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ABSTRACT

Analyses were performed for static and dynamic buckling of

a continuous fiber embedded in a matrix in order to determine

the effects of interfacial debonding and fiber bieakage on the

critical buckling load and the domain of instability. A beam

on elastic foundation model was used for the study. The study

showed that a local interfacial debonding between a fiber and

a surrounding matrix resulted in an increase of the wavelength

of the buckling mode. An increase of the wave length yielded

a decrease of the static buckling load and lowered the dynamic

instability domain.

In general, the effect of a partial or complete

interfacial debonding was more significiant on the domain of

dynamic instability than on the effects of static buckling

load. For dynamic buckling of a fiber, a local debonding of

size 10 to 20 percent of the fiber length had the most

important influence on the domains of dynamic instability

regardless of the location of debonding and the boundary

conditions of the fiber. For static buckling, the location of

a local debonding was critical to a free-simply supported

fiber but not to a fiber with both ends simply supported.

Fiber breakage also lowered the critical buckling load

significantly. £Asefs. m nPo
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I. INTRODUCTION

Buckling is one of the important failure modes of

structures subjected to compressive inplane loads. Buckling in

a continuous fibrous composite panel may include global

buckling of the panel as well as buckling of fibers embedded

in a surrounding matrix. Fiber buckling is one of the major

causes of reduced compressive strength of a composite panel.

As a result, the compressive strength of a composite is

generally lower than its tensile strength.

Some of the initial studies on fiber buckling were given

in references (Dow and Gruntfest 1960, Fried and Kaminetsky

1964, Leventz 1964, and Rosen 1965). These studies found that

fiber buckling was an important cause in reducing the

compressive strength of composites. Rosen (1965) investigated

the fiber buckling using an energy method. He considered

two-dimensional arrays of fibers embedded in a matrix

material, and computed critical fiber buckling loads for two

different modes of buckling: the shear mode and the extension

mode. In the shear mode, two neighboring fibers buckle in

phase. On the other hand, two neighboring fibers buckle out of

phase in the extension mode. Of the two fiber buckling modes,

the one which results in a lower critical buckling load

governs the buckling mode.

1



Experimental studies were performed to investigate fiber

buckling within a supporting matrix material (Lager and June

1969, and Dale and Baer 1974). The experimental results agreed

with Rosen's predictions. For a very low fiber volume

fraction, the extension mode predominated, while the shear

mode predominates for composites with fiber volume fractions

of interest in practical application. A postbuckling study of

fibers was performed by Maewal (1981). He found that the

effect of initial geometric imperfections like initial

waviness of fibers on the microbuckling stress was not

significant.

Experimental studies showed that compression failure in

straight fiber laminated test specimens initiated at a free

edge (Hahn and Williams 1984). In order to enhance the

understanding of the effect of the free edge on the initiation

of the buckling process, a study of fiber buckling was

undertaken by Wass, Babcock, and Knauss (1989). They used a

model of a beam supported by an elastic matrix. They concluded

that, for low fiber volume fractions, the critical strain

values at a free edge were lower than the predictions using

Rosen's model. For high volume fractions, however, they found

the beam model was not valid for the purpose of their study.

All the studies mentioned above assumed perfect bonding

between a fiber and its surrounding matrix. Lanir and Fung

(1972) studied the effect of interfacial separation on fiber

buckling. They calculated deflections of the postbuckled
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wave-like shape of fibers. They also stated that the critical

buckling load of a fiber was the same as that of a free column

in case of interfacial separation between the fiber and

matrix. This was the situation where a surrounding matrix did

not affect the fiber buckling due to separation. However, if

there is an interfacial separation between a fiber and a

surrounding matrix but they are in interfacial contact without

pressing each other before buckling, the matrix material still

supports the fiber after the buckling occurs as shown in

Figure 1. In a buckled position, the compressed matrix side

(the bottom side in Figure 1) provides reactions to a fiber.

GAP MATRIX

• , •-FIBER

DEBONDING AREA

Figure 1. interfacial debonding between a fiber and a
supporting matrix after fiber buckling.
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The present thesis computes critical buckling loads of

fibers with partial interfacial debonding from surrounding

matrices using the finite element method. The buckling loads

with debonding are compared to the buckling loads without

debonding for various fiberous materials. Different locations

and magnitudes of partial debonding are considered to

investigate their effects on the critical buckling load. The

study includes not only static buckling but also dynamic

buckling of a fiber embedded in a matrix material.

Furthermore, the effect of fiber breakage on the fiber

buckling is also investigated.
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II. ANALYSIS AND MODELING

A. NUMERICAL ANALYSIS

A beam on elastic foundation model was used for this

study. The Bernoulli-Navier beam theory was used to model a

fiber, and a surrounding matrix was modeled as an elastic

foundation. The spring constant of an elastic foundation was

computed from the expression developed by Herrmann, Mason and

Chan (1965). The spring constant is given below:

k- 8Gm(1U) (1)
(3-4um) Ko(27cr/6) +(nr/6)K,(22r/6)

in which

k - spring constant of the elastic foundation,

G - shear modulus,

v = Poisson's ratio,

r - radius of the fiber,

6 - wavelength of the deformed fiber (see Figure 2),

K0 = zeroth-order modified Bessel function of the second kind,

KI = first-order modified Bessel function of the second kind,

and the subscript m denotes the matrix. The spring constant in

Equation (1) was obtained assuming that the moment foundation

modulus associated with the beam rotation was negligible. This
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assumption is valid when the shear modulus of a fiber is much

larger than that of a matrix.

The equation of beam bending is:

m-Ew +EfIf -w -P-Ew +kw=o (2)
at2 X-4  ax 2

where

m = mass of the fiber per unit length,

w = transverse deflection of the fiber,

E - elastic modulus,

I = moment inertia of cross-section,

P = axial load applied to the fiber (a positive value denotes

a compressive force), and

x direction is along the fiber axis while t and f denote time

and fiber respectively. Applying the method of weighted

residual along with the weak formulation to equation (2)

gives;

L L L L

fm~v Fi t I E.'IXW x-fP; w, dx +fkw d0 0 0 0 (3)L IL+ +I (EfIf]],x I = 0.

0 0

WAVELENGTH

Figure 2. Wavelength of a buckled fiber
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In this equation, w,x indicates a partial derivative of

w with respect to x, W is a test function. This equation

contains second derivatives so that it is needed to assume an

interpolation function for w that has both continuous

deflection, w, and continuous slope, w', between elements. One

common choice is the cubic Hermitian polynomial presented in

below.

H1 (r) =2I3-3r2+1
H2 (1) = (r 3 -2r 2 +r)h (4)
H3 (r) =3r2-2r3

H4 (r) =(r 3 -r 2 )h

where r=x/h and h represents the length of element. Their

derivatives with respect to x are

H'=(6r 2 -6r) / h H,=(12r-6) / h 2

H2/=3r2-4x+l H2 11=(6r-4) / h (5)
H3I=(6r-62) / h H•"=(6-12r) / h2

H4/=3r -2.r H4t= (6r-2) / h

where prime, ', denotes a derivative

Substituting the Hermitian shape function to Equation (3)

after discritization of the domain into a number of finite

elements results in:

fm [H]T [H] dx +fEfIf [H/]T (H]// dx -fP [H/]T [H/]dx +fk[H] T[H] dx =0
h h h h

(6)

or
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[M]{'} + [KEI]{w} - [Kp]{W} + (KK]{w) = 0 . (7)

The superimposed dot denotes temporal derivatives. The details

of martices in Equation (7) are given below:

"i..I. l Ii II / . II. II Ill lIH1 1- HIH 2 H11" 3 H1 4

'I, 1I 2I HI

[KEI- H2 H H 2' H2l H2 H3 H2 H4 dx
h4f //H // HI 3/H / H 3// flH///

H3 HH 1 H3 H 2 H 3 H 3 H 3 H4
hit.1 I lI II i II Il/ull

H 4H"1 H 4 2 H4 H 3 • 4 H4

12 6h -12 6h

= EI 6h 4h2 -6h 2h2  (8)
h 3 -12 -6h 12 -6h

6h 2h 2 -6h 4h 2

IfIH1 HIH 2 HIH 3 HIH4
h H2H, 14H 2 H2H 3 HAH4

[H4H, H4H2 -4H3 H 4H4

156 22h 54 -13h

k 22h 4h 2 13h - 3h2(9
420 54 13h 156 -22h1

-13h -3h 2 -22h 4h12

/1 II I3I I

P H 2H H2 H2 H2 H3 H2 H4
K - T f H3/H// H, H ,H' H3H dx

H3H1 H3
1H• H3H3 H3H4

I, /I / / I II/

H4HI H,4H2 H4H3 H4H4

8



36 3h -36 3h

p 3h 4h 2 -3h -h 2  (10)

30h -36 -3h 36 -3h

3h -h 2 -3h 4h 2

'HIH1 H1H2 H1H3 HIH2
] h H2H1 H2H2 H2H3 H2H4AI

IM H3H1 H3H2 H3H3 H3H4
0

[H4 H1 H4H2 H4H3 H4H4j

156 22h 54 -13h

m 22h 4h 2 13h -3h 2  (11)
420 54 -13h 156 -22h

-13h -3h2 -22h 4h 2

In the present study, the diagonal mass matrix was also used

in addition to the consistent mass matrix given equation (11).

The diagonal mass matrix is

39 0 0 0

[M] _ m h 2 0 0 (12)
78 0 0 39 0

0 0 0 h 2

For the static buckling analysis, the mass term in

Equation (3) drops out, and the resultant equation becomes an

eigenvalue problem as given below:

det [ (Kel] + [KKI - Pr [Kp] I = 0 (13)

where Per is the critical buckling load. A compressive load

was assumed to be positive. The elastic foundation increases

the critical buckling load significantly compared to the case

of a beam without any foundation support. Furthermore, mode
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shapes of buckling become complicated due to the elastic

foundation (see Timoshenko and Gere 1961, and Hetenyi 1974).

For example, the mode shape for the smallest critical buckling

load is dependent on the geometric and material properties of

the beam and foundation. The mode shape is unknown a priori.

In order to determine the spring constant from Equation

(1), the wavelength must be known. However, the wavelength is

unknown because the mode shape is unknown a priori.

Therefore, an iteration process is necessary to find the

correct wavelength of the buckled beam. The flowchart for the

iteration procedure is given in Figure 3.

B. NU•MRICAL MODELLING

Interfacial debonding between a fiber and the supporting

matrix is modeled as explained below. It is assumed that there

is no gap at the interface between the fiber and the matrix

even if there is debonding at the interface. As a result, if

a fiber buckles at the debonded interface, the compressed side

of a matrix material still supports the fiber while the other

side of the matrix does not provide any support as shown in

Figure 1. If there is an enough friction to prevent sliding at

a debonded interface which is located at the compressed side

of a matrix, the interface under compression behaves just like

a bonded interface. A fully bonded matrix along the

circumference of a buckled fiber supports the fiber at both

the compressed and elongated sides of the matrix, while a

10



matrix debonded along the circumference of a buckled fiber

supports the fiber only at the compressed side of the matrix.

Therefore, it is reasonable to assume that the matrix at a

debonded interface provides half of the support of a perfectly

bonded matrix if a correct wavelength is obtained at the

debonded interface. However, the wavelength changes with the

debonding. As a result, an iteration is required to determine

the correct wavelength and the spring constant at a debonded

interface.

The fiber breakage is modeled in the following way. Once

there is a fiber breakage, there is no continuity of the slope

of the deflection at the broken position. However, the lateral

deflection is assumed to be continuous. Otherwise, there is no

axial force to balance the two broken fibers in the axial

direction since the spring does not constrain the axial

motion. Debonding is also assumed to occur from the broken

position.

For the study of dynamic instability, the axial force in

Equation (3) is assumed to be a harmonic function. That is,

P = 1 cos (O t) (14)

where P is the magnitude of the pulsating inplane force and B

is the circular frequency of the pulsation. Let the transverse

displacement vector be expressed in terms of trigonometric

forms;

1i



ASSUME WAVMNR(YFH
Wa OF A BUCK240G MODN

I
COMPITF SPRIN COONAW~

OF MATRIX K)UNDATION USING
TM AM• WAVNR1MIH-1I

DKIMINB MH CRITCA BUCKLIN
LOAD FMOM FRNIEA M ANALYSL

STHE W AV ENM OF THE BUCXLD G
MODE FROM TME FDfT HL ANALYSIS

ONFADED FROM THE
PD=I ELBW ANALYSIS

Figure 3. An iteration procedure to f ind the wavelength of the
buckled shape.
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f =-. sin it2 +E { Q) cos (15)

2 1 2

where U and U are time independent vectors of the nodal

transverse displacement. Substituting Equations (14) and (15)

into Equation (7), and considering the first term (i.e. i=1)

of Equation (15) as the first-order approximation yields the,

following eigenvalue matrix equation:

det[ [K,] +[K] ± .K [Kr] - L2 =0 (16)

The eigenvalues of 0 obtained from Equation (16) determine the

boundary of domain of principal instability. For the mass

matrix in Equation (16), both diagonal and consistent mass

matrices are used for comparison. The transverse shear effect

and rotatory inertia effect are neglected in this study

because the length of the fiber under consideration is much

larger than the cross-sectional dimension. A previous study of

dynamic instability of layered composite plates (Kwon 1991)

showed that the transverse shear effect was found to be

negligible if the length of a plate was much larger than a

plate thickness.

13



III. RESULTS AND DISCUSSIONS

A. STATIC BUCKLING

Under consideration in this study were fibers made of

graphite, Kevlar, and glass embedded in epoxy, and boron

embedded in an aluminum. Their material properties were

different so that the effect of different materials on

buckling was studied. The material properties are tabulated in

Table 1, which were obtained from a textbook (Tsai and Hahn

1980).

TABLE I. MATERIAL PROPERTIES OF FIBERS AND MATRICES

MATERIAL ELASTIC DENSITY (g/cm3)MODULUS (GPa)

GRAPHITE 230 1 1.75

KEVLAR 120 j1.44
GLASS 72 1 2.6

BORON 410 2.6

EPOXY 3.9

ALUMINUM 70

The first study considered a fiber of dimension L/r - 100

embedded in an epoxy. Here L/r is the ratio of the beam length

to radius. Both ends were assumed to be simply supported.

Interfacial debonding was assumed to occur at the center of

14



DEBONDING

AREA

p p

S~L )

Figure 4. A simply supported fiber with interfacial
debouding at the center.

the fiber as shown in Figure 4. The effect of the interfacial

debonding on the static buckling load is shown in Figure 5 for

four different cases. The results revealed that the percentage

reduction in the critical buckling load was almost independent

of the elastic moduli of the fibers even if the absolute

magnitude of the buckling loads varied for the three different

fibers. The graphite fiber had the largest magnitude of

buckling load and the glass fiber had the smallest buckling

load because of their elastic moduli. There was approximately

a 35 percent decrease of the static buckling load due to

complete debonding. In the case of the boron fiber embedded in

an aluminum matrix, there was a 42 percent decrease in the

15



0.95 -- GRAPHITE-EPOXY

........ KEVLAR-EPOXY9--- GLASS-EPOXY

-.8- BORON-ALUMINUM
S0.8

u 0,75.

0.7 '

Z 0.65

0.5 " S. ...... ..

0.55 ... 1 .1 1 1 1 .1
0 10 20 30 40 50 60 70 80 so 100

% INTERFACIAL DEBONDING

Figure 5. Effect of interfacial debouding on the buckling
load for simply supported fibers.

static buckling load due to complete debonding. For all cases,

it can be seen that, the reduction of the buckling load was

significant for initial 10 to 20 percent of debonding area and

changed very gradually after that.

The static buckling mode shapes varied as the interfacial

debonding increased. The shape changed from a symmetrical mode

to an antisymmetrical mode or vice versa as the debonding

progressed. In addition, the wavelength changed with the

debonding. Figure 6 shows buckled shapes of the Kelvar fiber

for different debonding sizes. The wavelength at the debonded

area was larger than that at the bonded area. The relative

magnitude of the buckled shape was much larger at the debonded

16



area than at the bonded area if there was a partial debonding

through the length of the fiber. Therefore, even if there is

waveness at the bonded area in Figure 6 (b), it is not

reflected in the buckled shape. The graphite fiber had the

largest wavelength while the glass fiber had the smallest

wavelength in an epoxy matrix.

In order to examine the effect of fiber length on

buckling, a fiber with ratio L/r = 200 was studied. The

absolute magnitude of critical load decreased for a fiber of

L/r = 200 when compared to that of a fiber of L/r = 100, but

the percentage reduction of the critical loads caused by the

interfacial debonding remained almost the same for the two

fibers of different lengthes. The wavelength was larger for

the longer fiber. The location of partial debonding was varied

to investigate its effect on the buckling load. For a fiber

simply supported at both ends, the location of debonding did

not make much difference on the decrease of buckling load. An

initial debonding at any location was the most critical factor

in reducing the critical buckling load.

The next study was to determine the effect of different

boundary conditions. A fiber with one end simply supported and

the other end free was considered. As before three different

fibrous materials were studied. First, a partial debonding was

assumed to start from the free end as shown in Figure 7.

Figure 8 shows the reduction of the critical buckling load as

a result of increased partial debonding. An initial debonding

17



(a) Perfect interfacial bonding

(b) 50 % interfacial debonding at the center

(c) complete interfacial debonding

Figure 6. Buckling modes of Kevlar fiber.
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DEBONDING
AREA

P P

(al Debonding starting from free end

DEBONDING
AREA

P P0+ - P

(b) Debonding starting from simply supported end

Figure 7. A free simply supported fiber with different
locations of interfacial debonding.
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0.95 - GRAPHrE--EPOXY

S....... KEVLAR-EPOXY

- - GLASS-EPOXY

S0.85- BORON-ALUMINUM

0.8-

S0.75 ~
0.7- V ......... ..................................................... ....................................................................................................
0.6- .

0.55] 7 -------------------------

0 10 20 30 40 50 60 70 80 90 100

% INTERFACIAL DEBONDING

Figure 8. Effect of interfacial debonding on the buckling load
for free simply supported fibers. (Debonding starts from free
end)

of 10 percent decreased the buckling load significantly while

no further debonding affected the buckling load. When a

partial debonding started at the simply supported end as shown

in Figure 7, there was no change in the buckling load

untilthere was at least 10 percent debonding as shown in

Figure 9. That is, the location was very critical in

decreasing the buckling load. This result was contrary to that

for a fiber with both ends simply supported.

The last study for static buckling was to examine the

effect of fiber breakage along with interfacial debonding. A

fiber with simply supported ends was considered. As before

four different fiber materials were used. After a fiber

breakage, partial debonding was assumed to start from that

point. (See Figure 10) Figure 11 shows a comparison of the

20



0.0

0.55 - GRAPHI'E-EPOXY
........ KEVLAR-EPOXY

0.8- • GLASS-EPOXY

0.75- BORON-ALUMINUM

0.7

0.0-

0.55
0 10 20 30 40 50 60 70 80 go Ic0

X INTERFACIAL DEBONOING

Figure 9.Effect of interfacial debonding on the buckling load
for free-simply supported fibers. (Debonding starts from the
supported end)

fiber
mat... I4- .U

DEBONOINGAREA

p L

Figure 10. Fiber breakage along with interfacial debonding.

fibers with a breakage and without it. A fiber breakage showed

a 50 percent decrese of the critical load, independent of

fiber breakage locations except for very close distances from

the supports. Fiber breakage near the supports is more

21



critical. Debonding effects after a fiber breakage were very

similar to the case without fiber breakage. An initial 10

percent debonding decreased the buckling load significantly

and after 30 percent no further debonding changed the buckling

load.

0.9-

- 0.8-

S0.7 GRAPHITE--EPOXY(NO BROKEN FIBER)

0.8

S 0.5

0.4
GRAPHITE-EPOXY(WITH BROKEN FIBER)

"....'°°°-~oo~... o.°... ........ oooo~oo..°o.o°.°.o°°.o.......°o,.......o°-o~oooo...• •o

0.3
0 10 20 30 40 50 60 70 80 90 100

X INTERFACIAL DEBONDING

Figure 11. Comparison of critical buckling loads for a broken
fiber and a fiber without breakage.

S. DYNAMIC BUCKLING

The domains of dynamic instability were plotted in Figures

12-15 for four different cases (Graphite-epoxy, Kevlar-epoxy,

Glass-epoxy and Boron-aluminum). Each differnt cases has

L/r-100 ratio with simply supported ends. The axial force and

22



circular frequency in all figures were normalized as shown

below:

p (17)

ON -R 2 (18)

where PCR is a static buckling load and 0 is the natural

frequency. A local debonding was assumed to begin from the

center. An interfacial debonding lowered the instability

domains. The results showed that the instability domains of

fibers embedded in an epoxy matrix were lowered 35 percent at

full debonding compared with no debonding. The instability

domain of boron-aliminum was lowered by 42 percent for the

same comparison. An initial 10 to 20 percent local debonding

influenced the instability domains significantly but a further

increase of debonding size had very little affect. Local

debonding also widened the instability domains. Although the

instability domains between 10 percent debonding and 100

percent debonding were not shown in Figure 12, these

instability domains were calculated and were located between

the outer borders of the mentioned domains.

After calculating the elastic moduli ratios, which was

shown in Table 2, it was seen that, when the elastic moduli

ratio decreased, the instability domains between 10 percent

debonding and full debonding scattered over a smaller area.
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TABLB II. ELASTIC MODULI RATIOS BETWEEN FIBERS AND MATRICES

FIBER-MATRIX ELASTIC MODULI
RATIO

GRAPHITE-EPOXY 58.97

KEVLAR-EPOY 30.77

GLASS-EPOXY 18.46

BORON-ALUMINUM 5.86

When a local debonding started at both simply supported

ends, the debonding effect was less critical than a local

debonding starting at the center until it progressed 20

percent debonding. For a debonding size larger than 20 percent

of the beam, the debonding effect was not sensitive to the

location (see Figures 16-19).

Fibers with free-simply supported ends were also studied

for dynamic buckling. Figures 20 through 27 show the change of

domains of instability caused by an interfacial debonding.

Figures 20 through 23 represent the case of a debonding

starting from the free end while Figures 24 through 27

represent the case a debonding starting from the simply

supported end. The debonding starting from the free end was

more critical to the instability domains than that starting

from the supported end. However, the dynamic buckling was less

sensitive to the location of a debonding than the static

buckling for free-simply supported fibers. The size of a
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debonding was more important than location in influencing the

instability domain.
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Figurve 13. Instability domains glass-epoxy with free and
simply supported ends (Dedonding started from the simply
supported end).
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Figure 14. Instability domains glass-epoxy with free and
simply supported ends (Dedonding started from the free end).
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Figure 15. Instability domains boron-alumilnum with free and
simply supported ends (Dedonding started from the free end).
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Figure 16. Instability domains graphite-epoxy with free and
simply supported ends (Dedonding started from the simply

supported and).
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Figure 17. Instability domains of simply supported graphite-
epoxy (Dedonding started from the center).
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Figure 18. Instability domains of simply supported Kevlar-
epoxy (Debonding started from the center).
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Figure 19. Instability domains of simply supported glass-epoxy
(Dedonding started from the center).
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Figure 20. Instability domains of simply supported boron
aluminum (Dedonding started from the center).
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Figure 21. Instability domains of simply supported graphite-
epoxy (Dedonding started from the ends).
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Figure 22. Instability domains of simply supported Kevlar-
epoxy (Dedonding started from the ends).
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Figure 23. Instability domains of simply supported glass-epoxy
(Dedonding started from the ends).
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Figure 24. Instability domains of simply supported boron -

aluminum (Dedonding started from the ends).
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Figure 26. Instability domains Kevlar-epoxy with free and
simply supported ends (Dedonding started from the free end).
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Figure 27. Instability domains boron-aluminum with free and
simply supported ends (Dedonding started from the simply
supported end).
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IV. CONCLUSIONS

An interfacial debonding between a fiber and a supporting

matrix made a significant effect on the critical static

buckling load of the fiber. An initial debonding of size 10

percent of the fiber length was most critical for a simply

supported fiber regardless of its location. Three different

fiber materials embedded in the same epoxy matrix yielded

almost the same percentage reduction of the critical buckling

load even if their absolute magnitudes of buckling loads were

different. For a free-simply supported fiber, a local

debonding located at the free end was most critical foi the

buckling load. Any size of debonding located at any other

position did not influence the critical buckling load. In

addition, a fiber breakage around the center of fiber along

with a partial interfacial debonding reduced the buckling

loads more significantly.

Interfacial debonding effects on dynamic instability of

embedded fibers were generally more critical than those on

static buckling loads. Debonding not only lowered instability

domains but also widened the domains. Debonding effects were

more significant for a free-simply supported fiber than for a

fiber with both ends simply supported. A local debonding of

size of 10 to 20 percent of the fiber length was most

influential in affecting the domain of dynamic instability.
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Debonding effects were not sensitive to changes in the

location of debonding or boundary conditions of a fiber.

35



LIST OF REFERENCES

Dale, W. C. and Baer E., 1974, "Fiber-buckling in
Composite Systems: a Model for the Ultrastructure of
Uncalcified Collagen Tissues", J. Materials Science, Vol. 9,
pp. 369-382.

Dow, N. J. and Gruntfest, I. J., 1960, "Determination of
Most-needed, Potentially Possible Improvements in Materials
for Ballistic and Space Vehicles", General Electric Company,
Air Force Contract AF 04(647)-269.

Fred, N. and Kaminetsky, J., 1964, "The Influence of
Material Variables on the Compressive Properties of Parallel
Filament Reinforced Plastics", Proc. of 19th Annual Technical
and Management Conf., Reinforced Plastics Division, Soc. of
Plastic Industry, pp.(9-A)1-10.

Hahn, H. T. and Williams, J. G., 1984, "Composite Failure
Mechanisms in Unidirectional Composites", NASA TM 85834.

Herrmann, L. R., Mason W. E., and Chan, S. T. K., 1967,
"Response. of Reinforcing Wires to Compressive States of
Stress", J. Composite Materials, Vol. 1, pp. 212-226.

Hetenyi, M., 1974, Beams on Elastic Foundation, The
University of Michigan Press, Ann Arbor, Michigan.

Kwon, Y. W., 1991, Finite Element Analysis of Dynamic
Instability of Layered Composite Plates Using a High-order
Bending Theory", Computers and Structures, Vol. 38, No. 1, pp.
57-62.

Lager, J. R. and June, R. R., 1969, "Compressive Strength
of Boron-Epoxy Composites", J. Composite Materials, Vol. 3,
pp. 48-56.

Lanir, Y. and Fung Y. C. B., 1972, "Fiber Composite
Columns Under Compression", J. Composite Materials, Vol. 6,
pp. 387-401.

Leventz, B., 1964, "Compressive Applications of Large
Diameter Fiber Reinforced Plastics", Proc. of 19th Annual
Technical and Management Conf., Reinforced Plastics Division,
Soc. of Plastic Industry, pp.(14-D)1-18.

36



Maewal, A, 1981, "Postbuckling Behavior of a Periodically
Laminated Medium in Compression", Int. J. Solids Structures,
Vol. 17, pp. 335-344.

Rosen, B. W., 1965, "Mechanics of Composite
Strengthening", Fiber Composite Materials, Amer. Soc. for
Metals, pp. 37-75.

Timoshenko, S. P. and Gere, J. M., 1961, Theory of Elastic
Stability, McGraw Hill Book Co., New York.

Tsai, S. W. and Hahn, H. T., 1980, Introduction to Composite
Materials, Technomic Publ.

Wass, A. M., Babcock, C. D. Jr., and Knauss W. G., 1989, "A
Mechanical Model for Elastic Fiber Microbuckling", Composite
Material Technolouy 1989, ASME PD-Vol. 24, pp. 203-215.

37



INITIAL DISTRIBUTION LIST

No. of Copies

1. Defense Technical Information Center 2
Cameron Sitation
Alexandria, Virginia 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, California 93943

3. Deniz Harp Okulu 2
Tuzla
Istanbul, Turkey

4. Golcuk Tersanesi Komutanligi 2
Golcuk
Kocaeli, Turkey

5. Taskizak Tersanesi Komutanligi 2
Kasimpasa
Istanbul, Turkey

6. Deniz Kuvvetleri Komutanligi 1
Personel Egitim Daire Baskanligi
Bakanliklar
Ankara, Turkey

7. Professor Y.W. Kwon, Code ME/Kw 1
Department of Mecanical Engineering
Naval Postgraduate School
Monterey, California 93943

8. Department Chairman, Code ME/Kk 1
Department of Mecanical Engineering
Naval Postgraduate School
Monterey, California 93943

9. Naval Engineering Curricular Office (Code 34) 1
Naval Postgraduate School
Monterey, CA 93943

10. Dr. Rambert F. Jones, Jr. 1
Submarine Structures Division
Code 172, Bldg. 19 Room A236B
David Taylor Research Center
Bethesda, Maryland 20084-5000

38


