
NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A257 342 DTIC

v C

THESIS

ON INCREASING THE EFFECTIVE BLOCKING FACTOR OF
A MATRIX FOR A GIVEN CACHE ORGANIZATION

by

Atilla N. Demirhan

September 1992

Thesis Advisor: Amr Zaky

Approved for public release; distribution is unlimited

92-29908

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Ia. REPORT SECURITY CLASSIFICATION l b. RESTRICTIVE MARKINGS
UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABIUTY OF REPORT
2b. ___________________________________ SELApproved for public release; distribution is unlimited
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Naval Postgraduate School CS
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Including Security Classification)
On Increasing the Effective Blocking Factor of a Matrix for a Given Cache Organization

12 PERSONAL AUTHOR(S)
Atilla N. DEMIRHAN
13 TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. Page Count
Master's thesis FROM TO 11992, SEPTEMBER 172
16. SUPPLEMENTAL NOTATION
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse If necessary and Identity by block number)

FIELD GROUP SUB-GROUP Self-interference Misses, Blocking, Tiling, Cache, Array Size, Performance

19. ABSTRACT (Continue on reverse If necessary and Identify by block number)

Blocking (Tiling) techniques of iteration spaces to increase data reuse In the cache were review, uJIts consistent
with those previously published were experimentally obtained. The relation between the sizE: ie declared matrix
and the cache was studied. Based on this relation, two algorithms were presented. Botn algorithms attempt to
Increase the critical blocking factor with no self-Interference (Bc) by changing the declared matrix slfe. Further-
more, the execution time of the second algorithm Is Independent of the matrix size. Experiments based on these
algorithms were performed which showed a consistent superior performance (in terms of Mflops) relative to the
performance obtained using previously published algorithms for deriving BC,

20 DISTRIBUTION/AVAILABILTIY OF ABSTRACT la. REPORT SECURITY CLASSIFICATION
jJ UNCLASSIFIED/UNLIMITED [] SAME AS RPT. [] DTIC Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
Amr Zaky (408)646-2174 CS/37

DO Form 1473, JUN 86 Previous edition* are obselete. SECURITY CLASSIFICATION OF THIS PAGE
S/N 0102-LF-014-6603 Unclassified

Approved for public release; distribution is unlimited.

ON INCREASING THE EFFECTIVE BLOCKING FACTOR OF A MATRIX
FOR A GIVEN CACHE ORGANIZATION

by

Atilla Demirhan
Lieutenant Junior Grade, Turkish Navy

B.S., Turkish Naval Academy, 1986

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1992

Author:___
>Atilla'lDemirhan

Approved By: ., ,.,
Amr Zaky, Thesis Acvisor

//1a-•TakSh , Second Reader

\ Robept51;,MC4nee, Chairman,
SWpartme-n-"f Computer Science

ii

ABSTRACT

Blocking (Tiling) techniques of iteratiun spaces to

increase data reuse in the cache were reviewed. Results

consistent with those previously published were experimentally

obtained. The relation between the sizes of the declared

matrix and the cache was studied. Based on this relation, two

algorithms were presented. Both algorithms attempt to

increase the critical blocking factor with no self-

interference (Be) by changing the declared matrix :ize.

Furthermore, the execution time of the second algorithm is

independent of the matrix size. Experiments based on these

algorithms were performed which showed a consistent superior

performance (in terms of Mflops) relative to the performance

obtained using previously published algorithms for deriving

Bc.

Jt4.r~et I m•

Avillbt lySci

Dist £pecial

TABLE OF CONTENTS

I. INTRODUCTION 1

A. PERFORMANCE IMPROVEMENT IN A COMPUTER 1

1. Memory Bottleneck 1

2. Cache Memory 2

B. IMPROVING DATA LOCALITY 4

1. Types of Misses in Cache 4

2. Transformation (Restructuring) 5

3. Performance Experiments with Blocked
Codes 6

4. Previous Work on Blocking11

C. ORGANIZATION OF THE THESIS 12

II. EXPERIMENTING WITH BLOCKING 14

A. BLOCKING TECHNIQUES 14

1. Program Restructuring 14

a. Data Dependence 14

b. Dependence Graph 16

c. Iteration Space 17

d. Loop Interchanging 19

e. Strip Mining 21

2. Blocking (Iteration Space Tiling) 22

a. Blocking Algorithms 22

b. Blocking (Tiling)22

iv

B. PERFORMANCE EXPERIMENTS WITH BLOCKED MATRIX

MULTIPLICATION CODE 25

1. Experimental Setup 25

2. Overview of The Targeted Machine
Architectures 27

3. Blocking Experiments 28

a. Cac:.e Performance Experiments with
Blocked Codes on Solbourne S4000 SPARC
station 30

b. Cache Performance Experiments.with
Blocked Codes on DECstation 3100 . . . 33

c. Comparison of the Two Machines with
respect to Speedup measure 33

d. Cache Performance Experiments with
Blocked Unfolded Codes on Solbourne
S4000 SPARC station 36

III. ALGORITHMS TO IMPROVE DATA CACHE PERFORMANCE . . 40

A. SELF INTERFERENCE IN CACHE 40

B. THE CRITICAL BLOCKING FACTOR 40

1. Sensitivity of Be with respect to Matrix
Size 41

2. Effect of Declared Matrix Size on Bc . . . 43

C. CHANGING ARRAY SIZE VIA A SEARCH TEJU!1IQUE AND
DETERMINING THE CRITICAL BLOCKING FACTOR . . . 47

D. A NEW ALGORITHM TO FIND THE CRITICAL BLOCKING
FACTOR WITH NO SELF-INTERFERENCE 49

IV. CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER

RESEARCH 58

LIST OF REFERENCES 60

INITIAL DISTRIBUTION LIST 62

v

LIST OF FIGURES

Figure 1 Memory Hierarchy 3

Figure 2 Main loops of Matrix Multiplication 7

Figure 3 Data Cache and Main Memory 9

Figure 4 Subblocks in a Matrix Multiplication Code
when Matrix Size is 2 10

Figure 5 Main Loops of Blocked Matrix Multiplication 11

Figure 6 Dependence Graph for the code Example 2 . 17

Figure 7 Two-nested serial loops 18

Figure 8 Iteration space for the code in Figure 7 . 18

Figure 9 Triangular Loop 19

Figure 10 Two-Nested Loops20

Figure 11 Two-Nested Loops After the Interchange . . . 20

Figure 12 Blocking. B is the strip size 23

Figure 13 Further Optimized version of the code in
Figure 12 24

Figure 14 Iteration Space for the code in Figure 13 24

Figure 15 The code to compute the performance of the

cache 27

Figure 16 Main Loops of Unblocked Matrix Multiplication 28

Figure 17 Main Loops of Blocked Matrix Multiplication 29

Figure 18 The for statement with min function in it 29

Figure 19 The for statement without min function in it 30

vi

Figure 20 The Performance of Blocked Matrix Multipli-
cation on Solbourne S4000 SPARC. Compiler
optimization parameters are not enabled
during compilation process. The abbreviation
N.BL. means no BLocking 31

Figure 21 The Performance of Blocked Matrix Multipli-
cation on Solbourne S4000 SPARC station.
Compiler optimization switch -02 is enablee. 32

Figure 22 The Performance of Compiler Optimized
Blocked Matrix Multiplication on DECstation
3100. Compiler optimization switch -02 is
used for compilation process 34

Figure 23 Comparison of DECstation 3100 and Solbourne
S4000 SPARC station with respect to speedup vs
blocking factors for matrix sizes of 293, 295,
300 35

Figure 24 Performance for a blocked and 8 times
unfolded matrix multiplication code,
Solbourne S4000 SPARC station 38

Figure 25 Performance for a blocked matrix multipli-
cation code unfolded 16 and 8 times,
Solbourne S4000 SPARC station 39

Figure 26 Lam's Algorithm to compute the Critical
Blocking Factor Bc 4i

Figure 27 B, versus Matrix Size. Solbourne S4000
SPARC Station 42

Figure 28 Data Cache Performance versus Matrix Size.
B, is obtained by using Lam's Algorithm for
Matrix Size. Solbourne S4000 SPARC Station 43

Figure 29 Extended Matrix Size versus Perforrance
for Actual Matrix Size. Actual Matrix Sizes
are 293, 295, and 300. Solbourne S4000
SPARC Station 45

Figure 30 Equation to compute total number of misses
in cache 46

Figure 31 A search technique coupied WiLh Lam's
Algorithm to find Bc48

Figure 32 A New Algorithm to find Bc 51

vii

Figure 33 Performance levels with optimal block
size of 16 and with a block size of sqrt(C)
for data cache of Solbourne S4000 SPARC
station 53

Figure 34 The Actual Matrix Size versus the Extended
Matrix Size obtained with Direct Algorithm.
Solbourne S4000 SPARC station 54

Figure 35 Performance levels with optimal block
sizes and with a block size of sqrt(C/2)
for the data cache on DECstation 3100 56

Figure 36 The Actual Matrix Size versus the Extended
Matrix Size obtained with Direct Algorithm.
DECstation 310057

viii

1. INTRODUCTION

A. PIEFORMANCE IMPROVEMEM IN A COMPUTER

1. The Memory Bottleneck

An essential component of every computer is its

memory. Without memory there could be no computers as we now

know them. There is an important axiom of hardware design:

smaller is faster [Ref. 181. Smaller pieces of hardware will

generally be faster than larger pieces. In high-speed

machines, signal propagation is a major cause of delay, and

larger memories have more signal delay and require more levels

to decode addresses. A basic attribute used to measure the

effectiveness of a memory configuration is the memory band-

width. This is the number of words that can be accessed per

second or the rate of information transfer. Incrasing the

computational power without a corresponding increase in the

memory bandwidth of data to and from memory can create a

serious bottleneck [Ref. 18]. In other words, increasing

memory bandwidth and decreasing the latency(execui. on time) of

memory access are both crucial to system performance. Since

these two measures are so much important, we should improve

them to obtain a better performance.

1

2. Cache Memory

The analysis of a large number of computer programs

has shown that during program execution, memory references

tend to occur in very localized patterns. Consider, for

example, a block of contiguous memory locations. If this

block consists of straight line code, then execution will

proceed sequentially through the block. If the block repre-

sents a data array, then it is likely that the block will

often be used, not necessarily in a sequential order, but at

least as a whole. This characteristic of programs is referred

to as the locality of reference principle. When a program is

stored in main memory, the access time for fetching a memory

word is a function of the capacity(size) of the memory and not

a function of the size of a local block in the memory [Ref.

19]. Hence, to get the benefit from the locality of reference

principle, high-speed buffer(s) can be inserted between the

processor(s) and main memory to capture those active portions

(blocks) of the contents of main memory currently in use.

Then, rather than fetching the word at the next location from

the main memory, it could be fetched much more quickly from

this special high-speed buffer called cache memory and

implemented in most computers as shown in Figure 1. The major

reasons for having a memory hierarchy are to get a better

performance and to reduce execution time, not misses [Ref.

18]. If cache misses can be reduced by some means, then the

overall performance of processors will improve.

2

hiciumirig Ii I ricr q In
CAPACITY SPEED

Figure 1

Memory Hierarchy

To fully realize the potential of the processors, the

faster levels of the memory hierarchy such as cache memory

must be efficiently utilized. But, a distinct characteristic

of numerical applications is that they tend to operate oi,

large data sets where as a cache may only be able to hold

3

small fraction of a matrix. Thus even if the data are reused,

they may have been displaced from the cache by the time they

are reused, causing a high miss ratio in the cache. For this

reason, blocking techniques are utilized for the goal of

reducing memory traffic and exploiting this data reuse.

Blocking techniques restructure the code to move references to

the same memory location closer together, hence improving

cache performance. Blocking can be applied at different

levels of the memory hierarchy, including physical memory,

caches, and registers [Ref. 9]. In the experiments, blocking

has been applied both at data cache and register levels.

B. IMPROVING DATA LOCALITY

1. Types of Misses in Cache

Cache misses occur in one of three forms:

"* Compulsory misses: The first access to a block is not in
the cache, so the block must be brought into the cache.
These are called cold start misses or reference misses.

"* Capacity misses: If the cache cannot contain all the
blocks needed during a program execution of a program,
capacity misses will occur due to blocks being discarded
and later retrieved.

"* Conflict misses: If the block-placement strategy is set
associative or direct mapped, conflict misses (in addition
to compulsory and capacity misses) will occur because a
block can be discarded and later retrieved if too many
blocks map to its set. These are also called collision
misses [Ref. 19].

Conceptually, conflict misses could be the easiest to

avoid: Fully associative placement avoids all conflict misses

by mapping an address in the main memory to any cache block.

But, this associativity is expensive in hardware and may also

4

slow down the access time, leading to a lower overall perfor-

mance [Ref. 19]. Therefore, fully associative caches are not

built. Capacity misses can be reduced by using a large cache.

Larger cache lines reduce the number of compulsory misses, but

this may lead to an increase in conflict misses.

2. Transformation (Restructuring)

If a program can be transformed into a version that

makes better use of the cache, then the number of requests to

memory can be reduced, thus improving tne execution time.

Program transformations that move consecutive uses of a memory

location closer together can increase the number of times a

value is used before it is replaced. A cache miss removed by

code transformation will require less traffic since the number

of times a value is loaded into the cache is decreased [Ref.

7].

The basic theory of this transformation (restructur-

ing) process is based on data dependence analysis. Data

dependence information is needed to test whether restructuring

transformations are legal (the program produces the same

answer after restructuring as it did before) [Ref. 13]. Data

dependence analysis will be explained in detail in Chapter II.

Briefly, it is a tool which is applied to partition a serial

program into blocks of code that contain well-defined depen-

dences. The purpose of dependence ai,±Iysis is to prove the

presence or absence of data dependence between the DoocKs

[Ref. 16]. These blocks may be converted into independent

5

tasks, scheduled onto one or more parallel processors, and run

as a parallel program. The problem gets complex and difficult

when the blocks are control structures such as loops,

branches, and procedures.

Loops are difficult to analyze, and yet they are the

best candidate for optimizations obtained by transformation

techniques such as vectorization, fusion, coalescing, distri-

bution, interchange, node splitting, shrinking, unfolding,

skewing, and blocking transformation techniques [Ref. 16].

3. Performance Experiments with Blocked Codes

In this thesis, we experiment with techniques to

improve data cache performance with blocked codes. We apply

these techniques on two machines: DECstation 3100 and

Solbourne S4000 SPARC station. Together with blocking, we

investigate the effect of further optimizations such as

unfolding (unrolling) on the data cache performance.

Blocking techniques are used to increase the life time

of the piece of data in the cache. Therefore, this allows

reused data to still be in the cache and reduces the memory

accesses. Blocking techniques improve cache performance by

restructuring the code to move references to the same memory

location closer together, hence eliminating cache misses. To

illustrate the benefits of blocking, we handle matrix multi-

plication code, showing how it is blocked and how the reuse of

data in that piece of code can be exploited. A basic matrix

6

multiplication computes an inner product of a row and a column

of matrices B and C for each element of the result matrix A.

for (I = 1; I<N; ++I) {

for (J = 1; J<N; ++J) {

for (K = 1; K<N; ++K) {

C(I,J) += A(I,K) *B(K,J);

Figure 2

Main loops of Matrix Multiplication

We assume that we have a direct-mapped data cache and the

arrays are stored rowwise in cache lines. If we substitute

some loop bounds for the code above, then we can show the

potential in it for the reuse easily. In Example 1 below,

matrix multiplication code is utilized and N has the value 2.

7

Example 1:

C(1, 1) += A(1, 1) * (1, 1) [I = 1, J = 1 - 2, K = i]

C(1, 2) += A(1, 1) * B(1, 2)

C(I, 1) += A(1, 2) * B(2, 1) [1 = 1, J = 1 - 2, K = 2]

C(1, 2) += A(1, 2) * B(2, 2)

C(2, 1) += A(2, 1) * (1, 1) [I = 2, J = .1 - 2, K = 1)

C(2, 2) += A(2, 1) * B(1, 2)

C(2, 1) += A(2, 2) *B(2, 1) [1 = 2, J = 1 -2, K = 2]

C(2, 2) += A(2, 2) * B(2, 2)

As seen above, there are array variables which are repeatedly

referenced and retrieved from the memory. For example, both

A(l, 1) is referenced when K = 1 for different iterations of

J loop. A(2, 2) present the same behavior when K = 2. All

these repeating references cause unwanted cache traffic (if

the cache is not large enough to hold the whole A array).

Here we assume that we have a data cache size of 22 = 4 words

and the reused array elements in the first four lines of

Example 1 are placed in this cache as shown in Figure 3.

8

data cache

main memory

Figure 3

Data Cache and Main Memory

To provide this type of placement in the cF: we can use

subblocks of the arrays as follows:

C - A"', * B1,1 + A" 2 B* ,

c"1,2 = A"', * B" 2 + A" 2 B B2'2

C2 " A2"1 * B"' + A 2'2 B 2,'

c2,2 = A"', * B1"2 + A" 2, B"',

The following figure shows these 6u~b-bocks explicitly.

9

CI,1 C1,2 A1,1 A1,2 B1,1 B1,2
-- X

C2,1 C2,2 A2,1 A2,2 B2,1 B2,2

Figure 4

Subblocks in a matrix multiplication code when
matrix size is 2

This subblocking exhibits the advantage that the

blocks can be sized to fit into the fastest level of the

memory hierarchy such as cache memory, and by this way the

data in each submatrix is used many times during each matrix

multiplication. These benefits of subblocking can be enhanced

via program transformations which form the basis of blocking

techniques. The main loops of matrix multiplication code in

Figure 2 are blocked and shown in Figure 5.

10

for (KK=O; KK<N; KK=KK+B) {

for (JJ=O; JJ<N; JJ=JJ+B) f

for (I=0; I<N; ++I) {

for (K=KK; K<min(N,KK+B); ++K)

C[I] [J] = 0;

temp = A[I] [K];

M = min(N,JJ+B);

for (J=JJ; J<M; ++J) {

C[I][J] = C[I][J] + temp*B[K][J];

})

})

Figure 5

Main Loops of Blocked Matrix Multiplication

4. Previous Work on Blocking

It has long been known that program restructuring can

dramatically reduce the load on a memory hierarchy subsystem

([1], [2], [3]). Previous research on blocking focused on how

to block an algorithm manually and automatically ([5], [6],

[7], [8]). Irigoin and Triolet [Ref. 4] describe a procedure

to partition the iteration space of a tightly-loop into

supernodes, where each supernode covers a sut Of iterations

that will be scheduled as an atomic task on a processor. That

procedure works from a new data dependence abstraction, called

11

the dependence cone. The dependence cone is used to find

legal partitions and to find dependence constraints between

supernodes.

Lam, Rothberg, and Wolf [Ref. 9] show that the degree

of cache interference is highly sensitive to the stride of

data accesses and the size of the blocks, and can cause wide

variations in machine performance for different matrix sizes.

They presented cache performance data (obtained via

simulation) for blocked programs and evaluate several

optimizations such as using a fixed blocking factor and

copying non-contiguous data to be reused into a contig-uous

area. They found that trying to use the entire cache, or even

a fixed fraction of the cache is not so useful and propose an

algorithm to tailor the block size according to matrix size to

improve the average miss rate.

Hong and Kung [Ref. 10) claim that the optimal

blocking factor is roughly SQRT(C) for matrix multiplication

on a machine with a local memory of C words.

In an algorithm implemented in Stanford University

Intermediate Format Compiler [Ref. 8], the locality of a loop

nest by transforming the code via interchange, reversal,

skewing, and blocking is improved.

C. ORGANIZATION OF THE THESIS

In Chapter II, we focus on existing blocking techniques,

by explaining their advantages and related terminology. We

also present data obtained from the experiments with blocked

12

codes to observe the effectiveness of these blocking tech-

niques. In Chapter III, we propose an enhanced blocking

technique which improves the performance of workstations in

some scientific applications. Conciusions and recommenda-

tions for further research are offered in Chapter IV.

13

II. EXPERIMENTING WITH BLOCKING

A. BLOCKNG TECHNIQUES

1. Program Restructuring

Blocking techniques improve cache performance by

restructuring the code, hence eliminating cache misses.

Advanced compilers or supercompilers are capable of many

program restructuring transformations such as vectorization,

strip mining and loop interchanging [Ref. 13]. These

transformations transform a program into a version that makes

better use of the cache, thus the number of requests to memory

is reduced and the execution time is improved. But super-

compilers cannot transform every program efficiently; the

quality of the results will depend on the structure of the

algorithm and the architecture of the target machine. Data

dependences [Ref. 211 imply precedence constraints among

computations which have to be satisfied for a correct

execution. So, when determining the loops for restructuring,

the existence of these dependences must be considered. In the

next sections, concepts such as data dependence, data

dependence graph and iteration space will be described.

a. Data Dependence

Two types of dependence occur in computer

programs. Control Dependence is a consequence of the flow of

control in a program. Execution of a statement in oie path

14

under an if test is dependent cn the if test taking the path.

Thus, the statement under control of the if is control

dependent upon the if test. Data Dependence is a consequence

of the flow of data in a prograrm. The value of an expression

is dependent upon the values of the variables used in the

expression. Therefore, a statement which uses a variable in

an expression is data dependent upon the statement which

computes the value of the variable.

In programming languages, such as C, Fortran, and

Pascal, three kinds of data dependence may occur: flow-

dependence(or true dependence), anti-dependence, and output-

dependence. The first dependence relation occurs when a value

computed(stored) in a statement S, is used(fetched) in some

statement S,; we say that Sw, is data flow-dependent on S, and

write this as S, & Sw,. This type of data dependence relation

shows how the data flows between the statements of the

program. The second kind of data dependence occurs when an

item is used in statement S, before that item is reassigned in

some statement S,; we say that SW is data anti-dependent on S,

before that item is reassigned in some statement S. a•ne write

this as S, &- S,. The last kind of data dependence occurs

when an item is assigned in statement S, before that item is

reassigned in some statement S,; we say that S, is data output-

dependent on C and write this as S, &' S, [Ref. 21]. We

illustrate these dependencies in Example 2.

15

Example 2.

Si :A=B+D

S2 : C = A *3

S3 :A=A+C

S4 : = A / 2

The dependence relations for this code are:

S2,S3,S4 are data flow-dependent on Sl,S2,S3 respectively;

S3 is also data flow-dependent on SI;

S3 is data anti-dependent on S2;

S3 is data output-dependent on S1.

b. Dependence Graph

A dependence relation is a precedence relation

which requires execution of one statement before another. A

parallelizing (or optimizing) compiler can build a dependence

graph by using these dependences. In a dependence graph,

nodes represent statements in the program and directed arcs

represent dependence relations [Ref. 21]. The real advantage

of dependence graphs is their ignoring the arbitrary ordering

of statements and concentrating on the dependence precedence.

The dependence graph for Example 2 is depicted in Figure 6:

16

Figure 6

Dependence Graph for the code Example 2

c. Iteration Space

A loop, when there is considerable potentizi _r

code optimization, can be said to describe an iteration space.

A single for loop describes a one-dimensional iteration space,

one axis of a Cartesian coordinate system. Each iteration of

the for loop corresponds to a point along this axis. The for

loop will visit the points along this axis in a specific

order, as defined by the for statement. If we have two nested

for loops, then they describe a two-dimensional itetaýi.r

space.

17

for (1, = 1; I,<5; ++I,) {

for (I2 = 1; I2<4; ++12) {

S1 : A(11 , 12) = B(I, ,2) + C(1 1, 12)

S2 : B(1,, 12÷1) = A(1,, 12) + B(1 1 , 12)

Figure 7

Two-nested serial loops

The loops above define a two-dimensional 5X4 iteration space

illustrated in Figure 8.

I'

1 2 3 4

1 x x x x

2 x x x x

I2 3 x x x x

4 x x x x

5 x x x x

Figure 8

Iteration space for the code in Figure 7

The shape of the iteration space does not need to

be rectangular. The iteration space for the loops below is

triangular, so it is called as a triangular loop. Other

iteration space shapes can be defined by nested loop.

18

-7

for (1 = 1; i<5; ++i) {

for (j = i; j<1O; ++j) {

A(i,j) = B(i,j) + C(i,j) * D(i,j)

Figure 9

Triangular Loop

In this research, a loop transformation technique

blocking (iteration space tiling) is implemented •n two

different machines. The code used in the experiments is

optimized by utilizing blocking optimizations to get better

speedups. We also utilized another optimization technique

called loop unfolding on the blocked code but it did not help

the performance of the data cache. Blocking utilizes two

other transformation techniques, loop interchanging and strip

mining.

d. Loop Interchanging

One of the most important restructuring transfor-

mations is loop interchanging. The simplest example of loop

interchanging is interchanging two-nested loop, such as the

loop below:

19

for (I = 1; I<N; ++I) (

for (J = 1; J<N; ++J) {

A(I,J+I) = A(I,J) * B(I,K) + C(K,J)

)

Figure 10

Two-Nested Loops

The nested loop above is a first order linear recurrence; most

vector computers have no corresponding instruction, so the

loop would be execited serially, or with some fast recurrence

algorithm. By interchanging the loops:

for (J = 1; J<N; ++J) (

for (I = 1; I<N; ++I) {

A(I,J+I) = A(I,J) * B(I,K) + C(K,J)

)

)

Figure 1.1

Two-Nested Loops After the Interchange

The inner loop is vectorizable. Not all loop interchanges are

legal. For instance, the loops below can not be interchanged:

for (I = 2; I<N; ++I) {

for (J = 1; J<N-1; ++J) (

A(I,J) = A(I-1,J+1) + B(I,K)

2

20

The original loop uses newly computed values of the array A on

the right hand side; if the loops are interchanged, the

transformed loop will use only old values of A on the right

hand side. The transformed loop will compute diffcrent

results and the transformation is therefore illegal.

e. Strip Mining

Vectorizing compilers often divide a single loop

into a pair of loops, where the maximum trip count of the

inner loop is equal to the maximum vector length c-' the

machine. The loop in Example 3.a. can be converted into a

pair of the loops in Example 3.b by a vectorizing compiler.

This process is called strip mining. The original loop is

divided into strips of some maximum size, the strip size, in

Example 3.b., the inner loop (or element loop) V a strip

size of B, which is the length of the vector register in the

compiler. The outer loop (IS loop, for strip loop) steps

between the strips;

Example 3.a.

for (I = 1; I<N; ++I)

S: A(I) = ACI) + B(I)

S2 C(I) = A(I-I) * 2

21

Example 3.b.

for (IS = 1; I<N; IS = IS + B) (

for (I = IS; I<min(N, IS + B); ++I) (

S, A(I) = A() + B(I)

S2 C(I) = A(I-l) * 2

)

2. Blocking (Iteration Space Tiling)

a. Blocking Algorithms

Blocking algorithms have been developed for the

goal of reducing memory traffic. Its advantage is that the

blocks can be sized to fit into the fastest level of the

memory hierarchy, and that during each computation, the data

in each block is used many times. Blocking tries to duplicate

the benefits of block algorithms via program transformations.

b. Blocking (Tiling)

We define Blocking as dividing the iteration space

into blocks (tiles) of some size and shape (typically squares

or cubes), and traversing between the blocks to cover the

whole iteration space. Optimal blocking for a memory

hierarchy will find blocks such that all the data for each

block will fit into the highest level of the memory hierarchy

[Ref. 131. This will reduce the number of intervening

iterations and data fetched between data reuses. The reused

data will still be in the cache, and hence memory accesses

will be reduced. In other words, the traversal between the

22

blocks will follow an order that will reduce the amount of

data that needs to be moved when going to the next tile. To

be most effective at blocking (tiling), block size must be

tuned to fit into cache memory to allow the minimum number of

misses to occur and generate the least traffic between the

memory levels.

Blocking, as a combination of strip mining and

loop interchanging, can improve codes. The goal is to strip

the innermost loop into pieces such that the new innermost

loop fits entirely into cache memory. The newly created

middle loop is then moved to the outer loop. Figure 12 below

illustrates how blocking is applied to loops whenever it is

legal.

for (I = 1; I<N; ++I) {

for (J = 1; J<N; ++J) {

loop body

)

becomes

for (JJ = 1; JJ<N; JJ = JJ + B)

for (I = 1; I<N; ++I) (

for (J = JJ; JJ<B; ++J)

loop body) }

Figure 12

Blocking. B is the strip size

23

A further optimized version of the code in Figure 12 is

illustrated in Figure 13. The inner two loops iterate in

square shaped blocks (BxB) while the outer two loops step

between the blocks.

for (II = 1; II<N; II = II + B) (

for (JJ = 1; JJ<N; JJ = JJ + B) f

for (I = II; I<min(N, II + B); ++I) {

for (J = JJ; J<min (N, JJ + B); + +J) (

loop body

)

)

Figure 13

Further Optimized version of the code in Figure 12

The iteration space .>

for the above code - -

is shown in Figure- - - --...

1 5 ' ".. ."". " ". " "
. .. • . .. ,I .. ,. .. .• , •

Figure 14

Iteration Space for the code in Figure 13

24

B. PERFORMANCE EXPERIMENTS WITH BLOCKED MATRIX MULTIPLICATION

CODE

The experiments are performed on two different machines

located in The Naval PostGraduate School Racrix multiplica-

tion is utilized as the main source code written in C

language. Matrix multiplication is a building block in many

linear algebraic algorithms. It is also an interesting case

study because locality is carried in three different loops by

three different variables. The entire computation in a matrix

multiplication involves 2N 3 arithmetic operations (counting

additions and multiplications separately), but produces and

consumes only 3N2 data values. As a whole, the computation

exhibits "admirable reuse of data" [Ref. 23]. In general,

however, an entire matrix will not fit in a small data cache

memory. So, the code is restructured such that the necessary

reuse of data is achieved in cache.

1. Experimental Setup

In our experiments, three different matrix sizes (293,

295, 300)' are utilized and the performance of blocked matrix

multiplication is observed by experimenting with square shaped

blocks having sizes of multiples of 8. To ensure the accuracy

of the timing results obtained, each experiment has been run

5 times by using the library function system() which provides

access to operating system commands.

'These values were chosen so that we compare our results to

those in [Ref. 91.

25

The "MFLOPS" rating of the machine was utilized as the

performance measure for the blocked portion of the code, i.e.,

the loops. We had to find the time of that portion. The

command "time" provided in C compiler is not appropriate to

measure for that type of computation. Because, it is an

executable program available when using the shell and it

measures the time of an executable program from the beginning

to the end. So, in our experiments, another structure called

getrusage is used. "getrusage" returns the user time utilized

by the current process, or all its terminated child processes.

By calling it twice, at the beginning and at the end of the

nested loops, we measured the time we were looking for. The

code used in the experiments is presented in Figure 15 below.

float Timingl, Timing2, Difference, Performance;

struct rusage *x, *y; /* declaration */

/* other declarations and lines of code will be here*1

x = (struct rusage *) malloc (sizeof(struct rusage));

y = (struct rusage *) malloc (sizeof(struct rusage));

if (getrusage(RUSAGESELF, x) -- 1)

perror("getrusage()");

/* Nested loops are put here */

if (getrusage(RUSAGE_SELF, y) -- -1)

perror ("getrusage () ") ;

Timingl = (y->ru_utime. tv_usec - x->ruutime. tv_usec)/1000;

Timing2 = y->ru utime. tv_usec - x->ruutime. tv_usec);

if (Timingl < 0) (

26

Timing2 = Timing2 - 1;

Timingl = 1000 + Timingl;

I

Difference = Timing2 + Timingl / 1000;

Performance = (2*N*N*N) / (1000000*Difference); /* MFLOPS */

Figure 15

The code to compute the performance of the cache

During the experiments, we needed to edit files

quickly to change the values for matrix and block size. We

intensely used the Unix editor, sed, to make changes to the

files on the command line. Also, usage of Tschell (shell)

together with sed allowed the task of making frequent changes

to the source files by the processor less tedious.

2. Overview of The Targeted Machine Architectures

The two machines used in the experiments are Solbourne

S4000 SPARC Station and DECstation 3100. The Solbourne S4000

SPARC Station has a 64-bit SPARC CPU, with a 2kB 2-way set-

associative write-back physical data cache (DCACHE) and 6kB 3-

way set-associative instruction cache (ICACHE). The processor

performs a load/store instruction in one clock, achieving 25.5

MIPS. In SPARC microprocessor, all performance-critical

element--integer CPU, floating point processor, memory

management unit and cache--are integrated on a single chip.

The 64-Dit memory bus supports a data, transfer rate of 60

Mbytes per second to accommodate the high performance

27

requirements of the processor. The DECstation 3100 has an 8kB

double word direct-mapped cache and can hold all the words

reused within an 88x88 block. For this reason, experiments

are also done with block sizes over 88x88 in order to measure

the real performance. Otherwise, the data cache can hold

88x88 (or smaller) blocks and the effects of self-interference

misses may not be observed.

3. Blocking Experiments

The main loops of unblocked and blocked matrix

multiplication are illustrated in Figure 16 and 17

respectively.

for (i=O; i<N; ++i) {

for (j=O; j<N; ++j) {

for (i=O; i<N; ++i) {

c[i][j] = c[i][j] + temp*b[k][j];

Figure 16

Main Loops of Unblocked Matrix multiplication

for (kk=O; kk<N; kk=kk+B) f

for (jj=O; jj<N; jj=jj+B) {

for (i=0; i<N; ++i) {

for (k=kk; k<minn(Nkk+B); ++k) {

c[1i][j] = 0;

28

temp = a[i][k];

M = min(N,jj+B);

for (j=jj; j<M; ++j) {

c[i][j] = c[i][j] + temp*b[k][j];

Figure 17

Main Loops of Blocked Matrix Multiplication

First, the code in Figure 17 is blocked at both data cache

and register levels, a[i] [k) is register allocated ana Lhi s

relatively increases the performance of blocked code.

Secondly, min function is handled with a macro. In the very

first experiments, the min function was placed in the for

statement (as in Figure 18).

temp = a[i][k];

for (j=jj; j<min(N,jj+B); +-,-'• {

c[i][j] = c[i][j] + temp*b[k][j];

Figure 18

The for statement with m=n function in it

Removing it as in Figure 19 improved the performance

drastically.

29

temp = a[i][k];

M = min(N,jj+B);

for (j=jj; j<M; ++j) (

c[i][j) = c[i][j] + temp*b[k][j];

Figure 19

The for statement without min function in it

a. Cache Performance Experiments with Blocked Codes

on Solbourne S4000 SPARC station

In Figure 20, the performance of blocked matrix

multiplication is plotted on Solbourne S4000 SPARC station.

The code is compiled without enabling the code optimization of

gcc (the gnu compiler). The graph in Figure 20 plots the

performance levels obtained for three slightly different

matrix sizes across a range of blocking factors. Blocking

effects are not observed when code optimization of the

compiler is not enabled. There is a negligible change(<6%)

between performances of blocked and non-blocked code when no

optimization switch is used. The reason is that the number of

instructions in the non-optimized code was much bigger than

that of the optimized one and the percentage of memory access

instructions to total memory instructions was very small. In

other words, the code was running inefficiently. In contrast,

optimized code had a smaller number of memory instructions

30

0.73-

0.725.
0 .715 ----- I • ------------------------------------ ---------

0.715------....

0.71..............................-.-.-......
0
-0.705

0.7

0.6955-.- .-.-.--. ----

0 .69 - - .-.- .------------------------------ ------------------------------------ --------------------------------. ---

0.685-
8.. 16 24 32 40 48 56 64 72 80 88 96 104 112N.BL

BLOCKING FACTOR

6-M- N --*- N=25 -e*- N-300

Figure 20

The Performance of Blocked Matrix Multiplication on
Solbourne S4000 SPARC. Compiler optimization para-
meters are not enabled during compilation process.
The abbreviation N.BL. means No BLocking

and most of them were to access memory, implying its

efficiency.

Figure 21 is similar to Figure 20 except that gcc

compiler optimization was invoked. The code was compiled by

the command "cc -02 sourcecode.c " at the prompt. The

performance on S .bourne S4000 SPARC station gets better when

the block size is 16. Because i •: 2kB 2-way set-

associative data cache and a word length of 4 bytes. 41•s

corresponds to a data cache size of 512 words. For a local

31

memory of size C, the optimal blocking factor is roughly

sqrt(C) [9]. Since the data cache in SPARC station is two-way

set associative, sqrt(512/2) is equal to 16 and therefore a

block size of 16 x 16 results in a better performance. As

observed in Figure 21, optimized blocked code with a blocking

factor of 16 is 40% better in performance than the one with no

blocking.

3.1

3

2.9..

2.8..

a 2.7..
0• 2.6"

2.5"

2.4-

2. 16 2 32 4- 4- 56 6 72 80 8896.104... . 2N.BL

BLOCKING FACTOR
--- N-_2 -- N=295-.-.-.N-_......

Figure 21

The Performance of Blocked Matrix Multiplication
on Solbourne S4000 SPARC station. Compiler
optimization switch -02 is enabled

32

b. Cache Performance Experiments with Blocked Codes

on DECatation 3100

Figure 22 shows the graph for the compiler

optimized blocked code. Blocking optimizes the corle anH we

also observe a better performance of blocking if the code is

compiler optimized for DECstation 3100. As shown in Figur2

22, matrix sizes 295 and 300 present almost the same perfor-

mance of the data cache and consistent increase until we reach

block size of 72. At block size of 80, both of them show

their highest performances. After this block size, no big

change is observed in the plottings of these two matrix sizes.

Matrix size 293 present a steadily increasing performance like

the previous two. But, after achieving its best performance

at block size of 40, it behaves differently and the perfor-

mance for the data cache degrades drastically beginning from

the block size of 56. The lowest performance for three matrix

sizes is obtained when no blocking is applied. Because, the

interference misses of the cache increases in this case. This

means that the data which we can reuse are replaced by self-

interfering array elements.

c. Comparison of The Two Machines with respect to
Speedup measure

The two machines, DECstation 3100 and Solbourne

S4000 SPARC station are coliiare with rprt to speedup for

different blocking factors in Figure 23. Speedup is calcu-

lated by dividing each performance value by performance of

unblocked code for the respective machine. Solbourne S4000

33

1.65-

1.6--- . .

S1.551.5.- ----

g1.35

1.25-

1.2-

1.15 8 1'6 4 32 40 4 6 64 72 80 88 6 104 112N.B.

Figure 22

The Performance of Compiler Optimized Blocked Matrix
Multiplication on DECatation 3100. Compiler optimi-
zation switch -02 is used for compilation process

SPARC station shows the highest increase in performance at

block size of 16 for three matrix sizes. This is related to

the data cache size. But this increase does not last long and

a decrease is observed after block size 16 which is the

optimal blocking factor for SPARC station. The speedup

decreases consistently after blocking factor of 32. As the

block size increases over this value, the performance of the

data cache decreases due to self-interference.

For matrix sizes 295 and 300, DECstation 3100

shows consistent performance increase as the blocking factor

34

1.4

1.35"-

1.3-

1.25 "". .e-

S1.2 -

1.15

1.05-.--

6 1'6 2'4 i'2 4b i8 ,& 4 h2 0 8ý 9 104 11 iNTBL
1 • . BLOCKING FACTOR

---- SPA-293 - SPA-295 - SPA-300
DEC-293 --N- DEC-295 - DEC-300

Figure 23

Comparison of DECstation 3100 and Solbourne S4000
SPARC station with respect to speedup vS blocking
factors for matrix sizes of 293, 295, 300

increases. But, matrix size of 293 does not behave like the

previous two. The performance of data cache gets worse after

the blocking factor of 56. This 'shows that very similar

matrix sizes may behave differently. Data cache in DECstation

3100 displays better performance for a wide range of blocking

35

factors where the data cache in Solbourne S4000 SPARC station

performs its best just for blocking factor of 16.

d. Cache Performance Experimentsa with Blocked
Unfolded Codes on Solbourne S4000 SPARC station

In an attempt to furthermore increase in the

performance of the data cache, experiments with loop unfolding

(unrolling) technique were performed. Loop unfolding is the

process of replacing the iterations of a loop with noniterated

straight-line code [Ref. 16]. Shown in Example 4 are the

codes for matrix multiplication without and with any

unfolding. The code is unfolded 3 times, where U is the

variable to show how many times the loop is unfolded.

Example 4.

for (k=kk; k<min(N,kk+B); ++k)

temp = a[i][k];

M = min(N,jj+B);

for (j=jj; j<M; j=jj+B) { /* no unfolding */

c[i][j] += temp * b[k][j];

is unfolded to

for (k=kk; k<min(N,kk+B); ++k) {

temp = a[i][k];

M = min(N,jj+B);

if (M * U==O) { /* control statement for unfolding *1

for (j=jj; j<M; j=j+U) { /* U=3, unfolded 3 times */

36

cil] j += temp * b[k] [j];

c[i][j+l] += temp * b[k][j+l];

c[i][j+2] += temp * b[k][j+2];

else t

for (j=jj; j<M; ++j) {

c[i][j] += temp * b[k] [j];

)

The data obtained from the experiments with unfolded blocked

matrix multiplication code shows that the ovei.nead on the

control statement plays an important role in reducing the

performance. So, blocked codes with and without unfolding

achieve negligibly different performances. Figure 24

illustrates this cache behavior for the unfolded 8 times.

Unfolding did not improve the performance on the blocked code

because of the control statement overhead. The degree of

unfolding the loop iterations affects the performance

slightly.

37

2.9-
2.8

2.4

• 2.3

2.47-----.

.3 ..

2.2

2.1 8 16 24 32 40 48 56 64 72 80 88 96 104 112N.BL

BLOCKING FACTOR

--i-N--293M-- N=295 -w- N--300

Figure 24

Performance for a blocked and 8 times unfolded
matrix multiplication code, Solbourne S4000
SPARC station

The graph in Figure 25 plots the performance levels for

blocked matrix multiplication code with 16 and 8 times

unfolded. As presented in Figure 25, the performances of 16

and 8 times unfolded codes are not extremely different from

each other. This again shows that the control statement (if

statement) in the code before the unfolded lines of loop

iterations is the main reason of the overhead, rather than the

iterations which are not unfolded.

38

3-

2 .9 -- --- -----

2.7

2 2.5 ..

2 1-16 32 48 d4 80 9'6 112 N:BL
BLOCKING FACTOR

-- N=293(U=16) - N=295(U=16) -'-N--300(U=16)

-- N-293(U=8) -- N=295(U=8) - N- N300(U--8)

Figure 25

Performance for a blocked matrix multiplication code
unfolded 16 and 8 times, Solbourn. S4000 SPARC station

39

III. ALGORITHMS TO IMPROVE DATA CACHE PERFORMANCE

A. SELF-INTERFERENCE IN CACHE

A reused variable of an array will miss in the cache if

the references between reuse occupy the same cache location,

thus leading to self-interference misses. If the accesses are

done in a stride one manner, then no interference will occur

unless the number of accessed data is bigger than the cache

size. Otherwise, since the access pattern of a stride one or

a constant stride array is uniform, its self-interference

pattern also becomes uniform and increases the cache misses.

In order to avoid self interference totally, "the largest

block size that does not suffer from any self-interference

(Be)" is computed.

B. THE CRITICAL BLOCKING FACTOR

Lam, Rothberg, and Wolf have developed an algorithm to

find the largest square block that avoids self-interference

for a given matrix size. This algorithm tailors the blocking

factor according to the problem size, i.e., matrix size, to

improve the average miss rate [Ref. 9). By doing so, they

intend to improve the average miss rate and to reduce the

variance. Since the periodicity in the addressing of a

direct-mapped cache and the constant-stride accesses are

obvious, it is relatively easy to determine Be. Their

40

determine the largest square block with no self-interference

is shown in Figure 26.

algorithm FindB(N, C : integer) return integer;

maxWidth, addr, di, di, X, Y, N : integer;

maxWidth = min (N, C);

addr = N/2;

while true do

addr = addr + C;

di = addr div N;

dj = abs((addr mod N) - N/2);

if (di >= min (maxWidth, dj))

return min(maxWidth, di);

else

maxWidth = di >= min(maxWidth, dj;

end while;

end algorithm;

Figure 26

Lam's Algorithm to compute the Critical
Blocking Factor Bc

1. Sensitivity of Bcwith respect to Matrix Size

B, obtained from Lam's algorithm for some matrix sizes

draws attention to its sensitivity with respect to matrix

size. Figure 27 shows the critical nlocking factor for a some

matrix sizes between 293 and 323.

41

141 ! ii ------ --------- ----- --- ---------- ---- ------ ---- --- --------- --137 ---- --- --- ---- -- --- - --- ------ ---

0

S....°°°°.... o°° ... °°°.°°-°°°... °°°.. ..°.°..° °°°°°°...........°.

- -- -- -- - --- -- ---------

S8-

293 295 297 299 300 301 303 305 367 309 :i1 313 315 317 319 321 323
MATRIX SIZE

Figure 27

B. versus Matrix Size. Solbourne S4000 SPARC Station

The critical blocking factor Bccannot be larger than sqrt(C),

so the run time of the algorithm is O(N/sqrt(C)) [Ref. 9].

Figure 28 plots the performance of the data cache for the

values shown in Figure 27. The performance is greatly

affected by value of Bc, dropping to 1.7 Mflops for a 321x321

42

2.1

1.95

U-

1.8-~

1.75 ..

1.7 293252672493600301 30336507309311 313315317319321323

MATRIX SIZE

Figure 28

Data Cache Performance versus Matrix Size. B. is
obtained by using Lam's Algorithm for Matrix Size.
Solbourne S4000 SPARC Station.

matrix and jumping to 2.0 Mflops (an increase of 17%) for a

323x323 matrix.

2. Effect of Declared Matrix Size on Bc

It is important to obtain consistent performance from

an algorithm. Small Lhanges in th- values of the inputs

generally should not cause huge swings in the pertoria,,T n

the algorithm. Users tend to use arbitrary array sizes larger

than maximum expected problem size.

43

If we use Lam's Algorithm which changes the block size

by searching for a better B,, then, for a given matrix size,

we can keep increasing the size of the matrix and determine

another B. until we find a block size which gives a better

performance, preferably sqrt(C) where C is an integer.

In Figure 29, the performance variation is shown for

actual matrix sizes of 293, 295, and 300, where Beis computed

while extending the size of the matrix. Here, we demonstrate

the sensitivity of Lam's Algorithm to the changes on the

actual matrix size. Even a small change on one dimension of

array b[k] [jI affects the performance of the code blocked with

a blocking factor for a matrix size as big as that new

dimension. For example, when we use actual matrix size of 293

without any change on any dimension, data cache performance is

2.7 Mf lops. If we declare one dimension of the same matrix to

be 310, then the performance jumps up to 3.05 Mflops (an

increase of 13%). For dimension of 321, the performance

decreases from 3.05 Mflops to 2.2 (a decrease of 38%).

Since calculation of B, is sensitive to this small

change, we can draw insights to this fact as follows:

1. Block size is highly sensitive to matrix size.

2. Some bigger block sizes after this change shows
that cache is not filled as much as possible with
the block size computed with the algorithm. In
other words, the bigger portion of cache used,
the better cache performance for some array
sizes. As long as the in the cache, in a certain
range, if we increase the block size, it helps
decreasing misses. The following equation in

44

3.1

28.7......................

~2.9------------------.------............-

2.5

Cn 2

2. ..
2.3

2.2"
293 294 295 296 297 298 299 300 306 307 309 310 311 313 320 321 323

EXTENDED MATRIX SIZE

"-- N=293 --- N=295 -U N--300

Figure 29

Extended Dimension versus Performance for Actual
Matrix Sizes of 293, 295, and 300. Solbourne 84000
Sparc Station

Figure 30 models the miss rate in terms of parameters used in

the blocked matrix multiplication and calculates the total

number of cache misses [Ref. 9].

- N[2/1B Si(b) + 3(1 - SI(b))B/C + B/C]

where Nl = the number of operations performed,

45

B = blocking factor,

C = cache size,

Si(b)= (1 - B/C)`- = self-interference of

accessing B-I rows of array b

before the same data is reused.

Figure 30

Equation to compute total number of misses in cache

According to this equation, there are N3 (2/B) compulsory

misses, misses that are intrinsic to the algorithm given the

blocking factor and cannot be avoided even if the address

mapping is perfect. The factor Si(b) is due to self inter-

ference among the elements in the b array. Any blocking

factor lower than the critical blocking factor does not cause

self interference. The other two terms are due to cross

interference between different variables. Example 5 below is

presented to quantitavely demonstrate the effect of B,.

Example 5.

If actual matrix size = 293 and C = 256, then B = 7 is

computed with Lam's Algorithm presented in Figure 26. With

these values, the total number of misses = 1.17N3 . If we

fix the cache size and extend the declared matrix size to

304 as determined with our seacrh technique, then Bc = 16 is

computed with these values, the total number of misses =

0.68N3 . We showed that the total number of misses for a

block size obtained with Lam's Algorithm is worse than that

46

of obtained with the extended matrix size (1.17/0.68 = 1.72,

72% degrades the performance). Therefore, having a bigger

blocking factor and an extended matrix dimension leads to

a better daca cache performance, while decreasing the miss

rate.

C. CHANGING ARRAY SIZE VIA A SEARCH TECHNIQUE AND DETERMINING

THE CRITICAL BLOCKING FACTOR

We present a search technique to find values of B, larger

than those computed using the algorithm in [Ref. 9]. This

technique computes B, by searching through ail bleckinc7

factors for the range of matrix sizes up to 10% bigger than

the actual matrix size. It mutually employs the algorithm in

Figure 26 until it returns the biggest blocking factor, less

than or equal to sqrt(C), where C is cache size, and bigger

than 1, which is the smallest blocking factor that we can

assign. We demonstrated that this blocking factor improves

data cache performance as shown in Example 5. The following

C language code in Figure 31 illustrates this technique.

/* algorithm COMPUTEB */

#define min(a,b) ((a<b) ? a:b) /* min function */

int algo(int, double);

main ()

{

int k, N, Nmax, B, Bmax=l, i, Nlimit;

double C;

print f(" Enter the size of the matrix:\n");

47

scanf (W"d, &N);

printf(" Enter the size of the cache:\n");

scanf ("d", &C);

Nmax = N;

k = N * 0.10; /* max allowable matrix size increase */

Nlimit = N + k; /* max matrix size */

for (i = N; i <= Nlimit; ++i) {

B = algo(N, C);

if ((B <= sqrt (C)) && (Bmax < B)) {

Bmax = B;

Nmax = N;

)

printfc("New Matrix Size= %d\n", Nmax);

printf("Blocking Factor= %-d\n", Bmax);

int algo(N, C) /* Lam's Algorithm (algorithm FindB)

in Figure 1 */

Figure 31

A search technique coupled with Lam's Algorithm
to find Bc

The technique keeps extending the actual matrix size within

the limit of 10% of the actual matrix size. For every size,

it computes Bc by repetitively applying Lam's Algorithm in

48

Figure 26, and retrieves the first biggest blocking factor and

the corresponding extended matrix size.

Here the choice of 10% is arbitrary. In practice, we do

not need to extend both rows and columns of the actual matrix.

Because, the advantage of this approach is that it finds an

extended matrix size which results in a better data cache

performance than that of Lam's Algorithm. Miss rates obtained

from the equation in Figure 30 by substituting the values for

two different matrix sizes show that matrix size and blocking

factor from our algorithm present a better total number of

misses. Moreover, in Example 5, cache portion used for the

blocking factor computed with Lam's Algorithm is

(7 x 7) / 256 = 0.19 -- > 19* of the cache,

while the blocking factor computed with our technique allows

(16 x 16) / 256 = 1.00 -- > 100% of the cache to be utilized.

Therefore, the technique presented above als Ies us to

utilize data cache optimally. However, this approach suffers

from using additional columns/rows of a matrix.

D. A NEW ALGORITHM TO FIND THE CRITICAL BLOCKING FACTOR WITH

NO SELF-INTERFERENCE

The drawback of the search technique in the pr"1- -us

section is that it uses Lam's algorithm which has a complexity

of O(N/sqrt(C)) [Ref. 91. For each extended matrix size,

using this algorithm becomes an overhead for the search

49

technique. Additionally, we have no guarantee for an

acceptable choice of Be

In this section, we introduce a new algorithm which

improves data cache performance by determining the critical

blocking factor with no self-interference. The algorithm is

shown in Figure 32.

/* DIRECT Algorithm */

int gcd(int, int);

main ()

{

int SIZE, C, C', OLD-SIZE, B=1, X, GCD;

OLD_SIZE = SIZE;

if (sqrt (C) is not an integer)

C' = C/2;

else

C' = C;

X = sqrt(C)-(SIZE % sqrt (C/));/* these two lines set

matrix */

SIZE = SIZE + X; /* to be a multiple of

sqrt (C) */

do{

GCD = gcd((SIZE/sqrt(C')), sqrt(C')); /* gcd test */

if (GCD = 1)

B = sqrt(C');

else

SIZE = SIZE + sqrt (C');

50

) while (B /= sqrt (C'));

gcd(int V1, int V2) {

int temp;

while (V2) {

t emp = V2;

V2 = Vl t V2;

Vl = temp;

)

return VI;

Figure 32

A New Algorithm to find Bc

Direct Algorithm allows us to use sqrt(C) as optimal blocking

factor if sqrt(C) is an integer all the time. If not, the

optimal blocking factor is considered as sqrt (C/2), because we

obtain a multiple of two for C/2. The underlying principle is

to cover data cache as much as possible at the expense of

potentially using more memory.

We assume that the matrix has sqrt (C) elements, where C is

the cache size. If each element in the matrix, which we call

it super-- element E, contains sqrt(C) elements with a stride

S between them and if cache is divided by the size of sqrt(C)

superelements, then (C / E) corresponds to the number of

blocks in the cache. So, if S and (C / E) are r~latively

51

prime, which also means that their greaLest common divisor

(gcd) is 1, then every super-element will be placed in a new

super location up to (C / E) different superlocations.

The advantages of Direct Algorithm:

- The time consumed to compute the extended matrix size and
the corresponding B, is shorter than the one in Lam's
Algorithm. Therefore, we save time.

- The blocking factor is always sqrt(C) or sqrt(C/2) due to
the value of cache size, at which we get a better
performance than that of Lam's Algorithm.

The disadvantages of Direct Algorithm:

- As in the previous section, this algorithm also suffers
from using additional rows/columns which is an overhead
for the computation. The maximum addition in size is 2 *

SQRT(C) -1 (if SQRT(C) is an integer).

This algorithm is experimented on Solbourne S4000 SPARC

station and DECstation 3100. Figure 33 plots the performance

of the data cache for a wide range of matrix sizes on SPARC

station. Figure 34 plots the actual matrix size versus the

extended matrix size obtained with Direct Algorithm.

This algorithm finds a matrix size suitable to be used

with a block size of sqrt(C) if it is an integer (or sqrt(C/2)

if not). Since cache size is 512 words for a two-way associa-

tive data cache in SPARC station, sqrt(512/2) = sqrt(256) =16

is an integer. So, we use almost 100% of the cache. The

above performance curve in the graph shows the performance for

a matrix size determined by Direct Algorithm with a block size

of sqrt(C). It presents a better performance level compared

52

3.2.

2.6 ...

2.
0J 2.14 °°....... °...... °...°............°...................... °...... ... °....................°.... °.......... °....... °......

U-

2.8

1 .6- . - - - -- - - - 1
293 295 297 299 300 301 303 305 307 309 311 313 315 317 319 321 323

MATRIX SIZE

"D- DIRECT ALGORITHM --w- LAMtS ALGORITHM

Figure 33

Performance levels with optimal block size of 16
(without any change on matrix size) and with a block
size of sqrt(C) (for extended matrix size determined
by the algorithm above) on the data cache of Solbourne
$4000 SPARC station.

53

340

N
U,Ž~325"-

L< 310-
~3 2 0 ------------- -- ----- ----- ----------------------------------

w
a
Z 315...w

305 -,.................... __-----._ ...

300 - 26325 267 269 360 3•0• 3 360 37 369 3i13I3 3i5 3i7 3i9 321 323
ACTUAL MATRIX SIZE

Figure 34

The Actual Matrix Size versus the Extended Matrix
Size obtained with Direct Algorithm. Solbourne
84000 SPARC station

54

to the one below and behaves very consistent. The variation

in performance for the one below is due to the interference

misses in the data cache.

In the experiment on DECstation 3100, three matrix

sizes(293, 295. 300) are used and performance level of the

data cache is observed for the values obtained with the new

algorithm and the best blocking factors obtained previously.

Figure 35 shows the two performance levels of the data

cache on DECstation 3100.

Figure 36 plots the actual matrix size versus the extended

matrix size obtained with Direct Algorithm. DECstation 3100

has 8K double word direct mapped cache where sqrt(C) is not an

integer. So, Direct Algorithm gets half of the cache and

determines the new matrix size shown in Figure 36 for sqrt

(C/2).

Our algorithm performs its best if the number of distinct

array references to data cache is less than or equal to the

associativity of data cache. Otherwise, interfercnce among

the references may occur.

55

1.64"

1.635-

1.63-

1.625.

S1.62-

9. 1.615
1.61-

1.605-

1 .625 °. °..... •..... °.......... °..........°.

1.6

1.595"

1.59 2395360

MATRIX SIZE

-in- DIRECT AL.GORITHM -+* PRE.V...EEST MF..OPS

Figure 35

Performance levels with optimal block sizes (with no change
on matrix size) and with a block size of sqrt(C/2) (with
matrix esie determined by the algorithm above) for the data
cache on DECatation 3100

56

460-

S420

0
W 380 ----- -- --- ---- ------- --- ---- ---- --- -- ------- -- -- -- -- ----- -----
0
z

320- P*I
293 295 297 299 300 3016303 305 307 309 311313 315 317 319 321 323

ACTUAL MATRIX SIZE

Figure 36
The Actual Matrix Size versus the
Extended Matrix Size obtained with
Direct Algorithm. DECstation 3100

57

IV. CONCLUSIONS AND RECOMMENDATIONS FOR
FURTHER RESEARCH

In Chapter I, we reviewed the notion of reuse and reported

the importance of the number of cache misses for RISC proces-

sors. Since there is an amazingly large reuse of data in

cache, we focused on some techniques, namely blocking

techniques, which are used to reduce memory traffic and

exploit this data reuse.

In Chapter II, we performed several experiments on

blocking and presented the results similar to those in [Ref.

9] for a better understanding of the effect of blocking on the

performance of two different data caches.

In Chapter III, we demonstrated the sensitivity of the

algorithm in [Ref. 9] and the sensitivity of blocking factor

obtained by that algorithm to the declared array size. In

fact, this sensitivity shows that the performance of the

algorithm is very unstable related to the size of the matrix.

To remedy this problem, we introduced two algorithms: The

first one is a search technique which finds values of Bc

larger than those computed using the algorithm in [Ref. 9].

This technique computes B, by searching through all blocking

factors for the range of matrix sizes up to 10% bigger than

the actual matrix size. It iteratively employs the algorithm

in [9] until it returns the biggest blocking factor, less than

or equal to sqrt (C), where C is cache size, and bigger than 1,

58

which is the smallest blocking factor that we can assign. The

other is Direct Algorithm which improves the performance of

workstations in some specific applications. This algorithm

finds a matrix size suitable to be used with a block size of

sqrt(C) if it is an integer (or gqrtfC/2) if not). It gives

the best results when the number of distinct array references

is less than or equal to the associativity of data cache.

For further research we recommend looking at the

algorithms in situations where the number of distinc- forms of

array references is greater than the cache associativity

factor.

59

LIST OF REFERENCES

1. Walid Abdul-Karim Abu-Sufah. Improving The Performance
of Virtual Memory Computers, Ph.D. Thesis, Dept. of Comp.
Sci. Rpt. No. 78-945, Univ. of Illinois, Urbana, IL, Nov
1978.

2. W. A. Abu-Sufah, D. J. Kuck and D. H. Lawrie. On The
Performance Enhancement of Paging Systems Through Program
Analysis and Transformations, IEEE Trans. on CoILputers,
Vol. C-30, No. 5, pp. 341-356, May 1981.

3. Michael Wolfe. Iteration Space Tiling for Memory
Hierarchies, Proc. of the 3rd SIAM Conf. on Parallel
Processing for Scientific Computing, Garry Rodriguez,
Society for Industrial and Applied Mathematics,
Philadelphia, PA, pp. 357-361, 1987.

4. R. Irigoin and R. Triolet. Supernode Partitioning, Conf.
Record of the 15th Annual ACM Symp. on Principles of
Languages, pp. 319-329, Jan. 13-15, San Diego, CA, ACM
Press, New York, 1988.

5. K. Gallivan, W. Jalby, U. Meier, and A. Sameh. The
Impact of Hierarchical Memory Systems on Linear Algebra
Algorithm Design. Technical Report UIUCSRD 625,
University of Illinois, 1987.

6. D. Gannon, W. Jalby, and K. Gallivan. Strategies for
Cache and Local Memory Management by Global Program
Transformation, Journal of Parallel and Distributed
Computing, 5:587-616, 1988.

7. A. Porterfield. Software Methods for Improvement of
Cache Performance on Supercomputer Applications, pp. :iii,
4-7, 19-20, 76-77, 100-103, Ph.D. Thesis, Rice
University, May 1989.

8. M. E. Wolf and M. S. Lam. A Data Locality Optimizing
Algorithm, June 26-28, Toronto, Ontario, Canada, ACM
Press, 1991.

9. M. Lam, E. R. Rothberg, and Michael E. Wolf. The Cache
Performance and Optimizations of Blocked Algorithms,
Architectural Support for Programming Languages and
Operating Systems, Santa Clara, CA, April 8-11, 1991.

60

10. J.-W. Hong and H. T. Kung. I/O Complexity: The Red-Blue
Pebble Game, Proceedings of the Thirteenth Annual ACM
Symposium on Theory of Computing, pp. 326-333, ACM
SIGACT, May 1981.

11. J. Dongarra, J. Du Croz, S. Hammarling, and I. Duff. A
Set of Level 3 Basic Linear Algebra Subprograms, ACM
Transactions on Mathematical Software, pp. 1-17, March
1990.

12. A. C. McKeller and E. G. Coffman. The Organization of
Matrices and Matrix Operations in a Paged Multiprogram-
ming Environment, CACM, 12(3):153-165, 1969.

13. M. J. Wolfe. More Iteration Space Tiling, Supercomputing
'89, Nov 1989.

14. J. Dongarra, L. S. Duff, Danny C. Sorensen, and H.van der
Vorst. Solving Linear Systems on Vector and Shared
Memory Computers, SIAM Press, 1991.

15. J. M. Levesque, J. W. Williamson. A Guidebook to Fortran
on Supercomputers, Academic Press, San Diego, 1989.

16. T. G. Lewis, H. El-Rewini. Introduction to Parallel
Computing, pp.:xi, 283, 313-315, Prentice Hall, 1992.

17. H. Zima with Barbara Chapman. Supercompilers for
Parallel and Vector Computers, ACM Press, 1991.

18. J. L. Hennessy, D. A. Patterson. Computer Architecture
A Quantitative Approach, pp. 11-18, 405-422, Morgan
Kaufmann Publishers Inc., San Mateo, CA, 1990.

19. G. Langholz, J. Francioni, A. Kandel. Elements of
Computer Organization, pp. 196-197, Prentice Hall, 1989.

20. D. Gannon, W. Jalby. The Influence of Memory HiefQL_.y
on Algorithm Organization Programming FFT's on a Vector
Multiprocessor, University of Illinois, 1986.

21. Michael Wolfe. Optimizing Supercompilers for Super-
computers, pp. 6-18, 119-123, The MIT Press, 1989.

22. J. Ramanujam, P. Sadayappan. Tiling of Iteration Spaces
for Multicomp-ters, Proceedings of the 1990 International
Conference on Parallel Processing, August 13-17, 1990.

23. R. Schreiber, J. J. Dongarra. Automatic Blockii...
Nested Loops, RIACS TR 9038, August, 1990.

61

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Amr Zaky, Code CS/ZA 10
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

4. Mantak Shing, Code CS/Sh 1
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

5. Robert B. McGee, Code CS/Mz 1
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

6. Dz. K. K. ligi Personel Egitim Daire Bsk. ligi 1
Ankara, Turkey 06100

7. Deniz Harp Okulu K. ligi 2
Tuzla / Istanbul, Turkey 81700

8. Golcuk Tersanesi K. ligi 2
Golcuk / Kocaeli, Turkey 41650

9. Taskizak Tersanesi K. ligi 2
Kasimpasa / Istanbul, Turkey

10. Dr. Elan Moritz (Code 10T) 1
Coastal Systems Station
Naval Surface Warfare Center
Panama City, Florida 32407

62

11. Bogazici fJniversitesi Muhendislik Fakultesi 1
Bilgisayar Bilimler Ana Bilim Dali Bsk. ligi
Ruineli Hisari / Istanbul, Turkey

12. Orta Dogu Teknik fOniversitesi (ODTTJ) Muhendislik
Fakultesi 1
Bilgisayar Bilimler Aria Biliin Dali Bsk. ligi
Besevier / A-:.c ~ra, Turkey

13. Hacettepe fjniversitesi Muhendislik Fakultesi 1
Bilgisayar Bilimler Aria Bilim. Dali Bsk. ligi
Beytepe / Ankara, Turkey

14. Marmara finiversitesi Muhendislik Fakultesi 1
Bilgisayar Bilimler Aria Biliin Daliý Bsk. lig'i
Goztepe / Istanbul, Turkey

15. Istanbul Teknik fjniversitesi Muhendislik Fakultesi 1
Bilgisayar Bilimler Aria Bilixn Dali Bsk. ligi
Maslak / Istanbul, Turkey

16. Lieutenant Junior Grade Atilla Demirhan 2
Dz. K. K. ligi Personel Egitim. Daire Bsk. ligi
Ankara, Turkey 06100

63

