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SPIRIT 1 Final Flight Report

1. EXECUTIVE SUMMARY

The SPIRIT 1 experiment, launched on April 8, 1986, was a rocketborne probe designed to
measure the long-wavelength infrared emission spectra from an IBC class IIl aurora in the
limb-viewing geometry. The primary instrument was a cryogenically cooled, flve-detector
Michelson interferometer mated to a high-off-axis-rejection telescope. Approximately 140
spectral scans were recorded covering tar.gent heights of ~40-225 km and a spectral range of
~450-2500 cm !, Most of these scans have an apodized resolution of 8-11 cm’!; however, 17
scans were measured at ~1 cm’! resolutien. During most of the flight the instrument was
pointed slightly away fror the bright auroral arc; however, later in the flight direct views of
the arc were obtained at tangent heights below ~108 km. The spectra provide a comprehensive
data base on a number of molecular emission features in the nighttime sky, including CO, v,
(15 pm), O3 v5 (9.6 pm), and NO Av =1 (5.3 pm).

This report provides a summary of the in-flight performance of the on-board and ground-
based sensors, as well as other rocket instrumentation and systems. Several flight anomalies
are described and explained.

Results of a preliminary analysis of the infrared data from the SPIRIT 1 cryogenic
interferometer indicates that two sources of radiation were observed by the SPIRIT 1 IR sensor.

The first source is radiation due to atmospheric emissions from the earthlimb, and
includes the well-known CO, v, (15 um), O3 v3 (9.6 pm), and NO fundamental (5.3 pm) bands.

Received for Puhlication 13 May 1991




In general, the atmospheric earthlimb emission correlates well with previous observations
such as SPIRE and the current ARC and SHARC models of the quiet nighttime atmosphere.

The second source of radiation is an anomalous background due to leakage of off-axis
radiation from the lower atmosphere and earth into the sensor's field of view. This
background is bright enough to dominate all of the LWIR window regions at tangent heights
above ~100 km. At higher tangent heights, only the brightest atmospheric radiators can be
seen above this background. Above ~190 km this background dominates in all bands
throughout the LWIR. This anomalous behavior is caused by the scatter of off-axis radiation
due to both iInternal effects and external contamination. The external contamination is
consistent with the release of particles from the ACS used to orlent the payload. The internal
scattering problem has been identified as a large-angle baffle-scattering effect. The high-
resolution spectrum of this background has been identified as that of a methyl-phenyl
siloxane (silicone) compound and traced to a silicone resin in the black paint used to coat the
internal surface of the telescope balffle.

Spectral imb radiance data for CO, v,. O3 v3, and NO Av = 1 5.3 pm emissions obtained in
the SPIRIT 1 rocket experiment are presented and discussed in Section 8. The data cover
auroral intensities from several kR to over 200 kR as measured at 391.4 nm, and a ~65-190 km
tangent height range at high latitudes (60-65°N). The primary observations are:

1. The CO, v, radiance agrees with previous experiments to within a factor of 2.

2. The O, v, radiance below 95 ki also agrees with other previous nighttime measurements
to within a factor of 2. Above 95 km tangent height the O3 v; radiance measured by SPIRIT

1 is significantly lower than previous observations and the current earthlimb radiance
model.}

3. No auroral enhancements are apparent in either the CO, v, or O3 v; bands. This result is
in sharp contrast to the observations made during the HIRIS experiment? (flown in April
1976 from the same launch site) in which dramatic auroral enhancements were reported
for both bands. (The results from SPIRIT 1 have led to a recent re-examination of the
HIRIS data.® This new analysis has resulted in an alternative interpretation of the HIRIS
data which attributes the unusually high radiance values observed during the HIRIS

1 Degges. T.C. and D'Agati, A.P. (1986) A user’s guide to the AFGL/Visidyne high altitude
infrared radiance mode computer program, Rep., VI-785, Visidyne Corp.

2  Stair, A.T., Jr., Pritchard, J.. Coleman, 1., Bohne, C., Willlamson, W., Rogers, J., and
Rawlins, W.T. (1983) The rocket-borne cryogenic (10° K) high-resolution interferometer
spectrometer flight-HIRIS: Atmospheric and auroral infrared emission spectra. Appl Opt..
22:1056.

3  smith, D.R., Phillips Laboratory. AFSC, Private Communication.




earthiimb scans to a combination of pointing errors, rapid tumbling, and off-axis leakage
effects resulting from the absence of a high-off-axds-rejection telescope. This explanation
brings the HIRIS results into close agreement with SPIRIT 1, and with other previous
measurements as well). '

4. SPIRIT 1 data in the 10-12.5 um region represents a significant improvement over previous
data. Spectral structure due to partially resolved bands has been assigned to ozone hot
bands resulling from the three-body recombination mechanism; O, + O + M =03 + M.
Recently published results from high-resolution (1 cm™!) spectral measurements obtained
by the CIRRIS 1A experiment from the Space Shuttle? has established that the spectral
structure in this region is entirely due to pure rotational transitions of OH (v, N) where v =
0. 1, 2 and N = 24-33, and that only the underlying continuum can be attributed to ozone
hot bands. The current atmospheric radiance model seriously under-predicts the radiance
on the long-wavclength side (11-12.5 pm) of the 10-12.5 pym window. The fraction of energy
in the ozone hot bands relative to the fundamental band (9.6 um) is a factor of 2 lower than
that measured by the SPIRE (non-auroral) experiment. (This may reflect a lower
concentration of atomic oxygen relative to the atmosphere measured by SPIRE).

5. SPIRIT 1 measured significantly less radiance from nitric oxide (5.3 um) than in previous
high-latitude observations. (A factor of 3 to 7 less than SFIRE, for example).

6. Nitric oxide (NO) hot bands associated with the auroral N(2 D) + O, mechanism are
somewhat difficult to discern. It is estimated that they comprise at most 10 percent of the
total 5.3 um NO emission in SPIRIT 1 above 120 km, where the 391.4 nm intensity
observed was below 40 kR. This estimate is within the range of previous auroral
observations.

2. INTRODUCTION

The SPIRIT 1 experiment was a rocketborne atmospheric probe to measure the spectral
characteristics of infrared emissions from a bright aurora in a limb-viewing geometry. The
payload instrumentation included ancillary sensors to assist in the characterization of the
auroral event. The prime instrument aboard the SPIRIT 1 payload was a cryogenically cooled,

4 Smith, D.R,, Blumberg, W.A.M., Nadile, R.M., Lipson, S.J., Huppi. E.R., Wheeler, N.B., and
Dodd. J.A. (1992) Observation of high-N hydroxyl pure rotation lines in atmospheric emission
spectra by the CIRRIS 1A space shuttle experiment, Geophys. Res. Lett., 19, Number 6.




flex-pivot, Michelson interferometer mated to a high-stray-light-rejection telescope. Utah
State University designed and developed most of the payload instruments. The booster system
was developed by Space Data Corp., Tempe, AZ, who also integrated the payload. The program
was managed and directed by the Phillips Laboratory Geophysics Directorate's Optical
Environment Division (PL/GPO) for the Defense Nuclear Agency (DNA/RAAE) in support of
Strategic Defense Initiative Organization (SDIO) measurement requirements and Air Force
system needs. An illustration showing the basic experimental concept is presented in Figure 1.

Fleld operations associated with the launch of the SPIRIT 1 payload lasted from early
December 1985 to April 1986. These activities culminated in the launch of the payload at
09:42:25 GMT on 8 April 1986. The payload was launched from the University of Alaska's
Poker Flat Research Range at which all preflight activities involving final assembly and
preflight checks were conducted.

3. INSTRUMENTATION DESCRIPTION

3.1 Payload Sensors

The on-board instrumentation consisted of six sensors. The primary sensor was a
cryogenic telescoped Michelson interferometer cooled by supercritical helium. The
interferometer was designed and fabricated by Utah State University - Stewart Radiance
Laboratory (USU/SRL) in Bedford, MA, while the telescope was provided by System Sensor
Group (SSG) in Waltham, MA. Utah State University - Space Dynamics Laboratory (USU/SDL)
at Logan, Utah supplied a ruggedized RCA Low-Light-Level Television Camera in a pressurized
container to collect visual data, a modified Nikon 35 mm camera with a Varo Image
Intensifier for post-flight star field position data, and a telescoped photometer for real-time
auroral intensity data collection. An IR Horizon Sensor that utilized a conical scanning
device which sensed crossings of the 15 pym atmospheric COg2 layer at 40 km was used to derive
real-time tangent heights of the scene being viewed. This sensor was furnished by Ithaco, Inc.
of Ithaca, NY. The sixth sensor was a modified 70 mm Hasselblad film camera with a 200
frame fillm magazine and a 150 mm Sonnar lens intended to provide a post-flight visual
record of auroral features. Each exposure was to be annotated with the day, hour. minute,
second, tenths and hundredths of a second as supplied by an on-board time code generator.
Epsilon Laboratories of Burlington, MA supplied the Hasselblad camera, the timecode
generator, and a film annotation (day and time information) module for the USU/SDL 35 mm
film camera. A summary of all the SPIRIT 1 program participants is given in Appendix H.




uolssiN 1 LRJIS [PURmoN ‘T Jungig

15v3 AL WTIN,
NOISSIN | 11H1dS —_

wyz
2088+ L
NOLLINOI

39VLS GNOD3S

SANVWWOD
MNIAN
AdLsSAOr

% Wy g9
088G +1

NOILVHVd3S w
OVOTAVd

4
0L+l - |
AN3IWIN3dX3 /

404




3.2 Interferometer Description

The interferometer, designed and fabricated at Stewart Radiance Laboratory, 1s a Michelson
flex-pivot design. The telescope was designed and fabricated by Systems Sensor Group (SSG).
Waltham, MA. The instrument was cooled by liquid helilum, which maintained the focal plane
at 8° K and the telescope at approximately 20° K. Three optical filters were used at
preprogrammed periods during the flight. They were designated Filter No. O (open filter, 2.5 to
24 pm response), Filter No. 1 (bandpass filter,10.2 to 12.8 um response) and Filter No. 2 (low-
pass filter, 2.5 to 8.2 um response). Other pertinent interferometer specifications are given in
Table 1.

The instrument was kept cooled and evacuated during transport from PL/GPO to Poker
Flat and during all subsequent field operations prior to launch.

The focal plane contains an array of five Si:As LWIR detectors which were designed to have
a combined dynamic range of 108. The detectors are numbered 1 through 5 in order of
decreasing size and sensitivity. Their arrangement on the focal plane is depicted in Figure 2,
which is a projection of the array onto the angular field of view. Since the focal plane
orientation with respect to the horizon is essentially as shown in the figure, detector No. 1
viewed the highest tangent altitude, detector No. 5 the lowest. and detectors Nos. 2 and 4
nominally viewed the same altitude.

Table 1. SPIRIT 1 Interferometer Specifications

Aperture Diameter (interferometer) 1.875 in.
Aperture Diameter (telescope) 6 in,
Detector type Si:As, 5 elements
Drive length

short approximately 0.1 cm in 1 sec

long approximately 1.0 cm in 10 sec
Detector Area (cm?) NESR"® (watts/cm?-sr-cm™!)
Det No. 1 1.309 x 10’} 1.8x1012
Det No. 2 5.226 x 102 40x1012
Det No. 3 7.720x 102 1.0x 101
Det No. 4 4.065 x 103 33x10!!
Det No. 5 4.065 x 103 0.8x10!!

*Noise Equivalent Spectral Radiance (NESR) are average values
estimated from measured flight data for the open filter taken at
80,100, and 120 km tangent heights,
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Figure 2. SPIRIT 1 Detector Focal Plane Layout Illustrating
Angular Subtense in Object Space

A photometer (center wavelength 3909 2« and FWHM 32 ?\) was co-aligned with
interferometer detector No. 2 and had the same field of view. The spectral characteristics of
the photometer filter are shown in Figure 3. The sensor contained an EMR 541 N detector and
was capable of measuring brightness from 0.2 kR to 2 MR.

The SPIRIT 1 payload also contained several ancillary sensors. A television camera co-
aligned with the main sensor’'s nominal field of view (FOV) provided real-time auroral images
for ground-controlled payload pointing during flight. An infrared horizon sensor provided
real-time line-of-sight (LOS) tangent heights. Two film cameras were also included on the
payload: one with a FOV overlapping that of the television to provide high-spatial-resolution
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Figure 3. SPIRIT 1 Onboard Photometer Filter Characteristics

images for post-flight auroral documentation; the second camera, designated the celestial
aspect sensor (CAS), provided post-flight star images for establishing LOS pointing angles. A
gyro system and a three-axis magnetometer provided corroborative payload attitude
information. With the exception of the two film cameras, data measured in flight was
transmitted to ground recetvers over two PCM and one FM - FM telemetry link. The television
signal was transmitted over a separate video link. Filln camera exposures were stored on-
board the payload and processed after recovery of the fllm magazines. All optical ancillary
sensors were nominally aligned with the interferometer FOV (detector No. 2) with the excep-
tion of the CAS which was offset from the nominal FOV by 45° in the payload pitch plane.




4. ROCKET FLIGHT SUMMAY

4.1 Launch Description

The SPIRIT 1 payload was launched on 8 April 1986 at 09:42:25 (UT). The auroral event
that resulted in the decision to launch the payload exceeded the initial launch criterion for the
payload by a significant margin, with a maxdimum photometer reading from Ft. Nelson on the
order of 200 kR as measured at 5577 A.

The window for launch on 8 April 1986 was limited to the period between 0615 and 0945
(UT} due to both evening and morning twilight intervention. Weather conditions at the Ft.
Nelson site were optimal, with no cloud cover and excellent visibility. Peace River had some
high thin haze that hid the dimmer stars, but bright stars were visible and auroral activity
could be observed without significant attenuation. Watson Lake was overcast and observations
from that site were severely hampered. During the early part of the 8 April window, auroral
activity was typically quiet with very low intensity.

Shortly before 0900 (UT) auroral activity increased, with an arc structure appearing, and
came close to meeting the launch criterion. The auroral arc proceeded into a breakup phase,
but generally held north of the arc's original position. Diffuse aurora spread toward the zenith
as observed at Ft. Nelson and Peace River. During this period the SPIRIT 1 payload was
counted down to T-3 min. and was held at that point.

Subsequent to the above breakup activity, a second arc formed at a much higher elevation
than the initial one. This form was first evident from the Peace River site and shortly
thereafter from Ft. Nelson. When the second arc became noticeably structured it had achieved
an elevation of approximately 45-50° as viewed from Ft. Nelson, and had brightened to the 15-
20 kR level. Further brightening was observed progressing toward the Ft. Nelson site from the
east at levels that appeared to significantly exceed the launch criterion, and project scientists
made the decision to launch the SPIRIT 1 rocket. The auroral arc continued to brighten during
final countdown, launch, and ascent of the vehicle and maintained a high intensity, gradually
progressing southward throughout the flight.

4.2 Flight Description

The SPIRIT 1 vehicle was launched from a fixed-rail launcher on Pad 4 of the University of
Alaska, Poker Flat Research Range, Fairbanks, Alaska. The vehicle was launched at an
azimuth of 56.1° from true north and at an elevation of 86.4° (corrected for wind weighting).
The payload reached 100 km at 82 seconds after first-stage ignition, attained a maximum
altitude of 239.2 km (148.64 statute miles) 4.21 minutes after launch and spent 359 seconds
collecting data.

Once the payload was in flight, scientific data and housekeeping data were collected on
board the rocket and transmitted via four telemetry links to ground tracking and receiving
antennas at Poker Flat and Fort Yukon, Alaska. After second-stage burnout, the vehicle was




despun and the motor was separated from the payload by the actuation of four explosive nuts
between the interstage and the payload cylinder. The two masses were separate<i at 26.5 ft/sec.
by a pressurized rubber bag.

To observe the aurora 1400 km away, the payload sensors (having small fields of view)
were scanned vertically through the auroral oval. This was accomplished by the onboard
MACS (Microprocessor Attitude Control System). The microprocessor processed position and
rate data from the payload gyroscopes and actuated gaseous nitrogen thrusters to point the
payload instruments at desired points in space. The MACS was designed to proceed through a
preprogrammed scan pattern but was designed to be interrupted by uplink commands to allow
the project scientist to override the preprogrammed scan with manual scans or to introduce
offsets. The MACS performed well in proceeding through its preprogrammed scan pattern,
except that during an azimuth scan towards the south an inadvertent roll caused the payload
to view the "hard earth”. Operation of the uplink command was not available for most of the
mission even though many attempts were made to offset the programmed scan. None was
successful until late in flight.

On 8 April 1986 at 11:00 AM local time, the SPIRIT 1 payload was spotted next to the
Yukon River near Circle, Alaska from the air by a search team from the 25th TASS (Nelson
AFB). During reentry the recovery parachutes deployed at approximately 2.5 km (8,200 ft)
altitude, based upon trajectory data from the Oklahoma State University TRADAT system data
at Fort Yukon, Alaska. OSU estimated the payload impact coordinates to be at 65° 59' north
latitude and 144° 12’ east longitude. The payload was recovered approximately one quarter of
a mile away from these coordinates. On 10 April 1986, a CH-3 helicopter flew to the impact
site and the payload was recovered and returned to PFRR. Table 2 shows the sequence of
events from launch to impact.
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Table 2. SPIRIT 1 Mission Event Table

EVENT TIME AFTER LAUNCH ALTITUDE (KM)
(TAL)
Launch 0.0 0.0
Talos Burnout 5.7 1.2
Castor Ignition 8.0 1.9
Pitch/Roll Crossover 215 8.6
Max Q 24.0 10.6
Castor Burnout 48.0 47.4
ACS Purge 49.0 49.3
Camera Door Eject 5.0 1.0
Despin 54.0 58.6
Separator/Begin ACS Capture 58.0 66.0
Cover Open 66-73 87.0
Scan Start/Uplink Enable 70.0 87.0
Back-up Cover Open 88-100 104.0
Apogee 253.3 239.2
Cover Close 453-460 69.0
End Scan/Spin Up for Reent 457.0 51.0
Recov Beacon On/Recov Pos 457.0 225
| Begin Recovery Sequence 580.0 2.5
Loss of Track 641.0 1.2

5. INSTRUMENT AND ROCKET PERFORMANCE SUMMARY

5.1 Vehicle Performance Summary

The SPIRIT 1 sensors were carried aloft on a ballistic trajectory by a two-stage, unguided,
spin-stabtlized, solid-propellant rocket vehicle to an altitude of 239.2 km. The trajectory was
approximately 8.5 km lower than pre-flight predictions, primarily due to a 58 1b increase in
payload weight over earlier estimates. The nominal launch parameters called for an azimuth
of 50.0° and elevation of 84.0°. The actual launch parameters were modified to 56.1° and 86.4°
to correct for the effects of wind. However, the actual payload impact point indicates a flight
azimuth of 58.28° an 8.28° shift from the 50.0° pre-launch estimate. This implies that a
small tip-off of 0.44° must have occurred during launch, probably due to a wind gust.

11




5.2 Interferometer Performance Summary

The SPIRIT 1 interferometer operated normally up to the moment of launch. Normal
operation was temporarily interrupted during initial ascent, as expected, but returned to
normal shortly before second-stage burnout at T + 41 sec (time after launch, TAL). The
interferometer then continued to operate normally throughout the remainder of the flight.
The interferometer cover-open command occurred at T + 66 sec and the cover reached the fully
open position at T + 73 sec at an altitude of 90 km. Payload ACS capture was not completed at
this time, and the payload instruments were pointing down at the earth. The payload began a
preplanned pitch-up maneuver at approximately T + 85 sec, and the first unsaturated
interferograms were recorded at T + 94.98 sec. The payload was at an altitude of 125 km.
From this point on, a total of 177 high-(1 cm!) and low- (8 cm™!) resolution spectral scans
were recorded prior to the cover-close command at T + 453 sec, for a total of 359 seconds of
measurement time. A listing of the interferometer sequence of events is given in Table 3.

Table 3. Interferometer Sequence of Events

EVENT TIME (TAL-SEC)
Normal Operation Returns 41
{In-flight Calibrations 56-69

Filter No. 2 Inserted 56
Cover Open Command 66
Open Filter Inserted 70
Cover Fully Open 73
Filter No. 1 Inserted 270-271
Filter No. 2 Inserted 320-322
Open Filter Inserted 344-345
Filter No. 1 Inserted 425-426
Cover Close Command 453
Reflector Plate Inserted 453-455
In-flight Calibrations 455-480
Cover Fully Closed 460
Loss of Signal (LOS) 556

5.3 Ancillary Sensors Performance Summary

Based on the preliminary data obtained from the five ancillary sensors, it appears that all
performed as designed, with the exception of the Hasselblad filln camera. The anomalies of

12




the Hasselblad film camera are discussed in Section 5.4.4. A sumrmary of the data obtained
from the other four sensors is contained in Section 6 of this report.

8.4 Flight Anomalies

Five anomalies occurred during the SPIRIT 1 flight. Several of these anomalies were
serious enough to degrade performance or cause a loss of mission data. Despite these
anomalies, all mission success criteria were met. The anomalies are discussed below.

5.4.1 Image-Intensified Film Camera Door

The first anomaly was an indication that the cover for the IIFC opened prematurely. The
programmed time for the cover opening was T + 51.5 sec. However, at T + 5 sec {end of Talos
maximum thrust) the door monitor switch showed that the cover had opened. This was later
confirmed when the door was found on the ground outside the blockhouse. A protective quartz
window behind the cover prevented any physical damage to the instrument due to aero-
dynamic forces and/or debris. Post-flight reduction of data indicates that the relay to fire the
pyro cover release mechanism did indeed close at T + 51.5 sec as planned. It is assumed that
aerodynamic forces, in combination with venting of the air space behind the door, caused a
fajlure in the door- retaining screw or the portion of the door around the retaining screw.

54.2 NASA TRADAT and Uplink Command

SPIRIT 1 was launched at 09:42:25 GMT with a good NASA trajectory data (TRADAT) signal
being received. At 09:42:36 GMT telemetry was successfully switched to autotrack. At 09:43:51
GMT NASA TRADAT signal strength had become so weak that the TRADAT system was unable
to discern the payload's signal. At 09:47:23 GMT the TRADAT signal strength was again strong
enough for the TRADAT system to function. The slant range when the signal was lost was
only 115.55 km. This seems to show that attenuation of the signal due to range was not the
problem.

The SDC uplink command system had a problem similar to the NASA TRADAT system. At
launch the signal strength was good, but it rapidly deteriorated, so that by 09:44:01 GMT the
signal strength was below the level at which the onboard software would accept an uplink
command. By 09:49:22 GMT the offset command was sent and the MACS began acting upon
the commands it was receiving. Between 09:48:04 and 09:49:22 GMT the joystick was held in
the yaw-left medium position. This was done without prior acknowledgement of the offset
command. Once the offset command was acknowledged, the uplink command system worked
correctly for the remainder of the flight.

An interesting point regarding the NASA TRADAT and SDC uplink command signals is
that both were sent and received on the same set of antennas. It is known that antennas have
lobes (areas of high signal strength) and nulls (areas of low signal strength). It may be possible
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that the antenna pair that were used by the NASA TRADAT and the SDC uplink were
positioned in such a manner that during part of the flight the signals were being transmitted
through nulls. Further research is being conducted by SDC to explore this theory.

Another contributing factor to the SDC uplink problem was the matching of the signal
strength software lock-out voltage and the RCC 103-2 receiver output voltage. SDC has flown
many of these receivers on other programs (HAVE SLED II, and ELIAS, for example) and has
used a software lock-out voltage of 1.25 V. This means that commands emerging from the
output of the receiver with a signal strength indication of less than 1.26 V are ignored.
Historically the RCC 103-2 receiver would produce a 1.25 V signal for an RF input level of -95
dBm. The recetver on SPIRIT 1 however, produced a 1.25 V signal for an RF input level of -75
dBm. This meant that the output signal of the SPIRIT 1 receiver was effectively locked-out for
a 20 dBm stronger RF input than that for which the software was designed.

5.4.3 Scan Anomaly

The SPIRIT 1 programmed scan pattern shown in Figure 4 was nominally followed. An
anomaly occurred during the large yaw maneuver occurring at T + 343 sec during flight. The
payload appeared to roll and pitch during this maneuver, causing the instruments to view the
"hard earth.” Concluding the yaw maneuver at approximately T + 400 sec, the payload
returned to the correct programmed point and continued {0 scan correctly until interrupted by
uplink commands. The MACS responded to the uplink commands as designed.

The cause of this anomaly is believed to be cross-coupling of the platform gyro axes.
Platform gyros are physically limited due to their construction. When large angular
excursions are performed on more than or.e axis in certain combinations, cross-coupling will
occur. Prior to the yaw maneuver, a pitch maneuver of -90° was executed. The combination of
the pitch and then the yaw maneuver could have caused cross-coupling in the roll axis.

5.4.4 Hasselblad Film Camera

The Hasselblad film camera was programmed to begin recording with the first
interferometer scan and to continue with one picture per scan. The fllm developed from the
Hasselblad shows that the camera began taking exposures at T + 70 sec and took 8 exposures
approximately 2.5 sec apart before ceasing operation. Post-flight inspection of the camera
indicates that one of the Nicad batteries was swollen, indicating that some type of power
problem had occurred. This agrees with telemetered data that show the +6 V monitor and the
camera response monitor dropping below readable levels after 7 exposures. Epsilon will issue
a more detailed report of the camera faflure at a later date.
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Figure 4. Comparison of Preplanned Scan Pattern and
Actual Spatial Scan Pattern Flown by SPIRIT 1

54.5 Interferometer Detector and Pre-Amplifier Nonlinearities

Nonlinear effects in the interferometer detectors and pre-amplifiers caused harmonics to
appear in the spectra. This problem appears to be an important factor only when the
interferometer is being operated in the open filter mode. This anomaly will be described in
more detail in Section 6.2.3.

6. DATA SUMMARY

6.1 Telemetry and Tracking Summary

6.1.1 Telemetry Summary

Data from the SPIRIT 1 sensors and payload systems were telemetered to the ground by
four downlink transmitters for reception at both PFRR and Ft. Yukon. Primary
interferometer data were carried on one of two PCM links at 16-bit accuracy (Link II) and are
of excellent quality with very few dropouts. Back-up interferometer data were also carried on
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the second PCM link (14-bit accuracy) and on a backup FM/FM link as well. These back-up
data have been examined and also appear to be of excellent quality. The ancillary sensor data
and miscellaneous payload housekeeping data were telemetered on the remainder of the second
PCM link (Link IV) and exhibit few dropouts. Ranging, ACS (gyros and magnetometers) and
some Horizon Sensor data, along with the remainder of the payload housekeeping data, were
transmitted on the FM/FM link and are of equally good quality. The TV signal was
transmitted over a separate video link (Link I) and good-quality pictures were recetived and
recorded from payload separation, throughout the data-collection portion of the flight. and
into the recovery phase. Two uplink receivers were used for ranging and uplink commands. A
547 MHz receiver was used for both NASA ranging and ACS uplink commands. A separate 550
MHz receiver was used for ranging from Ft. Yukon by Oklahoma State University. Anomalies
with the uplink control were already discussed in Section 5.4.

6.1.2 Tracking Summary

NASA telemetry at Poker Flat began recording trajectory data (TRADAT) at launch and
attained autotrack at 09:42:36 GMT, 11 sec following liftoff (T = O was at 09:42:25). Difficulties
were encountered with the TRADAT signal at approximately 111 km ._titude, 86 sec after
launch. Signals were regained at T + 297 sec, 09:47:22 GMT, with ar altitude of .29.2 km.
NASA TRADAT lost signal towards the end of the flight at 7 - 55~ - wds. 09:51:38 GMT, at a
payload altitude of 5.2 km. A discussion of the NASA .~ ‘DA™ .1 problem is discussed in
Section 5.4 on Flight Anomalies.

OSU telemetry at Fort Yukon began gath~ring good TRADAT trajectory data at 09:42:54
GMT, T + 29 sec at an altitude of 16.4* ki = OSU TRADAT had good signai throughout the
flight until the payload signal was los. at T + 640 sec, 09:53:05 GMT, at a payload altitude of
approximately 1 km.

The best least-squares trajectory fit derived from the OSU data is shown in Figure 5 and is
also tabulated in Appendix B. A calculation of the shadow height is also shown and indicates
that the payload remained in darkness throughout the entire flight. From these data. apogee
occurred at T + 256 sec. at a payload altitude of 240.68 km.
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Figure 5. Best-Fit Payload Trajectory from NASA TRADAT Tracking Data

6.2 IR Data Summary

6.2.1 IR Data Review

The SPIRIT 1 interferometer began collecting atmospheric emission data on scan 78 at
94.98 sec TAL with the sensor at an altitude of 125 km. It continued to collect data throughout
the flight, with the last data scan occurring at 452.79 sec TAL (scan 254). At 453 sec the cover
began to close, thus ending the data-collecting period of the flight. Between these times 177
spectral scans were conducted (160 low-resolution scans and 17 high-resolution scans).
Thirty-four of these scans occurred when the sensors were viewing the "hard earth" due to the
scan anomaly, described in Section 5.4, that resulted in saturation of all five interferometer
channels. For the remainder of the measurement time. two to five detectors were active during
each interferometer scan, resulting in a total of 471 separate interferograms. The smaller
detectors (numbers 4 and 5) become insensitive at higher tangent heights, whereas the larger
detectors (numbers 1 and 2) become saturated at lower tangent heights. On the average,
therefore, only about three detectors were active during a given scan.
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Of the 143 good spectral scans. 69 occurred during the upleg and 74 occurred during the
downleg portion of the flight. This data base covers a range of tangent heights from 28 to 234

km and auroral intensities from 1 to 210 kR (at 3914 (l)\). The maximum auroral intensity
(210 kR) was recorded during scan No. 236 at 429.44 sec TAL. This scan was a low-resolution
measurement with the 11 pm bandpass filter in place (Filter No. 1) and produced four
interferograms covering tangent heights from 73 to 80 km. The highest auroral intensity with
the open filter was recorded during scan No. 223 at 412.48 sec TAL and measured 125 kR.
Three detectors were active during this scan and covered tangent heights from 98-102 km.

A summary of the highlights of the IR data is given in Table 4, and a sample of the data is
given in Appendix D.

6.2.2 Anomalies Affecting IR Data

Five flight/instrumentation problems impacted or degraded the IR data to some degree.
The first was the lack of real-time uplink control during most of the flight, which prevented
acquisition of the brightest part of the aurora and which also prevented offset of the pre-
programmed scan pattern to correct for gyro error and drift. In general, the scan pattern was
approximately 40 km (1.8° measured from apogee} too high. This error would have been
corrected using the joystick offset mode had the uplink been active in the early part of the
flight. As a result of this problem most of the data-collection time was spent looking slightly
above and slightly to the south of the most intense aurora. This especially affected the high-
resolution data scans, and resulted in all of the high-resolution data being collected at tangent
heights between 120 and 200 km. We had planned to collect high-resolution data throughout
the auroral altitude region from 75 to125 km.

The second anomaly to affect the IR data was the ACS scan anomaly which caused the
sensors to be pointed down at the earth and saturated all five interferometer channels for 39.2
sec (368.0-407.2 sec TAL) during the flight. This caused an 11 percent loss of data during an
important part of the mission. Fortunately, the Microprocessor Attitude Control System
(MACS) was able to return the payload to the correct pointing position, preventing a greater
loss in mission data.

During a significant portion of the central part of the flight rather large fluctuations were
observed on all detectors of the interferometer. The source of these fluctuations is not known
at this time. However, it would appear that scattered earthshine from particles is a likely
explanation.

In addition to the above fluctuations, smaller fluctuations in the interferometer signal
have been observed that may correlate with releases from the ACS thrusters.

The last anomaly that affected the IR data was a harmonic distortion eflect which resulted
from non-linear interferometer detectors and/or preamplifiers. This effect will be discussed
in detail in the next section.
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Table 4. Measurement Events and Highlights

EVENT TIME (SEC/TAL) ALT (km)
Normal Operation Returned 41

In-flight Calibrations 56-69

Cover Open Command 66 80
Cover Fully Open 73 92
First Unsaturated Interferograms 95 125
Fluctuations Appear in IR Data 173-260 210-239
Fluctuations Re-appear in IR Data 343-363 203-185
Scan Anomaly Causes Sensors to Look at "Hard 367-405 181-135
Earth"

Best Auroral Data 410-445

Maximum Auroral Intensity (Open Filter)-126kR 412.5

Uplink Control Becomes Active 420

Maximum Auroral Intensity (Bandpass Fiiter)- 4294

210 kR

Last Good Data Scan 452.8

Cover Close Command 453 59
Reflector Plate 453

Cover Fully Closed 460 46
In-flight Calibrations 464-480

Los (PFRR) 456

6.2.3 Harmonic Distortions Caused by Nonlinear Effects

Many of the SPIRIT 1 IR spectra recorded with the open filter in place exhibit second and
third harmonics of the strong 15 pum CO, emission. The amplitude of the second harmonic is
as much as 2-4 percent of the fundamental and the amplitude of the third harmonic is an
order of magnitude less than the second. A large DC component is also present. In the typical
atmospheric spectrum in the LWIR region, the 15 pym CO, emission (and sometimes also the 9.6
pm Ogemission) is 2-3 orders of magnitude brighter than other emissions in the spectrum.
Therefore, these artifictal (distortion) bands are of comparable magnitude to a number of real
atmospheric emissions of interest. No similar effect was observed in the spectra obtained with
either of the two bandpass filters, both of which filtered out the 15 ym CO, band. In any event,
harmonics of features inside the filter passband would fall outside of the passband and thus
not cause a problem in interpretation.

Examination of the laboratory calibration data taken with the open filter failed to reveal
the presence of distortions in the spectra; such effects are difficult to discern in this data due
to the smooth, broad spectral shape of the "black body" calibration source. However, the
presence of this effect can be seen in calibration data for the 11 pm bandpass filter; (filter
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No. 1) these data provide a reasonable stmulation of an atmospheric emission spectrum
dominated by one strong feature. Figure 6 shows a fllter No. 1 calibration interferogram.,
illustrating the asymmetric compression effect (squashed-down top) characteristic of this type
of distortion. The spectrum resulting from this interferogram is also shown in Figure 6. The
presence of second and third harmonics, plus a large zero-frequency component, confirm the
existence of a non-linear process or system. Although these nonlinearities are believed to
arise in the detectors and/or pre-amplifiers, considerably more calibration measurements will
be required to determine their exact source and to characterize them quantitatively.

A nonlinear model that simulates the observed effect has been developed by Boston College
(E. Richards, private communication) and is {llustrated in Figure 7. Correction algorithms
based on this and similar models have been developed, but only limited success has been
achieved in applying them to the actual data.

6.3 Photometer Data Summary

The on-board photometer measured the background emission level at 3914 A throughout
the flight starting at payload separation and continuing through reentry. This sensor was
coaligned with the central detector (No. 2) of the interferometer array and is therefore an
accurate measure of the auroral level being viewed by detector No. 2 only. These values should
be used only as an approximate measure of the auroral levels for the other four detectors,
which point to different tangent heights and positions relative to detector No. 2. The data
from the photometer is of excellent quality and does not appear to show any anomalies. The
calibrated output from this sensor for the entire flight is shown in Figure 8. In addition, the
time-averaged value of the photometer's output was calculated for each interferometer scan
and these values are listed (together with the standard deviation) in Appendix A.
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6.4 Horizon Sensor Data Summary

The on-board IR horizon sensor appears to have operated normally throughout the entire
flight. All appropriate calibrations and offsets have been applied to the data and tangent
heights have been calculated for each detector in the interferometer array. These values, along
with the payload coordinates, are listed in Appendix B for every half second throughout the
flight. The calculated tangent heights for the central detector (No. 2) are also shown plotted
versus time for the entire flight in Figure 8. The average values of the tangent height for
detector No. 2 were calculated for each interferometer scan and have also been included in the
listing in Appendix A.
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6.3 TV Camera Operation and Data Summary

The on-board low-light-level TV camera operated as expected throughout the flight. Good-
quality pictures (Figure 9) were received and recorded at Poker Flat from the time of payload
separation through initial reentry. Acceptable-quality pictures were also received at Ft. Yukon
during the recovery phase after main parachute deployment occurred.

Good-quality pictures were obtained on the auroral form being observed throughout the
flight. In addition, the TV camera provided documentation of the booster/payload separation.
The video tape shows the hot second-stage booster being pushed away from the payload with
an axial orientation and with a slow spin, indicating a clean separation with virtually no tip-
off (Figure 10).

Due to the high quality of the TV data, numerous stars are visible throughout the flight,
making it possible to obtain corroborative pointing information from the video tape. To
facilitate its use for this purpose, a time code has been added to the video tape so that this data
can be used to obtain corroborative pointing information, as well as auroral intensities for all
five detectors. These analyses are now in progress.




6.6 Film Camera Data Summary

Of the two film cameras flown as a part of the SPIRIT 1 payload, only the intensified 35
min camera {star camera) appears to have produced useful data. The problem with the
Hasselblad camera has been discussed earlier.

The film from the star camera has been developed, copied, and reviewed. These data are of
good quality with fiducial marks, tirne code, and stars clearly evident in each frame.

Figure 9. Picture From the On-board TV Camera Showing the Location of the
SPIRIT Interferometer Focal Plane Relative to the Auroral Form Being
Observed for a Time Late in the Flight




Figure 10. Picture From the On-board TV Camera Showing the Burnt-Out
Castor Second-Stage Booster Moments After Payload Separation

8.7 Ground-Based Data Summary

Remote fleld sites associated with the launch of the vehicle were situated at Ft. Nelson,
British Columbia; Peace River, Alberta; and Watson Lake, Yukon Territories. The primary
purpose of these three Canadian sites was to provide observattons for determining when
optimum auroral conditions existed for launch of the SPIRIT 1 vehicle. During flight, the
rocket instruments looked across Canada to view auroral forms in the earth limb. This placed
the tangent point at Ft. Nelson, B.C. at apogee and at Watson Lake during upleg and downleg,
hence, observations from these sites were desirable. The Watson Lake, Yukon Territories, and
Peace River, Alberta sites were well situated to observe auroral activity both east and west of
Ft. Nelson. They were used to provide a broader observational base to assist in determining
when conditions were appropriate for launch, and also to provide an opportunity for
forecasting for Ft. Nelson. Ft. Nelson and Watson Lake could independently provide the
information necessary for evaluation and documentation of the launch of the paylo..d if an
appropriate auroral event occurred. Each of the ground stations communicated their
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observations to the Project Scientist at the launch site via standard telephone links. Table 5
describes the instrumentation available at the sites. Typical data recorded from the Ft. Nelson
ground site for two different times during the SPIRIT 1 flight are shown in Figures 11 and 12.

Table 5. SPIRIT 1 Ground Sites and Instrumentation

_SJTE _ INSTRUMENTATION MEASUREMENT/PURPOSE
Ft. Nelson, B.C. All-sky LLLTV Observe and record visible

auroral forms-continuous
recorded coverage.

Meridian Scanning Sky brightness at 5577A and
Photometers 3:;?1, 4A along magnetic
meridian-continuously
recorded, scanned N to S,
each 7 sec. (approx.).

Scanning Photometers Sky brightness at 5577A,
. and 6300A along oblique
meridian formed by points at
PFRR & Ft. Nelson (for
example, rocket flight path).
Scanned NW to SE, each 16
sec. (approx.)-continuously
recorded.
Magnetometers Earth's magnetic field
strength in X, Y, and Z axes-
continuously recorded.
Graphic aided zonal energy | LLLIV enhanced images of
recorder (GAZER) auroral forms. Images are
filtered for,
blue-3950A peak, 120A 1/2
BW,
red-tube peak 6000-7000A.,
tube cutoff approx. 6100A,
filter cutoff at 61004,
green-5200A peak, 80A 1/2
BW,

open-visual auroral forms
B/R infers electron energy

Visual observations General visual auroral
activity
Two Telephones Communications
[ Watson Lake, Yukon All-sky LLLTV Observe and record visible
Territories auroral forms .
Meridian Scanning Sky brightness at 39144,
Photometers 5577A., and 6300A along

magnetic meridian-
continuously recorded,
scanned N to S each 7 sec.
(approx.)




Table 5. SPIRIT 1 Ground Sites and Instrumentation Cont'd.

Filter Cameras (2)

Operated during Might

POS 1-records LLLTV

POS 2&3-film cameras,
50 mm, F/0.95, B&W, 20°
FOV, sequential 2, 4, 8
sec

POS 4-film camera, 24 mm,
F/1.4,55° x 75° FOV, B&W

POS 5-same as 4 with color

POS 6-intensified film
camera 9.8 mm, F/1.8,
104° FOV.

Sheet Film Camera

Single Time Exposure

Visual Observations

General Visual Auroral

Activity
N _ Telephone Communications
Peace River, Alberta Photometer

Sky Brightness at 5577A,
hand-held and pointed

Cordless Telephone

Communications

7. DATA REDUCTION

7.1 Pointing and Tangent Height Determination

7.1.1 Initial Tangent Height Determination

To reconstruct the spatial scan pattern traced by the SPIRIT 1 detectors, the payload aspect

(attitude) was analyzed as a function of time after launch. Several sensors onboard the
SPIRIT 1 payload provided data for aspect determination (Celestial Aspect Sensor, Horizon
Sensor, TV, ACS/gyro, and magnetometers). Data from the IR horizon sensor was considered
to be the primary pointing data and will be discussed first. The payload trajectory used in the
post-flight computation of tangent heights (see Figure 5) was derived from analysis of the
PFRR NASA TRADAT data by PL/GPD (during the flight the nominal payload trajectory was

used for the real-time tangent height display).
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The SPIRIT 1 horizon sensor was manufactured and calibrated by Ithaco. Inc., Ithaca. New
York. The system operates by scanning a small field of view (FOV) in a 45-degree (half angle)
cone about the SPIRIT 1 nominal line of sight (LOS). By sensing the peak of the atmnosphere's
15 um CO7 emission layer {at about 40 km tangent height) the horizon sensor measures the
angle between the LOS and the local nadir, which can be related to the tangent height viewed
by the LOS. The LOS tangent height is given by (see Figure 13)

H; = (Rp + h) sinG;, - R (1)

where
Hy = tangent height
h = payload altitude
R, = earth radius at the payload location
R; = earth radius at the tangent point location
Gp= angle between LOS and local nadir

The primary statistical errors in tangent height determination are due to the following
uncertainties:

ot

the altitude of the peak of the CO; layer (+ 3 km),

2. measuring the angle traversed by the FOV between
crossings of the CO; layer (+ 1 mrad)

3. calibration uncertainties in converting horizon sensor

output volts to degrees.

When combined, these uncertainties produce a tangent height uncertainty of approximately
+ 4 km at 100 km tangent height for the SPIRIT 1 trajectory. There is an additional important
source of tangent height uncertainty that is not statistical. This occurs when large detectors
(which span large tangent heights in object space} view emisstons whose intensities are
exponentially dependent on tangent height. Even assuming constant responsivity across the
detector, the centroid of the signal is displaced from the center of the detector. Thus, an
incorrect interpretation of the source tangent height can result by assuming the signal
originates from the center of the detector. An estimate of this apparent displacement in
tangent height {Ah) is given by




ELLIPSOID
EARTH

OBSERVER

LOS = LINE OF SIGHT

h = PAYLOAD ALTITUDE

Ht = TANGENT ALTITUDE (HEIGHT)

Gp = POINTING ANGLE

Rt = EARTH RADIUS AT TAN POINT

Rp = EARTH RADIUS AT PAYLOAD ALTITUDE

Figure 13. Tangent-Height Geometry [llustrating the Need to Use
Earth Radius at the Tangent Point When Computing Tangent Height
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(2)

where

H, = scale height of a particular ernission species
h, = tangent height subtense of a specific detector.

The following example demonstrates this effect. Consider detector No. 2, which spans a
tangent height range of 14 km when viewing a 100 km tangent height. For Oj (scale height of 5
km) the tangent height displacement is about -2.9 km and for CO; (scale height of 15 km) the
displacement is about -1.1 km. Thus, in a single spectral scan in which both of these species
are present, there is a difference of approximately 1.8 km in their tangent height origins.
Obviously this effect can only be corrected if the scale heights of all the measured emitters are
known, which is not in general ttue. Consequently, no Ah; corrections have been made to the
results presented in this report.

The SPIRIT 1 tangent heights were derived from the horizon sensor data for 80 to 462 sec
TAL. These data are plotted in Figure 4 along with the actual trajectory flown. In addition,
the data are compared to the preplanned trajectory and scan pattern. The data show that the
actual scan pattern was approximately 40 km higher than planned and also that the trajectory
was about 7 km lower than planned. The sun terminator was computed for the flight time and
is also shown in Figure 5. It shows that the payload was not sunlit at any time during the
flight. The solar disk was well outside the sensor's FOV and auroras under observation were
not sunlit.

7.1.2 Final Tangent Height Determination

The initial set of tangent heights for the five IR sensors in the SPIRIT 1 interferometer
were derived by calibrating and drift-correcting the gyro data using data from the Ithaco
horizon sensor (IHS) and the celestial aspect camera (CAS). These tangent heights are an
important factor in subsequent IR data analyses that lead to atmospheric radiance profiles,
and are a limiting factor in the accuracy of those profiles.

This method took advantage of the fast response time of the gyro (on the order of 0.1 sec)
and the absolute accuracy of the IHS, which is referenced to the altitude of the upper edge of
the CO; layer (at approximately 40 km) that triggers the IHS. Data from the IHS, which was
aligned co-axially with detector No. 2 on the center of the interferometer axis, was used to
provide an absolute tangent height reference for the gyro during periods of low payload
motion.




The CAS data offers the greatest accuracy of all three attitude sensors due to the
combination of fast time response (limited by the shutter speed) and the use of the star field.
However, due to time and funding limitations, only a portion of the CAS data has been
reduced. The CAS results available have been compared with the gyro-derived tangent heights,
and reveal agreement to within an average of 2 km. This reasonable overall agreement
indicated that the tangent height determination method had been largely successful. However,
discrepancies as large as ~5 km did occasionally appear, and tangent height errors of similar
sizes were also supported by results from our IR data analysis.

In an attempt to further reduce these discrepancies, a new set of tangent heights for the
interferometer axis (detector No. 2) based on data from the IHS was derived. By applying the
difference between the new results and the initial gyro-derived tangent heights as a correction,
a set of new tangent heights for all five detectors was generated. The method for generating
these final tangent heights is briefly described below. Comparisons with the gyro and CAS
data are provided, and tabulations of tangent height versus time after launch (TAL) and scan
and detector number are attached.

7.1.2.1 Method for Determining the Final Tangent Heights

The method involves correcting the IHS data for its slow time response (relative to the
gyro) by using data from the gyro, and also correcting for the eccentricity of the earth, which
was incompletely treated in the IHS data reduction. The time response correction is as
follows. First, the gyro-derived tangent height h(t) is used to synthesize a signal, 6(t}, which
represents the output of a hypothetical "fast” IHS, where 6(t) is the half-angle of the arc traced
by the THS between crossings of the CO, layer. Next. 6(t) is convolved with an instrument
function that describes the time-averaging and delaying effects in the IHS. The mathematical
detalils of the instrument function are described in the next section. This convolution
operation results in a "glow" signal, 6,(t), which represents the hypothetical output of a "real”
IHS with the same View.

From this point on, either of two procedures may be followed to generate time-response-
corrected tangent heights. In procedure 1, 9,4(t) is used to generate a "slow" tangent height h,(t).
The difference between the original "fast” h(t) from the gyro and the "slow" hg(t) is then applied
as a correction to the tangent heights derived from the IHS. In procedure 2, the difference
between 9(t) and 64(t) is taken, and is applied to the 6 from the IHS. This results in a corrected
0 that is used to generate the new tangent heights. We have found that these two procedures
yield essentially the same results.

The earth eccentricity correction arises from the fact that the earth radius at the CO, layer
crossing points may be different from the value at the payload location. This difference is
computed at each of the two crossing points, averaged, and applied as a correction to the CO,
layer height.

Other minor adjustments may also be applied to account for misalignment between the IHS
and the CAS, and to account for a difference from the assumed value of the CO; layer altitude




of 39.6 k. However, excellent agreement was obtained with the CAS data without these
adjustments.

7.1.2.2 Computational Details of Method

Mathematical and computational details of the method are given here. The IHS
instrument function I(t-t;) with which 6(t) is convolved (that is, integrated over the variable t,)

represents the relative contribution of the value of 8 at time t,, prior to the actual time t of the
displayed reading. It is itself the convolution of three functions.

Itt)=m*n*p (3)

where m, n, and p represent the instrument functions associated with each of three stages in
the data acquisition and processing. The first stage is the acquisition of 8 within the
measurement time interval of 0.5 sec between successive sweeps of the sensor. The associated
function f is taken to be a boxcar ("square”) function of width 0.5 sec, corresponding to an
average over the sweep. The second stage is the lag between the current time and the end of the
last sweep, during which time the last reading is displayed. Since this lag is uniformly
distributed over the current sweep, g is identical to f. The third stage is the introduction of an

electronics time constant of 0.3 sec which smooths the output. The associated function p is an
exponential with an 0.3 sec 1/6 time. The net convolution I(t-t,) has the appearance of a

skewed Gaussian with a mean t-t, {delay time) of 0.8 sec.
Details of the conversion between tangent height H, and angle 0 are as follows. Let

H, = y16) q=y 1) @

where y(9) is found from Eqgs. (1.1) and (2.2) in the Boston College draft report (SPIRIT 1 Report,
Hor. Sens. 1, Sept. 30, 1986). In that report, 6 is denoted as Q, ,/2. and y~! 1s given by

0 =cos! [(r + H, -z + d)/s] (5)

where

a = instrument height
x = height of CO, layer

r = earth radius




c=«/(r-¢-a)2-(r+l'£)2

s=‘\/(r+a)2—(r+Ht)2

pJ
z= 1/(c-21/25) +(r+x)2
d=(sz-(r+l~lt—z)2)/2 (r + Hy)

A few remarks on the value of r are appropriate. Boston College used separate values of the
earth radius at the tangent point and at the payload in converting between Gp (the angle to the
nadir) and tangent height in Eq. (1.1). They used a single radius (the payload value) in the
remainder of the calculation {Eq. (2.1)]. Since we have performed a "back-and-forth"
calculation, starting from H, and regenerating a new H,, a single r value could be used

throughout; the difference between the payload and tangent point r's assumed by Boston
College shows up in our calculation as slightly altered values of 6 and Gp. The effect of a still

different r at the CO, layer crossing points has not thus far been considered, and is included in
the following treatment, which fully corrects for earth eccentricity effects.

Eq. (1.2) of the Boston College report was used to calculate the earth radius at the latitudes
z o Z,, and Z, corresponding to the payload and each of the two CO, layer crossing points,
respectively. The payload latitude was taken as the average, 65.4°. Z, and Z, were computed
using Eq. (1.3) of the Boston College report, which requires the azimuth angles of the CO,
crossings relative to due north. These angles are displaced from the payload azimuth angle
(which is known) by +5 and -8, where & is approximately 45 deg. A more accurate value for 8 is
given by

d = tan™! [(r + Hy) sin/(z - d)]. )

As mentioned earlier, the eccentricity correction is an increment added to the CO, layer
height equal to the difference between the earth radius z, and the average of the earth radius
at Z, and Z,. The rationale for taking the average is that the half-angle 6 output by the IHS is
actually the average of the half-angles for each CO, layer crossing, and changes in 6 are linear
in small changes in r. The eccentricity correction is typically between 0.5 and 2 km, and is
correlated with increasing payload height. This is due to the fact that the payload is pointed




southeast, so that more southern latitudes, hence a larger radius, is viewed with increasing
payload height.

Computer implementation of the method used the following procedure. Input files
consisted of (1) the IHS instrument function I(t - t;) computed for 50 time steps prior to t,. and
(2) a Uisting of attitude angles, payload heights, and tangent heights from the gyro and the IHS
for the duration of the flight, at approximately 8500 time steps (1 time step = 1/24 sec). Three
output flles were generated containing (1) the new tangent heights h___. along with the current
(gyro) tangent heights h gyro and the original (uncorrected) IHS tangent heights h, .. (2) the
differences h,, - hwo; and (3)the differences h - hgym. A program option permits listing
outputs every n (integer) time steps. Typically, n was set to 10, resulting in output files of 854
lines with time steps of 0.417 sec. '

The h__,, - versus - time output file was used to derive new tangent heights for each
interferometer scan and detector, as follows. The Detector No. 2 tangent heights were derived
by interpolation using the nominal TAL of the scan (based on the time of the critical peak of
the interferogram). Then, the difference between the new and old values was taken and applied
as a correction to the remaining four detectors.

7.1.2.3 Discussion of Tangent Height Results

The new tangent heights are superior to the previous, gyro-derived results in two important
comparisons. First, the differences with the CAS data now average less than 1 km, and the
largest differences are less than 2 km. The second comparison is an internal consistency
check, in which spectral scans obtained during rapid pointing maneuvers (when the tangent
heights are most uncertain) are grouped with other scans having virtually the same CO, and O,
radiance levels, and thus essentially the same tangent heights. It is found that within each
group of scans the new tangent heights are much closer to each other than are the previous
tangent heights.

The IR data have been examined using the new tangent heights. The overall level of scatter
is similar to what was found using the gyro-derived tangent heights. The CO, and NO profiles

have been raised by 3-4 km, while the O, profile is essentially unchanged, despite substantial

differences between old and new tangent heights in certain scans. Since we believe the new
tangent heights are accurate to within 1-2 km, the scatter is probably due to real horizontal
variations in the atmosphere - specifically, a lowering of the atmosphere with increasing
distance from the payload.

7.2 Interferometer Data Processing

The output from the interferometer is an interferogram, or autocorrelation function, whose
Fourler transform produces an estimate of the spectrum of the incident radiation. In the
interferometer the incident beam of radiation is split into two optical paths, then recombined
so as to cause a modulated interference pattern as one path length is varied. The




interferogram consists of the intensity record of the interference pattern sensed by a detector.
The spectral resolution that may be obtained from an interferogram is inversely proportional
to its length but is also de~=ndent upon the data processing algorithms employed. At a point
near the zero path difference a peak occurs due to constructive interference of all wavelengths.
This is defined as the "critical peak" of the interferogram, and is the point of "zero lag" if the
interferogram is considered to be an autocorrelation function.

The SPIRIT 1 interferometer design was such that interferograms were generated over the
full path difference on only one side of the critical peak. The rationale for this design is that
if the interferogram is perfectly symmetric, having no phase errors, only one side is needed to
derive the spectrum and the other side is redundant information. Thus, by making the
interferograms one-sided, one can maximize spectral resolution by taking full advantage of
the available mirror drive length. However, since perfect symmetry of the sampled
interferogram is rarely achieved, some samples were taken on the other side of the critical
peak to provide information for phase correction of the interferogram. Some examples of
actual SPIRIT 1 flight interferograms are shown in Figure 14.

Three significant anomalies were present in the SPIRIT 1 raw interferogram data. First,
they show the presence of occasional spikes (possibly due to energetic particle effects on
detectors) or telemetry dropouts and /or missing points due to buffer storage overload. Most of
the spikes due to dropouts and buffer overload occur near the telemetry maximum voltage
limit, and were detected by comparing successive data points to a running mean and using a
standard deviation criterion. The points flagged by this process were replaced by the value of
the previous data point. Other spikes (which were generally smaller and more random in
amplitude) were treated by modeling six points around the spike and replacing the spike with a
fitted value.

Second. the interferogram dc level was not always constant throughout a scan but, in many
cases, exhibited low-frequency trends. These trends are thought to be due to changes in the
viewed atmospheric IR emission caused by spatial drift of the LOS or due to radiation
scattering from particles that drifted through the field of view. These anomalies were
corrected in two ways. If the trend was due to particles, as indicated by short fluctuations in
the DC level, the interferogram was high-pass-filtered to remove the trend. If the atmospheric
emission changed, as indicated by a monotonic trend, the interferogram was low-pass-filtered
and this result was used to window the interferogram in such a manner as to remove the trend.
This processing produced interferograms that were eventually used to generate the spectra.

Third, the SPIRIT I interferograms exhibit symptoms of nonlinear system response. This
is apparent in the central portion of the interferograms shown in Figure 14 in which the
interferogram signal appears to be flattened on top. It is speculated that this effect is due to
compression and subsequent expansion of the dynamic range (companding) and/or dielectric
relaxation processes.
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Figure 14. Examples of SPIRIT 1 Flight Interferograms for all Five Detectors

The companding nonlinearity results from electronic preamplifier nonlinear input/output
characteristics and effectively convolves the spectrum with itself one or more times producing
harmonics of the true spectrum. Companding nonlinearities increase with increasing total
incident photon flux. The dielectric relaxation process is dependent upon detector bias level
and causes the frequency response of the interferometer to be nonlinear. The net effect of
these processes is to produce ghost spectra at short wavelengths. Examples of ghost spectra in




the SPIRIT 1 data are shown in Figure 15. As yet no practical method has been found to
correct the spectra for nonlinear anomalies.

7.3 Spectral Emission Estimates

There are two important considerations in estimating the spectra from the processed
single-sided interferograms described above. These are selection of apodization windows and
the method of correcting for phase errors in the spectra.

The choice of apodization windows depends on the spectral features one wishes to analyze.
In Fourier analysis of interferometer data, it s common to consider the Fourier transform of
the windowed interferogram to be identical to the Fourler transform of the apodizing window
(called the scanning function) convolved with the transform of the interferogram.>® In
general, scanning functions that yield high spectral resolution in the central lobe exhibit
higher sidelobes that can result in undesirable out-of-band leakage. Scanning functions that
have suppressed sidelobes exhibit poorer spectral resolution. This is illustrated in Figure 16
in which the high-resolution triangular window is compared to the suppressed-sidelobe
window of the Kaiser-Bessel (K-B) function.” If one wishes to analyze the spectral structure of
high-level signals for which side-lobe leakage is not important, then the best choice would be
the triangular window. However, if one desires to analyze the low-level radiance floor of the
12 ym window band (Figure 17a) it would be desireable to use the K-B window to suppress
leakage from adjacent intense portions of the spectra. Figure 17a shows the effect of each of
these windows when applied to model interferograms derived from model spectra.}

The Mertz phase correction method has been employed to generate the SPIRIT 1 spectra.®
In this method it is assumed that the phase of the spectrum is slowly varying and can be
estimated by the phase derived from the portion of the interferogram around the central peak
(low resolution phase). The Mertz phase-corrected spectrum S(o) is related to the interferogram

by:

S ©) =l () cos[( v (©) - ¢ (9)] (7)

5 Saki, H., Vanasse, G.A., and Forman, M.L. (1968) Spectral recovery in Fourier
spectroscopy. J. Opt. Soc. Am., 58:54

8 Forman, M.L., Steel, W.H., and Vanasse, G.A. (1966) Correction of asymmetric
interferograms obtained in Fourier spectroscopy, J. Opt. Soc. Am., 86:59.

7 Harris, F.J. (1978) On the use of windows for harmonic analysis with the discrete Fourier
transform, Proc. IEEE, 66, No. 1.

8 Mertz, L. (1967) Auxiliary computation for Fourier spectroscopy. Infrared Physics, 7:17.
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where

|l (¢) = amplitude of the transform of the apodized one-sided interferogram
V (0) = phase of apodized one-sided interferogram, and

®(0) = low-resolution phase .
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An 2xample of the raw interferogram, processed interferogram, low-resolution phase, and
Mertz-corrected spectra for SPIRIT 1 data is shown in Figure 15. It should be noted that when
the spectral signal is high the low-resolution phase is flat and near zero. However, in the
vicinity of the ghost spectra the phase tends toward 180°. This is characteristic of the
companding nonlinearity anomaly.

To supress the effects of sidelobes and to assure the spectral purity of the data in the
window regions, the SPIRIT 1 interferograms were processed with the K-B window; for
applications in which high resolution is most important the interferograms could be
reprocessed using an alternate window function that maximizes spectral resolution at the
expense of sidelobe contamination, such as a triangular window. The scanning function
corresponding to the Kaiser-Bessel window u -d to process the SPIRIT 1 interferograms is
shown in Figure 17b.
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8. CALIBRATION OF INTERFEROMETER DATA

8.1 Introduction

The raw spectra in volts/cm! that are derived from the processed interferograms must be
corrected for wavelength response using the relative curves for each detector, and then scaled
using the absolute responsivities, R, (in V W~! ecm?/sr) for each detector. ’

8.2 Open-Filter Mode

8.2.1 Relative Wavelength Response

The relative wavelength response curves were obtained from analysis of post-flight
calibration spectra measured by P. Dybwad at Stewart Radiance Laboratory.9

A typical wavelength response curve obtained in the post-flight calibration is shown in
Figure 18. The response rolloff towards high frequency leads to increased noise in the
calibrated spectra, although not in the raw spectra, which are expressed in volts/cm-!. All five
detectors have very similar response curves, except that the larger detectors show somewhat
more high frequency rolloff as the result of a slight wavefront curvature in the interferometer.

8.2.2 Absolute Responsivities

Absolute responsivities have been assigned to each detector based on Method 1 below. An
alternative methed, Method 2, yields a different set of responsivities and is also described.

Because most of the calibration data were obtained at flux levels much higher than were
observed in the atmospheric measurements, and because the data have scatter as well as
potential systematic error, judgement is required to derive responsivities applicable to the
flight data. The two methods are as follows:

82.2.1 Method 1

First, the responses of the five detectors relative to each other were determined by
comparing the 15 pm CO, signals from different detectors viewing the same tangent height.
The relative responses turn out to be in the ratios 15: 2.0: 1.0: 0.029: 0.007 for detector Nos. 1
through 5, respectively. Essentially the same ratios were found using other nearby
wavelengths, including the 9.6 um ozone band and filter No. 1 (window region} data. This is

9 Dybwad, P., and Huppi, R.J.{1987) SPIRIT 1 postflight calibration report. Rep. SRL-87-2
Utah State University/Stewart Radiance Lab., Bedford, MA. and Dybwad, J.P.. Huppi. RJ.,
McKenna, R.E., Saletnik, D.P., Thomas, B.J., and Griffiths, V. (1987) Report on a rocket-borne,
telescoped Fourier transform spectrometer operating at 10° K, Proc. SPIE Int. Soc. Opt. Eng.,
787. 114.




consistent with calibration data indicating that all of the detectors have similar relative
response curves.
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Figure 18. Relative Wavelength Respon<e Curve for Detector No. 2

Next, an absolute responsivity of 2.7 x 108 was chosen for detector No. 3 (all responsivities
will be reported in units of V W-! cm? sr at 685 cm™}). This value provided the best overall
agreement to the post-flight calibration data. Scaling the above relative responses with this
absolute value leads to responsivities of 4.0 x 107 for detector No. 1, 5.3 x 108 for detector No. 2,
7.8 x 10* for detector No. 4, and 1.9 x 10 for detector No. 5, as listed in Table 6. These values
are nearly identical to ones determined® entirely from the post-flight calibration data. which
are available for detector Nos. 2, 3, and 4 only (2.8 x 108 for detector No. 3, 7.6 x 10 for
detector No. 4, and 5.0 x 10°® for detector No. 2 at around 5 V mean DC output voltage). The
latter values have been adopted in the preliminary data reduction. As mentioned earlier, these




calibration data were obtained using flux levels that are typically much higher than were
observed in the atmospheric measurements.

Table €. SPIRIT 1 Detector Responsivities
(VW em? sr at 685 cm™})

r No Method 1 Method 2
1 4.0x 107 24x107
2 5.3 x 10° 3.2x10%,v<0.27

1.05 x 10° In(80V), V > 0.27

3 2.7 x 108 1.6 x 108
4 7.8 x 104 4.6 x10%
5 1.9x 104 1.1 x 102

Figure 19 shows the altitude profile of the CO, 15 pm band radiance using the derived
responsivities. All of the detectors yield essentially the same profile with the exception of
detector No. 2, which gives increased radiance below ~105 km; the difference is approximately
a factor of 2 in the 90-100 km range. This behavior is consistent with dielectric relaxation of
the detector, a non-linear effect that increases its responsivity at high flux levels. This effect
is shown in greater detail in Figure 20, which plots the ratio of apparent 15 pm radiances
derived from detector Nos. 2 and 4, which viewed essentially the same tangent height. The
mean {DC) voltage output from detector No. 2, which is plotted along the x axis, is a measure of
the flux. The solid line is from a fit to post-flight calibration data, as discussed in Subsection
8.2.2.2. ~

The similarity of the CO, 15 pm profiles from the other detectors suggests, but does not
prove, that they are all behaving linearly (that is, have constant responsivity) over their
operating ranges. In Subsections 8.2.2.2 and 8.2.3 further evidence is presented that supports
linearity in detector Nos. 3 and 4, and, by implication, in detector Nos. 1 and 5 as well. We
therefore feel fairly confident that the shapes of the profiles of CO, and other emitters derived
from detectors other than detector No. 2 are accurate.




8.2.2.2 Method 2

In this alternative method, detector No. 2 is corrected for dielectric relaxation using low-
flux data. and this corrected responsivity serves as a reference for determining the
responsivities of the other detectors. This approach is based on the observation that the full
set of detector No. 2 calibration data shows a flux dependence similar to that seen in the
atmospheric data. This is illustrated in Figure 21, which plots the measured responsivity at
685 cm! as a function of the detector's DC voltage output. (The data shown were derived from
the cold-collimator scans at a number of wavelengths, with or without flliters, which were
normalized to 685 cm’! by correcting for wavelength response and filter transmission). The
oblique line between 0.27 and 10 V is an approximate fit to the data, and is given by

Det 2 Responstvity = 1.05 x 10° In (80V), (8)

where V is the DC voltage.

Next, we assume that detector No. 4 has constant responsivity, then Eq. (8) should be
proportional to the (Det 2)/(Det 4) radiance ratios in Figure 20, which are derived from flight
data. Normalizing Eq. (8) to a ratio of 2.0 at 6 VDC yields

(Det 2)/(Det 4) ratio = 0.33 In (80V). 9)

Eq. (9) has been plotted in Figure 20 as the oblique line, and is seen to fit the flight data quite
well over this flux range.

It 1s unphysical to extrapolate Egs. (8) and (9) to lower fluxes, since Eq. (9) does not give the
correct asymptotic ratio of unity. Put another way, the responsivity of detector No. 2 cannot
decline indefinitely with decreasing flux, but instead must level off to a constant value. The
simplest solution is to redefine the detector No. 2 responsivity as a constant below 0.27 V, the
flux level at which Eq. (9) equals 1.0. The constant responsivity value turns out to be 3.2 x 108,
shown as the vertical line segment in Figure 21.
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The new detector No. 2 responsivity function given by Eq. (8) above 0.27 V and 3.2 x 108
below 0.27 V leads to virtually identical altitude profile shapes in all 5 detectors. However, the
responsivities given in Subsection 8.2.2.1 for the other detectors lead to a factor of 1.7
difference in absolute radiance between detector No. 2 and the others. To make the radiance
consistent among all five detectors, the Subsection 8.2.2.1 responsivities for detector Nos. 1, 3,
4 and 5 would need to be divided by 1.7. This results in the responsivities giver. ... the second
column of Table 6.

In conclusion, Method 2 has not completely eliminated inconsistencies, but instead has
replaced one inconsistency (the anomalous detector No. 2 profile shape) with another (an
inconsistency between the calibration and the flight data on the relative responses of the
detectors). The latter inconsistency may be more palatable because, except for detector No. 2,
the calibration was done at high fluxes.

8.2.3 Open-Filter Calibration Summary

To summarize the two calibration choices, Method 1 accepts the detector Nos. 3 and 4
responsivities derived from the post-flight calibration, and regards the anomalously high
atmospheric radiance levels seen in detector No. 2 below ~105 km as erroneous. In this case,
the CO2 radiance profile is correctly depicted in Figure 19 for detector Nos. 1, 3, 4 and 5. The
alternative, Method 2, uses the detector No. 2 responsivity given by Eq. (8) above 0.27 V, which
fits the laboratory and flight data over a wide flux range, and divides the Method 1
responsivities for the other detectors by 1.7. Using Method 2 results in derived atmospheric
radiance levels which are a factor of 1.7 higher than with Method 1.

At the present time we cannot recommend one method over the other, although we note in
the next section that the higher radiances resulting from Method 2 are in closer agreement
with SPIRE data. In this report we have employed Method 1, understanding that it may
underestimate the true radiances.
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The factor of ~2 uncertainty in the absolute calibration is important to bear in mind when
comparing SPIRIT 1 data with other observations. However, we believe that there is
considerably less uncertainty in the relative altitude profiles, that is, their shapes and the
relative intensity relationships among different species.

8.3 Responsivities With The Bandpass Filters

In this report we have assumed constant transmission factors of 0.75 for both bandpass
filters, which are consistent with the post-flight calibration and are close to the average in-
band transmissions from curves supplied by the manufacturer (Dydwad, 1988). The use of a
constant transmission factor is adequate for computing the integrated band radiances in the
window (10.8 - 12.0 pm) and NO (5.0 - 5.7 um) regions that these filters cover, since the
transmission curves are reasonably flat. However, for highly accurate band shapes the exact
transmission curves will be included in future data analyses.

8.4 Calibration Summary

The factor of ~2 calibration uncertainty arises from inconsistencies between the
laboratory post-flight calibration and the flight data. These inconsistencies could be due to
systematic error, or they could be related to the differences in conditions of the laboratory and
flight measurements. These include differences in the intensity and spectral distribution of
the radiation sources, which may affect the detectors in ways that have not been completely
characterized.

9. DATA ANALYSIS SUMMARY

9.1 Introduction

Two sources of radiation are observed in the SPIRIT 1 data. The first is due to the
atmospheric limb, and includes the well-known CO, v, (15 pm), O3 v3 (9.6 um), and NO

fundamental (5.3 pm) bands. As anticipated. the atmospheric limb emission correlates well
with previous observations (such as SPIRE).!?'!! The second source of radiation is out-of-field-

10 Nadile, R.M., Stair, A.T.. Jr., Wheeler, N.B., Frodsham, D.G., Wyatt, C.L., Baker, DJ.,
Grieder, W.F. (1978) SPIRE-spectral infrared rocket experiment (preliminary results), AFGL-TR-
78-0107, Air Force Geophysics Laboratory, ADA058504.

1 Stair, A.T., Jr., Sharma. R.D., Nadile, R.M., Baker, D.J.. and Grieder, W.F. (1985)
Observations of imb radiance with a cryogenic spectral infrared rocket experiment, J.
Geophys. Res., 90:9763.
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of-view energy (also referred to as "contamination” or "anomalous” or "scattered” background
radiation). The spectrum of this background at times resembled earthshine, but more often it
had a different shape, resembling the absorption spectrum of siloxane (silicone) compounds.
The atmospheric Hmb radiation and the anomalous background radiation are discussed in
detail in Sections 9.2 and 9.3, respectively.

A brief listing of the usable scans is provided in Table 7. The usable open filter data
consist essentially of the upleg scans 78-149 (many of which are heavily contaminated with
background), plus low-altitude, downleg scans 219-232. The filter No. 1 (window region) data
consist of a number of heavily contaminated scans from the middle of the flight, plus
uncontaminated scans between 70 and 80 km near the end of the flight. The filter No. 2 (NO
band) data consist of only five scans, but good NO data are also available with the open filter.

In generating the atmospheric limb proflles shown in the following section, all scans were
visually inspected. and only those which were largely free of background contamination or
noise were included. Subsequently, several scans that appeared to have unreliable tangent
heignt assignment were dropped: they had occurred during rapid tangent height changes.

9.2 Atmospheric Limb Radiation

9.2.1 Viewing Geometry

Through most of the flight, the sensor altitude was sufficiently above the tangent height
that virtually the full imb was viewed for all emitters. The main exceptions are around scans
86-90 on the upleg and after scan 238 on the downleg, when the view was between full imb and
half imb. Fortunately, in these cases the observed radiation (CO5 and NO on the upleg, ozone
hot bands on the downleg) is optically thin, so geometric factors that normalize the radiance
to a full Hmb view are easily generated. We note that SPIRE, to which the SPIRIT 1 data are
compared below, had a full imb view at all times.

922 CO,15um

The 15 pm CO, (v,) altitude profile is shown in Figure 19. Agreement with SPIRE daytime and
terminator data (solid line) is within approximately a factor of 2 at all altitudes. Viewing geometry
corrections are not included, but they would affect only a small § rtion of the data (around 130-150
km). leading to slightly higher radiances. The data below ~105 k. are mainly from the end of the
flight, when the strong auroral arc was viewed. Better agreement with SPIRE above ~105 km (but
worse below this altitude) would be obtained if the Method 2 responsivities (leading to 1.7 times more
radiation) were adopted.




Table 7. Summary of SPIRIT 1 Spectral Scans
Time after
Description launch (sec) Scan Nos.  Comments
Pre-launch -11,7--1.5 1-9 Blackbody source
calibration
In-flight calibration 57.0-68.4 48-57 Blackbody source
(NO filter)
Open filter data 95.0-268.7 78-149 Tangent hts to 235 km
Window fllter data 271.5-318.6 151-163 Background
contaminated
NO fiiter data 322.5-343.5 166-170 NO 5.3 pm band
Open filter data 344.4-348.3 171-174 Background
364.1-366.7 186-188 contaminated
407.2424.2 219-232 Rapid tangent ht
variation
Tangent hts below 107
km
Window filter data 426.9-446.3 234-249 Ozone hot bands
In-flight calibration 456.9 257 Blackbody source;
(thin fllm heater) _ alignment test

Above ~150 km, background radiation and noise contribute noticeably to the data.
However, the peak radiance at 670 cm™! is less sensitive to these uncertainties than is the
integrated band radiance and could be used to extend the CO, profile to altitudes as high as

~200 km.

The single SPIRE nighttime scan, Spatial Scan 8, is somewhat higher than the daytime and
terminator data. This is contrary to predictions of atmospheric models and also leads to
poorer agreement with SPIRIT 1. The possibility of an instrumental or data reduction artifact




affecting SPIRE Scan 8 should be considered. For a more detailed analysis of the SPIRIT 1 CO,
(v,) data see Appendix F.12

9.2.3 Ozone 9.6 ym

The ozone 9.6 pm (vg) altitude profile is shown in Figure 22 for selected data in the 80-140
km region that show minimal background contamination. Above ~105 km the radiation in
this bandpass is all or nearly all due to contamination effects. At lower altitudes the data
agree very well with SPIRE nighttime and terminator data (solid line) in terms of both shape
and absolute radiance level.!® Since the profile is extremely sensitive to altitude above ~90
km, the good agreement confirms the consistency etc. between SPIRIT 1 and SPIRE absolute
radiances. A more extensive discussion of ozone (v3) emission observed by SPIRIT 1 can be
found in Appendix E.!4

9.2.4 Ozone Hot Bands (10.8-12.5 pm)

This wavelength range covers the "window" region in which ozone hot bands emit. The
altitude profile is shown Figure 23 for all scans of good quality that do not require a viewing
geometry correction.

These data combine open filter scans from detector 3 above 80 km with filter No. 1 scans
from detector Nos. 1, 2 and 3 at and below 80 km. (Unfortunately, between 80 and 95 km,
detector No. 3 was virtually the only one yielding useful data in this bandpass: detector No. 1
was saturated, detector No. 2 was mostly saturated, and detector Nos. 4 and 5 had poor signal-
to-noise.) In the open filter scans, detector No. 3 was exposed to intense flux from CO, that was
blocked by filter No. 1. The observation that the low-(filter No. 1} and high-flux (open filter)
data from detector No. 3 join smoothly at 80 km supports the argument that, except for
detector No. 2, the detectors are operating reasonably linearly.

Data from SPIRE in this bandpass unfortunately are not correctly represented in the
compendium tables. From inspection of the raw scans we find that the SPIRE radiance has an
altitude profile very similar to that shown in Figure 23, but its absolute intensity is some 3
times larger (2 times larger using the Method 2 responsivities).

The source of radiation in this "window" region is chemiluminescence from ozone hot
bands produced via 0 + 0, + (N,. O,) recombination and partially quenched by N, and O,.
Since O, and N, should show very little variability, and the influence of temperature
variability on the recombination and quenching rates should be small, we conclude that the

12 Adler-Golden, S.M., Smith, D.R., and Matthew, M.W. (1991) Atmospheric infrared radiance
from CO, and NO observed during the SPIRIT 1 rocket experiment, J. Geophys. Res., $8:11319.

13 Green, B.D., Rawlins, W.T., and Nadile, R.M. (1986) Diurnal variability of vibrationally
excited mesospheric ozone as observed during the SPIRE mission, J. Geophys. Res., 91:311.

14 Adler-Golden, S.M., Matthew, M.W., Smith, D.R., and Ratkowski, A.J. (1990) 9-12 pm
atmospheric ozone emission observed in the SPIRIT 1 experiment, J. Geophys. Res.. 98:15243.
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lower radiance in SPIRIT 1 may reflect lower atomic oxygen concentration in this altitude
range (70-90 km). Unfortunately we can only speculate on this possibility.
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Figure 23.  Altitude Profile of Ozone Hot Bands Below 95 km

In contrast to the bulk o{ the SPIRIT 1 data, the ozone hot-band data were acquired at the
end of the flight when the instrument was finally pointed at the bright auroral arc. The
decrease in intensity compared with SPIRE might be a bona fide auroral effect, but one should
not draw this conclusion without carefully considering other possible causes.

The SPIRIT 1 data on ozone hot bands in the 70-90 kin range represent a vast improvement
over SPIRE in terms of spectral resoiution. As shown in Figure 24, structure due to partially
resolved bands is visible. Even better resolution has been obtained by processing the
interferograms with a triangular and rectangular apodization windows instead of the Kaiser-
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Bessel window. A detailed analysis of the SPIRIT 1 data in the ozone hot band region (10.4-
12.2 pm) is presented in Appendix G.15
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Figure 24. Ozone Hot Band Spectra from Filter No. 1 Scans.
Note filter cutoff above ~970 cm!

15 Adler-Golden, S.M., and Smith, D.R. (1990) Identification of 4- to 7-quantum v3 bands in
the atmospheric recombination spectrum of ozone, Planet. Space Sct, 38:1121.

58




9.2.5 Nitric Oxide (5.3 pym)

The nitric oxide (NO) altitude profile is shown in Figure 25. The data have much more
scatter than the CO, or ozone data. Part of this scatter reflects consistent differences between
the detectors, indicating that the relative calibrations of the detectors in this wavelength range
are not quite correct. Detector noise may be another source of scatter. However, even after
taking into account scatter and absolute calibration uncertainty, it is clear that there is
significantly less NO emission (by around a factor of 3 to 7) than was measured during the
SPIRE flight, for which the average results above 125 km are approximated by the solid line in
Figure 25.

Recently, UV measurements of NO levels in the low-latitude thermosphere have been
reported from the Solar Mesosphere Explorer satellite.16 A factor of ~7 decline in NO was
found from January 1982 to April 1985, which they ascribed to the decline in solar activity
over that period. If a similar effect occurs at high latitudes as well, this could explain the
difference between the SPIRE (Oct. 1977) and SPIRIT 1 (Apr. 1986) NO data.

9.3 Anomalous Background Radiation

9.3.1 General Characteristics

As mentioned previously, the spectra of the anomalous backgrounds exhibit, at different
times, two distinctly different appearances. In the brightest of these spectra, the
interferograms are found to have large-amplitude, low-frequency fluctuations, as though the
sensor viewed objects moving across or through the fleld of view. An example is shown in
Figure 26. As is illustrated by this example, these fluctuations are usually nearly identical ir
all detectors. The spectra of these scans exhibit the characteristics of "pure” earthshine such
as Scan 112, detector 2, shown in Figure 27, but occur in only a relatively few scans. A
LOWTRAN calculation!? of upwelling emission from the earth agrees extremely well with this
scan. Since the sensor was pointed at a tangent height of 154 km at the time, and the
radiation is quite bright ( 104 as bright as the earth), it cannot be due to an ordinary off-axis-
rejection problem, but suggests the presence of a substantial quantity of reflective, spectrally
flat material in the field of view.

16 Barth, C.A., Tobiska, W.K., Stskind, D.E., and Cleary, D.D. (1988) Solar-terrestrial coupling:
Low-latitude thermospheric nitric oxide, Geophys. Res. Lett., 15:92.

17 Kneizys, F.X., Shettle, E.P., Gallery, W.O., Chetwynd, J.H., Jr., Abreu, LW., Selby, J.EA.,
Clough, S.A., Fenn, R.W. (1983) Atmospheric transmittance/radiance: computer code
LOWTRAN 6, AFGL-TR-83-0187, Hanscom AFB, MA, ADA137786.
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A lower-level anomalous background is seen continuously throughout the flight, and is
shown in the lower curve in Figure 28. Comparison with Figure 27 shows that this spectrum is
very different from an earthshine spectrum. Note, in particular, the strong peak near 900 cm!
and the strong feature at 1265 cm’} which appears to be an absorption band. To produce this
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curve, several consecutive detector No. 1 scans covering tangent heights of 121-141 km were co-
added to improve the signal-to-noise ratio in the window regions in which the anomalous
background can be seen. Atmospheric emission features from CO,, NO, and H;0 (v,) are
superimposed on top of the anomalous background.

This background radiance is most evident in the data from detector No. 1 in which it
appears approximately three times brighter than in the data from any other detector. It is
also only observable in scans with tangent heights above ~100 km, where radiation from
ozone and other species is no longer dominant. As mentioned above, this background is
observed to have a different intensity in each detector with the level decreasing in the
following order: detector No. 1 > detector No. 3 > detector No. 2. In general, this background is
too weak to be seen in detector Nos. 4 and 5, which are the two smallest and least sensitive
detectors.

Several times during the flight this background became brighter by an order of magnitude
or more as can be seen from Figure 29 in which the intensity of the most prominent feature of
this background (at 900 cm™}) is plotted as a function of time after launch (TAL). The
characteristic spectrum of this brighter background is shown in the upper curve in Figure 28
and again by the three curves in Figure 30. The times at which these bright spectra suddenly
appeared are generally coincident with abrupt changes in payload attitude, when a maximum
frequency of ACS thruster firings occurred. This is illustrated in Figure 31 which shows the
occurrence of the brightest anomalous scans relative to the payload motion (as reflected by the
sensor tangent height).

The first cluster of strong scans occurs at approximately 125 sec, near a tangent height
minimum after the first down-scan ACS maneuver. The next cluster of strong scans starts at
the beginning of the second down-scan maneuver, and the third occurs at the minimum
between the second down-scan and the next up-scan maneuver. We note that since these data
represent the upleg portion of the flight, a plot of intensity versus payload altitude displays
essentially the same clustering features {see Figure 32).

The clustering of the strong background scans and their apparent correlation with payload
maneuvers suggests a dependence on the frequency of ACS thruster firings. When the 900 cm!
anomalous signal is plotted versus tangent height, as is shown for detector No. 1 in Figure 33,
an often-observed profile emerges for the weaker anomalous data. in contrast to the brighter
scans, which appear to be essentially independent of tangent height. The predominant
characteristic of this weaker background is a nearly flat tangent height profile above 100 km
that exhibits a slight decrease in radiance with increasing tangent height. This result is in
excellent agreement with several other rocketborne LWIR earthlimb measurements.!® In this
earifer report it was shown that those profiles can be modelled as off-axis leakage radiance
from the earth and the lower atmosphere due to insufficient off-axis rejection (OAR)
performance of the sensor's telescope system.

18 Smith, D.R. (August 17-19, 1988) Evidence for off-axis leakage radiance in high-altitude
IR rocketborne measurements, Stray Light and Contamination in Optical Systems, Proc. of the
SPIE Conference. San Diego. CA. 30:967.
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It has been stated previously that the brighter anomalous background is observed equally
i all detectors while the weaker (baseline) background is observed preferentially in detector
No. 1 and to a lesser degree in detector Nos. 3 and 2, in that order. This effect is {llustrated in
Figure 34 in which the stgnal at 900 cm™! observed by detector No. 1 is plotted aga'nst che
signal at 900 cm’! observed by detector No. 2. The brighter scans exhibit a 7:1 ratio of detector
output voltages, whereas the weaker ones give a 25:1 ratio. Since the ratio of the detector
responsivities is 7:1, this indicates that the brighter (baseline} background is :.een equally by
both detectors. Data from the other detectors indicates that the entire focal plane is
{lluminated uniformly when the sensor is viewing this brighter anomalous background.

The measured ratios of the baseline anomalous background at 900 cm™! for detector Nos. 1
and 3 relative to detector No. 2 are shown in Table 8. The ratios of the off-axis angle measured
from the center of the focal plane (optical axis) to the edge and comer of these same detectors
are also shown for comparison. This data suggests a possible correlation of this background
with the angular displacement of a particular detector from the optical center of the focal
plane.

Table 8. SPIRIT 1 Telescope Leakage Ratio vs Detector Location

DET No. 1 DET No. 3 DET No. 2

MEASURED LEAKAGE
BACKGROUND RATIO 3.0-36 20-24 1.0
DETX/DET2

RATIO OF OFF-AXIS
ANGLE 3.3 2.6 1.0

@ DETECTOR EDGE
RATIO OF OFF-AXIS
ANGLE 3.0 20 1.0

@ DETECTOR CORNER

9.3.2 Explanation of the SPIRIT 1 Anomalous Data

The anomalous backgrounds observed during the SPIRIT 1 experiment clearly cannot be
explained by a single effect or mechanism. However, it is clear that the source of the radiation
for each of these various backgrounds is identical: upwelling radiation from the earth and the
lower atmosphere modified by the transmission of the atmosphere (that is, earthshine). Yet to
be determined is the exact mechanism (or combination of mechanisms) by which this
radiation reaches the zetectors. It i1s also relatively certain that the brightest anomalous
scans (that is, thos= which exhibit a spectrum characteristic of "pure earthshine”) are caused
by earthshine scattered from small particles in the sensor's FOV. It seems likely that these
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particles are originating from, or are somehow being dislodged by, the operation of the
payload attitude control system (based on the evidence of Figure 31).
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Figure 34. The Detector No. 2 Signal Level Versus the Detector No. 1
Signal Level for the 900 cm™! Spectral Feature.

Equally as clear is that the (baseline) anomalous background is uue to a classic telescope
off-axis leakage problem caused by insufficient rejection of out-of-field energy by the sensor's
telescope. This background was essentially constant throughout the flight and fits all of the
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spatial characteristics associated with this effect. This conclusion follows by plotting only
those scans in which the baseline anomalous background is dominant against the angle
between the sensor's FOV and the earth's horizon, as is shown in Figure 35. The spectral
characteristics of the baseline anomalous background, however, are not immediately
identifiable as earthshine radiation, although the spectrum is predominantly that of a
blackbody with a temperature of ~280 K. The spectral features in this background appear to be
primarily "absorption -tvpe" structure but the bands cannot be ascribed to any known
atmospheric species. It seemed possible that this structure was the result of scattering from
some contaminant deposited on the optical surfaces of the telescope rather than a pure
absorption spectrum. Although it is possible that this scattering (or absorption) was occurring
in the near field of the sensor, we think it is far more likely that this "coloring” of the
spectrum is due to an internal scattering problem.

Assuming that the source of illumination is earthshine, the "scattering” spectrum
associated with the anomalous background may be obtained by taking the ratio of the
anomalous spectrum to the earthshine spectrum (as shown in Scan 112, detector No. 2). The
result is shown in Figure 36. Note the strong narrow bands at approximately 821, 1265, and
1426 cm! and slightly weaker and broader features at 575, 705, 1000, and 1157 cm'}. It was
first conjectured that these features were associated with one or more contaminant species.
This conclusion would not be surprising since evidence of contamination has been seen in
many earlier rocketborne experiments.!® We noted that a number of these programs, including
ICECAP,2%2! HAVE-SLED, and EBC,22? among others, had observed three strong features at
nearly the same spectral locations as the three strongest bands measured by SPIRIT 1. The
average measured frequencies and estimated uncertainties were 813 + 10, 1250 + 15, and 1450 +
20 cm! respectively. However, these strong features had been observed in emission, rather
than absorption, and a very strong feature observed at 1083 + 8 cm'! was either absent or
significantly altered in the SPIRIT 1 data. This series of four bands has been identified as
being characteristic of silicone compounds,!? although the source of this contamination was
never located. In the two ICECAP experiments these four anomalous emissions, and other
weaker bands, were seen to decrease continuously throughout the flight after an initial
increase, apparently consistent with a payload outgassing effect. We speculated that the
reduced amount of scattered earthshine associated with the vertical geometry of these other
experiments and a higher temperature of the "contaminant” might explain the dominance of

19 gsmith, D.R.. and Ratkowski, A.J. (1986) Contamination in rocket-borne IR measurements,
Proc. of the 13th Annual Meeting on Upper-Atmospheric Studies by Optical Methods, Report 86-28,
Univ. of Oslo.

20 Rogers, J.W., Stair, A.T., Jr.. Wheeler, N.B., Wyatt, C.L., and Baker, D.J. (1976) AFCRL-TR-76-
0274, Environmental Research Paper No. 583, AFGL. Hanscom AFB. MA. ADA038239

21 Rogers. J.W., Stair, A.T., Jr., Wheeler, N.B., Wyatt, C.L., and Baker, D.J. (1977) AFCRL-TR-77-
0113, Environmental Research Paper No. 597, AFGL, Hanscom AFB, MA. ADA045466.

22 ylwick, J.C.. Baker, K.D., Stair, A.T., Jr.. Frings, W., Hennig, R.. Grossman, K.U., and
Hegblom, E.R. (1985) Rocket-bome measurements of atmospheric infrared fluxes, J. Atmos.
Terr. Phys., 47:123.




self-emission in these earlier cases over the scattered upwelling radiation observed in our
data.
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It was also noted that the two strongest anomalous bands in the SPIRIT 1 flight data also

1500

appear as weak absorption features in the SPIRIT 1 post-flight calibration data. (Nearly

identical features have also been observed in the pre-flight calibration data of the very similar

companion sensor to be employed in the CIRRIS IA experiment; E. Ray Huppli, private

communication.)] The average measured frequencies of these anomalous calibration features
are 816 + 10 and 1258 + 10 cm’!. Another similar calibration feature at 871 cm’! is either
missing or shifted to 845 cm! in the SPIRIT 1 flight data. The presence of these three features
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in the SPIRIT 1 calibration data, in conjunction with the fact that the baseline anomalous in-
flight background was constant throughout the entire flight strongly suggested that the
problem was jnternal to the SPIRIT 1 sensor. However, it is important to remember here that
only off-axis radiation was "colored" by this effect in the case of the in-flight data.

9.3.3 Contamination Discussion

During testing of the CIRRIS IA sensor a visible fllm was observed on the primary mirror.
The mirror was subsequentially cleaned with a cleaning solution (a mixture of ethyl aicohol
and acetone), and this solution, along with a clean control sample of the same solution, was
sent to a testing laboratory for analysis using gas chromatography/mass spectrometry. The
analysis indicated the presence of 0.1 percent to 0.5 percent by volume of a contaminating
substance, while the control sample showed no contamination. A computerized library search
yielded two possible matches for the contaminant:

1) 2(methoxyamino) - 3 - methyl butanoic acid and
2) tetramethyl silane, (CH3)4S1.

The infrared absorption spectrum of tetramethyl silane shows strong bands at 696, 869, 1254,
and 1430 cm’!, with the two strongest vibration bands from this molecule being those at 869
and 1254 cm'!.22 These features are in excellent agreement with the anomalous calibration
features observed in the calibration data at 871 and 1258 cm’} respectively.

Based on the discussion above, silanes and silicones were determined to be the most
likely candidates to explain the anomalous spectra observed in the SPIRIT 1 flight data at the
higher tangent heights, and in the SPIRIT 1 and CIRRIS IA calibration data.

9.3.4 Spectroscopic Properties of Silanes and Silicones

Silicones are compounds which have the general formula (R-SiO-R') and are more
correctly called polysiloxanes. The most commonly used silicones are the
polydimethylsiloxanes and the polymethylphenylsiloxanes. The former is the main
constituent in silicone rubbers; the latter is often found in resins used as auxiliaries in the
paint industry. Silicone greases and sealants are usually polydimethylsiloxanes whereas
silicone olls are generally either polydimethyl- or polymethylpheny! siloxane. Silicone
vacuum pump oil is a polymethylphenylsiloxane.

The infrared spectra of polysiloxanes and similar silicon compounds have been
extensively studied and are well characterized.?4 In general, the spectra of silanes and

23 Simon, J. and McMahon, H.O. (1952) Infrared spectra of some alkyl silanes and siloxanes
in gaseous, liquid, and solid phases, J. Chem. Phys., 20:905.

24 smith, A.L. (1974) Analysts of Stlicones, John Wiley and Sons, Inc., New York, p. 247.
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siloxanes are relatively simple and the various alkoxysilanes and siloxanes can easily be
distinguished from one another. Frequencies which have been suggested as being
characteristic of specific groupings linked to silicon are listed in Table 9.25 Normally,
vibration bands involving chemical groups with silicon are relatively strong (about five times
as strong as those of similar groups with carbon). The strong absorption band near 7.9 um
(1261 + 4 cm™!) occurring in all compounds with Si-CH, groups is assigned by various authors
to either the CHj - rocking vibration or the symmetric deformation mode of the methyl groups,
with the latter being the more widely accepted assignment. In either case, the gpecificity of
this nearly invariant band in silicones is not in question, and it provides almost certain
evidence for the existence of the methyl group. The number of such groups attached to the
silicon can then be determined from the positions of the Si-C bands and the methyl rocking
modes. Vibrations involving the stretching of the Si-C link occur in the 900-700 cm! region,
but are considerably influenced by the nature of the substituent groupings. Therefore, to gquote
from Reference 25, the "... only consistent bands likely to be associated with this linkage are
those which arise from invariant groupings such as Si-CHjz, Si-phenyl. etc.,...(while the)...
rocking vibrations of these groups may also be expected to give rise to characteristic
absorptions at higher frequencies.. A band near 800 cm! can always be expected when two
methyl groups are attached to a silicon atom, and its absence can be used to show the absence
of this grouping. On the other hand, the presence of this band could also be associated with
only a single methyl substitution...In compounds containing the grouping S{{CH3)R}R2R3.
Richards and Thompson?® found that a band usually occurred near 800 cm!, but that it varied
in position with the nature of the R groups more than in the compounds in which more than
one methyl group is present.” This band appears in the range of 814-802 cm™! in the cyclic
polymers, but is practically invariant at 800 cm’! in the open-chain materials. A second band
near 700 cm’! (14.3 pym) which occurs in both the open-chain and cyclic materials is also
believed to be associated with the - SI(CH,), - groupings. Bands at 841 cm™! and 755 cm™! have
been associated with vibrations involving the Si{CH3)3 end-groups of the open-chain polymer
and are considered to be sufficlently characteristic for the identification of this grouping.

A strong band at 1429 cm! (7.0 um) is regarded as being characteristic of the silicon-
phenyl link. A second band near 1124 cm! is also associated with the Si-phenyl band. but is
described as being less constant in frequency and, thus, less useful for identification purposes.

The stloxane bond is characterized by a broad absorption band in the 9-10 pm region.

Only in low-molecular-weight siloxanes with a small number of siloxane units is this
absorption fairly sharp. The Si-O absorption appears as a very strong band in the range 1090-
1020 cm'! for both open-chain and cyclic compounds, with the open-chain compounds
showing a slight preference for the lower end of the range. For the most part, these
absorptions are essentially independent of the nature of the substituent groups. However, a
clear-cut distinction does exist between the trimeric and tetrameric forms of the cyclic silicon
polymers, with the Si-O band occurring between 1020 and 1010 cm™! in cyclic trimers and

25 Bellamy, L.J. (1958) The Infrared Spectra of Complex Molecules, John Wiley and Sons, Inc.,
New York, p. 334.

26 Richards, and Thompson (1949) J. Chem. Soc., 124.
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between 1090 and 1080 cm! in the cyclic tetramers. In addition to the Si-O stretching
vibration, a second absorption is expected in the 500-300 cm™! region arising from the valance
bending of the Si-O link. The far-infrared spectra of poly (dimethylsiloxane) and poly
(methylphenylsiloxane) both show "very strong" bands at 475 cm™!, which are assigned to the
S1-O-St bending mode.

Table 9. Organo-Silicon Compounds

Frequencies of Silicon-Containing Groups (cm™!)

Si(CHg), 1260, 1250. near 840 and 755, 715-680, 660-435.
S(CHj3), 1258 + 5,. near 850 and 800.

S1(CHjy) 1258 £ 5, near 765.

Si(CH,) 1250-1200, 760-670.

SiCgHg 1125, 1100.

Si-O0-C 1110-1080.

St-0-5i Cyclic Trimers 1020-1010.

Tetramers 1090-1080.
Larger Rings 1080-1050.

Open Chain 1093-1076, 1055-1020.
SiH Overall 2280-2050.
SiHg, Alkyl 2153-2142 Alkyl or aryl
Aryl 2157-2152. 947-930, 930-910.
SiH, "~ Dialkyl 2138-2117. 940-925.

Diaryl 2147-2130.

StH Trialkyl 2105-2095. 845-800.
Triaryl 2132-2112.

SiF 100-830.
Si-Cl Usually one band between 600-550, overall 650-370.




9.4 Identification of the Specific Compound Observed by SPIRIT 1

The identification of the specific species "coloring” the SPIRIT 1 anomalous flight data
from the infrared spectira alone was complicated by a number of issues resulting from a lack of
knowledge concerning the physical properties and/or state of the material. Most important
was specific knowledge of the phase and temperature of the material and whether scattering or
absorption was the dominant effect (the former being a convolution of the particle size and the
real index of refraction as well as the absorption coefficient). The precise position of an
absorption band is affected by changes of phase or of crystal form, as well as by changes in the
molecular geometry or the nature of the substituent groups. For example, when going from the
liquid to the crystalline solid the increased intermolecular forces cause relatively small shifts
in frequency to occur. More importantly, however, the increased order of the crystal will often
cause some bands to disappear from the spectrum while in some instances additional bands
may appear. In general, the effects of molecular association lead to lower stretching
frequencies and higher deformation frequencies with the overall shifts being small in either
case.

In the SPIRIT 1 sensor all internal surfaces were cryogenically cooled to temperatures in
the range of ~10-30°K. At these temperatures most internal contaminants are expected to be
solids cryodeposited on the cold surfaces inside the sensor. Unfortunately, measurements of
the infrared absorption spectra of most complex molecules and polymers have been made
primarily on liquid films at room temperature. The effects of large temperature differences
can be expected to have a considerable influence on the absorption pattern, especially where
polymorphic crystalline forms are anticipated.

Despite the above-mentioned concerns a positive identification of the specific species
responsible for the anomalous features in the SPIRIT data was made on the basis of the
comparison in Table 10. This table compares the observed "absorption” band centers from the
SPIRIT 1 anomalous background spectrum with those for two typical methylphenyl siloxane
(silicones) in the .500-2000 cm’! spectral region. In all, 17 relatively strong "absorption”
bands can be discerned in the SPIRIT 1 anomalous background spectra between 470-2000 cm'!
(5-21 um). The frequencies of these observed bands are in excellent agreement with the
corresponding bands in the absorption spectra of the two polymethylphenyl silicone
compounds listed in Table 10. Based on this comparison it was determined that a
methylphenyl stloxane compound was responsible for the series of sharp features observed in
the SPIRIT 1 background data.
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Table 10. SPIRIT 1 Anomalous "Absorption” Frequencies
SILICONE OILS
(METHYL-PHENYL SILOXANE)
SPIRIT 1 TENTATIVE
olcm!) £ 5 cm’? ASSIGNMENT DOW 704 METHYL-PHENYL
olcm™) DIMETHYLOXYSILANE)
olcm}) £+ 5 cm!
470 Si-0O-Si Bending
575 Si-C stretch (sym) 570+ 10
705 Si-C strelch (asym) 70015 705
. 733 743
- - 779
821 797 + 10 810
845 Si-C stretch 847 +5 842
1000 Si-CgHg 1000+ 5 1002
1045 S1-0-Si 1020+ 5 1033
1060 £ 25 1090
1130 Si-CgHjg 1120+ 10 1128
1157 Si-O-c 1158 15 1195
1265 Si-CHjy 1265 15 1265
1426 Si-CgHg 1430+ 5 1434
1473 - 1463
1488 + 10 1488
1596 + 10 Cglls - 1593 1593
1816 £ 10 Cglls - 1825
1880t 10 CeHs - 1890
1950 + 10 CHs - 1960

9.5 Sources of Sllicones

9.5.1 General Discussion

The identification of methyl-phenyl siloxane as the "contaminant” species in SPIRIT 1 led
to a search for possible sources of this compound within the SPIRIT 1 experimental hardware.
Although special care had been taken to exclude silicones from the SPIRIT 1 payload. several
sources were still uncovered. These sources are discussed in detail below.




9.5.2 Rocket Booster Contamination

An Inquiry at Morton Thiokol, the manufacturer of the Castor second-stage booster,
revealed that silicone rubber was applied extensively to the interior of the engine nozzle. The
compounds used were Dow Corning 90-006-2 Aerospace Sealant and/or General Electric RTV
88.

A tube of the Dow Corning sealant was obtained from the manufacturer, and cured samples
of various thicknesses were prepared. IR transmission spectra of the samples were measured
at Eastern Analytical Laboratories (N. Billerica, MA). The spectrum from a 240 um thick sheet
was used to estimate the thicknesses of thinner samples using Beer's law. The infrared
spectrum from approximately 15 pm thick sample is shown in Figure 37 where it is compared-
to a SPIRIT 1 anomalous spectrum. The main component of this sealant is polydimethyl-
siloxane and this was confirmed by its spectrum which is in excellent agreement with various
similiar preparations published in the literature, such as the spectrum of silicone grease found
on p. 142 of Reference 27. Based on this evidence the silicone sealant used in the Castor
booster was ruled out as a possible source of the SPIRIT 1 anomalous data.

9.5.3 Payload Contamination

Considerable attention was paid to the issues of contamination control during the design
and fabrication of the SPIRIT 1 payload. Several payload systems were specifically designed
or modified to help minimize contamination.

The skin of the payload was nickel-plated aluminum. The nickel plating was added tc give
the payload a smooth, non-porous surface, to reduce surface offgassing of atmospheric gases
during the flight. The skins were then polished to a surface smoothness of better than 2
microns {rms), producing a surface with a mirror finish. The polishing produced a surface
which was nominally very smooth and exceptionally easy to clean.

The payload was vented during ascent, but was sealed while collecting IR data. The payload
vent system (PVS) was an area of concern with regard to both cleanliness and reliability. The
payload was vented through a manifold into four symmetrically placed vent holes on the skin
of the payload. The vent holes are connected to the manifold with a semi-flexible plastic
tubing. This was a double-wall tubing, with an inert inner lining, and an outer sleeve of
flexible plastic. This assured that the interior of the tubing would riot outgas during flight.
The system valves were modified to assure that they would be open during ascent, and would
close before measurements began. The system was designed to evacuate the interior of the
payload to less than 0.5 psia in less than 40 seconds.

To protect the clean payload on the launch pad, a "cleanshell" was designed and
constructed. This was a double-walled cylindrical ABS plastic shell which enclosed the
payload. The shell kept the exterior surface of the payload clean and dry, and also provided
thermal insulation for the payload during the Alaskan winter. Heated air was blown through

27 Hummel, D.O. (1966) Infrared Spectra of Polymers in the Medium and Long Wavelength
Regtons, Interacience Publishers, New York, p. 70.
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Figure 37. Spectrum of Dow Corning 90-006-2 Silicone
Sealant (Solid Curve] Compared With the SPIRIT 1 Anomalous
Ratio Spectrum (Dotted Curve).
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the space between the inner and outer walls of the shell, to warm the payload without
contaminating the payload skin. Dry nitrogen gas was flushed through the interior of the
payload. and between the skin of the payload and the internal surface of the cleanshell. This
was Intended to degas the payload while on the launcher, and to reduce the contaminant levels
prior to launch. The cleanshell was constructed in two semi-cylindrical halves.
Approximately one minute before launch, the two halves of the shell were pulled away from
the payload. This allowed for an unencumbered launch, with a minimum exposure time to the
environment around the pad. The final cleaning of the payload and the cleanshell, as well as
the mounting of the cleanshell to the payload, were all performed in a clean room under class
100 conditions.

The ACS system received special attention as a possible source of contamination.
Attention was focused on three main areas of concern: ’

1) the quality of the gas supplied by the manufacturer,
2) the outgassing levels of the materials which contacted the gas, and
3) the methods used to clean the ACS hardware.

High-priority, research-grade nitrogen was used as the ACS gas. The ACS system was filled
using 10-micron particulate filters to eliminate particle contamination in the gas.

Most of the ACS hardware was made of stainless steel. The system was cleaned at the
component level using ethyl alcohol and freon to eliminate particulate and chemical
contamination. All parts were then subjected to a vacuum bakeout (8 hours at 125°F., 0.02
psia) to eliminate solvent residue prior to final ACS assembly. The system was reassembled
under clean conditions and all outlets were capped with inert plugs to prevent recontam-
ination of the system. From ACS reassembly until payload integration in Alaska, the system
contained only pure nitrogen under pressure. The internal parts of regulators and bypass
valves that were not compatible with the solvent cleaning procedures described above were
still baked out along with the other systern hardware. Finally, the ACS was purged during the
rocket's ascent, prior to the start of the infrared measurements.

The only source of silicones in the payload section (excluding the sensor, which will be
discussed in the next section) have been traced to the internal seals of several pressure
regulators and bypass valves used in the ACS system that were lubricated with Dow Corning
silicone grease. This grease is in all probability a polydimethyl-siloxane compound and thus
is not the source of the silicone spectrum observed in the SPIRIT I flight data.
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9.5.4 Main Sensor Internal Contamination

Special care was taken to exclude silicones from the SPIRIT 1 interferometer sensor.
Evacuation of the sensor was accomplished using a turbo-molecular pump which was backed
up by a roughing pump containing only hydrocarbon-based oil. O-ring seals were lubricated
using only non-silicone-based grease and all internal (to the sensor) motor bearings were run
without any lubrication. It is conceivable, however, that silicone contamination of the main
sensor occurred during engineering testing or calibration. The instrument was evacuated and
maintained at cryogenic temperatures for many months while conducting these activities.
During this period the sensor was mated to calibration equipment and a helium leak detector,
either of which may have become contaminated with silicone oil from diffusion pumps used to
evacuate this equipment. Silicone diffusion pump oils are branched low-molecular-weight
polymethylphenyl-siloxanes.?82° The particular oil used in the diffusion pumps incorporated
into the equipment mated to the SPIRIT 1 was Dow Corning 704, the spectrum of which is
shown in Figure 38. As has been stated previously, this spectrum gives a close match to the
SPIRIT 1 anomalous spectrum (see Figure 36). The constitution of branched methyl-
phenylsilicone oils is shown below:

Ce Hs

I
C Si—0| —Si— 0| —Si(C M[T] M Branched methyl-
( Ha)s | ( H3)3 MJ phenylsilicone oils

o

|

Si

|

_ (CH3)3 Jn

After considerablly more effort, a second source of silicones internal to the SPIRIT 1
sensor was located. It has been determined that the flat, black, high-emissivity coating (3M
Brand ECP-2200), used to paint the interior parts of the SPIRIT I telescope baffle contained 5-
10 percent of a silicone resin. This resin has been identified as Dow Corning 808 which is a
methylphenylsilicone. A sample of this paint resin was obtained from the manufacturer and
its absorption spectrum was measured and compared to the SPIRIT anomalous spectrum (see
Figure 38). This produced a more satisfactory match to the flight data than did the

28 Noll, W. (1968) Chemistry and Technology of Silicones, Academic Press, New York,
p. 409 & 670.

29 Meals, R.N., and Lewis, F.M. (1959) Slicones, Reinhold Publ., p. 88.
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comparison with the DC-704 pump ol]l spectrum. This paint is widely accepted as being a low-
outgassing coating which significantly exceeds NASA's outgassing specifications when
properly cured according to the manufacturer's recommendations. This coating was applied to
the SPIRIT 1 telescope and was cured following the manufacturer's specifications |4 hours at
400°F). It seemed conceivable, however, that when exposed to a hard vacuum over an extended
period of ime (many months), as was the case in the SPIRIT 1 experiment, that enough
material might have condensed on the colder surfaces of the telescope to have caused the
effects observed in the data. The close match of the two spectra and the proximity of these
painted surfaces to the telescope’s primary mirror made the baffle coating the prime candidate
to explain the anomalous features in the SPIRIT 1 data.

Next. a sample of the black paint was obtainied from the manufacturer (3M) and the
reflection spectrum was measured over the 500-2000 cm™! spectral range. A comparison of this
reflection data to the SPIRIT flight data produced even better agreement than had the
comparison to the paint resin (see Figure 39). This convinced us that the black paint was
responsible for producing the anomalous spectral features in the SPIRIT 1 data. However, the
reflection
spectrum of the paint showed a close resemblance to the absorption spectrum of the DC-808
resin and did not look much like the expected reflection spectrum. It appeared evident that the
paint was not sufficiently opaque over much of the 500-2000 cm™! spectral region.

9.6 Spectral Properties of ECP-2200 Black Paint

9.6.1 General Discussion

To better understand the implications of the initial reflection measurements on the ECP-
2200 paint, we began a study to measure the high-resolution properties of this coating over the
full wavelength region of interest for SPIRIT 1 data analysis,3°

9.6.2 Measurement Technique

A Bio-Rad {Digilab) Model FTS-40 Fourier Transform Interferometer at the Unitversity of
Rhode Island was fitted with a Foxboro specular reflection attachment to measure both the
specular and diffuse reflectance of the selected paint samples. The reflection attachment was
modified various times to accommodate the wide range of incident and outnut angles required
by this investigation.

30 Brown, C.W., and Smith. D.R. (1990) High-resolution spectral reflection measurem=nts on
selected optical-black coatings in the 5-20 um region, SPIE Proc.. Stray Radiation in Optical
Systems, 1331:210.
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Individual spectra were 1 sec scans that covered the spectral range from 4400 - 500 cm!
(2.3 - 20 pm) at a nominal resolution of 4 cm™!. All spectra shown are the result of co-adding a
minimum of 64 spectral scans for the specular reflection cases and at least 256 scans for the
diffuse scatter data. Specular reflection measurements were made for incident angles of 10. 55,
65 and 80°. Diffuse scatter was measured for incident angles of 15°, 25, 55, 65 and 80° and
with collection angles of 10, 65 and 80°. However, not all combinations of angles were
measured for all samples.

9.6.3 Sample Description and Preparation

Five samples of 3M ECP-2200 black paint were prepared for us by SSG Inc., Waltham, MA.
These five samples are described in Table 11. ECP-2200 paint was considered to be a flat black
coating that diffusely scattered the majority of the radiation not absorbed in the material. All
samples were prepared on 60-61 aluminum and were approximately 1 x 1 x 0.122 in. Prior to
painting, the plates were cleaned with acetone and alcohol. The surface of sample No. 4 was
polished to increase the back surface specular reflection while sample No. 5 was roughened
with 320 grit paper until it looked coarse to the eye. The other samples were left untouched.
No primer coat was used for these samples as none is required. Next the paint was mixed
thoroughly and sprayed on. A second coat was applied to sample No. 2 after the first coat had
dried overnight (overnight cures were approximately 16 hours). This process was repeated for
the third coat which was applied to sample No. 3. The thickness of each coat was estimated to
be 0.0010 in.

Table 11. Paint Sample Descriptions

Sample No. 1 - Single coat of 3M ECP-2200 as applied to Spirit 1
Sample No. 2 - Two coats of 3M ECP-2200
Sample No. 3 - Three coats of 3M ECP-2200

Sample No. 4 - Single coat of ECP-2200 on polished surface

Sample No. 5 - Single coat of ECP-2200 on roughened surface
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9.6.4 Discussion of Results

The results of both the specular reflection and diffuse scatter measurements for the 3M
paint samples were somewhat surprising. The spectra of the specular reflectance for incident
angles of 10 and 55° exhibit a considerable amount of absorption structure, loocking much
more like transmission or absorption spectra than reflection spectra. These spectra for a
single coat sample (No. 1) are shown in Figure 40. The spectra of the diffuse scatter from these
samples are all quite similar to the 10° specular case shown in Figure 40, although smaller by
approximately an order of magnitude. These spectra exhibit the same series of absorption
features present in the 10° specular reflection data. A typical diffuse scatter spectrum for a
single coat 3M sample is shown in Figure 41. Note the close similarity of this spectrum to that
shown in figure 40. Nearly all of the absorption bands present in these spectra can be
correlated with absorption bands exhibited by the silicone binder (Dow-Comning 808) which is
a primary ingredient of the ECP-2200 paint. The absorption spectrum of this silicone resin
was shown in Figure 39. The presence of these absorption features in the reflection spectra of
the 3M samples is a clear indication that these data are dominated by back surface rather
than front surface effects. Only a small fraction of the energy incident on these samples was
reflected or scattered at the front surface, the remainder being transmitted into the sample. At
small angles of incidence for single coat samples a large fraction of this transmitted radiation
remains unabsorbed and is specularly reflected from the aluminum substrate with relatively
high efficiency. Upon returning to the front surface most of this radiation is transmitted to
re-enforce the specular beam with a small fraction {small compared to the specular component
but large compared to the front surface scatter) being forward scattered to increase the diffuse
component. The fraction of the energy in the back surface reflected beam relative to the front
surface component is strongly dependent on wavelength, with some wavelengths (near strong
absorption bands) being heavily attenuated while others suffer much less (1/20) absorption.
The ratio of the back surface to front surface contributions is greatest for the thinnest samples
and the smallest angles of incidence, where the optical path lengths are at a minimum.
Clearly, the magnitude of the back surface component can be affected by the thickness of the
paint as well as by the condition of the aluminum substrate. Increasing the thickness by
applying multiple coats will increase the absorption in the material and thereby reduce the
back surface component. This effect is illustrated in Figure 42 where the specular reflection at
10° incidence for single coat (sample No. 1) and double coat (sample No. 2) samples are
compared. The lower curve in this figure shows the ratio of the upper two curves, indicating a
reduction of approxmately a factor of 2. A comparable reduction or increase in reflection can
also be achieved by alteration of the surface condition of the substrate prior to painting. This
effect is shown in Figure 43 where the specular reflection at 10° angle of incidence is compared
for sample Nos. 4 (polished substrate} and 5 (roughened substrate]. As expected, polishing the
substrate significantly increased the back surface specular reflection and thus the total
specular reflection as well. Roughening the substrate surface, on the other hand. significantly
reduced the total specular reflection by increasing the amount of transmitted energy scattered
at the back surface, thereby reducing the back surface specular component. The lower curve in




Figure 43 gives the ratio of these two samples which shows a difference factor of between 3 and
4. As can be seen from Figure 40 this transparency or back-surface reflection effect is
considerably reduced at 55° angle of incidence and, as shown in Figure 44, is totally absent for
an incident angle of 80°.

Table 12. Band Center Frequencies (cm™!)

+ 5cm™!
SPIRIT 1 DC-808 3M
OBSERVED PAINT RESIN ECP-2200
ABSORPTION REFLECTION
W 1960 + 10 - M 1967
M 1890 + 10 - S 1880
M 1795 + 10 - M 1796
- - M 1684
- ! - UR 1614
M 1595 + 10 W 1596 S 1595
- - W 1522
W 1490 + 10 - W 1489
S 1430 M 1434 S 1431
S 1265 S 1263 S 1266
UR 1192 - S 1186
S 1157 - S 1157
UR 1130 S 1136 UR 1129
- S 1088 -
S 1045 S 1032 W 1044
W 1000 W 1000 -
S 850 M 845 S 854
S 819 . S805 S 818
- w741 -
S 726 w719 M 726
S 703 S 699 S 704
M 572 N.D. S 565
S 522 N.D. S 534

S = Strong, M = Medium, W = Weak, UR = Unresolved
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The results of the diffuse reflection measurements on the 3M samples are much more
difficult to interpret than those for specular reflection. As mentioned earlier, these data are
also dominated by absorption rather than front-surface reflection effects. The diffuse
reflection spectra from 2000 - 500 cm™! for a number of different combinations of incident
and collection angles are shown in Figures 45 and 46 for sample No. 1. These spectra are all
similar in overall shape and exhibit a strong wavelength dependence due to the absorption
properties of the paint. As previously noted these spectra also resemble the specular case for
10° incidence (Figure 40) with an attenuation factor of only about 5 - 8. In common with the
specular reflection data, the diffuse reflection also varies by more than on order of magnitude
with wavelength, reaching a maximum of 1.6 percent at 4.7 ym (2135 cm™!) and minima of
around 0.05 percent at several wavelengths beyond 12 um. In general the diffuse reflection was
10 - 50 percent lower for small incident / large collection angle combinations as compared to
large incident / small collection angle combinations, with the larger differences occurring in
the shorter wavelength regions. As expected, the thicker samples (multiple coats) exhibited
lower diffuse reflection owing to the increased absorption of the dominant back-surface-
reflected rays. A comparison of the diffuse reflection for one-, two-, and three-coat samples is
shown in Figure 47 for the (65°, 10°) combination. Also as expected, polishing the back surface
prior to painting (sample No. 4) resulted in a significant decrease {25 - 50 percent) in the
diffuse reflection, because appreciably more of the energy leaving the back surface was directed
into the specular direction. On average, slightly larger decreases were observed for large
incident/small collection angle combinations than for the reverse cases. The diffuse reflec-
tion of sample No. 4 is compared with that of sample Nos. 1 and 5 for a typical angular com-
bination in Figure 48. Unexpectedly, the diffuse reflection for sample No. 5 (roughened back
surface) also shows a decrease (10 - 30 percent) relative to sample No. 1 though not as large as
that for sample No. 4. At present we do not have an adequate explanation for this result.

Whereas the specular reflection results can be explained in simple terms of front- and
back-surface reflected components, the diffuse-scatter data appears to be more complicated. As
ifllustrated in Figure 49 there are at least three front-surface-scattered components and one
back-surface-scattered component (S3) that can contribute to the total scatter observed in any
given direction. A fraction of the incident energy (I) is reflectively scattered from the front
surface (S1) but some is also scattered into the sample where it can then reflect off of the back
surface (S4). Another part of the incident beam (I) is transmitted into the sample and
specularly reflected at the back surface. A fraction of this reflected radiation is then scattered
upon exiting the front surface (S2). All of these scattered components, with the exception of
the front-surface reflective scatter, are affected by the paint thickness (that is, the number of
roats) and by the surface condition of the sample substrate. It is difficult to estimate the
relative magnitudes of these various components for the different thicknesses and back
surface conditions, in part because the back-surface-reflected and-scattered components are
oppositely affected by changes in surface condition. Further complicating matters is the
possibility of contributions from radiation scattered inside the sample, especially at the
interfaces between the separate coats of the multi-layer samples.
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9.7 Telescope Leakage Summary

The leakage background observed by the SPIRIT 1 sensor exhibited a large number of
spectral features (absorption bands) causing the stray light background to vary by more than
an order of magnitude with wavelength. The leakage also varied with detector location, with
off-axis detectors observing 2.5 to 3.5 times more leakage than the central (on-axis) detector.
Despite these effects the nominal baseline leakage observed for the primary detector was less
than 10712 W/cm? sr pm or about a factor of 10 lower than previous earthlimb sensors. The
minimum leakage radiance was approximately 7 x 10712 W/cm? sr ym and occurred in the
center of a strong but narrow absorption band at 1265 cm™!. In addition, sporadically during
the flight the mean stray light level increased by an order of magnitude or more, the apparent
result of occasional particles transiting the telescope baffle. However, this had no apparent
effect on the spectral shape of the leakage spectrum. A high resolution (1 cm™!) spectrum of
one such case (scan 147) is shown in the upper curve of Figure 50. Due to the increased signal
level of this scan the spectrum exhibits excellent S/N ratio over most of the 1700 - 500 cm!
spectral range. This spectrum ‘s characteristic of nearly all of the off-axis leakage dominated
cases measured by the SP'RIT 1 sensor. It shows a large peak (maximum) near 900 cm™! and a
sharp minimum at 1265 .r>"! among nunierous other features. To determine the source of this
anomalous background this spect.uin was divided by a calculated reference spectrum in an
attempt to remove the source function from the data. The reference spectrum was calculated
using the MODTRAN atmospheric code for sub-arctic winter conditions with an earth
temperature of 250 K and a zenith angle of 135°. The result of this calculation is shown in the
middle curve of Figure 50. This spectrum simulates the energy upwelling from the earth and
lower atmosphere usually, referred to as "earthshine”, which is the primary source of off-axis
leakage. The lower curve in Figure 50 is the ratio of SPIRIT scan 147 to this earthshine
spectrum and represents a reasonable estimate of a SPIRIT leakage spectrum with the source
function removed. The original and ratio spectra were both cut off at around 1700 cm™! due to
poor S/N in the higher wavenumber region. To improve the S/N in the 2000 - 1500 cm™!
region a number of SPIRIT scans were co-added. The resulting spectrum was then smoothed
using a 25 point filter and finally divided by the source spectrum. The resulting ratio
spectrum is shown as the middle curve in Figure 51 where it is compared to the scan 147 ratio
spectrum, which was also shown in Figure 50. The lower curve in Figure 51 shows a typical
diffuse scatter spectrum for the 3M ECP-2200 black paint. The similarity of these three
spectra is unmistakable. This comparison is convincing evidence that SPIRIT 1 off-axis
leakage was dominated by baffle rather than mirror scatter. This result was unexpected based
on both pre- and post-flight stray light analyses of the SPIRIT 1 telescope system, which
predicted primary-mirror-scatter-imited performance.

It has been shown that the prominent s -ctral features in the anomalous stray light
spectrum observed by the SPIRIT 1 earthlimb sensor are the result of radiation scattered from
the SPIRIT telescope bafile, which was painted with a single coat of 3M-ECP-2200 black paint.
The precise mechanism by which this scattered radiation reaches the detectors is not yet fully
understood and is the subject of a continuing investigation.
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Appendix B

Tabulation of Payload Trajectory
and Horizon Sensor Tangent Heights
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TANHT-1
TANHT-2
TANHT-3
TANHT-4
TANHT-5

[ |

Explanation of Listed Parameters

Time after launch - seconds
Payload altitude - kilometers
Payload geographic latitude - degrees

Payload geographic longitude - degrees
Payload heading relative to true north - degrees

Angle between nadir and optical centerline (LOS) - deg
LOS omicron ~ degrees

Detector #2 tangent point latitude - degrees

Detector #2 tangent point longitude - degrees

Tangent height for detector #1 - kilometers

Tangent height for detector #2 ~ kilometers

Tangent height for detector #3 - kilometers

Tangent height for detector #4 ~ kilometers

Tangent height for detector #5 - kilometers
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Appendix C

Sample of Raw Interferograms

137




YOLYS D-$

SPIRIT RAV INTERFEROGRAM SCAN 2080
C.M.T. 09:44102.394 TAL 97.524 FILTER 3
10.000 T T T T T T T T
$.000 -
0.000 N
-5.000 L 1 1 1 i 1 1 i ] ]
0.000 T T T T T T T — Y T
-2.000f -
-4.000 -
-6. 020l 1 1 ) 1 1 1 1 1 A 1
-6.0030 T T T T T T T T T T
-6.750H -
-7.500 1 1 L 1 i 1 i 1 )
-8.059 T T T T T T T — T T
-8.075H -
-8.100 1 L ) 1 1 1 1
-8.122 T T Y Y T T T — T T
-8.130H —
-8.137 1 1 1 1 1 1 L 1 1 1
() 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

DATA POINT NO.

139




spI1R1Y RAM IUTFIFFIOGRAH SCAN 0081
G.M.T. 09:44:03.874 TAL 98.804 FILTER O
0.000 1 T T Y T 7 T T T ‘

vyoLts 0O-)

voLYs D-2

yoL1s ©0-3

voLtS 0-4

yoLts DO-S

1 i 1 1. 1 1 L 1 i [\

200 400 600 800 1000 1200 1400 1600 1800 2000 2200
DATA POINT NO.

140




VOLYS D-4 YOLTS D-3 VOLTIS 0-2 YOLTS O-~1

vOLYS ©O-S

RAW INTERFEROGRAM

SPIRIT SCAN 009%

TAL 100.063 FILTER

PIR
G.M.T. 09+44:04.933

~4.030 T T T Y T ) EEE—— T T T

~5.009 .
-6.000 1 1 1 ] ] 1 1 A
-8.500 T T L— T T
-7.000 .
~7.500 TTVVVEVIVVVWWWWWWYWWY MMM WA ]

-
-8.118% -
-8.120 \ I 1 1 L 1 1 1 MM AL
-8.125 T T T T T T T T T T

-8.130

-8.138 i i 1 1 L 1 ] i 1 i
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
DATA POINT NO.

141




VOLTS D-4 YoL's 0-3 VOLTS D-2 VOLTS D-1

yoL®™s D-S5

RAW INTERFERGGRAM

SCAN 0283

SPIRIT
C.M.T. 09+44:06.203 TAL 101.333 FILTER O
»
=7-430 T T T T T T T — T T
-7.600 -
-7.800}- -
-8.000 1 L 1 1 1 1 i 1 1 i
=7.900 | M T T T \ T ¥ T T
-7.950 | -
-8.000 1 1 R 1 1 1 L 1 ]

L 1 1

L

1

1

400

630

800

1000 1200 1490
DATA POINT NO.

142

1600

1800

2000

2200




SPIRITY RAW INTERFEROGRAM SCAN 0084
G.M.T. 09.44:07.483 TAL 122.613 EILTER O

v
o
[ 2]
—
-
[=]
>
o~
]
[«]
(7]
—
-
[~]
>

-8.025 1 ] ] ] ! Il 1 1 1 I
» 7-950 T T T T m T T T T
s |
© -7.975 -
-
o
>

-8.000! ] 1 ) 1 ] 1 1 1 ] 1
- 8-119 T T T T T T T T T T
]
@ -g.120 . -
w

voL?
'
®
R

-g.122l 1 1 ! 1 1 ! 1 L ] 1
» T T T T T
&
[
~—
= —
o
>
-8.122 ) ] 1 ] ] 1 1 1 A 1

200 400 600 800 1000 1200 1400 1600 1800 2000 2200
DATA POINT NO.

143




S D-}

YoL?

S D-2

VoLt

s D-3

YoL?7

VOLTS O-4

yoLYS D-S

SPIRIT RAW INTERFERIGRAM SCAN 0085

G.M.T. 09144:08.894 TAL 103.934 CILTER O
-6.750 1 Y T T =T T T T T
-7.000}. .

~7.963 T T T T T T T T T 5
-7.980 -
-8.000 1 I 1 1 1 1 1 3 L \
-8.120 T T T T T T T T T T
-8.121 | ‘~ i s ! j s o -
{
-8.122 1 \ ‘ ] R ) 0 1 ]
-8.117 1 ! ! 1 | | 1 i ) )
200 400 600  BOO 1000 1200 1400 1600  1BOO 2000, 2200

DATA POINT NO.

144




K T

SPIRLT RAW INTERFEROGRAM SCAN 0086
G.M.T. 09144110.074 TAL 105.204 FILTER O
.. "6.750 T T T T T T T T T
1
. _7.°°°MVVVWWV‘AAMVWMNVMWWWWMWM ]
(74
-
§ -7.250+ \ ]
-7.500 1 ] 1 ] ] L ] ) 1 ]
o 7-950 T T T T T T T T Y
a
v -8.090 -
-
o
>
-8.050
-7.950
i
o
» -7.975 4
-—
-
o
>
-8.000 ! 1 ! 1 1 1 ] ] ] L
- 8120 T T T T T T LI T T T
&
v -8.121 -
- |
o
>
. -8.122
. B-110 1 T T T T T T 7 T 1
. é LI BLLA S
:’_’ -8.112 -
P |
o
>
-8.114 i i | 1 i 1 1 | | 1 1

200 400 600 800 1000 1200 1400 1600 1800 2000 2200
DATA POINT NO.

145




VOLTS D-4 yoL’sS O©0-3 YoLTS D-2 YyoLTS DO-t

vOLYS DO-S

SPIRIT RAVW INTERFEROGRAM SCAN 0087 N

G.M.T. 09:44111.344 TAL 106.474 FILTER O
~7.200 T T 1 T T T T T T
-7.400 -
-7.609 1 L I 1 ] 1 1 I 1 1
-8.025 T T T T T T T T T T
-8.050W =
-8.075 1 \ 1 1 | ) 1 ) 1
-7.970 T = T T T T T T T Y
-7.980lk i
-7.990 1 ] 1 L 1 L 1 1 ) \
-8.120 Y T T T T T T T T | T

' ; IO T

'8-‘2‘ ' | ' i 1’ LR e d p _

‘T R i el Wil I } K JK! l g™ ’ ,]‘l]‘
-8.122 1 ] 1 ! ) 3 1 T 1 i
-8.102 Y — T T T T Y T T T
-8.105 .
-8.107 -
-8.110 ! 1 1 1 1 L 1 ' N ]

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

DATA POINT NO.

146




SPIR1Y RAW INTERFEROGRAN SCAN 0J88

VOLTS D-4 voL’s 0-3 YOLTS D-2 YOLTS D-1

YOLTS D-S

C-M.7. 09:44112.613 TAL 107.743 FILTER O
~7.309 T T T T T T T T T T
-7. 400 -
'7»500'— -9
-7.600 i ! L ] ] 1 3 o n 1
-8.060 T T | T T Y T T T ]
-8.980 -
~8.100 1 | 1 1 1 1 1 1 1 1
-7.960 T T T T T T T =T ¥ I
-7.970} -
~7.989[¢ -
-7.990 1 L L 1 1 1 1 1 1 1

1

i L

1

1

1

1

800

1000 1200
DATA POINT NO.

147

1400

1600

1800

2000

2200




VyOL'S D-4 yoLYS D-3 YOLTS D-2 YOLTS D-}

YoLYS D-S

SP
G.

IR17
M.T.

1
T

09:44013.873

RAW INTERFERCCGRANM

TAL 109.003

SCAN 0089
FILYER O

=7.400

-7.500k

~-7.600

-7.700

-8.089

-8.100

~-8.120

-7.965

-7.972

-7.980

-8.119

-8.120

-8.121

-8.122

-8.109

-8.102

1

1

1

1

1

-8.104
0

200

430

802

820

1090 1200
DATA POIN® N3.

148

1430

1600

1803

2030

2209




YOLTS D-4 YOLTS D-3 voL'S D0-2 YOLIS D-1

YyoLTS D-$

SPIRIT RAW INTERFEROGRAM SCAN 0090

G.M.T. 09144115.153 TAL 110.283 FILTER O
=7.500 T T T T T T a| Y T )
-7.690| 4
-7.700
-8.080 T T T T T T T T T T
-8.100 -
-8.125 1 1 1 1 1 1 1 1 1 1
-7.957 T T 7 T — T T T T T
-7.965} -
=7.972 -
-7.980 1 | | 1 1 1 1 1 1 1
-8-119 T T T T T T T T T 1l

‘1

-8.120H | el R BRI R 7

, B
-8.121 1 1 ] 1 1 1 ] 1 1 1
-8.102
'.-103 e
-8.104 1 1 ] 1 1 ! 1 1 1 1

) 209 <00 699 800 1009 1209 1409 1693 1890 2990 2200

DATA POINT NO.

149



YOL'YS D-4 yoLTsS D-3 YOLTS D-2 vOLTS D-1

voLTS D-S

SPIRIT
G.M.T. 09144:16.413

RAW INTERFEROGRAM SCAN 0091

TAL 111.543 FILTER O
°7-400 T T T T T T T T
-7.500}- AW =
-7.690 ~
-7.700 1 ! L 1 L 1 ] !
~8.025 T T T I L ¥ I |
-8.050}- WMWNVWWN"W"‘M -
'°'°75WW\MWNWV\NWMM i
-8.100 i 1 1 ] ) ! n 1
~7.940 T — T T T T T T
-7.950F —
-7.960 .
-7.970 1 ] ] ] 1 1 1 ]
-8.119 T T T T T T T T
-8.100 T L T T T T T T
-8.102} -
-8.10¢ ] 1 1 1 1 ) 1 i
) 209 499 699 800 1099 1209 1409 1699 1899
DATA POIN" NO. .

150




VOLTS D4 VOLTS D-3 VOLTS D-2 VOLTS D-1

VOLTS D-§

SPIRIT <=AN 0100
G.M.T. 09:44:59:595 RAW INTERFEROGRAM TAL 154:726 FLYERO
-7.500 ¥ \J v L v T L] LE
-7.600 k. ;
-7.700 i n A A A i B el
'7.980 L] r T R T T T ¥
-8.000} ‘ . —~— |
_A\-ﬁnﬂ"-
-8.020 A A i i 3 1 2 I
'7-850 L) v T ¥ T L4 \J L
-7.867 4
-7.875 4
-7.”2 A n i A 2 i A e
'8.1 02 T T L T T T Y T
'8.1 55 T LS Ll T L T 2 4 T
-a.1ssrﬂw I ]
-8.157F 4
_8.1 58 I A i " A A i A
0 4000 6000 8000 10000 12000 14000 16000 18000

DATA POINT NO.

151




YOLTS D-1

§ D0-2

yoLts 0-3 voL?s

VOLTS D-4

yoLYs 0-5

SPIRIT RAW INTERFEROGRAM SCAN 0101

G.M.T. 09445:09.160 TAL 164.290 FILTER O
~7.800 T | T T T ~T T T T T T T
-8.002 1 ] 1 1 1 ] 1 1 1 1 i
-8.009 -7 T T T T T T T T T
-8.050p -
-9.100 Y 1 1 1 1 L 1 L 1 1 1

L

1

1 I -l |

L 1 1 |

500

1000

1500

2000

2500 3000 3300
DATA POINT NO.

152

4000 4500 S000 5500 6000




VOLTS D-3 VOLTS D-2 VOLTS D-1

VOLTS D4

VOLTS D-5

-7.600

-7.800

-8.000

-7.950

-8.000

-8.050

-7.800

-7.820
-7.840
-7.850

SPIRIT

G.M.T. 09:47:09:072

RAW INTERFEROGRAM

TAL 284202

SCAN 0155
FILTER 1

Ll

n

2000

4000

A i LY
6000 8000 10000
DATA POINT NO.

153

12000

14000

16000

18000




YOLTS D-1

voLTS D-2

YOLTS D-4

YOLTS D-S

YOLYS D-3

SPIRIT

PIR
M.T. 09:147:18.647

RAW INTERFEROGRAM

TAL 293.777

SCAN

[-13

FILTER 1

-7.800

—

-7.900

-8.030

1

~8.040

-8.050

1

-7.840

-8.086

-8.086K

-8.087

-8.222

-8.224

A

i 1 i

1 N

-8.226
0

250

500

750

1000 1259 1500
DATA POINT NO.

154

1750 2000

22590

2509




VOLTS D-4 vOLTS D-3 vOLTS D-2 VOLTS D-1

VOLYS D-S

SPIRIT RAW INTERFEROGCRAM SCAN 0158
G.M.T. 09:47121.279 TAL 296.409 FILTER 1
-1.700 T T T T T T T T T T
-7.800} —
A B i
-7.900} ~
-8.000 ] 1 1 1 ] 1 1 1 1 L
-8.030 T T T T T T T T T T
[y "‘v‘:"‘%wv Aa s P - At it 7
-8.050}- ~
-8.060 L 1 1 1 i 1 ] 1 A
-7.830
-7.837 4
-7.845
-8.086
-8.086 _
-8.087 ] 1 1 L 1 ] L 1 1 1
~8.214 T T T T T T T T T 1
-8.216p -
-8.218 L 1 1 i 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

DATA POINT NO.

155




VOLTS D-4 VOLTS D-3 VOLTS D-2 oLTs D-1

voL's 0-$S

RAW INTERFEROGRAM SCAN 9225
TAL 415.102

FILTER ©

0.000 1 L ! L 1 1 1 1 i 1
0.009 3 T T T T T T T T

-2. 990} | .
-4.000 -
-8.900 1 n 1 1 l ] 1 1 i 1

-5.250 T — T T T T T — T T

-8.020 T T T T T T T T T |

-8.040 -
-8.060 i
-8. 080! 1 1 1 1 ] ] 1 1 ] 1

-8.032 —T T T T — T T T T

-8.040 -
-8.047 i i 1 1 1 L ] 1 ] ol

o 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

DATA POINT NO.

156




VOLTS 0-4 VOLTS D-3 YOLTS D-2 YOoLTS D-1

YoLts ©O-S

SPIRIT
C.M.7. 09:49421.283

RAW INTERFEROGRAM

TAL 416.413

SCAN 0226

FILTE

RO

10.500

$.750

9.000

"'"TIHIIllll"lmmlnn..

8.250

$5.3%0

~5.200

-5.250

-6.000

-6.750

-

-7.500

-8.02S

-8.050F

-8.075

-8.025

-8.032

1

L

1

-8.040
0

800

1000 1200
DATA POINT NO.

157

1400

1600

1800

2000

2200




YOLTIS D=4 YoLTS D-3 vOLlS D-2 YoL1sS D=1

YoLYs 0-3

gf;?}! 09:+49122.584 RAV INTERFEROGRAN TAL 417.714 sc?§Lyg:2£
10.0090, T T T T— T - r T T -

0.000}~ CONSTANT ARRAY ALL VALUES « 1.000E-0} -
~-10.0 1 L 1 1 1 [ 1 1 1 1
$.000 T -T T T T — T T T ,

-8.050

L 1

| L

-8.078 1

-8.010

1 ] L] LB 1 L 1 ] L T
~8.020p ”M"MMNMW N
-8.030 A
1 1 L 1 1 1 1 A 1 L

~3.040
0

200 400 600 800

1000 1200
DATA POINT NO.

158

1400

1800 1800

2000

2200




YOLTS D-4 YOLTS D-3 voLtS 0-2 YOLIS -1

yoLTS D-S

SPIRIT RAY INTERFEROGRANM SCAN 0228

G.M.T., 09e49:123.804 TAL 418.014 FILYER O
10.000 T Y ™ T T - T T ) T

0.000]- CONSTANT ARRAY ALL VALUES =  1.000E<01 g
-10. 1 | 1 1 1 1 1 1 ! 1

Y -

1

=
1 L

1 L 1 1 1 i

1000 1200
DATA POINT NO.

1400 1600 1800

159




YOLYS D-4 JOLTS D-3 YOLTS -2 YOLTS D-t

VOLTS DO-S

SRl 09149125.185 RAW INTERFEROGRAN TAL 420.315 R ]
10.000 T T T T T Y T T —
0.0001 CONSTANT ARRAY ALL VALUES =  1.000E+0 _

-10.00 1 ] ] ! \ 1 L \ f
10.000

5.000

0.000

-2.020

-4.000H

-6.000-

-7.875

-7.959

-8.025

-Z.975%

-8.000

A 1

A

1

1

-8.025-
]

600

800

1000 1200
DATA POINT NO.

160

1400

1600

1809

2000

2200




VOLIS D-4 VOLTS D-3 YOLTS D-2 VOLTS D-1

YOLTS D-$S

SPIR1T

G.M.T. 09¢49126.495

RAW INTERFEROGRAM

TAL 421.625

SCAN

0230

FILTER O

10.000

0.000

1.000E+01

-T

10.00

10.000

0.000

T

1.000E+01

-10.00

0.000

-2.000

~4.000

-6.000

-7.800

~7.875

~7.950

-8.02%

~7.950
~7.975

~8.000

T

1

!

L

-

~8.025
0

200

400

600

800

1000

DATA POINT NO.

161

1200

1400

1600

1800

2000

2200




VOLTS D-4 VOLTS D-3 voLts -2 vOLTS D-1

voLTS D-35

RAW INTERFEROGRAM

SPIRIT SCAN 0231
G.M.T. 09149127.796 TAL 422.92¢ FILTER ©
10.600 T T T Y Y Y T T T T
0.000l- CONSTANT ARRAY ALL VALUES =  1.000E+01 R
~10.00 L 1 L - 1 1 1 1 L L
10.000 T T . T T T T =T T T
0.000- CONSTANT ARRAY ALL VALUES =  1.000E+01 N
~10.00 1L ! i 1 ] 1 L 1 ] 1
2.000 =T T T — T y T m n ]
0.000}- -
-2.000| -
-4.000 1 ] n 1 ] 1 1 L 1 1
-7.800 -1 T - T -T— T T —T T T
-7.900 ' N
-8.000 ] 1 4 ' [ ] 1 1 |
-7 - 900 1T T T T T T T 1 T !
-7.950} o
-8.000 1 L 1 1 1 1 L 1 L |
0 200 400 600 800 1000 1200 1400 1600 1800 2000  220C

DATA POINT NO.

162




YOLYS D-S

Sf; }t 09149129.108 RAU INTERFEROGRAN TAL 424.236 c??LTilas
10000 L L T T T T T =T T -7
0.000)~ CONSTANT ARRAY ALL VALUES » 1.000E+0) d

-10. 4 1 1 L 1 1 1 1 ] i
10.000 T T T 1 -T T T - T T
0.000}- CONSTANT ARRAY ALL VALUES =~ 1.000E+01 -
-10.000— 1 i 1 | 1 1 1 1 1 |
$-000 7 7 7 T T T
L —— WMWWW

. | 1 1
200 400 600 800 1000 1200 1400 1800 1800
DATA POINT NO.

163




YOLTS D-4 yoLTS D-3 YOLTS D-2 YOLTS D=1

voLTS D-S

SPIRIT RAW INTERFEROGRAM SCAN 0234
G.M.T. 09:49131.738 TAL 426.868 FILTER 1
-3.7%0 T 1 T T T Y T T —T
y
M
-4.500 “‘ I ’:"; WW‘M -
"
-5.250 1 1 1 ! 1 ! L ] )
<78 T T T T T T T T T
950 -
7.425r -
-7.500% 1 1 1 ] 1 ] 1 1
7.650 T T T T T T =T Y T
-7.700}- .
-7.750 -
-7.800 I I 1 ] 1 1 L ) 1
-8.088 T T T T T T Y T T

- - |

1 1

1

1

1

i

200 400

600

1000 1200
DJATA POINT Nb.

164

1400

1600

1800

2000

2200




YOLTS D-4 YOLTS D-3 YOLTS D-2 VOLTS D-1

VOLTS D-S

sP

1R]

RAW INTERFEROGRAM

SCAN 0235

T
G.M.T. 09149:33.039 TAL 428.169 FILTER 1
-3.750 T T T T Y T Y T Y T
1y
. s iy
-4.500 iy Mmﬂ[;“ '.r.”' 1
il
-5.250 1 ! i ! N ] ] 1 1 \
-=7.350 T T T T T Y T T T T
-7.425 o~ i -
o |
~7.500( -
-7.575 1 i L 1 n L ) ! 1
-7.650 T T - T | B | T T |
-7.700 -
-7.750 -
-7.800 1 | 1 1 1 | 1 1 1 1
-8.989, T T T T T T T T T T
-8.999 -
-
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The 9- to 12-pm Atmospheric Ozone Emission
Observed in the SPIRIT 1 Experiment
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Spectra of ozone », emission in an auroral nighttime sky were obtained in the Spectral Infrared
Interferometric Telescope experiment. High-quality hot band spectra reveal spectral structure not
previously observable and provide a critical test of ozone radiance models. The limb radiance profile

is in good agreement with previous data below ~95 km, but above this it falls off more rapidly.

1. INTRODUCTION

The Spectral Infrared Interferometric Telescope (SPIRIT)
1 experiment, launched on April 8, 1986, from Poker Flat
Research Range, Alaska, was a rocket-borne probe designed
to measure long-wavelength infrared emissions from an 1BC
class HI aurora in the limb-viewing geometry. The primary
instrument was a cryogenically cooled. five-detector Mich-
elson interferometer mated to a high-off-axis-rejection tele-
scope. The spectra provide a comprehensive data base on
molecular emission features in the nighttime sky in the 500-
to 2000-cm™' (5- to 20-um) region. An overview of the
spectral data is given by Robertson et al. [1988], and a more
complete description of the SPIRIT 1 mission is given by D.
R. Smith et al. (SPIRIT 1 final flight report, manuscript in
preparation, 1990).

This pape: presents SPIRIT 1 data on the ozone vy bands
in the ~67- to 105-km tangent height range. Of particular
interest are the hot bands which appear at slightly longer
wavelengths with respect to the (0 0 1) band and which
constitute an important source of radiation in the 10- to
13-um region. The SPIRIT | data are among the best
obtained from atmospheric probes to date in this spectral
region. The results presented here include limb spectra, limb
radiances and volumetric emissions in vanous band passes,
and a derived nighttime ozone profile. Comparisons are
made with results from previous observations, in particular,
the Spectral Infrared Rocket Experiment (SPIRE) [Srair et
al., 1985, Green e! al., 1986] flown in 1977 in a quiet
atmosphere, as well as with model calculations.

2. OzoONE LiMB SPECTRA

2.1.  Description of Experiment

The SPIRIT | payload was launched on April 8, 1986,
from Poker Flat Research Range in Alaska at 0942:25 UT. At
that time an IBC class Il aurora was observed over the
SPIRIT 1 ground station at Fort Nelson, British Columbia.
some 1400 km to the east. The interferometer was a Mich-
elson flex-pivot design cooled by liquid helium. The mirror
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drive length was designed to produce both high-resolution
(~1 cm ™'} and medium-resolution (8-11 cm ™!, depending
on apodization) one-sided interferograms. The focal plane
contained an array of five arsenic-doped silicon detectors of
diffening sizes and sensitivities to cover a wide dynamic
range. In the “open-filter’” mode the detectors were sensi-
tive to radiation in the approximately 500- to 2000-cm ™' (5-
to 20-um) region. During selected portions of the flight,
band-pass filters were inserted to isolate narrower spectral
regions.

Tangent heights for each scan and detector were deter-
mined by analyzing data from a three-axis position gyro-
scope, an IR horizon sensor, and a 35-mm image-intensificd
celestial aspect (star-sensor) camera. The gyroscope, which
provided continuous relative pointing information through-
out the flight, was calibrated with data from the horizon
sensor. The resulting tangent heights from the gyroscope
were checked against selected celestial aspect data. Agree-
ment was found (o within =2 km (lo), although occasional
differences as large as § km were observed during the scans
taken with filter 1 (~780- to 1000-cm ™' band pass; see
section 2.2.2). These tangent heights were used for the initial
IR-data analysis. Subsequently. a second, independent set of
tangent heights was obtained from the horizon sensor; the
gyroscope only was used 10 correct for time-constant effects
in the horizon sensor. These new tangent heights, which are
used in the current analysis, agree with the celestial aspect
data to within *1 km (l10).

2.2. Spectra

The majonty of the spectral scans of the atmospheric limb
below ~105 km were taken near the end of the flight and are
all of medium spectral resolution. These scans are divided
into two groups, open-filter scans and filter 1 scans, as
discussed below.

2.2.1. Open-filter scans (scans 225-232). Open-filter
data covered a range of tangent heights between 77 and 105
km. The best data are from detectors 2, 3, and 4, since
defector 1, the most sensitive, was usually saturated and
detector 5 is less sensitive than the others. To minimize
leakage of strong radiation from CO; and O, into adjacent
window regions. the interferograms were processed using a
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Fig. 1. Ozone limb spectra from SPIRIT | with Kaiser-Bessel

apodization.

Kaiser-Bessel apodization window, whose response func-
tion has very small side lobes (no more than 103 of the
peak). The full width at half maximum (FWHM) resolution
for this function is 11 cm™'.

Three examples of open-filier spectra are depicted in
Figure 1 (scans 226, 229, and 232). They show the (0 0 1)-(0
0 0) O, band as a strong double-peaked feature centered at
1042 cm ~'. At higher wave numbers the weak (1 0 0)-(0 0 0)
band at 1103 cm ™' appears as a low, noisy shoulder. The
Avy = —1 hot bands, which arise from the O + O; + M
recombination reaction, appear as a tail in all but the bottom
curve (scan 226), which corresponds to a higher tangent
altitude.

2.2.2. Filter | scans (scans 234-247). A number of
scans were taken with band-pass filter 1, which transmits
radiation in the 10- to 13-um (~780- to 980-cm ') region and
effectively blocks strong radiation from the adjacemt CO,
bands and the O; (0 0 1) band. In these scans the best data
are from detectors |, 2, and 3. The interferograms were
processed using both Kaiser-Bessel and triangular apodiza-
tion; the latter yields improved resolution (8 cm ! FWHM).

For reasons indicated below, the filter 1 scans are divided
nto two groups, group A and group B. Group A, consisting
of scans 234-238, covers tangent heights of approximately
67-82 km. Around the end of scan 238 a rapid pointing
maneuver raised the sensors’ viewing angle. The subsequent
scans, 239-247, form group B, which covers similar tangent
heights (approximately 70-83 km) but with a different view-
ing geometry. For the group B scans the payload altitude had
dropped to nearly the tangent height, making these scans
closer to half-limb views than to the full-limb views of group
A.
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A representative filter | spectrum obtained by detector 1 is
shown in Figure 1 (scan 234). Improved resolution is ob-
tained with the triangular apodization window, as shown in
the two scans in Figure 2. These scans, taken at different
tangent heights, illustrate the high degree of reproducibility
of the hot band spectrum as well as the greatly improved
signal-to-noise ratio compared to the open filter data in the
same region. This demonstrates the value of using band-pass
filters in interferometers to reduce the photon noise from
strong radiation outside of the spectral region of interest.
Below ~830 cm ™' the spectrum includes a contribution,
probably from CO,, which is more pronounced at lower
altitudes relative to the ozone hot bands.

2.3,

During the portion of the flight considered here the instru-
ment was pointed toward the auroral arc located over Fort
Nelson; the line of sight passed through the aurora at a point
beyond and at least 30 km above the tangent point. Auroral
intensities were measured by a 391.4-nm photometer
coaligned with detector 2 and ranged from 23 to 104 kR in the
open-filter scans, from 43 to 210 kR in the group A scans,
and from 95 to 149 kR in the group B scans.

Since in these limb scans the bright ozone emissions from
the atmospheric column below and in front of the auroral arc
were in view, the only localized auroral effect which might
be discernible would be some large enhancement due to an
additional major ozone formation mechanism. No such
enhancement is observed; the emissions are, if anything,
weaker than usual, as will be discussed. It is reasonable to
conclude that the ozone emission observed in SPIRIT 1 is
representative of the atmosphere outside of the arc.

Auroral Conditions
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Fig. 2. Ozone hot-band spectra with triangular apodization (detec-
tor 1).




ADLER-GOLDEN ET AL.: THE 9- TO 12-uM ATMOSPHERIC OZONE EMISSION

2.4,

Figure 3 shows a complete ozone spectrum at 82 km,
which was generated by splicing together open-filter and
filter ) scans. Also shown is a nighttime spectrum from the
SPIRE experiment taken at a similar altitude. The SPIRE
instrument utilized a circular variable filter with ~20 cm ™'
resolution at these wavelengths. This lower resolution is
insufficient to resolve the P and R branches of the O, bands.
However, these spectra agree well in overall shape.

Figure 4 compares the 82-km spectrum with a full radiance
model calculation using ozone kinetic and spectroscopic
parameters and standard density and temperature profiles
from the Air Force Geophysics Laboratory high-altitude
infrared radiance model (HAIRM) code, which is described
in detail by Degges and Smith [1977]. In the (0 0 1) band the
agreement is excellent in terms of shape and within a factor
of ~2 in intensity which, as will be discussed in section 3.1,
implies a similar correspondence between the model and
actual ozone column densities. The hot band spectra show
only fair agreement in shape, and ncar 800 cm ~' the model
spectrum is too weak by a factor of approximately 4.
Refinements in the model's kinetic and spectroscopic param-
cters for the hot bands will considerably improve the agree-
ment with the SPIRIT | data.

Comparison With Previous Data and Models

3. LiMB RADIANCES AND VOLUMETRIC EMISSIONS

Limb radiances were generated by integrating the spectra
over a set of wavelength band passes. The (0 0 1) band pass
was chosen as 9.2-10.0 um (10001087 cm ~'); the hot bands
were divided into four band passes 0.5 um wide centered at
10.5 pm (952 em™"), 11.0 um (909 cm™'), 11.5 um (870
em™'), and 12.0 pum (833 cm '),

For several of these band passes a linear least squares
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fitting/inversion procedure was implemented which gener-
ated a volumetric emission function (the product of a poly-
nomial and a Gaussian). The column integrals of this func-
tion give the best fit to the limb radiances, weighted by the
reciprocal of the radiance; the o of the fit is expressed as a
radiance proportion or percentage. These calculations con-
firmed that except in the group B scans, virtually the full
limb was viewed. The results are discussed below and
compared with SPIRE data (also full-limb views) and model
calculations.

3.1. (001)Band

The (0 0 1) band limb radiance data from SPIRIT | are
shown in Figure S, along with full-limb radiance profiles from
two different least squares fits (smooth curves). The data
were obtained from the open-filter scans. The volumetric
emission functions associated with each of these fits is
shown in Figure 6. A comparison of these functions gives a
measure of the precision in the derived volumetric emission.
It is seen that the volumetric emission can be derived with
reasonable precision above 80 km. As will be discussed in
section 4, the volumetric emission is essentially proportional
1o the ozone density in this altitude region.

Figure 7 compares the third-degree limb radiance fit with
nighttime and terminator data from the SPIRE experiment.
We have corrected the SPIRE data for off-axis radiation
leakage effects by background subtraction. Below ~95 km
the agreement is excellent, well within the calibration accu-
racy of the SPIRIT 1 instrument (approximately =+ 40%).

At higher altitudes the ozone radiance measured in
SPIRIT 1 is considerably smaller than that measured in
SPIRE. The difference is roughly equivalent to a downward
shift of ~2 km, which is within the combined tangent height
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uncertainties in these two experiments. On the other hand,
Ulwick et al. {1985] have noted similar shifts in auroral
versus nonauroral ozone profiles obtained in zenith-looking
experiments, where the altitude uncertainty is minimal.
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We have also performed a preliminary comparison of
SPIRIT | data with results from several nighttime zenith-
looking experiments, including those cited by Ulwick et al.,
by altitude-integrating the volumetric emission derived from
SPIRIT 1. The resulting synthetic zenith profile agrees well
with those from the other experiments up to around 90 km,
above which point the SPIRIT 1 profile falls off much more
rapidly. Part of this difference might reflect differences in the
degree of background and noise contamination in these
experiments, although the bulk of the difference probably
refiects real ozone variability.

The large radiance differences that small vertical shifts in
the dzone profile can cause emphasize the need for accurate
pointing data in limb experiments as well as a thorough
understanding of auroral and other sources of atmospheric
variability.

3.2. Hor Bands

Limb radiances in the hot band passes are plotied in
Figure 8. The data are taken from the open-filter and group
A scans. The SPIRE nighttime and terminator data are
typically some 2 times higher, but the shape of the profile is
essentially the same. This is shown in Figure 9, which
compares SPIRIT 1 and SPIRE data in the 10.25- to 10.75-
pm band pass.

The hot band emission intensity is proportional to the
population of multiquantum vibrationally excited ozone,
which is governed by its rates of formation and relaxation
{Rawlins, 1985]. These in tum depend directly on the densi-
ties of O;. O, and N, rather than ground state ozone. Since
the O atom density is considerably more vanable than the
others, it is the most likely source of scan-to-scan and
experiment-to-experiment differences in hot band intensity.
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Variations in the O atom concentration at these aititudes can
arise from Joule heating, gravity waves, and other phenom-
ena which affect vertical transport. Variations in tempera-
ture should be too small to significantly affect the ozone
formation rate, except perhaps above the thermopause
where the temperature gradient increases. .

Spatial vanations in vibrationally excited ozone (and thus
likely variations in O atom density) are evidenced by the
scatter seen in the SPIRIT | hot band radiances when all of
the data below 80 km are plotted, as is shown in Figure 10.
These data have been normalized to full-limb views using the
least squares/inversion procedure; otherwise, the scatter
would be even larger. The group B data. which correspond
to tangent points located close to the sensor, generally fall
below the group A data. A possible explanation is that closer
to the sensor the ozone emission profile is shifted to higher
altitudes, leading to smaller fractional limb views. The
scatter is reduced by half if the assumed viewing angles are
uniformly shifted upward by 0.5 deg. While this apparent
angular shift may suggest the presence of a pointing error,
more likely it provides a measure of an altitude shift in the
profile.

4. MODEL CALCULATIONS

4.1. (001)Band

As discussed by Rawlins {1985}, the chief mechanism
governing the nighttime (0 0 1) state population (or, alterna-
tively, its vibrational temperature T, = hv{k In ({0 0 0)[0 0
1]}) at these altitudes is excitation by *‘earthshine’" radiation
originating from lower atmospheric layers followed by spon-
tancous emission. Other processes influencing T, include
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collisional quenching and cascade from higher vibrational
levels, but their effects are modest and tend to cancel.
Detailed treatments of all of these processes are incorpo-
rated in atmospheric radiance codes such as HAIRM [Deg-
ges and Smith, 1977). However, a simple, analytical earth-
shine model, described below, yields a reasonable estimate
for T, and its variability and provides considerable physical
insight.

In this simple model the ozone molecule is considered to
be in radiative equilibrium with a lower-lying atmospheric
layer at altitude A, that has an effective blackbody temper-
ature T, and occupies a fractional angular subtense f (out of
41 sr). The vibrational temperature computed for this case
will be denoted T,,.. From the facts that the [0 0 1)10 0 0)
population ratio is proportional tof,and T, = T, when f =
1. the definition of vibrational temperature yields the result

UT,e = UT, — (Khv){in (f)) ()

The effective temperature T, for earthshine excitation of
the ozone is taken as 250°K. This is the estimated atmo-
spheric temperature at h,, = 44 km, the approximate altitude
at which mean-strength vibration-rotation lines in the band
become optically thick in a zenith path. A similar effective
earthshine temperature was estimated by Rawlins [1985].

Accounting for the curvature of the Earth, the angular
subtense fin (1) is given by

2f = | = [2(h - h,)/R]"? Q)

where R is the Earth radius and h is the altitude. At the
aliitudes of interest here, f is close to 0.45. Neglect of the
Earth curvature, as is assumed in radiance codes such as
HAIRM [Degges and Smith, 1977], yields f = 0.50, resulting
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in only a 10% error in the computed {0 0 1)/[0 0 0] population
ratio. The final result for the (0 0 1) band of ozone is 7, =
~220°K, corresponding to a [0 0 1)/[0 0 0] ratio of 0.0012.

This vibrational temperature estimate may be compared
with more complete treatments. Collisional quenching and
the contribution from O + O, + M chemiluminescence were
considered using a model similar to that of Rawlins [1985]).
The resulting (0 0 1) vibrational temperature was found to
differ from T, by no more than 6°K from 70 to 104 km. This
indicates that T, is rather insensitive to the precise rates for
these collisional processes. A second comparison is with the
HAIRM code [Degges and Smith, 1977)], which also includes
these collisional processes but solves the radiation transport
problem more accurately. It predicts slightly lower temper-
atures, averaging around 210°K at these altitudes.

A potential source of error in all of these calculations is the
lack of knowledge of the true lJower atmospheric temperature
profile. The resulting uncertainty in T, leads to a comparable
uncertainty in the vibrational temperature, as may be seen
from (1). Accounting for all uncertainties, we believe that the
220°K estimate for the vibrational temperature should be
accurate to within 20°K, corresponding to a factor of 2
accuracy in the [0 0 1)/{0 0 0) populatiua ratio.

Since the (0 0 0) state accounts for nearly all of the ozone,
the (¢ 0 1) volumetric emission can be combined with the
cstimated {0 0 11[0 0 0 ratio to yield an approximate
nighttime ozone density profile. The third-degree SPIRIT 1
radiance profile in Figure 6 leads to the ozone density profile
shown in Figure |1.

For comparison, a mean ozone profile developed by
Degges and Smith [1977} for HAIRM is also shown. Below

ADLER-GOLDEN ET AL.: THE 9- TO 12-uM ATMOSPHERIC OZONE EMISSION

100 km the agreement between these profiles is quite good,
especially in view of the ozone variability and the vibrational
temperature uncertainty. Above 100 km, where Degges and
Smith’s profile had been derived by extrapolation using a
diffusive mixing model, it has a scale height several imes
larger than the value of ~2 km: obtained from the SPIRIT [
data.

We have also gencrated an ozone profile using the photo-
chemical model of Allen et al. [1984), which assumes chem-
ical destruction by atomic hydrogen. For this calculation,
temperature and major species densitics profiles from the
1976 U.S. Standard Atmosphere (listed by Degges and
Smith [1977]) were used, along with an atomic hydrogen
profile chosen to represent average nighttime conditions
(assumed densities at 90, 100, and 106 km are 7.2 x 107,
2.6 x 107, and 1.45 x 107 cm ™3, respectively). The resulling
ozone profile, shown in Figure 11, differs from the **basic
model’” results of Allen et al., mainly owing to the differ-
ences in the assum-d hydrogen profiles, but it agrees to
within a factor of 2 with the SPIRIT 1 data up to around 100
km_ The more rapid falloff of the SPIRIT 1 ozone profile at
the highest altitudes is consistent with the unusually rapid
decline in the observed radiance discussed in section 3.1.

The factor-of-~2 consistency between the three ozone
profiles shown in Figure 11 from 80 to 100 km should not be
oversold, but it does support the claim that the essential
physics and chemistry of ozone formation, destruction, and
radiation at these altitudes are reasonably well understood.

4.2. Hot Bands

A calculated ozone hot band spectrum from the HAIRM
code is given in Figure 4. This code uses a mechanism
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similar to that proposed by Rawlins [1985] in which ozone (0
0 v,) vibrational levels having vy = 2 are formed from
recombination according to a ‘‘quasi-nascent distribution,”
and relax via collisional and radiative cascades. In order to
critically evaluate this mechanism we investigated ozone
kinetics theoretically using a detailed state-to-state kinetic
mode] which includes over 100 vibrational energy levels
[Adler-Golden, 1987]. From these calculations we concluded
that the Rawlins/fHAIRM mechanism captures the essential
features of the hot band spectrum but should be extended to
include additional emitting bands.

The populations of the high vibrational states of ozone
may in principle be derived from fitting the SPIRIT 1 hot
band spectra using known or estimated band centers, Ein-
stein coefficients, and band contours; the results may then be
used to develop an upgraded ozone kinetic model. Most of
the required spectroscopic information is currently available
for vibrational states having up to 34 quanta; these include
accurate vibrational energies from absorption spectra [Srein-
feld et al., 1987] and theoretical Einstein coefficients [Adler-
Golden et al., 1985]. For these states the band contours may
be approximated using the (0 0 1) band with an appropnately
shifted center [Rawlins and Armstrong, 1987, Rawlins et al.,
1987].

Much less is known about the higher-lying states of ozone,
whose v, bands dominate the 800- to 950-cm™~' r~cion
covered by SPIRIT 1's filter data. Resonance Raman spectra
[Imre et al., 1982; Imre, 1984) provide approximate epergies
(to within =10 cm™") for five-, six-, and seven-quantum
states which are mainly unexcited in the “ending - »de. We
have derived an energy level formula sim  to that of Barbe

et al. [1974] but which agrees much better with the Raman
data and with the known dissociation energy of ozone. This
formula, given in the appendix, has been used to generate »,
band center estimates for these and other highly energetic
states. A listing of potentially important »; bands (Table 1)
shows that the hot band emission in this spectral region
arises from levels having as much as 6400-6500 cm™' of
energy and up to seven vibrational quanta.

In addition to uncertainties in the band centers for these
highly excited states, alterations in the band contours may
be significant for states having more than tour asymmetnc
stretching quanta. If one further allows for the appear snce of
bands containing », excitation, many overlapping hot bands
are possible, and the assignment of band centers and quan-
tum numbers based on the spectral features in the SP™ T 1
spectra can be hazardous. However, if one snstraius the
possible hot band assignments with the aid of avalable
spectroscopic information [Steinfeld e: ai., 1987) and the
energy level formula predictions, the SPIRIT 1 spectra can
be analyzed to yield a consistent and, - believe, unique set
of assignments. Detail Jf this analysis are presented in a
separate paper {Adler-G-. ‘len and Sm.. 1, 1990).

SUMMARY
High-qu.t .n (v3) emission spectra of ozone were
¢ .ained in - - LT 1 rocket experiment in an auroral

nighttime sky ac tangent heights of ~67~105 km. An analysis
of these spectra leads to the following conclusions:

1. The spectral shapes and absolute intensities are simi-
lar to previous nighttime measurements over the observed

TABLE 1. Energy Levels and Band Centers of Ozone High-Lying Vibrationa! States

¢

vy Band Center

Energy, cm ™
Rawlins and Armsirong (1987)
State Calcutated Imre [1984) Calculated and Rawlins er al. [1987]
014 4631 935
113 4663 920
212 4783 4766
005 4910 912 916
104 4925 4921+ 900 904
302 5173 S177+
024 5254 5246t
222 5418 5420°
500 5441 5437+
015 5518 888
114 5537 874
420 5689 5680°
006 5767 s761° 857
. 10S 5774 849
204 5961 5963t
a2 6199 6187t
016 6342 R24
115 6351 814
600 6496 6507+
007 6555 787
106 6558 783
304 6880 68971
502 7202 7207
700 7533 7523t

The energy values of Imre [1984] are =10 cm™'; the s, band center values of Rawlins and
Armstrong [1987) and Rawlins et al. {1987} are 3 cm "',

* Assigned in this work.
tAssigned by Imre [1984)

217




15,250

wavelength range and altitudes up to ~95 km. However,
SPIRIT 1's improved resolution reveals hot band structure
that had been predicted but not previously seen.

2. Anozone density profile derived from inversion of the
limb radiance agrees reasonably with available model pro-
files below ~100 km, but above it falls off more rapidly.

3. The hot band emission in the 10-12 um window is
significantly underestimated in current limb models.

Further work on ozone emission modeling and detailed
comparisons with other field data are in progress.

APPENDIX: BAND CENTERS FOR HIGH
ViBRATIONAL LEVELS OF OzONE

A modification of the quadratic Darling-Dennison reso-
nance expression of Barbe et al. [1974) for ozone vibrational
energies has been developed which provides a good fit to the
six- and seven-quantum resonance Raman data of Imre et al.
{1982} and Imre [1984] and which also behaves realistically
as the dissociation limit is approached. The new energy level
expression makes use of modified anharmonic parameters

11+ X13. X32 and ¥ (the Darling-Dennison coupling pafam-
eter), where

Xi/Xyy = X1/ X3 = X3l X3 = ¥'ly = p(vy, v, v3)

The unprimed parameters are the constants from Barbe et al.
{1974] and

p =1 +0.0016x + 0.002.r + 0.0006x>
x=v, +v3+ 1 2u -3

For states having four quanta or less, p is close to unity, so
the anharmonic parameters are in essential agreement with
those of Barbe. However, above four quanta, p increases
monotonically, resulting in increased anharmonicity and
thus a lowering of the dissociation energy (the maximum in
the (0 0 v;) sequence) from around 2 eV in the original
formula to 1.05 eV (8458 cm ~') in the current formula at the
(0 0 1) state.

Representative results are given in Table 1. The vy bands
originating from states having v, > 1 or v, > 2 are not listed,
as they are expected to be obscured by bands originating
from lower-energy states.
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Upper Atmospheric Infrared Radiance From CO, and NO Observed
During the SPIRIT 1 Rocket Experiment

S. M. ADLER-GOLDEN AND M. W. MATTHEW

Spectral Sciences, Incorporated, Burlington, Massachuserts

D. R. SMITH

Geophysics Laboratory, Hanscom Air Force Base, Massachusetts

Spectral limb radiance data on CO; 1, and NO $5.3-um emissions obtained in the Spectral Infrared
Interferometric Telescope rocket experiment have been analyzed. The data cover auroral intensities
from several kilorayleighs to over 100 kR at 391.4 nm. and tangent heights of ~70-200 km at high
latitudes (60°-65°N). Volumetric emission and kinetic temperature profiles have been obtained using
linear least squares inversion procedures. The CO, », radiance profile is found to be similar to
previous observations. The NO §.3-um emission is somewhat weaker than that typically measured;
this is ascribed mainly to below-average thermospheric temperatures. Auroral enhancement of NO hot
bands was not observable with the available sensitivity. An approximate thermospheric temperature
profile derived from the NO band shape compares reasonably with the mass spectrometer/incohereat

scatter 86 model.

1. INTRODUCTION

The Spectral Infrared Interferometric Telescope (SPIRIT)
1 experiment, launched on April 8, 1986, was a rocket-borne
probe designed to measure the long-wavelength IR emission
spectra from an IBC class III aurora in the limb-viewing
geometry. The primary instrument, built by Utah State
University/Stewart Radiance Laboratory [Dybwad et al.,
1987), was a cryogenically cooled, five-detector Michelson
interferometer mated to a high-off-axis-rejection telescope.
Approximately 140 spectral scans were recorded covering
tangent heights of ~70-240 km at latitudes of 60°-65°N over
the spectral range ~450-2500 cm™'. Most of these scans
have an apodized resolution of ~8 cm ~*; however, 17 scans
were measured at 1-cm ™' resolution. During most of the
flight, the instrument was pointed slightly away from the
bright auroral arc, while later in the flight, direct views of the
arc were obtained at tangent heights below 108 km. The
spectra provide a comprehensive data base on a number of
molecular emission features in the nighttime sky, including
CO; »y (15 um), O3 v3 (9.6 um), and NO Av = | (5.3 um).
A detailed description of the SPIRIT 1 mission is presented
elsewhere [Smith et al., 1990].

This paper provides a summary and an analysis of the
SPIRIT 1 data on NO and CO, emission, including volumet-
ric emissions and kinetic temperatures derived by inversion
of the limb radiances. (Data on O; emission have been
reported separately [Adler-Golden et al., 1990; Adler-Golden
and Smith, 1990].) The results are compared with previous
experiments, particularly the Spectral Infrared Rocket Ex-
periment (SPIRE) [Stair et al., 1985) limb-viewing mission
flown in September 1977 in a quiet atmosphere from the
same launch site. The CO, », radiance in SPIRIT 1 is found
to be similfar to previous observations, while the NO 5.3-um
radiance is weaker. No major auroral effects are discernible
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in these bands. An approximate thermospheric temperature
profile derived from the NO band shape is found to compare
reasonably with the mass spectrometer/incoherent scatter
1986 (MSIS-86) model {Hedin, 1987].

2. BRIEF DESCRIPTION OF EXPERIMENT

2.1.

The SPIRIT 1 payload was launched on April 8, 1986,
from Poker Flat Research Range, Alaska, at 0942:25 (UT). It
reached an apogee of 241 km at 253 s after launch. In
addition to the primary instrument, other on-board sensors
included a low-light-level video camera, a 35-mm image-
intensified camera for star field position data, a telescoped
391.4-nm photometer, and a scanning IR horizon sensor.

Orientation of the payload was accomplished by a micro-
processor-controlled attitude control system (MACS) using
gaseous nitrogen thrusters. During most of the flight the
MACS was operating under a preprogrammed scan pattern,
which resulted in the sensors pointing slightly above and to
the south of the intense auroral arc. However, near the end
of the flight (starting around 417 s after launch) the ground
control system became active, enabling manual overmide of
the preprogrammed pattern. From that point on, the instru-
ment was pointed directly at the arc, where the 391.4-nm
intensity was over 100 kR.

The interferometer is a Micheison flex-pivot design cooled
by liquid helium. The interferograms on each side of the
critical peak are unequal in length; the length of the long side
is set for the desired spectral resolution. Typical scan times
are around | s, except for the high-resolution scans which
last around 9 s. The focal plane contains an array of five
Si:As long-wave IR (LWIR) detectors designed to have a
combined dynamic range of 10%. The detectors are num-
bered 1 through 5 in order of decreasing size and sensitivity.
Their arrangement on the focal plane {Dybwad and Huppi,
1987] is such that detector | viewed the highest tangent
altitude, detector 3 the next highest, and detector $ the
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lowest; detectors 2 and 4 viewed essentially the same
altitude.

In *‘open filter’* mode the detectors were sensitive to
radiation in approximatcly the 450- to 2500-cm ™' (4-22 um)
range. During portions of the flight, band-pass filters were
inserted to isolate the 11- to 13-um atmospheric window
(filter 1) and the 5.3-um NO band (filter 2).

2.2. Reduction and Calibration of Spectral Data

Details of the interferogram processing are given clse-
where (Smith et al., 1990]. in brief, the processing checked
for and removed data spikes and detrended the interfero-
gram to account for radiance variations during the scan (e.g.,
due to vaniations in tangent height viewed). The resulting
processed interferogram was Fourier-transformed using a
Kaiser-Bessel or triangular apodization window. A Mertz
phase correction [Merrz, 1967] was generated using portions
of the interferogram on both sides of the critical peak and
was applied to the Fourier transform. The result is a “‘raw™
spectrum (in volts per cm ~') which was further processed to
correct for the detector’s spectral response. Except in the
long, high-resolution scans, the full width at half maximum
resolution is typically 8 cm ™' with triangular apodization
and 11 cm™' with Kaiser-Bessel apodization. The Kaiser-
Bessel apodization yields an instrument function with very
low sidelobes and was used to generate the spectra shown in
this paper.

Relative spectral response curves for detectors 2, 3, and 4
were obtained in a postflight calibration using vanable-
temperature blackbody sources {Dybwad and Huppi, 1987},
The high-wavenumber portions of the curves were estimated
from filter 2 rather than ‘‘open filter’’ data, which exhibit
nonlinear behavior. Detectors 1 and 5 failed before they
could be calibrated, so their response curves were estimated
using the curves from detectors 2 and 4, respectively, which
are the closest in size. Both the flight and the calibration data
indicate that the response curves are all very similar, except
that the larger detectors have somewhat more roll-off toward
high wavenumbers, owing to slight wave front curvature in
the interferometer.

The relative sensitivities of the detectors were determined
by using the flight data on the CO, 1, band. These were
combined with calibration data for detector 2 (taken from
Dybwad and Huppi [1987)) to establish absolute responsiv-
ities. It was necessary to include a flux-dependent factor in
the responsivity of detector 2, to reproduce the calibration
data and to achieve consistency with the data from the other
detectors, which were assigned flux-independent responsiv-
ities. This difference in behavior reflects the fact that detec-
tor 2 was operated.at a significantly higher bias level than
were the other detectors.

2.3. Calibration Error Estimates

As will be seen in section 5, the calibrated spectra are
reasonably consistent among all five detectors at all altitudes
and in nearly all wavelength bands, to within the measure-
ment scatter of 10-20%. However, in the NO band thereis a
factor of 1.5 spread in the radiances obtained from detectors
2,3, and 4, with the radiances increasing in that order. This
indicates that at high wavenumbers their assumed relative
spectral response curves, which were obtained somewhat
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indirectly, are not completely understood. Inclusion of de-
tectors | and 5 (whose curves were provisionally estimated
from detectors 2 and 4) further increases the spread to nearly
afactor of 2, with detector | giving the lowest radiances. The
discrepancy between detectors 1 and S and the others is
explainable by the inverse correlation between size and
high-wavenumber response. In our data analysis the detec-
tor 1 NO radiances have been corrected to match those
obtained from detector 2 by multiplying by 1.2; the detector
5 data, which are very noisy, were not used.

The absolute calibration, which was derived from detector
2 postflight laboratory data near the peak of the responsivity
curve, is more uncertain than the relative calibration. Cali-
bration data from detectors 3 and 4, obtained at much higher
fluxes, iead to 40% smaller radiances. Taking into account
this uncertainty and the typical detector-to-detector spread
in the flight data, we estimate absolute radiance error limits
of —40% to +20%, for a total uncertainty spread of a factor
of 2. This excludes the NO band, where the absolute
radiance uncertainty includes the additional factor of 1.5
spread, for a total spread of a factor of 3.

3. DATA OVERVIEW

3.1.

The SPIRIT 1 rocket was launched when an IBC class 11
aurora (>100 kR at 557.7 nm) was observed over the SPIRIT
1 ground station at Fort Nelson, British Columbia, approx-
imately 1400 km to the southeast of the rocket’s trajectory.
The geomagnetic activity indices for April 8, 1986, were
Ap = 5, Kp = 3, and the solar flux index Fig; was 72, a
value typical for a minimum in the 11-year solar cycle. With
these conditions the MS1S-86 model [Hedin, 1987) predicts
an exospheric temperature (7.) of around 800 K. For
comparison, this is 100-150 K lower than that calculated for
the conditions of the SPIRE [Srair er al., 1985] experiment.

Atmospheric Conditions

3.2. Chronology of Spectral Data

The spectral scans from the interferometer are summa-
rized chronologically in Table 1. The scans began at around
time after launch (TAL) = 95 s during a rapid pitch-up
mancuver. Accurate tangent height assignments (see section
3.3) begin with scan 81 at 99 s, when the pitch-up slowed.
This scan covers 107- to 116-km tangent heights at a moder-
ate auroral intensity (40 kR at 391.4 nm). Subsequent scans
explored tangent heights up to 236 km, until the 11- to 13-um
band-pass filter (filter 1) was inserted at 271 s. Nearly all of
the useful data above ~105 km are from this upleg series of
scans, which are generally of good quality but which corre-
spond to low-to-moderate (140 kR) 391.4-nm intensity.

Due to attitude control system problems (which caused
the sensors to view overly high altitudes and, later, caused a
brief view of the Earth) and the presence of background
contamination, the next series of useful scans did not start
until around TAL = 411 s in the downleg. when the tangent
heights viewed were below 108 km. Between 411 sand 415 s
the auroral intensity was over 100 kR in the tangent height
range 97-108 km. These are the brightest auroral scans
obtained with the open filter.

The data taken at the very end of the flight, after TAL =
427 s, consist of filter 1 spectra beiow 82 km. These spectra,
discussed by Adler-Golden et al. [1990). consist primarily of
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TABLE 1. Chronology of SPIRIT | Spectral Data
Time After Scan
Data Description Launch, s Numbers Comments
Prelaunch calibration -11.710 - 1.5 1-9 blackbody source
In-flight calibration (NO filter) 57.0-68.4 48-57 blackbody source
Open filter data 95.0-268.7 78-149 tangent heights to 236 km
Filter 1 data 271.5-318.6 151-163 background contaminated
NO filter data 322.5-343.5 166-170 NO 5.3-um band
Open filter data 344.4-347.0 171-173 background contaminated
348.3-349.7 174-175 rapid tangent height variation
364.1-366.7 186-188 rapid tangent height variation
407.2-408.6 219-220 rapid tangent height variation
412.5-424.2 223-232 tangent heights beiow 108 km
Filter | data 426.9-446.3 234-249 ozone hot bands
In-flight calibration (thin 456.9 257 blackbody source; alignment
film heater) test

hot bands of ozone resulting from O + O, + M recombina-
tion.

3.3,

Tangent heights viewed by the central detector (detector
2) as a function of time were determined using data from
three on-board instruments (a three-axis position gyroscope,
the IR horizon sensor, and the celestial aspect camera), as
described in the next paragraph. The orientations of the
latter two sensors relative to the interferometer optical axis
were determined during the preflight alignment procedure.
The tangent heights for the detectors other than detector 2
were computed from the derived focal plane orientation and
the known angular displacements between the detectors.
Tangent heights were assigned to the interferometer scans
based on the time of the critical peak.

Initial analysis of the horizon sensor data provided ap-
proximate tangent height readings which were used to cali-
brate the position gyroscope. The resulting tangent heights
from the gyroscope were checked against results from se-
lected celestrial aspect data. Agreement was found to within
+2 km (10), although occasional differences as large as § km
were observed. Subsequently, a refined set of tangent
heights was obtained by a more detailed analysis of the
horizon sensor data. This analysis used the gyroscope data
to correct for time-constant effects in the horizon sensor and
included corrections for the Earth eccentricity. The resulting
tangent heights agree with the celestial aspect data to within
=1 km (lo). This represents the estimated tangent height
uncertainty during most of the flight. During periods of rapid
payload angular motion the tangent height uncertainties are
larger, of the order of 5 km. The magnitude of the variation
in tangent height over the duration of the interferometer scan
is typically comparable to the uncertainties quoted above.

Tangent Height Data

3.4. Photometer Data at 391.4 nm

The auroral intensity at 391.4 nm observed by the SPIRIT
I on-board photometer, which was co-aligned with detector
2, is plotted versus tangent height in Figure 1. Each point
represents the start of an interferometer scan: lines connect
the points in sequential order. The data are separated into
those taken before TAL = 417 s, when the automatic
attitude control was in operation, and those after 417 s, when
manual control was achieved and the instrument was pointed

toward the arc over Fort Nelson. During the period ~343—
400 s, an anomaly occurred which pointed the instrument
away from the aurora and down toward the Earth; data from
this time interval have not be .n plotted.

Most of the automatic control data plotted in Figure 1 are
seen to correlate systematically with tangent height. This
correlation is consistent with diffuse **drizzle’" as the auroral
source in these data. In contrast, the manual controi data are
widely scattered, reflecting the strong dependence on point-
ing when viewing the auroral arc. Note also that the tangent
altitudes of the brightest auroral data lic well below the 90- to
100-km depth to which aurorae penetrate; this is because the
arc was beyond the tangent point in these views.

3.5. Telescope Leakage and Background Contamination

The background contamination mentioned in section 3.2 is
not apparent in scans below ~100 km, where the atmo-
spheric radiance from CO, and O, is strong. However, at
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Fig. 2. Typical SPIRIT | spectrum at a 141-km tangent height.
The three strong features are, from left to right, CO; 1y, a contam-
ination peak around 900 cm ™', and NO Av = 1. The detector's
approximate noisc-equivalent spectral radiance (NESR) is also
shown.

higher altitudes, most of the scans exhibit a low-level back-
ground spectrum, which is most easily seen in the 10- to
14-um (700- to 1000-cm ') region. A typical high-altitude
spectrum appears in Figure 2. which displays atmospheric
emission from CO, and NO as well as a broad peak around
900 cm ™', which is ascribed to a ‘‘contamination’ back-
ground. The background level decreases in the order detec-
tor 1 > detector 3 > detector 2, which is the order of
decreasing viewing angle above the telescope centerline.
The background level also shows a weak inverse depen-
dence on the angle between the telescope axis and the
horizon. This low-level background is consistent with stray-
light leakage from the Earth and/or the lower atmosphere
caused by scattering from internal surfaces of the telescope
or foreign material therecon. Similar problems have been
encountered in other LWIR Es:h limb experiments [Smith,
1988].

Occasionally during the flight, a blackbodylike back-
ground an order of magnitude or more brighter than the
nominal stray-light background is observed. The intensity is
approximately the same in all detectors. In many instances
these bright flareups appear to be correlated with changes in
payload orientation. A small number of spectra (for exam-
ple, Figure 3, top) resemble the nadir view spectrum of the
Barth [e.g.. Wolfe and Zissis, 1978). However, most often
the spectrum has a more structured appearance, as in Figure
3, bottom. The {atter spectrum appears to be identical in
shape to the much weaker stray-light spectrum appearing in
Figure 2.

While the precise light leakage paths associated with these
background spectra are not known, the main source of
leakage radiation has been determined to be the Earth-
illuminated telescope baffle. The structured background
spectrum has been shown to match the reflection spectrum
of the black paint used on the baffie {Brown and Smith,
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Fig. 3. Spectra showing strong background contamination. Earth-
shinelike spectrum is at top, and paintlike spectrum is at botiom.

1990]. Since it is the top underside of the baffie that is
illuminated, the detector viewing angles farthest above the
telescope centerline are affected most. This is in agreement
with the correlation of the low-level background with the
detector number. The bright flare-ups suggest the further
presence of frost or other particles floating in the field of
view. These particles could be illuminated by either the
earthlit baffle or, if they are near the telescope entrance,
directly by the Earth. The latter would explain the spectrum
shown in Figure 3 (top).

3.6. Data Selection and Background Correction

In the present analysis, scans and/or spectral bands which
are highly background contaminated have been omitted.
Also omitted are scans having uncertain or rapidly varying

. tangent heights, and spectral regions in which the phase

angle of the interferogram is unusually large, indicating
detector nonlinearity. The CO, radiances were corrected by
subtracting a contribution ascribable to the background
contamination. This background component was estimated
by scaling the radiation from an adjacent “‘window"' band
pass (i.c., one that is free of atmospheric emission) using the
Figure 3 contamination spectrum. This correction procedure
materially affects only the highest-altitude data. No correc-
tions were made for detector noise.

4. CoLUMN INVERSION PROCEDURE

The volumetric emission profile, I(#) (in units of emission
per unit volume, i.c.. W cm ~? sr '), may be determined by
inversion of limb, zenith, or other column radiances. J,
measured by a sensor. /(h) can be used to derive quantities
such as local kinetic temperature and excited state number
densities. The inversion procedures used to analyze the
SPIRIT 1 data, which apply to optically thin radiation (CO,
v, above ~120 km and the NO fundamental). are outlined
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below. Applications to the ozone data from SPIRIT 1 are
descnbed by Adler-Golden et al. [1990).

4.1. Determination of Volumetric Emission Profile

The inversion procedure is similar to that employed by
Espy et al. {1988], which involved a least squares fit to
column radiance data. In their method, zenith column radi-
ances were fitted to a polynomial multiplied by an exponen-
tial scale height factor; the volumetric emission function,
which has the same mathematical form, was determined by
differentiation of the column radiance fit. The application to
limb radiance data in this work requires a generalization of
this procedure, as follows. The volumetric emission function
is written as

Ih) =2 afih) =D, ah’~ ' exp (=hla), (1)

i i

where 4 is height, a is a scale height parameter, and the a;
are roefficients to be determined. Each component term
Sfi(h) is integrated along the line of sight applicable to each
column radiance data point. The resulting column-integrated
terms are used in a linear least squares fit to all of the data to
determine the coefficients a; and, hence, the volumetric
emission function /(h).

A problem can arise with this procedure if there is no -

explicit constraint to insure that the volumetric emission
function remains physically reasonable (e.g., positive) above
the highest altitude data point. An acceptable way to avoid
this probiem is to switch the f;(h) to a simple exponential,

SR ras) €XP [(Amax ~ 1)/ as) @)

above the altitude h,,, of the highest data point. The
volumetric emission function, being a sum of these terms
will have the same exponential behavior. The value of ap,,
should be chosen for a reasonable scale height but has little
cffect on the derived /() at altitudes below h,,.

Because of the wide dynamic range in the column radi-
ances observed in SPIRIT 1, the least squares fitting was
implemented using weighting that is inversely proportional
to the radiance. This gave fits which had a fairly uniform
percent deviation over most of the altitude range. The scale
height parameter a was varied by tnal and error until a stable
fit was obtained for a given number of terms, n, in the fit.
The limb radiance fits were generally found to be stable to
within a few percent against vanations in the input parame-
ters, including n. as long as n is small enough to smooth out
noise in the data. The volumetric emission /(4) was gener-
ally equally stable, except in certain fits to the NO data,
where the volumetric emission below the maximum at 130
km was found to be somewhat sensitive to n.

4.2, Determination of Kinetic Temperature Profile

It is well known that atmospheric temperature profiles
may in principle be derived from observed vibrational band
shapes. The typical procedure is to invert the limb spectral
radiance at different wavelengths and fit the resulting volu-
metric emission spectra to synthetic spectra [Caledonia et
al., 1985, Zachor et al., 1985). Since the inversion procedure
amplifies noisc in the spectra, the results need to be consid-
erably averaged or smoothed in the altitude and/or wave-
length domains.
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For the current SPIRIT 1 data analysis we have developed
an altermative method, described below, in which the in-
verted quantities are spectral moments rather than spectral
radiances. Since the moments are wavelength-averaged
quantities, the method is numerically stable, and it is much
more efficient computationally since no spectral fitting and
only two limb inversions are required.

The kinetic temperature influences vibrational band
shapes mainly through the rotational state distribution,
which controls the width of the spectrum. A quantitative
measure of the spectral width is the variance o2, which is the
ratio of the second moment around the mean wavenumber to
the integrated intensity. Thus a kinetic temperature profile
T(h) can be computed from the volumetric emission function
al(h), given by

a(h) = I,(h)IIh) &)

where I,(h) is the second moment of the volumetric emis-
sion I(h). I(h) and I,(h) are, in turn, derived by inversion of
the column radiances J and second moments J,. In comput-
ing J;, the vibrational band center may be used instead of
the mean wavenumber.

T(h) is determined from o2(h) by establishing the func-
tional relationship between the kinetic temperature and the
variance using synthetic emission spectra. The synthetic
spectrum gencration is the only significant computational
effort in the T(h) determination and was performed using the
HITRAN line atlas [Rothman et al., 1987). The calculations
accounted for SPIRIT 1 instrumental resolution (typically
8-11 cm '), which has a small (few percent) effect on o for
CO, », and a negligible effect for NO Av = 1. The function
T(o?) was accurately represented via a low-order polyno-
mial fit to 5-10 spectra over the 200-1000 K range. Since in
this range. ¢® and T are roughly proportional, fractional
errors in the determined temperature are comparable to the
fractional errors in o2.

In addition to the rotational state distribution, the intensi-
ties of hot bands located in the band pass under consider-
ation can also affect the spectral moments. In the local
thermodynamic equilibnum (LTE) approximation the hot
bands are linked to the kinetic temperature. However, for
best accuracy, non-LTE effects should be incorporated in
the model spectra by using independent vibrational temper-
atures T, which may differ from the kinetic temperature T
that characterizes the rotational and translational modes.
Depending on the relative values of T, and T, the ratio of hot
band to cold band emission may be enhanced or suppressed
compared to LTE (T, = T).

It turns out that the NO 5.3-um spectral shapes are quite
insensitive to the 7, value, since the high vibrational fre-
quency feads to very small Boltzmann factors for hot bands
over a wide range of T,.. For simplicity, we have assumed
T, = T in the NO computations. The CO, v, spectra are
more sensitive to T, however. To test the effect of T, on the
kinetic temperature determination, the CO, computations
were performed for two limiting cases. 7, = Tand 7, = 0,
as discussed in section 5.3.

43,

Analogous to the local variance o2(4) and the local kinetic
temperature T(/) = Tlo’(h)] are the column variances
acz.,,.,,,.,, = J,/J and the corresponding column Kkinetic tem-

Column Kinetic Temperatures
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Fig. 4. CO, », limb radiance profilc and average of SPIRE data.

peratures, which for limb views are denoted Ty, It is
possible to derive the local variance by directly inverting the
column variances, as opposed to inverting the J and J,
separately. Alternatively, the limb kinetic temperatures may
be used to estimate the iocal kinetic temperature profile
without performing an inversion, using the approximation

T(h) = Tym(h — a/2). 4)

where a is the emission scale height. According to (4), the
local kinetic temperature may be approximated from the
limb emission band shape at a tangent height one half of a
scale height below. In model calculations this approximation
is found to be quite accurate. Equation (4) also implies that
the altitude range over which T(h) is valid is somewhat
higher than the tangent height range spanned by the limb
radiance data.

5. REsuLTs AND DiSCUSSION

5.1. COy 15 um (w)

5.1.1. Results. CO; v, limb radiance data from all five
detectors in SPIRIT | are shown in Figure 4. Most of the
data were derived by integrating the spectra over 614-725
em ™' (14-16 um). These data are accurate up to ~ 165 km,
where the background due to telescope leakage becomes

dominant. To extend the data to higher altitudes, additional

points were obtained from detector 1 and detector 2 spectra,
using the intetisity of the narrow Q branch peak at 667 cm ™',
which is less influenced by the leakage background than is
the band-pass-integrated sntensity. The peak intensities were
converted to band radiances by matching to band-pass-
integrated data at lower altitudes. This procedure is valid
since the ~8-cm ~! resolution of the scans used exceeds the
width of the @ branch, insuring a constant proportion
between the peak intensity and the band radiance. The
results provide additional CO, v, radiances up to approxi-
mately 200 km.

With the exception of data from tangent heights of 140-150
km, the instrument was sufficiently above the tangent point
that it viewed essentially the fuil limb. The smooth curve
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shown in the figure is derived from an average of full-limb
data taken in the SPIRE experiment [Stair ef al.. 1985]. The
results from the two experiments are virtually identical
above 105 km; below that, the SPIRIT 1 radiances are higher
by up to a factor of 2. Given the calibration uncertainties in
both experiments, which may include flux-dependent effects
as well as uncertainties in absolute scale factors, the differ-
ences below 105 km may not be entirely real.

For the limb inversion, data from detectors 1 and 2 were
selected above 120 km where the emission is essentially
optically thin. The volumetric emission function obtained
from a second-degree fit to these data is shown in Figure; 5.
The column radiance evaluated over the full limb is showrt in
Figure 6; the points are the data after correction to full-limb
views, while the curve is from the volumetric emission
function in Figure 5. The good agreement between the curve
and the data points ilfustrates the success of the limb
inversionflleast squares fitting method as well as the high
quality of the data.

A representative sampling of CO, v} spectra is given in
Figure 7a. Two high-resolution (1 cm ') spectra are shown
in Figure 7b. In the wings., where the Q branches of hot
bands may be seen, the spectra are sensitive to the relative
populations (or temperatures) of the various vibrational
levels. The high-resolution spectra reveal the hot bands
more clearly, but the apparent rotational structure is largely
spurious due to interference from a **channel spectrum,” or
etalon, in the instrument which has around a 3-cm ™' spac-
ing. However, the channel spectrum does not affect the
tower-resolution spectra or the radiances or temperatures
determined therefrom. Detailed analysis of these spectra and
companisons with atmospheric radiation code simulations
are in progress.

$.1.2. Discussion. 1n addition to SPIRIT | and SPIRE,
other experiments which have observed CO, », radiation
include the ICECAP 1973 and 1974 missions [Rodgers et al.,
1977] and rocket probes launched in Salvo B of the Energy
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Budget Campaign in 1980; these have been compared and
discussed by Ulwick et al. [1985). Factor-of-2 differences in
CO, radiance were observed among these experiments and
were ascribed to spatial variations as well as auroral excita-
tion (in ICECAP 1973). The auroral excitation effect was
postulated to be caused by local Joule heating associated
with high geomagnetic activity.

The magnitude and variability of CO, s radiation may be
understood from the main excitation mechanisms, which are
pumping of the 15, level (denoted (01101) in HITRAN
notation (Rothman et al., 1987)) by collisions and by earth-
shine. The earthshine excitation rate is sensitive to the
kinetic temperature of the atmosphere at lower altitudes
where CO; », is optically thick. Below 100 km the collisional
excitation rate constant, given by

(5)

where kq is the rate coastant for i, deactivation, is fairly
sensitive to T. Above 110 km, where the kinetic temperature
is higher, the collisional excitation rate is much less sensitive
to it. An important factor above ~90 km is the density of
atomic oxygen, which is the most efficient collision partner.
Excitation by O atoms is the chief cause of the inflection in
observed CO, », limb radiance curves near 100 km [Sharma
and Wintersteiner, 1990).

The overall factor-of-2 range in CO, radiance among the
experiments (o date seems reasonable, given calibration
uncertaintics as well as expected variations in kinetic fem-
perature and O atom and CO, densities associated with
different degrees of geomagnetic and solar activity and the
presence of aurorae.

The possibility of excitation of CO; », via electrons or
other energetic species in an aurora was proposed as an
explanation for seemingly large radiances and high vibra-
tional temperatures observed in the HIRIS experiment {Stair
ef al., 1983), wnich flew close to an IBC 111+ aurora (up to
300-500 kR at 391.4 nm). However, in that experiment the
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Fig. 7. Typical CO; » spectra at different tangent heights: (a}

11cm ™! resolution and (5) 1-<cm™! resolution.

pointing of the sensor was highly uncertain due to rapid
payload tumbling. A recent reanalysis (D. R. Smith, unpub-
lished data, 1990) of the HIRIS pointing and spectral data
has resulted in considerably lower pointing angles and
vibrational temperatures than previously proposed. This
suggests that any auroral excitation effects that may exist
would be too small to be discernable in the SPIRIT [ spectra.

5.2. NOS5.3 pm

5.2.1. Results. Below around 120 km the high-
wavenumber region of the spectra is very noisy, and the NO
data are of poor quality. However, the higher-altitude NO
spectra are acceptable and were used to derive integrated
band radiances. A second-degree fit is shown in Figure 8,
along with the radiance data after correction to full-limb
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views. The radiances are approximately a factor of 4 lower
than in SPIRE (Srair et al., 1985, Zachor et al., 1985},
although the profile shapes are quite similar. The scatter in
the NO radiances is greater than in the CO, radiances and
appears to be larger than expected from noise in the spectra.

The corresponding volumetric emission function from the
second-degree fit is shown in Figure 9, along with a typical
volumetric emission profile obtained from SPIRE [Zachor et
al., 1985). As with the limb radiance profile, the volumetric
emission profile from SPIRIT 1| has a similar shape but lower
overall intensity.
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Figure 10 displays NO spectra taken with detectors 1 and
2 at similar tangent heights. The synthetic spectrum was
computed for a kinetic temperature close to Ty, the
*‘effective’” temperature of the observed spectrum. Given
the noise level of (5-10) x 107> W ¢cm ™2 sr ™! cm, the three
spectra arc in reasonable agreement. This argues against a
major contribution from hot bands associated with high
vibrational levels, which have been observed in two other
experiments which probed aurorae (see section 5.2.2). Sig-
nificant hot band contributions would increase the relative
intensity in the region of the P branch, causing the band to
be skewed to low wavenumbers. However, in the Figure 10
spectra the P branch is, if anything, slightly weaker than in
the synthetic spectrum, which has only a 2% hot band
component.

Quantitative estimates of possible hot band contributions
were sttempied using the ratio of intensities of the P and R
branches as well as the mean frequency of the band at
various tangent heights, but no significant coatribution was
found. The same conclusion was reached in an independent
analysis (W. T. Rawlins, personal communication, 1989)
which used least squares spectral fitting. These results
suggest an upper limit to the hot band intensity of around
10% of the total, based on the approximate contribution from
noise ar . other sources of scan-to-scan and detector-to-
detector spectral variation. The spectral variations may
reflect detector noise, as well as possible systematic prob-
lems related to detector nonlinearity (see section 5.3) and
calibration uncertainties.

$.2.2. Discussion. The absence of observable NO hot
bands produced by the auroral N(?D) + O = NO(v) + O
mechanism is consistent with the modest auroral intensities
in these scans (<40 kR at 39{.4 nm) combined with obscu-
ration by the cold band radiation (which is especially strong
in limb views) and instrumental noise. Using results from
HIRIS [Rawlins et al., 1981} and the Field-Widened Inter-
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ferometer experiment [Espy ef al., 1988), the NO hot band
radiance anticipated for this auroral intensity would be
around 2 X 10~° W cm~2 sr~!. This is half of the maximum
possible hot band radiance in SPIRIT 1 estimated in the
previous section.

Also found in the Field-Widened Interferometer spectra
are weak band heads resulting from highly excited rotational
states. The signal-to-noise level in the current SPIRIT 1
spectra is too poor to reveal these features. However, it may
be possible to improve the signal-to-noise level somewhat by
averaging and/or more sophisticated processing of the inter-
ferograms.

A large data base from previous experiments is available
on spectrally unresolved Av = 1| radiance in the thermo-
sphere. Reidy et al. [1982) and Ulwick et al. [1985) have
discussed the results from several high-latitude rocket flights
in 1973-1974 as well as from the 1980 Energy Budget Andoya
rocket probe. They concluded that in weak aurorae the
N(®D) mechanism makes a small contribution compared to
collisional excitation of ground-state NO by atomic oxygen.
This conclusion is also consistent with the results from
SPIRIT 1 and the Field-Widened Interferometer experiment
{Espy et al., 1988].

NO emission intensities observed in previous experiments
have been quite variable but typically are larger than those
found in SPIRIT 1. The variations can be caused by differ-
ences in O atom density, NO density, kinetic temperature,
or some combination of the three. To assess these possible
effects, a model calculation was performed using the O atom
excitation mechanism employed by previous investigators
{Zachor et al., 1985; Caledonia and Kennealy, 1982). The
calculation employed the vibrational deactivation rate con-
stant k, from Zackor et al. [1985), which agrees with the
measurements by Fernando and Smith [1979), together with
kinetic temperature and atomic oxygen profiles from the
MSIS-86 model [Hedin, 1987]. The atomic oxygen profile
from MSIS-86 is very similar to that assumed by Zachor for
SPIRE. However, the assumed temperature profile is signif-
icantly cooler in SPIRIT 1 in accord with the lower T. (see
section 3.1), and resuits in a reduced rate of collisional
excitation.

The resulting NO density profile is shown in Figure t1.
Due to the relatively cool temperatures the calculated NO
density is only a factor of 2 below Caledonia and Kennealy’s
““median’’ profile (Caledonia and Kennealy, 1982] that fits
the SPIRE data. This factor-of-2 difference may not be
significant due to uncertainties in the actual atomic oxygen
and temperature profiles and in the SPIRIT 1 absolute
calibration. In any case, it is clear that Caledonia and
Kennealy's **auroral” profile, which is an order of magni-
tude larger still, is highly inappropriate for the SPIRIT 1
conditions.

The inferred NO density in SPIRIT | is qualitatively
consistent with corrclations between NO production and
solar and geomagnetic activity [fwagami and Ogawa, 1987}.
The SPIRIT 1 experiment was flown during a period of
relatively low solar activity, and the geomagnetic activity
indices were moderate despite the presence of the aurora. A
full understanding of thermospheric NO density and radi-
ance variations will require a comprehensive survey of
observations combined with model calculations of NO pro-
duction and transport.
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5.3. Kinetic Temperature Profile

Kinetic temperature profiles extracted from CO, », and
NO 5.3-um spectra are shown in Figures 12 and 13, respec-
tively. The two CO, calculations correspond to T, = T
(LTE conditions, hot bands included) and T, = 0 (hot bands
excluded). Also shown in these figures is the MSIS-86 model
[Hedin, 1987] profile calculated for the conditions of the
SPIRIT 1 flight. The data points are the limb temperatures
extracted from individual scans. By comparing the data
points with the smooth limb temperature curve, the uncer-
tainty in the limb temperature profile can be estimated.
Essentially the same uncertainty applies to the local temper-
ature profile. This uncertainty is indicated in the figures by
the error bars centered around the local temperature curve.
In all cases the local temperature curve resembles the limb
temperature curve except for being displaced upward by ~7
km, which is approximately half the typical NO and CO,
emission scale heights. This is in accord with (4).

Below 125 km the inferred kinetic temperatures from both
CO, calculations are well above the MSIS-86 model, but this
is expected since the inversion method assumes opticaily
thin conditions, which do not apply in limb views at these
altitudes. Above 127 km the T, = 0 (Figure 12a) and T, =
T (Figure 12b) profiles gencrally bracket MSIS up to 160 km,
where the data are noisy and the background level is
comparable in size to the CO, signal. The T, = 0 tempera-
tures are higher than the 7, = T temperatures since the
omission of the hot bands makes the spectra narrower,
requiring ahigher kinetic temperature to account for the
observed width.

With currently accepted mechanisms for CO, hot band
excitation, atmospheric radiance codes [Degges and Smith,
1977; Sharma et al., 1989] predict vibrational temperatures
for most CO, vibrational states to be of the order of 200 K.
This would lead to extracted kinetic temperatures better
represented by the T, = 0 curve than by the T, = T curve.
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However, this behavior is the reverse of what is found when
comparing the SPIRIT 1 and MSIS profiles in Figures 12a
and i256. Even at around 130 km, where optical thickness
effects are absent and the signal-to-noise ratio is still good,
the MSIS curve is slightly closer to the T, = T result.
The high apparent temperature profile could be caused by
a systematic error, such as in the wavelength response or
incomplete background subtraction (leading to excessive
values of ¢?), or, altermatively, somewhat stronger hot bands
than are predicted by current models. Comparisons of atmo-
spheric radiance code simulations with available specira,
particularly the high-resolution spectra from SPIRIT 1, are
under way to address this question. If elevated hot baud
intensities are confirmed, the possibility of a contribution
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from an auroral excitation source, mentioned in section
5.1.2, must be considered.

At sufficiently low atmospheric densities, rotation-
translation equilibrium may break down, in which case the
band shape would not accurately refiect the kinetic temper-
ature profile. Below 150 km the gas kinetic collision rate
exceeds the Einstein coefficient for CO, », emission by at
least an order of magnituce. Thus unless rotational equili-
bration in CO, were slower than 0.1 of the gas kinetic rate,
which seems unlikely, rotation-translation disequilibrium
would occur only at higher altitudes.

The NO data do not suffer from problems of optical
thickness or sensitivity to hot band vibrational temperatures
and yield a local temperature profile quite close to MSIS;
however, the error bars are very large. The scatter cannot
merely be due to radiance fluctuations, which cancel out
when the variance is taken, or detector noise, which is small
in the lower-altitude scans. The best expianation for the
scatter involves interference from the strong CO; » emis-
sion, which may have contributed photon statistical noise
and, in the presence of detector nonlinearity, caused phase
and amplitude distortion in the interierograms. Indeed,
anomalies can be seen in the phase spectra, particularly at
tangent heights below 120-130 km.

Previous attempts to extract thermospheric temperature
profiles from CO, », and NO 5.3-um bands have been made
using SPIRE data [Zachor et al., 1985; Caledonia et al.,
1985] and encountered similar scatter and background prob-
lems. While the concept of using IR spectral shapes to
extract T and T, profiles remains promising, better quality
spectra are required for the accuracy needed to cnitically test
current models.

6. SUMMARY

Spectral limb radiance data for CO; », and NO 5.3-um
emissions obtained in the SPIRIT 1 rocket experiment have
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been analyzed. The data cover auroral intensities from
several kilorayleighs to over 100 kR at 391.4 nm, and tangent
heights above ~70 km at hi~h latitudes (60°-65°N). Volumet-
ric emission and kinetic temperature profiles were obtained
using linear least squares inversion procedures. The main
conclusions are as follows:

1. The CO, », emission intensity agrees well with pre-
vious observations in quiet as well as auroral atmospheres.

2. The NO emission intensity is smaller than that typi-
cally observed ~t high latitudes, due mainly to a low ther-
mospheric temperature. A model calculation leads to a
profile of NO density around half of the ‘‘median’ profile of
Caledonia and Kennealy [1982], subject to the considerable
uncertainties in the atomic oxygen profile and the absolute
calibration.

3. A smooth kinetic temperature profile derived from the
NO band shape agrees closely with the MSIS-86 model,
being well within the ~=100 K scatter of individual data
points. The results from the CO, band are more difficult to
interpret but may suggest higher-than-predicted vibrational
or kinetic temperatures.

4. NO hot bands associated with the auroral N(2D) + O,
mechanism are not visible, leading to a hot band radiance

upper limit of 4 x 10~° W/sr at 391.4-nm intensities below 40

kR. This is compatible with previous observations.
Further analysis of these and other emission features
observed in the SPIRIT 1 experiment is in progress.

Acknowledgments. The authors are grateful to Tony Ratkowski
of the Geophysics Laboratory (GL), who acted as field director for
the SPIRIT 1 program, as well as the many people involved in the
data reduction, calibration, and analysis, including Ed Richards, Bill
Grieder, and Brian Sullivan of Boston College, Peter Dybwad of
Utah State University (Stewart Radiance Laboratory), W. T. Raw-
lins of Physical Scicnces, Inc., and David Robertson of Spectral
Sciences, Inc. The SPIRIT 1 atmospheric measurement program
was conducted by GL with instrumentation developed and flown by
Utah State University and Space Data Corp. The experiment and al!
subsequent postflight data analysis were supported by the Defense
Nuclear Agency. The continued support and encouragement of
Arman Mardiguian, Kcn Schwartz, and Leon Wittwer have been
vital and greatly appreciated. The work at Spectral Sciences was
funded under Air Force contract F19628-87-C-0130.

The Editor thanks G. E. Caledonia and another referee for their
assistance in evaluating this paper.

REFERENCES

Adler-Golden, S. M., and D. R. Snith, Identification of 4 to
7-quantum »; bands in the atmospheric recombination spectrum
of ozone, Planet. Space Sci., 38, 1121, 1990.

Adier-Golden, S. M., M. W. Matthew, D. R. Smith, and A. J.
Ratkowski. The 9- to 12-um atmospheric ozone emission ob-
served in the SPIRIT 1 experiment, J. Geophys. Res.. 95, 15,243,
1990.

Brown, C. W., and D. R. Smith, High-resolution spectral reflec-
tance measurements on selected optical black baffle coatings in
the 5- to 20-um region, Proc. Int. Soc. Opt. Eng., 1331, 210, 1990.

Caledonia, G. E.. and }. P. Kennealy, NO infrared radiation in the
upper atmosphere, Planet. Space Sci., 30, 1043, 1982.

Caledonia, G. E., B. D. Green, and R. M. Nadile, The analysis of
SPIRE measurements of atmospheric lirb CO; (1) fluorescence,
J. Geophys. Res., 90, 9783, 198S.

Degges. T. C., and H. J. P. Smith, A high altitude infrared radiance
model, Rep. AFGL-TR-77-0271, Geophys. Lab., Hanscom AFB,
Mass., 1977. (Available as NT/S ADA059242 from Natl. Tech.
Inf. Serv., Springfield, Va.)

Dybwad, J. P., and R_ }. Huppi. SPIRIT ( post-flight calibration,

11,329

Rep. SRL-87-2, Utah State University/Stewart Radiance Lab.,
Bedford, Mass., 1987.

Dybwad, J. P., R. J. Huppi, R. E. McKenna, D. P. Saletnik, B. J.
Thomas, and V. Griffiths, Report on a rocket-borne, telescoped
Fourier transform spectrometer operating at 17K, Proc. SPIE
Int. Soc. Opt. Eng., 787, 114, 1987.

Espy. P. J., C.-R. Harris, A. J. Steed, J. C. Ulwick, and R.
Haycock, Rocketbomne interferometer measurement of infrared
auroral specira, Planei. Space Sci., 36, 36, 543, 1982.

Ferando, R. P., and 1. W. Smith, Vibrational relaxation of NO by
atomic oxygen, Chem. Phys. Len.; 66, 218, 1979.

Hedin, A. E., MS1S-86 thermospheric model, J. Geophys. Res., 92,
4649, 1987. .

Iwagami, N., and T. Ogawa, Thermospheric NO profiles observed
at the diminishing phase of solar cycle 21, Planet. Space Sci., 35,
191, 1987.

Mertz, L., Auxiliary computation for Fourier spectrometry, Infra-
red Phys., 7, 17, 1967.

Rawlins, W. T., G. E. Caledonia, J. J. Gibson, and A. T. Stair, Jr.,
Infrared emission from NO (Av = 1) in an aurora: Spectral
analysis and kinetic interpretation of HIRIS measurements, J.
Geophys. Res., 86, 1313, 1981,

Reidy, W. P., T. C. Degges, A. G. Hurd, A. T. Stair, Jr.,and J. C.
Ulwick, Auroral nitric oxide concentration and infrared emission,
J. Geophys. Res., 87, 3591, 1982.

Rodgers, J. W., A. T. Stair, Jr., N. B. Wheeler, C. L. Wyatt, and
D. J. Baker, LWIR (7-24 um) measurements from the launch of
a rocketborne spectrometer into a quict atmosphere (1974), Rep.
AFGL-TR-0113, Environ. Res. Pap. 597, Geophys. Lab.,
Hanscom AFB, Mass., 1977.

Rothman, L. S., et al.,, The HITRAN database: 1986 edition. Appl.
Opt.. 26, 4058, 1987.

Sharma, R., and P. P. Wintersteiner, Role of carbon dioxide in
cooling planetary thermospheres, Geophys. Res. Lest., 17, 2201,
1990.

Sharma, R., A. J. Ratkowski, R. L. Sundberg, J. W. Duff, L. S.
Bemstein, P. K. Acharya, J. H. Gruninger, and D. C. Robertson.
The strategic high-altitude atmospheric radiation code (SHARC)
user .nstructions, Rep. AFGL-TR-89-0062, Geophys. Lab.,
Hanscom AFB, Mass., 1989.

Smith, D. R., Evidence of off-axis leakage radiance in high-altitude
IR rocketbomne measurements, Proc. SPIE Ini. Soc. Opt. Eng..
967, 30, 1988.

Smith, D. R., A. J. Ratkowski, S. M. Adler-Golden, M. W.
Matthew, W. F. Gneder, and E. Richards, SPIRIT 1 final flight
report, Rep. AFGL-TR-88-0125. Geophys. Lab., Hanscom AFB,
Mass., in press, 1990.

Stair, A. T., Jr., . Pritchard, 1. Coleman, C. Bohne, W. Williamson,
J. Rogers, and W. T. Rawlins, Rocketbome cryogenic (10 K)
high-resolution interferometer spectrometer flight HIRIS: Auroral
and atmospheric emission spectra, Appl. Opi., 22, 1056, 1983.

Stair, A. T., Jr., R. D. Sharma, R. M. Nadiie, D. J. Baker, and
W. F. Grieder, Observations of limb radiance with cryogenic
spectral infrared rocket experiment, J. Geophys. Res., 90, 9763,
1985.

Ulwick, J. C., K. D. Baker, A T. Stair, Jr., W. Frings, R. Hennig.
K. U. Grossman, and E. R. Hegblom, Rocket-borne measure-
ments of atmospheric infrared fluxes, J. Atmos. Terr. Phys., 47,
123, 1985.

Wolfe, W. L., and G. ). Zissis (Eds.), The Infrared Handbook.
Office of Naval Research, Department of the Navy, Washington,
D.C., 1978.

Zachor. A. S., R. D. Sharma, R. M. Nadile, and A. T. Stair, Jr.,
Inversion of a spectrally resolved limb radiance profile for the NO
fundamental band, J. Geophys. Res., 90, 9776, 198S.

7'S. M. Adler-Golden and M. W. Matthew, Spectral Sciences, Inc..
99 South Bedford Street, #7, Burlington, MA 01803.

D. R. Smith, Geophysics Laboratory, Hanscom AFB, Bedford,
MA 01731,

(Received August 27, 1990;
_ revised November 29, 1990,
accepted January (S, 1991 )




Appendix G

Identification of 4- to 7-Quanturm v3 Bands in the
Atmospheric Recombination Spectrum of Ozone

233




The U. §. Government is suthorized t0 reproduce and sell this report. Permission
for further reproduction by others must be obtained from the copyright owner.

0032-0633r90 $3.00 + 0 00
« 1990 Pergamon Press plc

Plunct Space Sci.. Vol . No. 9, pp. 11211132, 1990
Prinied 10 Great Britan

IDENTIFICATION OF 4- TO 7-QUANTUM v; BANDS IN
THE ATMOSPHERIC RECOMBINATION SPECTRUM
OF OZONE

S. M. ADLER-GOLDEN
Spectral Sciences, Inc., 99 Suth Bedford Street, Burlington, MA 01803-5169, US.A.

and

D. R. SMITH
Geophysics Laboratory, Hanscom AFB, MA 01731, US.A.

(Received 10 April 1990)

Abstract—Spectra of ozone hot band chemiluminescence obtained in the SPIRIT | rocket experiment
have been analyzed with the aid of laboratory data and vibrational energy and band contour ;. redictions.
Band centers and energies for previously unreported vibrational states of ozone having up to seve . Juanta
have been derived. The assignments are supported by the predictions of an improved Darling-Dennison-
type energy level formula which behaves realistically towards dissociation. Bands associated with bending
as well as stretching excitation appear due to an accidental vibrational resonance and a non-mode-specific

population distribution.

1. INTRODUCTION

Emission from high-lying vibrational levels of ozone
in the v, band is an important source of i.r. radiation
in the upper atmosphere in the 10-12.5 um (800-1000
cm~"') region (Stair er al., 1985). These levels are in
a steady-state population distribution resulting from
O+ O, + M recombination, forming ozone at energies
near the dissociation limit, followed by collisional and
radiative cascade to lower levels. A thorough under-
standing of this hot band chemiluminescence is re-
quired for accurate atmospheric background radiance
modeling.

Spectroscopic information on high-lying ozone
vibrational states has previously been obtained from
laboratory studies of i.r. absorption (Barbe er al.,
1974 ; Steinfeld e al., 1987), i.r. emission (Rawlins
and Armstrong, 1987; Rawlins er al., 1987) and u.v.
resonance Raman scattering (Imre er al., 1982 ; Imre,
1984). These data have led to band center estimates
for up to five-quantum states with an accuracy of
several cm ™', as well as rough (10-20 cm ' accuracy)
energy estimates for up (o seven-quantum states
observed in the Raman spectrum.

Atmospheric emission spectra of ozone v, hot
bands have heretofore provided very limited infor-
mation due to resolution, signal-to-noise, or other
problems. Recently, atmospheric limb spectra with
improved resolution {(~4 cm ') have been obtained
from a rocketborne interferometer probe, SPIRIT 1,
which reveal new spectral features in the hot bands

(Adler-Golden et al., 1990). An analysis of these and
other data on ozone is presented here which has
resulted in energies and assignments for ozone
vibrational states not previously observed with up to
seven vibrational quanta and energies as high as
~6350 cm~'. Support for the analysis is provided
by the very good agreement with predictions of an
improved Darling-Dennison-type energy level tor-
mula (Adler-Golden et al., 1990) derived from i.r.
absorption and Raman spectra.

With reasonably precise (+2-4 cm~') hot band
centers and assignments in hand, and using estimated
band emission intensities, relative vibrational state
populations may be derived from spectral simulations.
From these populations, insight into the kinetics of
vibrationally excited ozone may be obtained. Some
general conclusions regarding the vibrational relax-
ation mechanism are drawn; a detailed model will
await further investigation.

2. DATA

2.1. SPIRIT 1 spectra

The atmospheric emission spectra of ozone
obtained in the SPIRIT 1 rocket experiment are
described elsewhere (Adler-Golden er al., 1990). In
brief, the spectra were taken with a telescoped, cryo-
genically cooled Michelson interferometer viewing
tangent heights of 70-80 km. The hot band spectra
analyzed here were taken through a bandpass filter
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which transmitted the 780-980 cm~' region; the
unapodized resolution is 4 cm~'. The interferograms
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ations during the scan (Grieder ef al., 1987), which
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to-scan variations in the apparent resolution. Better
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obtained when an apodization window was applied.
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1 is a triangularly apodized spectrum corrected for the
instrument and bandpass filter response. Figure 2 is
the unapodized, uncalibrated spectrum, and shows
the rolloffs in the filter transmission below ~800cm !
and above ~970 cm~'. Between these points, the
system response curve is flat to within + 10%. Except
for faint 8 cm ™' oscillations in the wings of the un-
apodized spectrum, which arise from the sidelobes of
the sin (x)/x function, the spectral structure is all real,
as has been verified using apodized spectra further
processed with resolution-enhancement techniques
(Howard, 1983 ; Zachor et al., 1987).

Below around 820 cm ™!, where the emission begins
to rise, CO, bands may contribute. The peak near 791
cm™ ' is the Q branch of the CO, (11101)-(10002)
band [in HITRAN notation (Rothman er af., 1987)]
at 791.5 cm™ ', and provides a wavelength calibration
point. Above 810820 cm ™', the spectrum scales uni-
formly with tangent height (Adier-Golden er af.,
1990), and is assigned entirely to ozone.

2.2. Other ozone spectra

To better understand the data from SPIRIT 1, we
also examined a long-path (~60 atm-cm) absorption
spectrum of ozone taken by Damon et al. (1981). A
portion of their spectrum is reproduced in Fig. 3,
which shows the 4900-4930 cm~' region at a res-
olution of 0.04 cm™~'. (The y axis has been truncated,
so the bottom of each trace corresponds to 60% rather
than 0% transmission.) Partially resolved rotational
structure from weak high-overtone or combination
bands of ozone not previously reported may be seen.
Much stronger ozone bands are observed at lower
frequencies.

An approximate analysis of portions of the Damon
et al. spectrum was performed using synthetic band
contours generated as described in Section 3.3. As
noted by Barbe ef al. (1974), the high-overtone and
combination bands have a low, clongated P branch
and a sharp, compressed R branch with an abrupt
cutoff. The R branch peaks are predicted to occur
typically 10 cm~' beyond the band center, with the
cutoffs occurring typically 3 cm~' beyond the peak.
Inspection of Fig. 3 reveals an R branch in each of
the top and bottom traces. The band centers are esti-
mated as 4895+ 1 and 4918+ 1 cm ™', and are assigned
respectively to the (311) and (005) bands. Band
centers were similarly derived for the much stronger
(103) and (1 1 3) combination bands which appear at
lower frequencies (see Table 1).

The resonance Raman spectra obtained by Imre
and co-workers also deserve a mention. Approximate
energies obtained from their low-resolution spectrum
(8 A FWHM) appear in Imre ¢r al. (1982). Sub-
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TABLE 1. ENERGIES AND BAND CENTERS FOR OZONE VIBRATIONAL STATES

Energy (cm™') Band center (cm™")

State _ Calc. Obs. Current Calc. Obs. Current
003 3045 3046+ 1* 3046 987 987 + 3t 988
004 3999 4000 954 952 + 3% 9541
005  4910§ 911§

49189 4918+ 1| 4919 9199 916 + 3t 919
311 4902§
48949 4895+ 1} 4894 895eeC 894**
006 5767 5761+ 101t 5771 841§
8499 852
8732*¢ 877
102 3085 3084+ 1* 3083 975 971+ 3¢ 972
103 4025 4019+ 1} 4020 940 939 +3¢% 9373
104 4925 4926 900 904 + 3t 9063
105 5774 5778 849 8523
013 3695 3697+ 1* 3697 970 971

014 4631 4633 936 936
015 5519 5517 888 8841
016 6342 6345 823 8283
112 3743 3743 958 958
113 4663 46591 1) 4660 920 917
114 5537 5536 874 8761
115 6351 6353 814 8173

* Barbe er al. (1974) ; absorption.

1 Rawlins and Armstrong (1987) ; emission.

% Q branch identified in SP/RIT | spectrum.

§ Excludes (311)-(005) resonance.

* Includes (311)-(005) resonance.

i Contour analysis of Damon er al. (1981) absorption spectrum.

** Crossover band.

1t Imre (1984) ; Raman spectrum.
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sequently, a higher-resolution spectrum (1 A FWHM)
was taken which showed that many of the features
found in the low-resolution spectrum consist of
clumps of several vibrational bands. The energies of
the individual bands in the 1 A spectrum are reported
in Imre (1984), and were used in deriving the improved
energy level formula (see Section 3.2).

3. ANALYSIS AND RESULTS

3.1. Analysis overview

As found previously in the COCHISE laboratory
spectra (Rawlins and Armstrong, 1987; Rawlins ef
al., 1987), below six quanta the v, hot bands are
dominated by transitions from the dyads of near-
resonant states (00v) and (10v—1). These states
correlate with the symmetric and antisymmetric com-
binations of pure local modes containing all of
the vibrational energy in one bond, and approach
degeneracy in the high r; limit. Given their closeness
in energy, the states within each dyad are cotlisionaily
equilibrated to the kinetic temperature. The promi-
nence of these essentially pure v, states in the spectrum
seems to be due to a combination of a “colder” v,
mode, the ~vy-scaling of the Einstein coefficients for
emission, and the large v, anharmonicity, which
enhances the visibility of these bands by spacing them
widely along the wavelength axis.

Trial values for up to five-quantum band centers
were based on the COCHISE (Rawlins and Arm-
strong, 1987) results and on our analysis of the
Damon et al. (1981) absorption spectrum described
in Section 2. In addition to establishing the locations
of the (005), (311), and (11 3) states, the Damon e
al. spectrum led us to revise the location of the (103)
state from 4026+ 1 cm™ ' reported by Barbe er al.
(1974) 10 4020+ ) cm~ ', which in turn affected our
estimate for the (104)-()103) band center. Final
values for the band centers were determined by locat-
ing their Q branches in unapodized SPIRJT ) spectra
where possible, and confirming the Q branch assign-
ment with a spectral simulation. The simulations,
described below, verified that these as well as most of
the other peaks in the SP/RIT | spectrum are due to
Q branch rather than P or R branch maxima.

" However, the latter tend to dominate at lower reso-
lution.

In assigning the hot bands for six or more quanta,
we initially considered only the dyads mentioned in
the first paragraph. However, since there are more
features in the observed spectrum than can be
accounted for by these states alone. we expanded the
list of candidate states to include the bending-excited
states (0 1¢) and (1 1 ¢ —1). Trial values for the band

S. M. ApLer-GoLDen and D. R. SMITH

centers were obtained from the six- and seven-quan-
tum energies given by the formula (Adler-Golden er
al., 1990). This and related vibrational energy for-
mulas are discussed in Section 3.2 below. As in the
case of the lower-energy bands, final values for the
centers were determined by tentatively locating the 0
branches and confirming these assignments with a
spectral simulation.

The band centers and vibrational energies derived
from this analysis are summarized in Table 1. Eight
bands whose isolated Q branches were observed in
the SPIRIT 1 spectrum appear in the *“‘Current”
column of the table with the symbol }; their centers
are accurate to within ~2 cm™ ' or better.

1n addition to these observed bar:ds, the “*Current™
column contains our best estimates for 10 other bands
in this spectral region associated with states having
v, = 0or | and v, = 0 or 1. These bands either do not
have a clearly distinguishable Q branch [e.g. bands
assoctated with the (005) and (31 1) states] or else
are obscured by another band. In most cases other
data on the band center or the upper state energy are
available (see the “Obs.” columns). For three states.
(006). (014) and (112}, no reliable information is
available, and their encrgies have been estimated using
formula predictions and the energy of their dyad
counterpart as guides. The estimated uncertainty for
these band centersis 34 cm ™"

The spectral simulations were generated on a 1
cm~ ' grid from a set of assumed band centers and
band contours. Due to the modest resolution of the
SPIRIT | spectra (4 cm~ ' unapodized) and the lack
of data on rotational constants for the high-lying
vibrational states of ozone, it was deemed neither
necessary nor feasible to generate highly accurate
vibration-rotation lines for each band. Instead, the

_band contours were derived using approximate

vibration-rotation lines from a symmetric-top model,
described in Section 3.3.

3.2. Energy level formulas

The standard formula for ozone vibrational ener-
gies is a quadratic expression containing Darling-
Dennison coupling. Using parameter values obtained
by Barbe e7 .l. (1974), up to four-quantum states are
fit to within several cm~'. However, many of the
approximately one dozen five- to seven-quantum
states cited by Adler-Golden er al. (1990) which
appear in the Raman spectrum (Imre, 1984) are over-
predicted by tens of cm ',

Recent variants of the quadratic Darling-Dennison
formula have incorporated a slightly different form
for the Darling-Dennison coupling term (Benjamin
et al.. 1983). as weil as modified parameter values
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chosen to fit the Raman data (Lehmann, 1984 ; Kell-
man, 1985). The newer formulas provide better overall
fits, but still tend to overpredict the energies of the
high v, states, which correlate with large-amplitude
local-mode stretches. This indicates a flattening of the
ozone potential surface along the bond coordinates
when compared with a Morsé oscillator descripiion,
to which these quadratic formulas best correspond.

The breakdown in the quadratic formulas for ozone
vibrational energy is not at all surprising when one
considers the magnitude of the dissociation energy,
D., which may be identified with the maximum energy
in the (00v) and (10v) sequences. The Barbe et al.
formulas predicted that D, is roughly twice the exper-
imental (Stull er al., 1971) D, of 1.05+0.02 eV (8500
cm™'), and the newer formulas perform only slightly
better.

An improved vibrational energy formula for ozone
based on a higher-order expansion is called for. This
approach potentially introduces a large number of
empirical spectroscopic constants (i.e. fitting par-
ameters) and, depending on the particular set selected,
can lead to non-unique predictions. To minimize these
difficulties, we used a combination of theoretical argu-
ments, detailed below, and trial and error to develop
an improved formula containing the fewest additional
parameters while still giving a good fit to available
vibrational energy data as well as the correct D,. This
formula is generated by multiplying four of the Barbe
et al. anharmonic constants by a third-degree poly-
nomial in the v, resulting in an overall degree of five.
The polynomial, p, is given by

p=coto i x+ex?4oy3x>, x=v,4+0,4c,0,-3 (1)

and multiplies the constants X,,, X,,, Xy, and 7
(the Darling~Dennison coupling constant) which
characterize the anharmonicity in the stretching co-
ordinates. The number of new fitting parameters
involving the stretching quanta v, and v, is only four
since the quanta are summed. An extra parameter ¢,
is included to improve the fit of high vibrational levels
containing bending quanta ; ¢, essentially scales v, to
an equivalent number of stretching quanta in com-
puting the variable x in p. The constant *“—3" in x
was included for convenience to make the value of ¢,
close to unity.

The improved formula, while largely empirical, was
constructed with theoretical considerations in mind.
Lehmann (1983) and Kellman (1985) have shown that
a coupled Morse-oscillator Hamiltonian for a tri-
atomic molecule can be algebraically transformed to
the normal-mode, quadratic Darling-Dennison form.
In particular, Lehmann showed that transformation
of the Child and Lawton (1981) model Hamiltonian

1125

TABLE 2. ENERGY LEVEL FITTING PARAMETERS FOR BQUATION (1)

Parameter Fit1* Fit 11t Fit 11}
Co 1.0 1.0015 1.0 (fixed)
¢ 0.0016 0.0060 0.00289
¢ 0.0020 0.0026 0.00118
cy 0.0006 0 (fixed) 0.00033
[ 1.2 2.21 191
D, (eV) 1.05 1.22 1.13

* From Adler-Golden er al. (1990), fit to i.r. and Raman
data, constrained D, ; w,, X,;, ¥ from Barbe er al. (1974).

t Least-squares fit to i.r. and Raman data, unconstrained
D,; w;, X,,, y from Barbe e1 al. (1974).

{ Least-squares fit to i.r. and Raman data including
SPIRIT 1 bands, unconstrained D,; w, = 11358, w, =
7146, w,= 10889, X, = -528, X,;= 07, X;;=
—-10.5, Xy, = -352, X;3=—-163, X,,=-875, y=
—-27.37, incm™ .

results in fixed ratios among the anharmonic con-
stants X,,, X3, X;; and y, and that their absolute
values scale with the Morse parameter w.x.. The pre-
dicted anharmonic constant ratios are in approximate
agreement with those computed from the Barbe et al.
constants for ozone. In this context, the use of the
factor p in the current energy formula for ozone may
be thought of as generating a new set of anharmonic
“constants” which are maintained in these same
ratios, but which increase steadily with increasing
vibrational energy to represent a flatter Morse poten-
tial with a larger w.x, and thus a reduced D..

Initial values for ¢, through ¢, were derived by
manual trial-and-error fits to the available Raman
and i.r. absorption data, while constraining D, to
within 100 cm ' of the measured value. The resulting
energies (Table 1) and fitting parameters (Table 2, Fit
1) have been reported previously (Adler-Golden et al.,
1990).

Later, when the SPIRIT | bands had been ten-
tatively assigned. two more fits were developed, this
time using a weighted, non-linear least-squares fitting
routine with no D, constraint. The weights were
assigned to yield an accurate fit (to within tenths of
cm™') to the low-energy states and a less precise fit
(within the 10 cm ™' experimental uncertainty) to the
Raman data. In the first fit (Fit II) up to five quantum
states from i.r. measurements (absorption and
SPIRIT 1) as well as the six- and seven-quantum
Raman states were included; c,, which was poorly
determined, was set to zero. The D, of the resulting fit
turned out to be 1.22 eV, somewhat above the
measured value. In the second fit (Fit III) the new
six- and seven-quantum energies derived from SP/RIT |
observations (reported in the *“Current” column of
Table 1) were included, and all spectroscopic con-
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stants except for c,, which in this case is redundant,
were allowed to vary. The D, of the resulting fit, 1.13
¢V, is closer to the measured value.

The three energy level fits will be compared in
Section 4; their important characteristics may be
summarized briefly. All of the fits are essentially equiva-
lent to the quadratic Barbe er al. formuia below five
quanta. This is because ¢, is unity or close to unity,
and the sum of the remaining terms in p is small at
low numbers of stretching quanta, so p is close to
unity. In Fit [If the spectroscopic constants were
allowed 1o vary, but they nonetheless turned out to
be very similar to the Barbe et al. constants used in
Fits I and I1. The predictions of all three fits for up to
six-quantum states agree to within typically several
cm™'. The seven-quantum predictions show a wider
spread, however, correlating with the differences in
dissociation energies.

3.3. Band cortour model
In a non-rigid symmetric top approximation, the
vibration-rotation energies are given by

Ep = BI(J+ D)+ (A-B)K?—AK*
~A;JU+ DK =AJH(I+1)E ()

with B = (B+ C)/2. The line intensities are derived
from the Hoenl-London factors for A-type bands
combined with v*scaling, which is appropriate for an
emission spectrum in units of watts per cm™'. In this
approximation all off-diagonal matrix elements,
including Coriolis coupling elements, of the rotational
Hamiltonian in the symmetric-top, uncoupled an-
harmonic oscillator basis set are neglected. The
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rotational constants 4, B, and C are given to first
order in vibration-rotation coupling by

A= Ao+ﬂfv| +I;v; +¢§v,

3)

with similar equations for B and C. Here the v, are the
quantum numbers of the uncoupled vibrational states.
Ao, By, C, refer to the ground state and their values
are listed (Steinfeld ez al., 1987) ; the as are taken from
Barbe et al. (1974). The cenrrifugal distortion terms A
in equation (2) are taken to be vibration-independent,
and are fixed to the ground state values (Pickett ef al.,
1985).

The band contours were generated by calculating
the vibration-rotation transitions and intensities,
binning to the nearest wavenumber, and smoothing
slightly. In generating synthetic spectra to be com-
pared with SPIRIT 1 data, the instrument function
[e.g. sin(x)/x for unapodized interferograms] was
convolved with the band contours.

Results for the (001) band are shown in Fig. 4,
along with an *‘exact™ spectrum generated from line
positions and intensities in the HITRAN line atlas
(Rothman er al., 1987). The excellent agreement vali-
dates the accuracy of the symmet-ic-top contour
approximation, at least for low vibrational levels.

Above one stretching quantum, the pure vibra-
tional part of the Hamiitonian contains Darling-
Dennison off-diagonal elements. Diagonalization
of the vibrational Hamiltonian leads to vibrational

eigenstates with rotational constants
A = Ag+ai{v,)+aj{v,) +ai{vy), @

etc. where ““( )" denotes expectation value. In the
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The main contributions are from the (004)-(00 3) and (103)—(1 02) bands. The vibrationa! Hamiltonian
is from Barbe ez al. (1974).

current work we have also included an off-diag-
onal matrix element of 11 cm~' which coupies the
(005) and (31 1) eigenstates in a subsequent diagon-
alization (see Section 4).

Equation (4) derives from equation (3) assuming
neglect of Darling-Dennison coupling terms involv-
ing rotational operators. This assumption is reason-
able according to the analysis by Flaud er al. (1980)
of the (200). (101), and (002) states. Flaud er al.
were able to discern only one non-zero coupling term
of this type multiplying the J? operator, with a very
small coecfficient (much smaller than the as). This
coupling term and others may therefore be neglected,
at least for moderate vibrational excitation.

A potential hmitation of equation (2) at high
vibrational energies arises from the neglect of Coriolis
interactions, especially between the (0 v, v) and
(1 ¢, r—1) states which lie very close in energy. To

_more critically assess the validity of this approxi-
mation, a “full” vibration-rotation calculation was
run on the (r,+t, =4) = (v,+v; = 3) transitions
with v, =0 using the asymmetric rotor program
developed by Pickett er al. (1985). In this calculation
all nine Coriolis- and Darling-Dennison-interacting
vibrational states were included, with appropriate
coupling eclements as well as high-order centrifugal
distortion terms. The resulting emission spectrum is
shown in Fig. 5, along with a calculation using
the symmetric-top approximation and the same
uncoupled band centers and Darling-Dennison
elements. The two spectra are in reasonable agree-
ment.

At higher energies, the (000) and (10v—1) states
lie even closer together. However, this is compensated
by a decrease in the Coriolis coupling operator
brought on by the Darling-Dennison resonance,
which is associated with increasing local-mode
behavior of the vibrational wavefunctions. Thus, we
believe that the current band contour approach will
remain reasonable even for high levels of vibrational
excitation.

3.4. Speciral simulations

3.4.1. Intensity constraints. If each of the 17
vibrational states listed in Table 1 were assigned an
independent population, there would be equally many
independent band intensities required for a synthetic
spectrum. It is much more sensible to reduce this
number using fixed population and band strength
ratios between thc (0 v, v) and (1 v, r—1) dyad
member states. That is, the bands of a given dyad are
treated as single, independent spectral components.
The (3 11) state is grouped with the (00 5) and (104)
states since it is assumed to be in resonance with
(005) (see Section 4). This results in a total of eight
components, which are listed in Table 3. In accord-
ance with the discussion in Section 3.1, the population
ratios within each component are given by the Boltz-
mann ratio at a mesospheric temperature taken as 180 K.

For completeness, two additional bands not
appearing in Table |1 have been included; these are
(311)-(310) and the corresponding crossover band
(005)~(310). The (310) energy is taken as 3963
cm ™', As is typical for bands associated with large v,
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TaBLE 3. COMPONENT POPULATIONS AND TRANSITION DIPOLES USED IN SYNTHETIC SPECTRUM

Relative
No. Component states population® Band P diest
1 (003)+(102) 1.5 (003)-(002) 25
(102)-(101) 1.7
2 004)+(103) 0.75 (004)(003) 30
(103)-(102) 22
3 005)+(311)+(104) 0.89 (005)-(004) 22
(005)-(310) 0.2
(31 1)-(004) 1.1
31310 0.4
(104)-(103) 27
4 006)+(105) 0.25 (006)005) 22
006)-(311) 1.1
(105-(104) 31
5 013)+(112) 0.94 013)-(012) 25
12111 1.7
6 ©014)+(113) 0.21 (014)-(013) 30
(113)-(112) 23
7 015)+(114) 0.21 ©015)-(014) 33
(114)-(113) 2.7
8 ©016)+(115) 0.20 (016)-(015) 34
(115)-(114) 3.1

* Total component population, from least-squares fit.
t Squared transition dipole relative to (00 1) band, from equation (5).

or v,, they are overlapped by other, much stronger
bands. and thus have little impact on the spectrum.

The band intensities within each component are
scaled using calculated transition dipole moments
based on a fit 10 an ab initio calculation (Adler-Golden
et al., 1985) which probed up to four-quantum states.
The fit, expressed in the uncoupled vibrational basis,
is given by

vy vy vjplr, vy t—1)/au.
= /c(0.06932 - 0.003¢, —0.0060, —0.0012) (5)

with all other dipole matrix elements set to zero. Equa-
tion (5) was used to generate relative transition dipole
moments, which are given in Table 3.

3.4.2. Procedure and results. Relative populations
for the eight independent components were initially
selected to give qualitative agreement with results
from previous data (Rawlins and Armstrong, 1987 ;
Rawlins er al., 1987) and models. The populations
and band centers were then refined by trial and error
within fairly narrow limits in order to improve the
agreement with the SPIRIT 1 spectrum. When the
band centers were finalized, a new set of populations
was derived from a least-squares fit to the unapodized
SPIRIT | spectrum in the 820-960 cm ~ ' range. The
results are shown in Fig. 6, where the synthetic and
observed spectra are compared. Figure 7 shows the
individual components which make up the synthetic
spectrum. The relative state populations from the

least-squares fit are given in Table 3.

The overall agreement between the calculated and
observed spectrum is encouraging, and supports the
band assignments in Table 1. At low wavenumbers,
the Q branches in the synthetic spectrum are some-
what less pronounced and the P and R branches are
more pronounced compared with the observed spec-
trum. These differences may partly reflect self-apo-
dization, etalon fringes or other instrumental effects,
but more likely involve shortcomings in the synthetic
contours for the six- and seven-quantum bands. Given
the lack of perfect agreement, the derived populations
in Table 3 are approximate. Precise error bars are
difficult to assign since some of the components (c.g.
components | and 5) are similar in shape and there-
fore strongly correlated. Also, we suspect that the
(015) and (114) populations have been under-
estimated since the (1 14) Q branch peak at ~875
cm ™' is missing in the synthetic spectrum. At lower
resolution, the agreement between the synthetic and
observed spectra improves.

4. DISCUSSION

4.1. O:one vibrational energies and band assignments
The analysis of atmospheric specisa taken in the
SPIRIT 1 rocket experiment, together with previous
laboratory spectra. has led to a consistent set of
vibrational encrgics and v, band centers for up to
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FIG. 6. COMPARISON OF OBSERVED AND SYNTHETIC UNAPODIZED OZONE SPECTRA.

seven-quantum vibrational states of ozone with accu-
racies of 2-4 cm~'. The agreement with the pre-
dictions of the Adler-Golden et al. (1990) energy level
formula is only slightly worse than this for all states
except (005) and (311) (see below). The six- and
seven-quantum energies are predicted to within 4
em™', and the splittings between the (Ov,v) and
(lv,v—1) dyad members are predicted even more
accurately. The (10 3) state energy is 5 cm ™' off, but
this is partly because the formula parameters had been
derived from a fit containing the energy value reported
by Barbe er al. (1974), which we now believe is around
6 cm™ ' too high.

The energies of the (005) and (3 11) states, whose
transitions to the ground state are found side-by-side
in the Damon e al. (1981) absorption spectrum (see
Fig. 3), differ from the formula predictions by unusu-
ally large amounts. The actual energy separation
between these states is ~ 24 cm ™', compared with the
much smaller separations of 3-10 cm ™' predicted by
formula Fits I-II1. This observation, and the sur-
prising strength of the (3 1 1) combination band, leads
us to infer a resonance between these near-coincident
states. Using the Adler-Golden ef al. (1990) formula
(Fit I) for the uncoupled energies, the effective coup-
ling matrix element is found to be ~11 cm~'. This
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leads to mixing coefficients in a 2:1 ratio, which is
indeed consistent with the estimated relative band
strengths in Fig. 3.

While a coupling matrix element of ~11 cm™'
seems large for two states which formally differ by
eight vibrational quanta, it is not unreasonable when
one considers the strong interaction between the
stretching modes. For example, the Darling-Dennison
resonance mixes the zeroth-order (311) and (113)
states, and the zeroth-order (005) and (20 3) states.
The (1 13) and (20 3) states differ by only two quanta,
and can be coupled in second order via cubic terms in
the normal mode potential expansion. Other possibly
observable states besides (00 5) and (31 1) could aiso
have chance energy coincidences. However, they
would typically differ by many bending quanta and
therefore couple much more weakly.

The coupling between the (005) and (311) states
weakens the “normal” (006)-(005) and (005)-
(004) bands and introduces *‘crossover” bands
(311)-(004) and (006)-(311) which have been
included in Tables | and 3 and in the synthetic
spectrum. Both the normal and crossover bands are
predicted to have atypical contours with degraded Q
branches. The crossover bands cannot be un-
ambiguously identified in the spectrum, but their
impact is significant since they contribute intensity
which otherwise would have to be accommodated by
the (114), (015), and (104) v, bands.

While it is difficult to prove conclusively that all
of the current band assignments in the SPIRIT 1
spectrum are correct, their agreement with the for-
mula band center predictions is a strong argument in
their favor. Table 4 compares the predictions of Fits
I-11T with the SPIRIT 1 assignments for bands with
observable Q branches. For up to six-quantum states
the total spread in predicted band centers is at most
6 cm ™' among all three fits, and we have obtained
similar levels of consistency using other types of
energy level formulas. This maximum spread is
smaller than the ~10 cm™' spacing of recognizable
peaks in the spectrum, which are mainly Q branches,
so most of them can be confidently identified. The
seven-quantum band center predictions vary over a
wider range, and one might argue that the current
assignments, which invoke v, (bending) excitation,
may not be the only ones possible. On the other hand,
the v, =0 bands (0 07) and (106) are predicted to
occur at much lower frequencies regardiess of the fit
(see Table 4), and are unlikely alternative candidates.

Additional considerations further reduce the ambi-
guity in the band assignments, such as the occurrence
of the bands in pairs corresponding to the v, = 0 and
t, = 1 dyad members {for example (016) and (1 1 5)].
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TABLE 4. COMPARISON OF PREDICTED BAND CENTERS (cm ')
FROM TaABLE 2 FiTs

SPIRIT |

Baod Fitl Fitll Fitlll  observed
(004)(003) 954 952 953 954
(103)(102) 940 938 939 937
(104)103) 900 897 900 906
(105)-(104) 849 85 855 852
(015)-014) 888 893 887 884
(114)-(113) 874 879 874 876
(016)~(015) 823 841 827 828
(115-(114) 814 831 818 817
(007)~006) 787 80l 803 —
(106)<(105) 783 797 799 —

Except for bands affected by the (005)—(311) res-
onance, the bands in the pair have nearly equal inten-
sities, Also, the spacing between them should agree
well with formula predictions, which depend only on
the dyad splittings and are extremely insensitive to the
parameters employed.

4.2. Ozone vibrational state populations and kinetics

An important conclusion from the analysis of the
SPIRIT | atmospheric hot band spectrum is the sig-
nificant population of bending-excited states in ozone
recombination. At four to five quanta their presence
is not obvious in the spectrum due to overlapping
v, = 0 bands, but at six and seven quanta the v, = |
states are clearly visible and their populations are com-
parable to the (006) and (105) states (see Table 3).

Earlier studies (Rawlins and Armstrong, 1987
Rawlins er al., 1987) examined the recombination
spectrum obtained in the cryogenic COCHISE facility
using microwave-discharged oxygen/argon mixtures.
Their analyses revealed up to five-quantum vi-
brational states, but found no evidence of bending-
excited states. OQur own preliminary simulations of
the COCHISE spectra suggest that significant v, = |
band contributions can be incorporated, especially
at the higher energies; however, the (011) band is
virtually absent. Additional simulations and the
examination of unfiltered SPIRIT 1 spectra (see
Adler-Golden er al., 1990), which cover higher fre-
quencies, would help characterize more accurately the
vibrational populations in COCHISE and atmo-
spheric spectra, and the effects, if any, caused by the
different experimental conditions.

The presence of high-energy bending-excited states
of ozone in the recombination spectrum is expected
from considerations of vibrational relaxation kinetics.
it is generally believed that the increased density of
states at high energies, even in small molecules, causes
vibrational state distributions to lose most mode-
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TABLE 5. COMPARISON OF OBSERVED AND MODEL VIBRATIONAL
STATE POPULATIONS

Relative population

Component 14 Obs.* Equation (6)

I 3 1.5 1.5

2 4 0.75 0.75
3 5 0.89 0.64
4 6 0.2s 0.27
5 4 0.94 0.75
6 5 0.21 0.43
7 6 0.24 027
8 7 0.20 0.18

* Least-squares fit to spectrum, from Table 3.

specificity, so that all vibrational states at a given
energy are comparably populated. In ozone the
decreasing energy gaps between the (v,v,v;) and
(v, v+ 1 vy;—1) states with increasing energy may
speed the conversion of stretching quanta into bend-
ing quanta, which is a key vibrational relaxation
mechanism at low energies (Steinfeld er al., 1987).

In line with these expectations, the relative state
populations derived from the SPIRIT 1 spectrum (see
Table 3) are found to correlate approximately with
the vibrational energy. The correlation is even better
with the total number of vibrational quanta, denoted
V, since the bending mode, which has the lowest fre-
quency, does appear slightly colder than the others.
This behavior suggests a simple, phenomenological
mode! in which the ozone molecules, formed by
recombination in states near the dissociation limit,
relax stepwise from states ¥ to ¥~ 1 with a character-
istic first order rate constant k,. The steady-state
population of any state [V] is then given by

R/k,

V=i svrosve

)
where the denominator represents the number of
states containing V quanta, and Ris the rate of recom-
bination. Allowing for the uncertainties in the Table
3 populations, reasonable agreement is obtained if one
assumes a linear relaxation rate, X, ~ V (see Table
5). Linear V-dependence is consistent with radiative
relaxation as well as collisional deactivation with har-
monic-oscillator probability scaling.

5. SUMMARY

Analysis of the atmospheric emission spectrum of
ozone v, hot bands, utilizing previous spectroscopic
data and formulas and band contour simulations, has
resulted in approximate energies and band centers for
vibrational states having up to seven quanta. v, = {

245

L3

as well as v, = 0 bands have been found, and the
existence of an accidental resonance between the
(005) and (311) states is inferred with the aid of a
long-path absorotion spectrum (Damon et al., 1981).
These results should be of considerabie value for
upper atmospheric radiance modeling and for
improving our understanding of ozone's vibrational
relaxation kinetics.
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