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ABSTRACT

Knowledge of the elastic properties of composite materials can be an

invaluable tool for both the quality assurance of manufacturing techniques and

design verification. Recent advancements in ultrasonic velocity measurements

have demonstrated the ability to recover elastic properties in anisotropic

laminates. A simplified experimental setup was investigated to recover the

elastic properties based upon the flexural wave propagation in anisotropic

laminates. The initial objective of this thesis was to verify flexural wave

propagation in composite laminates through the comparison of experimental and

theoretical phase velocities. In the second part of this thesis, the experimental

phase velocities were used to calculate the elastic properties of the material by

inverting the governing equations. The initial method used to recover elastic

constants was successful in the recovery of a partial set of the bending and

extensional stiffnesses. The inability to recover all bending stiffnesses dictated

the investigation of a second method. This method used an iterative method

based upon a nonlinear Newton's method to recover the bending stiffnesses. This

method did not converge due to ill conditioning of the solution matrix. Although

this method did not converge, it is believed that other more robust methods

suggested herein would converge to the proper solution.
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I. INTRODUCTION

Composite materials have been used quite extensively in the past for high

performance structural components and promise to be major structural materials

of the future [Refs. 1-4]. The inherent advantage of composite materials is their

high strength to weight ratio. Composite structures present unique problems in

that these materials are produced by complex manufacturing processes. These

processes include a large number of manufacturing variables which increase the

number of opportunities for introduction of defects. Variables such as state of

cure of the resin, fiber to matrix bond, and fiber to resin ratio have an effect on

the elastic properties of a laminate. It is thus imperative that controlled

procedures be established for quality assurance throughout the manufacturing

process. A knowledge of the elastic properties of composite materials would be

invaluable for both design verification and quality assurance. There is a need for

a simple and quick in situ test which can yield quantitative parameters descriptive

of the mechanical state of the material.

Several non-destructive testing (NDT) techniques with their own inherent

strengths and weaknesses are currently available to assess the mechanical states of

composites and are discussed below.

Radiographical techniques have long been available to detect large voids,

porosity content, foreign debris and other imperfections in composite laminates.

The presence of these imperfections has a most definite impact upon the material

properties. There seems to be disagreement on the ability of radiography to

determine fiber volume while the value of this technique reduces with increased

laminate thickness. [Ref. 41



Ultrasonic methods are one of the most widely employed techniques for the

non-destructive testing of composite laminates [Ref. 5-10]. Ultrasonic NDT

techniques :., lude velocity measurement, ultrasonic spectroscopy and

attenuation mastmlement.

There is a definite relationship between void content and mechanical

strength. Ultrasonic spectroscopy has proven itself to be a viable technique to

detect and locate voids, delaminations and other defects. Also, the dependence of

ultrasonic attenuation upon void content has been clearly demonstrated. While

these NDT techniques are effective tools for testing of production quality

control, they ::an not quantify the actual material mechanical properties. LRef. 4]

Several works on ultrasonic velocity measurement to recover the material

properties have been published recently. Dayal and Kinra [Ref. 5] verified the

Lamb dispersion for an anisotropic laminate immersed in a water bath by

measuring the phase velocities and attenuation of ultrasonic waves in thin plates.

Every and Sachse [ Ref. 6] have shown through numerical simulation it is

possible to recover a partial set of elastic constants of a mildly anisotropic

material using the quasi-longitudinal mode. However, the quasi-longitudinal

mode is typically difficult to excite in thin plates. Wu and Ho [Ref. 7] measured

the energy (group) velocity of the quasi-longitudinal and quasi-shear mode

through the thickness of a 36 ply unidirectional laminate using an ultrasonic

technique. The energy velocity measurements were used to calculate the phase

velocities through a numerical method. From the phase velocities the elastic

constants could be calculated. Wu and Chiu [Ref. 8] found good agreement

between theoretical and experimental results when exciting the shear mode in a

unidirectional laminate. When attempting to determine the elastic constants from
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velocity measurements of the shear mode, they reported that even a small

perturbation in the shear wave velocity will induce large differc; 'es in the

calculated elastic constants. Castagnede et. al. [Ref. 9] utilized the nondispersive

bulk modes to determine the elastic constants of a glass/ epoxy unidirectional

composite. Every and Sachse [Ref. 10] used the group velocities of the bulk

longitudinal mode to recover the elastic constants of an anisotropic solid. Every

and Sachse utilized the point-source--point-receiver (PS-PR) technique to

measure the group velocities. The group velocities were used to determine the

elastic constants of an anisotropic solid. The PS-PR technique requires access to

both sides of the specimen which is not always poSsible when measuring in situ.

While these methods have shown success in recovering material properties of

composite laminates, there are limitations upon their usefulness to the composite

community. Castagnede et. al. and Every and Sachse have proven successful in

recovering elastic properties while using the bulk modes excited by the PS-PR

technique. However, excitation of the bulk mode is difficult in thin plates. Wu

and Ho and Wu and Chiu successfully utilized immersional ultrasonic

measurements to recover the elastic constants. One drawback of this method is

that the test specimen must be immersed in water.

This thesis investigates the possibility of using phase velocity measurements

based on plate wave modes in thin composite laminates. The method utilizes a

single pulser and receiver combination on the same side of the plate. The

experimental setup does not require immersion of the specimen nor does it

require access to both sides of laminate. The experimental setup is discussed in

further detail in Chapter III.

3



Gorman .Ref. 111 has shown for this type of transmitter/receiver setup,

when the wavelength is much larger than the plate thickness, only two modes of

v,ave propagation are present with a significant amount of energy, the lowest

order extensional and the flexural modes. Initially, this thesis is concerned with

the verification of the aispersion curves predicted by higher order plate theory

of [Ref. 12]. L*Aperinentally measured phase velocities are compared with

theoretical phase velocities calculated using the manufacturer's supplied material

properties. Next, the possibility of recovering the material properties is

explored through the utilization of both the classical plate theory and higher

order pldi' theory. It is shown that by inverting the governing equations for the

"lexý,,ral vc',. the experimentally measured phase velocities can be used to

recover -. A set of the maLerial properties of several experimental lainintes.
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II. WAVE THEORY FOR THIN PLATES

In the experimental section to follow, the experimentally measured phase

velocities are compared to theoretical predictions. Therefore, the theory of

wave propagation in thin plates must be understood. In this section, the classical

plate theory and the higher order plate theory of wave propagation are

presented.

A. CLASSICAL PLATE THEORY

To understand the propagation of flexural waves in thin plates, we begin by

considering a plate of thickness li and of infinite extent in the x-y plane as

depicted in Figure 2.1.

qd •dj. ,

dyf

Af, d~v
. f,x-X A{- 4 dX

A -t- - dy"-./ I "-" ,t,,+..• - dX"e ! I% JQ,-+ aQ,, a
Q:' +

Figure 2.1 Plate Element (after Graff [Ref. 13]).

A differential eletient h dxdy will be subject to the various shear forces,

bending and twisting moments as shown due to the applied stresses. Summing

forces in the z - direction gives
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S+x ,-y-+q = ph d2 w (2.1)--fx' dy dt2

W(x,y,t,) is the displacement of the mid-plane of the plate in the z-direction.

Similarly, summing moments gives

dMy - Wxy O = 0x (2.2)
dy da

dx + -Qx =O. (2.3)ax ay

Solving (2.2) and (2.3) for the shear forces Qx and Qy and substituting into

(2.1) results in a single governing equation in terms of the various moments,

d2MX + Myx d2Mxy d2My dzw

dx 2  dxdy dydx +-y--y+q=ph-•-" (2.4)

Recognizing Mxy = -Myx, (2.4) simplifies to

dM, d M,~ ydMy ,d 2wd-- + 2 d--Y + M + q = pn-d-.. (2.5)

For a laminate arranged symmetrically about its mid plane, the bending

moments are related to the curvatures by

[x D1[D D12 D16i[ ICX
My D12 D22 D26 ICY. (2.6)
PM4 LD16 D26 D66- L 1Cx,

The Dij are the bending stiffnesses and K'CIK and 1Gy are the middle plane

cur'atures which are defined as
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Koj =- OY. (2.7)

i.Oxy 2[CX d2W
dxdy

The displacement of the flexural wave is given by

w = Ae(k(h'x+ 12Y)-Wt) (2.8)

The value k is the wave number, 11 and 12. are the direction cosines in the x

and y directions, respectively, w is the circular frequency and A is the amplitude

of the wave.

Substituting (2.6) throagh (2.8) into (2.5) and setting the body fotces to zero

gives

k4 (h' Dii + 41i'12D6 + 211212 (DU2 + 2D66) + 4111'D26 + 124 D22) = phci2. (2.9)

For flexural waves propagating in the x direction (i.e. 11 =1 and 12=0),

equation (2.9) reduces to

k4Dii = phW2. (2.10)

Similarly, for flexural waves propagating in the y direction equation (2.9)

reduces to

k4 D22= pho02. (2.11)

From elementary wave theory, the phase velocity, Vp, in terms of circular

frequency and wave number can be written as

VP- -- ( .(2.12)
k

Substituting (2.12) into (2.10) and solving for the phase velocity of waves

propagating in the x-direction gives

7



phD1,0) 4 472Dlf 4 (2.13)

Likewise, substituting (2.12) into (2.11) and solving for the phase velocity of

waves propagating in the y-direction yields

D22o 2 
-0) 4rL 2D22f 2

Vp( "= (2.14)

It can be observed that the phase velocity is a function of the frequency, i.e.,

the phase velocity is dispersive. For low frequency conditions classical plate

theory predicts the correct response. However, for short wavelength, high

frequency conditions unbounded phase veloc-ties are predicted. This physically

unreasonable condition is the result of neglecting rotary inertia and shear effects

in the theory.

B. HIGHER ORDER PLATE THEORY.

Classical plate theory is based on the Kirchoff hypothesis whereby the

transverse shear deformation effects are neglected. However, the shear

deformation effects are significant for a composite laminate owing to the fact

"that a composite laminate has a low transverse shear modulus. Consequently, the

effects of transverse shear must be included to accurately predict the physical

condition. The dispersion theory presented by Tang, Stiffler and Henneke [Ref.

12] for composite plates is an extension of the work of Mindlin [Ref. 14]

performed on isotropic plates, which accounts for both transverse shear and

rotary inertia corrections.

We begin our discussion of higher order plate theory by considering a

composite laminate plate of thickness h with the coordinate system as presented

in Fig. 2.1. The following displacement fields are assumed:
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U = Uo(X, y,t) + ZIx( X, y,t) (2.15)

v = Vo(X,y,t)+ZVy(X,y,t) (2.16)

w=w(x,y,t). (2.17)

The displacement coordinates u, v, and w are in the x, y, and z directions, uo

and vo are the mid-plane displacement components, Vxand Vy are the rotation

components along the x and y axes, respectively. Substituting (2.15) through

(2.17) into the small strain-displacement relations of elasticity theory yields:

Ell=u.+ z / (2.18)
dX dx

= Vo+ z OVy (2.19)
dy dy

Ez=O (2.20)
duo dVo dX d.
d-y dx dy dx

dw (2.22)

= +w (2.23)

The stress strain relations for a orthotropic lamina, including the out of

plane shear terms, are
"'"Q"Oi 012 0 0 0161 £x

Cy 012 Q0 0 0 Q26 ,i

,,= 0 0 044 Q45 0 Izy. (2.24)
rxz 0 0 045 055 0 7Xz

.1:,y. Q16 026 0 0 Q - 7xy_

Qij for i=1,2,6 are plane stress reduced stiffnesses, and Qij for i=4,5 are

transverse shear stiffnesses. The force and moment resultants per unit length

acting on the laminate are obtained by the integration of the stresses in each

lamina through the plate thickness,

9



h12

(Nx,Ny,Ny)= f(Ux,Uy.T'jxy)dz (2.25)
-h12

(Qx,Qy) = J (1xz, Tyz)dz (2.26)
-h12

h12

(Mx, My, Mxy) = f ( Ox,Iy(, Txy)zdz (2.27)
-h12

Substituting equations (2.18-23) and (2.24) into equations (2.25-27) gives

duo
dx
dVo

"N " Al A12 0 A16 Bil B12 B16" dy
dwA12 A22 0 0 A26 B12 B22 B26 -ý-. +4(ydy

Qy 0 0 A44 A 4s 0 0 0 0 dw
OX 0 0 A45 A55 0 0 0 0 Q --x+VX

M A16 A26 0 0 A66 B16 B26 B66 duo dvo
Bi, B12 0 0 B16 Dii D1z Di6 -- dx

B12 B22 0 0 B26 D12 D22 D26

dx (2.28)
MXY L B16 B26 0 0 B66 D16 D26 D66 d /y

dy
dvlx +2~y

Ldy 'dxJ

The extensional stiffness, Aij, coupling stiffness, Bij, and bending stifness,

Dij, are given by
h12

(A4, By, D,,)= J (O,)k(1, z Z 2 )dZ i,j=1,2,6 (2.29)
-h12

and
h12

AY = K f(Qq) i,j=4,5 (2.30)
-hi2

The shear correction factors are included to account for the fact that the

transverse shear distributions are not uniform across the thickness of the plate.

10



Summing forces and moments on a differential element and neglecting the

body forces, the equations of motion are reduced to:

dM, dN,, ',+R ? .(.1d = (2.31)

dNxy - aNy = d2v°, d2 VY (2.32)
dx -- =P -t +R at2

dQ aQ" d OX 2Uo
-;x 2 *y = dt• (2.33)

8MII dM•y ,-2Uo d2 V,+M , - O (2.34)
ax dy at2  at2

dMxy aMy "- d2v° a 2 •/ 2.5
dx --y-at 2  at-2  (2.35)

P is the mass density and
h12

(p',R,I)= fp(1,z,z2)dz. (2.36)
-hW2

By substituting equation (2.28) into equations (2.31-35), the equations of

motion in terms of the displacements and rotation are obtained.

For this thesis, only symmetric laminates are considered. This results in

considerable simplification because the coupling stiffnesses, Bij, and the normal-

rotary inertia coupling coefficient ,R, are identically zero. The equations of

motion for the flexural mode reduce to
dVx 2x d2w d & d y d2w d VY d2w .892wAss(-+-x +A45(--+- +2 - -)+ y +- = p -- t (2.37)
dx /'w y dx xdy) + D 66( yý2

d26 VX2 d2", )2]"6 '

D16 ' +(D12+ D66) D26-57 + u6--VY +2D -
dX2 a-xy + y dX .2  dxdy

- A44( y + 8w)= 2 (2.38)
dy 1t2



ad¾ _ rvx +D a2 vg, a2ijy ___ aW)
1D D6-+(Dl2.D66)--v +D26 2 -Ass(fx,+-)ax2  dxdy dx dxdy dydx

aW ) t= d 2V (2.39)-A~( • d y at2"

For flexural wave propagation , we consider plane waves described by

W = Wei(k(hlx+12Y)-W) (2.40)

,, = iluxet, (k(1Ix+12Y)-Wt) (2.41)

Igy = iVyef(k(I'*/2y)-t). (2.42)

The value k is the wave number, 11 and 12 are the direction cosines of the

wave vector in the x and y directions, co is the circular frequency, and W, ix

and Vy are the amplitudes of the plane waves. After substituting equations

(2.40- 42) into equations (2.37 - 39), the determinant of the resulting set of

equations gives the dispersion (characteristic) equation for flexural wave

propagation. Because this study is limited to symmetric quasi-isotropic

laminates, in addition to Bij and R=O, A16 = A26 = A45 = 0 and D16 =D 26. This

results in the following characteristic equation for flexural wave propagation.

DiiK 2/12 +2Dl6k 2 h12 DI6k 2 + (D12+ D66)K2 h112 iAM54k1

+D66K 2122 + Ass- I9 2

D16k 2 + (D12 + D66)k2 /12 D66k 2/12 + 2D16K 2h1/2 iA4k12 = 0

+D22k 212 + A44 -- /(.o2

-iAsskh -iA44kl2 -Assk 2 - A44k 2122 -p'2

(2.43)

Several simplifications can be made for waves propagating along principal

directions. For waves propagating in the x- dircction (11=1 and 12=0),equation

(2.43) reduces to

12



(Dilk2 + A55- Io 2 )(D66k 2 + A44 - 1o) 2)(Assk 2 -p'ow2)

-(Dl6k 2 )2 (A55k 2 -pw2 2) - (A55k) 2 (D6,k 2 + A44 -_) = 0 . (2.44)

For waves propagating in the y-direcdion, equation (2.43) reduces to

(D22k 2 + A44 - 1o2 )(D66k 2 + Ass - 1w2 )(A44k 2 - p'o 2 )

-(Dl6k 2 )2 (A44k 2 -p',o2 2 )-(A 44k) 2 (D66k 2 + A44 -Io 2) = 0 (2.45)

For unidirectional or cross-ply laminates, equation (2.43) can be further

simplified (since D16=0) for waves propagating in principal directions. For

waves propagating in the x-direction (2.44) reduces to

(Diik2 + Ass- Iw 2 )(Assk 2 -p*C2 ) - A5s 2 k 2 = 0

(2.46)

For waves propagating in the y-direction (3.45) reduces to

(D22k 2 + A44 -_ /( 2 )(A44k 2 - p'w2 )- A442 k2 = 0

(2.47)

It can be recognized that the characteristic equation has more than one root.

However, only one root approaches zero circular frequency as the wave number

approaches zero. This is the root corresponding to the flexural branch of the

frequency spectrum for plate waves.

13



III. DISPERSION MEASUREMENTS

A. INSTRUMENTATION AND EXPERIMENTAL PROCEDURE

Figure 3.1 is a schematic of the instrumentation used for the phase velocity

measurements. An arbitrary function generator (AFG), (LeCroy model 9100)

was used to generate a 10 volt, peak-to-peak, gated nine cycle sine wave tone

burst, shown in figure 3.2. The repetition rate of the tone burst was controlled

by a 20 MHz pulse generator (Wavetek model 145). The tone burst from the

AFG was amplified using a direct coupled amplifier (Krohn-Hite model DCA-

50) over the frequency range of 0-500 kHz. The amplified signal was in turn

input into a matching transformer (Ktnron-Hite model MT-55). The signal was

used to drive a piezoelectric transducer which was used to transmit the wave into

the plate. Several different transmitter and receiver transducer types. were used

to increase the size of the flexural mode. This issue is discussed in depth in

section C of this chapter. Both exciter and receiver transducers were coupled to

the plate using vacuum grease. The received signal was then amplified 60 dB

using a model 1220A Physical Acoustics Corporation (PAC) preamplifier , in

which the filter had been modified for broadband operation. Finally, the output

signal was routed to a LeCroy 9400A digital oscilloscope to capture and digitize

the waveform detected by the receiving transducer.

In order to measure the phase velocity, a cursor on the oscilloscope screen

was positioned at a reference point on the received wave. The receiving

transducer was then moved a known distance, 1. By maintaining the cursor at the

reference point (phase point) of the waveform as the receiving transducer was

translated, the time differ-nce, A t, of the phase point was determined. Knowing

14



the time difference and the distance of transducer travel, it is a simple calculation

to determine the phase velocity, Vp=lI/At.

COMPUTER

Trigger GPIB

GPI B

AFO

Oscilloscope Amplifier

Receiver Pulser

I I

Figure 3.1 Schematic of Experimental Set-up
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LO .... .... .... ........

~~~~. . .... ..... lllll~ lll l. . .

S~~~.... l.... .... ... I ...... I.. .... .I... ;
I~- ----- ---- 4

""ime, T/Div - 50 -s

Figure 3.2 Input pulse

B. EXPERIMENTAL RESULTS
Shown in Figures 3.3 and 3.4 are the theoretical dispersion curves (from

higher order plate theory) for the 10,9014,s laminate. Additionally, the

experimental phase velocities are shown for tihe flexural waves propagating in

tile 0 and 90 degree directions. Figures 3.5 to 3.9 are the theoretical dispersion

curves for the [0,45,90,-4512,s laminate. The experimentally derived phase

velocities are shown for the flexural waves propagating in the 0, 22.5, 45, 67.5

and 90 degree direction. Material constants used for the calculation of the

dispersion curves are given in Appendix A. Experimental data for all phase

velocity measurements are given in Appendix B.

The experimental data follows the general trend of theory. Except for tile

10,9014,s laminate measured in the 0' direction, the experimental phase velocities

are consistently less than the theoretical. It is believed that this discrepancy is

dlue to the actual elastic constants being less than those quoted by the

manufacturer.
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Several subtleties associated with experimental phase velocity measurements

were discovered which are discassed below.

The selection of the transducer (size and resonant frequency) pulser/ receiver

combination had an impoitant result on the mode of the output wave. For

example, when measuring the [0,9014,s plate at the lower frequencies the

combination of transducer A/B (as defined in Appendix B) produced an excellent

presentation of the flexural mode (Figure 3.10). As the frequency is increased

the extensional mode is introduced into the laminate (Figure 3.11). By switching

the pulser receiver combination to B/C, the effect of the extensional mode is

decreased (Figure 3.12). This may be due to the smaller diameter transducers

not being excited by the extensional mode at this frequency. This is because the

wavelength was much larger than the transducer diameter. The separation of the

flexural and extensional mode ensured that the proper flexural mode was utilized

to measure the phase velocity.

> -- -- -- --- ---- ----- ---- ---- ---- ----
121

E---------------------- -- ; i

- -- ---- ---------

Time, T/Div - 50 gs

Figure 3.10 Reference wave form, [0,9014,s I.,ninate, (frequency= 60kHz)
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Time, T/Div - 20 Rts

Figure 3.11 Extensional and flexural wave excitation, [0,9 0 14,s laminate,

(frequency= 130 kHz), A/B Transducer Combination

Time, T/Div - 20 pgs

Figure 3.12 Delay of extensional mode due to transducer switch, [O,9014,s

laminate ,130 kHz, B/C transducer combination.
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Delaying the onset of the extensional mode relative to the flexural mode was

also important to eliminate the problem of the extensional mode mixing and

interfering with the flexural mode. This is a significant problem because if the

two modes mix an incorrect phase velocity would be measured.

The upper limit of flexural mode phase velocity measurements was realized

when the extensional mode interfered and overpowered the flexural modes. '-or

the [0,90]4,s plate this oc. d at 220 kHz in the 90 direction and 260 kHz in

the 0 direction. For the [0,-, ., 90,-4512,s laminate the upper limit was generally

realized at 200 kHz for all directions.

Because the experimental laminates were of finite lengths, wave reflections at

certain frequencies were of concern. The mixing of the signal and reflections

could produce an erroneous phase velocity. Because it was not possible to cancel

all reflections, some frequencies were not measured due to this phenomenon.

In summary, the experimental measurements of phase velocity required an

understanding of the wave propagation. It was imperative to differentiate

between the flexurai and extensional modes and to realize the effects of the

reflections.

The first aspect of this thesis was concerned with verifying the higher order

plate theory by comparing experimentally measured phase velocities to

theoretically determined phase velocities. The second aspect of this thesis will

now be concerned with using the experimental phase velocities to determine the

laminate material properties by inverting the governing equations. This will be

discussed in the following section.
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IV. ALGORITHMS FOR RECOVERING MATERIAL

CONSTANTS

A. [0]16 LAMINATE

Figure 4.1 is a comparison of dispersion curves using both classical plate

theory (CPT) and higher order plate theory (HOPT) for the [0] 16 laminate.

There is agreement, within a 5% variation, between the two theories if the

frequency is limited to 19.0 kHz. At frequencies higher than 19.0 kHz, greater

error arises in the phase velocities predicted by CPT due mainly to neglecting the

shear deformation and rotary inertia.

1000

800

• 600
0

> 400 OPT
W) -- HOPTIL/..m...mm.mm.m
0 200

0~

0 5000 10000 15000 20000 25000
Frequency (Hz)

Figure 4.1 CPT vs. HOPT 10116 laminate, 0' direction.

Rearranging equation (2.13) to solve for DII yields
=(VP4Ph)

D 4,, . (4.1)
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Consequently, by using classical plate theory at the lower frequency regime,

it is possible to recover DI1 by measuring the experimental phase velocity along

the x-direction. The experimental frequency, plate thickness and plate density

are known. Table 4.1 is a comparison of experimental values of DII against the

theoretical values. Classical lamination theory, which assumes static loading, was

used to calculate DIl. All experimental numbers used in the calculations of

material properties were described in the previous chapter.

Different frequencies were investigated to determine the effect of frequency

on the material properties. The experimental error at 6 kHz was greater due to

higher uncertainties when measuring the time differences due to lower signal to

noise ratios, excitation of the transducer's resonant frequency and reflections.

These phenomena are discussed in more detail at the end of this section. From

analyzing the 8 kHz and the 10 kHz measurements, the values for DII were found

to be consistent within experimeatal error. Further analysis should include

multiple experimental measurements at the same frequency to differentiate

between systematic and random errors.

Experimental errors were determined from procedures set forth by Holman

[Ref. 151. Appendix C shows all calculations and experimental uncertainties

used for the determination of the total experimental error.

Table 4.1 [0116 laminate, Experimental and theoretical DlI

Frequency (kHz) DII (Nm) DlI (Nm)

(Experimental) (Laminate Plate

Theory)

6.0 148.1 (+/- 9.62) 140.0

8.0 120.1 (+/- 8.26) 140.0
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10.0 122.7 (+/- 8.87) 140.0

The discrepancy between experimental results and laminate plate theory is

most likely due to the typical material constants supplied by the manufacturer

being greater than the "as-manufactured" material constants of this particular

plate. An area for further analysis would be to compare acoustically measured

material properties to those derived from mechanical tests of specimens from the

experimental laminates.

Figure 4.2 is a graphical comparison of dispersion curves using CPT and

HOPT of the [0116 laminate for waves propagating in the 90 degree direction.

600-

500

400

.7 300

> } CPT
Ed 200T... HOPT
,-.-a.

100-

SI I I
0 5000 10000 15000 20000 25000

Frequency (Hz)

Figure 4.2 CPT vs. HOPT [0116 laminate, 90' direction

Rearranging equation (2.14) to solve for D22 yields
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D22 -(VPPh). (4.2)
4 7r2f 2

when measuring phase velocities of flexural waves propagating in the y-

direction.

As before in the x-direction, by limiting experimental frequencies to the

regions where classical plate theory and higher order plate theory agree, it was

possible to use CPT to recover D22. Table 4.2 is a comparison of experimental

D22 against the theoretical D22 .

Table 4.2 [0116 laminate Experimental and Theoretical D22

Frequency (kHz) D22 (Nm) D22 (Nm)

(experimental) (plate theory)

6.0 10.4 (+/- 1.38) 9.35

8.0 13.2 (+/- 2.0) 9.35

10.0 12.2 (+/- 1.97) 9.35

The experimental results are within experimental error of each other but the

8 and 10 kHz measurements were not within experimental error of laminate plate

theory. Again, an area for further analysis would be to compare acoustically

measured material properties to those derived from mechanical tests of

specimens from the experimental laminate.

All remaining material properties were calculated using higher order plate

theory.

Equation (2.46) algebraically rearranged to solve for A55 yields

A55 2 (Diik2 -1° 2 ) (4.3)Dilk 4 _)p 2 -1ow 2k 2

Likewise, equation (2.47) algebraically rearranged to solve for A44 yields
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A44 - p'° 2 (D22k 2 -10)2 (4.4)
D22k 4 - po*co 2 - lo)2k2  (4k

The first attempt at solving A44 and A55 was made using the lower

frequencies and phase velocities used to calculate D1I and D22. This first attempt

yielded negative values of A44 and A55 which was obviously an erroneous result.

This error was due to the fact that (4.3) and (4.4) are quadratic equations with

more than one root. The experimental frequency was increased to excite the

positive root of A44. Since this was only a quick check of an algorithm to

recover material constants, only A44 was investigated for an experimental

recovery. The frequency was increased to 100 kHz and the subsequent measured

phase velocity resulted in an A44 of 5.38 MPa which compares favorably, within

experimental error, to the theoretical value of 6.78 Mpa.

Since D16 = 0 for a unidirectional plate, the following equation can be

factored from equation (3.44):

DO6k 2 + A44 - /0)2 = 0. (4.5)

Equation (5.5) rearranged to solve for D66 gives
Io1 -A44

D- k2 -A44(4.6)

This is a quadratic equation in terms of the frequency. Recovering the

positive root of this equation dictated the experimental frequency be increased to

over 300 kHz. This presented a serious problem since in this frequency regime

the extensional mode dominates, making the experimental measurement of the

flexural mode impossible. Consequently, it was not possible to recover D66 and

ultimately D12. D12 was to be calculated by equation (2.43) when measuring

phase velocities in off-principal directions with all other material properties

known.
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In summary, by restricting the experimental frequency to the regime where

CPT and HOPT agree, values of D11 and D22 were recovered from CPT.

However, measuring at these lower regimes presented their own problems and

errors and was found to be difficult. The transducers used were not very

sensitive at these lower frequencies resulting in low signal to noise ratios. The

unidirectional laminate was especially prone to reflections when measuring in the

90 degree direction. The waves propagated significantly faster in the 0 degree

direction than in 90 degree direction. Consequently, when measuring in the 90*

direction, the reflections of waves propagating in the 0* direction interfered

with the direct wave propagation along the 90°direction likewise making

measurements difficult. The PAC R15 transducer was utilized for measurements

in the 0* direction. When measurements were accomplished with the PAC R15,

higher frequencies were introduced due to the input gated sine wave. The higher

frequencies excited the transducer's resonant frequency which "rode" on top of

the input frequency making measurements difficult.

B. [0,45,99,-4512,S LAMINATE

While employing classical plate theory for the recovery of D11 and D22 for

the unidirectional plate was successful, the inability to recover D12 and D66

dictated the use of a more powerful algorithm. For the [0.45 ,90 ,-45 12,s laminate,

it was not possible to calculate A44 and A55 directly as before because D16 was no

longer zero. It was determined that a desirable algorithm would be based upon

equation (2.44). By assuming wave propagation along principal directions (0 or

90 degrees) a significant simplification of the governing equation results. By

successfully incorporating classical plate theory to determine D11 and D22, the

unknown material properties in (2.44) were reduced to 4 (A44, A5 5, D 16 and

32



D66). Once these unknowns were accounted for, it would then be possible to

determine D12 from equation (2.43).

CPT and HOPT agree within 5% if the experimental frequency is limited to

16.5 kHz when measuring in the 0* direction (Figure 4.3). Equation (4.1) was

applied to recover DIl when limiting the experimental frequency to less than

16.5 kHz. Table 4.3 is presented as a listing of the experimentally derived values

of D 1I against laminated plate theory.
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Figure 4.3 CPT vs. HOPT [0,45 ,90,-45 12,s laminate, 0° direction

The measurement at 10 kHz was not within experimental error of plate

theory. However, the remaining measurements agree with theory within

experimental error. To determine if the 10 kHz measurement represents a
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systematic or random error, future studies should include statistical analyses

using multiple measurements at the same frequency.

Table 4.3 [ 0,4 5,90,-4 512,s laminate, Experimental and Theoretical D II

Frequency (kHz) DI1 (Nm) DI, (Nm)

(experimental) (plate theory)

6.0 83.6 (+/- 9.63) 84.3

7.0 86.0 (÷/- 6.43) 84.3

8.0 82.7 (+/- 5.41) 84.3

9.0 90.7 (+/- 7.14) 84.3

10.0 66.8 (+/- 8.14) 84.3

CPT and HOPT a within 5% if the experimental frequency is limited to

20.0 kHz when measuring in the 90* direction (Figure 4.4). Equation (4,2) was

applied to recover D22 when limiting the experimental frequency to less than

20.0 kHz. Table 4.4 is presented as a listing of the experimentally derived

values of D22 against laminate plate theory.

The experimental D22 was consistently lower than theory. As with the

unidirectional laminate, this can be explained by the manufacturer's supplied

material constants being higher than the as-manufactured experimental laminate's

material properties. The measurement at 5 kHz was not within experimental

error of the other measurements. Multiple measurements at the same frequency

should be made in future studies to distinguish between systematic and random

errors.
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Figure 4.4 CPT vs. HOPT, [0, 4 5,90,-4 5I2,s laminate , 90'direction

Table 4.4 [I 0,4 5,90,-45]2,s laminate, Experimental and Theoretical D22

Frequency (kHz) D22 (Nm) D22 (Nm)

(experimental) (plate theory)

4.0 42.9 (+-5.02) 58.3

5.0 51.88 (+-4.84) 58.3

6.0 44.56 (+-4,77) 58.3
7.0 41.0 (---4.48) 58.3

8.0 43.2 (+-4.92) 58.3

9.0 40.5 (+-4.72) 58.3

10.0 45.0 (---5.84) 58.3
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In order to solve for the four unknown material properties (A44 , A55 , D1 6

and D66), four measurements at four different frequencies in the 0' direction

were made, thus resulting in four independent equations. Since equation 2.44 is

nonlinear in terms of the material constants, a method to solve nonlinear

equations was required. Wheatley [Ref. 16] describes how to reduce a nonlinear

equation to a linear equation using a Newton's method approach which is

summarized below.

We begin our discussion of non-linear systems by assuming two functions

f(x,y)=0,

g(x,y)=O.

Let x=r, y=s be a root. Eoth functions expanded as a Taylor's series about

the point (xi,yi) in terms of (r-xi),(s-yi), where (xi,yi) is a point near the root,

gives

f(r,s)=O= f(xi,y)+ fx(xi,yi)(r-xi)+ fy(xi,yi)(s-yi)+ ...
g(r,s)=0= g(xi,yi)+ gx(xi,Yi)(r--xi)+gy(xi,yi)(s-yi)+ ... (4.7)

The subscript notation designates the partial derivatives. Truncating the

series after the linear terms gives

0]=[01 (x, ,) + [ ý xy)f "y 1 r-x 480 Lg x,,y,)J Lg,,(x,,y,) gy(x,,y,)J[s- y,J

The above equation can be rewritten to solve as the system of equations

fx(Xi,,y,) fy(xy,)][ =AXu [f(xi, y,) (4.9)1g,,x,,y,) gy(x,,y,)JLAyJ -g(xi,,y,) j

where Ax,=r-xi and Ay, =s-yi.

Equation (4.9) is solved by Gaussian elimination and an improved estimate of

the root is made by setting

= [ + (4.10)Y1 + LyJ LAy,j
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The process is then iterated upon until f and g are close to zero.

A computer program was written in the BASIC language based upon the

methods described by Wheatley.

However, this method never converged towards a solution. The non-

convergence was due to the ill-conditioning of the partial derivative, square

matrix of equation (5.9) as a result of the large magnitude differences between

A44, A55 (9.42 x 106 Pa m) and D16,D66 ( 19.9 Nm). The values of A44/A55

were of a magnitude of a million times greater than the values of D16/D66.

C. [R,9 014,s LAMINATE

It was initially believed that for the cross-ply laminate at the experimental

frequency required to recover D66, the flexural mode would not be overpowered

by the extensional mode. This was the limitation for the unidirectional laminate.

The cross-ply laminate was analyzed next using the algorithm developed for the

unidirectional plate since D16=0. That is, using CPT in the lower frequency

regimes where CPT and HOPT agree to recover D11 and D22. HOPT is then

used to recover the additional material constants.

CPT and HOPT agree within 5% if the experimental frequency is limited to

18 kHz when measuring in the 0' direction (Figure 4.5).

Equation (4.1) was applied to recover D11 when limiting the experimental

frequency to less than 18 kHz. Table 4.5 is presented as a listing of the

experimentally derived values of D11 against laminate plate theory.
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Figure 4.5 CPT vs. HOPT [0,90 14,s laminate, 0* direction

The measurements 8 and 14 kHz were not within experimental error of

measurements made a. the other frequencies. Statistical analyses using multiple

measurements is necessary to distinguish between systematic and random errors.

Table 4.5 [ 0,9014,s laminate, Experimental and Theoretical DII

Frequei.,y (kHz) D11 (Nm) D11 (Nm)

(experimental) (plate theory)

8.0 60.3 (+/- 6.73) 113.0

10.0 92.3 (+/- 9.66) 113.0

12.0 88.6 (+/- 11.97) 113.0
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14.0 69.9 (+/- 9.5) 113.0

16.r 83.3 (+/- 12.34) 113.0

CPT and HOPT agree within 5% if the experimental frequency is limited to

16.5 kHz when measuring in the 90 degree direction (Figure 4.6)
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Figure 4.6 CPT vs. HOPT, [0,9014,s laminate, 90' direction

Equation (4.2) was applied to recover D22 by limiting the experimental

frequency to less than 16.5 kHz. Table 4.6 is presented as a listing of the

experimentally derived values of D22 against laminate plate theory.

Table 4.6 [ 0,9014,s laminate, Experimental and Theoretical D22

Frequency (kHz) D22 (Nm) D22 (Nm)

(experimental) (plate theory)

8.0 80.9 (+/- 9.45) 81.3
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10.0 51.2 (+/- 5.98) 81.3

12.0 73.4 (+/- 9.60) 81.3

14.0 66.7 (+/- 9.05) 81.3

16.0 83.3 (+/- 12.34) 81.3

The measurement at 10 kHz was not within experimental error of the other

measurements. Again, statistical analyses is necessary to differentiate between

systematic and random errors.

From HOPT, equations (4.3) and (4.4) were applied to solve for A55 and

A44. The average experimental A55 was calculated to be 9.83 Mpa-m which

compares nearly exactly with the theoretical value of 9.85 MPa-m. The average

experimental A44 was calculated to be 7.80 MPa-m which is 20.8 % lower than

the theoretical value of 9.85 MPa-m. Table 4.7 is presented as a listing of the

experimentally derived values of A5 5 against theory while Table 4.8 is the

experimentally derived values of A44 against theory. The small variation of the

experimental A44 and A55 can be attributed to the less difficult measurement

techniques required when measuring at the higher frequencies.

Equation (5.6) was utilized to attempt the recovery of D66. However,

similarly to the unidirectional laminate, when the experimental frequency was

increased to excite the positive root of (5.6), the extensional mode dominated,

making the measurement of the flexural mode impossible. Subsequently, D66

and ultimately D12 were not recoverable from this procedure.
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Table 4.7 [ 0,9014,s laminate, Experimental and Theoretical A55

Frequency (kHz) A55 (MF A) A55 (MPa-m)

(Experimental) (plate theory)

60.0 9.82 (+/- 1.07) 9.85

80.0 8.17 (+/-1.65) 9.85

100.0 9.98 (+/- 1.36) 9.85

120.0 9.89 (+/- 1.24) 9.85

130.0 10.11 (+/- 1.25) 9.85

140.0 10.33 (+/- 1.26) 9.85

150.0 9.94 (+/- 1.16) 9.85

160.0 10.47 (+/- 1.23) 9.85

170.0 9.94 (+/- 1.11) 9.85

180.0 9.37 (+/- 1.01) 9.85

190.0 9.93 (+/- 1.68) 9.85

200.0 10.04 (+/- 1.17) 9.85

220.0 9.69 (+/- 1.68) 9.85

240.0 9.83 (+/- 1.01) 9.85

260.0 9.84 (+/- 1.67) 9.85

Table 4.8 1 0,90 14,s laminate, Experimental and Theoretical A44

Frequency (kHz) A44 (MPa-m) A44 (MPa-m)

(Experimental) (plate theory)

60.0 8.35(+/- 1.31) 9.85

80.0 7.26 (+/- 0.916) 9.85

100.0 7.42 (+/- 0.872) 9.85
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110.0 7.39 (+/- 0.839) 9.85

120.0 7.66 (+/- 0.783) 9.85

130.0 7.74 (+/- 0.854) 9.85

140.0 7.97 (+/- 0.874) 9.85

150.0 7.86 (+/- 0.699) 9.85

160.0 8.01 (+/- 0.858) 9.85

170.0 8.02 (+/- 0.808) 9.85

180.0 8.00 (+/- 1.34) 9.85

190.0 7.86 (+/- 1.32) 9.85

200.0 7.90 (+/- 1.58) 9.85

210.0 7.69 (+/- 1.51) 9.85

220.0 7.8 (+/- 0.97) 9.85

D. DISCUSSION / SUMMARY OF ALGORITHMS TO RECOVER

MATERIAL CONSTANTS

When first reviewing the procedures to recover the material constants, it was

initially believed that the algorithm used for the unidirectional and cross-ply

laminates would be sufficient. The employment of classical plate theory to

recover D11 and D22 was attempted in all three laminates with limited success.

Further work should include multiple measurements at the same frequency so

statistical analyses can distinguish between systematic and random errors. The

utilization of HOPT was successful to recover the ti ansverse extensional terms

A44 and A55 for the unidirectional and cross-ply laminates. The experimentally

derived material properties were generally lower than values predicted by

laminate plate theory. This is consistent with the experimentally measured phase

velocities being generally lower than phase velocities predicted by HOPT.

42



Further analyses should also include comparisons between acoustically measured

material properties to those derived from mechanical tests of specimens from the

experimental laminates. The recovery of D66 dictated experimental frequencies

where the extensional mode dominated making the measurement of the flexural

mode impossible.

If D66 could have been recovered, the only material constant not accounted

for would have been D12. It would have possible to solve for D 12 by the

substitution of all known material constants and an off principal axis velocity

measurements into equation (3.43).

The inability to recover D66 and D12 in the cross-ply and unid'rectional

laminates dictated the exploration of a new procedure to recover the material

constants in the angle-ply laminate. It was determined that a new algorithm

would be based upon equation (2.44). (2.44) was chusen because a significant

simplification of the governing *equation ensues when measuring wave

propagation in the principle directions (O0 or 900). By successfully

incorporating CPT at the lower frequency regimes, it was possible to recover

D11 and D22. The unknown material properties in (3.44) we " reduced to 4

(A44, A55, D16 and D66). A44 and A55 can not be calculated directly as before

because D16 is not zero.

In order to solve for the four unknowns, four experimental conditions were

input to produce four independent equations. Thest, independent equations are

nonlinear in terms of the material constants. A numerical method developed by

Wheatley [Ref. 15] was then utilized to reduce a nonlinear equation to a linear

equation using a Newton's method approach. Unfortunately, this method never

converged towards a solution. The non-convergence was due to the ill-
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conditioning of the partial derivative, square matrix of equation (4.9). It was

later discovered that the large magnitude differences between A44/ A55 and

D16/D66 is responsible for the ill-conditioning of the matrix.

Although this method base upon Wheatley did not converge, it is believed

that a solution can be derived from a more robust numerical method. When

factoring out equation (2.44) or (2.45), it can be proven that the equation is

nearly quadratic in terms of the material properties. Reference 16 recommends

several numerical methods to undertake to solve more advanced problems of this

type. A methods which show promise is the Conjugate Direction method for non-

linear systems.

Another method to attempt to solve for the material constants which shows

promise but was not attempted due to time constraints is based upon equation

(2.9) using classical plate theory. (2.9) can be solved using linear algebra since

the equations are linear in terms of the material constants. By measuring phase

velocities along principal directions in the lower frequency regimes, we have

proven it is possible to recover DI1 and D22. The unknown material properties

of equation (2.9) are reduced to three ,D12, D16 =D 26 (symmetric laminate only)

and D66. By measuring in off-principal directions at varying experimental

frequencies, it will be possible to generate three linearly independent equations in

terms of the unknown properties. This is the very approach that was attempted

in the [0, 4 5 ,90 ,-4 5 14,s laminate that did not converge due to ill-conditioning.

However, this situation is different in that all unknown parameters are roughly

of the same magnitude which would prevent the ill-conditioning that occurred

before. Also this numerical method represents a system of linear equations

which is a significant simplification over a system of nonlinear systems.
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V. SUMMARY

Composite materials promise to be a major structural material of the future.

Composite materials present unique problems in that the complexities of the

manufacturing process present increased opportunities for the introduction of

defects. An ability to nondestructively determine the elastic properties of the

composite component would be an invaluable tool for quality assurance. This

thesis investigated a technique to yield the stiffness constants of composite

laminates.

The initial aspect of this thesis was the verification of flexural wave

propagation theory in composite laminates. ExperimeL,,al phase velocities were

measured in graphite/epoxy plates and were compared with dispersion curves

calculated using higher order plate theory. Figures 3.3 through 3.9 summarize

the results. The general trend of theory is observed but the phase velocities are

typically lower than those predicted theoretically. This discrepancy could be

explained if the actual elastic constants of these plates were smaller than those

quoted by the manufacturer. An area for future analysis would be to compare

acoustically measured material properties to those derived from mechanical tests

of specimens from the experimental laminates.

The second aspect of this thesis was concerned with using the experimental

phase velocities to determine the laminate material properties by inverting the

governing equations. This turned out to be a very difficult problem for several

reasons and different methods were tried. The first method incorporated

Classical Plate Theory (CPT) to recover Dii and D22 and Higher Order Plate

Theory (HOPT) to recover A44 and A55 for the unidirectional and cross-ply
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laminates. However, at the higher frequencies necessary to recover D66 and D12

the extensional mode dominated making the measurement of the, flexural mode

impossible.

The inability to recover D66 and D12 dictated the exploration of a new

procedure on the [0,4 5 ,9 0,-4 5 12,s laminate. CPT was applied to recover DII and

D22. By assuming wave propagation along a principal direction, the wave

propagation equations were significantly simplified. The unknown material

properties were reduced to four. Four experimental velocity measurements at

different frequencies along the zero degree direction were input to produce four

independent equations. The four equations can be solved for the four remaining

unknown parameters. Because these equations are nonlinear in terms of the

material constants, a nonlinear numerical method was utilized. Unfn,•",-.rIv,

this method did not converge towards a solution du- to the ili-condiionip, t-.

matrix. Several other numerical methods were suggested in Chaj.

further exploration.

A method proposed but not examined was to use non-principal direction

velocity measurements in conjunction with classical plate theory (developed in

Chapter 2) to recover D12, D16 and D66. These measurements must be made at

frequencies at which classical plate theory is valid. Previous measurements at the

lower frequency regime have proven to be difficult but the numerical method to

recover the unknown parameters would be greatly simplified because the

equations are linear.
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APPENDIX A- LAMINATE MATERIAL PROPERTIES

The dispersion curves were calculated using the following material

properties of AS/4 3502:

E11=144.8 GPa E22=9.65 GPa G12=5.97 GPa

V12=0.3 V23=0.34.

All plates were assumed to have a density of 1550 kg/m 3 .

The thickness of the [0116 plate was 0.002352 m.

The thickness of the [0, 9 014,s plate was 0.0024688 m.

The thickness of the [0, 45,90,- 4512,s plate was 0.0023368 m.

The calculated bending stiffnesses, Dij, for the [0116 laminate are:

D11=1 13.0 Nm, D12=3.65 Nm, D16= D26= 0.0 Nm,

D22=81.4 Nm, D66=7.49 Nm.

The calculated transverse extensional stiffnesses, Aij, for i.l...-,9014,s

laminate are A44=9.84Mpa. and A55=9.84 MPa.

The calculated bending stiffnesses, Dij, for the [0,9 014,s laminate are

D11=113.0 Nm ,D12=3.65 Nm, D16= D26= 0.0 Nm,

D22=81.4 Nm, D66=7.49 Nm.

rhe calculated transverse extensional stiffnesses, Aij, for the [0, 9014,s

laminate are A44=9.84Mpa. and A55=9.84 MPa.

The calculated bending stiffnesses, Dij, for the [0,4 5,90,-4 512,s laminate are:

D11=84.3 Nm D12=l.67Nm D16= D26 = 5.93 Nm

D22=53.8 Nm D66=19.9 Nm.

The calculated transverse extensional stiffnesses , Aij, for the [0,45,90,-

4 512,s laminate are A44=9.42MPa and A55= 9.42 MPa.
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The shear correction factors for composite laminates, Kl,1c/ were

experimentally found to be 5/6 by Tang, Stiffler and Henneke [Ref. 12].
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APPENDIX B - EXPERIMENTAL DATA

The transducers used for experimental measurements were:

A- Harisonic HC-483, resonant frequency 2.25 MHz, diameter 12.7 mm

B- Harisonic HC-483, resonant frequency 1.0 MHz, diameter 12.7 mm

C- Harisonic G0504, resonant frequency 5.0 MHz, diaiiieter 6.3 mm

D- Physical Acoustics Corp R15-3194, resonant frequency, diameter 12.7
mm

E- Accelerometer, diameter 12.7 mm.

N.A.- Not Available

Table 1. Experimental Phase Velocity Measurements

[0,9014,s laminate., 0* propagation

Frequency distance, time Phase Exciter/

(kHz) (m) difference Velocity Receiver

(Ai s) (m/s) Transducer

8.0 0.1 224 446.4 A/B

10.0 0.1 180 555.5 A/B

12.0 0.1 166 602.4 A/B

14.0 0.13 212 613.2 A/B

16.0 0.1 146 684.9 A/B

60.0 0.1 89.6 .1116.1 A,10

80.0 0.1 84.8 1179.2 A/B

100.0 0.1 76.0 1314.0 A/B

120.0 0.1 72.8 1373.6 A/B
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130.0 0.1 71.0 1408.4 C/C

140.0 C. 1 69.4 1440'9 B/C

150.0 0.1 69.2 1445.0 B/C

160.0 0.1 67.2 1488.1 B/C

170.0 0.1 67.6 1479.3 C/C

180.0 0.1 68.4 1462.0 C/C

190.0 0.1 66.4 1506.0 C/C

200.0 0.05 32.8 1524.0 C/C

220.0 0.06 39.4 1522.8 C/C

240.0 0.1 64.6 1548.0 C/C

260.0 0.06 38.4 1562.5 C/C

Table 2. Experimental Phase Velocity Measurements

[0,9014.s laminate , 9 0° propagation

Frequency distance, I time Phase Exciter/

(kHz) (i) difference Velocity Receiver

(Yus) (m/s) Transducer

8.0 0.05 104.0 480.7 A/B

10.0 0.07 146.0 479.5 A/B

12.0 0.1 174.0 574.7 A/B

14.0 0.1 165.0 606.0 A/B

16.0 0.05 73.0 684.9 A/B

60.0 0.1 93.6 1068.4 A/B
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80.0 0.1 88.4 1131.2 A/B

100.0 0.1 83.2 1201.9 A/B

110.0 0.1 81.6 1225.5 A/B

120.0 0.11 87.2 1261.5 A/B

130.0 0.1 77.8 1285.3 A/B

140.0 0.1 76.0 1315.8 A/B

150.0 0.12 90.6 1324.5 A/B

160.0 0.1 74.0 1351.3 A/B

170.0 0.1 74.2 1347.7 C/C

180.0 0.06 44.1 1360.5 C/C

190.0 0.06 43.8 1369.8 C/C

200.0 0.05 36.2 1381.2 C/C

210.0 0.05 36.4 1373.6 C/C

220.0 0.08 57.4 1393.7 C/C

Table 3 Experimental Phase Velocity Measurements

[0,4 5 ,90,-4 514,s laminate, 0' propagation

Frequency distance,l time Phase Exciter/

(kHz) (m) difference Velocity Receiver

(#Us) (m/s) Transducer

20.0 0.1 157.0 700.0 N.A

30.0 0.1 151.0 827.0 N.A

40.0 0.1 103.0 970.0 N.A

60.0 0.1 91.2 1096.0 N.A
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80.0 0.1 82.z 1207.8 N.A

1 k'!).0 0.1 78.0 1282.0 N.A

120.0 0.1 76.0 1315.0 N.A

140.0 0.1 74.2 1347.7 N.A

160.0 0.09 65.0 1384.6 N.A

180.0 0.1 70.0 1428.0 N.A

200.0 0.1 50.0 1500.0 N.A

Table 4 Experimental Phase Velocity Measurements

[O,4 5,90,-4 5 14,s laminate, 22.50 propagation

Frequency distance,l time Phase Exciter/
(kI-Iz) (m) difference Velocity Receiver

(As) (m/s) Transducer

40.0 0.1 113.0 884.9 N.A

60.0 0.1 98.0 1020.4 N.A

80.0 0.1 85.6 1168.2 N.A

100.0 0.1 82.0 1219.5 N.A

120.0 0.1 76.6 1305.4 N.A

140.0 0.1 75.0 1333.3 N.A

160.0 0.1 72.2 1385.0 N.A

180.0 0.08 56.6 1413.4 N.A

200.0 0.08 54.8 1459.8 N.A

52



Table 5 Experimental Phase Velocity Measurements

[0,4 5 ,9 0,-4 514,s laminate, 45.0° propagation

Frequency distance,1 time Phase Exciter/

(kHz) (W) difference Velocity Receiver

(O.s) (m/s) Transducer

30.0 0.1 128.0 781.25 N.A

40.0 0.1 119.0 840.3 N.A

60.0 0.1 100.8 992.1 N.A

80.0 0.1 91.2 1096.5 N.A

100.0 0.1 84.8 1179.2 N.A

120.0 0.1 81.2 1231.5 N.A

140.0 0.1 77.8 1285.3 N.A

160.0 0.1 74.8 1336.9 N.A

180.0 0.1 73.2 1366.1 N.A

Table 6 Experimental Phase Velocity Measurements

[0,45 ,90,- 4 514,s laminate, 67.5* propagation

Frequency distancel time Phase Exciter/

(kHz) (m) difference Velocity Receiver

('4s) (m/s) Transducer

20.0 0.1 160.0 625.0 N.A

40.0 0.1 120.0 833.3 N.A
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50.0 0.1 110.8 902.5 N.A

60.0 0.1 102.8 972.7 N.A

80.0 0.1 96.0 1041.0 N.A

100.0 0.1 86.6 1152.1 N.A

120.0 0.1 81.8 1222.5 N.A

140.0 0.1 80.4 1243.8 N.A

160.0 0.1 78.6 1272.3 N.A

180.0 0.1 75.0 1333.3 N.A

Table 7 Experimental Phase Velocity Measurements

[0,45,90,-4514,s laminate, 90' propagation

Frequency distancel time Phase Exciter/

(kHz) (m) difference Velocity Receiver

(Ps) (m/s) Transducer

20.0 0.1 156.0 641.0 N.A

30.0 0.1 135.0 740.7 N.A

40.0 0.1 121.0 826.4 N.A

60.0 0.1 102.8 972.8 N.A

80.0 0.1 92.4 1082.2 N.A

100.0 O.± 86.4 1157.4 N.A

120.0 0.1 82.8 1207.7 N.A

140.0 0.1 78.2 1278.7 N.A
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160.0 0.1 77.6 1288.0 N.A

170.0 0.1 77.0 1298.7 N.A

180.0 0.1 75.2 1329.8 N.A

Table 8 Experimental Phase Velocity Measurements

[0116 laminate, 0' propagation

Frequency distance, 1 time Phase Exciter/

(kHz) (m) difference Velocity Receiver

(Pus) (m/s) Transducer

6.0 0.2 404.0 495.0 B/D

8.0 0.2 368.7 542.0 B/D

10.0 0.2 330.0 606.0 B/D

Table 9 Experimental Phase Velocity Measurements

[0116 laminate, 9 0* propagation

Freq distance,1 time Phase Exciter/

(kHz) (m) difference Velocity Receiver

(Ps) (m/s) Transducer

6.0 0.1 392.0 255.1 B/E

8.0 0.1 320.0 312.5 B/E

10.0 0.1 292.0 342.5 B/E

100.0 0.1 113.6 880.3 B/E
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APPENDIX C - EXPERIMENTAL ERRORS

Let R be a function of some independently measured quantities xl, x2,

x3,...,xn. That is

R=R(xl,x2,x3,...,xn). (C-1)

Let Wr be the uncertainty in the result, R, and W1, W2, ... Wn be the

uncertainties in the independent variables. Then the uncertainty in the result is

given in Ref. [15] as
W r= W )2+ -•9R 12v 2.R,2 ,R 1/2

WR= +(-dW) VI 22 . (C-2)

A. Dl1/ D22

For this application, the governing equation was

Dll=(VP 4ph (C-3)
4.7r2f2

The phase velocity, Vp, was divided into the experimental measurements of

distance and time difference At.
Adist

Vp = A (C-4)
At

The density, p, was likewise divided into the experimental measurements of

mass and volume (length, width and height).
- kg = kg (C-5)

volume 1112h--

Substituting experimental measurements (C-4) and (C-5) into (C-3) gives

Dii Vp4ph (dist)4(kg)h (C-6)
4 47z-f2 (At)4 (47r2f 2 )h11 2h

Canceling the height, h, results in
Di= (dist)4 (kg) (C-7)

(At)) (4g 2 f2 )/ 1/2
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The following experimental uncertainties were assumed when measuring at

the lower frequency regimes:

(A) dist=dist +/- 0.002m

(B) kg= kg +/- 0.0001 kg

(C) At-- At +/-5us

(D) 11=11 +/- 0.001m

(E) 12=12 +0- 0.001m

(F) experimental error from input frequency was small in comparison to

other experimental parameters and thus was neglected.

After partial differentiation in terms of the independent variables, the

uncertainty in the experimental result of D11 was

AD11-[( 4(dist)3kg Adist)2 +( (dist)4  Akg)2 +( 4(dist)4kg At)2

At 4 41r 2f 2 ,1/2 At 4 47F2f 2/1/2 AtN 7r2f2 / 1/2
(dist)4 kg Ah) 2 + , (dist)kg2 2

At 4 4 7r2f 2/12 /2 A22 f)21/2 2

Substituting experimental data and uncertainties into (C-8) gives

experimental errors for D 1I quoted in Chapter IV.

The same procedures and uncertainties were used for the calculation of

experimental error in D22.

B. A44/ A55

The governing equation for the calculation of A55 was

Ass= p'o)2 (Dilk 2 -_/0 2 ) (C-9)
Dlik 4 -po 2 _ 1) 2k2 kC2)

p was divided into the experimental measurements of mass (kg.) and the

length and width of the plate resulting in
p* = ph = kg. (C-IO)

/1/2
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The inertia term, 1, was similarly divided into the experimental

measurements of mass, height, length and width, resulting in
h2kg (C-li)
1211/2

(C-10), (C-11) and (C-4) were substituted into (C-9), resulting in the

following experimental expression of A55:
(16Di kglr 4f4At4 16kg2 h2 Ir 4f 4

A55 1112(diSt) 4  12h,2 122 (C- 12)
16Di7r4f 4 At 4 4kg'r2f 2 16Di ikgh2,r4f 4AtF

dist4  1112 12h12dist2

In accordance with (C-2), (C-12) was differentiated with respect to the

experimental parameters. All experimental uncertainties from Dli were

maintained xcept that the time difference uncertainty, At, was reduced to +/-

1,us because the output signal was much clearer when measuring at the higher

frequencies and the laminate height measurement uncertainty was small and thus

neglected. Experimental data and uncertainties were input to determine

experimental uncertainties quoted in Chapter IV.

The same uncertainties and procedures were used to calculate the

experimental uncertainties of A44.
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