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SECTION I

INTRODUCTION

This is the final report for research in the area of Computation of Hypersonic Interference
Flowfields for the U.S. Air Force. Basic guidelines for the flow regime of concern was a free-
stream Mach number of 10 and less at an altitude of 100,000 feet and below. A significant por-
tion of this research was associated with solving hypersonic flow problems in chemical equilibri-
um. This hypersonic chemical equilibrium flow effort was sufficiently large and self-contained
that a separate report was devoted to this task. This report is entitled "An Efficient Solver for

Flows in Local Chemical Equilibrium" and it will be published as an AFATL report.

This report contains the equations solved, the numerical cell face flux formulation used, the
numerical methods developed for solving the system of discretized equations, a discussion of
software optimization, and example results. The equations solved are the compressible form of
the three-dimensional unsteady Euler and Navier-Stokes equations, and these equations are dis-
cussed in Section IL The numerical flux formulation used here is neither a Monotone Up-
stream--centered Schemes for Conservation Laws (MUSCL) approach, which is a dependent
variable extrapolation method, nor a flux extrapolation method; rather it falls somewhere in be-

tween. The development of the present numerical flux formulation and how it differs from the
dependent variable extrapolation and flux extrapolation methods is presented in Section III.

During the course of this research various numerical solution schemes were developed and
applied to the solution of the equations for both steady and unsteady flow. This was a rather im-
portant aspect of the research because it was discovered that the previously used numerical solu-
tion scheme, the so-called two--Vass scheme, had difficulties in solving the equations on grids
that were clustered on both ends of a computational coordinate direction. For simple external

flow problems where the grid is typically clustered near the the body and stretched as the dis-
tance from the body increases, the old two-pass scheme seemed to work rather well. But for a
situation where the grid was clustered on both ends of a computational coordinate such as might
occur along a grid line that runs from a store to the fuselage, for example, numerical difficulties
were encountered. This was particularly noticeable for Navier-Stokes grids where the clustering

could be severe. A new scheme, referred to as the modified two-pass scheme, has provided a
method for solving such problems for all cases considered thus far. In addition, an extension of

this modified two-pass scheme was developed and it is referred to as the N-pass scheme. A re-
view of the old two-pass scheme and the development of these new numerical solution schemes

are presented in Section IV.



The numerical solution schemes presented in Section IV have developed into rather work-

horse methods for solving the turee--dimensional Euler and Navier-Stokes equations for reason-

ably complex configurations. Because of the collective amount of computer resources being de-
voted to solving such problems, an effort was directed toward investigating ways of improving

the computational efficiency of these numerical solution schemes. Results of this effort are pres-

ented in Section V.

Numerous computations have been performed using the computational techniques discussed
in this report. Selected examples of the various results are given in Section VI. Concluding re -

marks are given in Section VII.
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SECTION II

GOVERNING EQUATIONS

1. NAVIER-STOKES EQUATIONS

The equations of motion which describe the behavior of a continuum fluid flow are the Nav-

ier-Stokes equations. In the absence of body forces and heat sources, the conservation laws for

mass, momentum, and energy of a perfect gas over a stationary finite volume Q enclosed by a

control surface are expressed by the following integral form of the non-dimensional Navier-

Stokes equations

ff fI 4dv + f f F(q)-ids + fJFv(qVq).iids=0 (1)

where

q [ Q,Qu,Qv,Qw,e]T

F,= [ ,g ]T

The convected flux vectors are

=-[ u, Qu2 + p, QUV, Quw, u(e + p)] T

Qv [v, Quv , 9v2 + p, vw, v(e + p) ] T

Qfi =[ow, Quw, Qvw, w2 + p, w(e + p) ] T

e- ei'+"IL (U2"+ V2"+ W2)

The vectors of diffusive terms are

T•V =fi--L [ 0 , XX, Txy , •ziz, ZxxU + xxyV + Txzw -- qx ]T

ReL

TV = [ 0, , , -yz, "tyxu + zeyv + -ryzw - qy
RL

liv = L Mo 0 , zx, tCzy , xz,-, czxu + Tzyv + "czzw -- qz ]T

The viscous stress and heat flux terms are



xx = (2t + X) ux + .(vy + wz)

Y, = (2tt + ).)Vy + X(ux + wz)

T22 = ( 2 R + )Wz w "+ X.(ux + Vy)

TXY = Tyx = IL (Uy + vx)

1 xz = TZY = tL (Uz + WX)

Xyz = 'zy = Ii (Vz + Wy)

qx =f - KaT

ax

qy - -- 0 and K IAay (-1) Pr
qz =f - Ka-T-

az

where K is the thermal conductivity, and T is the temperature.

Here conventional definitions of the flow quantities are used. The Cartesian velocities com-
ponents (u,v~w) are normalized by the free-stream speed of sound a ., L is normalized by g-.

the internal energy ej , the total energy e and the pressure p are normalized by @- a2. The two

viscosity coefficients X. and 1L are normalized by the molecular viscosity IA.. The constant y is

the ratio of specific heats, RCL is the Reynolds number based on free-stream velocity and refer-
ence length L, and Pr is the Prandd number. For a perfect gas the normalized state relations are

p = 1  T 2
,yQ ,e=YY 1)',a

where the temperature T is normalized with respect to T .. The system of equations (Equation

1) is valid for turbulent as well as laminar flows by replacing the molecular transport coefficients

with their turbulent counterparts. The governing equations become the so-called Reynold-aver-

aged Navier-Stokes equations.

For high-Reynolds-numbers flows, the viscous effects are confined to a thin layer near the

wall boundary and dominated by the viscous terns associated with the strain rates normal to the

wall. The viscous terms associated with the strain rates along the body surface are comparative-
ly small and negligible. This concept was first discussed by Prandtl in the development of

boundary-layer theory and has been applied and extended to various problems. The develop-

ment of the single thin-layer approximation of the full Navier-Stokes equations was introduced

4



by Steger [Reference 1] and used by Gadin [Reference 2] and Simpson [Reference 3], in which

only viscous terms in the body-normai, il, direction are retained. Here the concept is extended

to the case of thin-layer approximation to two directions for a general coordinate system. All

"the viscous terms associated with cross-derivatives where (a 2/axi axJ where i •j) are neglected,

but with retention of the viscous terms with normal second derivatives (1 2/axi Oxi where i = j).

This approximation retains the most dominant terms in the governing equation. The thin-layer

Navier-Stokes equations are obtained by retaining from the full Navier-Stokes equations all the

viscous terms except for those containing derivatives in the streamwise, ý, direction, as well as

excluding all cross-derivatives.

The time-dependent thin-layer Navier-Stokes equations in general body-fitt.4 coordinates,
written in nondimensional strong conversation law form are

a +8 + O(G -G) + O(H- Hv) 0 (2)

where the curvilinear coordinates are defined as

= Vi(x, y, z, t) (x, y, z, t)

q = (x,YZ,t) , Z = t

and the vector of the dependent variable Q and the Euler flux vector F, G, and H are given by

Iu I QuU + t
Q = J IQ I F = J QvU + typ

QW LwU + tzp

Li LU(e + p) - j P

-QV -QW
QuV + q ýP L:uW + tXP

G = J QvV + Iqyp H = J 0vW + tyP

QWV + q1zP QwW + tzp
V(e + p) - it P1 W(e + p) - lpt

with the contravariant velocities, U, V, and W, defined as

U = tt + txU + ýyV + "zW

V = 1It + 1IxU + %yV + TlzW

W = It + Ix + lyV + tzW

and the quantity J is the Jacobian of the inverse transformation and is given by

5



J = xty~z - zqyt) - Y4xqt- zyixt) + zt(xqjyt - yTIXO

The metric quantities are given by

tx = Jr1 (y'Izt - zýyO) qx J- J(Ztyt - ykzt)
4Y= J (~t- XIZt) " - (xz - zext)

ýz= J -I(xqyt - yqx9 0lqz =J',(Xtyt - ytV~

tx= j - (ytz, - zty,1) =t (-XA - yAY - zt~)

ty= J-(zt- z,1x0 lIt = -tT xg - YTTlIY - ZVlI Z)

tz= J1 ,(XtyI - yex,1) =t ( 4x~ - yxt4- ZZ)

The pressure, density, and velocity components are related to the energy for an ideal gas by the

following equation

p =(y 1)e - IQ:(U2 + V2 + W2)]

where the rato of specific heats, y, is taken as 1.4

T'he general form of the thin-layer viscous flux vector can be written as

*0
Tkx

S,=J k (3)
Tkz
uTkx + V~k + wTbm - rk

where

Tkx = kx1 x + kyx + kzx

Ty= kx-ex + kyy + zy

Tkz - k~c + k~y + kz'r.

r-k = kxqx+ kyc1+ kzqz

The viscous flux vectors Gý, and H,, at given by theS,% vector depending on whether k in Equa-

tion (3) isiq. or ;, respectively.

The elements of the viscous sawes tensor are

6



-Ex=2pM. [2kx.k - kY Vk -kzWk]
= 2tM•. [2kVk - kyUk -- kWk]

- 2M. [2kvWk - kxUk - kVk]

'_ 3ReL (4)

Ixy = = [kyUk + kxVk]

"xz --- zx -- PM* [kzuk + kxWk]
RCL

Tyz -zy = !!!'- [kZVk + kyWk]ReL

and the heat flux are

--- PtM.. kxTk
q = (y - l)PrReL

-tM 40 kyTk (5)
qY = (y _1)PrRCL

-(- l)P40 kzTk

TY 1) y_)Pr ReL

The element of the viscous s=ess tensor, Equation (4), and the heat flux terms, Equation (5),

belong to the viscous flux vectors Gw or Hv, when k in these equations is q, or S, respectively.

A finite volume method is adopted to ensure the final converged solution is independent of

the integration procedure and to avoid metric singularity problems. An implicit discretized inte-

gral form of the thin-layer Navier-Stokes equations, Equation (2), in computation space for a

cell with center denoted as (i, j, k) is

AQS + Aj46jF+1 + 6j (G-G,)n+l + 6k (H- H)n+1] - 0 (6)

where

AQR Qt+l 1 Qa

and i, j, and k are the indices in the 1, % and S direction, respectively, and n is thi temporal in-

dex. In this equation, the dependent variable Q is considered to be constant throughout cell (i, j,

7



k), while the inviscid and viscous fluxes are assumed to be uniform over each of the six surfaces
of the cell. An unfactored implicit scheme can be obtained from the Equation (6) by linearizing

the inviscid and viscous flux vectors about the previous time level and dropping terms of the se-

cond or higher order, resulting in the following linear equation

[I + Ar (8iA + 6jB • + 6kC -6 jBv- 8kCv. )] AQn A Rn

where (7)

Rn = 8iFn + 8jG + 8kH - v8G - 6 kHV

The inviscid flux Jacobians A, B, and C and viscous flux Jacobians By and C, terms arising from

linearization are given by

A = F B=2 C Bv=Gv , aHlv

2. BOUNDARY CONDITIONS

It is well known that, when dealing with a time-marching formulation, the reflecting behav-
ior of the numerical boundary conditions must be minimized in order to enhance the conver-

gence rate to the steady state. In the present work all boundary conditions are explicitly imple-
mented. They include farfield, solid wall, and block-to-block boundary conditions. All farfield
(i.e. inflow-outflow) and inviscid impermeable boundaries used characteristic variable boundary

conditions as derived in Reference [4] for stationary grids and in Reference [5] for dynamic
grids. As in these references, the boundary conditions are implemented utilizing one layer of
points outside of the computational field, called phantom points, which results in first-order ac-
curacy at the boundaries. The change in dependent variable, AQa, is set to zero for all bound-
aries except at block-to-block boundaries. The approach adopted here with regard to block-to-
block interface communication is a direct extraction-injection procedure which was taken by
Belk [Reference 5]. This means the information (such as Q, AQ) from within the domain of

one block can be extracted and then injected as phantom data in an adjacent block. In Reference
[5],/Belk investigated many of the dilemmas posed when attempting time-accurate flowfield
simulations using dynamic blocked grids. Belk showed that using synchronized dependent vari-
ables and approximating the value of the solution vector required at block boundaries with what-

ever information is currently available from adjoining blocks introduces an O((At)2/Ax) error at
the boundary and gives unsteady results that compare well with unblocked results even for cases

with a shock wave passing through the block boundary. For viscous wall boundaries, a no-slip
implementation of the zero normal pressure gradient boundary condition is applibd at the body

surface. In the case of wall heat transfer, the wall temperature Tw is specified, and the density at

8



the wall is computed from the equation of state, knowing the surface pressure and surface tem-
perature, to wit

Pp = Pf ` Pw
VP =2XwVf

-W (Ypw)/Tw

Qp = 2 ,- Qf

Cp = -yl)I pp + 41 QP(u2 + vP2 +W2

where Xw is wall grid speed and the subscripts p, f, and w denote phantom points, field points,
and wall boundary points respectively.

3. TURBULENCE MODEL

Closure of the governing equations is achieved by using a turbulence mod&', to obtain the
eddy viscosity values. In this study, the viscosity coefficient in Equation (2) for turbulent flow is
modeled as the sum of the laminar and turbulent viscosity in the eddy viscosity approach. The
turbulent eddy viscosity p is computed by using the algebraic viscosity model due to Baldwin
and Lomax [Reference 6]. It is a two-layer model in which an eddy viscosity is calculated for
an inner and outer region. The inner region follows the Prandtl-van Driest formulation. In both

the inner and outer formulations the distribution of vorticity is used to determine the length
scales, thereby avoiding the necessity of finding the outer edge of boundary layer. For the inner

region,

th., Qe2 kIl

where

f = k[ 1-x

and

y + -(Qw=')

y is the normal distance from the wall, kol is the absolute magnitude of voracity, and k 0.4 is the
von Karman constant.

The eddy viscosity for the outer region is given by

p.. = KCcpF~w, (y)

9



where

Fwa = minimum Ymax Fmax, Cw ym8ZFmff/

The quantities Ymax and Fmax are determined from the function

For) M YIOI [1 - exp(-y+

where Fm is the maximum value of F(y) and Ym is the value of y at which it occurs. The
function Fid,(Y) is the Klebanoff intenmittency factor determined from

FFlby 1+5 -16

The quantity UdM is the difference between the maximum and minimum total velocity in the

profile and, for boundary layers, the minimum is defined as zero.

It is necessary to specify the following constants: Ccp=l.6, Cklcb=0.3, Cwwk=.25, and

K=0.0168 is the Clauser constant.
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SECTION M

NUMERICAL FLUX FORMULATION

This section is concerned with the numerical flux formulation of the convective terms. In
this work the equations are discretized into a cell-center finite volume formulation that depends
on the numerical flux at each cell face of the finite volume. There are, of course, many methods

available now to determine this cell-face numerical flux. These methods range from central dif-

ferencing to high resolution upwind schemes [Reference 7]. Simpson [Reference 8] demon-

strates that exceptional results for a laminar viscous flow can be obtained using a high resolution

method based on Roe's approximate Riemann solver [Reference 9] with only a few points in the

viscous region compared to a flux vector split scheme [References 2 and 10] with many more

points.

During the course of this research it became apparent that the approximate Riimann solver

of Roe has much to offer with regard to the quality of the numerical solution of the Euler and
Navier-Stokes equations. There are various methods in use for extending the first-order Roe

scheme for the convective fluxes to higher order. Two of these methods will be discussed and a
third method will be presented which was developed and used for all results presented in this re-

por

For multidimensional flow the assumption is made that the waves move normal to the cell

face. Therefore, it is sufficient to present the numerical flux vector in only one dimension, as the

same formulation is used in the other coordinate directions.

The first-order numerical flux, f*, at cell face i + 1/2 resulting from Roe's approximate Rie-

mann solver can be expressed by any one of the following three relations

S I[ f (Qi) I + (- + i+ (9)
j-1

2j• 1.O+ fr(ii+½i+
+ 12j + + + (9 )

or

f* 1 = f (Q1 ) + f mi.~) Ii- a.~ 1 Ix~ r( (10).l i+I12 j-1I i2

where
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k2 2 = - 2(11)

a eo) " (Q - Q? (12)
+i+ I1

and n = 5 for three-dimensional fluid flow. In Eqs.(8-10), X ± (D correspond to the positive and

negative eigenvalues of the Roe matrix, rAD are the right eigenvectors of the Roe matrix, f ( are

left eigenvectors of the Roe matrix, and the scalars a1 are jumps in the characteristic variables.
The subscript i+1/2 in the equations above indicates that the metrics used correspond to the cell

face located at i+1/2. The dependent variables in the eigenvalues and eigenvectors are, or

course, the Roe averaged variables [Reference 9] at cell face i+1/2 since they comprise the ei-

gensystem of the Roe matrix. The flux vectors f (Qi) and f(Qi+1) in Equations (8-10) are eva-
luated using the dependent variable vector as indicated (not the Roe averaged variables), but the
subscript i41/2 on the bracket indicates the metrics at i+1/2 are to be used.

Equations (8-10) can also be written, respectively, as
f:+½ [ f(Q?) ]I+ + A -Qi t Qi)(Q l- Q ) (13)

* +
1~ + i+1 + 1 Qi

2

fi+ I = f (Qi+ )]i+- -A (Qi, Q+ 1 ) (Q+i+ - Qi) (14)
2 2

f i[f(Qi) + f (Qi+l) I+- F (Qi' QiJl)I (Qi+l - Qi) (15)

where A'is the usual diagonalized Roe matrix composed of Roe averaged variables with

A =TA T (16)
•+

9J A A (17)

The matrix T in Equation (16) has as its columns the right eigenvectors, r(J), of the Roe matrix.

The matrices A * are diagonal matrices with eigenvalues, X . ", of the Roe matrix along the di-

agonal.

One of the more straightforward and frequently used methods for extending the Roe scheme
to higher order is the so-called MUSCL approach introduced by Van Leer (Reference 11]. This

approach is a dependent variable extrapolation method whereby a dependent variable on either
side of a cell face, denoted QR and QL. is extrapolated up to either side of the cell face and these
extrapolated variables are then used in the Roe formulation, e.g. Equation (15), to compute the

numerical flux at a cell face. The higher-order Roe flux could then be computed from the rela-

tion

12



2= I[(QL ) + (QR )]i+ 1/2 - IA(QL, QR)I (QR - QL) (18)

where Q1+1 has been replaced by QR, and Qi has been replaced by QL.

It should also be noted that limiting can be used in this formulation by including limiters in

the computation of the extrapolated dependent variables QR and QL as was done by Anderson,
Thomas, and Van Leer [Reference 12]. Extrapolation formulas without limiting are also pres-

ented in Reference 12 as well as Reference 7.

Another approach is the numerical flux family of higher-order accurate TVD schemes using

Roe averaging [Reference 9] introduced by Osher and Chakravarthy [Reference 13]. The nu-

merical flux for this family of TVD schemes for up to third-order can be written as [Reference
14]

f+/2- ½If (Qi) + i - Z • (0i+i/2 -f OJ+ 1/2) r9( 41 2
n j-1I

+ > !j-*9 L+-11 r(D + 1 +,~ L;(1,- 1) r@
+ 1 4 Lj i-1/2 4 L ( i+1/2 (19)
j-1

S[1 V r( +, V(
4 L- (3,1) ri+4/2 + 4 Lj (1,3) i+1 / 2 J

j=1

where

ojj+1/2 1+1/2 Ji+l/2 (20)

and again n =5 for three-dimensional fluid flow. The parameter V is typically -1,0, or 1/3 and

controls the magnitude of the truncation error without limiting [Reference 15).

The functions L* (V, m) used in Equation (19) are limiters. Three limiters were used; the

minmod, Superbee, and Van Leer. The minmod limiter is:

Lj± (e,m) = minmod(oj:+e/2 bojl+m/ 2) (21)

where

minmod (x,y) = sign(x) max{ 0, min[IxI, y sign(x)] 1 (22)

b (23)

and the parameter b is a compression parameter [References 13, 161. The Superbee limiter is

due to Roe and is:

L; (V, m) = cmplimb j+e/2 ,aOj+m/2) (24)
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where

cmplim(x, y) = sign(x) max(O, min[Ixl, A y sign(x)], min[P IxI, y sign(x)]) (25)

The compression parameter j5 in Equation (25) is stated by Sweby [Reference 17] to be in the

range 1 P :5 2 (P = 2 is typically used). The Van Leer limiter is:

Lj (f, m) = vA (oj~i+e/2,,ýji+m/2) (26)

where

vA (x,y) = xy + Ixyl (27)fi x + y (7

Note in Equation (19) that although the numerical flux at cell face i+1/2 is being computed,

metrics and Roe variables at cell faces i-1/2 and i+3)2 are involved. The additional terms added

to the first-order numerical flux in Equation (19) to achieve higher-order accuracy might be

viewed as an extrapolation of flux differences, as opposed to the extrapolation of dependent vari-

ables as in the MUSCL approach.

A third approach to obtaining a higher-order numerical flux, and the one used in this work,

is one that falls somewhere between the dependent variable extrapolation (MUSCL) and the flux

extrapolation approaches. Since any of Equations (8), (9), or (10) give the same first-order nu-

merical flux, and because the evaluation of Equation (10) requires a slightly larger number of

floating point operations than either of Equations (8) or (9), Equation (8) is used for the first-or-

der numerical flux along with certain additional terms to obtain the following higher-order nu-

merical flux

n

fi+1/2 = If (Q]i+ 1/2 + > (11i+1/2 riJ 11 2
n j-1

+7+ 1(- 1,) - Lj-(3, 1)] + [L (I,- 1) - Lj-(I,3)] r(+1 /2
j-i-

(28)

where the a* used in the limiters are now defined as

OJ iP/ " ai1/ i+P/2 (29)

where
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iF/ (Qi - Qi- 1 ) (30a)
oj i+-1/2 = li+1/"

ji+1/2 i+1/2 (Qi+ - Qi) (30b)

CjI i + 3/2 (30c))

ji+/ i+1/2 (Qi+ 2 - Qi+(30c)

"* The limiters retain the same definition. However, when using Equations (29) and (30) in place

of Equation (20), the Superbee and Van Leer limiters reduce to

L * (f, m) = L I (m, e) (31)

and the scheme is independent of V when these limiters are used. This would then appear to be

like a second-order Fromm scheme which occurs for 4- =0. Both second- and third-order ac-

curacy can still be obtained with the minmod limiter.

Results obtained to date using Equation (28) have been superior to the results obtained using

Equation (19). Another advantage of Equation (28) over Equation (19) is that the operation
count is less. With regard to limiters, solutions have been obtained using each of the three limit-

ers; minmod, Superbee, and Van Leer. The solutions differ, but fur many problems the solutions

are reasonably close. For the most part, Van Leer and second- and third-order minmod give

about the same results. Superbee is a more compressive limiter as it was evidently designed to

be. The biggest difference in the limiters has to do with convergence. Van Leer has always giv-

en the best convergence rate and Superbee usually gives the worst. Minmod has shown tenden-

cies to go into limit cycles. Considering both quality of results and convergence rate, Van Leer

is presently the suggested limiter. In view of the property of the Van Leer limiter expressed by

Equation (31), the second-order numerical flux at a cell face can be written

n

=/2 = [f (Qi)]i+1 /2 + I Co; i+ 1/ 2 r i 1 /2
n j-1 (32)

+ +1 E [ 1.-1,1)- Lj-(1,3)] r
i+ 1/2

where L?*(e, m) is given by Equation (26), or Equation (24) for that matter, since Superbee sat-

isfies Equation (31) and a and a are given by Equations (29) and (30).
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SECTION IV

NUMERICAL SOLUTION SCHEMES

In this cell-centered finite volume formulation the method used to obtain the numerical flux

at a cell face has, of course, a strong influence on the quality of the numerical solution. The

method used for the numerical flux at a cell face also has an influence on the choice of the nu-

merical method used to solve the resulting system of algebraic equations. For example, the use

of a flux vector split scheme [Reference 18] for obtaining the numerical flux at a cell face leads

naturally to a solution matrix composed of elements corresponding to the Jacobian of the flux

vector represented by only positive eigenvalues and the Jacobian of the flux vector represented

by only negative eigenvalues. The solution matrix resulting from this flux vector split formula-

tion leads more or less naturally to a factored LU type solution scheme [Reference 19] that can

be coded into a rather efficient algorithm. This factored LU type scheme was put forth by Bun-

ing and Steger [Reference 20] for the solution of a two-dimensional finite difference formula-

tion of the equations.

During the course of this research various implicit schemes were developed and used for

the numerical solution of the three-dimensional unsteady Euler and Navier-Stokes equations.
The purpose of this Section is to present these implicit methods and illustrate how each was de-
veloped in succession. This is carried out by first reviewing Newton's method for the solution of

nonlinear systems of equations because this is the basic form in which the equations are cast in
order to gain generality with regard to the solution of the unsteady equations so that the equa-
tions can be converged at each time step if desired.

1. NEWTON'S METHOD

Consider the system of nonlinear equations written in the general form

FI(xl~x2....,Xn) 0

F2(XlX2..., Xn) - 0 (33)

Fn(xl,x2...,Xn) - 0

These equations could, for example, be the three-dimensional unsteady Euler equations where

n=5 and FI through FS are the equations for mass, momentum, and energy, and components xI

through x5 are the conserved variables of density, momentum, and energy. Equations (33) could

also be a system of nonlinear algebraic equations resulting from the discretization of the three-

dimensional unsteady Euler equations on a computational grid. The number of equations and
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dependent variables can then be extremely large due to the fact that there are five equations and

five unknown dependent variables for every cell or node point in the computational domain. Of

particular interest here is the latter case, where a solution is required for the large number of

"nonlinear algebraic equations that result from a finite volume discretization of the unsteady

three-dimensional Euler or Navier-Stokes equations.

Let F be a vector function of the coordinate functions F1, F2 ....., Fn where xj, X2, ... , xn are

coordinates of the vector x. Then the system of equations given by Equations (33) can be writ-

ten as

F(x) = 0 (34)

Newton's method for the vector function F(x) can be written (see, for example, Ortega and

Rheinboldt [Reference 21]) as
m+ 1 -1

x = xm - (F'(xm))-1 F(xm) (35)

where m f 1,2,3.... and F'(x) is the Jacobian matrix of the vector F(x) and is given by

al,(x) a12(X) ... ain(x)

a21(x) a22(x) ... an(x)

F'(x) = (36)

anl(x) an2(x) ... anm(x)

where

a(x) aFf(x) - (37)
Oxi

It is usually impractical to obtain the inverse of the matrix operator F'(x). A more practical way

of writing Newton's method for obtaining numerical solutions is

F' (xm) (x" +1 - xm) =-- F(xm ) (38)

Two good references on Newton's method for nonlinear systems of equations are the books

by Ortega and Rheinboldt [Reference 21] and Dennis and Schnabel [Reference 22]. By taking

advantage of these (and other) works on Newton's method, it is a rather simple matter to state

the problem. However, it is an entirely different matter to numerically solve the resulting system

of equations.
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2. NEWTON'S METHOD COMPARED TO NORMAL LINEARIZATION

It is interesting to compare the equations resulting from the application of Newton's method

with the equations resulting from what is referred to here as normal linearization as introduced in

References [23 and 24]. For illustration purposes, consider the frst-order nonlinear hyperbolic

system that has been transformed from x, t space to t, x space

S+ = 0 (39)

Discretizing this equation in the finite volume sense with At = 1, and using a first-order back-

ward difference in time, the resulting system of difference equations that must be solved can be

written as

Qn+l nl- Qi + f.+,/ 2 (Qn+,) - fi_,/2(Qn+l) = 0 (40)
AT

or

Qn+ 1 - n
QfATl L + 6, f(Qn+l) = 0 (41)

The normal method introduced in References [23 and 24] to linearize Equation (41) would

be to linearize the vector function f(Q) to obtain

Qn+1
-A i + 8, (f (Qn) + f, (Qn) (Qnf+l - Qn)) = 0 (42)

wheref '(Q) is the Jacobian matrix of the vector function f (Q). In the CFD literature Equation
(42) is usually written

(I + AT8iA .) (Qn+l - Qn) _ _Ar6if(Qn) (43)

where

A = f' (Qn) (44)

On the other hand, to solve Equation (41) using Newton's method, the left hand side of
Equation (41) is simply the vector function F given by Equation (34) and the vector x in Equa-
tion (34) is the dependent variable vector Q at time level n+l, i.e. x = Q+. Newton's method is
now formulated, and the system of difference equations that must be solved is given by Equation
(38); or, in the nomenclature of this section, the equations that must be solved are given by
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(I + A, 6i A ) (Qfl+lm÷+l - Qn+l.m) = AT I + 6i f (Qf+ Lm)]

(45)

where in this case

A = f '(Qf +lJD) (46)

Note that if the initial approximation (m=l) to Qn+I of Equation (45) is taken as

Qn + 1. 1 _. Qn (47)

then the first iteration of Equation (45) is the same as the solution Qn+I of Equation (43). An

obvious difference between the normal linearization resulting in Equation (43), and Newton's

method resulting in Equation (45), is that the time derivative is contained in the residual term

(right hand side of the equation) in Equation (45), whereas, the residual term in Equation (43)

does not contain the time derivative. For steady state problems where time could be an iteration

parameter, continued iteration of Equation (43) would presumably lead to

Qf+l -0. Qn (48)

and

8, f (Qn) _. 0 (49)

On the other hand, for unsteady problems, a solution of Equation (43) does not insure that

Qn+1 -Q
QI Q i +- ' i f(Qn) = 0 (50)

whereas, a converged solution of Equation (45) does insure that the unsteady equation, Equation

(41), is satisfied.

3. SOLUTION SCHEMES

Of particular interest here is the numerical solution of the so-called upwind formulation of

the equations for three-dimensional time-dependent problems. An implicit three-factor scheme
of the three-dimensional upwind equations requiring three block tridiagonal solutions similar to

the scheme of References [23 and 24] was shown by Anderson [Reference 25] to be conditional-

ly stable with a maximum CFL number of order 10. Anderson (Reference 25] also investigated

the stability properties of a two-factor LU scheme considered in Reference 19, and found it to

have improved stability properties compared to the three-factor scheme. This was also the con-

clusion of a more detailed analysis performed by Mansfield [Reference 26]. The two-factor
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scheme (usually referred to as the two-pass scheme) is a workhorse scheme used to solve nu-

merous steady and unsteady flow problems about rather complex three-dimensional configura-

tions. Although the two-pass scheme has been described several times, it will be reviewed brief-

ly again, because a new scheme will be presented that involves modifications of the two-pass

scheme.

a. TWO-PASS SCHEME

Consider the three-dimensional extension of Equation (39) written as
S8f-(Q O~g(Q) Bh(Q)

Q + 8 ) + a ) + --= 0 (51)

The finite volume discretization of Equation (51) analogous to Equation (41) is
Qn+1

CZ All O + 6if(Qn+1 ) + 6j g(Qn+l) + 8k h(Qn+') = 0 (52)

The flux vector split form of the equations (see, for example, Reference 19) can be written as

Ar i + 8i[f+(Qn+ 1) + f-(Qn +l)] + 8j[g+(Qn+l) + g-(Qn+l)]

+ 6 k[h+(QT+1) + h-(Qn+1)] = 0

(53)

Newton's method for this three spatial dimension problem that is analogous to Equation (45) is

[I +AT(8i At + 8i A.- + 8jB.+ + 8jB- + kC-+ + 8k 0 -)]

(Qn+l.m+l _ Qn+l.m) = _ ArRn+l.m (54)

where

A af*f(Qn+ LIm)
= BQn + 'm

B = 1g,(Qn +l m)
aQn + 1,•

C± = ahi(Qn +l f1)

RQ n~rQ 

n+ 
-Q

Rn +t~m = M "k iX + 8i[f+(Qn +l.m) + f-(Qn+l.m)]AT

+ 8j(g+(Qn+",m)+ g-(Qn+l.m)] + 8k[h+(Qn+l'm) + h-(Qn+l-m)]
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Defining

xm = Qn+ljn+l - Qn+ljn

"8 M+ = 8iA+ + 8pB+ + 8 kC+ (55)

8 M =f iA- + bjB- +kC

Equation (54) can be written

(I + A Mt8M+ + Ax8M-)X m  - -ATRn+I= (56)

The two-pass (LU) scheme for solving this system is

(I + ATrM t) (I + AM8M:-))Xm - ArRn+lm (57)

which can be solved in the following steps

(I + A&.tMt)X1.m = - Ac Rn+l'm

(I + ArbMT)X2m -= XIm (58)

Qn+l,m+l - Qn+l.m = x.m

b. MODIFIED TWO-PASS SCHEME

To obtain the modified two-pass scheme, first expand Equation (56) rather than factor it to

obtain

xm + AM +x - M)XX.+'rXM 1 x.1_) +1O~ X+ ~M7-x¶)= AR•+l. m
1 +(59)

(The nomenclature gets a bit sticky. The single subscript i represents the point in three-dimen-

sional computational space corresponding to the point ijk. Subscript i+1 corresponds to i+lj,k;

ij+l,k; or ijk+l. One simple way of following the argument is to think of this as a one--dimen-

sional problem. Remember, however, that the matrix M is the sum of the flux Jacobians in each

of the three computational directions, and subscript i+l can represent any of the three adjoining

cells that are in the positive computational direction of the cell ijXk, and the subscript i-I can

represent any of the three adjoining cells that ane in the negative computational direction of the

cell ijk.) Dividing Equation (59) by the time step, At, one obtains

(lT~ka ,~\vm .~+vmJc Km n*Il.m (~(AI + M+ - M-)ýXmi- M+ i3 ,+M-- R _.n(60)

or
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+ M-' Xi+l1,
DXi - M+_ XI_ + M- 1  = - R.+I'm (61)

where

D =-LI + M +-M- (62)

There are at least two ways of looking at the modified two-pass scheme. One is to view the

method as a factored scheme, and another is to view the method as a relaxation scheme. Both

points of view will be considered next.

(1) MODIFIED TWO-PASS AS A FACTORED SCHEME

Assuming D to be nonsingular, Equation (61) can be written as

-1 n+l1,mXm V-IM+ Xm +D -'M Xm D-- (63)-I i- I " D i+1 i+l i

Equation (63) can be factored just as the two-pass (LU) scheme to obtain

(I- D-M+ 1)(I + Di-Mi:,I)Xm D-IR+I.m (64)

Equation (64) can also be solved in two passes (two steps) by

(Di - M:_1 )X'"" = - R]+I•

(Di + Mj+ I)X2m -= DiXIm

or

DiX3'm + Mi-1 X2"m = 0
Q -Q ~-X~X 3 ""X 1 ~"(65)

u+1,M+1 _0n+I 2 3m+Xi

(2) MODIFIED TWO-PASS AS A RELAXATION SCHEME

Consider solving Equation (61) using the Gauss-Seidel method. In Equation (61) D is a

block diagonal matrix, M+ is a block lower triangular matrix with zeros on the diagonal, and M-

is a block upper triangular matrix with zeros on the diagonal. Considering XlA to be initially

zero, the Gauss-Seidel method is

D 1'm + 1.m =-Rn+1.mDX1 - [-* Xi- Im+I. (66)

After completing this forward pass the Xl-m are known, and a backward pass can then be carried

out to complete a symmetric Gauss-Seidel solution by
2U + I'm -X2.m _ n+l~mDix i• - Mi- 1 Xi-1 + Mi X i+1 = i- (67)
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Some computational conveniences can be realized by noting the following. Using Equation

(66) for the vector M.' X one can write Equation (67) as
2m - 2.mn I ~ •M (8DVXi + Mi4l Xi+1 (68)

so that in the backward pass one can actually solve for X3,m, where

X3,m = X2,m _ XI'm (69)

just as in Equations (65). This reduces the number of matrix-vector multiplications that would
otherwise need to be caried out. The symmetric Gauss-Seidel relaxation scheme is then given

by Equations (66), (68), and (69).

The end result of this is that both points of view (that is, whether the modified two-pass

scheme is considered a factored scheme or a symmetric Gauss-Seidel relaxation scheme without

residual updating) are the same.

It was recently discovered that the Russian Samarskii [Reference 27] put forth a scheme in
1964 that is similar to this modified two-pass scheme, and it is referred to in Reference [27] as

the alternamte-triangular method. The analysis of the alternate-triangular method presented in

Reference [27] requires rather strict properties of the solution operators, and the present solution
operators do not satisfy these properties. Application and analysis of the alternate-triangular

method to elliptic difference equations is presented in Chapter 10 of the Russian book by Sa-

marskii and Nikolaev [Reference 27].

c. N-PASS SCHEME

It was shown above that the Modified Two-Pass Scheme could be viewed as a forward and

backward pass of a symmetric Gauss-Seidel scheme if the initial guess for X1 .m was taken as
zero and the solution process was terminated after one forward and one backward pass. By as-

suming an initial guess, denoted X()A, the first pass of this relaxation scheme analogous to

Equation (66) can be written as
DX"n - M* X+ m +M X0 n X_ Rn+"" (70)

i-i i-i i+ i+1

A backward pass analogous to Equation (67) can be written as
Dini" -1+I lA + M.- X2,m _ e+ Ijn

DiX-- XM!=R i (71)i-i i-i i+i i+1i

This process can, of course, be repeated, and is done so to obtain the N--Pass Scheme given by

DrXi-l"m- M! Xp-,.mn M-~ XP-,m-_ R n+lm 72
1 i'-M I Xi + 1 "4" ii (72)
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and
_ Xp• _ _ R+I.M

D -XP'm M +-1 xP-1 m + M•1 XiM R (73)

where p = 2,4,6,...,2N.

From the indexing used above a better terminology for this method might be to call this a

2N-Pass Scheme, or perhaps, an N-Cycle Scheme if one forward and one backward pass

through the computational domain were considered to constitute one cycle. Regardless of what

constitutes a pass or a cycle, notice that this scheme, given by Equations (72) and (73), is simply

symmetric Gauss-Seidel.

4. DISCRETIZED NEWTON METHOD

All terms, by conventional standard, appearing in the Equation (54) should result from a

single flux formulation. Barth [Reference 281 encountered difficulty with the formal lineariza-

tion of the Roe flux functions. He concluded that although superior convergence rate could be

obtained using the formal linearization, the computational expense made it unattractive. Good

results over the past few years have been obtained by a hybrid Roe scheme, which utilized the

true positive and negative Jacobians derived from flux-vector splitting on the left-hand-side of

Equation (54) and the residual term R on the right-hand-side of Equation (54) from flux-differ-

ence splitting. However, one could say that the hybrid Roe scheme is inconsistent in that the in-

viscid flux Jacobians used in the solution operator correspond to a flux-vector splitting scheme,

while the residual vector is computed using the Roe scheme. A method which resolves this in-

consistency when the Roe scheme is used to evaluate the inviscid flux vectors, is given in Refer-

ence[29]. This approach will work in principle for any scheme for which the true Jacobians are

difficult to derive or approximate. In this procedure, the inviscid flux Jacobian matrices are

computed numerically by discretization of the inviscid flux vector. Ortega and Rheinboldt [Ref-

erence 21] refer to such a method as a discretized Newton iteration. Various finite-difference

approximations have been suggested in the numerical analysis literature. A simple and straight-

forward approximation of the elements of the Jacobian is to replace Equation (37) with

ai (x) = F( x + hej) - F (x)

h

where ej is the jth unit vector. Dennis and Schnabel [Reference 22] point out that this is the

same as approximating the jth column of the Jacobian by

jth Column of F (x) = F (x + he3 ) (75)

h
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Dennis and Schnabel [Reference 22] also point out that if a sequence ( hm) is used for the step

size h, and if this sequence is properly chosen, then the quadratic convergence property of New-

ton's method is retained and Newton's method using finite differences is "virtually indistinguish-

able" from Newton's method using analytic derivatives. However, a straight Newton's method

is not used here due to the magnitude of the problem in three dimensions, so since quadratic con-

vergence is lost anyway it did not seem fruitful at this stage of research to invest significant op-

eration count in sequencing h. In fact, a constant h of about half the reliable digits of the ma-

chine has worked as well thus far as using a variable step size. For example, on a Cray Y-MP in

single precision (64 bits), constant step sizes of h = 10- 5and h = 10- 8gave virtually indistin-

guishable results. Therefore, for a constant step size, the present suggestion is

h =fmachine epsilon (76)

It should be noted that this approach of using a constant step size may not be appropriate for
situations where there may be large variations in the magnitude of the elements of the dependent

variable vector, although it has worked thus far for all cases considered. The application of the

above mentioned procedure has been extended to evaluate the viscous flux Jacobian matrices as

well. The viscous flux Jacobian matrices are computed numerically by discretization of the vis-

cous flux vector.
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SECTION V

SOFTWARE OPTIMIZATION

1. QUASI-BLOCK-TRIDIAGONAL SOLUTION MATRIX STRUCTURE

This subsection is dedicated to the analysis of the matrix form involved with the system
MAQ = R, i.e. (Ax = b). Before discussing a couple of solution methods for solving this kind of
a system, the general appearance of the matrices will be considered to see what can be done to

simplify the problem. In this subsection, the structure of the matrices which result from solving

the fluid dynamic equations in one, two, and three dimensions is presented. Do not be con-
cerned with the actual entries in the matrices, as one can easily go back and see where each indi-
vidual value came from. The goal is merely to get some pictures in mind to set the stage for tak-

ing advantage of particular characteristics of the system matrix in the solution methods which

follow.

For the one--dimensional case, the form of the M matrix (referred to here as the system ma-
trix) is very simple, and is shown in the following figure:

Figure 1. One-Dimensional Matrix Structure

In this case, all the entries (referred to here as point-blocks) are square and of order three.

This is what is referred to as a "block--tridiagonal" matrix since there is a main diagonal of
point-blocks, one super-diagonal, and one sub-diagonal, and the point-blocks which constitute

them are all square and of the same size. Obviously, Gaussian reduction, a block version of
Thomas' algorithm or approximate factorization are straight forward approaches to solving this

matrix.

Extending from this one-dimensional case to see the two-dimensional system matrix struc-

ture, flux Jacobians in the second dimension are added to the matrix structure. In Figure 2, all

point-blocks are of order four (conservation of mass, two components for conservation of mo-
mentum, and conservation of energy). The system is now banded with five bands (referred to

here as block-pentadiagonal).
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Figure 2. Two-Dimensional System Matrix Structure

Finally, for the three-dimensional case, there are now seven point-blocks of order five to

place in the M matrix. Extending this system matrix structure of Figure 2 one dimension further,

it can be shown that the mtrf-- will be of the following form:

0

Figure 3. Three-Dimensional System Matrix Structure

In this case the system is block-septadiagonal, since there are three block diagonals both

above and below the main block diagonal. Neither the 2D or 3D systems appear to have a very

"clean" way of solving them, and the question of storage immediately comes to mind, since

there are a tremendous number of zeros which must be kept. Even for a relatively small 2D ge-

ometry, it is not unusual to find a system with a few hundred block rows and columns. That im-
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plies a few megawords of storage to hold the entire matrix, and perhaps less than 1% of that

would (initially) be non-zero values.

The overriding question here is "How can solution concurrency be extracted from this kind

of system without a monumental memory or solution convergence penalty?". Clearly, approxi-

mate factorization is attractive with regard to reducing the storage, but are there other methods

which may take advantage of the banded nature of the system, without a huge cost penalty in-

volved in storing all of the zeros? The research approach taken here involves analyzing the sys-

tem, by observing the potential for making it "quasi-block-tridiagonal" as shall be discussed be-

low.

Obviously, when dealing with the one-dimensional case, the system matrix is a straight for-

ward block-tridiagonal system. Taking into account boundary conditions (explicit), the system

matrix will take the form:

Figure 4. One-Dimensional System Matrix Structure with Boundary Conditions

The "I" point-blocks are identity matrices which simply set the boundary values to that de-

termined explicitly and stored in the b vector Of course, it is possible to have implicit boundary
values thereby introducing additional point-blocks or altering the entries in point-blocks shown

in this matrix. The simplest case (explicit boundary conditions) will be treated here since the

principle concern will be how to find and utilize concurrency in these types of systems, and the

boundary assumptions should not have an effect on these methods.

Extending to two-dimensional and three-dimensional systems, however, requires some

work to get things looking like a "block-tridiagonal system". The simplest method is to take the

M matrix with the boundary values included, and simply "draw lines" horizontally and vertically

through the matrix, partitioning it into a peculiar looking block-tridiagonal structure. By doing

this, groups of point-blocks (which are matrices) form what will be referred to here as matrix

blocks.
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Now a moment will be taken to look in some detail at what it really takes to partition a 3D

problem from which the M matrix is built. First look at the very simple 3D space, which is

shown below in Figure 5. The space is dimensioned as 5 x 4 x 4 ( i x j x k ). In addition, it has

been partitioned into four planes running in the ij-plane. The reason for this is because of the

type of software implementation which is typically used for assembling the M matrix.

3
4

Figure 5. Three-Dimensional Computational Space

The dots on the surfaces (many of them are hidden behind the front-most plane) are the

points (cells) where the fluid solution is sought. Traditionally, most 3D curvilinear spaces -
associated with the solvers developed in association with this study are set up so that the max j
and k indices are small in relation to the i index. It is common to establish the point distribution

with a i >> j > k hierarchy in mind. An example, in "pseudo-code", of the way these points
(equations) are assembled for processing is shown below.

for k=l to 4
forj=1 to 4

for i=1 to 5
Position this point's equation as the next row of the M matrix.

end
end

end
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The M matrix which results from this type of arrangement is shown in Figure 6. This is the

system which must be "block-tridiagonalized". In this case, the block-tridiagonal structure is

found by simply drawing vertical and horizontal lines through the matrix as shown in the figure.

The system has been partitioned, and the block--tridiagonal structure should be obvious. There
are several other ways, obviously, to arrange the three loops, but all of them result in a similar

block-tridiagonal arrangement.
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Next, concepts developed to extract natural concurrency finer than what has been viewed for

traditional solution methods will be presented. The purpose of searching for fine-grained con-
currency has been to provide opportunities for additional vectorization, such as what would be

done on any Cray vector processor. The central theme here involves the use of the concept of
"diagonal plane processing" for matrix ordering (References 5, 18].

The technique is to take a 2D or 3D space, and chose the ordering of points in the M matrix

in such a way as to make the problem naturally appear as a quasi-block--tridiagonal system.
This all boils down to traversing through a 3D space on a diagor "plane in which none of the

points in the plane are directl effecting any other. In the 2D case, this is analogous to traversing

a diagonal line, and grouping the points falling on that line for concurrent processing. Here a
brief look will be taken at each case.

In the 2D case, consider only the i and j directions. In Figure 7 below, consider a very small

2D space that has been partitioned into a 8 x 4 grid of interior points (cells). In addition, the
boundary conditions (haloed points) are included, resulting in a 10 x 6 system, since the first and
last rows and columns represent the boundary conditions. Also shown are every other diagonal

line cutting the domain representing about half of the 15 cutting lines.

* 15

* 9 14

* 0 0 0 0

* 12

0 0

1 2 4 6 8 10

Figure 7. TWo-Dimensional Computational Space with Diagonal Line Grouping

It can be shown, since all communication between points (from a typical difference stencil)

is done in the i and j directions, no points lying on the same diagonal line are in direct commu-

nication. As a result of this, when looking at adjacent lines, the problem has reduced, in essence,
to a one-dimensional problem. The result of this shows up in the M matrix organization, as

shown in Figure 8. Again the identity point-blocks represent explicit boundary conditions. In
this case, one takes the points from the top of each diagonal line, and works down, starting from
line 1 and working through line 15. The blocks on the diagonal do not appear to be square. This

is because the characters are taller than they are wide. However, the center blocks are all square,

as is the overall matrix.

32



°|°°• .. °. .°. .. .. .. .. .......°° i ° ° ° . .......... ..° °°. °. °.

.* .D. .-- ,.J..i .•. . eo . ... eo....... .. .... ........ ... •. e . .. °°n

.....................................................
a,.• ... D ..- , ee eel ge** oee i..* .ao . ......,* .........

* ..÷ ... . .. ..........................................

++ l.*,** *eo.***.*...*. 0...o..*.
. .....................................

+4.. D . ... .....................................

O.
* +..D..-................................

.......... +.....--........................... ............. .. . ................ ........... ........

........... .,.. D ... ................................. .....

.............- .......... ......................

. .e.. ... .+ee• ee~ .4.. -........ ....................
........ e....................

............. nnD .. ................................

............ o............D.].. .......... ...........

.................... -......... .............

†††††††††††††††††††††††††††††††††††††D.. -. .........

.............. .. D . .-.......

...... eee eai e..... ...............

.........e .............................................

.................................... ..... ..

................... .+.*0.........

S.........................................+ + +.................

...............................................

: :::. ............. ............. ... . "

~~......................+ . .

. . . . .. . . . . . . . . .+. .0..-...

.... .. .. .. . ..... D.....

Figure 8. Two-Dimensional System Matrix Using Diagonal Li.ne Ordering

T"his particular form is commonly referred to as "quasi-block--tridiagonal", or sometimes
"-block-tridiagonal with unequal matrix-block sizes". Systems which occur in these forms are

com mon. In addition, the resulting banded system shown in Figure 8 has been "blocked"to
show the block-tridiagonality in the system matrix.
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Now consider the 3D case. The first thing needing to be done is to get a good picture in

mind of what the 3D space looks like when partitioned into diagonal planes. The picture below,

Figure 9, shows the 5 x 4 x 4 space ( i x j x k ) which has all of the diagonal planes shown. The

origin of the space is found in the lower left hand corner, where the number "1" appears. Also,

the diagonal plane intersections with the computational domain have been numbered from 1

through 11, with the first and last simply being single points in the corners.

9
10

41

2

Figure 9. Diagonal Planes for 5 x 4 x 4 Computational Space

It may be a little helpful to look at each diagonal plane, so that the shape can be clearly

seen, see Figure 10. Note how many points are contained on the perimeter and within each cut-

ting plane. The points on the perimeter could represent the boundary points for example. By

examining these points, the manner in which the boundary values fall into the M matrix can be

seen.

00

W&1 2&10 3&9 4&8 5&7 6-

Figure 10. Individual Diagonal Planes

34



The resulting matrix form is only slightly more complex than in the 2D case. In this case,

the points will be taken from consecutive planes 1 through 11. Within each plane the points will
be ordered according to the following portion of "pseudo-code":

for SUM=3 to 14
for k=l to 4

forj=l to4
for i=l to 5

if i+j+k equals SUM then include the information
(equation) for that point in the next row of the matrix.

end
end

end
end

Since all of the points on a given diagonal plane have indices which add up to a constant

(the plane number plus two), the above code will start with the first diagonal plane (which is a

single point at the origin, with constant value of 1+1+1 = 3) and look for all points in the space

which fall on each particular plane. That's the role of the first "for" loop. The next three merely

control the order that the points are tested. Using the above algorithm for sampling the points,
the full block-tridiagonal matrix for the 3D case is very similar to that for 2D, as shown in Fig-
ure 11. The off-diagonal matrix blocks are banded as in the 2D case, only the bands are not as
structured.

It must be kept in mind, that this is merely one possible arrangement of the data points lying
on each diagonal plane. Indications are that virtually all consistent sampling methods result in
systems which look a great deal like this. This particular technique of using diagonal plane or-
dering seems to reduce the size of the off-diagonal matrix-blocks to a minimum. This is an im-
portant consideration when dealing with any form of solver in which matrix fill-in will occur.
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2. OPTIMIZING APPROXIMATE FACTORIZATION

In the last subsection, it was shown that the system matrix resulting from the three-dimen-
. sional fluid dynamic equations can be ordered such that it appears as a quasi-block-tridiagonal

• "system. At this point, a direct solution technique which exploits this block matrix structure
could be implemented for the inversion of the system matrix. Alternately, approximate factor-
ization (AF) is a solution method which has been advocated by the authors for sometime now.
Essentially AF breaks the M system matrix into upper and lower triangular matrices much the
same as an LU decomposition (of a direct solver) would. The two-factor scheme (two-pass
scheme of Section IV) put forth sometime ago yields an upper triangular matrix which includes
all of the backward running information, and a lower triangular matrix which includes all for-
ward running information. Since the original equation looks like MAQ = R, then the resulting
form will be M+M-AQ = R. This is the same sort of equation that one gets from an LU decom-
position of a direct (block-tridiagonal) solver, and can be solved using 5x5 block matrix inver-
sion coupled with backward (forward) substitution. What is sought here is to understand the
"communication" penalty associated with approximating the LU decomposition one would get
from a direct solver. Initially, consider the block-tridiagonal matrix structure resulting from the
one-dimensional equations as discussed previously. Expanding the one-dimensional equation
for an arbitrary cell i yields,

( I + Aý+ - Aý+1  + Ai - A--) AQ = R (77)

where I is a 3x3 identity matrix, the A's are 3x3 flux Jacobians and AQ and R are the solution
vector and residual, respectively. This equation is used for all cells in the domain, resulting in a
system of equations for simultaneous solution. In matrix form the equation obtained is

M AQ = R (78)

where

M11 M12 0 0
M21 MU M23 0
0 M32 M33 M,,4

M= 0 0 MU M"
0 0 0 M54
0 00 0~L. o

and AQ and R are column vectors.

A standard block-tridiagonal LU decomposition results in the following matrix structure

37



Lit 0 0 0 U11 U12 0 0L21 L22 0 0 • 0•U20 U 23U 0

0 L32 L33 0 00 Uo33 U,"
M L U 0 0L3L": 0 0 0 U" ' : (79)

0 0 o Ls 4  0 0 0 0 ::
0 0 00 0 0 0 0"

The first few entries in the M matrix are given by,

MI, LI=UI- I + A+" - Af-

M12  LU A-

M 21 = I 21U11 = - A+

M2= LU2U + L2 1U 12 = I + A+ - A2

M23 = 1.2U 23 = Aj(

M 32 = L32U22 = -A+ (80)

M33 = L33U33 + L 32U2 = I + A+" - Aj"

M34 = L 33U34 = Aj-

For the standard two-factor scheme, the operator of Equation (77) is approximately factored

as follows,

(I + A+ - Ai+1 ) (I+ A- A- ) AQ = R (81)

LUAQ=R

The solution procedure for this two-factor scheme is

LXI=R
U X2 _ XI (82)

AQ=X 2  Qn+ = Qn + AQ

The Mtruume for the approximate lower block triangular and upper block triangular matrices is

I+A+ 0 0 0 I-A- A- 0 0
- A+ I + A+ 0 0 0 1 - A- A- 0

0 -A I + A+ 0 : : 0 0 1 - A- A-
M-LU 0 0 -A+ I + A+ : : 0 0 0 1 - A-

0 0 0 -A : 0 0 0 0
0 0 0 0 0 0 0 0

(83)
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which leads to the following entries in the resulting approximate M matrix (operator product ma-

trix),

MI, LI IU II - I + A+ - Ai-- A+ A-
M12 =LlIU1 2 - Aj"+ A,+ A_
M21 = 2i Ii = - Ai + A +Ai

M2 -=L=U, + L2 1 U 12 = + A+ A - A -A A-- A__&
M23 = L•U23 =i iA- +-A A_ (84)

M 32 = L 32U22 = - A+ +Ai A2

M33 = L33U33 + L3 2U23 = I + A3 - A - ÷ A__3-- _A_ A_
M3 = L 3U 4 = Aj-+ A l _-

The terms which are underlined do not appear in the solution matrix of the direct solver and

hence are the AF errors. Note how they are dispersed throughout the matrix.

Next, take a look at the modified two-factor scheme (modified two-pass scheme of Section

IV). Rewriting Equation (77) as

(Di - A:"1 + A 1 )AQ=R

where

Di-= I + A:+ I-A.

The modified two-factor scheme is given by the following approximate factoring

(Di - A+-1 ) Di 1 ( Di + Ai4.1 ) AQ = R -(85)

thus

LDUAQ-=R

The solution procedure for this modified two-factor scheme can be viewed as follows

LXI=R

D X2 =XI (86)
U X3 =f X2 (6

AQ=X 3  
-Q+I = Qa + &Q

The structure for the approximate lower block triangular and upper block briangular matrices is
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LI, 0 0 0 U11 U12  0 0
L L33 0 0 0 U0, U

30 (87)M LDU 0 0 LoL44 D 0 0 0 Un::
0 0 0 Ls4 0 00 0: :
0 0 00 0 00 0

To lessen the confusion between the system matrix D and the point-block matrices denoted

Di for each cell, define

1 0 0 0
-Ai D; I 0 0

0 - D0 1 .
L' L D 0 0 -A D I : (88)

0 0 0 -A4 D-14
0 0 0 0

thus,

M - L'U (89)

which leads to the following entries in the resulting approximate M matrix (operator kroduct ma-

trix),

MI, = LjiU1 1 = D, = I + A+ - AF

M12 = L'IUI2 = A"

M21 = LIUu -= - A" D- 1 D -- A

M22 -L2U22 + L21U 12 - I + A+ - A" -AlD A_2

M23 -= L2U23 = Aj

M32 = L32U22 = - A+ (90)

M33 = L;3 U33 + L3 2U23 I + A+ - Ai" -A A D-1 Aý
M4 = L33U3 = AZ

"The terms appearing which are underlined are again the AF errors. As can be seen, for the
modified two-factor scheme the error tems only appear in the diagonal elements. Although

presently just a speculative observation, it would appear that the error associated with the modi-

fied two-factor scheme is far less than that of the standard two-factor scheme. Defining the

block matrices Di as follows
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Di = I + A+ - Af"- + A:-I D-i' A1 - (91)

all the AF error is removed yielding a block-tridiagonal matrix direct solution procedure (Tho-

mas' algorithm). This works well in one-dimension when the blocks are full, there's no

memory penalty. With a single dimension, the system matrix is a matrix with block elements

each of which is composed of 3x3 scalar entries (point-blocks). In this simple case of the one-

dimensional system all of these elements (point-blocks) are full, i.e. the diagonal and off--diago-

nal elements (point-blocks) are full 3x3 sub-matrices. In multiple dimensions there's one ca-

veat. For multiple dimensions, the system matrix is a matrix with block elements (matrix-

blocks) which are in turn composed of block matrices (point-blocks) which have NxN scalar en-

tries, where N is the number of dependent variables at each point. The diagonal and off--diago-

nal matrix-blocks are sparse block-banded sub-matrices. It is this sparsity which is desired for

an efficient solution procedure. As a matter of fact the diagonal structure of the dia~gonal block

(when using a matrix ordering based on diagonal plane processing) is what provides the vector

processing ability for the AF methods. The lack of off-diagonal point-blocks in the diagonal

matrix-block represents the local uncoupled nature of points lying on diagonal planes, setting

the stage for simultaneous (vector) processing. The point (2,2), for example, is influenced by

the point (3,1) indirectly. With a direct solver, during the solution procedure, matrix fill-in

creates an influence coefficient point-block matrix (communication path) where previously there

was none (null point-block). These paths are indirect as is indicated by the wide open arrows in

Figure 12, and are very numerous since all points will influence all others to some extent.

J

3

2

1 2 3 i

Figure 12. Indirect Communication Paths
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In the figure colinear (diagonal) points are shown with a dark dot, the (haloed) point of interest
is in direct communication with the points to the immediate right and left, and top and bottom.

Colinear neighboring points are only in indirect communication. In addition, the impact of the
solution of (2,2) on, for example, (2,1) will again impact (2,2) the path of which is indicated

with the solid arrow.

Examining the two-dimensional case a little further will reveal more details of this dilem-
ma. The modified two-factor scheme written for two dimensions is

(DVii - A+_ij -Bti_1) Vi1 (ii + AiT+lj + Bi-+ 1) AQ = R (92)

where

D I + - A:- + B+ý - Bj (93)Di - I + Ai Bii

Consider the system matrix resulting from a diagonal line ordering.

1,.1 1,2 2, 1.3 2.2 3,1 1.4 2.3 3,2 4,1

O 0 0 0 0
o 0 B o 1,2

-0 D D0 B- -_ O 0 00 0 2,1
0 -B+ 0 0 1,3

O-A+-B 0 D 0 0 B- A- 2,2 (94)
M = DO-A 0BA 3,1

0 0 0 -B+ 0 0 D 0 0 1,4
0 0 0 -A+-B÷ 0 0 D 0 2,3
0 0 0 0 - A-B 0 0 D 3,2
0 0 0 0 0 - 0 0 4,1

The diagonal matrix-blocks are diagonal themselves, hence the local uncoupled nature of

the points lying on diagonal lines is readily seen. The question then arises, "How do they get
coupledT', because it is known that for an implicit scheme, such as that used here, all points in-

fluence all other points. It is this coupling which differentiates the direct solver from the
approximation techniques. For a direct solver during the LU decomposition process the one of

the diagonal matrix-blocks belonging to either the lower or upper matrix will no longer retain
this diagonal structure, it fills in. This fill-in accomplishes the coupling between points lying on

a diagonal line (or plane in 3D) but ruins any vectorization along diagonal lines (or planes in
3D). If the retension of no fill-in and the current approach for vector processing is desired, then

some data paths (solution coupling) must be cut. The modified two-factor seems to have done

an excellent job of reconnecting data paths cut by the standard two-factor and/or disconnecting

faulty data paths created by the standard two-factor scheme in the off-diagonal matrix-blocks

and some in diagonal matrix-blocks. There exists some AF error (data path error) which re-
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mains in the diagonal matrix-blocks which can be removed while still retaining the no fill-in

matrix structure enjoyed with the AF schemes. To see this, one can simply run through the ma-

trix products which result from the AF process and compare to the matrix in Equation (94)

above. Consider the following AF matrices

1,1 12 2 1,3 2,2 3,1

1 l (I .0 0 0 1,1
-1BD I 0 0 0 0 1,2

0 I 0 0 0 2,1 (95)
0 -BD 01  0 0 1,3
o -AD-'-B+D 0 2,2
0 0 - AD- 0 0 1 3,1

and

1.1 1.2 2,1 1,3 2.2 3.1

0Dl 0B- A- 0 1 1,1

0 0 D 0 B-A• 2,1 (96)
0 0 0 D 0 2,2

0 0 0 . ] 3,1

Using row-column subscripts (with no commas) to denote matrix-blocks, the first few en-

tries in the resulting system matrix are

MI, = Li1 U 11 - IDI,1 = [ D 1 ,]
M 2 = L'Ii U12 = I[B-AI= [B AI]

r-B+ DB 11 [- (97

M 21 = I U11  A+= A1,+ D, 1  ] D 1,1 = A+i1  1 (97)

M22 L'22 U 22 + L'21 U12 = r D ' -1,] DiIB B 1 ,1 D-1, AD1J
02 2D 2,1  [A+1 D1' Bj-.2 A+'1 D-'1 AZ1]

Examining the last entry shown here, it can be seen that the AF error appears in a matrix-

block in the form of point-blocks. The off-diagonal entries in this error matrix-block can not

be removed if no fill-in is desired, but the errors appearing on the diagonal can be removed by
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adding those terms to the point-block Di3 . As long as the diagonal matrix-blocks are main-

tained as diagonal block matrices themselves, there is no fill-in. Thus the point-block Did is de-

fined
D I +At - --- +B~ -W- +Aý+ rjD-I jA- + Bt -I B7 (8

DBi_ 1 D2!1 Bij (98)

or

Di~j = I + At ii1+ +t + ( A:+jD-A- I)A-- + (B+ D-! - I)Bij (99)
NJ N J i I. i -i Ii 1 1 W 1i

for optimal solution coupling with no fill-in. The extension of this to three dimensions is

straight forward, yielding
Dij~k = I + A.+ + B+ + C.+ + (Aitid,,Dil -- I)AA" (100)

B+ ( r•jtk-11. - I ) Bi~k + ( C+-D',- I ) Ciý,k+ j-j-ii-1, ijik- ij*k-

To test the new factoring scheme, a simple two-dimensional geometry was selected. The
geometry is that of a NACA 64A012 airfoil at two degrees angle-of-attack in a Mach 0.87 flow.

An H--grid using two blocks (each 71 x 31 ), one upper and one lower was used to discretize the

domain. Both the upper and lower surfaces of the airfoil are modeled with thirty cells.

The results of the tests are given in Figures 13 and 14. These figures show a comparison of

the convergence histories for the standard two-factor (STDAF), the modified two-factor (MAF),

and the optimized two-factor (OAF). It can be seen from the limited tests that were run (using

local time-stepping) that the sensitivity to larger CFL numbers exhibited by the STDAF scheme

is not apparent with either MAF or OAF. Although this is the case, for this test configuration,

both MAF and OAF seem to exhibit a less rapid convergence rate than the STDAF for a given

CFL number. It is important to note that, although not shown, both MAF and OAF maintained

stable convergence for CFL's in the hundreds while the STDAF went divergent early-on for a

CFL of one hundred. Little difference in convergence rate is seen between the MAF and the

OAF for this particular configuration. So little difference in fact that the extra computations

necessary in the OAF method are not warranted. This may not be the case for some other geom-

etries though. More convergence analyses need to be performed on various geometries and flow

conditions.
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3. DIAGONAL PLANE PROCESSING SOFTWARE ANALYSIS

During the course of the software (and algorithm) development for the flow model pres-

ented here significant emphasis has been placed on the impact of solution vectorization. So

much in fact that special matrix orderings were selected to "create" computational vectors for
simultaneous solution. This has proven to be a viable technique although there is one known

shortcoming, data latency. Cray vector processors store data in a sequence of memory banks.
Each machine is different in the number of memory banks it contains, usually some multiple of

eight, i.e. 8, 16, 32, etc. The memory also has a specific reserved access time, referred to as the
bankbusy cycle time which is measured in clock cycles. If a memory bank is accessed twice

within the bankbusy cycle time the cpu must wait for the data requested. This situation is re-

ferred to as a memory bank conflict and can significantly disturb the processing rate of an other-

wise standard vector loop, see Reference 30. Conditions that create memory bank conflicts
which should be avoided for standard (regular stride) loops are well documented in the Cray

manuals. The difficulty here is the loops associated with diagonal plane processing use indirect

addressing which results in an uneven stride and hence the potential for unpredictable memory

bank conflicts.

To examine this, a test case was devised which could have the computational domain resized

automatically (max i, j, k indices varied) such that all typical grid block dimensions could be

tested for memory bank conflicts on a particular machine. A grids block dimensions determine

the nature of the array storage in the memory banks and hence by parametrically timing the pro-
cessing rate (of the matrix inversion using diagonal plane processing) of different dimension

blocks, certain trends can be observed to steer a user away from a particular grid size. To date

this has been quite a successful undertaking. A parametric analysis of grid sizes ranging from

10 < imax < 66,4 < jm= < 32, and 4 < knx < 24 has been accomplished on a Cray X-MP with
32 memory banks and a bankbusy value of 8 clock cycles. What was observed from this study
was that grid dimensions involving an imx of (multiples of 8) + I created significantly more

memory bank conflicts than the other grids regardless of the jmx and k., values, see Figures

15. Grids with i. of 17, and 49 showing moderate increases in processing time, and 33, and

65 showing approximately a three- to four-fold increase in processing time. The complexity of

the operations involved in the loops and the manner in which the Cray manipulates data prohib-

its (at the present time) a detailed explanation as to the source(s) of conflicts for these grids. An

interesting potential corrective measure was devised though.
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The manner in which data in the loops is accessed is determined largely by the mapping of

the elements lying on the diagonal planes, i.e. the matrix-block structures. Coplanar solution
nodes are computationally independent and hence the order in which they are grouped for pro-
cessing is of no consequence to their simultaneous processing. The sequence of data acquisition
on the other hand is greatly effected by this ordering. The simple mapping process described in
Part I of this section was used in this study, i.e. KJI looping for a sampling routine. The inter-
esting partial fix for grids with an imax dimension creating memory bank conflicts is to simply
change the order in which the nodes are sampled to determine which plane they belong.
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looping 4,3,1
3,3,2
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3.4,1
2.4a2
1,4,3

Figure 16. Alternate Diagonal Plane Mappings of Points Lying on Plane Six

Figure 16 shows three different mappings of the fourteen points which lie on plane number six

of the sample domain of Part 1 of this section. The starting location for each different mapping

is the large point. Each point mapping (otaer) is listed to the side of the diagram. To establish

the point order simply follow the arows. Present indications reveal that moving the i loop as the

outermost loop of the sampling (mapping) process the memory bank conflict phenomena could
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be altered. For example, the grid with imax of 33 which previously posed a significant memory

bank problem could be fixed simply by shifting to IKJ looping in the mapping process. Figure

17 shows the processing time of a small window around the imax of 33 grid size. It is obvious

that imax of 33 no longer experiences memory bank conflicts to the extent seen for K.I looping.

Although now grids with jmax indices of 17 are hindered with conflicts as well as imax of 32.

Additional data must be collected to determine reliable corrective measures for averting memory

bank conflicts.
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SECTION VI

RESULTS AND DISCUSSION

1. HYPERSONIC BLUNT NOSE CYLINDER

Verification of the accuracy of any proposed numerical method of calculating the heat-

transfer rate to the surface of a hypersonic re-entry vehicle invariably depends upon its subse-

quent agreement with experimental data. Therefore, in order to test and demonstrate the accura-

cy and efficiency of the present unsteady TLNS flow solver, the flow over two basic

axisymmetric blunt-body configurations was investigated. The first configuration was a

15*-semiapex spherical, blunt cone with a bluntness ratio (ratio of nose radius to base radius) of

0.183. Model base diameter was one foot. The second configuration used in this investigation

was a spherically capped, 90 half-angle cone. A C-type grid system is used to discretize the

computation domain about these configurations. The second-order flux-difference split scheme

with Van Leer limiter was used for the present work. A laminar numerical solution flow condi-

tion of Mach 10.6, wall to stagnation temperature ratio (TwflT) of 0.30, and free-stream unit Re-

ynolds number of 1.2 x 106 per foot for the first configuration was obtained. Figure 18 gives a

comparison of measum'd data [Reference 31] and computed axial distribution of laminar heat-

transfer for the first confil'.ation. As seen in this figure, the computed rates of heat-transfer

show excellent agreement with the experimental data. Unfortunately, there are no surface pres-

sure and turbulent heat-transfer experimental data available for comparison for this model.

Therefore, the second configuration was used for a better understanding of the salient features of

the turbulent flowfield structure and determination of turbulent heat-transfer on axisymmetric

blunt nosed bodies in hypersonic flow. The numerical solutions were generated at 5.0 and 10.6

free stream Mach number for the above mentioned second configuration. The wall to stagnation

temperature ratio (Tw/'o) used was 0.23 and 0.3 respectively. Comparison of measured data

[Reference 32] and computed axial distribution of surface pressure and turbulent heat-transfer

on the hemispherical 90 half-angle cone at a free stream Mach number of 5.0 and Reynolds

number based on nose's diameter of 43.92 x 106 are given in Figures 19 and 20 respectively.

Although the computed pressure results yield good agreement with the experimental data, the

poor agreement between computed and measured turbulent heat-transfer results are noticeable.

However, overall trends are clearly captured qualitatively. The flowfield about this geometry

was also computed at free-stream Mach number of 10.6 and Reynolds number of 12.0 x 106 per

foot. Figures 21 and 22 illustrate the computed surface pressure and turbulent heat-transfer

comparison with experimental data for this configuration. Clearly shown in these figures is that
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the computed surface pressure and turbulent heat-transfer are quantitatively and qualitatively in
good agreement with the available experimental data.
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2. BODY-STORE

The applicability and performance of the present flow solver was also tested for the flow

over a generic two-dimensional planar body-store configuration at zero degree angle of inci-
dence and free stream Mach number of 2.5 and Reynolds number based on body thickness width

of 5.80 x 106, the viscous clustering yielded an average y+ value of 4 for the first grid point off
the body surface. Both body and store consist of an ogival forebody, a flat midsection and an

ogival afterbody. Figure 23 displays this geometry. A H-type grid system is used to discretize

the domain around the body-store configuration. The computational region for this configura-
tion is divided into three blocks. Each block has a total of 5994 (81 x 37 x 2) points, for a sum

total of 17982 points for the entire field grid. Steady state multiblock solutions are demonstrated

by the flow about the body-store configuration with the store in captive position. Unsteady dy-

namic multiblock solutions are demonstrated by computing the flow of the complete multibody

configuration as the store moves away from the parent body configuration through a prescribed
vertical launch trajectory. The steady state calculation was started with initial conditions of free

stream values everywhere, and then 2000 iterations of local time stepping with the CFL number

equal to 3.5 was used to establish the steady state flow field before unsteady motion was started.

The unsteady calculation starts after 2000 iterations of the steady state calculation. The plunge

velocity of the store moving away from body was then suddenly set to a predetermined velocity

and held constant thereafter, moreover, the local time step was replaced by a fixed time step, the

same at all points, when the unsteady calculation began. The unsteady numerical solutions were

continued until the store moved to a point four body widths away from the body. The overall

pressure distribution of the body-store configuration as the store moves away from the body is

depicted in Figure 24. Figure 24-a demonstrates the steady state computation with the store in

captive position at the instant of vertical launch, which becomes the initial condition for the un-

steady simulation. Moreover, Figure 24-a shows that the flow accelerates toward the shock

wave on the lower flat portion of the body and then decelerates after crossing the shock; this in-

teraction is strong enough to cause flow separation. Figures 24-b, c, d, e demonstrate the un-

steady computation when the store is moving through the points of 0.5, 1.0, 1.5, and 2.0 body

widths away from the body. In Figure 24 the viscous turbulent results are also compared with

inviscid solutions at the same sequence of the store's position relative to the body. The evidence

of viscous effect is mostly seen in the region between the store and body, particularly when the

store is near the body. Note that the greatest difference in inviscid and viscous results is the pre-

diction of the shock strength and position near the nose of the store. Shock strength is larger and

shock position is farther downstream when the Euler model is used. Unfortunately, there are no

experimental data available for comparison with the numerical results.
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Figure 23. Perspective View of the Body-Store Configuration

TLNS EULER

(a) _ _ _ _ _ _ _

Captive

/ (b)

0.5Wit

Figure 24. Computed Overall Pressure Distribution Contours with Store Located
in Captive Position arnd Moving through 0.5, 1.0, 1.5, and 2.0 Body
Widths Below the Body
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Figure 24. Continued
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SECTION VII

CONCLUDING REMARKS

Numerical methods for formulating and solving the unsteady three-dimensional compress-

ible Euler and Navier-Stokes equations have been presented. In addition, an analysis of the mo-

dified two-pass numerical solution method has been performed and presented in terms of soft-

ware optimization. The guidelines for the flow conditions of interest in this research was a

freestream Mach number of 10 and below at an altitude of 100,000 feet and below. For such a

flow regime the influence of chemistry can be important. As such there is also an additional in-

vestigation into the numerical formulation and solution of the equations including equilibrium
chemistry. This effort is reported in a separate report as another phase of this same research ef-

fort.
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