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ABSTRACT

The prediction of turbulent secondary flows with Reynolds stress models in circular

pipes and non-circular ducts is reviewed. Turbulence-driven secondary flows in straight

non-circular ducts are considered along with turbulent secondary flows in pipes and ducts

that arise from curvature or a system rotation. The physical mechanisms that generate these

different kinds of secondary flows are outlined and the level of t,irbulence closure required

to properly compute each type is discussed in (fetail. Illustrative computations of a variety

of different secondary flows obtained from two-equation turbulence models and second-order

closures are provided to amplify these points.
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1. INTRODUCTION

The turbulence structure of internal flows within circular pipes or non-circular d(icts can

be altered considerably by the occurrence of secondary flows [1-21]. These secondary flows

lead to friction losses and can shift the location of maximum moment um transl)ort from the

pipe or duct centerline two effects that can have profound coonsequences for enginiering

design. (onsequently, there is the need for turlhulence models thai can reliably pre(dict

the secondary flows that occur in engineering applicalions which iicli('ehh luirloloaclinierv

impellers and blade passages, aircraft intakes. and pIile or duct1 cooling systems. to iiae it a

few.

In this paper, the prediction of four fundamental types of secondary flows are discussed:

(1) turbulence-driven seco,darv flows in straight (du(ts of non-circnlar cross-section, (2)

turbulent secondary flows in curved circular pipes, (3) turbulent secondiary flows in curved

ducts of non-circular cross-section and (4) turbulent secondary flows in rotating duct s of non-

circular cross-section. These flows are selected since they involve secondary flows generated

by a combination of the effects of normal Reynolds stress differences, streamliiie curvat iire

and body forces arising from a system rotation. Thus, a relatively broad basis for tHie

evaluation of models cal be provided. The ability of two-equation models and secolid-orlr

closures to predict these types of turbuilent secondary flows will be evalluatedm in a systeiiatic

manner. A variety of illustrative calculations of secondary flows will be presented along with

an assessment of the progress that has been made in the analysis of these flows.

2. ANALYSIS OF SECONDARY FLOWS

"We will consider the mean turblulent flow of a viscous incoml)ressibleh fluid. The( He{vmiolds-

averaged Navier-Stokes and continuity equations take the form

0-Fli + T i)-Fli ay) +I / IF i )Tid 2E ijkQ•.1_F. (1_--7_ ____ 0_.-7 = -0.--- + "Q (iI.).

+U ~ 0 -F i'

-o (2)
i)x. 0

in a steadily rotating frame where -Ti is the neaii veocity, f) is the mo(lilie(d mean pirssure.

Qi is the angular velocity of the ref erence frame. 7, , 1 - ,,, is the evl holds stress ltisor.

anld v is the kinematic viscosity of the fluid. in (I)-(2). the ]i;ins icin sumniima ion conve'nl io0

app)lies to repteated ind(ices aMid ( i.(k d(Iiottes I lieW i)erluuitt io tellsor.

First, we will consider the case of a straight cir-cula r pipe m. or nn-circulular d(uct whose aXis

lies alonig t~1 (- - iP-rt ailnd whl,(e( cross-sect ion lies ii t he x.. y-pltaie (see ,igll'uge I). I'or



fully-developed turbulent flow, where U = Ti(x, y)i + Y(xr, y)j + W(,r, y)k, the secondary flow

(•, +) is derivable from a stream function V/-:

= -- , oo- (3)
dy ax

The Reynolds-averaged Navier-Stokes equations can then be solved in the alternative axial

velocity/vorticity-stream function form given by

O _Ow a0-Or., O +ry(T1-f + F_-y- = G;+v ,vw-O o + 2Q-,,(4
ax -y 0 x dy

+ V2-• ++ X7J + 2 9
u-x ay OxOy Oy2  X2 ay (5)

V2V; = (6)

where Op/az -G is the constant applied pressure gradient driving the flow and = -

03/Ox-OU/dy is the axial component of the mean vorticity vector. Here, the angular velocity

a? = Qlj corresponds to a general spanwise rotation since we can align the component of

the axis of rotation, that is normal to the axial direction, with the y-axis. Since the flow is

fully-developed, the component of the angular velocity along the z-axis does not enter into

Eqs. (4)-(5).

From (3) and (6), it is clear that secondary flows are generated by tile axial mean vorticity

" which becomes non-zero in a straight duct or pipe only if there are normal Reynolds stress

differences (r7y - r. 1 ) or Coriolis forces (2QOW/Oy) arising from a spanwise rotation. In the

subsections to follow we will briefly categorize secondary flows in pipes and ducts.

2.1. Straight Ducts ([? = o)

It is the axial vorticity source term

0T'r. yy) + 2 x (92 Try (7)

S= &Oy + y 2  Ox:)

that leads to the generation of turbulent secondary flows in straight non-circular ducts. A

necessary condition for the occurrence of secondary flows is that the axial mean velocity

iw(x, y) must give rise to a non-zero normal Reynolds stress difference r.x, - 7,y (otherwise,

rXY, and hence (b(, will vanish; see Speziale [12,16]). For a circular pipe, even t houigh r7,,- -

is non-zero, 4( = 0 (hie to the azimuthal symmetry of the axial mean velocity; conse(quent ly

no secondary flows occur [3]. For non-circular (ducts, if 7r, - r,,,. 7• 0, then invariably, 4)c will
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be non-zero and secondary flows are generated. From this result it is clear that any eddy

viscosity model based on the Boussinesq hypothesis

2 ('l7 Mi)T
Vij = 3fbij -/T --±---- (8)

(where K = 1 7rii is the turbulent kinetic energy and VT is the eddy viscosity) will be incapable

of predicting secondary flows in a straight non-circular duct. According to (8), U = (0. 0, TT)

yields r•,,, r . = !K and, hence, the axial mean velocity gives rise to a vanishing normal

Reynolds stress difference r7, - -r which violates the necessary condition for secondary

flow. Hence, anisotropic eddy viscosity models - where nonlinear strain-dependent terms arc

included - constitute the simplest level of Reynolds stress closure that can predict secondary

flows in straight non-circular ducts. Three examples of anisotropic eddy viscosity models are

the nonlinear K - e model of Speziale [22], the two-scale DIA model of Yoshizawa [23], and

the RNG based model of Rubinstein and Barton [24]. In the former model - for which sample

computations will be presented in the next section - the Reynolds stress is represented as

follows:

j = liKj - 2C. -Sj - 40 5 + - / (9)3 2 (0:3

where
0 Os. OS.- T a-
S-j U --- =5k -- 2 Ski (10)

at X-k. axk axk

is the frame-indifferent Oldroyd derivative of the mean rate of strain tensor S'ij =_ .(atI/Orj +

8-aj/Oxi) and 6 is the turbulent dissipation rate; C, = 0.09 and C = 1.68 are empirical
constants. In the limit asCD -+ 0, the eddy viscosity relation of the standard K - E model is

recovered. It can be shown that in fully-developed duct flow, the axial mean velocity -W gives

rise to the non-zero normal Reynolds stress difference r-, - r7, =CDC'(K'3 /s2 )[(OT-i/J.r)2 -

(8-w/ay)2 ] in (9). Hence, secondary flows are generated by the nonlinear AK - i model.

For developing secondary flows, where history effects are important, a full Reynolds stress

closure is needed for a more complete description. Second-order closures are based on the

Reynolds stress transport equation [25]:

0gij 0rij adm aTi'
+ U = --rik .-... k + Hij -- #.Cijat -t kOxk A~rk arjk x.

+Dj + 7V'2 rj - 2Q,,,1 (etkj7rik + (?,,•ikrk)

where Hij is the combination of the pressure-strain correlation and the deviatoric part of

the dissipation rate tensor whereas DT is the turbulent transport term (here, 0- = 0 for a

stationary duct). From (11), it is straightforward to show - by substituting U = (O,O. Ti)

:3



into this equation - that secondary flows are generated by Hij and pT which are the only

terms that yield a normal Reynolds stress difference 7 -,r7 (see Speziale [12,161). An order

of magnitude analysis, at high Reynolds numbers, tends to indicate that anisotropies in the

pressure-strain correlation are predominantly responsible for the generation of secondary

flows; anisotropies in the turbulent dissipation rate and turbulent transport term appear to

play a smaller role.

2.2. Rotating Pipes and Ducts

In a rotating circular pipe, the axial mean velocity W(r) gives rise to a vanishing 4( by

symmetry arguments; hence, secondary flows are generated by the Coriolis term 2MdT-Y/d 1

alone (the normal Reynolds stress differences in (D only have an indirect effect in determi'ing

the structure of the resulting fully-developed secondary flow). Since the secondary flows in

rotating circular pipes are generated exclusively by Coriolis forces, eddy viscosity models such

as the K - E model are capable of describing this effect [9], albeit after some modifications.

For more detailed descriptions of the flow - or for the developing flow case - either anisotropic

eddy viscosity models or second-order closures should be used.

Secondary flows in rotating non-circular ducts are generated by two sources: normal

Reynolds stress differences embodied in the term (D and Coriolis forces represented by the

term 2POW/Oy. Hence, the simplest models that will yield acceptable predictions of this

flow are two-equation models with an anisotropic eddy viscosity. However, since the Coriolis

forces have a direct effect on the evolution of the Reynolds stresses (see Eq. (11)), second-

order closure models are needed for a more complete description of this flow. Even in the

absence of secondary flows, the Coriolis forces in (11) cause the axial mean velocity profiles

to become asymmetric - an effect that is difficult to describe with two-equation models.

2.3. Curved Pipes and Ducts

Secondary flows in curved pipes and ducts are generated by centrifugal forces. This can

be easily seen for the case of fully-developed curved duct flow with the streamwise mean

velocity TY and secondary flow Ti, (corresponding to the directions 0, r, and z, respectively).

Here, the mean flow equations can be written in the form:

i7 ~ ~ _ a+FOT+TTV=G+I 2-FI _ T) 1 0k(l.ro) - _'z -__ (2,. -± 1( - - 0 - Oz (2

Or 7. m ll lm mn mlIlll



ItI

r= oz + 2-1--. - ('v2- + 0 (0 - Trr)

,. : - or .Or2
021/ 1 01/ 0211,o2 - rt 14
-5T2 r" Or oZa

- lo l i)
It-- = --- (15)

7. Oz I. Or

where - (V xU)O = au/0z - 0/"dr is the streamwise mean vorticity, 1g/ is the secondarv

flow stream function, and -G is the applied mean pressure gradient. It is clear froin (13)

that the streamwise vorticity source term (2T/r)o-i-/oz - which constitutes a centrifugal

acceleration term generated by, the primary flow T - is the main generator of secondary flows

in curved pipes. In curved non-circular ducts, secondary flows are generated by centrifugal

effects as well as by the normal Reynolds stress differences r- - , and Too - Trr which play a

crucial role when the curvature is weak. Consequently, two-equation models with an isotropic

eddy viscosity, such as the K - e model, have yielded reasonably acceptable predictions for

fully-developed secondary flows in curved pipes and curved ducts with moderate to strong

curvature ratios [17]. In order to analyze curved duct flows for a range of curvature ratios,

or under developing conditions, anisotropic eddy viscosity models or second-order closure

models, respectively, are needed.

3. ILLUSTRATIVE EXAMPLES

We will first present computations of fully-developed turbulent flow in a straight rectain-

gular duct (see Figure 1). A secondary flow with eight counter-rotating vortices is generated

by normal Reynolds stress differences. Since the flow is fully-developed, a two-equation

model with an anisotropic eddy viscosity - solved in conjunction with wall functions - suf-

fices. In Figure 2, the mean secondary flow streamlines predicted by the nonlinear K - E

model (9) at high Reynolds numbers are shown for a square duct. This secondary flow is of

the order of 1-2% of the axial mean velocity. The characteristic eight-vortex secondary flow

illustrated in the schematic provided in Figure 1 is reproduced. These results st~an(l in sharp

contrast to those obtained from the standard K - E model which erroieously predicts a uni-

directional mean turbulent flow - a deficiency that arises from the use of an eddy viscosit~y

model based on the Boussinesq hypothesis (8).

More quantitative comparisons will now be made for a straight 3 x I rectangular duct. The

secondary flow streamlines and contours of the normal Reynolds stress anisotropvy 7,, - rj,



predicted by the nonlinear K-E model are compared with the experimental data. of Il oagland

[1] in Figures 3(a)-3(b). These results are of a comparalble level of quality as those obtained

from a second-order closure model similar to that of Launder, Reece and Rodi [25] as shown in

Figures 4(a)-4(b). Hence, it is clear that two-equation turbulence models with an anisotropic

eddy viscosity yield acceptable predictions for fill yV-developed secondary flows in a straight

rectangular duct. For developing turbulent flows in non-circular ducts, second-order closure

models yield more complete predictions [26].

The fully-developed secondary flow in a curved square duct predicted b*v the nonliin-

ear K - E model at high Reynolds nummbers is shown in Figures 5(a)-5(b) for two (differenit

curvature ratios (Cr (i.e., the ratio of the radius of curvature to the duct width). For mod-

erate curvature, there is a double-vortex secondary flow that undergoes a bi furcation to a

four-vortex secondary flow when the curvature ratio C,( ;. 40. This is analogous to the

G6rtler instability in curved channel flow [27]. For extremely weak curvature (Cr > 10').
the double-vortex secondary flow generated by centrifugal effects interacts with the eight.-

vortex secondary flow generated by normal Reynolds stress differences yielding an extremely

complex secondary flow pattern which we will not show herein (see Hitur et al. [20] and HIur

(28] for more details). An anisotropic eddy viscosity model is the simplest type of model

that can describe the full range of curvature ratios. For a more complete description of the

flow - especially under developing conditions - second-order closure models are preferable.

However, it is interesting to note that reasonably acceptable mean flow predictions have been

obtained for fully-developed curved pipe flow using the standard K - E model for a limited

range of curvature ratios [5].

Now, we will discuss the prediction of curved turbulent pipe flows that are, not fully-

developed, namely, the case of a circular pipe U-bend. Here, both history and near-wall

effects play a role; consequently, a second-order closure with a. near-wall turbulence model

constitutes the preferred approach. We will show some illustrative computations for the

Launder, Reece and Rodi model with the near wall turbulence model of Lai and So [29].

In Figures 6(a)-6(b), the comp)uted secondary flow andi mean velocity profiles along the

pipe centerline (AA) and vertical radius (BB) are shown to compare favorably with the

experimental data of Anwer et al. [19] for a location 67.5' into the U-bend. At this same

location (0 = 67.50), the secondary flow field l)redicted by the full seconl-order closure mo(lel

is compared with its counterpart obtained from the A" - E model in Figures 7(a)-7(b). It is

clear from these results that the second-order closure yields a more detailed picture of the

secondary flow structure. I nlike the K - E model, t he second-order closure model is al)he to

predict the presence of a small subsidiary secondary flow cell near the outer benid of the pipe)

(see the lower left-hand corner of Figure 7(a)). The existence of this secon(lary flow cell has

6i



been extrapolated from exp~erimenets [21].

Finally, we will present soine coimpuItedl results for fill Iv-developed t In i)I-bl If()%%flo I[I rect -

angular dlucts subljected to a span wise rotation (i..1c.1 the ducnt cot tigi rat loll sh owni t I'II Figur

I mounted in a frame that is rotating steadlilv ab ount the y-axis with ;inn angultar veloeji v

Q.InI a low-asIpect- ratio duct, for weak to moderate rotations, second aryv flows occiinr dI ht

are qualitatively very similar to) those obtinited iii citrveol rectanigu lar (hImt s (see F i tie1-s

5(a)-5( b) ). For the sake of brevity, we wilt not show thlese dlonhle-vort ex a hf I foin r- ort ('

secondary flow solutions (see Yoiinis [3101). F'or a large-asjpee - rat io reel angui ar fhit miE whitcil

is usedl to experimentally simulate channtel flow it roll inist alili lv cain occu r at Iiiitertlief tilt e

rotation rates. This is ill ust rated in Figure 8 wh icli shows thle appearnanice of co nit er- rot ait III g

Taytor vortices iii the Interior of thte dulct. Coinput~edt using at ion Ii teat a tget raic lýevnoldt s

stress modlel for a, rotation number (I.e., angular velocity normalized byv tle (harte twi Ii ik ess

andl bulk mnean velocity ) Ho -_ 0. 1. These Taylor cells will cause t he axial ineati vetocit v

along the duct centerline (which is used t~o approximnate chantnel flow) to become asymf/Ut 11,1.

Such anl asymmetry also arises in the absence of secondary flows (line, to t he dIirecl effect of

Cýoriolis forces onl the R{eynoldls stresses as given in Eq"(. (11 I).

One-dimiensional inean velocity calculations of rotatinrg chianniel flow obt1alti ed Iusinzg Ilbe

SS(0 second-order closure modlel [31] with wall functions are coimpared with Iieperi ienemt

[:32] in Figures 9(a)-9(b). At. weak rotation rates (see Figure 9(a)) the secoito-ordet' closure

model does a reasonably good job of predictizig t he asymmetry in the mneati velocity profile.

However, as the rotation number Ho becomes of the ordler of 10' , the quantit ative accu~racyN

of the results degrade (see Figure 9(b) anii( also the results of Launder et al. [*3]). Trhis

could be partially due to the neglect -4 r'oll instabilities which have beeii docuiinett eo eXper-

imientally [8]. Full secondl-order closure model calculatiotns of a rot atinig rectangular (uit of

large-aspect ratio - as illustrated iii Figure 8 - should be cond~uictedl to resolve this issue. No

such detailed calculations of roll-instabilities in rotatiiig turbulent chan nel flow have vet to

be. undertaken with a second-order closure.

4. CONCLUDING REMARKS

A broad overview of turbulent seconda~ry flows in pipes aiid (dicts has been p~resentiedl

which highlights the underlying physical miechanismis responsib~le for thiei r generationt andf thle

predictive capabilities of Reynolds stress modelts in dtescrib~ing these flows. Secondary flows

arising from normal Reynolds stress differences, curvature, aiid a systemi rotat ion have beeti

considered in an effort to establish a, sufficiently general ba-sis for the eviluatioti of modeles. III

the opinion of the authors, two-equation models with anl aniisot~ropic eddYol viscosityv relpresetitt

the simplest level of model that c-anl predhict a wide range of these flows wit hiowithIle ad hoc

7



adjustment of constants or the ad hoc prescription of turhiulent lengt h and t hie scales. These

two-equation models do a reasonably good job of predicting turbulent secondary flows in their

fully-developed state. For a mort- complete description of these flows l)art icuularly unider

developing conditions where history effects or body forces play a significant role seco)nml-

order closures, with an asymptotically consistent near-wall turbulence model, are p)referred.

While future research is still needed, the results l)resented in this paper demonstrate the

considerable progress that has been made during the past two decades in the p)rediction of

turbulent secondary flows.
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SECONDARY FLOW

u9 v

zw

Figure 1. Schematic of turbulent secondary flow in a straight rectangular duct.
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Figure 2. Secondary flow streamlines in a square duct obtained from the nonlinear K -E

model.
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(a) NONLINEAR K - E MODEL

25

.0-25 •• 
-

DATA

(b) NONLINEAR K- e MODEL

0.3

i 0 .| 0 o.
+0-3 

•

DATA

Figure 3. Comparison of the predictions of the nonlinear K - E model with the experimental

data of Hoagland [1] for 3 x 1 rectangular duct: (a) secondary flow streanlities and (b)

contours of the normal Reynolds stress difference Tx-. -:
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(a) SECOND-ORDER CLOSURE

........ ..... .. ..............

-- ~~0. -- - - - - -- ~ .

DATA

()SECOND-ORDER CLOSURE

-0 0

-0.0

DATA

Figure 4. Comparison of the predictions of a second-order closure model with the Qxperi-

mental data of Hoagland [1] for a, 3 x I rectangular duict: (a) secondary flow streamlines and

(b) contours of the normal Reynolds stress difference 'r.. - 7,Y.
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(a) ________ _

Figure 5. Computed secondary flow streamlines obtained from the nonlinear K - model

for fully-developed turbulent flow in a ctirved square duct: (it) C, = 1295 and (b) C, 31 .3.



(a) (b)

00
® Anwer et al. [19]o

...... 60 x 50 GRID

- 38 x 30 GRID x ,.-

C~ 0

0 --:~ 3: C;

1. 0.5 0 0.5 1. 1.0 0.5 0
2r/D 2r/D

Plane AA Plane BB

Figure 6. Comparison of the mean velocity predictions of the second-order closure model

of Lai and So [29] with experimental data [19] for a circular pipe U-bend (0 = 67.50): (a)
profiles along the pipe centerline (AA) and (b) profiles along the vertical radius (BB).
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Figure 7. Computed secondary flow patterns for a circular p1)il U-bend (0 =67.50): (a)

second-order closure of Lai and So [29] and (b) K' - E model.

17



0

/ \D

Figure 8. Secondary flow streamlines in a rotating 8 x 1 rectangular duct obtained using a

nonlinear algebraic Reynolds stress model.
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( a ) 1 .2

1.0

0.8

S0.6

0.4

0.2

0.0 i I I I I I i I

0.0 0.2 0.4 0.6 0.8 1.0

(b) y/H

1.2

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

y/H

Figure 9. Comparison of the mean velocity profiles in rotating channel flow. - SS(',
second-order closure model; 0 Experimental data [:321): (a) Ho = 0.068, Hc = 35,000 anl

(b) Ro= 0.21, Re = 11,500.
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