p-1,q) + vc(p+i,q))...
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= ¢*1ho(3)*(uc(p-1,q9-1) + uc(p+l,q*1) + 2*uc(p,q))...
+ 2*rho(3) *(uc(p,q+1) + uc(p,q-1) + uc(p+l,q) + uc(p-1,q)); p

% the same process is repeated for corner 4 below

Pl = rows(3i)+1; .
ql = pcolr(i2); -

un(pl,ql) =cc*uc(pl,ql) - uo(pl,ql)...
+ rho(l)*{uc(pl,qi-1) + uc(pl,gl+ij))...
+ rho(2)*(uc(pl-1,q9l1l) + uc{pi+l,gi))...
- 2*vho(3)*(ve(pl-1,91-1) + vc(pltl,ql+l) + 2#*vc(pl,ql))}...
+ 2*rho(3)*(vc(pl,qgl+l) + vc(pl,ql-1) + vc(pl+l,ql) + vc{pl-1,9ql));

vn(pl,ql) =cc*ve(pl,ql) - vo(pl,qgl)...
+ rho(2)*(ve(pl,ql-1) + vc(pl,ql+l))...
+ rho(l)*(ve(pl—1,4l) + ve(pi+l,gl)})...
~ 2*rho(3)*(uc(pi-1,ql-1)+uc(pl+l,ql+l)+2*uc(pl,ql))...
+ 2%rho(3)*(uc(pl,ql+l) + uc(pl,ql-1) + uc{pi+l,ql) + uc({pi-1,ql));
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function tcor24 - treatment of corners 2 and 4
written by: Lt. Hugh Mc Bride USNR
date : Apr 92

tcor24 applies the elastic wave eguation at

corners 2 and 4 as per fig( ) since they use the

game difference formula,

the corner nodes are located (2 first then 4)
identified as p and ¢ (pl ,gql in the case of corner 4)
the necessary neighbours are picked off from the u and v b
matrices and weighted accordingly and the new updated values

for u and v are computed.

function {un,vn] = tcor24(uec,vc,uo,vo,un,vn,rows,pcoll,pcolr,rho);

variables

un : updated values of u vn : updated values of v
uc ; current values of u vc : current values of v
uo : old values of u vo : old values of v

rho : vector containing ylobal constants

rows : used to identify the elements of the matrix which

are zero for ali times they also contain the row location of
the corner nodes.

pclor and pcoll carries out the same function as rows for
the columns, and the contain the column loceztion of the
corner nodes.

(i1,31) = size(rows);

fiz, 323} =» "-~=(pcolr);
[13,33? : ‘pcoll) ;
we pick off t.. ~ents of rows and pcolr which

identify the lccation of corner 2.

P = rows{il)-1;
g = pcolr{i2);

generate any required local constants

Cc = (2 - 2*rho(1)-2*rho(2));

the updated values of the corner nodes for u and v are
calculated

un(p,q) = cec*uc(p,q) - wo(p,q)...
+ rho(l)*(ucip,g-1) + uc(p,qg+1))...
+ rho(2)*{uc(p-1,q) + uc(p+l,q))...
+ 2%rho{3)*(vc(p+l,g-1) + vc(p~l,q+l) + 2*vc(p,q))--.
= 2*rho(3)*(vc(p,q+l) + vc(p,q~-i) + vu(p+l,q) + ve(p-1,9));

vn(p,q) = cc*ve(p,q) ~ ve.p.q)...
+ rho(2)*(vc(p,q-1) + ve(p,q+l))...
+ rho(l)*(vec(p-1,q) + vc(pri,q))...
+ 2*rho(3)*(uc(p+1,9-1) + uc(p-1,q+l) + 2*uc(p,q)}...
- 2% ho(3)*(uc(p,gt+l) + uc(p,g-1) + uc(p+l,q) + uc(p-1,q));




T the sime process is repezted for corner 4 below

pl = rows(j1)+1;
b ql= pcoll(j3);

un(pl,ql) = cc*uc(pl,qgl) - uo(pl,ql)...
- + rho/l)*(uc(pl,qgl-1) + uc(pl,ql+l))...
+ rho(2)*(uc(pl-1,gl) + uc(pi+i,qgl))...
+ 2%rho(3)*(ve(pl+l,ql-1) + ve(pl~1,ql+l) + 2*ve(pl,ql))...
« 24rhio(3)*(ve(pl,qgl+l) + ve(pl,gi-1) + vc(pl+l.,ql) + ve(pl-1,ql));

vn(pl,ql) = cecrve(pl.gql) - vo(pl,ql)...
+ rho(2)*(vc(pl,gl~1) + vc(pl,qli+l))...
+ rho(l)*(vc(pl—-1,ql) + vc{pl+i,ql))...
+ 2*rho(3)*(uc(pl+l,ql~1) + uc(pl-1,ql+l1l) + 2*ucipl,ql))...
- 2*rho(3)*(uc(pl,qi+l) + uc(pl,ql-1) + uc(pl+l,ql) + uc(pl-1,91)};
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function trid - tridiagonal
written by: Lt. Hugh Mc Bride USNR
date : Mar 92

trid generates a tridiagonal matrix for the

radiation boundary condition of the fluid .

the elements of the sub and super diagonal are (dts/kf=*dxs)"2
the main diagonal component is 2 ~ 4(dts/kf=xdxs) "2

the (n,2) and (1,n-1) contain (dts/kf*dxs)*2 to satisfy the
periodic boundary conditions.

function m = trid(dxs,dts,n,kf)
variables

dxs : scaled spacing

dts ; scaled time step

n : dimension of matrix

Kf : scaled constant

an identity matrix for the elements of the main diagonal
dl = eye(n);

the sub and super diagonals
d2 = ding(cnes(n-1.1),1) + diag(ones(n-1,1),-1);

the reguired

0
)
i
{
]
1%
dde
5

Lcients
rhe = dts/(kf*dxs); rho = (rho~2);
generutes the reguired matrix

d =2%dl -4%rho*dl +rho*dz; R

d(1l,n~1)= rhe ; d(n,2) = rho;




function ucnx - u coefficients/constants for the boundary facing the
negative x direction,

written by: Lt. Hugh Mc Bride USNR

date : Apr 92

provides the coefficients developed by applying the Ilan and Lowenthal
technigque to the boundary with unit normal(-1,0) for the corresponding u
and v values.

LA N N X N

function cunx = ucnx(kl,kt,dxs,dts)

variables

kl - scaled longitudinal speed
Kkt - Bcaled transverse speed
dxs - scaled spacing

dts - scaled time step

the coefficients are calculated and stored in the vector cunx
for use in bndfnx

s MMM

cl = 2 - 2%(dts~2/dxs 2) % ((1/k1°2)}+(1/kt~2));
c2 = 2*dts~2/(dxs*2%K1"2);
c3 = (dts~2)/(dxs"2*kt~2);
c4 = -(dts~2/(2%dxs"2))*({1/k1~2)=(1/kt" 2));
c5 = (dts~2/(2%dxs~2))*((1/k1~2)-(3/kt*2)); A

cunx = {¢l ¢2 €3 ¢4 ¢5];
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function ucny - u coefficients/constants for thes poundary facing the
neghtive y direction.

written by: Lt. Hugh Mc Bride USNR

date : Apr 92

provides the coefficients developed by applying the Ilan and Lowenthal
technique to the boundary with unit normal(0,-1) for the corresponding u
and v valuzs.

“5 @D I8 0P 9P

8 &

funciion cuny = ucny(kl,kt,dxs,dts)

var iables

k1l -~ scaled longitudinal speed
kt ~ scaled transverse speed
dxs - sczled spacing

dts - scaled time step

the coefficierts are calculated and stored in the vector cuny
for use in bndfny

LE L g

€l = 2 - 2%(dts~2/dxs"2)*((1/k1~2)+(1/kt"2));
C2 = 2%(dts"2/(dxs"2*Kt~2));
€3 = (Ats~2)/(dxs~2%k1"2);
c4 = -(des~2/(2%dxs*2) ) *((1/k1"2)-(1/kt"2));
c5 = (dts~2/(2%dxs~2))*((3/kt"2)=-(1/k1*2));

cuny = [c¢l c2 €3 c4 c5);




functicn ucpy - u coefficients/constants for the boundary facing the
positive x d..eztion.

written by: Li. Hugh Mc Bride USNR

date : Apr 92

provides the coefficients developed by applying the Ilan and Lowenthal
technigue to the boundary with unit normal(1,0) for the corresponding u
and v values.

unction cupx = ucpx(kl,kt,dxs,dts)

variables

k1l - scaled longitudinal speed
kt - scaled transverse speed
dxs - scaled spacing

dts - uscaled tine step

the coefficients are calculated and stored in the vector cupx
for use in bndfpx

L. 4 I  h SIS I N

€l = 2 - 2%(dts~2/dxs"2)*((1/K1"2) +(1/kt"2));
cz = 2%(dts~2/(dxs"2*Kl"~2));
€3 = (dts~2)/(dxs~2*kt 2);
c4 = (d-s~2/(2*dxs~2Z))*((1/k1~2)~(1/kt"2));
c5 = ~(dts” 2/ (2*Axs"2))*((1/kl~2)-(3/kt~2));

cupx = {cl ¢c2 ¢3 ¢4 ¢5);
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function ucny - u coefficients/constants for the boundary facing the

positive y direction.

written by: Lt. Hugh Mc Bride USNR

date s Apr 92

provides the coefficients developed by applying the Ilan and Lowenthal

technique to the boundary with uvnit normal(0,1) fer the corresponding u

and v values. d

uncticn cupy = ucpy(kl,kt,dxs,dts)
variables
kl - scaled longitudinal speed
kt - scaled transverse speed
dxs - scaled spacing
dts - scaled time step
the coefficients are calculated and stored in the vector cupy
for use in bndfpy
€l = 2 - 2%(dts~2/dxs"2)*((1/k1~2)+(1/kt"2));

c2

2% (dts~2/ (dxs~2%kt~2));

c3

(dts~2) / (dxs~2%k1"2);
c4 = (dts~2/(2*dxs"2))*((1/K1°2)~(1/kt"2));

€5 = (dts~2/(2*dxs"2))*((1/k1"2)-(3/kt*2));

cupy = (¢l c2 ¢3 ¢4 c¢5);




function venx - v coefficients/constants for the boundary facing the
negative x directicr.

written by: Lt. Hugh #¢ Bride USNR

date : Apr 92

provides the coefficient: developed hy applying the Ilan and Lowenthal
technique to the boundary with unit normal(-1,0) tor the corresponding u
and v values.

L R X N

function c¢vnx = venx(kl,kt,dxs,dts)

variables

k1l - scaled longitudinal speed
kt - scaled transverse speed
dxs - scaled spacing

dts - scaled time step

the coefficients are calculated and stored in the vector cvnx
for use in bndfnx

”» o 90 I I0 Je Jo

dl = 2 - 2%(dts~2/dxs"2)*((1/K1 2)+(1/kt*2));
d2 = 2*(dts~2/(dxs"2%kt"~2));
dl = (dts*2)/(dxs*2+%k1l"2);
dé¢ = -(dts"2/(2*dxs"2))*((1/kl1"2)~-(1/Kt"2));
d5 = (dts~2/(2%dxs~2))*((3/kt"2)=-(1/kl"~2));

cvnx = [dl 42 d3 d4 d5);
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function vcny - v coefficients/constants for the boundary facing the
negative y direction.

written by: Lt. Hugh Mc¢ Bride USNR

date : Apr 92

provides the coefficients developed by applying the Ilan and Lowenthal
technigue to the boundary with unit normal(0,-1) for the corresponding u
and v values.

L X X X X X X 2

function cvny = veny(kl, kt,drs,dts)

variables

k1l - scaled longitudinal speed
kt - scaled transverse speed
dxs ~ scaled spacing

dts - scaled time step

the coefficients are calculated and stored in the vector cvny
for use in bndfny

" 9P J6 4o 0 b0

dl = 2 - 2%(dts*2/dxs"2)*((1/k1*2)+(1/kt~2));
d2 = 2*(Ats"~2/(AXsS"2*K1%2));
d3 = (Ats~2)/(dxs*2%kt"2);
d4 = =(dts*2/(2%dxs~2))*{(1/k1~2)-(1/kt"2));
ds = (dts"2/(2*dxs"2))*((1/k1°2)-(3/kt"2));

cvny = [dl 42 d2 44 45},
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function vcpx ~ v coefficients/constants for the boundary facing the
positive x direction.

vritten by: Lt. Hugh Mc Bride USNR

date ¢ Apr 92

provides the coefficients developed by applying the Ilan and Lowenthal
technique to the boundary with unit normal(1l,0) for the corresponding u
ard v values.

unction cvpx = vepx(kl, kt,dxs,dtrs)

variables

k1l - scaled longitudinal speed
kt - scaled transverse speed
dxs - scaled spacing

dts - scaled time step

the coefficients are calculated and stored in the vector cvpx
for use in bndfpx

o 0 I do JE Jo h o0 I It 40 J0 I S I

dl = 2 -2#%(dts*2/dxs~2) *((1/k1~2)+(1/kt~2));
dz = 2%(dts~2/(AxS~2*kt"2));
d3 = (dts~2)/(dxs*2%k1*2);
d4 = (Ats~2/(2*axs"2))*((1/k1°2)~(1/kt*2));
dS = (dts"2/(2*dxs~2))*((1/k1~2)=(3/kt"2));

cvpx = [dl d2 d3 d4 d5);
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% function vcny - v coefficients/constants for the boundary facing the Vv
% negative y direction. =
% written by: Lt. Hugh Mc Bride USNR v
¥ date : Apr 92 -
% provides the coefficients developed by applying the Ilan and Lowenthal N
3 technique to the boundary with unit normal(0,1) for the corresponding u %
t and v values. »

L

function cvpy = vepy(kl,kt,dxs,dts) ’

% variables

% k1l - scaled longitudinal speed

% kt - scaled transverse speed

% dxs -~ scaled spacing

$ dts - scaled time step

the coeffjicients are calculated and stored in the vector cvpy
for use in bndfpy

96 o8

dl = 2 - 2#4(dts~2/dxs*2)*((1/k1°2)+(1/kt 2))
d2 = 2#%(dts~2/(dxs*2+k1"2));
d3 = (dts~2)/(dxs~2%kt-2);
d4 = (dts~2/(2%dxs~2))*((1/k1°2)=(1/kt"2));
a5 = ~(dts 2/ (z*dxs~2))*((1/k12)-(3/kt 2});
cvpy = [d1 d2 d3 d4 d5); .
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