
c• NAVAL POSTGRADUATE SCHOOL
__ Monterey, California

I

1by

DTIQ
epeeCT 920V.2 &19M1r

THESIS SB W

Cognitive Modeling and the Evolution of
the Student Model in Intelligent Tutoring Systems

by

William Charles Hoppe

September 1992

Thesis Advisor: Dr. Yuh-jeng Lee

Approved for public release; distribution is unlimited.

92-29900

I lliil ill llilliil~lliilill

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION UNCLASSIFIED lb. RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUON/AVAILABILITY OF REPORT
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release;

distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

"§4. NAME OF EWFORM G ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Namputer osctencrduept. (if applicable) Naval Postgraduate SchoolNaval Postgraduate School CS

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)

Cognitive Modeling and the Evolution of the Student Model in Intelligent Tutoring Systems

12. PERSONAL AUTHOR(S) William Charles Hoppe

13q. •I-YPE qF W•I•PORT 13b. TIME COVERED '14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
master s esis FROM 08/90 TO: 09/92 1992, September 24 123

16. SUPPLEMENTARY NOTATION he views expressed in this thesis are those of the author and do not reflect he
official policy or position of the Department of Defense or the United States Government.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Intelligent Tutoring Systems, Computer-Aided Instruction, Cognitive model-
ing, Student Model.

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
This thesis deals with the design and development of a student module for an intelligent tutoring system (ITS). Within
the context of this thesis a student module has two components: a student model, and a diagnostic component. We
present an in-depth review of the history of ITS, on the design, development, and limitations of the system. We
review the methods of cognitive modeling used in some historical systems and a variety of methods of program
analysis used in previous works. We also discuss some Ada language issues that are both language specific and
compiler specific, and related to tutoring in Ada. Our approach was to take an existing intelligent tutoring system, an
Ada language tutor written in Ada, and extend the capabilities of the student module without altering the existing
student model or diagnostic package. We designed heuristics to analyze the programming constructs involved in the
student learning process and were able to generate information which may indicate the deficiencies and possible
causes in the student model. The implementation of this idea required the integration of CLIPS and the Ada
programming language. Using a small portion of the Ada language we have successfully diagnosed common
programming misconceptions and missing concepts with novice Ada programmers.

20. DISIRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
(3 UNCLASSIFIED/UNLIMITED [] SAME AS RPT. [] DTIC USERS UNCLASSIFED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
Yuh-jeng Lee (408) 646-2361 CSALE

DO FORM 1473,84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete UNCLASSIFIED

i

Approved for public release; distribution is unlimited

Cognitive Modeling and the Evolution of the Student Model
in Intelligent Tutoring Systems

by
William Charles Hoppe

Captain, United States Army
B. S. General Engineering, United States Military Academy, 1983

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

September 1992

Author:

j-~ilam C harles Hopper

Approved By: /

Yudi-jeng Lee, Thesis Advisor

X! tan-Tak Shing, Second Reader

Robert B. McGhee, Chairman,
Department of Computer Science

ABSTRACT

This thesis deals with the design and development of a student module for an

intelligent tutoring system (ITS). Within the context of this thesis a student module has two

components: a student model, and a diagnostic component. We present an in-depth review

of the history of ITS, on the design, development, and limitations of the system. We review

the methods of cognitive modeling used in some historical systems and a variety of

methods of program analysis used in previous works. We also discuss some Ada language

issues that are both language specific and compiler specific, and related to tutoring in Ada.

Our approach was to take an existing intelligent tutoring system, an Ada language

tutor written in Ada, and extend the capabilities of the student module without altering the

existing student model or diagnostic package. We designed heuristics to analyze the

programming constructs involved in the student learning process and were able to generate

information which may indicate the deficiencies and possible causes in the student model.

The implementation of this idea required the integration of CLIPS and the Ada

programming language. Using a small portion of the Ada language we have successfully

diagnosed common programming misconceptions and missing concepts with novice Ada

programmers.

D0IC QUAIJTY IXa'CTED 4

Aooeamlon l'ow

ITIS GA

DTTIC TAB
Unaziotu••ed -l
.uttLricat 1o

By
Dist~ri~bution/

Availability Codes

Avail and/or

D18% Speola41,,, gPe

TABLE OF CONTENTS

1. INTRODUCTION .. I
A. BACKGROUND .. 1
B. OBJECTIVES ... 2
C. SCOPE ... 2
D. ORGANIZATION .. 3

H1. INTELLIGENT TUTORING SYSTEM S .. 5
A. HISTORY OF INTELLIGENT TUTORING SYSTEMS 5
B. BASIC DESIGN OF INTELLIGENT TUTORING SYSTEMS 7
C. THE STUDENT M ODULE .. 9

1. STUDENT M ODELING .. 9
2. DIAGNOSIS .. 12

D. PREVIOUS SYSTEMS AND THEIR STUDENT MODULES 14
1. THE LISP TU TOR .. 15
2. PROUST .. 16
3. SCHOLAR .. 17
4. SARAH ... 19
5. ITS Ada ... 20

a. Architecture ... 20
b. The Student M odule .. 21
c. Evaluation of "ITS Ada" 22
d. Limitations .. 23

MII. PROGRAM ANALYSIS ... 24
A. PROUST .. 24
B. LAURA ... 25
C. ALGORITHMIC PROGRAM DEBUGGING .. 26
D. TALUS ... 27
E. SUM M ARY ... 27

IV. CLIPS ... 30
A. DESCRIPTION OF THE CLIPS LANGUAGE .. 30
B. HISTORY OF CLIPS ... 30
C. THE CLIPS ENVIRONM ENT .. 31

V. COMPLEXITY AND LANGUAGE ISSUES .. 35
A. COM PLEXITY ISSUES .. 35

1. DECIDABILITY .. 35
2. THE HALTING PROBLEM .. 36
3. SATISFIABILITY ... 37

B. THE SCOPE OF THE ADA PROBLEM .. 38
VI. DESIGN ... 40

A. SYSTEM INTEGRATION .. 40
B. DIAGNOSIS ... 40
C. EXTENDED STUDENT M ODEL ... 41
D. STUDENT M ODULE ... 41

iv

VII. IMPLEMENTATION .. 43
A. ENHANCING THE CLIPS ENVIRONMENT ... 43

1. CLIPS MODE ... 43
2. INFERIOR CLIPS MODE ... 46

B. INTEGRATION OF CLIPS AND ADA .. 48
C. ENHANCED STUDENT MODEL ... 52
D. THE STUDENT MODULE .. 53
E. EXAMPLES ... 56

VIII. CONCLUSIONS ... 61
A. ACCOMPLISHMENTS ... 61
B. FUTURE RESEARCH AREAS ... 61

APPENDIX A. EMACS CLIPS MODE ... 63
APPENDIX B. CLIPS/ADA INTERFACE PACKAGE .. 7.)
APPENDIX C. CLIPS RUN-TIME EXAMPLE ... 79
APPENDIX D. ADA EMULATOR SOURCE CODE ... 80
APPENDIX E. CLIPS RULES .. 89
APPENDIX F. ADA SURVEY .. 107
REFERENCES ... 109
INITIAL DISTRIBUTION LIST ... 114

LIST OF FIGURES

Figure 1, Intelligent Computer Assisted Instruction Domains 7
Figure 2, Anatomy of an Intelligent Tutoring System.8
Figure 3, The Space of Student Models. .. 11
Figure 4, Diagnostic Strategies. .. 14
Figure 5, Example of a Buggy Program in PROUST. 16
Figure 6, Excerpt from a Dialogue with SCHOLAR. 18
Figure 7, Architecture of ITS Ada. .. 21
Figure 8, Basic Algorithm of Shapiro's Algorithmic Debugger. 26
Figure 9, CLIPS Normal Execution Cycle ... 31
Figure 10, Algorithm to Add a New Rule to the CLIPS Agenda........................... 32
Figure 11, CLIPS Conflict Resolution Strategies. 33
Figure 12, CLIPS Mode Syntax Table Definition 44
Figure 13, CLIPS Mode Form Association List. ... 45
Figure 14, Main Function for CLIPS Mode. .. 45
Figure 15, CLIPS Interpreter Prompt in Emacs 46
Figure 16, Invoking CLIPS with ESC-x run-clips, from Emacs.47
Figure 17, Minibuffer Message After Invoking CLIPS with ESC-x run-clips 47
Figure 18, Emacs Windows after Invoking the CLIPS Interpreter. 48
Figure 19, CLIPS Mode Command Key Bindings. 48
Figure 20, DEC VMS Ada Pragma for CLIPS 50
Figure 21, Verdix Ada Pragma for CLIPS. .. 50
Figure 22, Verdix Ada, Adato_C_String Conversion Function 51
Figure 23, Screen 1 from ITS Ada ... 52
Figure 24, Invocation and Initial Prompt of ITS Ada Emulation 53
Figure 25, Contents of Enhanced Student Model .. 53
Figure 26, Solution Files for the Enhanced System. .. 54
Figure 27, Data Flow Diagram of Enhanced System .. 55
Figure 28, CLIPS Rule load-expert-solution... 56
Figure 29, Facts Contained in prob2.clp. .. 56
Figure 30, Screen Dump of Problem Two ... 57
Figure 31, Facts Contained in prob4.clp. ... 58
Figure 32, Screen Dump of Partial Solution to Problem Four. 59
Figure 33, CLIPS Error Rule infinite-loop-in-basic-loop 59
Figure 34, Screen Dump of Partial Solution to Problem Four with an Infinite Loop. 60

vi

ACKNOWLEDGEMENTS

I would like to thank the United States Army Artificial Intelligence Center for their

interest and support throughout this work. It was LTC Teter's original suggestion to take

this approach in this research area and his initial contacts that made this possible.

I would also like to thank Dr. Willard Holmes of the United States Army Missile

Command. The papers he authored and provided to us were the initial starting point for this

research. His interest and availability during the early phases of the research were

invaluable and a great morale boost.

vii

I. INTRODUCTION

A. BACKGROUND.

Computers have long been recognized for their enormous potential as an educational

tool [WENG 87]. Intelligent tutoring systems are an outgrowth of the explosive and rapid

advances in technology applied to the domain of computer-aided instruction. Artificial

intelligence in the domain of education manifests itself in systems called intelligent tutors,

which are a step beyond traditional computer-assisted instruction [BURN 88].

Intelligent tutors are smart systems designed to assist, coach, or teach, skills or

knowledge traditionally left to the human educators. The methods applied in the past, and

currently being investigated, are as diverse as the domains of skills and knowledge being

tutored. These methods include the mixed-initiative dialogue of the tutor SCHOLAR

[BARR 82], the socratic teaching paradigm of the tutor WHY [BARR 82],the overlay

student model of the LISP tutor [ANDE 851, and the reactive learning environment tutor

SOPHIE [WENG 871. This list is not inclusive, nor is it representative of all the methods.

There are four basic components of an ITS: the student-machine interface, the expert

module, the instructional or tutor module, and the student module. We need to make a

distinction between module and model. Throughout the remainder of this work the term

module will refer to the entire abstract component of the ITS. A module may have several

sub-components. The term model will refer to a specific method, theory, or data structure.

A model is normally a component of a module.

This thesis deals with the student module, more specifically, the modeling of the

student's knowledge or lack of knowledge, in a particular application domain. Ideally the

student module should contain all the aspects of the student's behavior and knowledge that

have repercussions for the student's performance and learning [WENG 87]. The student

module can be, and often is, divided into two parts: a student model and a diagnostic

component. The student model is that component of the ITS that represents the student's

current state of knowledge normally measured in respect to the expert module. The

diagnostic component attempts to uncover cognitive states from the student's observable

behavior. The student model can be visualized as the data structure. The diagnosis is then

the process by which the student model is manipulated. It is this tightly coupled nature of

the two components that gives rise to the design issue referred to as the student modeling

problem [VANL 881.

Cognitive modeling is in essence the ability of the tutoring system to keep track of the

student's current state of knowledge and understanding of the domain subject matter. The

goal of the tutoring system is then to use this individualized student model to tailor the

system and adapt the instruction to the specific student's needs. It is the manipulation of

the student model that gives the ITS it's advantage over other types of computerized

learning systems [HOLM 91b].

B. OBJECTIVES

This thesis was embarked upon to answer three questions. How can the student model

and other knowledge obtained by the ITS be best captured by the expert system shell

CLIPS, in order to facilitate further manipulation of that knowledge? How can the

knowledge obtained by the ITS be used to tailor the lessons of the system for the student?

Can a rule based system be functionally integrated with Ada? These general questions

evolved once the scope of the issues began to immerge. The key elements at issue here

however remained the same. They are:

1. Augmentation of an existing student module in order to make it more robust;

2. Integration of the expert system shell CLIPS with Verdix Ada; and

3. Environment enhancement for CLIPS within the Emacs programming

environment.

C. SCOPE

ITS Ada [DELO 91] is an existing Ada language tutor, written in Ada. It has a student

model and diagnostic component that easily identifies syntactic knowledge issues to the

student. These characteristics were designed into the system. Using the expert systems

2

shell CLIPS, we have attempted to make the student model more robust in its ability to

model the cognitive processes of the student. This was to be done with as little alteration

of the original tutor as possible. Due in large part to the size of the Ada language, only a

specific subset of concepts have been undertaken in order to get a functioning prototype.

A functioning prototype was necessary in order to ascertain the problems associated with

the process, design issues related to changing the student model, and control issues arising

from the interaction of Ada and CLIPS. The specific Ada constructs used in the prototype

are the "if" conditional statement, and the three basic looping constructs: the simple loop,

the "while" statement, and the "for" statement.

Many significant design decisions have to be addressed, including language

compatibility, control flows associated with language compatibility, and the basic

architecture of the student module. All of these issues, along with an extensive historical

background of the types of student models that have been implemented, encompass the

bulk of the work of this thesis.

D. ORGANIZATION

Chapter II of this thesis provides an overview of intelligent tutoring systems in general

with a specific focus on student models in several historical tutoring systems. Chapter III

covers the area of program analysis and the issues that must be addressed from a student

modeling perspective. Chapter IV provides an introduction of the features and

functionality of the expert system shell CLIPS. Chapter V analyzes the complexity and

language issues related to the Ada language in respect to the modeling of the students

knowledge. Chapter VI contains the details of the design and integration of the student

model adopted. Chapter VII discusses the implementation details of the student model,

integration details of the two languages, and environment enhancements used in the

development of the system. Chapter VIII summarizes the work accomplished and areas for

future research. The appendices contain the source code for the interface package for

3

the source code for the interface package for CLIPS and Ada, the elisp code for the clips-

mode within the Emacs programming environment, and the CLIPS code for system.

4

IL INTELLIGENT TUTORING SYSTEMS

A. HISTORY OF INTELLIGENT TUTORING SYSTEMS

In order to look at the history of ITS it is essential to look first at the history of

Computer Based Instruction (CBI) and Computer-Assisted Instruction (CAI). CBI has it's

foundations in the development of machines that build interactive teaching devices. The

term CBI can be traced back in the literature as far as 1927 [PARK 871. Most of the

historically significant work in CBI was done in 1950's and 1960's and used programmed

instruction as the base model for the design of the systems. This is not to say that CBI

ceased to exist after 1969. On the contrary, CBI is still an active area of research. It was

the basic goals of CBI, to use machines to teach, that drove researchers to ask more of the

instructional models they were designing.

Another significant factor in the development of CBI was the teaching methodology

that was most prevalent during this period. Skinnerian behaviorism was the prevailing

theoretical position. Skinnerian behaviorism was the belief in taking small, linearly

traceable steps in the presentation of knowledge with immediate feedback to the student

[PARK 87]. This made most CBI systems very flat, programs of instruction. It would be

analogous to putting the pages from a book into a computer. The student reads the pages

in order, and is then asked pertinent questions at the end of the reading. The CBI system

provides all the data, questions, and feedback. However, there was no flexibility in the

system. The co-location of the expert knowledge and pedagogical knowledge in the same

module was a common characteristic of early CBI. The most apparent deficiency of the

systems was their inability to handle questions the student may have had which were not

covered in the review.

This ftime-oriented and predefined format of CBI had it's obvious limitations.

Attempts to overcome these limitations lead to the development of generative CAI in 1969

[PARK 87]. As the name implies, these systems could generate problems within the

subject domain. The subject domains for these systems were restricted to arithmetic and

5

vocabulary-recall. These first systems generated problems without regard to the mastery

level of the student. The next version of these types of systems provided drill and practice

sessions with an ability to select problems commensurate with the student's ability. These

systems were labeled adaptive CAI [SLEE 82]. These traditional CAI programs were still

very statically organized and had only a limited ability to adapt to the student. They were

designed to encompass both the domain specific knowledge and the teaching (pedagogical)

knowledge of expert teachers [WENG 87].

CAI went through change in the early 1970s. There is no distinctive boundary

between CAI and Intelligent CAI (ICAI) or synonymously, ITS. The desire to have the

systems reason about the ability of the student and present the appropriate problem set leads

to the development of ITS. One of the original goals of ITS was to take the existing

adaptive CAI systems and extend their application domain, their power, and the accuracy

of their predictions of the student's level of mastery [SLEE 82]. In order to achieve this

goal a design change would be necessary. As previously noted, in CAI systems, the student

model and pedagogical knowledge were all contained in the same module. ITS separated

the domain knowledge, the teaching strategy and the student knowledge into separa'e

modules. This separation allowed independent manipulation of the student knowledge to

tailor the session to each student's needs [BARR 82]. The major intuitive difference

between CAI and ITS is that in CAI the computer system possessed the inductive power of

its human counterpart. In ITS the student interacts with the system. It is the students

response that drives the dialogue.

There is another area in the history of ITS that needs to be noted. There are three major

disciplinary domains that have an impact on ITS: education, psychology, and computer

science. As stated earlier, ITS were designed to be educational tools. For this reason the

field of education (and training) has a vested interest in these systems. The development

of models of thought falls under the purview of psychology. Hence development of the

student model, and the cognitive process itself, has peeked the interest and involvement of

many psychologist. Finally, the use of artificial intelligence technology in computer

systems clearly falls in the discipline of computer science. ITS falls in the intersection of

these disciplines (see Figure 1)[KEAR 871.

COGNITIVE SCIENCE

Figure 1: Intelligent Computer Assisted Instruction Domains.

The interdependency of the disciplines means each discipline has an impact on the

domain of ITS. An independent discovery in one area may affect research in another.

B. BASIC DESIGN OF INTELLIGENT TUTORING SYSTEMS

An intelligent tutoring system has what has been called an anatomy [BURN 88], a

general architecture which most systems follow. It consists of an expert module, student

diagnostic module, instructor module, and a human-computer interface (see Figure 2). The

individual components of ITS have at least one of the previously mentioned disciplines in

which research has been dedicated.

As stated in Chapter 1, the expert module contains the domain knowledge. This is

probably the most labor intensive portion of ITS development. It requires the discovery,

collection, and codification of the domain knowledge from expert sources. These sources

may be human experts or other resources. There are three traditional designs in this

knowledge engineering process: black box, traditional expert systems, and cognitive

models. The black box model does not require codification of the entire domain's

7

knowledge. The model revolves around an algorithm or series of algorithms that simulate

the appropriate behavior correctly. The expert systems model requires the normal

development cycle of any expert system to codify the domain knowledge. Cognitive

models also require codification of the explicit domain knowledge. There are three

cognitive models depending on the type of knowledge: procedural, declarative, and

qualitative. The cognitive models require a simulation of the way the humans use the

domain knowledge [ANDE 88].

TUTORSTUDENT
MODULE

Figure 2: Anatomy of an Intelligent Tutoring System.

The tutor is the instructor module and is used to focus the system on the appropriate

knowledge deficiency. This module deals with the teaching technique to be used in the

tutor. There are several teaching strategies that can be used. The intended use of the

..8.

system, domain application, amount of time delay between the student error and a system

response, the method of system response, are all factors in deciding this strategy. The most

common strategies are: explanation, guided discovery, coaching, coaxing and critiquing.

They range in theory from despotic to diagnostic. Despotic systems provide immediate

feedback as soon as the error is detected. Diagnostic systems compare student and expert

behaviors then reasons about how to elicit better learning performance [WOOL 91].

The instructional environment and human-computer interface facilitate the effective

interaction of the tutorial session. This module can have the greatest impact on the

usefulness and utility of the ITS. Since the student is interfaced to the ITS through this

module, its design is critical to providing the appropriate learning environment. If it is

poorly designed the effectiveness of the interactive session will suffer. If it is well designed

it can enhance the learning process. The technique chosen will affect two aspects of the

ITS. It will affect how the student interacts with the system and how the student interacts

with the domain [MILL 88].

C. THE STUDENT MODULE

The student module, as defined here, has two components: the student model and a

diagnostic component. The two components are very tightly coupled and should be

designed together. The student model can be thought of as the data structure that maintains

the student's current state of knowledge. The diagnostic component manipulates this data

structure in order to infer the student's cognitive state [VANL 881. The purpose of this

module is to make a hypothesis about any misconception or less than optimal performance

strategies so the tutoring module can help the student correct the error or strategy [BARR

821.

1. STUDENT MODELING

The student model contains the system's knowledge of the student. It should be

as encompassing as possible and updated dynamically throughout the tutorial session

[KEAR 87]. Van Lehn [VANL 881 developed a three dimensional classification of the

9

student model based partially on the structural properties of the student model and partially

on the properties of the input available to the diagnostic component. The classification has

three dimensions. Each dimension has three possible values.

Bandwidth relates to the input to the system. It is a rough characterization of the

amount and quality of data input. The three values of bandwidth are: mental states,

intermediate states, andfinal states. In an ideal situation we would know the mental states

the student went through to get to the solution. Unfortunately, such an ideal situation is

likely unattainable. The highest attainable bandwidth then is an approximation of the

mental states where both physical and mental activity is available. The next highest

bandwidth is intermediate states. Here only the physical activity is available. These states

are observable in problem domains where the student can manipulate the problem into

simpler problems enroute to the final solution. The lowest bandwidth is final states. Final

states are just that, the final solution. With final states the systems gets no other information

except the student's final solution.

In order to solve the problem some type of interpretation of the knowledge is

necessary. Classification of the knowledge type dictates the type of interpretation

employed. The type of knowledge in the student model can be procedural-flat, procedural-

hierarchical, and declarative. Van Lehn did not include qualitative type knowledge in his

theory. Declarative knowledge is that pure knowledge that has just been discovered

[ANDE 90]. This is analogous to the information gained when reading a book. The new

knowledge is declarative. Declarative knowledge interpretation searches over the entire

knowledge base each time a decision needs to be made [VANL 88].

Procedural knowledge is attained through the compilation of declarative

knowledge. Procedural knowledge can only be acquired through the use of declarative

knowledge [ANDE 90]. This is analogous to taking the information gained from reading a

book on programming in LISP and writing a LISP program. Procedural knowledge can be

thought of as knowledge gained through the application of declarative knowledge.

Procedural knowledge interpretation makes decisions based solely on local knowledge

1o

[VANL 88]. To visualize this, let us consider the traversal of a tree. Once at a node the

only choices available are the branches out of that node. Knowledge about the rest of the

tree structure is not available to the decision process. Procedural-flat knowledge

interpretation is done solely on the current state of the problem. Procedural-hierarchical

knowledge interpretation allows the problem to be broken down into sub-goals.

The student model is basically the expert knowledge of the system plus the

student's misconceptions and missing concepts. Misconceptions are concepts the student

has but the expert does not. Missing concepts are concepts the expert has that the student

does not. The representation of these differences make up the third dimension of the

classification, student-expert difference. The student-expert difference dimension can take

on one of the following values (models): overlay, bug libraries, and bug part libraries.

The overlay model can only represent missing concepts. The student's knowledge is

considered a subset of the expert's knowledge. Bug libraries are labor intensive to build

but can represent both missing concepts and misconceptions. It is a predefimed library of

missing concepts and misconceptions. The bug part library constructs the bug from a

library of predefined bug parts during diagnosis [VANL 88].

owledge
NType

- Procedural-flat Procedural Hierarchical Declarative
BandwidthN

**Kimball's calculus tutor
Mental "Anderson's LISP tutor GUIDON
States **Anderson's Geometry tutor

"**The MACSYMA Advisor *SCHOLAR
Intermediate WEST **Spade *WHY
States WUSOR **Image *GUIDON

**LMS *BUGGY
Final **Pixie *DEBUGGY *MENO
States **ACM *IDEBUGGY *PROUST

Figure 3: The Space of Student Models.

11

Given the definitions of the three dimensions of the student model, each with

three possible values, there are 33, or 27, possible student models within this framework. A

table of some of the more well known tutors have been collated by Kurt Van Lehn and are

reproduced here for comparison (see Figure 3). The student-expert difference dimension is

represented by the asterisks: no asterisks indicates an overlay, single asterisks (*) indicates

bug library, and double asterisks (**) indicates bug parts library [VANL 88]. This is not an

inclusive list of all tutors and does not reflect any of the current work ongoing.

2. DIAGNOSIS

Diagnosis can have multiple purposes. This purpose normally requires a

combination of the following three tasks: inference, interpretation, and classification.

These steps are almost sequential. Inferences reconstruct internal processes and states on

the basis of observable behavior. Interpretation makes sense of the inferences and

observations by placing them in the context of the domain. Finally, classification makes

relevant distinctions that will allow different actions to be triggered. Diagnosis in ITS is

normally done for pedagogical purposes. In this context there are three levels at which this

knowledge may be relevant: the behavior level, epistemic level, and the individual level.

The individual level can be sub-divided into eight categories: architectural, learning,

stereotypical, motivational, circumstantial, intentional, reflexive, and reciprocal [WENG

87]. We are now fully entrenched in the cognitive science discipline of ITS. This

introduction to the terms will be the extent of our cognitive science discussion.

The introduction of terms used in diagnosis was necessary to reiterate the vastness

of the development knowledge used for ITS. We felt this was necessary before moving on

to any discussion on the practical issues of diagnosis. There are three basic issues that must

be addressed when attempting to model the student's behavior: credit allotment,

combinatorial explosion, and noisy data. These problems directly affect diagnosis.

The credit allotment problem stems from trying to assign credit or blame to

appropriate construct within the diagnostic component (rule, procedure, path, etc.). The

12

component that identified the inconsistency in the student's knowledge should get the

credit. Credit assignment can be hindered by non-resolution of multiple possible correct

solutions or an inability to find a construct that matches the inconsistency. Systems that

use a generative approach to diagnosis must account for the combinatorial explosion

potential inherent in producing the primitive actions, plans, or rules that explain the

student's behavior. Non-systemic mistakes are those mistakes that are not associated with

the knowledge misconceptions or missing concepts. They are errors associated with

fatigue, typographical errors, cognitive overload and the like. These non-systemic errors

are called noisy data. Noisy data should not be handled the same way as errors made from

a systemic misunderstanding of the domain knowledge [SLEE 82]. These three issues are

a function of the structure of the data maintained in the student model, the granularity of

the input data, and the diagnostic method employed.

In the assignment of credit problem, bandwidth and knowledge type have the

most significant impact. The type of knowledge in the system will dictate the constructs

used to represent misconceptions and missing concepts. The lower the bandwidth the

harder the inference problem. The more data that is available the more information the

system has to make the appropriate credit assignment. A combination of low bandwidth

and procedural-flat knowledge generally results in general constructs. The more general

the construct the harder it is to decide which construct receives credit.

In the combinatorial explosion problem the student-expert difference has the most

impact. In the overlay model the choice is binary. The error is detected with the existing

constructs or the error is not detected. This places more emphasis on the diagnostic

technique employed. Bug libraries are finite but attempting to resolve compound errors

can generate infinite combinations. Bug part libraries, normally significantly smaller than

bug libraries, compound the problem of bug generation. The number of possible bugs

becomes an exponential factor of the number of bug parts.

Bandwidth is the major factor in accounting for noisy data. The more input the

systems has the more noisy possibilities the system must filter. With little analysis it is

13

clear that the bandwidth, knowledge type and student-expert difference values directly

impact not only on the existence, but the severity of the problem.

The diagnostic strategy also has an impact on the severity of these problems. Kurt

Van Lehn details nine of the most prevalent strategies: model training, path planning,

condition induction, plan recognition, issue tracing, expert systems, decision trees, generate

and test, and interactive diagnosis. Replacing the systems from Figure 3 with the

diagnostic strategy of the systems generates Figure 4 [VANL 88].

ow ge
Type

Procedural-flat Procedural Hierarchical Declarative
Bandwidth

Mental Model tracing
States

Intermediate Issue tracing Plan recognition Expert
States system

Path finding Decision tree
Final Condition Generate and test Generate
States Induction Interactive and test

Figure 4: Diagnostic Strategies.

We will dispense with the individual analysis of each strategy. However, it is

obvious that those strategies that have multiple paths or are of a generative nature must deal

with the combinatorial explosion problem.

D. PREVIOUS SYSTEMS AND THEIR STUDENT MODULES

In order to see how all these factors come together in actual systems we will look at

the student modules of four systems. We will look at these systems from the perspective

of the three dimensions of the student model and the diagnosis technique employed.

14

1. THE LISP TUTOR

The LISP tutor was designed at Carnegie-Mellon University in 1985. Its purpose

was to teach novice users the LISP programming language. The system was menu driven

and interactive. The system received all keystrokes as input. It also contained a detailed

cognitive model of how students learn to program [ANDE 85]. Since both the physical and

mental activity of the student are available, the system has a mental states bandwidth.

The development of a LISP program starts some place. From that starting point

only the current state of the solution is relevant to the next step. Most programmers do not

start a function (function in LISP, procedure in an imperative language) until the

completion of the current one. This classifies the knowledge type as procedural. But, is it

hierarchical or flat? The more pertinent question is whether the goal can be divided into

sub-goals? A LISP program can be attacked in this manner. The LISP tutor does attack

the goal in this manner. Therefore, the knowledge type of the system is procedural-

hierarchical.

There were approximately 325 production rules in the original version of the LISP

tutor that were dedicated to planning and writing LISP programs. There were

approximately 475 buggy versions of those same production rules. These bug parts were

designed so they could account for all possible student deviations from the ideal solution

path [ANDE 85]. The student-expert difference in this systems was modelled by a bug part

library.

The LISP tutor follows the student input as it is entered. The tutor analysis the

student's input and tries to match it to a production rule. If the production rule is one of the

correct rules the system remains silent waiting for more input. If the production rule is one

of the buggy rules then the system response with advice. The key here is that the system

has an ideal model of what the system would like the student to know. It can generate a

correct path through the sub-goals based on the specification of the problem. It compares

the student stages of program development path with the ideal path. A deviation in the path

is an error [ANDE 85]. This is a model tracing diagnosis strategy.

15

2. PROUST

PROUST was designed at Yale University in 1985. It's purpose was to help

novice programmers learn how to program in PASCAL [JONS 85]. Figure 5 [JONS 851

shows how the system interacts with the student. The student gets a problem. The student

solves the problem. PROUST analyzes the solution and provides feedback.

Problem: Read in numbers, taking their sum, until
the number 99999 is seen. Report the average. Do
not include the final 99999 in the average.

I PROGRAM Average(input, output);
2 VAR Sum, Count, New, Avg: REAL;
3 BEGIN
4 Sum := 0
5 Count:= 0;
6 Read(New);
7 WHILE New <> 99999 DO
8 BEGIN
9 Sum:= Sum + New;
10 Count := Count + 1;
I 1 New:= New + 1;
12 END;
13 Avg := Sum / Count;
14 Writeln('The average is ', avg);
15 END;

PROUST output:

It appears that you were trying to use line 11 to read the
next input value. Incrementing NEW will not cause the
next b value to be read in. You need to use a READ
statement here, such as you use in line 6.

Figure 5: Example of a Buggy Program in PROUST.

The input to the system is the completed PASCAL program. The system has no

idea of the cognitive states the student went through to get to the solution. All the physical

activity is not available to the systems. The only input the system receives is the final

program solution. This is an example offinal states bandwidth.

The knowledge type in PROUST is declarative. Recall the definition of

declarative knowledge. Declarative knowledge is that pure knowledge that has just been

16

discovered [ANDE 90]. In PROUST the student solution suddenly appears. There is no

way for the system to reconstruct the process by which the student reached that solution. It

is raw data to the system.

The student-expert difference model in PROUST is a bug library of known types

of bugs [WENG 871. The bugs are managed as rules that explain mismatches in paths

between student solution and expert solution. Only these error rules are reported to the

student. The system has a set of transformation rules to preserve the equivalence of two

code segments. If an inconsistency occurs for which the system does not have an error rule

or transformation rule, it is unable to reconcile the difference and conducts a partial

analysis. PROUST tells the student about those parts of the solution it did not understand

[JONS 85].

PROUST uses a generate and test diagnostic strategy. The possible programming

plans are generated and tested to see how well they match the student solution. Those

possible explanations of the student bugs are evaluated to determine which solution

matches, near-misses, or misses [JONS 85]. The plan that best matches the student solution

is tried first.

3. SCHOLAR

SCHOLAR was a product of Bolt Bernek and Newman, Incorporated in 1970. It

was designed to tutor students on simple facts about South American geography [BARR

82]. It was one of the early, mixed-initiative, tutors. Mixed-initiative tutors were those that

both the student and the system could initiate the dialogue. Figure 6 [WENG 87] is an

excerpt from a dialogue with SCHOLAR.

SCHOLAR allows the student to initiate the dialogue with the tutor. Allowing the

student to control the initiative does not allow us to capture the cognitive states that may

have lead the student to his last answer or the current question. Since we do not know what

direction the student may take, attempting to account for all possibilities leads to the

familiar combinatorial explosion problem. SCHOLAR does not try to model the students

17

cognitive state by priori assumptions about the possible state space. It takes all the physical

input from the keyboard; all physical input is made available to the system. This is defined

as intermediate states bandwidth.

SCHOLAR: Approx what is the area of Brazil?
Student: 2,500,000 square miles.

SCHOLAR: Wrong. Please indicate if the following statement is
correct: the area of Paraguay is approx 47,432 square
miles.

Student: What is the area of Brazil?
SCHOLAR: The area of Brazil is approx 3,600,000 square miles.

Nowanswer the question you didn't answer before.
Student: False.

SCHOLAR: Rephrase your statement. I can't understand it.
Student: Incorrect.

SCHOLAR: Very Good. The area of Paraguay is approx 157,000
square miles. The language in Brazil is French. Right

Sor wrong?
Student: Wrong.

SCHOLAR: You are correct. The language of Brazil is
Portuguese. Is it true....

Figure 6: Excerpt from a Dialogue with SCHOLAR.

SCHOLAR's knowledge type is declarative for the same reasons that PROUST

had a declarative knowledge type. The information provided to the system is new

knowledge each time the student and systems interact. The interpretation strategy forces

the system to review the entire knowledge base in order to properly construct a solution.

SCHOLAR uses the socratic method of tutoring. It does not provide a direct

response to incorrect answers but uses a set of rules to guide the student to discover his own

error. This set of rules is basically a bug library.

SCHOLAR uses a semantic network structure for knowledge representation. The

theory was that the system and student should have similar representations of knowledge.

The author, Jaime Carbonell, believed that semantic networks were an accurate model of

how humans store and access knowledge. Carbonell believed a complete semantic network

would represent the perfect student. Information gained during the dialogue would adjust

18

(perturb) this model to reflect the student's actual performance. This was the theory, the

actual system was not complete in that the semantic network was not complete. The

diagnosis was carried out with incomplete sets of knowledge. The student-expert

difference was an overlay model [WENG 87].

4. SARAH

SARAH is not an ITS in the context presented here. It's design and function

however mirror that of an ITS. It is a system developed in France to assist in the

rehabilitation of aphasic patients. Aphasia is a language impairment resulting from brain

damage. The patient does not understand that they have a problem because they do not

have the language skills to understand the explanation. The system presents grammatical

exercises to the patient so he can discover his own errors [MASS 90].

SARAH uses a clinical diagnosis, and knowledge gained during the dialogue to

build the patient (student) model. The clinical diagnosis provides the cognitive state, the

mental activity. The patient's input is the physical activity input. These are the two

components of a mental states bandwidth.

SARAH has a procedural-flat knowledge type. The data coming into the system

is already classified in the context that the system already knows something about the

patient's ccndition. The system is getting feedback on the application of that knowledge.

Decisions made about the interpretation of the error is dependent only on the current state

of the problem.

The student-expert difference is not one we have discussed. SARAH uses a

model based on machine learning: program synthesis from examples of input and output.

The idea is to synthesize a logic program from the student model. Bugs in the logic

program would then represent the patients bug. The nature of the disease allows

categorization of the types of potential bugs into one of three categories: lost grammatical

processes, misused processes, and incorrect processes [MASS 90].

19

The diagnostic strategy is to perform program induction on the logic program

synthesized from the patient model. There are two algorithms used in the system: Model

Inference System (MIS) and Program Diagnosis System (PDS). MIS induces a Prolog

program satisfying all the facts provided to the system. MIS relies on PDS to detect errors

in one of two cases. Incorrect Prolog clauses in respect to facts in the fact base. Missing

Prolog clauses needed to satisfy facts in the fact base when the program fails [MASS 901.

SARAH is an example of the ITS design in a specific application domain. Several

of these non-traditional techniques used in SARAH are possible in part by the nature of the

domain of application.

5. ITS Ada

a. Architecture

ITS Ada [DELO 91] contains the four basic components of what has been

traditionally called an intelligent tutoring system as outlined in Chapter I. Figure 7 gives a

logical schematic representation of the architecture.

The instructional module is the human-computer interface. Since it's design

was aimed at high portability between different hardware platforms, the implementation

utilized only text input and output.

The expert module contains the domain knowledge for the tutor. The main

component is an Ada parser produced using the AYACC compiler generator from the

University of California, Irvine [DELO 91]. The parser was modified to accept program

segments as input instead of complete programs. The rest of the files were produced by the

compiler generator for the parser's use.

The diagnostic module is a single Ada package which takes input from the

student and expert and creates a meaning list. This meaning list is first checked for

syntactic correctness. If it is syntactically correct the diagnostic module compares the

meaning lists of the two solutions. Structural discrepancies in the student meaning list from

the expert meaning list as evaluated from inside out constitutes an error. If there are

20

elements of the meaning list in the expert solution but not in the student solution the

element is identified as a missing concept and an error is raised. If there is a element of the

student meaning list that is not in the expert meaning list the element is identified as a

misconception or unnecessary and an error is raised. The expert meaning list becomes the

template by which the structure of the student meaning list is compared.

ITS\\ ADA

[• STUDENT MODULE
N

T M
SR 0 ,
EI U D DIAGNOSTIC MODULE

C U
T L -"t

IE
0

Nk N EXER MODL
L

COMPUTER-ASSISTED ,
INSTRUCTION INTELLIGENCE

Figure 7: Architecture of/ITS Ada.

The student module is the student model. It is an Ada data structure

contained in an external file. The file is accessed each time a user begins a session and

contains the students history. The file basically contains an array of records for each

student known to have or currently using the tutor.

b. The Student Module

The student module in/ITS Ada is the student model. As previously stated

the student model for FITS Ada is an array of records saved in an external file called

"44user.dat". This file is accessed when the student invokes the tutor. The tutor goes to the

21

file and searches it to see whether the student has used the tutor previously. If so the data

in the student's file is used to start the session where the student level of "mastery" was last

demonstrated. This automatic placement can be overridden. If this is the first time the

student has used the tutor a new record is created.

The student's level of "mastery" is represented by an Ada enumerated type:

unknown, exposed, demonstrated. Each of the topic areas, 12 total, is represented in this

record. Once a topic area has been introduced the value exposed is added to the student

model. In each topic area there are five predefined problems to test the student's

knowledge of that topic. If the student gets two of the five test problems correct the

student's level of mastery is updated to reflect demonstrated.

c. Evaluation of "ITS Ada"

In evaluating ITS Ada, we will use the three characteristics of tutoring

systems presented in Chapter III, bandwidth, knowledge type, and student-expert

difference.

Recall that bandwidth is a measure of how much of the student's activity is

available to the diagnostic program. ITS Ada presents completed student solutions in the

form of Ada code segments. This is similar to the approach used in PROUST [LEWI 85]

for the Pascal programming language. Since only the answer is available the bandwidth is

classified as final states. Given how the student model is updated, this presents a problem.

ITS Ada will diagnose a problem and present a new problem. Eventually the student, if

persistent in the error, will repeatedly see all five problems. Given enough chances the

student should eventually get the required two problems of five correct and move on to the

next topic area without understanding his errors.

ITS Ada basically uses a template, the expert meaning list, and attempts to

match the student's meaning list to this template. This use of templates allows us to classify

ITS Ada's knowledge type as declarative. ITS Ada uses it's entire knowledge base,

represented by the parser, to find an answer to the student's problem. The system then uses

22

that knowledge to draw a conclusion about the student's level of knowledge. The tutor has

no knowledge of how a student reached this current state.

Finally, the student-expert difference. ITS Ada uses an overlay

representation of this difference [DELO 91]. The student's knowledge is assumed to be a

subset of the experts knowledge.

ITS Ada will catch all the syntactic errors presented by the student. This

statement assumes the correctness of the parser generated by AYACC. However, any

inference made by the system about the cognitive process the student went through would

have little evidence to support the conclusion. The system has had no access to any of that

knowledge. Cognitively, any error inferred by differences in the meaning lists is

attributable to an insufficient mastery of individual skills related to the problem domain.

The system does not consider the possibility of misconceptions of correct domain

knowledge[WENG 87]. The system does not take into account the possibility that the error

was made because of fatigue or other human factors, noisy data, etcetera. [SLEE 82].

d. Limitations

This system will catch all syntactic errors in the language. It attempts to

finds inconsistencies in the meaning lists however this is dependant on the expert solution.

However, there could be multiple correct implementations of the problem within a given

language construct. Basing the logical correctness of the program on a single structural

match limits the possible solution set to one solution.

There is no semantic analysis of the student solution. The reason for this is

the amount of knowledge available to the system about how the student arrived at the

solution. This low bandwidth of information about the student's cognitive process is the

limitation upon which we focused the efforts of the enhanced student module.

23

1II. PROGRAM ANALYSIS

When a programmer debugs a program he has a considerable amount of knowledge

about the program, it's design, and it's intended use. Specifically, he knows what problem

was to be solved. He knows the flow of control of the program. He knows how to trace

down an error in the program if it does not behave as intended. If he encounters a bug, he

knows how to correct it. Ideally an automated program debugger will have the same

knowledge [LEE 891. Automated program debugging decomposes into two categories:

syntactic and semantic. A reasonably good parser will handle the syntactic analysis of the

program and identify any syntax errors. Semantic or logic errors in the program are

significantly more difficult to detect [JONS 90]. Correcting semantic errors is at least as

difficult as locating the errors and requires different skills and strategies. Since syntactic

analysis is well defined in parser and compiler design we will focus on some of those

techniques of semantic analysis.

We will review four noteworthy approaches to program analysis. These four systems

are unique in their approach and provide a broad overview of some of the implementations

used in the past.

A. PROUST

PROUST uses plan generation and recognition as the basis of program analysis [JONS

85]. There are three types of plans: programming plans, variable plans, and control plans.

These plans can be thought of as templates. PROUST takes these templates and generates

a plan from scratch each time a new problem is presented. A limited bug library of bug

rules is maintained which contains specific common misconceptions. Instead of a large bug

library PROUST has a plan library that associates task goals with plan templates.

Heuristics are used to both control the plan generation process, thus avoiding the

combinatorial explosion problem, and the plan selection. PROUST also has what are called

plan transformation rules. These rules are essentially rewrite rules that account for

equivalent variations of correct plans.

24

PROUST takes in a non-algorithmic description of the problem and generates the

design and implementation steps necessary to write the program. The student's program is

then compared to the generated plan. Differences in the plan and the program are first

compared against the transformation rules to determine if the segments are equivalent. If

there is a transformation rule that activates, the difference is not labeled as a bug. If no

transformation rules match, the bug rules are compared to find common bugs. In this case

either a bug rule activates and generates a bug report or the difference is not reconcilable

and is generated as a bug report [MURR 86]. Another effect of unreconcilable differences

is that PROUST now can only make a partial evaluation of the program since it can no

longer account for future differences in the overall plan of the program. PROUST

continues it's analysis but with less confidence in any inference made about plan

differences.

B. LAURA

The LAURA [ADAM 80] system attempts to prove equivalence of two programs.

LAURA takes in as input two FORTRAN programs. The program model is the expert

solution co a problem. The other input is the student program. The initial goal of LAURA

is to prove the student program is equivalent to the program model. If this fails then

LAURA attempts to debug the student program.

LAURA transforms both programs into a graph representation. These graphs

represent the calculus process that the program was intended to solve. The nodes in the

graphs represent arithmetic operations or equations. The arcs in the graphs represent the

control flow. The transformation is done in four steps: standardization, separation of

variables, composition, and linear induction. The result is a graph for each program that if

solved produces a calculus function. If the two programs are equivalent the solutions of the

two graphs are identical.

The first step in comparison tries to bind variables, nodes and arcs in order to get the

two graphs to match. Normally an exact match is unlikely since the structure of the two

25

graphs are rarely the same. The first level tries only to resolve the components of the

graphs. The second step in comparison attempts to transform the structure of the two

graphs and then does a comparison of the structure. If the result of the previous steps results

in a match of the graphs the two programs are equivalent and LAURA halts. If they are not

the same LAURA attempts to diagnose errors. The process in diagnosis is the same as

before except it is done with more complex conditions [ADAM 80].

C. ALGORITHMIC PROGRAM DEBUGGING

An example of a system that uses intermediate results from the user is the system

written by Shapiro [SHAP 83]. This system applies the techniques of inductive program

synthesis to the automatic correction of programs. It is based on interactive dialogue with

the author of the Prolog program to be analyzed. The system simulates the execution of the

target program on a given input. It generates results for each procedure call. The

programmer is queried to determine the correctness of some of the intermediate results

produced by the procedure call. The basic algorithm of the program is in Figure 8 [WERT

871.

reading of the program P to be corrected
repeat

read the next example of input/output
while P behaves in an incorrect manner do

identify a bug in P by use of a diagnostic algorithm
correct the bug by use of a correction algorithm

write
until there are no more examples

Figure 8: Basic Algorithm of Shapiro's Algorithmic Debugger.

The system consists of two parts: a diagnostic algorithm and a correction algorithm.

The diagnostic algorithm highly interactive and detects three types of errors:

1. Termination with an incorrect result;

2. Termination but fails to return a result; and

26

3. Non-termination.

The first two errors are detected directly from the input/output pairs and the dialogue

with the programmer. The third error type is detected by an induction algorithm on the

arguments of the procedure calls. The correction algorithm is an inductive inference

algorithm like those used in program synthesis [WERT 871.

D. TALUS

TALUS is an automated debugger for LISP programs [MURR 86] designed to be used

in a tutoring environment. TALUS represents knowledge about the correct programming

solution as a program, called the reference function. It then uses the Boyer-Moore theorem

prover to construct an induction proof that the reference function is equivalent to the

student's function [ALLE 91]. The debugging process has four steps: program

simplification, algorithm analysis, bug detection, and bug correction.

Program simplification takes the student functions and simplifies them by using

transformations that maintain the computational equivalence of the original function. The

simplified functions are parsed into frames which are matched to frames in the task

representation. This allows identification of the student algorithm and pairing of the

student functions with reference functions. Each of the function pairs has the case splitting

performed for an inductive proof of equivalence. Verification conditions that establish the

base case and induction steps are generated. Violations of the verification conditions

identify a bug in the function at the point the induction proof fails. In order to correct the

bug, violated verification conditions are repaired by altering the student function.

Reference code supplies the corrections which are traced back through the transformations

to the original student code.

E. SUMMARY

There is another topic which directly impacts the program analysis method decision

and that is the source or type of knowledge required. A caveat to this issue is how much,

if any, of that knowledge is supplied by the user. There are several alternative solutions all

27

with impacts on the analysis technique. Program analysis requires at least two pieces of

knowledge [JONS 90]. The obvious piece is the code to be analyzed. The not so obvious

piece is knowledge about the intended use of the code. This piece can be provided by the

user in terms of a high level specification. It can be generated by the program analysis

algorithm or it can be inferred from interaction between the analysis program and the user.

The source of knowledge for program analysis in PROUST is the plan library. The

plan libraries are a codification of the expert knowledge. PROUST only requires a

completed Pascal program from the user. It does not rely on any interaction or additional

information. PROUST is algorithmic in its program analysis.

LAURA is also algorithmic in its program analysis. It's source of knowledge is the

program model (expert solution). Prior knowledge of the exact problem to be solved and

a sophisticated transformation algorithm are the key elements of the program analysis in

LAURA. It too does not require any additional information from the

Shapiro's Algorithmic Program Debugging is a combination of algorithmic program

analysis and user input. The programmer verifies intermediate solutions before the

algorithm continues to the next stage of program analysis. After providing the initial

solution program as input the debugger needs intermediate feedback from the user. The

source of knowledge is actually the programmer.

Talus is also algorithmic in its program analysis. It's source of knowledge is the

Boyer-Moore theorem prover and a reference function (expert solution). Once the student

solution is provided the student provides no other input to the system.

ITS Ada in it original configuration was dependent solely on the program for it's

program analysis knowledge. There was no other input to the system. The parser generated

by the AYACC compiler generator was the sole source of knowledge. This was similar to

PROUST except the diagnostic package of PROUST could generate a correct solution

using path planning. The diagnostic package of ITS Ada can not generate a correct solution

nor can it diagnose errors outside a very narrow structural definition.

28

Our enhanced student module does not alter the syntactic analysis of the original ITS

Ada tutor but provides more diagnostic capability. This increased diagnostic capability is

possible by increasing the knowledge available to the system. This new knowledge is in

the form of a rule base and the intermediate solutions states. The student still provides only

the solution to the problem but the system captures more of the student's cognitive process

which enhances the inference capability of the system.

29

IV. CLIPS

A. DESCRIPTION OF THE CLIPS LANGUAGE

CLIPS stands for the "C Language Integrated Production System". It is a product of

the National Aeronautics and Space Administration's Software Technology Branch

[NASA 91a]. It was designed to provide high portability, low cost, and easy integration

with external systems [GIAR 89]. To this end it has been implemented on a varied number

of different architectures from personal computers to SPARC architectures.

The "C" in CLIPS has been made somewhat misleading. The original system was

implemented in the C programming language. However, since it's original development

Ada has appeared on the scene. The Software Technology Branch has tried to keep an Ada

version in production to keep pace with the C version. CLIPS has undergone numerous

revisions and upgrades. This thesis uses the C version of CLIPS, version 5.0, compiled on

Sun workstation with an ansi C compiler.

B. HISTORY OF CLIPS

CLIPS dates back to 1984 and was a product of necessity. Prior to CLIPS, NASA, as

well as the rest of the artificial intelligent community, relied almost exclusively on LISP as

the base language of all expert systems applications. The low availability of LISP across a

variety of platforms hindered portability and forced the rewrite of the entire system each

time. State-of-the-art LISP tools and hardware were expensive. And finally, the difficulty

experienced with attempts to integrate LISP with other languages made embedded

applications difficult.

A prototype version of CLIPS was completed in 1985 and was used primarily as a

training tool to research the issues surrounding construction of expert systems tools. It was

originally modelled syntactically after the ART expert system tool developed by Inference

Corporation. CLIPS version 3.0 was released to organizations outside NASA in 1986 and

went through several revisions: version 4.0 released in early 1987, version 4.1 released in

30

late 1987, version 4.2 released in 1988, version 4.3 released in 1989, version 5.0 released

in 1991, and version 5.1 was released in 1992 [NASA 91a).

Originally CLIPS was only a forward chaining rule language methodology based on

the Rete Algorithm that had inferencing and representation capabilities similar to that of

OPS5 [GIAR 89]. Version 5.0 added both a procedural and object-oriented programming

paradigm to the language [NASA 91a]. We will not be dealing with the CLIPS Object

Oriented Language (COOL) in this thesis. The OOP paradigm certainly has interesting

applications within the scope of this thesis. Throughout the remainder of the description of

CLIPS, COOL constructs will be mentioned but not elaborate.

C. THE CLIPS ENVIRONMENT

There are three basic components to what we term the CLIPS environment; the raw

data, the knowledge base, and the inference engine [GIAR 89]. The raw data is found in

the form of a fact-list and once asserted is global. The knowledge base consists of all the

rules in the system. The inference engine is the control mechanism for the system. The

normal execution cycle is shown in Figure 9.

* As long as there are rules on the agenda, pick the top rule.

* Execute all elements on the right hand (RHS) side of the rule.

• The actions of execution of the RHS may activate new rules to be added
to the agenda. If this occurs the rules are placed on the agenda in
accordance with a weight (salience) associated with the rule or the
current conflict resolution strategy

The actions of execution of the RHS may deactivate rules in which case
they are removed from the agenda.

If weights (saliences) have been associated with the rules and are
dynamically updated, these dynamic salience values are reevaluated,
the agenda adjusted, and the cycle repeats [NASA 91a].

Figure 9: CLIPS Normal Execution Cycle.

31

The agenda can be thought of as a stack of rules whose RHS have been satisfied but

the rule has not had a chance to activate (fire). A new rule's location on the agenda is

determined by the application of the following three rules in the order they appear (see

Figure 10).

The new rule is positioned above all other rules whose salience is lower
than the new rule's salience and below all other rules whose salience is
higher.

If the rules have an equal salience value, the current conflict resolution
strategy is used to determine the new rules location on the agenda.

If a rule (or several rules) is activated and no ordering has been specified
to this point, then the rule is "arbitrarily (not randomly)" placed on the
agenda in relation to the existing rules [NASA 91a]. The order the rules
were written will have an affect.

Figure 10: Algorithm to Add a New Rule to the CLIPS Agenda.

CLIPS has seven conflict resolution strategies: depth, breadth, simplicity, complexity,

lex, mea, and random. The default strategy is depth but may be changed even during

execution. Briefly, the methodology of each strategy is described in Figure 11.

This is the basic definition of the runtime environment of CLIPS. It's flexibility is

apparent and was one of the main reasons for it's use in the thesis.

For those programmers familiar with the programming languages LISP and Prolog,

this is a familiar cross between the two. CLIPS code takes on a LISP appearance

recognized by it's parenthetic closure. It also resembles LISP in that it has primitive data

types, functions and constructs that define the operation of it's rules. It reads like a Prolog

statement, from left to right, if p then q.

32

0 Depth: new rules are placed above all rules ot equal salience.

"* Breadth: new rules are placed below all rules of equal salience.

"• Simplicity: among rules with the same salience, new rules are placed
above all rules whose LHS has the same number or moi,. comparisons
to be performed. This is called specificity.

"• Complexity: among rules with the same salience, new rules are placed
above all rules whose LHS has the same number or fewer comparisons
to be performed.

"* LEX: This is the same strategy of as that of the OPS5 strategy of the
same name.

" MEA: This is the same strategy of as that of the OPS5 strategy of the
same name.

" Random: each rule is given a system generated random value that is
used to determine the new rules placement among other rules with
equal salience [NASA 91 a].

Figure 11: CLIPS Conflict Resolution Strategies.

CLIPS, like Prolog, has built in operators (assert and retract) that allow the

manipulation of the fact base. The major difference from Prolog is that the LHS can contain

more than one clause. For example, if the rule has the following description:

There is no error present, the token 'for' is present, and the variable to be
incremented is on the LHS of an assignment statement, then change the error status to
reflect a concept error and print a message.

The CLIPS code for this rule may look like this:

(defrule for-loop-concept-error1
?error-status <- (no error)
?tokenl <- (token for)
?variablel <- (variable ?v)
(statement ?v := $?)

(printout t 'The Ada for loop automatically increments
its counter. Within the sequence of statements the
loop parameter is a constant. Hence a for loop
parameter is not allowed as a variable on the LHS of an
assignment statement (LRM 5.5.6).N crlf)
(retract ?error-status)
(assert (concept error)))

33

All the clauses to the left of the implication symbol, "=>", must be true before the rule

will activate and go on the agenda. If it is selected from the agenda to fire, the clauses to

the right of the implication are executed. The similarities of CLIPS to LISP and Prolog are

apparent. To review the results of this rule in the CLIPS run-time environment see

Appendix C.

It is because of its portability, extensibility, capabilities, and low-cost that as of 1991,

CLIPS had over 3000 registered users including all NASA sites and branches of the

military, numerous federal bureaus, government contractors, 160 universities, and many

companies [NASA 91a]. It is for these same attributes that we chose it for this thesis.

34

V. COMPLEXITY AND LANGUAGE ISSUES

A. COMPLEXITY ISSUES

In Chapter II the issue of combinatorial explosion arose. In an intuitive sense, most

of us have a definition in mind that tells us that this phenomena makes the problem big.

The question is how big? Even more fundamental is the question of the problem even being

decidable (solvable). Trying to answer the decidability question brings up the halting

problem. The use of formal logic to prove theorem correctness raises the question of

satisfiability.

1. DECIDABILITY

What do we mean when we say something is undecidable or unsolvable? There

are two possibilities: (1) it is intuitively undecidable, or (2) it is undecidable by Turing

machines (TM's) [LOEC 72]. In the case of TM's, the set of recursively enumerable (r.e.)

languages are countably infinite and therefore do not contain some languages. It has been

proven that an extended TM model computes all and only the r.e. languages [HOPC 79].

Therefore there are languages (problems) that exist that can not be computed by a TM

[LOEC 72].

In the intuitive case it depends on whether or not one accepts or rejects Church's

thesis. If one accepts it, then one believes that the intuitively computable functions are

precisely the Turing-computable functions. If one rejects it, then one has in mind some

other model of computation that may accept languages (problems) outside the r.e. set.

However, in this new model, effective instructions for accepting the language must be

provided [HOPC 69]. Effective in this context means the machine must be able to carry

out the instructions.

Take as given the following two statements: (1) that the combinatorial problem

is finite and (2) the previous definition of decidability. Given those two statements, the

combinatorial problem is decidable both intuitively and by TM. However, the resources

necessary to conduct the computation may not be available or reasonable.

35

2. THE HALTING PROBLEM

The halting problem basically asks the question of whether or not a TM stops.

Formally, assume that we have some mapping function g which maps the positive integers

onto the set of TM's; also g is a totally computable function. Given a positive integer, n,

as an input to g, g(n) denotes the nth TM. The function g(n) is also written An. If the TM

An takes as input x, there are two possible outcomes: An(x) eventually halts, or An(x) runs

forever. The halting problem is the problem of deciding, for any number n, whether An(x)

halts or not [HARR 78]. Look at this a different way. Suppose we have a program that

determines whether another program terminates. There is one function inside this program

called halts. The assumption is that halts exists. The proof follows:

Given the program:

P(Q) = if halts (Q (Q)) then

loop forever

else false.

Q(Q) halts implies P(Q) does not halt. By the contrapositive, P(Q) halts implies

Q(Q) does not halt. Q(Q) does not halt implies P(Q) halts. P(Q) halts if and only if Q(Q)

does not halt. Now, run the program on itself. Substitute P for Q. P(P) halts if and only if

P(P) does not halt. This is an obvious contradiction therefore the assumption that the

predicate halts exists must be incorrect [HARR 78]. The application of the program to

itself in the proof is the trick. It is also the source of the halting problem.

In 1969 Hoare introduced a logic and axiomatic method for proving that a

program is partially correct with respect to a specification [COUS 90]. In 1977 Clarke

provided a language definition that included Algol-like and Pascal-like languages. The

definition of a Clarke language is:

A programming language allowing procedures (with a finite number of local
variable and parameters taking a finite number of values, without sharing via aliases)
and the following features:

(i) procedures as parameters of procedure calls (without self-application);

36

(ii) recursion;

(iii) static scoping;

(iv) use of global variables in procedure bodies;

(v) nested internal procedures as parameters of procedure calls.

Clarke languages have an undecidable halting problem for finite interpretations

with IDI _Ž2 [COUS 90]. This restriction on the cardinality of the domain (IDI) means there

must be at least two possible interpretations for the lemma to hold. Algol-like and Pascal-

like languages thus have an undecidable halting problem for finite interpretations with IDI

>_ 2. Ada can also be categorized as a Clarke language. This implies that Ada also has an

undecidable halting problem. The intuitive description of this is that the names in the

predicates P and Q and the command C are all used in a similar fashion. All the names are

considered objects, and at a given instance of time, are all given different names.

Therefore, variables in P, Q, and C can be interpreted in exactly the same way by means of

states. With Algol- or Pascal-like languages the naming conventions in P, Q, and C are

different. For example, objects buried deep in the runtime stack cannot be accessed by their

name. However, they can be modified using procedure calls [COUS 90].

3. SATISFIABILITY

Many of the methods for proving program correctness deal with some type of

logic. In dealing with conventional, imperative programs, one has to define a program in

the form of "computational logic" in order for the theorem prover to process it. The

theorem prover then must process the "computational logic" program and the input

program. However in logic based programs (such as LISP and Prolog) it is easier to have

a theorem prover process the program without the additional overhead.

TALUS is a program debugger that uses the Boyer-Moore logic and theorem

prover to detect and correct non-syntactic errors in programs written in a restricted subset

of LISP [MURR 86]. The Boyer-Moore logic contains primitive constructs, data types, and

functions that resemble LISP. It contains constructs from ordinary predicate logic that

37

permit formulation of well-formed formula. The Boyer-Moore theorem prover

automatically proves the correctness of these well-formed formula by constructing an

inductive proof of the equivalence of the student's function and a reference function [ALLE

91].

Note the emphasis we added to the word restricted in the description of Talus.

The predicates of a pure LISP function can easily be represented in conjunctive normal

form (CNF). A boolean expression is said to be in CNF if it is of the form El A E2 A ...

A Ek, where each Ei, called a clause (or conjunct), is of the form jIl V oi2 V ... V oa,,

where each (Xij is a literal (x, -ix) [HOPC 791. For example, (xl V x2) A (--al V x3 V

-ix 4) A -1x3 is in CNF. The expression is in 3-CNF if there are exactly three literals. The

previous example is not in 3-CNF because the first and third literals do not have exactly

three literals. If we let the clauses of student program and the reference function represent

the literals in an expression in CNF the results are significant. The question becomes one

of satisfiability of the boolean expression. An expression is satisfiable if it yields the value

true for some interpretation which assigns values true or false to the literals in the

expression. This would be necessary to prove the two functions equivalent. This is called

the satisfiability problem and has been proven to be NP-complete [HOPC 79]. That is, the

problem is in the class NP and the problem is hard for NP with respect to log-space

reduction. The Boyer-Moore theorem prover does not work on a purely mathematically

model. It uses heuristics to choose the substitutions for the inductive proof [MURR 86].

The previous result is interesting but the language we are working with is Ada, which is an

imperative language, not a functional language.

B. THE SCOPE OF THE ADA PROBLEM

Is it possible to prove total correctness of all possible Ada programs within the Ada

language? No, not in a mathematical sense. To prove total correctness of all Ada programs

equates to proving the halting problem for Clarke languages is decidable, which it is not.

Proving total correctness of a single Ada program is decidable. These restrictions are the

38

source of what has been termed significant variability [MURR 86]. Each procedure (or

function) in the language can be represented in an infinite number of correct

implementations. These various implementations would have different control flow,

programming constructs, identifiers, order of formal parameters, and role of variables. If

there are an infinite number of possible implementations in the language then there are

potentially an infinite number of bugs [MURR 86].

The problems associated with the halting problem and significant variability mandate

that instead of total correctness we provide partial correctness proofs of the language. This

translates to limited debugging capabilities with any ITS that deals with program language

correctness.

39

VI. DESIGN

A. SYSTEM INTEGRATION

The integration of ITS Ada and an extended student module is a question of which

runtime environment should be the main control unit. There were two options: CLIPS as

the controller calling the Ada tutor packages, or ITS Ada as the controlling program

invoking the CLIPS interpreter when needed. We chose to implement the later.

With Ada as the controlling program it was not necessary to break up the original

program and find the appropriate locations to make calls to CLIPS. It was not as critical to

understand the control flow of ITS Ada because it was not going to be interrupted as would

have been the case had CLIPS been the controlling environment.

The flow of control of the original code would stay intact to the point of editing the

student code. Instead of waiting until the student's answer was ready and the student called

for the editor to check the solution, each line of code would be written off to a file and the

CLIPS environment invoked. The CLIPS code would access this file along with a fact list

and check for any semantic or cognitive errors. Errors that are specifically enumerated as

rules in the rule base. This increases the bandwidth of information available to the system,

and allows semantic error detection as the lines of code are input. Syntactic errors would

still be checked by the parser upon completion of the program segment. Those semantic

errors that would not have normally been detected will have already been brought to the

student's attention. Since the student can edit any line of code until the student calls for the

solution to be checked CLIPS would not have to do anything to the student solution. The

normal flow of control would resume allowing the parser to check for syntactic errors and

the normal evaluation of the solution in accordance with ITS Ada's original design.

B. DIAGNOSIS

Diagnosis consists of rule matching. The fact base is built up of tokens, constructs and

historical data about the session. The CLIPS code parses the lines of code as they are input.

This is not necessarily a syntactic check though certain syntax errors also indicate potential

40

knowledge misconceptions and missing concepts. As the fact base is built, the system is

looking for a rule match to one of the semantic error rules. If all the necessary facts are

present the rule will activate. If no rules fire, control is returned to the editor in ITS Ada.

This does not mean that there are no misconceptions or missing concepts. It only means

that of those potential errors coded into the rule base, none of the rules were activated. This

is an inherent limitation to an enumerated bug library.

C. EXTENDED STUDENT MODEL

The extended student model is a file that contains a define facts construct (deffacts).

This construct is built by the Ada main program and CLIPS. The wrapper of the construct

is built by Ada. The fact list contained in the construct is built by execution of a CLIPS

error rule. The fact is written out to a temporary file by CLIPS to be read and copied by the

Ada main program. This fact list is updated dynamically by the CLIPS rules. If a rule is

activated and that rule contains a fact that is to be asserted onto the fact list and it is critical

to the future analysis of the student's cognitive state; then it is also written out to the student

file.

D. STUDENT MODULE

As previously stated the student module contains the student model and the diagnostic

component of the ITS (See "INTRODUCTION" on page 1.). The intent of the system is

to take in the student solution one line of code at a time. As the student enters the carriage

return the Ada main program writes that line of code to a temporary file where the CLIPS

module has been coded to look for it. The Ada program then initializes and runs the CLIPS

analysis code on that line of code. During the analysis of the code, if the necessary

preconditions are met in terms of facts on the fact base, the appropriate error rule is

activated and fired. This provides significantly more responsive feedback to the student on

errors that may or may not have been identified by the parser in the main Ada program. The

knowledge that the student has this missing concept or misconception is captured in the

extended student model. The error rule writes out a code to a file. In order to get that

41

information into the appropriate student file it is copied by the Ada main program from the

CLIPS temporary file into the appropriate student file.

There are three pieces of information that must be made available for the system to

work. The lines of code, the problem number being solved by the student, and an expert

solution to the problem being solved. The word expert is a misnomer. The solution is

labeled an expert solution but is in reality one correct solution of any number of

alternatively correct solution. The problem number will be used to determine which expert

solution file of facts to load. Once loaded the expert solution fact base remains on the fact

list and is used in comparisons (rule matching) of the error rules. The student solution is

parsed into tokens that are asserted into the fact base. Knowing the problem to be solved

and having a correct solution and the student's solution, there is significant information

being provided to the rules such that rigorous decomposition of the original code is not

necessary to identify a wide variety of missing concepts and misconceptions.

In order to build a realistic bug library a survey was given to a beginning Ada

programming class, one week after they had covered all the constructs in question (the if

conditional, and the three Ada looping constructs). The survey was written such that the

student had a choice as to which construct to use (See "APPENDIX F. ADA SURVEY" on

page. 107.). The questions had a best solution. These best solutions provided the facts for

the expert solution files.

42

VIL IMPLEMENTATION

A. ENHANCING THE CLIPS ENVIRONMENT

A method to ease the burden of going from editing CLIPS code to running CLIPS code

in the runtime environment was sought for two reasons. The first reason was to decrease

the number of open interactive windows when in a windowing environment The second

reason was to ease the transition from editing code to the CLIPS runtime environment when

working in a non-windowing environment. This normally involves terminating the editing

and invoking the CLIPS runtime environment. Any editing changes would thus require

leaving the CLIPS interpreter and invoking the editor. GNU Emacs [LEWI 90] allows

customizing of the editing environment. In this case the file clips.el is an emacs lisp file

that customizes emacs to edit CLIPS source code. It contains the code for two major

modes: clips mode and inferior clips mode.

GNU Emacs Lisp is a product of Richard Stallman and the Free Software Foundation

Inc. It is a full computer programming language. It is desig:ied for use in an editor and

hence has a myriad of features for scanning and parsing text as well as features for handling

files, buffers, displays, subprocesses, etcetera. It is similar to common lisp with the above

noted exceptions and two more that are worth noting here. The first is that elisp is a

dynamically bound dialect of lisp. The second is that in elisp there is only one primitive

numeric type, integer. This is due to the fact that elisp programs are intended for use in

editors, not computation. The GNU Emacs Lisp Reference Manual [LEWI 90] outlines a

coding convention for writing major modes and is the convention we followed. Most of

the declarations and function definitions in the code will match up directly to the paragraphs

in the GNU Emacs programming convention.

1. CLIPS MODE

A major mode in the GNU Emacs venacular customizes Emacs for editing

particular kinds of text. CLIPS mode (See "APPENDIX A. EMACS CLIPS MODE" on

page 63.) is an editing environment that expects CLIPS source code.

43

CLIPS source code is parenthetic in nature, similar to LISP, and has a special

symbol to separate left hand side (LHS) from right hand side (RHS): =>, similar to Prolog.

These two characteristics and the use of special characters by CLIPS are the foundation of

majority of the elisp code for the mode.

Each ASCII character can be mapped into one of several categories. Nine

characters needed to be redefined: # & ' ,. : I - ?. This map is shown in the definition of

the syntax table for CLIPS mode (see Figure 12).

;define the clips-mode-syntax-table
(if clips-mode-syntax-table

() ; clips-mode-syntax-table already loaded, do not change
(let ((table (make-syntax-table)))
(modify-syntax-entry ?# '_' table) ;symbol constituent
(modify-syntax-entry ?& " ' " table) ;expression prefix operator
(modify-syntax-entry?' V'_ table) ;symbol constituent
(modify-syntax-entry?, ... table) ;symbol constituent
(modify-syntax-entry?. ¶_" table) ;symbol constituent
(modify-syntax-entry ?: WIW table) ;expression prefix operator
(modify-syntax-entry ? I '' table) ;expression prefix operator
(modify-syntax-entry ?- ' table) ;expression prefix operator
(modify-syntax-entry ?? " table) ;symbol constituent
(setq clips-mode-syntax-table table)

Figure 12: CLIPS Mode Syntax Table Definition.

Symbol constituents are the extra characters that are used in variable and

command names along with word constituents. In CLIPS the rule name get-valid-#s is

legal so the # had to be added to the character set. An expression prefix operator is used

for syntactic operators that are part of an expression if they appear next to one but are not

part of an adjoining symbol. In CLIPS a variable is denoted by ?variable-name, e.g ?input.

The majority of the code in this mode deals with proper indentation. The code is

lengthy and can be found in Appendix A on page 63. There are two major functions: clips-

indent-line and calculate-clips-indent. Clips-indent-line returns an integer that is the

correct column position to indent the current line of code. It calls calculate-clips-indent

which actually parseses the current function keeping a count of the number of opening and

closing parenthesis. It will return the value of the column that corresponds to the last open

44

parenthesis. In order to prevent having a function for each form found in CLIPS an

association list is built up of equivalent syntactic forms. This is a hook which permits

invocation whenever needed (see Figure 13).

(put 'deffacts 'clips-indent-hook 'defrule)
(put 'defglobal 'clips-indent-hook 'defrule)
(put 'deftemplate 'clips-indent-hook 'defrule)
(put 'deffunction 'clips-indent-hook 'defrule)

Figure 13: CLIPS Mode Form Association List.

The CLIPS forms deffacts, defglobal, deftemplate, and deffunction are all

syntactically equivalent to the defirule form. This prevents having to write a new

indentation function for each form.

(defun clips-mode ()
"Major mode for editing CLIPS 5.0 code for CLIPS. ';' starts

comments. Normally blank lines separate structures and
blocks.
Use LF for automatic indentation. RTN will reset that lines
indentation to 0.
Commands:
\\(clips-mode-map)
Entry to this mode call the value of clips-mode-hook if that
value is non-nil.'
(interactive)
(kill-all-local-variables)
(use-local-map clips-mode-map)
(set-syntax-table clips-mode-syntax-table)
(setqmajor-mode 'clips-mode)
(setq mode-name 'CLIPS')
(clips-mode-variables)
(run-hooks 'clips-mode-hook)

Figure 14: Main Function for CLIPS Mode.

The main function is clips-mode (see Figure 14). It interacts with several other

elisp files, the system and the terminal. The function really does little more than change

the current bindings in local variables, buffers, maps, syntax table, and valid hooks. It sets

45

the emacs environment so the other functions can operate given the proper syntax of CLIPS

code.

This package of elisp functions made writing CLIPS code easier but did nothing

to ease the transition from editing to the CLIPS interpreter. Another major mode was

written to allow the CLIPS interpreter to be activated inside the emacs process.

2. INFERIOR CLIPS MODE

The tables defined for CLIPS mode are identical to those needed for inferior

CLIPS mode. This is the reason the code for both modes are found in the same file. Inferior

CLIPS mode is an emulation of the CLIPS runtime environment. The emacs buffer that is

currently being operated in and designated a CLIPS buffer takes all input from the terminal

and sends it to the CLIPS runtime environment. The output from the CLIPS interpreter is

echoed in the CLIPS buffer. Since all the data in the buffer is sent, it is necessary to "peel

off" the CLIPS interpreter prompt. Inside the main function, inferior-clips-mode, there are

two lines of code that take the interpreter prompt out (see Figure 15). The rest of the code

for this mode is relatively standard. Substituting the name of the mode and the proper

buffer names into a format provided in the programmer's guide provides most of the

functionality.

(make-variable-buffer- local ' shell-prompt-pattern)
(setq shell-prompt-pattern ^ACLIPS> 'I) ;set clips prompt

Figure 15: CLIPS Interpreter Prompt in Emacs.

This mode allows invocation of the CLIPS interpreter from inside an emacs

process. This significantly eased the transition from editing code to running code inside the

interpreter. There are multiple ways to invoke the interpreter. The two most common are

with the meta-x (ESC x) run-clips command in the minibuffer (see Figure 16). This causes

46

a response in the minibuffer which tells the user of the abbreviated key bindings that can

be used instead (see Figure 17).

*watb a aifl

ai.lX

19 Kinibuffer S aill
co-x rtun-clips

Figure 16: Invoking CLIPS with ESC-x run-clips, from Emacs.

S-ratch* a ain I

CLIPS (V5.0 3/05/91)
CLIPS> 0

09 Mfizibuffer a aill go

run-clips is on C-c C-p

Figure 17: Minibuffer Message After Invoking CLIPS with ESC-x run-clips.

The abbreviated key bindings are coded in the function clips-mode-commands.

The abbreviated key bindings to run the CLIPS interpreter from inside emacs are: Control

c, Control p (C-c C-p) (see Figure 18).

47

CM *ucratch* S ai12 E [
CLIPS N5.o 3/05/91)

CLIPS> 0

10 Pdnibufer a all2 []

[C--C C-P

Figure 18: Emacs Windows after Invoking the CLIPS Interpreter.

There are several functions defined that allow the editing of a CLIPS function or

region, selection of that area in the buffer, then execution of the CLIPS interpreter with that

region as input. These functions are: clips-consult-region-and-go, and clips-reconsult-

buffer-and-go. These functions have abbreviations defined in the function clips-mode-

commands (see Figure 19).

;Key bindings specific for CLIPS mode
(defun c lips-mode-commands (map)
(define-key map '\t' 'clips-indent-line)

;; (define-key map "\C-m" 'newline-and-indent)
(define-key map "\C-c\C-p" ' run-clips)
(define-key map "\C-c\C-b" 'clips-reconsult-buffer-and-go)
(define-key map u\C-c\C-r" ' clips-consult-region-and-go)

Figure 19: CLIPS Mode Command Key Bindings.

Both major modes greatly increased our ability to go from one mode, editing, to

the other without forcing major changes in the current runtime environment. It's greatest

benefit was in being able to run emacs in a non-windowing environment, edit a file and then

run the file without the need for additional windows or terminating the current process.

B. INTEGRATION OF CLIPS AND ADA

In order to pass control from the Ada main program to the CLIPS runtime environment

Ada and CLIPS have to communicate. Recall in Chapter IV that the version of CLIPS we

48

are running is written in the programming language C. This requirement for Ada and

CLIPS to communicate translates to a requirement for Ada and C to communicate.

The advanced programmers guide [NASA 91b] has an example of an Ada package

that mapped DEC Ada to CLIPS. There is, however, a problem with using the example as

it is currently written. The Ada Language Reference Manual [GONZ 91] lists 14 pragmas

defined by the language. The different compilers must implement these pragmas but are

not limited to the additional pragmas they can add to their compiler. The majority of

Verdix Ada and Dec Ada pragmas are thus compiler specific with the exception of the 14

language defined pragmas. Verdix Ada [VERD 90] has a total of 28 pragmas including

the language defined implementations. This necessitated rewriting the package for Verdix

Ada.

The basic concept is quite simple. From Ada, if you want to call a function or

procedure in another programming language, the compiler needs to know a couple of

things. It needs to know the target language and the subprogram name as it will appear in

the Ada source code. In order for the linker to resolve external references it needs to know

the Ada subprogram name as it will appear in the Ada source code and the representation

of the object file link it will be referencing. DEC VMS uses different pragmas depending

on the type of construct, procedure or function (see Figure 20) [NASA 91b]. Verdix Ada

uses the same pragmas regardless of the Ada construct (see Figure 2 1)[VERD 90].

There is another change in the way the compilers handle parameters. In order to pass

a parameter, such as a file name, in the DEC VMS compiler all one needs to do is convert

an Ada string to a C string and call the function cLoadConstructs with the C string

parameter. In Verdix the parameter could only be of type scalar, access, or the predefined

type ADDRESS found in the package SYSTEM. This requires rewriting the conversion

function (see Figure 22) to return a value of type ADDRESS instead of type STRING.

49

pragma INTERFACE (C. xlnitializeCLIPS);
pragma IMPORTPROCEDURE (INTERNAL => xInitializeCLIPS,

EXTERNAL => InitializeCLIPS);

function cLoadConstructs (FileName: in string) return integer;
pragma INTERFACE (C, cLoadConstructs);
pragma IMPORTFUNCTION(INTERNAL => cLoadConstructs,

EXTERNAL => LoadConstructs,,
MECHANISM => REFERENCE);

pragma INTERFACE (C, xRunCLIPS) ;
pragma IMPORT_FUNCTION (INTERNAL => xRunCLIPS,

EXTERNAL => RunCLIPS,
MECHANISM => REFERENCE);

Figure 20: DEC VMS Ada Pragma for CLIPS.

pragma INTERFACE (C, xInitializeCLIPS);
pragma INTERFACE_NAME (xInitializeCLIPS, OInitializeCLIPSI);

function cLoadConstructs (File_Name: in Address) return INTEGER;
pragma INTERFACE (C, cLoadConstructs) ;
pragma INTERFACE_NAME (cLoadConstructs, '_LoadConstructsm);

pragma INTERFACE (C, xRunCLIPS);
pragma INTERFACE_NAME (xRunCLIPS, '_RunCLIPSI);

Figure 21: Verdix Ada Pragma for CLIPS.

The flow of control works like this. For example, the CLIPS source code to be loaded

from inside Ada is contained in a file, test.clp. Since xLoadConstructs is a function the

value returned must be assigned to some variable of the same type. The function call may

look like this:

File_Name(1..8) :="test.clp";
FileOpen_Status := xLoadConstructs(FileName(l. .8));

The Ada string test.clp must be converted to an attribute of type ADDRESS in

order for the pragma mapping from Ada to C to function properly. The return value from

the function call is integer therefore File-OpenStatut must be declared to be of type

50

integer. In the package body of package clips.a (See "APPENDIX B. CLIPS/ADA

INTERFACE PACKAGE" on page 73.) the function xLoadConstructs looks like this:

function xLoadConstructs (File_Name : in STRING) return INTEGER is
begin

return cLoadConstructs (Ada toC-String (FileName));
end xLoadConstructs;

The Ada string test.clp is an in parameter to xLoadConstructs which in turn calls

cLoadConstructs with the return value, of type ADDRESS, from the imbedded function

call to Ada to C String. The pragma INTERFACENAME (see Figure 21) allows the

linker to replace all occurrences of cLoadConstructs with the object code representation

of _LoadConstructs. The C function _LoadConstructs gets a pointer (type ADDRESS

in Ada) that is the address of the file test.clp which is the expected in parameter. The

function will return an integer value of zero if it was able to open the file or a value of one

if an error was encountered. This is one of the more complicated examples because it

requires the passing of a parameter.

function Ada_to_C_String (InputString: in STRING) return ADDRESS is
OutString: string(l..InputString'last+l);

begin
for I in InputString'range loop

if (InputString(I) in ' '..'-' or
InputString(I) = ASCII.Cr or
InputString(I) =ASCII.Lf) then
OutString(I) := InputString(I);

else
OutString(I) := ASCII.Nul;

end if;
end loop;
Out_String (OutString' last) :=ASCII.Nul;
return OutString' Address;

end Ada_to_C_String;

Figure 22: Verdix Ada, Ada toCString Conversion Function.

Many of the functions invoked by Ada do not require the passing of parameters.

However, not all of the CLIPS functions have been incorporated into the package clips.a.

Many of theses non-incorporated functions do require passing parameters other than

strings.

51

C. ENHANCED STUDENT MODEL

As stated in Chapter VII, the enhanced student model is a file that contains a CLIPS

deffacts construct. The file is created when the student logs into the system for the first

time. The prototype emulates the input and output (1/0) of ITSAda. When the student first

executes ITS Ada a general introduction screen appears and prompts the user for their name

or user identification (see Figure 23). Once ITS Ada has this information it searches a file

called user.dat for the student model data (See 'THE "ITS ADA" INTELLIGENT

TUTORING SYSTEM" on page 3 1.). The emulation provides the same prompt for the

same reasons.

AN INTEL[IGENT TUTORING SYT FOR TH AD PFRUM LNUG

LIETEN , USN

jsDNJZ cAk 93940

WIRT 18 YOUR NAM / USE ID:

Figure 23: Screen I from/ITS Ada.

The information provided by the user becomes the student model rerieval index for

bothITS Ada and the enhanced student model. In the enhanced student model the

information is needed to first construct the file name and then check to see if the file exists.

If the file exists the file is loaded when the CLIPS interpreter is invoked. For example, in

Figure 24 the response was hoppe. Our system concatenates the suffix, nwod, to the input

data to build the file name hoppexmod. It then checks to see if the file exists in the current

52

directory. If the file exists, the file is relabeled as the student model file name. If it does

not exist it is created and then relabeled. This file name is a parameter to the procedure

Invoke-CLIPS (See "APPENDIX D. ADA EMULATOR SOURCE CODE" on page 80.).

gq ru sf* cae
NIAT IS YOUR NME / USER ID: hoppe]

Figure 24: Invocation and Initial. Prompt of ITS Ada Emulation.

The file hoppe.mod may contain the deffacts construct in Figure 25. The fact (fbcbl)

is a representation of the error rule that fired during a session. It identifies the rule faulty.

boolean-cond-basic-loop (See "APPENDIX E. CLIPS RULES" on page 89.).

Egrm

qrus% cat hoppe.mod

[(def facts StudentModel(fbcbl)

Figure 25: Contents of Enhanced Student Model.

D. THE STUDENT MODULE

The student model was discussed in the previous section. The diagnostic component

of the system is part Ada code for preprocessing the student solution and the CLIPS rule

base. CLIPS recognizes certain characters as delimiters and therefor necessitates

preprocessing the student solution prior to invoking the CLIPS interpreter. Specifically,

the ;, =, (, and) are all delimiters in CLIPS. They terminate the current line and are ignored

by the inference engine so they can not be assert as part of the fact base. This makes Ada

statements such as, if value = 0, or Balance := CompoundInterest(Balance); , difficult to

parse in CLIPS without preprocessing the problem characters into tokens. The Ada

statement, Wait:= True;, becomes Wait True semicolon. The actual student solution is

53

written to the file stdnt.dat. This is the same file the ITS Ada parser will use as input to

check for syntactic correctness. The files temp.dat and temp.out contain the preprocessed

solutions used by the CLIPS rule base (see Figure 26).

stdnt.dat temp.out
for

for index in 1.. 100 loop index
index := index + 1; in
end loop; 1-100

loop
index

temp.dat ineindex
for index in 1..100 loop +
index := index + 1 semicolon 1
end loop semicolon semicolon

end
loop
semicolon

Figure 26: Solution Files for the Enhanced System.

The preprocessed student solution (temp.dat) is then read, a token at a time, by a small

CLIPS file that rewrites the tokens out to the file temp.out. The student model is then

loaded into the fact base along with the rule base (parser.clp). Inside the CLIPS parser the

input files temp.dat and temp.out are opened. The output file model.out is opened to

capture changes to the student model. An Ada procedure writes the problem number out

to the file called currentprb.dat. This file contains one fact. That one fact is of the form

(current-problem prob#.dp). Where the '#' is replaced by the integer value of the

problem being solved. The first executable command on the RHS of the rule open-fies is

the statement, (load-facts current.prob.dat). This asserts the fact, (current-problem

prob#.clp) on to the fact list and activates the rule load-expert-solution (see Figure 28).

Each problem has a corresponding expert solution file named prob#.dp (see Figure 29). It

contains the facts about the expert solution necessary to identify the errors coded in the rule

base. Once this file is loaded the system has the three components necessary to analyze the

solution. Those components are again, the problem being solved, the student's solution,

54

and the expert solution. Figure 27 is a data flow diagram of this process. It illustrates the

process and the dependency of information within the enhanced student module.

<login name>.mod

ITS Ada

Line of Code a Line of Code
from solution Ada from solution1 tot0, M-ain--m- I stdnt~dat_.._

Problem No. Progra

Preprocessed Curen
Line of Code Prbe
from Solution VFact Student- [Model

Token temp.out currenLprb.dat Facts

model.out
IO.clp

Student
Token Model

Facts

temp.dat ToeIl

parse~clp Expert Solution rb.i
pasr• l ' p prob#.clp

Error Messages
and Tutoring
Messages

Figure 27: Data Flow Diagram of Enhanced System.

55

(defrule load-expert-solution
(declare (salience 15))
(current-problem ?number)

(load-facts ?number)
(bind ?num (eval (sub-string 5 5 ?number)))
(assert (problem ?num)))

Figure 28: CLIPS Rule load-expert-solution.

(expert range 1.. 100)
(expert stmnt sum := sum + I)
(expert token end loop)

Figure 29: Facts Contained in prob2.clp.

E. EXAMPLES

Most of the figures in the preceding section dealt with different aspects of one of the

problems in the Ada survey (See "APPENDIX F. ADA SURVEY" on page 107.). Problem

two has the following description: Write a loop that sums the numbers from 1 to 100

inclusive. The expert solution is:

Sum := 0;
for I in L..100 loop

Sum := Sum + I;
end loop;

The expert solution fact base is shown in Figure 29. The knowledge that the problem

uses a for loop construct is captured in the problem number.

The error we are going to induce is not only a syntax error but a common error found

in the novice solutions to the survey. The error is manually incrementing the loop counter

of a for loop. Since the loop counter is considered a constant it can not be allowed on the

LHS of an assignment statement. With the original ITS Ada diagnostics the student would

not get any feedback about this error until the solution was completed and the student

56

wanted to have the answer checked. This enhanced system notifies the student as soon as

the error is detected (see Figure 30).

WHAT IS YOUR NAME / USER ID: hoppe
Enter problem number: 2
@ 1 for Index In 1..100 loop

@ 2 Index :- Index + lj
ERROR: index := index + 1 semicolon
The Ada for loop automatically increments its counter.
Within the sequence of statements the loop parameter is a constant. Hence
a for loop parameter is not allowed as a variable on the LHS of an
assignment statement (LRM 5.5.6).
Do you want to see an explanation and example (yes or no)? yea

According to the LRM a loop statement with a "for, iteration
scheme, the loop parameter specification is the declaration of the loop
parameter with the given identifier. The loop parameter is an object whose
type is the base type of the discrete range (see 3.6.1). Within the sequence
of statements, the loop parameter is a
constant. Hence a loop parameter must not be given as an *out' or 'in out'
parameter of a procedure or entry call statement, or as an "in out' parameter
of a generic instantiation.

For the execution of a loop statement with a 'for' iteration
scheme, the loop parameter specification is first elaborated. This
elaboration
creates the loop parameter and evaluates the discrete range.

If the discrete rping4 is a null range, the execution of the loop
statement is complete. Otherwise, the sequence of statements is executed
once
for each value of the discrete range. Prior to each such iteration, the
corresponding value of the discrete range is assigned to the loop parameter.

The syntax of the for loop is:
for [loop parameter specification] loop

[sequence of statements]
end loop;

Example:
for J in Buffer'Range loop -- legal even with a null range

if Buffer(J) /=Space then
Put(Buffer(J));

end if;
end loop;

@ 3

Figure 30: Screen Dump of Problem Two.

57

As soon as the student entered the carriage return the CLIPS rules detected the error

and notified the student. At this point the student knows of the error and can fix the problem

prior to completing the solution and having it checked by the parser. Figure 30 is a clean

dialogue. It does not contain any debugging information from the system. Note that @ is

the system prompt and all user input is shown in italics.

Another example shows the facts that are present as each line of code is entered. This

is part of a run from problem four which has the following description: As long as the input

value is greater than or equal to zero, sum the numbers. The expert solution is:

Get(Value);
Sum := 0;
loop

exit when Value < 0;
Sum := Sum + Value;
Get(Value);

end loop;

The expert solution fact base is shown in Figure 31. This error is another common

error on the survey. Many novice programmers attempted to combine constructs to make

their own. Specifically a combination of the "if' and basic "loop" constructs.

(expert token loop)
(expert token exit when)
(expert boolean-cond value < 0)
(expert stmnt sum := sum + value)
(expert token end loop)

Figure 31: Facts Contained in prob4.lp.

Again, as soon as the student enters the carriage return the error is detected and the

student receives feedback (see Figure 32). This error would not have been detected until

the parser was called by the student once the solution was completed.

A final example is one that is trivial in terms of detection but is a semantic error and

would not be caught at all by the parser (see Figure 34). This is the infinite loop error.

Again using problem four this time without an exit condition.

58

NHiT IS YOUR NAME / USER ID: hoppe
Enter problem mnmber: 4
a 1 if input-value >= 0 loop
f-O (initial-fact)

13 Rules Fired
f-O (initial-fact)
f-I (no error)
ERROR: if inputvalue >= 0 loop
The Ada "if" statement does not have a loop construct
(LRX 5.3.2). You are tryinq to write a looping construct. Recmend
you review the basic loop (LRM 5.5.9), the "while loop" (LRN 5.5.10)
and the "for loop" (LRM 5.5.11).

4 Rules Fired

Figure 32: Screen Dump of Partial Solution to Problem Four.

The key is the pattern matching of the student's solution and the knowledge that the

student is solving problem four. This allows the rules to be written without the need for

complex analysis of thr loop invariant or the remainder of the code (see Figure 33).

;Infinite loop in basic loop construct. No exit condition in the loop.
(defrule inf inite- loop- in-bas ic- loop
(declare (salience 10))
?init <- (initial-fact)
?error-status <- (no error)
?tokenl <- (token loop)
?token2 <- (token end loop)
(and (not (token exit))

(not (token exit when)))

(printout model miliblw crlf)
(printout t "You have ended the loop construct without an exit

condition.
This will cause an INFINITE loop once entered. You may want to
re-evaluate the loop conditions. m crlf)

(retract ?error-status ?init)
(assert (concept error)

(syntax error)
(lrm 5.5.4))

(close))

Figure 33: CLIPS Error Rule infinite-loop-in-basic-loop.

59

WHAT IS YOUR NAME / USER ID: hoppe

Enter problem number: 4
@ 1 loop

@ 2 am -a•um + value;

@ 3 end loop;
You have ended the loop construct without an exit condition.
This will cause an INFINITE loop once entered. You may want to re-evaluate
the loop conditions.
Do you want to see an explanation and example (yes or no)? yea

According to the LRM a loop statement without an iteration
scheme specifies repeated execution of the sequence of statements.
Execution of the loop statement is complete when the loop is left as a
consequence of the execution of an exit statement, or as a consequence
of some other transfer of control(LRM 5.1).

The syntax of the basic loop is:
loop loop

[sequence of statements] [sequence of statements]
exit; exit when [boolean condition];
[sequence of statements] [sequence of statements]

end loop; end loop;

Example:
loop

Get (CurrentCharacter);
exit when CurrentCharacter = *';

end loop;

@ 4
This is your solution:
1 loop
2 sum := sum + value;
3 end loop;

Figure 34: Screen Dump of Partial Solution to Problem Four with an Infinite Loop.

The obvious limitation of the system is the robustness of the bug library. However,

keeping in mind the target domain of this system, the novice Ada programmer, the bug

library does not need to be exhaustive. The most common and most instructive bugs are

the ones that need to be catalogued.

60

VIIL CONCLUSIONS

A. ACCOMPLISHMENTS

The CLIPS enhancement (clips.el) for the emacs editing environment has been placed

on-line and opened to the general public for use. It has found a considerable amount of use

in this project and in several other classes which use CLIPS.

To this point we have a working prototype that emulates the interaction of ITS Ada and

the student. This prototype was necessary in order to prove that CLIPS and Ada could be

coupled in a manner suitable for use in this research. CLIPS has been successfully

integrated with Verdix Ada with the Ada program operating as the outer control program.

The control problems of Ada invoking the CLIPS interpreter and regaining control

have been overcome. Addition of several CLIPS commands to the Ada package clips.a

made these commands available to be used in the Ada source code.

For a very selective group of Ada statements the CLIPS rules have been successful in

determining limited semantic errors for documented error types. The student model has

been extended from a relatively flat, very structured representation to a more dynamic,

somewhat more robust and more detailed representation of the student's actual knowledge

within the domain.

B. FUTURE RESEARCH AREAS

A complete and detailed survey similar to the survey conducted during the

development of PROUST [JONS 85] needs to be done for the Ada programming language.

This would facilitate the classification and development of a significantly larger and more

complete bug library.

Integration of ITS Ada to the completed bug library would fully extend the student

model over the entire spectrum of the language topics covered. This would allow more of

the potential of the tutor to be realized.

Integration of an on-line Ada language reference manual (LRM) with an index and

retrieval system would preclude having to rewrite the LRM in the form of explanation

61

rules. This index and retrieval system would then allow us to specify which sentences of

the LRM to print to the screen thus allowing any combination of explanation from the LRM

references.

The addition of the remaining CLIPS functions to the interface package clips.a would

make the entire CLIPS environment and all CLIPS constructs available to the Ada

programmer. This would extend the functionality of CLIPS within the Ada program and

could present new methods of control that currently are not available because the

functionality is not present.

The main control unit of this thesis was the Ada main program calling the CLIPS

interpreter when needed. Another alternative would be to re-engineer the entire system

with CLIPS as the main control unit calling Ada functions. The advantage to be gained

from this approach would be the increase in potential for capturing more information about

the student and the cogintive process. The major difficulting in this approach is the

communication of C and Ada. Currently the communication is from Ada to C. Having

CLIPS as the main program would require C to communicate with Ada. This is a compiler

specific problem.

There is clearly an object oriented approach that can be taken in terms of the

information gained about the student. Utilizing the OOP paradigm and CLIPS Object

Oriented Language (COOL) this entire process could be reworked. This would require an

extension of the interface package to include all COOL functions. It would require a

redesign of the extended student model and a rewrite of many of the rules.

CLIPS version 5.1 has been released with extended features that integrate the rule

based side of CLIPS and the object oriented side of CLIPS. Extending this project under

the newer language release could provide a simpler solution than using CLIPS version 5.0.

62

APPENDIX A. EMACS CLIPS MODE

;; CLIPS mode, CLIPS editing support package in GNU elisp. v 1.0
,, Written by William C. Hoppe, CPT, IN, US Army <hoppe@cs.nps.navy.mil>
;; March 1992.
;; Borrows logic and code fragments from lisp-mode.el and prolog.el packages
;; for GNU Emacs

;; GNU Emacs is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY. No author or distributor
;; accepts responsibility to anyone for the consequences of using it
;; or for whether it serves any particular purpose or works at all,
;; unless he says so in writing. Refer to the GNU Emacs General Public
,, License for full details.

;; Everyone is granted permission to copy, modify and redistribute
,, GNU Emacs, but only under the conditions described in the
;; GNU Emacs General Public License. A copy of this license is
;; supposed to have been given to you along with GNU Emacs so you
,, can know your rights and responsibilities. It should be in a
,, file named COPYING. Among other things, the copyright notice
;; and this notice must be preserved on all copies.

;; In order to autoload or use auto-mode-alist to check for .clp
;; files add the following lines of code to your .emacs file

;;load-path for clips.el
;; (setq load-path (cons "Thesis/clips-mode" load-path))
,, (require 'shell "shell")
;;load clips.el
;; (autoload 'clips-mode "clips" "edit a clips file" t nil)
,, (autoload 'run-clips "clips" "run CLIPS 5.0 in a subwindow" t nil)
,, (load '"hesis/clips-mode/clips.el")

;; set auto-mode-alist to run *.clp files in clips-mode
;; (setq auto-mode-alist
,, (cons
;; '('•\.clp". clips-mode) ;Filename ends in .clp
;; auto-mode-alist))

(defvar clips-mode-syntax-table nil
"Syntax table used in CLIPS-mode")

(defvar clips-mode-abbrev-table nil
"Abbrev table used in CLIPS-mode")

(defvar clips-mode-map nil

63

"Keymap used in CLIPS-mode")

;Standard indentation level for CLIPS
(defvar clips-indent-width 2)

;define the clips-mode-syntax-table
(if clips-mode-syntax-table

) ;clips-mode-syntax-table already loaded, do not change
let ((table (make-syntax-table)))
modify-syntax-entry ?# "' table)
modify-syntax-entry ?& "" table)
modify-syntax-entry ?' "_" table)
modify-syntax-entry ?, "table)
modify-syntax-entry ?. "-" table)
modify-syntax-entry ?: "-' table)
modify-syntax-entry ?I1 table)
modify-syntax-entry ?- ""' table)
modify-syntax-entry ?? "_" table)
setq clips-mode-syntax-table table)))

;Abbreviation table for CLIPS mode
(define-abbrev-table 'clips-mode-abbrev-table'(
"Id" "(load" nil 1)
"dfa" "(deffacts!" nil 1)
"dru" "(defrule" nil 1)"dte""(deftemplate" nil 1)
"dfu" "(deffunction" nil 1)
"dgl" "(defglobal" nil 1)
"dmsg" "(defmessage-handler" nil 1)"prt" "(printout" nil 1)"prtt" "(printout t" nil 1)
"asr" "(assert" nil 1)"rtr" "(retract" nil 1)
"dcl" "(defclass" nil 1)
"dscl" "(describe-class" nil 1)
"sit" "(slot" nil 1)
"n (send" nil 1)"bnd" "(send" nil 1)
"rst" "(reset)" nil 1)
"clr" "(clear)" nil 1)
"mkins" "(make-instance" nil 1)
"ins" instances)" nil 1)
"din" "(definstances" nil 1)
"dft" "(default" nil 1)
"dftdy""(default-dynamic" nil 1)
"isa" "(is-a" nil 1)
"abst" "(abstract)" nil 1)
"mtpl" "(multiple)" nil 1)
"rdly" "(read-only)" nil 1)
"cmpt" "(composite)" nil 1)
"gsm" "(gensym)" nil 1)

64

ugsmm" u(Qensym*)" nil 1)
'Inily" "(initialize-only)" nil 1)
"da" "=>" nil 1)
"la" "<-" nil 1)
"anyinsp" "(any-instancep" nil 1)
"fndins" "(find-instance" nil 1)
"fndinss" "(find-all-instances" nil 1)
"dins" "(do-for-instance" nil 1)
"dinss" "(do-for-all-instances" nil 1)
"dlydinss" "(delayed-do-for-all-instances" nil 1)
"sym2ins" "symbol-to-instance-name"a nil 1)
"Ins2sym" "instance-name-to-symbol" nil 1)
"Iscr" "(list-defclasses)". nil 1)"su pclp" "(superclassp" nil 1)
"su bclp" "(subclassp" nil 1)
"brcl" "(browse-classes)" nil 1)
"ppcl" "ppdefclass" nil 1)
"dscl "(.describe-class" nil 1)
"Isins" "(list-definstances)" nil 1)
"-pins" '"(ppdefinstances" nil 1)
""fun" .. (.ist-deffunctions)" nil 1)
"ppfun" "(ppdeffunction" nil 1)

;Local variables used while in CLIPS mode
(defun clips-mode-variables 0
set-syntax-table clips-mode-syntax-table)
setq local-abbrev-table clips-mode-abbrev-table)
make-local-variable 'paragraph-start)
setq paragraph-start (concat "IA;\\IA$\\I" page-delimiter)) ;';....'
make-local-variable 'paragraph-separate)
setq paragraph-separate paragraph-start)
make-local-variable 'paragraph-ignore-fill-prefix)
setq paragraph-ignore-fill-prefix t)
make-local-variable 'indent-line-function)
setq indent-line-function 'clips-indent-line)
make-local-variable 'comment-start)
setq comment-start ";")
make-local-variable 'comment-start-skip)
setq comment-start-skip ";+ *")
make-local-variable 'comment-column)
setq comment-column 48)
make-local-variable 'comment-indent-hook)
setq comment-indent-hook 'clips-comment-indent))

;Key bindings specific for CLIPS mode
(defun clips-mode-commands (map)
(define-key map 'It" 'clips-indent-line)
(define-key map "\C-m" 'newline-and-indent)

(define-key map "\C-c\C-1p"'run-clips)
(define-key map "\C-c\C-b" 'clips-reconsult-buffer-and-go)

65

(define-key map "\C-c\C-r" 'clips-consult-region-and-go)

(if clips-mode-map
nil ; already in CLIPS-mode, change nothing
setq clips-mode-map (make-sparse-keymap))
clips-mode-commands clips-mode-map))

(defun clips-mode (
"Major mode for editing CLIPS 5.0 code for CLIPS. ';' starts
comments. Normally blank lines separate structures and blocks.
Use LF for automatic indentation. RTN will reset that lines
indentation to 0.
Commands:
\\{clips-mode-map)
Entry to this mode call the value of clips-mode-hook if that
value is non-nil."interactive)

kill-all-local-variables)
use-local-map clips-mode-map)
set-syntax-table clips-mode-syntax-table)
setq major-mode 'clips-mode)
setq mode-name "CLIPS")
clips-mode-variables)
run-hooks 'clips-mode-hook))

defconst clips-indent-offset nil ."")
defconst clips-indent-hook 'clips-indent-hook "")

(defun clips-indent-line (&optional whole-exp)
"Indent current line as CLIPS code. With arguments,
indent any additional lines of the same clause
rigidly along with this one."

interactive "p")
(let ((indent (calculate-clips-indent)) shift-amount begin end

(pos - (point-max) (point))))
beginning-of-line)
setq begin (point))
if (looking-a ";")

;;Comment lines should be indented as comment lines not code
(progn
(indent-for-comment)
(forward-char -1))

(if (listp indent) (setq indent (car indent)))
setq shift-amount (- indent (current-column)))
if (zerop shift-amount)

nil
(delete-region beg in (point))
(indent-to indent)))

;;if initial point was within line's indentation,

66

;;position after the indentation. Else stay at same point in text.
(if (> (- (point-max) pos) (point))

(goto-char (- (point-max) pos)))
;;If desired, shift remaining lines of expression the same amount.
(and whole-exp (not (zerop shift-amount))

save-excursion
qOto-char begin)
orward-sexp 1)
setq end (point))
?goto-char begin)
forward-line 1)
setq begin (point))
> end begin))
indent-code-rigidly begin end shift-amount))))

(defun calculate-clips-indent (&optional parse-start)
"Return appropriate indentation for current line as CLIPS code.
In usual case returns an integer: the column to indent to.
Can instead return a list, whose car is the column to indent to.
This means that following lines at the same level of indentation
should not necessarily be indented the same way.
The second element of the list is the buffer position
of the start of the containing expression."

save-excursion
beginning-of-line)
let ((indent-point (point))

state paren-depth
;;setting desired-indent to a number inhibits calling hook
(desired-indent nil)
retry t)
last-sexp containing-sexp) ;closing paren for 'let'

(if parse-start
(goto-char parse-start)

(beginning-of-defform))
;;Find outermost containing sexp
(while (< (point) indent-point)

(setq state (parse-partial-sexp (point) indent-point 0)))
(while (and retry

state
(> (setq paren-depth (elt state 0)) 0))

(setq retry nil)
setq last-sexp (elt state 2))

(setq containing-sexp (elt state 1))
;;Position following last unclose open.
(goto-char (1 + containing-sexp))
;;Is there a complete sexp since then?
(if (and last-sexp (> last-sexp (point)))
;;Yes, but is there a containing sexp after that?
(let ((peek (parse-partial-sexp last-sexp indent-point 0)))
if (setq retry (car (cdr peek)))

67

(setq state peek)))))(if retry
nil
;;Innermost containing sexp found
(goto-char (1+ containing-sexp))
(if (not last-sexp)
;;indent point immediately follows open paren.
;;Don't call hook.
(setq desired-indent (current-column))
;;Find the start of first element of containing sexp.
parse-partial-sexp (point) last-sexp 0 t)
cond ((looking-at '•\s(")

;;First element of containing sexp is a list.
;;Indent under that list

((> (save-excursion (forward-line 1) (point))
last-sexp)
;;This is the first line to start within the containing sexp.
(if (= (point) last-sexp)
;;containing sexp has nothing before this line
;;except the first element. Indent under that element.
(progn (forward-sexp 1)

(parse-partial-sexp (point) last-sexp 0 t)))
(backward-prefix-chars))
(t
;;Indent beneath first sexp on same line as last-sexp.Igoto-char last-sexp)
beginning-of-line)
prse-partial-sexp (point) last-sexp 0 t)

ckward-prefix-chars)))))
;;Point is at the point to indent under unless we are inside a string.
;;Call indentation hook except when overriden by clips-indent-offset
;;or if the desired indentation has already been computed.
(let ((normal-indent (current-column)))

(cond ((looking-at "=") ;check for the '=>' , implies
(forward-char 1)
(if (looking-at ">')

(setq normal-indent clips-indent-width)
nil))

((elt state 3)
;;Inside a string, don't change indentation.
goto-char indent-point)
skip-char-forward" \t")
current-column))
(and (integerp clips-indent-offset) containing-sexp)

;;Indent by constant offset

+ normal-indent clips-indent-offset))
desired-indent)
(and (boundp 'clips-indent-hook)

clips-indent-hook

68

(not retry))
(or (funcall clips-indent-hook indent-point state)

normal-indent))
(t
normal-indent))))))

(defun clips-indent-hook (indent-point state)
let ((normal-indent (current-column)))
goto-char (1 + (elt state 1)))
parse-partial-sexp (point) last-sexp 0 t)
if (and (elt state 2)
not (looking-at '\\sw\\\\ss_")))

;; car of form doesn't seem to be a a symbol
$ progn
if (not (> (save-excursion (forward-line 1) (point))

last-sexp))
(progn (goto-char last-sexp)
beginning-of-line)
parse-partial-sexp (point) last-sexp 0 t)))

;; Indent under the list or under the first sexp on the
;; same line as last-sexp. Note tnat first thing on that
;; line has to be complete sexp since we are inside the
;; innermost containing sexp.
l backward-prefix-chars)
current-column))
let ((function (buffer-substring (point)

(progn (forward-sexp 1) (point))))method)
setq method (get (intern-soft function) 'clips-indent-hook))
if (or (eq method 'defrule)

(and (null method)
(> (length function) 3)
(string-match 'Wdef" function)))

(clips-indent-defform state indent-point)
normal-indent)))))

put 'deffacts 'clips-indent-hook 'defrule)
put 'defglobal 'clips-indent-hook 'defrule)
put 'deftemplate 'clips-indent-hook 'defrule)
put 'deffunction 'clips-indent-hook 'defrule)

(defun clips-indent-defform (state indent-point)
goto-char (car (cdr state)))
forward-line 1)
if (> (point) (car (cdr (cdr state))))
progn

goto-char (car (cdr state)))
clips-indent-width (current-column)))))

69

(defun end-of-clips-clause 0
"Go to end of clause in this line."
(interactive) ;;
beginning-of-line 1)
let ((eolpos (save-excursion (end-of-line) (point))))
if (re-search-forward comment-start-skip eolpos 'move)

(goto-char (match-beginning 0)))
(skip-chars-backward "\t")))

(defun clips-comment-indent 0
"Compute CLIPS comment indentation."
(cond ((looking-at ";;;") 0)

((looking-at ";;") (clips-indent-level))
(t (save-excursion
(skip-chars-backward "\t")
max (1+ (current-column)) ;insert at least one space

comment-column)))

(defun beginning-of-defform (&optional arg)
"Move backward to next beginning-of-defform. With argument,

do this 'arg' number of times.
Returns t unless search stops due to end of buffer."

interactive "p")
(and arg (< arg 0) (forward-char 1))
(and (re-search-backward "A\\s(" nil 'move (or arg 1))
progn (beginning-of-line) t)))

(; (Mon Apr 27 20:19:20 1992 - ylee)
,, Adopted from prolog.el

(defun clips-consult-region-and-go 0
"Send the region to the inferior CLIPS, and switch to *clips* buffer."interactive)
copy-region-as-kill (mark) (point))
switch-to-buffer-other-window "*clips*")

end-of-buffer)
yank)
end-of-buffer)
;;(newline-and-indent)
)

(defun clips-reconsutt-buffer-and-go 0
"Send buffer to *clips* for reconsultation."
interactive)
'opy-region-as-kill (point-min) (point-max))
switch-to-buffer-other-window " clips*")
lend-of-buffer)

70

yank)
end-of-buffer)

;; (newline-and-indent))

;;; Inferior clips mode

(defvar inferior-clips-mode-map nil)

;; (defvar inferior-clips-mode-abbrev-table clips-mode-abbrev-table
";; "Abbrev table used in inferor-CLIPS-mode")

;; (set 'inferior-clips-mode-abbrev-table
;; clips-mode-abbrev-table)

(defun inferior-clips-mode 0
"Major mode for interacting with an inferior CLIPS process.

This CLIPS version is 5.0. Version 5.1 has been released
and will require modification of this program to execute 5.1 instead
of 5.0 once it is installed. The minimum modification is in the
definition of 'run-clips'.
Instead of (switch-to-buffer (make-shell \"clips\" \"clips5\)),
(switch-to-buffer (make-shell \"clips\" \"new executable\").

The following commands are available:
\\{inferior-clips-mode-map)

Entry to this mode calls the value of clips-mode-hook with no arguments,
if that value is non-nil. Likewise with the value of shell-mode-hook.
clips-mode-hook is called after shell-mode-hook.

You can send text to the inferior CLIPS from other buffers
using the commands send-region, send-string and \\[clips-consult-region].

Commands:
Tab indents for CLIPS; with no arguments, shifts rest of expression
rigidly with the current line.
Paragraphs are separated only by blank lines and ';'. ';' starts comments.

Return at end of buffer sends line as input.
Return not at end of buffer copies rest of line to end and sends it.
\ shell-send-eof] sends end-of-file as input.
\Ikill-shell-input] and \\[backward-kill-word] are kill commands, imitating
normal Unix input editint.
\\[interrupt-shell-subjob] interrupts the shell or its current subjob if any.
\1[stop-shell-subjob] stops, likewise. \\[quit-shell-subjob] sends quit
signal, likewise."

interactive)
kill-all-local-variables)
setq major-mode 'inferior-clips-mode)

71

setq local-abbrev-table clips-mode-abbrev-table);;
setq mode-name "Inferior CLIPS")
setq mode-line-process '(": %s"))
clips-mode-variables)
require 'shell)
if inferor-clips-mode-map

nil
setq inferior-clips-mode-map (copy-alist shell-mode-map))
clips-mode-commands inferior-clips-mode-map))
use-local-map inferior-clips-mode-map)
make-local-variable 'last-input-start)
setq last-input-start (make-marker))
make-local-variable 'last-input-end)
setq last-input-end ,make-marker))
make-variable-buffer-local 'shell-prompt-pattern) c

;; (setq shell-prompt-pattern "A^[C][L][][P][S][>] *") ;set clips prompt
(setq shell-prompt-pattern "CLI PS> ") ;set clips prompt
mrun-hooks 'shell-mode-hook 'clips-mode-hook))

(defun run-clips 0
"Run an inferior CLIPS process, input and output via buffer *cl'ps*."Sinteractive)
require 'shell)
switch-to-buffer (make-shell "clips" "clips5"))
inferior-clips-mode))

;; (defun clips-consult-region (beg end)
",, "Send the region to the CLIPS process made by M-x run-clips."
,, interactive "P\nr")
,, save-excursion
,, send-string "clips" clips-consult-string)
,, send-region "clips" beg end)
,, send-string "clips" '\n") ;ensure carriage return sent
, (if clips-eof-string

(send-string "clips" clips-eof-string)
,, (process-send-eof "clips"))))
,,

;; (defun clips-consult-region-and-go (beg end)
",, "Send the region to the inferior CLIPS, and switch to *clips* buffer."

(interactive "P\nr")
, (clips-consult-region beg end)
,, (switch-to-buffer "*clips"I)

72

APPENDIX B. CLIPS/ADA INTERFACE PACKAGE

--Title : Package Clips
--Author William C. Hoppe
--Date : 7 November 1991
--Revised 21 July 1992
--Course : Thesis
--System : SUN-3 UNIX
--Compiler : Verdix, VADS, Ver 6.0
--Description : This package contains the specifications and body
-- for some of the CLIPS (Ver 5.0) functions used in
-- embedded CLIPS systems. This code is a modification
-- of the DEC Ada compiler version found on page 133 of
-- CLIPS Reference Manual, Volume II, "Advanced Programming
-- Guide", dtd 11 January 91.
-- This package is needed in order to embed CLIPS in Ada
-- applications or to run Ada programs from CLIPS.

with System;

use System;

package CLIPS is

--Initialize the CLIPS environment upon program startup.

procedure xlnitializeCLIPS;

--Clears the CLIPS environment.

procedure xClearCLIPS;

--Resets the CLIPS environment.

procedure xResetCLIPS;

--Loads a set of constructs into the CLIPS database. If there are syntactic
--errors in the constructs, xLoadConstructs will still attempt to read the
--entire file, and error notices will be sent to werror.
--Returns: an integer, zero if an error occurs.

function xLoadConstructs(FileName : in STRING) return INTEGER;

--Allows RunLimit rules to fire (execute). -1 allows to fire until
--the agenda is empty.
--Returns: Number of rules that were fired.

function xRunCLIPS (Run-Limit : in INTEGER := -1) return INTEGER;

73

--Allows the dribble function of CLIPS to be turned on.

--Returns: an integer, zero if an error occurs otherwise a one.

function xOpenDribble(FileName in STRING) return INTEGER;

--Turns off the storing of dribble information.
--Returns: an integer, zero if an error occurs otherwise a one.

function xCloseDibble return INTEGER;

--Closes all open files in CLIPS

procedure xCIoseAIlFiles;

--Lists the facts in the fact-list.

procedure xListFacts;

--Turns the watch facilities of CLIPS on and off.

function xSetWatchltem (Watch Item in STRING;
Value "in INTEGER) return INTEGER;

--Asserts a fact into the CLIPS fact-list. The function version returns the
--FactPointer required by xRetractFact.

function xAssertString (Pattern "in STRING) return INTEGER;

--Causes a fact asserted by the xAssertString function to be retracted.
--Returns: FALSE if fact has already been retracted, else TRUE.
--Input other values not returned by xAssertStrng will cause CLIPS to
--abort.

function xRetractFact (FactPointer: in INTEGER) return INTEGER;

--Queries all active routers until it finds a router that recognizas the
--logical name associated with this I/O request to print a strir , It then
--call the print function associated with that router.

function xPrintCLIPS (Log-Name,
Str : in string) return INTEGER;

--Finds a rule within the knowledge base.
--Returns: A pointer to a rule required by function such as
--xDeleteDefrule.

function xFindDefrule (RuleName : in STRING) return INTEGER;

--Removes a rule from CLIPS.
--Returns: FALSE if rule not found, else TRUE.

74

function xDeleteDefrule (RulePointer: in INTEGER) return INTEGER;

private

pragma INTERFACE (C, xlnitializeCLlPS);
pragma INTERFACENAME (xlnitializeCLlPS, "_InitializeCLiPS");

pragma INTERFACE (C, xClearCLIPS);
pragma INTERFACENAME (xC IearCLI PS, " -ClearCLI PS");

pragma INTERFACE (C, xResetCLlPS);
pragma INTER FACENAME (xResetCLIPS, "_ResetCLIPS");

function cLoadConstructs (File Name :in ADDRESS) return INTEGER;
pragma INTERFACE (C, cLoadConstructs);
pragma INTERFACENAME (cLoadConstructs, "_LoadConstructs");

pragma INTERFACE (C, xRunCLIPS);
pragma INTERFACENAME (xRunCLIPS, "_RunCLIPS");

function cOpenDribble (FileName :in ADDRESS) return INTEGER;
pragma INTERFACE (C, cOpenDribble);
pragma INTERFACENAME (cOpenDdbble, "-Open Dribble");

function cCloseDribble return INTEGER;
pragma INTERFACE (C, cC lose Dribble);
pragma INTERFACENAME (cCloseDribble, "_CloseDribble");

pragma INTERFACE (C, xListFacts);
pragma INTERFACENAME (xListFacts, "_ListFacts");

pragma INTERFACE (C, xCloseAlI Files);
pragma INTERFACENAME (xCloseAllFiles, " CloseAliFi les");

function cSetWatchltem (Item :in ADDRESS;
ActiveValue: in INTEGER) return INTEGER;

pragma INTERFACE (C, cSetWatch Item);
pragma INTERFACENAME (cSetWatchltem,"_SetWatchitem");

function cAssertString (attern :in ADDRESS) return INTEGER;
pragma INTERFACE (C, cAssertString);
pragma INTERFACENAME (cAssertString, "_AssertString");

function cRetractFact (FactPointer: in INTEGER) return INTEGER;
pragma INTERFACE (C, cRetractFact);
pragma INTERFACENAME (cRetractFact, "_Retract Fact");

function cPrintCLlPS (Log-..Name,
Str in ADDRESS) return INTEGER;

75

pragma INTERFACE (C, cPrintCLl PS);
pragma INTERFACENAME (cPrintCLIPS, ".PrintCLIPS");

function cFindDefrule (RuleName : in ADDRESS) return INTEGER;
pragma INTERFACE (CcrindDefrule);
pragma INTERFACENAME (cFindDefrule, "_Find~efrule");

function cDeleteDefrule (RulePointer : in INTEGER) return INTEGER;
pragma INTERFACE (C, cDeie-teDefrule);
pragma INTERFACENAME (cDeleteDefrule, "_DeleteDefrule");

end CLIPS;

with TextjO0;

package body CLIPS is

function Ada -to_-C_-String (Input-..String :in STRING) return ADDRESS is
outstring :.string (1..I1nput...String'last+ 1);

begin
for I in Input -String'rar.ge loop

if (Input...String (I) in ' '..'-' or
lnpui..String (I) = ASCII.Cr or
Input .String (I) = ASCII.Lf) then

else
Out...String(l) :=ASCII.Nul;

end if;
end loop;
OutString (OutString'last) :=ASCII.NuI;
return OutStning'Address;

end Ada,_to_C_String;

function xLoadConstructs(FileLName : in STRING) return INTEGER is
package IntegerInout is new Text-lO.Integer-lO(Integer);

begin
return cLoadConstructs(Ada-to.CString(File..Name));

end xLoadConstructs;

function xOpenDribble(FileName: in STRING) return INTEGER is
int : Integer;
package IntegerInout is new Text-IO.lntegerjO0(Integer);

begin
-- return cOpenDribble(Ada toC String(File Name));
TextIO.PutLine("Inside th'e Package CLIP9, function xOpenDribble");
int: cOpenDdbble(Ada toCString(Filej'Name));
TextIO.Put("The value fromý the cOpenDRIbble, function is:)
Integer Inout.Put(int, width =>1);
TextICdhew-line;

76

return int;
end xOpenDdbble;

function xCloseDribble return INTEGER is
int :Integer;
package IntegerInout is new TextIO.IntegerjlO(Integer);

begin
-- return cCloseDribble(Ada to C String(File Name));

Text IO.PutLine("Inside the Package CLIPS, function xCloseDribble');
int :=-cCloseDribble;
TextIO.Put("The value from the cCloseDribble function is: ");
Integer_lnout.Put(int, width =>1);
TextIO.Newline;
return int;

end xCloseDribble;

function xSetWatchltem (Watch Item in STRING;
Value in INTEGER) return INTEGER is

begin
return cSetWatchltem(Ada toC String (WatchItem), Value);

end xSetWatchltem;

function xAssertStdng (Pattern in STRING) return INTEGER is
begin

return cAssertbtring(Ada toCString (Pattern));
end xAssertString;

function xRetractFact (FactPointer in INTEGER) return INTEGER is
begin

return cRetractFact(FactPointer);
end xRetractFact;

function xPrintCLIPS (LogName,
Str in string) return INTEGER is

begin
return cPrintCLIPS(Ada to C String (Log_Name),

Ada toCString (Str));
end xPrintCLIPS;

function xFindDefrule (RuleName :in STRING) return INTEGER is
begin

return cFindDefrule(Ada toCString(RuleName));
end xFindDefrule;

function xDeleteDefrule (RulePointer in INTEGER) return INTEGER is

begin

77

return cDeleteDetrule(RulePointer);
end xDeleteoefrule;

end CLIPS;

78

APPENDIX C. CLIPS RUN-TIME EXAMPLE

(deffacts test
(no error)
(token for)
(variable I)
(statement I:= I + 1))

(defrule for-loop-concept-error 1
?error-status <- (no error)
?token1 <- (token for)
?variablel <- (variable ?v)
(statement ?v := $?)

(printout t "The Ada for loop automatically increments its counter.
Incrementing the counter manually inside a for loop may produce invalid
results." crlf)

(retract ?error-status)
(assert (concept error)))

CLIPS (V5.0 3/05/91)
CLIPS> (load testl.clp)
Defining deffacts: test
Redefining defrule: for-loop-concept-error I +j+j+j+j
CLIPS> (reset)
CLIPS> (facts)
f-O (initial-fact)
f- 1 (no error)
f-2 (token for)
f-3 (variable I)
f-4 (statement I := I + 1)
For a total of 5 facts.
CLIPS> (run)
The Ada for loop automatically increments its counter.
Incrementing the counter manually inside a for loop may produce invalid
results.
CLIPS>

79

APPENDIX D. ADA EMULATOR SOURCE CODE

--Title Editor Emulator for ITS ADA
--Author William C. Hoppe
--Date 12 May 1992
--Revised 7 Aug 1992
--Course Thesis
--System SUN-3 UNIX
--Compiler Verdix Ada, VADS, Ver 6.0
--Description This program emulates the editor functions of the Ada
-- tutor ITS ADA. It interacts with CLIPS in order to
-- conduct semantic checking of the student solution as
-- the solution is typed in. This is basically a prototype
-- to learn where to break the control of ITS ADA and to
-- work out control issues between ADA and CLIPS.

with CLIPS, Text_10;

use CLIPS, Textl0;

procedure clips-adaeditor is

DribbleFile : String(1..9) := "dribl.out";
Student-_ModelFileName,
UserName,
File Name : String(1..20) (others =>
FileOpenStatus,
RulesFired Integer;

stmnt : string(1..79);

NameLen,
Index :Integer :=1;
ProblemNumber,
stmntlen : Integer := 0;

type Line is record
statement: string(1..79) := (others => ");
statement.length :integer:= 0;

end record;

type Response is (yes, no);
type Solution is array(1 ..20) of Line;

Answer "Response;
CodeSegment "Solution;

package IntegerInout is new IntegerjlO(Integer);

80

package EnumInout is new Enumeration-lO(Response);

--Gets the log in name of the student that should match any
--previous student modeling data maintained by the system.
--This will work as long as the student uses the same log in
--name every time. Otherwise a new file will be created each
--time the student log in under a different name.
procedure GetUserName (Name "in out String;

NameLength "in out Integer) is separate;

--This function takes as input the Log in name of the student and the
--name length. It builds the filename *.mod and attempts to open it.
--If the file is already open a STATUSERROR will occur which will
--execute that portion of the exception handler. If the file does
--not exist then a NAMEERROR will occur and the file is created. Any
--other condition will return a value of false.
function Check forExisting__tudentModel (File Name :in String;

FileName Len : in Integer)
reiurn BOOLEAN is separate;

--This function takes as input the Log in name of the student and the
--name length. It builds and returns the filename *.mod.
function GetStudentModel(Name : in String;

Name Len :in Integer)
return String is separate;

--This procedure takes as input an integer that represents the
--problem number the student is attempting to solve. It creates
--a wrapper in the form of a CLIPS fact with the appropriate
--.clp file. Example: Problem 4 would build the following fact:
--(current-problem prob4.clp). The expert solution for problem
--4 is in prob4.clp. This allows CLIPS to load the expert solution.
procedure WriteCurrentProblem(ProbNum : in Integer) is separate;

--Writes the portions of the solution out to "temp.dat" or
--the entire student solution out to a file "stdnt.dat". The
--target file is passed in as a parameter. Solutions being
--written to "temp.dat" are preprocessed to replace the ';' with
--the token 'semicolon'. This is because the semicolon character
--is a delimeter in CLIPS and is not written to the file.
procedure WriteStudentSolution (Code-Segment : in out Solution;

LineCount : in Integer;
Output -File : in String;
FileNameLen: in Integer) is separate;

--This procedure takes as input the *.mod student model filename
--and the length of the filename. It first initializes the CLIPS
--runtime environment. This function should only be called once
--per procedure invocation. It then loads the CLIPS file IO.clp
--which preprocesses the student solution into a form for CLIPS
--to use. It then loads the student model file and the file

81

--parser.clp which is the rule base for the CLIPS diagnostic
--package and error rules.
procedure InvokeCLIPS (StudentModelFile "in String;

NameLength :in Integer) is separate;

--This procedure takes as input the *.mod filename of the student
--and writes out any facts that were written out to the file
--model.out by CLIPS. It builds the CLIPS deffacts construct as
--a wrapper around the facts that are in model.out and gives it
--the log in name of the student .mod.
procedure UpdateStudentModel(OutputLFile "in String;

FileNameLen :in Integer) is separate;

begin
GetUserName(UserName, Name-Len);
if Check for ExistingStudentModel(UserName, NameLen) then

Student_Model. FileName(l..Name Len + 4) :=
GetStudentModel(UserName, NameLen);

else
PutLine("Can not access Current Student Model");

end if;
Put("Enter problem number: ");
Integer_lnout.Get(ProblemNumber);
WriteCurrentProblem(ProblemNumber);
Skip_- Line;
Put("@ 1");
GetLine(Stmnt, StmntLen);
loop

exit when stmnt(1) =
Code_Segment Index).Statement(1 ..Stmntj.Len) := Stmnt(1 ..StmntLen);
CodeSegment Index).StatementLLength := StmntLen;
WriteStudent_lolution(CodeSegment, Index,"temp.dat",8);
WriteStudentSolution(CodeSegment, Index,"stdnt.dat",9);
InvokeCLIPS(StudentModelFile Name, NameLen + 4);
UpdateStudentModel(Student_ModelFileName, NameLen + 4);
NewLine;
Index := Index + 1;
Put("@ ");
Integer_lnout.Put(Index, width => 1);
Put(" ");
GetLine(Stmnt, StmntLen);

end loop;
Put Line("This is your solution:");
for Fin 1..(Index-1)loop

Integer_lnout.Put(l, width => 1);
Put(" ");

Putline(CodeSegment(I). Statement(1..CodeSegment(I). StatementLength)

end loop;

82

NewiUne(2);
Put("Do you wish to modify any of the lines of code? ");
Enum_lnout.Get(Answer);
case Answer is

when yes =>
null;

when no =>
Index:= Index - 1;
--writing final solution to stdnt.dat
Write_StudentSolution(CodeSegment, lndex,"stdnt.dat",9);

end case;
end clips_adaeditor;

83

--Title Separate Compilation Files
--Author : William C. Hoppe
--Date 20June 1992
--Revised • 8 Aug 1992
--Course • Thesis
--System SUN-3 UNIX
--Compiler Verdix Ada, VADS, Ver 6.0
--Description • This file contains the separate compilation
-- units that belong to the main procedure
-- clips-ada-editor.

separate (clips.ada_editor)
--Gets the log in name of the student that should match any
--previous student modeling data maintained by the system.
--This will work as long as the student uses the same log in
--name every time. Otherwise a new file will be created each
--time the student log in under a different name.
procedure GetUserName (Name "in out String;

Name-Length "in out Integer) isbegin
Put('WHAT IS YOUR NAME / USER ID: ");
GetLine(Name,NameLength);

end GetUserName;

separate (clipsada_editor)
--This function takes as input the Log in name of the student and the
--name length. It builds the filename *.mod and attempts to open it.
--If the file is already open a STATUSERROR will occur which will
--execute that portion of the exception handler. If the file does
--not exist then a NAMEERROR will occur and the file is created. Any
--other condition will return a value of false.
function Check forExistingStudentModel (FileName "in String;

FileName_ Len : in Integer)
return BOOLEAN is

Outfile : FileType;
StudentFile : String(l..FileNameLen + 4)

FileName(1 ..FileNameLen) & ".mod";

begin
Open(Outfile, Out-File, StudentFile);
return true;
exception
when STATUS ERROR =>

Close(Outfile);
Open(Outfile, OutFile, StudentFile);
return true;

when NAMEERROR =>

84

Create(Outfile, OutFile, StudentFile);
return true;

when others =>
return false;

end Check-for ExistingStudentModel;

separate (clips ada editor)
--This function takes-as input the Log in name of the student and the
--name length. It builds and returns the filename *.mod.
function GetStudentModel(Name : in String;

NameLen : in Integer) return String is

StudentModel : String(1 ..NameLen + 4) := Name(l..Name-Len) & ".mod";

begin
return StudentModel;

end GetStudentModel;

separate (clips.ada_editor)
--This procedure takes as input an integer that represents the
--problem number the student is attempting to solve. It creates
--a wrapper in the form of a CLIPS fact with the appropriate
--.clp file. Example: Problem 4 would build the following fact:
--(current-problem prob4.clp). The expert solution for problem
--4 is in prob4.clp. This allows CLIPS to load the expert solution.
procedure WriteCurrentProblem(ProbNum : in Integer) is

Outfile : FileType;
File-Name : Stnng(1 .. 16) := "currentprob.dat";
ProblemNumber: Integer := ProbNum;

begin
Open(Outfile, Out-File, FileName);
Put(Outfile, "(current-problem prob");
Integer_lnout.Put(Outfile, ProblemNumber, width => 1);
Put(Outfile, ".clp)");
Close(Outfile);

end WnteCurrentProblem;

--Writes the portions of the solution out to "temp.dat" or
--the entire student solution out to a file "stdnt.dat". The
--target file is passed in as a parameter. Solutions being
--written to "temp.dat" are preprocessed to replace the ';' with
--the token 'semicolon'. This is because the semicolon character
--is a delimeter in CLIPS and is not written to the file.
separate (clips.adaeditor)
procedure WriteStudentSolution (Code-Segment : in out Solution;

Line Count :in Integer;
OutputFile : in String;
FileNameLen: in Integer) is

Outfile :8File_Type;

85

FileName :String(1..File_NameLen):= OutputFile(1..File_NameLen);
Count :Integer:= Line._Count;
Last_Char,
End_ofLine,
StatementLLength : Integer := 0;
Statement strin9(1 ..79) := (others =>' ');
WritingTemp_File : Boolean:= False;

begin
Open(Outfile, OutFile, FileName);
if OutputLFile(1..4) = 'Iemp" then
Writing-Temp_File := True;

end if;for I in 1..Count loop

if WritingTempFile then
Statement:= CodeSegment(l).Statement;
Statement_Length := CodeSegment(l).StatementLength;
--check to see if the last character in the string is a semicolon
if Statement(Statement_- Length) = ';' then

End of Line := StatementLength + 9;
Statement(1 ..End_of Line)

Statement(1 ..StatementLength -1) & "semicolon";
Put Line(Outfile, Statement(1..End_ofLine));

else
PutLine(Outfile,

CodeSegment(l).Statement(l..CodeSegment(l).StatementLength));
end if;

else
PutLine(Outfile,

CodeSegment(I).Statement(1.. CodeSegment(Q).StatementLength));
end if;

end loop;
Close(Outfile);

end WriteStudentSolution;

separate (clips -ada editor)
--This procedure takes as input the *.mod student model filename
--and the length of the filename. It first initializes the CLIPS
--runtime environment. This function should only be called once
--per procedure invocation. It then loads the CLIPS file IO.clp
--which preprocesses the student solution into a form for CLIPS
--to use. It then loads the student model file and the file
--parser.clp which is the rule base for the CLIPS diagnostic
--package and error rules.
procedure Invoke_CLIPS (StudentModelFile :in String;

NameLength in Integer) is

begin
xlnitializeCLIPS;
File_Name(1 ..6) := "lO.clp";

86

FileOpen Status:= xLoadConstructs(FileName(1..6));
if File OpenStatus = 0 then

xResetCLIPS;
-- xListFacts;

RulesFired := xRunCLIPS(-1);
-- Put(Integer'lmage(RulesFired));

PutLine(" Rules Fired");
xCloseAllFiles;

else
PutLine("Unable to open rules file.");

end if;
File OpenStatus

xLoadConstructs(StudentModel_File(1 ..NameLength));
FileName(1 ..10) := "parser.clp";
FileOpenStatus:= xLoadConstructs(FileName(1 ..10));
if FileOpenStatus = 0 then
xResetCLIPS;

-- xListFacts;
RulesFired := xRunCLIPS(-1);

-- Put(lnteger'lmage(RulesFired));
-- PutLine(" Rules Fired");

xCloseAllFiles;
else

PutLine("Unable to open rules file.");
end if;

end InvokeCLIPS;

separate (clips_adaeditor)
--This procedure takes as input the *.mod filename of the student
--and writes out any facts that were written out to the file
--model.out by CLIPS. It builds the CLIPS deffacts construct as
--a wrapper around the facts that are in model.out and gives it
--the log in name of the student .mod.
procedure UpdateStudent -Model(OutpuLFile in String;

FileNameLen :in Integer) is
Line: String(1 ..79) := (others =>' ');
LineLength : Integer := 0;
StudentModel,
CLIPSFile :FileType;
FileName: Strng(1 ..FiIe_Name_Len) Output.File(1 ..FileNameLen);

begin
Open(CLIPS File, InFile,"model.out");
Open (Studenit Model, OutFile, FileName);
PutIine(StudentModel, "(deffacts Student-Model");
While not ENDOF_FILE(CLIPSFile) loop

Put(StudentModel," (");
GetLine(CLIPS_File,Line,LineLength);
Put(StudenLModel, Line(1 ..Line_Length));
Put(StudentModel, ')');

end loop;

87

Put -Line(StudentModel "")
Close (CLI PSFile);
Close (StudentModel);

end UpdateStuddentModel;

88

APPENDIX E. CLIPS RULES

;;Title IO.clp
;;Author William C. Hoppe
;;Date 26 June 1992
;;Revised • 22 August 1992
;;Course Thesis
;;System : SUN-4 UNIX
;;Compiler : CLIPS version 5.0 Interpreter
;;Description These CLIPS rules create a loop that reads each

"token" out of a file named temp.dat and writes
out a token per line to a file temp.out. This
file can be done without for efficiency purposes.
It was initially written to get output from the Ada/
CLIPS interface.

(defrule open-files
(initial-fact)

open temp.dat raw-data "r") ;student input file is raw data
open temp.out parsed-data 'W") ;input file is data token
assert (read-file)))

(defrule read-input-file
?read-file <- (read-file)

retract ?read-file)
assert (input-read =(read raw-data))))

(defrule write-output
?input-read <- (input-read ?input&-EOF)

(retract ?input-read)
printout parsed-data ?input crlf)
(printout t "Data written: "?input crlf)

(assert (read-file)))

(defrule close-files
?close-files <- (input-read EOF)

retract ?close-files)
close))

89

;;Title parser.clp
;;Author William C. Hoppe
;;Date 26 June 1992
;;Revised 25 August 1992
;;Course Thesis
;;System SUN-4 UNIX
;;Compiler CLIPS version 5.0 Interpreter
;;Description These CLIPS rules both parse and diagnose the lines

of code found in the file temp.out. If one of the
error rules fires it will write a code out to a file
named model.out for the Ada program to convert to the
enhanced student model.

;Control fact necessary to start up the system since no connection is
;available yet to the tutor ITS Ada.
(deffacts start-facts

(no error))

;Global variable that holds the current line of text from the file
;temp.dat. This is necessary in order to print out the error message
;and in order to do some matching on sub-strings within the code segment.
(defglobal

?*current-statement* = (mv-append EOF))

;Opens the student solution file and the token file which will be
;derived from the student solution. Then asserts the control
;fact that begins reading the files.
(defrule open-files

(initial-fact)

load-facts currentprob.dat)
open temp.dat data "r") ;student input file is raw data
open temp.out input "r") ;input file is data token
open model.out model "w") ;student model facts to be asserted
assert (read-data)))

;Loads the facts from the expert solution for the problem the student
;is solving.
(defrule load-expert-solution

declare (salience 15))
current-problem ?number)

(load-facts ?number)
bind ?num (eval (sub-string 5 5 ?number)))
assert (problem ?num)))

;Gets a line of code from the student's solution. Asserts it as a

90

;Gets the next token from the input file temp.out
(defrule read-input-file

(declare (salience 1))
(no error)
?read-file <- (read-file)

retract ?read-file)
assert (data-read =(read input))))

;for loop *

;For token identifier
(defrule for-loop-token(no error)Mata-read <- (data-read for)

ý retract ?data-read)
assert (token for)

(need loop parameter spec)
(read-fiieo)))

(defrule loop-parameter-specification
(no error)
token for)
?flag <- (need loop parameter spec)
?data-read <- (data-read ?variable)

retract ?data-read ?flag)
assert (identifier ?variable)

(need reserved word in)
(read-file)))

(defrule reserved-word-in

n~o error)lag1 <- (need reserved word in)

?data-read <- (data-read in)

retract ?flagl ?data-read)
assert (token in)

need discrete range)
(read-file)))

(defrule discrete-rangel~o error)lag1 <- (need discrete range)

?data-read <- (data-read $?range)
(? ? ? ?range?)

92

retract ?flagl ?data-read)
assert (range ?range)

(need reserved word loop)(read-file)))

, ** * ** ** *tt**

Swhile loop *

;While token identifier
(defrule while-loop-token

(no error)
data-read <- (data-read while)

retract ?data-read)
assert (token while)

need boolean expression)
(read-file)))

(defrule while-loop-boolean-expression
(no error)

oken while)
• flag <- (need boolean expression)
(while $?variable loop)

(assert (while-boolean-exp $?variable)
(token loop)

sequence of statements)
need reserved word end loop)

(read-data)
(dump-read-file)))

;Reads the file temp.out until it reads the reserved word
;loop. The tokens to this point have already been determined
;and added to the fact list. This allows the read file marker
,to catch up to the program.
(defrule dump-read-filel

(declare (salience 2))
?dump-flag <- (dump-read-file)
(or (token while)

(token for))
?data-read <- (data-read ?var)
(test (neq ?var loop))

retract ?data-read ?dump-flag)
assert (dump-read-file)

(read-file)))

93

;Terminates the read cylce on this line of code and allows
,the normal continuation of the diagnosis. After the loop
;reserved word is read the dump stops. The read file marker
;has caught up to the program.
(defrule dump-read-file2
(declare (salience 2))
?dump-flag <- (dump-read-file)
(or (token while)

(token for))
?data-read <- (data-read ?var)
(test (eq ?var loop))

retract ?data-read ?dump-flag)
assert (read-data)))

(defrule reserved-word-loop
no error)frlage1 <- (need reserved word loop)

?data-read <- (data-read loop)

Z retract ?flagl ?data-read)
assert (token loop)

(need reserved word end loop)
read-file)
read-data)))

basic loop *

(defrule basic-loop
(no error)
data-read <- (data-read loop)

(and (not (token for))
(not (token while)))

(not (end loop semicolon))

retract ?data-read)
assert (token loop)

(check for exit condition)
need reserved word end loop)
read-data)
read-file)))

(defrule exit-when-condition
(declare (salience 5))
flag <- (check for exit condition)

(exit when $?boolean-cond semicolon)

retract ?flag)
assert (statements)

(token exit when)

94

loop-exit-cond $?boolean-cond)
sequence of statements)
dump-read-file)
read-file)))

(defrule exit-condition
(declare (salience 5))
?flag <- (check for exit condition)
ý exit $?boolean-cond semicolon)
not (exit when $?boolean-cond semicolon))

retract ?flag)
assert (statements)

token exit)
loop-exit-cond $?boolean-cond)
sequence of statements)
(dump-read-file)
read-file)))

(defrule end-loop
(declare (salience 5))
.flag <- (need reserved word end loop)
(end loop semicolon)

retract ?f lag)
assert (token end loop)

(read-file)))
(read-data)))

;if expression *

(defrule if-boolean-expression
no error)
iata-read <- (data-read if)
if $?boolean-exp then)

(not (end if semicolon))

(assert (token if)
if-boolean-exp $?boolean-exp)
token then)

(sequence of statements)
need reserved word end if)
check for elsif)
check for else)

(read-data)
(dump-read-file)))

(defrule elsif-expression
?flag <- (check for elsif)

95

(elsif $?boolean-exp then)

retract ?flag)
assert (token elsif)

(check for repeated elsif)
(elsif-boolean-exp $?boolean-exp)
(token then)

sequence of statements)
read-data)
dump-read-file)))

(defrule repeated-elsif-expression
?flag <- (check for repeated elsif)
(elsif $?boolean-exp then)
elsif-boolean-exp $?previous-bexp)
test (neq $?boolean-exp $?previous-bexp))

retract ?flag)
assert (token elsif)

(elsif-boolean-exp $?boolean-exp)
(token then)

sequence of statements)
read-data)
dump-read-file)))

(defrule else-guard
?flag <- (check for else)
(else $?statement)

retract ?flag)
assert (token else)

(sequence of statements)
(read-data)))

;Reads the file temp.out until it reads the reserved word
then. The tokens to this point have already been determined
;and added to the fact list. This allows the read file marker
,to catch up to the program.
(defrule dump-read-file3

(declare (salience 2))
dump-flag <- (dump-read-file)

?data-read <- (data-read ?var)
(not (statements))
(test (neq ?var then))

retract ?data-read ?dump-flag)
assert (dump-read-file)

(read-file)))

;Terminates the read cylce on this line of code and allows
,he normal continuation of the diagnosis. After the then

96

;reserved word is read the dump stops. The read file marker
;has caught up to the program.
(defrule dump-read-file4

(declare (salience 2))
?dump-flag <- (dump-read-file)
?data-read <- (data-read ?var)
(not (statements))
test (eq ?var then))

retract ?data-read ?dump-flag)
assert (read-file)))

(defrule sequence-of-statements
Z initial-fact)
$?statement semicolon)

(assert (statements)
(read-data)
(dump-read-file)))

;Reads the file temp.out until it reads the reserved word
;semicolon. The tokens to this point have already been determined
;and added to the fact list. This allows the read file marker
,to catch up to the program.
(defrule dump-read-file5
(declare (salience 2))
?dump-flag <- (dump-read-file)
?stmnt-flag <- (statements)
?data-read <- (data-read ?var&-EOF)
(test (neq ?var semicolon))

retract ?data-read ?dump-flag ?stmnt-flag)
assert (dump-read-file)

(statements)
(read-file)))

;Terminates the read cylce on this line of code and allows
,the normal continuation of the diagnosis. After the semicolon
;reserved word is read the dump stops. The read file marker
;has caught up to the program.
(defrule dump-read-file6

(declare (salience 2))
?dump-flag <- (dump-read-file)
?stmnt-flag <- (statements)
?data-read <- (data-read ?var)
(test (eq ?var semicolon))

retract ?data-read ?dump-flag ?stmnt-flag)
assert (read-file)

(read-data)))

97

(def rule end-if
(declare (salience 5))
?flag <- (need reserved word end if)
(end if semicolon)

Sretract ?f lag)
assert (token end if)

(read-file)))

I;concept error rules *

;Infinite loop in basic loop construct. No exit condition in the loop.
(def rule infinite-loop-in-basic-loop

~ eclare (salience 10))
init <- (initial-fact)

?error-status <- (no error)
?token1 <- (token loop)
?token2 <- (token end loop)
(and (not (token exit))

(not (token exit when)))

(rintout model "ilibl" crlf)
(printout t "You have ended the loop construct without an exit condition.

This will cause an INFINITE loop once entered. You may want to re-evaluate
the loop conditions." crlf•)

(retract ?error-status ?init)
(assert (concept error)

(syntax error)
(lrm5.5.4))

(close))

;Exit condition instead of exit when condition. Loop will only execute
;one iteration down to the exit condition aiid terminate the loop.
(def rule faulty-exit-from-basic-loop

(•declare (salience 10))

?error-status <- (no error)
~ roblem 4)
token exit)
not (token exit when))

(printout model "fefbl" crlf)
(printout t 'Tlhis loop will only execute one time because the exit

statement will terminate the loop on the first pass. Check the exit
conditions of the problem." crlf)

(retract ?error-status ?init)
(assert (concept error)

(syntax error)

98

(Irm5.7))
(close))

;Boolean condition for exit condition does not meet specifications of the
;problem statement.
(defrule faulty-boolean-cond-basic-loop

(declare (salience 10))
init <- (initial-fact)

?error-status <- (no error)
problem 4)
loop-exit-cond $?condition)
expert boolean-cond $?exp-cond)
test (neq $?exp-cond $?condition))

printout model 'Ibcbl" crlf)
printout t "Your boolean condition "$?condition "will not meet the

criteria for exiting the loop. You may want to look at the exit condition
again." crlf)

(retract ?error-status ?init)
(assert (concept error)

(syntax error))
(close))

;Concept error in the construction of a for loop. In the body of the loop
,the loop variable appears on the left side of an assignment statement.
(defrule for-loop-concept-errori

(declare (salience 10))
init <- (initial-fact)

?error-status <- (no error)
?tokenl <- (token for)
?identifier <- (identifier ?v)
?statement <- (?v := $?)

printout model "flcel " crlf)
printout t "ERROR: " ?*current statement* crlf)
printout t "The Ada for loop automatically increments its counter.

Within the sequence of statements the loop parameter is a constant. Hence
a for loop parameter is not allowed as a variable on the LHS of an
assignment statement (LRM 5.5.6)." crlf)

(retract ?error-status ?init)
assert (concept error)

(syntax error)
Irm5.5.6-8))

(close))

;Concept error in the construction of the basic loop. Attempt to
;concatentate the if construct and the loop construct.
(defrule loop-concept-errori
(declare (salience 10))
?init <- (initial-fact)
?error-status <- (no error)

99

?statement <- (if $? loop)

printout model "Icel" crlf)
printout t "ERROR:" ?*current-statement* crlf)
printout t "The Ada \ifV' statement does not have a loop construct

(LRM 5.3.2). You are trying to write a looping construct. Recommend
you review the basic loop (LRM 5.5.9), the \"while loopY" (LRM 5.5.10)
and the \"for loop\" (LRM 5.5.11)." crlf)

retract ?error-status ?init)
assert (concept error))
close))

;Concept error in the building of a for loop. Using a boolean condition
;as the loop test instead of a loop parameter specification.
(defrule iteration-scheme-error1
(declare (salience 10))

init <- (initial-fact)
?error-status <- (no error)
?statement <- (for $?loop-para-spec loop)
(test (not(member in $?loop-para-spec)))

(printout model "isel" crlf)
printout t "ERROR:" ?*current-statement* crlf)
printout t "The Ada \"for loopY" (LRM 5.5.6) uses a loop parameter

specification (LRM 5.5.2) not a boolean condition. If you are going to
use a \"for loopY' construct you need to re-evaluate the loop parameter."
crlf)

retract ?error-status ?init)
assert (concept error)

(syntax error))
(close))

;Concept error in the building of a while loop. Using a loop parameter
;specification as the loop test instead of a boolean condition.
(defrule iteration-scheme-error2

.(declare (salience 10))
nit <- (initial-fact)

?error-status <- (no error)
?statement <- (while $?boolean-cond loop)
(test (member in $?boolean-cond))

(printout model "ise2" crlf)
printout t "ERROR: " ?*current-statement* crlf)

(printout t 'The Ada \"while loopY' (LRM 5.5.5) uses a boolean condition
(LRM 5.5.5) not a loop parameter specification. If you are going to
use a \"while loop\" construct you need to re-evaluate the boolean
condition: while <boolean condition> loop ." crlf)

ý retract ?error-status ?init)
assert (concept error)

(syntax error))
(close))

100

;Given that the student is solving problem number 2, the best construct
;to use is the for loop. Forcing any other construct may work but is
;inefficient.
(defrule loop-efficiency-errori

(declare (salience 10))
?init <- (initial-fact)
?error-status <- (no error)
problem 2)
token loop)
not (token for))

printout model "lee1" crlf)
printout t "Current Statement: "?*current-statement* crlf)
printout t "This loop may work but you will have to increment a counter

within the code. Ada provides a looping construct that automatically
increments the loop counter (\"for loop\" LRM 5.5.6). You may want to look
at how to use it." crlf)

(assert (efficiency error)))

;Given that the student is solving problem 3, the best construct
,to use is the while loop. There is insufficient information in the
;problem statement to use the for loop as a substitute. The basic
;loop will work given the proper exit condition.
(defrule loop-efficiency-error2

.(declare (salience 10))
nit <- (initial-fact)

?error-status <- (no error)
I problem 3)
token loop)
not (token while))

printout model "lee2" crlf)
printout t "Current Statement: "?*current-statement* crlf)
printout t "The problem statement did not give you enough information

to determine how many accounts to loop through. A \"for loop\" will not
meet the criteria of the problem. The \'while loop\" is the most
appropriate choice of constructs however, the basic loop with the proper exit
condition is a valid alternative solution." crlf)

(assert (efficiency error)))

101

;;Title explanation.clp
;;Author William C. Hoppe
;;Date : 28 August 1992
;;Revised
;;Course : Thesis
;;System SUN-4 UNIX
;;Compiler CLIPS version 5.0 Interpreter
;;Description These CLIPS rules are the Ada language reference

manual (LRM) explanations. They are used to tutor
the student on errors identified during problem
solving.

;Response rule that allows the student to decide whether or not to view
;an explanation of the rule violated and an example of the correct code.
(defrule answer-yes-or-no

.(declare (salience 20))
error-flag <- (concept error)

(Irm ?)

retract ?error-flag)
printout t "Do you want to see an explanation and example (yes or no)?")
bind ?answer (read))
if (eq ?answer yes)
then
(assert (explain)))
(if (and (neq ?answer no)

(neq ?answer yes))
then
Z printout t "Answer yes or no." crlf)
assert (concept error))))

;LRM reference for the basic loop construct
(defrule LRM-5.5.4
?LRM-para <- (Irm 5.5.4)
?explanation-flag <-(explain)

retract ?LRM-para ?explanation-flag)
printout t crlf)
printout t crlf)
printout t "According to the LRM a loop statement without an iteration

scheme specifies repeated execution of the sequence of statements.
Execution of the loop statement is complete when the loop is left as a
consequence of the execution of an exit statement, or as a consequence
of some other transfer of control(LRM 5.1)." crlf)

(printout t crlf)
(printout t 'The syntax of the basic loop is:

loop loop
[sequence of statements] [sequence of statements]

102

exit; exit when (boolean condition];
[sequence of statements] [sequence of statements]

end loop; end loop;" crlf)
printout t crlf)

(printout t "Example:
loop
Get(Current_Character);
exit when CurrentCharacter =

end loop;" crlf))

;LRM reference for the while loop construct
(defrule LRM-5.5.5

?LRM-para <- (Irm 5.5.5)
?explanation-flag <-(explain)

retract ?LRM-para ?explanation-flag)
printout t crlf)
printout t crlf)
printout t "According to the LRM a loop statement with a \"while\" iteration

scheme, the condition is evaluated before each execution of the sequence of
statement; if the value of the condition is TRUE, the sequence of statements
is executed, if FALSE the execution of the loop statement is complete." crlf)

(printout t crlf)
printout t 'The syntax of the while loop is:

while [boolean expression] loop
(sequence of statements]

end loop;" crlf)
(printout t crlf)
(printout t "Example:

while Bid(N).Price < CutOff.Price loop
RecordBid(Bid(N). Price);
N := N + 1;

end loop;" crlf))

;LRM reference for the for loop construct
(defrule LRM-5.5.6-8

?LRM-para <- (Irm 5.5.6-8)
?explanation-flag <-(explain)

retract ?LRM-para ?explanation-flag)
printout t crlf)
printout t crlf)
(printout t "According to the LRM a loop statement with a \"for\" iteration

scheme, the loop parameter specification is the declaration of the loop
parameter with the given identifier. The loop parameter is an object whose
type is the base type of the discrete range (see 3.6.1). ")

(p rintout t "Within the seqence of statements, the loop parameter is a
constant. Hence a loop parameter must not be given as an \"out\" or \"in out\"
parameter of a procedure or entry call statement, or as an \"in out\" parameter

103

of a generic instantiation." crlf)
printout t crlf)
printout t "For the execution of a loop statement with a \"forV" iteration

scheme, the loop parameter specification is first elaborated. This elaboration
creates the loop parameter and evaluates the discrete range." crlf)

(printout t crlf)
(printout t "If the discrete range is a null range, the execution of the loop

statement is complete. Otherwise, the sequence of statements is executed
once
for each value of the discrete range. Prior to each such iteration, the
corresponding value of the discrete range is assigned to the loop parameter."
crlf)

ý printout t crlf)
printout t "The syntax of the for loop is:

for [loop parameter specification] loop
[sequence of statements]

end loop;" crlf)
(printout t crlf)
(printout t"Example:

for J in Buffer'Range loop --legal even with a null range
if Buffer(J) /= Space then

Put(Buffer(J));
end if;

end loop;" crlf))

;LRM reference for the for exit statements
(defrule LRM-5.7
?LRM-para <- (Irm 5.7)
?explanation-flag <-(explain)

(retract ?LR M-para ?explanation-flag)
printout t crlf)
printout t crlf)
printout t "According to the LRM an exit statement is used to complete the

execution of an enclosing loop statement; the completion is conditional if the
exit statement includes a condition." crlf)

(printout t crlf)
printout t "An exit statement applies to the innermost enclosing loop." crlf)
printout t crlf)
printout t "For the execution of an exit statement, the condition, if present,

is first evaluated. Exit from the loop then takes place if the value is TRUE or
if there is no condition." crlf)

printout t crlf)
(printout t 'The syntax of the exit statement is:

exit [when boolean condition];" crlf)
(printout t"Example:

for N in 1..Max NumItems loop --This code will only get one
GetNewltem(NewItem); --NewItem because of the exit
MergeItem(NewItem, StorageFile); --statement.
exit;

104

end loop;" crlf)
printout t crlf)
printoutt for N in 1 ..MaxNumItems loop --This code will execute to

GetNewItem(Newjtem); --MaxNumItems or when the
MergeItem(NewItem, Storage_File); --NewItem equals the
exit when New Item = TerminalItem; --TerminalItem.

end loop; "crlf))

105

Expert Solution Fact Files

probl.clp
expert ibe value1 - value2 > 0)
expert eibe valuel - value2 < 0)
expert token else)
expert token end if)

prob2.clp
expert range 1..100)
expert stmnt sum := sum + I)
expert token end loop)

prob3.clp
expert be accountbalance >= 500.0)
expert stmnt accountbalance := fc Compound_Interest fcp account-balance)
expert token end loop)

prob4.clp
expert token loop)
expert token exit when)
expert boolean-cond value < 0)
expert stmnt sum := sum + value)
expert token end loop)

106

APPENDIX F. ADA SURVEY

This is a short survey to collect and catalog bugs in Ada. We request that you answer the questions
with your first impulse. The short coding questions should be done without the use of any refer-
ences. Once you have written your answer don't go back to it even if you realize you made a mis-
take. It is these types of errors we are trying to catalog. Thank you for your assistance.

How would you catagorize your level of programming experience?

E0 Novice (Never Programmed before) 0 Beginner (Some home programmin.
[] Intermediate (Some Undergraduate Classes) [EAdvanced

If you have previous programming experience, in what languages?

In the next four questions you will be asked to write Ada code segments. Make the
assumption that any variable you need has already been declared. Do not concern yourself
with anything except the code segment. For example, if you were asked to write a code
segment that uses a case statement to print out a different message depending on the day
of the week your answer might look like this:

case Day-of _Week is
when Monday =>

Put _ Line("Let's hope its not one of those days!");
when Tuesday =>

Put_..Line("Two Mondays in a row is not fair!");
when Wednesday =>

Put_- Line("Hump day! Halfway to another weekend.");
when Thursday =>

Put__Line("Hang on, the weekend starts tomorrow!");
when Friday =>

PutLine("TGIF!");
when Saturday =>

PutLine("Party time!");
when Sunday =>

PutLine("Gotta enjoy today, tomorrow is Monday!");
end case;

Thank you again for your cooperation.

107

1. Use the Ada if construct to code the following senario. You have three alternatives: if
the value of the stock goes up, wait till tomorrow to decide to sell or not, if the value of the
stock remains the same, buy more stock, otherwise, sell.

if TodaysValue - YesterdaysValue > 0 then

Wait:= True;

elsif Todays_Value - Yesterdays Value = 0 then
Buy := True;

else
Sell := True;

end if;

There are three basic Ada looping constructs: For ,While, and the basic loop which may or
may not have an exit condition. In the following three questions use each of the looping
constructs only once but use all three constructs to code the questions. Chose the
construct you feel is appropriate for that question and code the question. Remember to use
each construct only once.

2. Write a loop that sums the numbers from 1 to 100 inclusive.

Sum := 0;
for I in 1..100 loop

Sum:= Sum + I;
end loop;

3. As long as the daily account balance is above $500.00, calculate compound interest.
Assume there is a function Compund-Interest available to you with what ever
parameters you need.

while AccountBalance >= 500.0 loop
Account_Balance := CompoundInterest(AccountBalance);

end loop;

4. As long as the input value is greater than or equal to zero, sum the numbers.

Get(Value);
Sum:= 0;
loop

exit when Value < 0;
Sum := Sum + Value;
Get(Value);

end loop;

108

REFERENCES

[ADAM 80] Adam, A., and Lautent, J., "LAURA, A System to Debug Student
Programs", Artificial Intelligence, No. 15, 1980.

[ALLE 91] Allemang, D., "Using Functional Models in Automatic Debugging", IEEE

Expert, December 1991.

[ANDE 85] Anderson, J. and Reiser, B., "The LISP Tutor", Byte, April 1985.

[ANDE 88] Anderson, J., "The Expert Module", in M. Polson and J. Richardson (Ed.),
Foundations of Intelligent Tutoring Systems, Lawrence Erlbaum Assoc.
Publishers, 1988.

[ANDE 90] Anderson, J., Boyle, C. F., Corbett, A., and Lewis, M., "Cognitive Modeling
and Intelligent Tutoring", Artificial Intelligence, No. 42, 1990.

[BARN 89] Barnes, J., Programming in Ada, Third Edition, Addison-Wesley Publishing
Co., 1989.

[BARR 821 Barr, A. and Feigenbaum, E., The Handbook of Artificial Intelligence,
Volume II, Addison-Wesley Publishing Co., 1982.

[BOOC 87] Booch, G., Software Engineering with Ada, Second Edition, The Benjamin/
Cummings Publishing Company Inc., 1987.

[BURN 88] Burns, H. and Capps, C., "Foundations of Intelligent Tutoring Systems: An
Introduction", in M. Polson and J. Richardson (Ed.), Foundations of
Intelligent Tutoring Systems, Lawrence Erlbaum Assoc. Publishers, 1988.

[BURN 91a] Burns, H. and Parlett, J., "The Evolution of Intelligent Tutoring Systems:
Dimensions of Design". in H. Burns, J. Parlett, and C. Redfield (Ed.),
Intelligent Tutoring Systems, Evolutions in Design, Lawrence Erlbaum
Assoc. Publishers, 1991.

[BURN 91b] Burns, H., Parlett, J., and Redfield, C., Intelligent Tutoring Systems,
Evolutions in Design, Lawrence Erlbaum Assoc. Publishers, 1991.

[CLAN 87a] Clancey, W. J., Knowledge Based Tutoring: The Guidon Program, The MIT
Press, 1987.

[CLAN 87b] Clancey, W. J., "Methodology for Building an Intelligent Tutoring System",
in G.P. Kearsley (Ed.), Artificial Intelligence and Instruction: Applications
and Methods, Addison-Wesley Publishing Co., 1987.

109

[COUS 901 Cousot, P., "Methods and Logic for Proving Programs", in J. van Leeuwen
(Ed.), Handbook of Theoretical and Computer Science, Volume B, Informal
Models and Semantics, The MIT Press/Elsevier, 1990.

[DELO 91] DeLooze, L., ITS Ada: An Intelligent Tutoring System for the Ada
Programming Language, Masters Thesis, Naval Postgraduate School,
Monterey, CA, 1991.

[DERS 90] Dershowitz, N. and Jouannaud, J., "Rewrite Systems", in J. van Leeuwen
(Ed.), Handbook of Theoretical and Computer Science, Volume B, Informal
Models and Semantics, The MIT Press/Elsevier, 1990.

[FEUR 88] Feurzeig, W. and Ritter F, "Understanding Reflective Problem Solving", in
J. Psotka, L. Massey, and S. Mutter (Ed.), Intelligent Tutoring Systems,
Lessons Learned, Lawrence Erlbaum Assoc. Publishers, 1988.

[GIAR 891 Giarratano, J. and Riley, G., Expert Systems, Principles and Programming,
PWS-Kent Publishing Co., 1989.

[GIAR 91] Giarratano, J., CLUPS User's Guide, Volume I, Rules, NASA, Lyndon B.
Johnson Space Center, Information Systems Directorate, Software
Technology Branch, January 1991.

[GONZ 91] Gonzalez, D., Ada LRM, Programmer's Handbook and Language Reference
Manual, The Benjamin/Cummings Publishing Company Inc., 1991.

[HARR 78] Harrison, M., Introduction to Formal Language Theory, Addison-Wesley
Publishing Co., 1978.

[HOLM 91 a] Holmes, W., A Structure for Maturing Intelligent Tutoring Systems Student
Models, Internal Memo AMSMI-RD-SS-92-07, U.S. Army Missile
Command, Redstone Arsenal, AL, 1991.

[HOLM 91b) Holmes, W. and Piper, U.S. Army Materiel Command's Intelligent Tutoring
System Technology Base Plan, Interservice/Industry Training System
Conference, Orlando, FL, 1991.

[HOPC 691 Hopcroft, J. and Ullman, J., Formal Languages and Their Relationship to
Automata, Addison-Wesley Publishing Co., 1969.

[HOPC 79] Hopcroft, J. and Ullman, J., Introduction to Automata Theory, Languages
and Computation, Addison-Wesley Publishing Co., 1979.

[JONA 88] Jonassen, D., Instructional Designs for Microcomputer Courseware,
Lawrence Erlbaum Assoc. Publishers, 1988.

110

[JONS 85] Johnson, W. and Soloway, E., "PROUST: Knowledge-Based Program
Understanding", IEEE Transactions on Software Engineering, March 1985.

[JONS 90] Johnson, W., "Understanding and Debugging Novice Programs", Artificial
Intelligence, No. 42, 1990.

[KEAR 87] Kearsley, G., Artificial Intelligence and Instruction, Addison-Wesley
Publishing Co., 1987.

[KNIG 89] Knight, K., "Unification: A Multidisciplinary Survey", ACM Computing

Surveys, March 1989.

[LEE 89] Lee, Y., A Knowledge Based Approach to Program Debugging, Technical
Paper, NPS52-89-060, Naval Postgraduate School, Monterey, CA, 1989.

[LEWI 85] Lewis, W. and Soloway, E., "PROUST", Byte, April 1985.

[LEWI 90] Lewis, B., Laliberte, D., and the GNU Manual Group, GNU Emacs Lisp
Reference Manual, Free Software Foundation, Cambridge, MA, 1990.

[LOEC 72] Loeckx, J., "Computability and Decidability, An Introduction for Students
of Computer Science", Lecture Notes in Economics and Mathematical
Systems, No. 68, 1972.

[MACK 88] Mackay, W., "Tutoring, Information Databases, and Interactive Design", in
D. Jonassen (Ed.), Instructional Designs for Microcomputer Courseware,
Lawrence Erlbaum Assoc. Publishers, 1988.

[MASS 90] Masson, V. and Quiniou, R., "Application of Artificial Intelligence to
Aphasia Treatment", Proceedings of the Third International Conference on
Industrial & Engineering Applications of Artificial Intelligence & Expert
Systems, Volume II, Charleston, SC, 1990.

[MILL 88] Miller, J., "The Role of Human-Computer Interaction in Intelligent Tutoring
Systems", in M. Poison and J. Richardson (Ed.), Foundations of Intelligent
Tutoring Systems, Lawrence Erlbaum Assoc. Publishers, 1988.

[MURR 85] Murray, W., "Heuristic and Formal Methods in Automatic Program
Debugging", Proceedings of the Ninth International Joint Conference on
Artificial Intelligence, Volume 1, Los Angeles, CA, 1985.

[MURR 861 Murray, W. Automatic Program Debugging for Intelligent Tutoring Systems,
Doctoral Dissertation, The University of Texas at Austin, Austin, TX, 1986.

[NASA 91a] NASA, CLIPS Reference Manual, Volume I, Basic Programming Guide,
Software Technology Branch, Lyndon B. Johnson Space Center, Houston,
TX, 1991.

111

[NASA 91b] NASA, CLIPS Reference Manual, Volume H, Advanced Programming
Guide, Software Technology Branch, Lyndon B. Johnson Space Center,
Houston, TX, 1991.

[NASA 91c] NASA, CLIPS Reference Manual, Volume ii, Utilities and Interfaces
Guide, Software Technology Branch, Lyndon B. Johnson Space Center,
Houston, TX, 1991.

[PARK 871 Park, 0., Perez, R., and Seidel, R., "Intelligent CAI: Old Wine in New
Bottle, or a New Vintage?" in G. Kearsley (Ed.), Artificial Intelligence and
Instruction: Applications and Methods, Addison-Wesley Publishing Co.,
1987.

[POLS 881 Poison, M. and Richardson, J., Foundations of Intelligent Tutoring Systems,
Lawrence Erlbaum Assoc. Publishers, 1988.

[PSOT 881 Psotka, J., Massey, L., and Mutter, S., Intelligent Tutoring Systems, Lessons
Learned, Lawrence Erlbaum Assoc. Publishers, 1988.

[SCAN 881 Scandura, J. and Scandura, A., "A Structured Approach to Intelligent
Tutoring", in D. Jonassen (Ed.), Instructional Designs for Microcomputer
Courseware, Lawrence Erlbaum Assoc. Publishers, 1988.

[SEVI 87] Seviora, R., "Knowledge-Based Program Debugging Systems", IEEE
Software, May 1987.

[SHAP 831 Shapiro, E., Algorithmic Program Debugging. MIT Press, 1983.

[SHRO 88] Shrode, H., "Exploring Artificial Intelligence", Morgan Kaufman
Publishers, Inc., 1988.

[SIMM 881 Simmons, R., "A Theory of Debugging Plans and Interpretations",
Proceedings of the Seventh National Conference on Artificial Intelligence,
Volume 1, Saint Paul, MN, 1988.

[SKAN 88] Skansholm, J., Ada from the Beginning, Addison-Wesley Publishing Co.,
1988.

[SLEE 82] Sleeman, D. and Brown, J., Intelligent Tutoring Systems, Academic Press,
1982.

[VANL 88] VanLehn, K., "Student Modeling", in M. Poison and J. Richardson (Ed.),
Foundations of Intelligent Tutoring Systems, Lawrence Erlbaum Assoc.
Publishers, 1988.

[VANL 90] van Leeuwen, J., Handbook of Theoretical and Computer Science, Volume
B, Informal Models and Semantics, The MIT Press/Elsevier, 1990.

112

[VERD 90] Verdix Corporation, VADS, Verdix Ada Development System, Version 6.0-
Sun4 OS, Verdix Corporation, 1990.

[WAGE 88] Wager, W. and Gagne, R., "Designing Computer-Aided Instruction", in D.
Jonassen (Ed.), Instructional Designs for Microcomputer Courseware,
Lawrence Erlbaum Assoc. Publishers, 1988.

[WENG 871 Wenger, E., Artificial Intelligence and Tutoring Systems, Morgan Kaufman
Publishers, Inc., 1987.

[WERT 87] Wertz, H., Automatic Correction and Improvement of Programs, Ellis
Horwood Limited, 1987.

[WOOL 88] Woolf, B., "Intelligent Tutoring Systems: A Survey", in H. Shrode (Ed.),
Exploring Artificial Intelligence, Morgan Kaufman Publishers, Inc., 1988.

[WOOL 91] Woolf, B., "Al in Education", in S. Shapiro (Ed.), Encyclopedia of Artificial
Intelligence, Second Edition, John Wiley & Sons Inc., 1992.

113

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexanderia, VA 22304-6145

2. Dudley Knox Library 2
Code 52
Naval Postgraduate School
Monterey, CA 93943-5002

3. Chairman
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

4. Dr. Yuh-jeng Lee 6
Code CS/Le
Assistant Professor, Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

5. Dr. Man-Tak Shing
Code CS/Sh
Associate Professor, Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

6. Dr. Sehung Kwak
Code CS/Kw
Adjunct Professor, Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

7. HQDA, OCSA, Al Center
ATTN: CSDS-AI-COL Teter
The Pentagon, Room 1 D659
Washington, DC 20310-6900

8. CPT William C. Hoppe
Software Development Center-Wa:,hington
ATiN: ASQB-IWI (Stop H-23)
Ft. Belvoir, VA 22060-5456

114

