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PREFACE

This report was prepared under contract DACA72-87-C-0001 for the U.S. Army Topographic
Engineering Center, Fort Belvoir, Virginia 22060-5546 by the Digital Mapping Laboratory, School of
Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213. The Contracting
Officer’s Representative was Mr. George Lukes.
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1. Executive Summary

In July 1987. the Digital Mapping Laboratory at Camnegie Mellon University began work on a
three vear contract. DACA 72-87-C-0001. with the U.S. Army Engineer Topographic Laboratories
to explore the detailed analysis of aerial imagery with particular emphasis on built-up areas
containing large numbers of complex man-made structures. During the past three vears we have
pertormed research in several important areas including scene registration. stereo analysis.
shadow analysis. and building detection. Each of these areas addresses an important set of issues
toward the development of automated tools for cartographic feature extraction. This is the final
technical report under contract DACA 72-87-C-0001 and describes our overall research progress
during this three vear period. !

1.1. Background

In previous reports we have described our research in monocular analysis for buildings
detection and delineation. This research developed the use of intensity based cues relying on the
detection of nearly right-angle corners that can be aggregrated into rectilinear shapes using lines.
comers. and structures. Systems based on such techniques tend to rel y on good contrast
between buildings and the adjacent terrain. as well as shape assumptions based upon composites
of rectangies. It is clear that such techniques require additional information in order to be robust
across a variety of image acquisition and spatiai resolution conditions.

As a result. during the second contract year we began research on the detailed analysis of
shadows cast by man-made structures. Our shadow analysis research has resuited in three
techniques for the interpretation of monocular imagery: building prediction. grouping of related
building hypotheses. and building hypothesis verification. In addition we have implemented an
technique to acquire estimates of building heights using the lengths of cast shadows. Height
estimation of man-made structures can be accomplished even using monocular imagery.

Previous work in stereo image analysis fccused on the development of a new feature-based
matching algorithm based upon hierarchical waveform analysis. Our work in stereo analysis
complements the monocular feature extraction research and provides a basis for the integration
of explicit three-dimensional information into built-up area analysis. During the first two years
we began a major initiative to explore automatic methods for scene registration in complex aenal
imagerv. This research has progressed. with improved results generated using a varnety of
different image features.

In keeping with the theme of the use of muitiple cues to provide additional information from
which a more robust estimate of the building height and/or location could be derived we began

"This research was sponsored by the U.S. Army Engineer Topographic Laboratories under Contract DACA72-87-
C-0001. The views and conclusions contained in this document are those of the authors and shouid not be
interpreted as representing the official policies. either expressed or implied. of the U.S. Army Engineer Topographic
Laboratones or ot the United States Government.




research on fusion of stereo estimates. This research focused on the combination of an area-
based and a feature-based method to attempt to achieve better overail height eshmates in the
presence of occlusions. large depth discontinuities. and in complex matching conditions. We
aiso began to develop tools and techniques for automated performance evaluation using a
manually derived three-dimensional ground-truth database. Such quanutative performance
evaluation 1s critical for understanding the incremental pertormance of changes to vanous
matching techniques. the effects of parameter selection. and in head-to-head comparisons of
various end-to-end stereo svstems.

Finally. we have supported a modest effort to investigate the utility of share-memory multi-
processors for high-level vision. Our focus has been the exploration of task-level parallelism tor
a Knowledge-based system that has been used to interpret airport and suburban house scenes.
We have achieved near linear speedups on an Encore muitimax processor for the most
computationally intensive component of the system.

In Sections 2 through 6 we summarize the most recent accomplishments in each of these areas
achieved over the last year. We believe that progress has been steady and that the work in
shadow analvsis. monocular fusion. scene registration. stereo analysis and retfinement has greatly
improved our suite of techniques for built-up area analysis. In the remainder of this section we
summarize various technical talks. published papers. and other tangible accomplishments funded
under this research contract.

1.2. Accomplishments
Our primary effort under this contract was to investigate the use of knowledge-intensive
techniques for the detailed analysis of remotely sensed imagery by developing scene
interpretation systems for complex urban areas. Our research has resulted in the design and
implementation of several cartographic feature extraction components/systems as well as
supporting work in stereo matching. information fusion. and tools for database utilization. In the
process. a variety of basic research issues in computer vision and cartography have been
addressed.
e Developed an information fusion paradigm based on using multiple scene domain
cues to support a variety of tasks in cartographic feature extraction. These include
monocular fusion of building boundary cues. refinement of stereo dispanty
estimated using intensity/surface material information. The common thrust of this
work 1s to find and exploit multiple information sources. extracted from common

imagery. that may contain redundant cues concerning the geometric structure of the
scene.

e Developed several techniques for shadow analysis including building hypothesis
generation. building hyvpothesis verification. and techniques to group buildings
based upon their consistency with detected shadow boundaries.

e Developed an automatic scene registration capability. with improved accuracy
results using a variety of different image features. Currently we are able to perform a
relative orientation between stereo image pairs whose accuracy is close to human-
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level performance in accuracy using manually derived ground control points.

e Our work with area-based and waveform-based stereo algorithms has continued.
producing improvements in the individual results. and development of a technique
for merging the results of the two methods. as well as methods for pertormance
evaluation. OQur feature-based algorithm was improved particularly with respect to
waveform approximation and the use of inter-scanline consistency to detect and
correct mismatches. Our performance analysis on a variety of stereo pairs (currently
10 datasets) with various disparity ranges including significant terrain relief has
given us a better understanding issues in robust stereo analysis.

e Making simple assumptions about the intensity of smooth surfaces has resulted in a
technique for fusing information in the disparitv map with edge and intensity
information to generate much improved disparity map segmentations. Analysis of
the disparity image guided by the intensity image appears to be a promising
technique to reject mismatches and to generate a refined disparity map that lends
itself to further interpretation. This technique appears to be superior to many
interpolation based methods because it explicitly takes into account the nature of
surtace patches with similar albedo.

e We began a modest effort io integrate ITD cartographic data into our spatial
database system. CONCEPTMAP. This nas resulted in the development of a flexible
query system. as well as a powerful window-based user interface. This initial work
has pointed the way to many issues in the efficient access to spatial data for
planning, navigation. and incorporation into cartographic feature extraction systems.

1.3. Publications

Over the period of our research contract our research contract in Built-Up Area Feature
Extraction we have published our results in refereed journals and conferences. and presented
progress reports at various meetings. This section details the most significant publications and
presentations supported under this contract.

1.4. Publications

eD. M. McKeown. Jr. (1990). "Toward Automatic Cartographic Feature
Extraction”, in Mapping and Spatial Modeling For Navigation. NATO ASI Series F:
Computer and Systems Sciences. Vol. 65, Springer-Verlag, Edited by L. Pau. 1990.
pp 149-180.

eD. McKeown. F. Perlant., and J. Shufelt. (1990). “Information Fusion in
Cartographic Feature Extraction from Aerial Imagery” in Proceedings of ISPRS
Svmposium on Global and Environmental Monitoring: Techniques and Impacis.
Victoria. British Columbia. Canada. September, 1990., pp. 140-144.

e J. Shufeit and D. M. McKeown. "Fusion of Monocular Cues to Detect Man-Made
Structures in Aerial Imagery” in Proceedings of IAPR Workshop on Multisource
Data Integration in Remote Sensing June, 1990.

e Y. Hsieh. F. P. Perlant. and D. M. McKeown. "Recovering 3D Information from
Complex Aerial Imagery” in Proceedings of /0th International Conference on
Pattern Recognition Atlantic City, New Jersey, June, 1990. pp. 136-146.




1.5.

o F. P. Perlant and D. M. McKeown. "Improved Disparity Map Analysis Through the
Fusion of Monocular Image Segmentations” in Proceedings of /APR Workshop on
Multisource Data Integration in Remote Sensing June. 1990.

e F. P. Perlant. and D. M. McKeown (1990) "Scene Registration in Aeral Image
Analysis". in Journal of Photogrammetric Engineering and Remote Sensing. Volume
56. No. 4. April. 1990. pp. 481-493.

e R. B. Irvin. and D. M. McKeown. (1989} "Methods for exploiting the relationship
between buildings and their shadows in aerial imagery” in IEEE Transactions on
Systems. Man and Cvbernetics Volume 19. Number 6. November/December 1989.
pp. 1564-1575.

e W. Harvey. D. Kalp, M. Tambe. D. McKeown. A. Newell. "Measuring the
Effectiveness of Task-Level Parallelism for High-Level Vision” in Procccdings of
DARPA Image Understanding Workshop. Palo Alto. California. May 23-26. 1989.
Morgan Kaufmann Publishers.. pp. 916-933.

e D. M. McKeown. Jr.. Harvey. W.A.. and Wixson. L. "Automating Knowledge
Acquisition For Aerial Image Interpretation” Computer Vision. Graphics and Image
Processing Volume 46. Number 1. April. 1989. pp 37-81.

¢ R. B. Irvin. and D. M. McKeown, "Methods for exploiting the relationship between
buildings and their shadows in aerial imagery" in Proceedings of SP/E Conference
on Image Understanding and the Man-Machine Interface [ Los Angeles, Calif.
January 17-18, 1989.. Volume 1076. pp. 156-164.

e F. P. Perlant. and D. M. McKeown. "Scene Registration in Aerial Image Analysis”
in Proceedings of SPIE Conference on Reconnaissance, Astronomy, Remote Sensing
and Photogrammetry Los Angeles. Calif, January 19-20. 1989.. Volume 1070. pp.
88-99.

Invited Presentations

e Keynote Speaker: "Knowledge-Based Systems for Remote Sensing” Workshop on
Environmental Remote Sensing at Research Institute for Applied Knowiedge
Processing, FAW, Ulm. Germany, October 1-5, 1990.

e Session Chairman. "Knowledge-Based Techniques/Systems for Data Fusion™. at
ISPRS Svmposium on Global and Environmental Monitoring: Techniques and
Impacts. Victoria, British Columbia. Canada. September 17-21., 1990.

¢ "Knowledge-Based Vision. Airports. and SAR" JPL/Caltech Image Recognition
Workshop, Pasadena. CA.. May 17-18, 1990.

e "Toward Automatic Cartographic Feature Extraction”, Machine Vision - Image
Understanding Workshop. AFOSR/AFWL. Albuquerque. NM.. May 15-16. 1990.

e "Automated Feature Extraction Research”. Imagery Perspective Transformation
Symposium. Bolling AFB. Washington D.C. May 1-2. 1990.

e Participant: DARPA [US Working Group Meeting, Scottsdale. AZ. February 26-28.
1990.

e "Progress in Automated Cartographic Feature Extraction”. U.S. Army Engineer




Topographic Laboratones. Fort Belvoir. VA.. January 25. 1990.

e Tutonal: "Data Fusion Techniques for GIS and Remote Sensing”. Workshop on
Advances in Spatial Information Extraction and Analvsis for Remote Sensing.
International Societv tor Photogrammetry and Remote Sensing. Orono. Maine.
January 15, 1990.

¢ "Knowledge-Based Techniques for Geographic Informauon Systems”. AIST.
Northeast Al Consortium. Syracuse. N.Y.. October 23. 1989.

e "Automated Feature Extraction in Urban Areas” Project 2851 Mission Rehearsal
Special Interest Group. Defense Mapping Agency Aerospace Center. St. Louis. MO.
September 28. 1989.

e "Trends in Automated Cartographic Feature Extraction” NATO Advanced Research
Workshop on Mapping and Spatial Modeling For Navigation. Fano. Denmark.
August 21-25. 1989.

e Participant/Panel Leader: Specialist Meeting on Large Spatial Databases. NSF-
National Center for Geographic Information and Analysis. Santa Barbara. Cal.. July
19-22. 1989.

e "Antificial Intelligence in the Analysis of Aerial Imagery”. IEEE Computer Society
Workshop on Antificial Intelligence for Computer Vision. San Diego. Cal.. June 3.
1989.

e "Product Opportunities in Cartography and Remote Sensing”. DARPA U Program
Meeting, Institute for Defense Analysis. Alexandria. VA.. March 13. 1989.

e Participant: DARPA Program Review Meeting. SCORPIUS Image Understanding
Program. El Segundo. Cal.. January 18. 1989.

e Participant: DARPA/USAETL Program Review Meeting on Spatial Databases for
ADRIES/TACNAT. Fort Belvoir, VA.. September 13-14. 1988.

e "Automated Feature Extraction From Aerial Imagery”. EXRAND Committee
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1.7. Acknowledgements

During the course of this research program we have benefited from detailed technical
interactions with personnel from the U.S. Army Engineer Topographic Laboratones. Fort
Belvior. VA.. Dr. Fred Rhode. Edmundo Simental. Dan Edwards. and George Lukes each acted
as COTR during various phases of this contract. Each helped by providing good feedback on the
relevance of our research program to the U.S. Army, and in maintaining continuity of funding
and focus. We had many interesting technical discussions with various members of the Research
Institute. In particular. Ray Norvelle and Dan Edwards were helpful on issues including stereo
matching techniques and cartographic databases.

1.8. Organization of this Report

In the body of this final report we provide a detailed technical description of our research
supported under this contract. Section 2 discusses our work in the fusion of multiple building
hypothesis obtained using different feature extraction techniques into an improved set of
building estimates. This represents the integration of our work on building detection using
intensity cues with our work on shadow analysis for building hypothesis generation, verification
and grouping. An quantitative evaluation of the various feature extraction systems and the
improved results using our fusion technique is presented.

Section 3 discusses our work in automated scene registration to support stereo analysis. It
builds on our research in monocular cue analysis in that it uses features such as shadow comers
and building structures to provide matchable features for the registration process. We provide
quantitative results that compare registration accuracy using five different feature extraction
techniques with that achieved using manual matching.

Section 4 describes our results in stereo analysis using both area-based and feature-based
approaches. We briefly discuss some modifications to the stereo algorithms. S and S2. and
focus on detailed performance analysis using a 3-dimensional ground-truth dispanty map
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generated for several test scenes. We introduce several metrics for stereo accuracy that are
relevant for the built-up area task: average error. percentage of point within +/- | pixel of true
disparity. building height accuracy. and building delineation accuracy.

Section 5 describes research in the use of image intensity patch information with stereo heighit
estimates to provide a basis for disparity refinement. This refinement technique can be used to
improve disparity estimates by associating surface patches in the intensity image with collections
of disparity points. The assumption is that these patches reflect surtaces and partial surfaces in
the scene that should have a nearlv homogeneous height. Statistical analysis of the dispanty
estimates within these regions can detect gross mismatches as well as incorrect matches due to
occlusion.

Section 6 describes some preliminary research in providing user-intertace support for large
scale spatial databases. We began with a DMA ITD database ot Fort Hood and developed tools
to decode and reformat the spatial data to allow for random queries based on geographic location
and/or partial matching of feature attributes. An Xwindow intertace was developed for feature
display and query processing.

Finally, Section 7 provides some brief conclusions on our program of research in the area of
automated cartographic feature extraction.




2. Fusion of Monocular Building Hypotheses

The extraction of buildings trom aenal imagery is a complex problem for automated computer
vision. It requires locating regions in a scene that possess properties distinguishing them as man-
made objects as opposed to naturally occurring terrain features. The building extraction process
requires techniques that exploit knowledge about the structure of man-made objects. Techniques
do exist that take advantage of this knowledge: vanious methods use edge-line analysis. shadow
analysis. and stereo imagery analysis to produce building hypotheses. It i1s reasonable. however.
to assume that no single detection method will correctly delineate or verify buildings in every
scene. As an example. a feature extraction system that relies on analysis of cast shadows to
predict building locations is likely to fail in cases where the sun is directly above the scene.

It seems clear that a cooperative-methods paradigm is useful in approaching the building
extraction problem. Using this paradigm. each extraction technique provides information which
can then be added or assunilated into an overall interpretation of the scene. Thus. our research
focus is to explore the devilopment of a computer vision system that integrates the results of
various scene analysis techniques into an accurate and robust interpretation of the underlyving
three-dimenstonal scene.

This section describes research performed under DACA 72-87-C-0001 on the problem of building
hypothesis fusion generated using monocular imagery. First. our building extraction techniques
are briefly surveved. including four building extraction. verification. and clustering systems that
form the basis for the work described here. A method for fusing the symbolic data generated by
these systems is described. and applied to monocular image and stereo image data sets.
Evaluation methods for the fusion results are described. and the fusion resuits are analyzed using
these methods.

2.1. Building extraction techniques

Under this research contract. we have developed several techniques for the extraction of man-
made objects from aerial imagery. One common goal of these techniques is to organize the
image into manageable parts for further processing. by using external knowledge to organize
these parts into regions. A set of four monocular buil:"1g detection and evaluation systems were
used. Three of these were shadow-based systems: the fourth was line-corner based. The shadow
based systems are described more fully by Irvin and McKeown [1], and the line-corner system is
described by Aviad. McKeown. and Hsieh [2]. A brief description of each of the four detection
and evaluation systems follows.

BABE (Builtup Area Building Extraction) is a building detection system based on a line-comer
analysis method. BABE starts with intensity edges for an image. and examines the proximity and
angles between edges to produce comers. To recover the structures represented by the corners.
BABE constructs chains of comners such that the direction of rotation along a chain is either
clockwise or counterclockwise. but not both. Since these chains may not necessarily form closed
segmentations. BABE generates building hypotheses by forming boxes out of the individual lines




that compnise a chain. These boxes are then evaluated in terms of size and line intensity
constraints. and the best boxes for each chain are kept. subject to shadow intensity
constraints [3]. [4].

SHADE (SHAdow DEtection) is a building detection system based on a shadow analvsis
method. SHADE uses the shadow intensity computed by BABE as a threshold for an image.
Connected region extraction techniques are applied to produce segmentations of those regions
with intensities below the threshold. i.e.. the shadow regions. SHADE then examines the edges
comprising shadow regions. and keeps those edges that are adjacent to the buildings casting the
shadows. These edges are then broken into nearly straight line segments by the use of an
impertect sequence finder {5]. Those line segments that form nearly right-angled corners are
Joined. and the corners that are concave with respect to the sun are extended into parallelograms.
SHADE's final building hypotheses.

SHAVE (SHAdow VErification) is a system for verification of building hypotheses by shadow
analysis. SHAVE takes as input a set of building hypotheses. an associated image. and a shadow
threshold produced by BABE. SHAVE begins by determining which sides of the hvpothesized
building boxes could possibly cast shadows. given the sun illumination angle. and then performs
a walk away from the sun illumination angle for every pixel along a building/shadow edge to
delineate the shadow. The edge is then scored based on a measure of the variance of the length
of the shadow walks for that edge. These scores can then be examined to estimate the likelihood
that a building hypothesis corresponds to a building, based on the extent to which it casts
shadows.

GROUPER 1s a system designed to cluster, or group, fragmented building hypotheses. by
examining their relationships to possible building/shadow edges. GROUPER starts with a set of
hypotheses and the building/shadow edges produced by BABE. GROUPER back-projects the
endpoints of a building/shadow edge towards the sun along the sun illumination angie. and then
connects these projected endpoints to form a region of interest in which buiidings might occur.
GROUPER Intersects each building hypothesis with these regions of interest. If the degree of
overlap is sufficiently high (the critenia is currently 75% overlap), then the hypothesis is assumed
to be a part of the structure which is casting the building/shadow edge. All hypotheses that
intersect a single region of interest are grouped together to form a single building cluster.

2.2. A simple hypothesis merging technique

Building hypotheses typically take the form of geometric descriptions of objects in the context
of an image. One can imagine "stacking” sets of these geometric descriptions on the image: in
the process. those regions of the image that represent man-made structure in the scene should
accumulate more building hypotheses than those regions of the image that represent natural
features in the scene. The merging technique developed here exploits this idea.

The method takes as input an arbitrary collection of polygons. An image is created that is

9




sufficiently large to contain all of the polvgons. and each pixel in this image is initialized to zero.
Each polvgon is scan-converted into the image. and each pixel touched durng the scan is
incremented. The resulting image then has the property that the value of each pixel in the image
is the number of input polyvgons that cover it.

Segmentations can then be generated from this “accumulator” image by applving connected
region extraction techniques. If the image is thresholded at a value of 1 (i.e. all non-zero pixels
are kept). the regions produced by a connected region extraction algorithm will simply be the
geometric unions of the input polygons. It is the case. however. that the image could be
thresholded at higher values. We motivate thresholding experiments in Section 2.3.4.

2.3. Merging multiple hypothesis sets

We briefly describe some of the experiments performed with the scan-conversion hypothesis
fusion technique. The procedure used to apply this technique to the results of four building
detection and evaluation systems (BABE. SHADE. SHAVE. and GROUPER) is described. A
technique for quantitative evaluation of building hypotheses is described. and applied to the
hypothesis fusion results. These results are analyzed to suggest improvements to the fusion
technique.

2.3.1. The merging technique applied to four extraction systems

There were two merging problems under consideration. The first of these was the creation of a
single hypothesis out of a collection of fragmented hypotheses believed to correspond to a single
man-made structure. This problem was addressed by applying the scan-conversion technique to
the fragmented clusters produced by GROUPER. The technique was applied to each cluster
individually. and the resulting accumulator image was thresholded at 1. and connected region
extraction techniques were applied to provide the geometric union of each cluster. These
clusters were then used as the building hypotheses produced by GROUPER.

The second problem was the fusion of each of these monocular hypothesis sets into a single set
of hypotheses for the scene. Again. the scan-conversion technique was applied. The four
hypothesis sets were scan-converted. and the resulting accumulator image was thresholded at 1.
Connected region extraction techniques were applied to produce the final segmentation for the
image.

Figure 2-1 shows a section of a suburban area in Washington, D.C. Figure 2-2 shows the
SHADE results for this scene. Figure 2-3 shows the SHAVE resuits. Figure 2-4 shows the
GROUPER results. and Figure 2-5 shows the BABE results. Figure 2-6 shows the fusion of these
four monocular hypothesis sets.
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2.3.2. Evaluation ot the technique

Toudee the correctness o1 an interpretation ot i scene. 1t 1~ desirable to have some mechanism
for auanutatinvely evaluaung that interpretaton. One approach 1s 0 COMPAre 4 ¢iven et o
potheses agamnst a set that 1s known to be correct. and analyze the dirterences hetween ine
Ziven set ot hvpotheses and the correct ones. In pertorming evaluanons ot the tusion resuits, we
NG vrotad-truth seementations as the correct detection resuits for a scene. Ciround-trutn

seementations are manually produced segmentatuons ot the butldings in an image.

Figure 2-1: DC37 image with ground-truth segmentation

There exist two simple criteria for measuring the degree ot similarity between a building
hypothesis and a ground-truth buiiding segmentation: the mutual area ot overlap and the
difference n orientation. A correct building hvpothesis and the corresponding ground-truth
segmentation region should cover roughly the same area. and should have roughly the same
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direnment with respect to the image. A sconng tunction can be developed that incorporates
these critertu. A region matching scheme such as this. however. surters trom the tact that
muitple burldings in the scene are segmented by a singie recion in the hypothesis set. In these
<ases. the building hyvpothesis will have low matching scores with cach ot the puildings 1t
<ontains, due to the differences i overlap area.

A simpler coverage-based global evaluanon method was developed. This evaluaton method
works in the tollowing manner. H. a set of building hypotheses tor an image. and G. a ground-
truth segmentation ot that image. are given. The image is then scanned. pixel by pixel. For anyv
pixel P in the image. there are tour possibilities:

Figure 2-3: DC37 SHAVE results Figure 2-5: DC37 BABE results
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mean that the system producing H correctly denoted P as belonging to a man-made
structure in the scene.

By counting the number of pixels that fall into each of these four categories. we may obtain
measurements of the percentage of building hypotheses that were successful (and unsuccessful)
in denoting pixels as belonging to man-made structure. and the percentage of the background of
the scene that was correctly (and incorrectly) labeled as such. Further. we may use these
measurements to define a building pixel branching factor. which will represent the degree to
which a building detection system overclassifies background pixels as building pixels in the
process of generating building hypotheses. The building pixel branching factor is defined as the
number of false positive pixels divided by the number of correctly detected building pixels.

2.3.3. Results and analysis

The fusion process was run on other scenes in addition to the DC37 scene: DC36A. DC36B.
and DC38. three more scenes from the Washington. D.C. area: and LAX. a scene from the Los
Angeles International Airport. The coverage-based evaluation program was then applied to
generate Tables 2-1 through 2-5. Each table gives the statistics for a single scene. The first
column represents a building extraction system. The next two columns give the percentage of
building and background terrain correctly identified as such. The fourth and fifth columns show
tncorrect identification percentages for buildings and terrain. The next two columns give the
breakdown (in percentages) of incorrect pixels in terms of false positives and false negatives.
The last column gives the building pixel branching factor.

Evaluation results for the fusion process on DC37

System % Bld | % Bkgd | % Bld | % Bkgd | % False | % False | Br
Detected | Detected | Missed | Missed Pos. Neg. |Factor
SHADE 37.5 98.2 62.5 1.8 15.0 85.0 |0.294
SHAVE 47.2 96.8 52.8 3.2 26.8 73.2 | 0.408
GROUPER 48.7 95.8 51.3 42 32.6 674 | 0.508
BABE 589 97.2 41.1 2.8 28.5 71.5 | 0.278
FUSION 77.7 92.0 223 8.0 68.0 320 J 0.611

99 regions in ground truth

Table 2-1: Evaluation statistics for DC37 hypothesis fusion

We note that the quantitative results generated by the new evaluation method accurately reflect
the visual quality of the set of building hypotheses. Further, the building pixel branching factor
provides a rough estimate of the amount of noise generated in the fusion process. Judging by
these measures. we note that the final results of the hypothesis fusion process significantly
improve the detection of buildings in a scene. In all of the scenes, the detection percentage for
the final fusion is greater than the same percentage for any of the individual extraction system
hypotheses. although the building pixel branching factor also increases due to the accumulation
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Evaluation results for the fusion process on DC36A

System “% Bld % Bkgd | % Bld - “ Bkgd | % False | % False - Br
Detected | Detected | Missed | Missed | Pos. Neg.  Factor:
SHADE 538 | 97.0 16.2 30 307 | 693 0381
SHAVE 63.6 | 96.2 36.4 3.8 41.8 | 582 0411
- GROUPER | 580 | 958 . 420 ! 42 . 406 594 0495
' BABE 510 | 979 | 490 21 | 21 ;779 0273
FUSION 809 | 919 P8 743 25.7  0.682
51 regions in ground truth
Table 2-2: Evaluation statistics for DC36A hypothesis fusion
Evaluation results for the fusion process on DC36B
System % Bld | % Bkegd | % Bld | % Bkegd | % False ; % False : Br
Detected | Detected | Missed | Missed Pos. Neg.  Factor}
SHADE . 298 | 938 | 702 | 62 | 463 | 537 | 2034|
. SHAVE 284 | 967 71.6 3.3 31.3 | 69.7 | 1146 1
. GROUPER | 103 | 96.8 89.7 32 259 | 741 13.027 |
BABE | 99 | 988 90.1 1.2 113 | 887 |1.159 |
FUSION | 498 | 892 | 502 | 108 | 678 | 322 [2.126
133 regions in ground truth
Table 2-3: Evaluation statistics for DC36B hypothesis fusion
{ Evaluation results for the fusion process on DC38 ‘
System % Bld | % Bkgd | % Bld | % Bkgd | % False | % False | Br |
Detected | Detected | Missed | Missed Pos. Neg. | Factor
SHADE 51.3 97.4 48.7 2.6 13.2 86.8 | 0.144
SHAVE 43.1 95.3 56.9 4.7 19.1 809 | 0311
GROUPER 54.6 95.8 45.4 4.2 210 79.0 |0.221
BABE i 4.7 96.0 55.3 4.0 17.3 82.7 |0.260
FUSION | 74.7 1 90.6 25.3 l 94 51.5 48.5 |0.360 |
53 regions in ground truth

Table 2-4: Evaluation statistics for DC38 hypothesis fusion

of delineation errors from the vanious input hypotheses.

It is worth noting that the resuits for the DC36B scene (Table 2-3) are substantially worse than
those of the other scenes. This is in large part due to the fact that the DC36B scene has a low
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Evaluation results for the fusion process on LAX
System | % Bld | % Bkgd | % Bid | % Bkgd | % False | % False | Br

’DetectediDetected Missed | Missed | Pos. | Neg. Factor!

SHADE | 344 | 990 | 656 | 10 | 101 ~ 899 0213

| SHAVE | 541 | 949 | 459 | 51 | 436 . 564 0655

 GROUPER | 460 | 985 | 540 | 135 | 165 : 835 0232

| BABE | 633 | 988 | 367 | 1.2 | 183 | 8L7 0.130]

" FUSION | 730 | 929 | 270 | 7.1 | 650 | 350  0.687
L L 26 regions in ground truth

Table 2-5: Evaluation statistics for LAX hypothesis fusion

dynamic range of intensities. and the component systems used for these fusion experi=ients are
inherently intensity-based. The building pixel branching factors reflect the poor performance of
the component systems: in GROUPER's case. over 3 pixels are incorrectly hypothesized as
building pixels for every correct building pixel. The fusion process. however. improved the
building detection percentage noticeably over the percentages of the component systems.

We also note that several difficulties are attributable to performance deficiencies in the
systems producing the original building hypotheses. The shadow-based detection and evaluation
systems, SHADE and SHAVE. both use a threshoid to generate "shadow regions” in an image.
This threshold is generated automatically by BABE. a line-corner based detection system. In
some cases. the threshold is too low, and the resulting shadow regions are incomplete. which
resuits in fewer hypothesized buildings.

GROUPER. the shadow-based hypothesis clustering system. clusters fragmented hypotheses by
forming a region (based on shadow-building edges) in which building structure is expected to
occur. This region is typically larger than the true building creating the shadow-building edge,
and incorrect fragments sometimes fall within this region and are grouped with correct
fragments. The resulting groups tend to be larger than the true buildings, and thus produce a fair
number of false positive pixels.

SHAVE scores a set of hypotheses based on the extent to which they cast shadows, and then
selects the top fifteen percent of these as "good” building hypotheses. In some cases. buildings
whose scores fell in the top fifteen t “rcent actually had relatively low absolute scores. This
resulted in the inclusion of incorrect hypotheses in the final merger.

SHADE uses an imperfect sequence finder to locate corners in the noisy shadow-building edges
produced by thresholding. The sequence finder uses a threshold value to determine the amount
of noise that will be ignored when searching for comers. In some situations. the true building
comners are sufficiently small that the sequence finder regards them as noise, and as a result. the
final building hypotheses can either be erroneous or incomplete.
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2.3.4. Thresholding the accumulator image

As part of the scan-conversion fusion process. an accumulator image is produced which
represents the “building density" of the scene. More precisely. each pixel in the image has a
value. which is the number of hypotheses that overlapped the pixel. Pixels with higher values
represent areas of the image that have higher probability of being contained in a man-made
structure. Theoreticallv. thresholding this image at higher values and then applying connected
region extraction techniques would produce sets of hypotheses containing fewer false positives.
and these hypotheses would only represent those areas that had a high probability of
corresponding to structure in the scene.

To test this idea, the accumulator images for each of the six scenes were thresholded at values
of 2. 3. and 4. since four systems were used to produce the final hypothesis fusion. Connected
region extraction techniques were then applied to these thresholded images to produce new
hvpothesis segmentations. The new evaluation method was then applied to these new
hvpotheses.

In each of the scenes. increasing the threshold from its default value of 1 to a value of 2 causes
a reduction of roughly 20 percent in the number of correctly detected building pixels. This
suggests that a fair number of hypothesized building pixels are unique: i.e.. several pixels can
only be correctly identified as building pixels by one of the detection methods. Anotner
interesting observation is that the building pixel branching factor roughly doubles every time the
threshold is decremented. These observations suggest that thresholding alone may eliminate
unique information produced by the individual detection systems, and that more work will need
to be done to limit the number of false positives (and erroneous delineations) produced by each
system, and by the final fusion as a whole.
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3. Automated Scene Registration

The primary goal ot stereo photogrammetry 1s 1o determine the threc-dimensionai position of
dny o object pomnt that s located 1in the overlap area of two mmages taken trom two dirterent
camera positons.  The determinaton ot the orientation ot each camera at the moment ot
cAposure und the relationship between the cumeras 1v a necessarv step in the photogrammetric
process.  The camera orientation determines the relatonship between the image points and
cround points in the scene. The ciassical epipolar geometry tor stereo imagery establishes a very
simple spatal relatonship between corresponding points in the lett and nght images.  The
~olution to the general camera orientation problem has tour components: the interior orientation.
the extenor orientation. the relative orientation. and the absolute orientation. In this section we
deseribe our research progress towards a tully automated scenc registration system that provides
a4 refative onentation between two stereo images. This orientation allows us to resample the right
image of the stereo pair into epipolar geometry o that stereo matching can proceed.
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Figure 3-1: Left image DC3800% with
CONCEPTMAP database registration Figure 3-2: Right image DC38007 with

CONCEPTMAP database registration
Figure 3-1 and 3-2 show a stereo image pair ot an industrial area taken trom the CONCEPTMAP
database. These images were digitized trom standard nine inch format mapping photography
taken at the altitude ot 2000 meiers using a camera with a 153 millimeter lens. One pixel in the
image approximately corresponds to 1.3 meters on the ground. The left image 15 a 312 x 312
sub-area selected trom a 2300 x 2300 image. The right image sub-area was generated by
calculating the <latitude.longitude> tor the comer points of the lett image and projecting those
points onto the complete right image. This projection is then used 10 extract the image sub-area
tfrom the complete right image. We have superimposed a set of gridlines on both images in order

to make 1t easier to see the actual misregistration.
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3.1. Automatic selection using different features

Clearlv. one requirement for automated registration is the automauc selection of corresponding
points in the stereo pair images. There are two problems that must be solved. First we must
automatically detect potential landmarks in each image. and then we must determine those
landmarks that have been found in both images. General landmark matching is an unsolved
problem and most automatic registration techniques rely on the matching of charactenstic
points (6] that often have no physical significance or relationship with the landmarks.

There are some important criteria for automated control point selection. First. since the
elevation of the control points is not known and we are using a simple geometrical model. it is
important that the set of selected control points lie approximately in the same eievauon plane.
Second. the selection of control points should not relv on a single type of scene domain feature.
such as road intersections. since not all control point features are abundant in all scenes. For
example. in urban scenes there are often many buildings and shadow regions available as
candidate control points. and they are usually well distributed throughout the imagery. However.
in airport scenes elongated line pairs and uniform intensi:v regions appear to be a better choice.
In any case we use an iterative selection algorithm [7) that converges to a consistent set of
control points that are usually a small subse* of all of the possible matches in the stereo pair.

Another advantage of using multiple features {or control point estimation is that the results of
feature matching can be used to estirate the disparity range of the scene. Once the scene is
registered. all match-d features ~an be remap,« 1 to the new coordinate frame. It is then possible
to calculate the disparity o .~ feature. Since all features are not at the same height. we
automatically obi.n 1 rough  .mute of the disparity range for this scene. This dispanty range
estimate is directly used by the stereo matching algorithms to control search for corresponding
points and wn greatly redu initial matching errors. In most research stereo systems the
disparity range is either manually provided or it is set to what is considered to be a "sufficiently
large” vulue. rhe drawback of the former approach is that it introduces a difficult manual step in
that the enti-e stereo model must be searched to find the minimum and maximum disparity
points. The latter situation can influence the accuracy of the resulting stereo matching algonthm
bv causing some matches to be never considered. or decrease the efficiency by allowing large
areas to be searched for which correct matches are impossible.

For this experiment. we assume that a coarse registration of the two images has already been
performed.  Using this coarse correspondence. we are able to limit the search to find
corresponding features in the images. Most of the remaining error is translational rather than
rotational which simplifies the determination of corresponding points. Candidates for automatic
control point generation include shadow corners. shadow regions. BABE monocular building
hvpotheses. uniform intensity regions. and elongated line structure pairs:

Shadow corners: Shadow corners are good candidates for automatic detection and
correspondence as well as for manual selection. We use comers produced by the BABE system.
After removing corners that are inconsistent with shape and orientation constraints imposed by
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the sun direction angle and estimated shadow intensity, we select sets ot shadow comers in both
the l'eft and right images. Figure 3-3 shows the comers found in the left image in white. The
right image corners are shown 1n black and are projected onto the left image using the coarse
registration. Those pairs of shadow corners that are matched are shown as connected by a white

line whose endpoint circles indicate the conjugate points provided to the registration process.

Building hypotheses:  Control points can also be defined geometrically with respect to
features or structures extracted from the imagery. Building hypotheses generated by a
monocular analysis svstem such as BABE can be used as match features. The center of mass of
these structures is defined as the corresponding control points. Compared to shadow comers.
control points defined by hypothesized buildings are not always accurate. but disambiguation of
buildings is easier. Properties such as shape. size. and perimeter are good critenia that are not
available for point features such as shadow comers. Figure 3-4 shows the BABE boxes in the left
and right images with the matched features marked in the same manner as Figure 3-3.

Other scene features: We performed experiments to obtain control points from shadow
regions. edges. and segmented regions using simple histogram analysis. In each case. control
points are defined as the center of mass of the structures. Shadow regions are extracted with
traditional connected component extraction techniques. using an estimate of shadow intensity
provided by BABE [1]. Due to vanation in the shape of the shadows. shadow regions usually
give poor results in complex urban scenes with very high buildings. This varation of shape 1s
caused by occlusion of the shadow by tall structures. They can be very reliable. however, in
suburban house images where buildings are separated and have simple roof profiles. Edges are
another feature extracted by BABE. Only edges with significant length are used as candidaies for
matching. The criteria for edge matching are edge orientation, length and the intensity gradient
across the edge. Figure 3-5 shows the significant lines extracted and matched in the industrial
scene. Finally. unique bright points in the scene can be used to form bright blob regions. The
intensity threshold for blob regions is determined by successively decreasing the intensity scale
until enough regions are extracted. These features turned out to be useful for scenes with few or
no man-made structures. where shadow comners. hypothesized buildings and shadow regions
failed to generate enough matching candidates.

Figure 3-6 shows the superposition of BABE results using the refined registration from Figure
3-4. The offset between building hypotheses is now primarily in the column direction and can be
attributed to the displacement of the building in the left and right image due to their height. In
many cases we have been able to automatically reduce the row offset error to sub-pixel accuracy
from an initial displacement of 15 to 20 rows in the coarse CONCEPTMAP registration.

3.2. Evaluation of automatic registration

Table 3-1 shows the local accuracy of the different scene registrations performed on the
industrial scene shown in Figures 3-1 and 3-2. POLY means that actual registration is performed
using a polvnomial fit. whereas ISO means that the images are registered using an isometric
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sofutton. Coarse registration s the result of CONCEPTMAP registraon. L sing & set of manually
selected control points we are able 1o evaiuate the accuracy of each registranon in terms ot row
ortset compared 1o the ideal epipolar geometry (corresponding points on the same scaniines ).
Polvnomial approximation pertorms better overall than isomerric approxtmanon. but 1t 1s more
sensiuve o noise. Further. the isometric approximation oniyv requires three control points. For
this scene. there are enough points trom any of the match features 1o compute a second order
polynomial approximation.  The resulung accuracy s comparable with that achieved using
manual selection of control points.

Figure 3-4: BABE building hvpotheses Figure 3-6: Fine registration  using
selected BABE points
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In summary, scene registration is a key initial step in many tasks involving the automated
interpretation of aerial images. Stereo analvsis requires particular care in scene registraton
because of the geomewmic assumptions made by most stereo matching algorithms and their
inability to recognize and recover from registraton errors. Such registration errors usually end
up reflected as gross errors in the stereo match. As a part of our goal to produce three-
dimensional interpretations of complex urban scenes we have found it necessary to deveiop
registration techniques that are accurate and robust across a variety of scene domains. We have
tested our system on airport scenes, urban scenes, and suburban housing developments with
varying degrees of success. Under this contract we began to investigating methods to evaluate
the distribution of control points and to incorporate this evaluation into the registraton system.
Another area for future research is to improve our ability to recover more feature-based control

point descriptions based upon other feature extraction systems, such as road detection and
tracking {8].

Statistics on the quality of different registration for DC38008
Type of Number Avg. Tow Std. row Min/Max Avg.col | Std.col
Registraton of points offset offset row off. offset offset

Coarse - -20.4 1.6 -23/-16 04 1.2
POLY manual 11 0.1 03 -1 0.1 05
POLY corner 20 0.5 0.6 0r -0.5 1.2
POLY structure 14 -0.8 0.8 2R -52 2.0
POLY edge 17 0.8 0.7 03 0.0 1.8
POLY shadow 12 -0.6 08 -1 -04 0.9
POLY blob 17 0.6 0.6 02 -06 1.1
ISO manual 11 -0.4 0.6 -1 0.6 1.4
ISO comer 20 1.0 0.5 03 2.7 1.3
ISO structure 14 -1.7 0.9 -31 -29 1.2
ISO edge 17 1.3 09 0/4 0.9 1.2
ISO shadow 12 -0.2 1.1 212 3.8 1.7
ISO blob 17 0.6 1.6 -2/5 1.4 1.2

Table 3-1: Staustics for different registrations on DC38008 stereo pair
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4. Stereo Analysis for Urban Scenes

Algorithms for stereo correspondence can be grouped into two major categories: area-based
and feature-based matching [9]. Both classes of techniques. area-based and feature-based. have
advantages and drawbacks that primarily depend on the task domain and the three-dimensional
accuracy required. For complex urban scenes. feature-based techniques appear to provide more
accurate information in terms of locatng depth discontinuides and in esumating height.
However, area-based approaches tend to be more robust in scenes containing a mix of buildings
and open terrain.

We do not believe that any one technique is likely to be robust enough to perform well in the
diverse set of scenes found in urban areas. For this reason we have developed two stereo
matching algorithms that have complementary behaviors. In this secton we describe
modifications to S1, an existng area-based algorithm that uses the method of differences
matching technique developed by Lucas {10, 11]. We also describe S2, a new feature-based
technique that uses a scanline matching method which treats each epipolar scanline as an
intensity waveform. The technique matches peaks and troughs in the left and right waveform.
Both are hierarchical and use a coarse-to-fine matching approach. Each is quite general, as the
only constraint imposed is the order constraint for the feature-based approach. The order
constraint should generally be satisfied in our aerial imagery except in cases of hollowed
structures.

4.1. Modifications to the S1 Stereo Algorithm

The S1 area-based approach uses a hierarchical set of reduced resolution images to perform
coarse-to-fine matching on small windows in the two images. At each level the size of the
windows for the matching process depends on the resolution of the reduced image. An initial
disparity map is generated at the first level. Subsequent matching results computed at
successively finer levels of detail are used to refine the disparity estimate at each level
Therefore the amount of error in the scene registration that can be tolerated by this matching
algorithm depends on the size of the matching windows. However, since there is & relationship
between the matching window size and the level of accuracy, simply using larger matching
windows may not be desirable.

To accommodate large disparities, we modified the algorithm to use a hierarchy of different
spatial resolutions. Starting with a reduced resolution dataset we compute an initial estimate of
the scene disparity. With this estimate of disparity as an initial starting point, we can better
refine our estimate than if we had begun matching at a coarser level. The disparity range of the
scene can be used to estimate the number of different spatial resolutions, the number of levels for
each resolution, and the size of the smoothing windows and scanning overlap at each level. A
good estimate of the disparity range can be provided by shadow analysis, BABE box matching, or
external knowledge of the terrain. We have found that good estimates of the disparity range are
necessary to achieve reasonable results. This approach has been used on different images and
gives better results than the standard S1 method. The results are less sensitive to registration

23




&ITOrS and we obtain better results on the discontinuities.

As a final step in the S1 analvsis we modified the aigorithm to improve the detecuion of the
Jisparity disconunuities. We first compute vanational left and right images using a local
vanation operator [12]. As an initial dispanty estimate. we then use the result of the previous
method and rerun the S1 procedure using just two resolution levels with the vanationai images to
encompass errors in the previous result, and thereby locally retine the disparnty estimate.

PRGN NI TR O AN

Figure 4-1: Gradient Wave Matched Points  pigyre 4-2: Gradient Wave Matched Points
[Left] [Right]
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4.2. The 52 Stereo Algorithm

2218 4 teature-based system that treats the problem of sterec matching as one-dimensional
stenal matching. ST matches epipolar scaniines in the left and right image using a hierarchical
dpproximation ot the scanhine mntensity waverorm. It matches peaks and vallevs in the waverorm
at ditterent levels of resolution. s> uses Intra-scaniine consistency to entorce a hnear ordering ot
matches without order reversals. [t also appiies an inter-scanline consistency that considers the
matches in adjacent scanlines. Apphication of the inter-scanline constraint 1s used 1o increase the
contidence of matches tound to be consistent across multiple scaniines and to delete improbable
matches. Since dispanty disconunuity usually occurs at the intensity disconunuity . the gradient
wavetorm i~ matched atter the inensity matching phase to localize dispanty jumps.  Finally.
cttorts are made to detect occlusions and correct them.

The teatures used for matching are the ntensity and gradient extremities of the scanlines. The
matching criteria is simply the similanity between two extremiues.  Intensiy extremities are
caster to match than the ¢radient extremities. because intensity extremities vary in size and shape
more so than the gradient extremines. However. intensity features may not correspond to the
position ot physical objects 1n the scene. so the gradient. the derivative of the intensity peak. is
matched. Figures 3-1 and 4-2 show the left and right waveform for a single image scan-line.
The horizontal black hne s the scan-line being matched. the horizontal white line 1s the
interpolated disparity protile tor the scanhine. and the black wavetorm is the gradient wavetorm.
Minima and maxima that have been matched are marked in white.

Figure 4-3: S sparse disparity map
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[ntensity teatures are matched hierarchicaily. In other words. $2 matches the most sigmiticant
reatures tirst. such as points with highest and lowest intensity values. Points with succeeding
~alues are matched later using matches at the previous coarse level as constramts. Due 1o the
locality of matching algornthm. the opumum matches at the wavetorm level mught not be
Jdesirable or correct trom a clobal pont of view. [t is precisely tor this reason that inter- and
mtra-scanime consistency constraints are imposed during the intensity matching phase.  Inter-
scaniine consistency ~impiy assumes that disparity should be neariy connnuous across the
scanlines. Intra-scanline assumes conunuity along the scanline. unless there are strong supports
tor the disparity jump. The intensity waveform matches are then used to constram allowable
matches during position refinement using the gradient wavetorm.

Figure 4-4: DC3s00% Industrial Scene Figure 4-6: S1 Disparity Map

Figure 4-5: DC3s00x Disparity Reterence Figure 4-7: S2 Dispanity Map

s2 pertorms a final post processing step to explicitly deal with the problem ot boundarv
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occlustion. We can detect an occlusion using the gradient protile when we tind unmatched
sigmiticant features 1in one protile that occur between two successive good matches where one
match 1s o high dispanty esuimate and the other 15 a low aisparity estimate. This situanon 1~
enufied and corrected by allowing a two-to-one teature match. In other words. a extra 1eature
in one protile 1s matched to u teature in the other protile that aiready has a match. At the end ot
this phase. we can create a sparse dispanty map as shown n Figure 4-30 Points in this image
represent the actual matches tound by 82 and are oniy a smail subset ot the three-dimensional
points in the scene. In the tfollowing section we describe the interpolation ot this sparse disparity
map 1nto a dense disparity map to recover height estimates tor the entire scene.

Figure 4-9: DC37405 Disparity Reference Figure 4-11: $2 Disparnity Map

One hey issue 1n feature-based stereo matching is the interpolation process. Because we are
obtaining depth estumates at sparse matching points. we must fill in depth esumates n a
consistent manner 1n order 1o achieve a complete dispanity estimate. There has been much work
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done 1n surtace interpolation techniques: some combined the interpolation process 1nto normal
stereo processing [13. 14]. while others tried surface fitting with sparse data [15]. However. we
have not tfound a satistactory technique that works in both urban environments with large
disparity jumps as well as 1n smoothly varving terrain. At present. a constant step interpolation
i~ used because 1t is the most suitable method given the sharp dispanty disconuinuities tound in
urban scenes.
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Figure 4-14: S1 disparity map
for denver scene

Figure 4-13: Reference dispanty map Figure 4-15: S disparity map
for denver scene for denver scene

Figure 4-3 shows the resuit of the S2 process in a complex industrial scene shown 1n Figure
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4-4. White points are actual match points while black pixels correspond to points with no
disparity estimate. Figure 4-7 shows the result of interpolating the sparse dispanty map
smoothed by a vertical median filter. Figure 4-7 shows that S2 performs well on discontinuities
with most of the mismatches and errors occurring at the occlusion boundaries. In the following
section we show stereo matching results for two complex urban scenes. DC38008 and DC37405.
and for a scene containing rugged terrain. ALV.

4.3. Some Test Datasets

Figures 4-3 through 4-15 show current results on three test datasets. In each case we present
the left intensity image of the stereo pair. a reference disparity map. and the disparity estimates
calculated by the S1 and S2 matching algorithms. In all cases dispanty is shown with height
encoded from dark (low elevation) to light (high elevation). The ground truth dispanties and the
stereo disparities are scaled to the same intensity range for the purposes of visual comparison.

Figures 4-4 through 4-7 show an industrial scene containing a moderate number of complex
buildings. Each building is fairly large. generally having a non-homogeneous root texture. and
have large areas of occlusion due to the building heights.

Figures 4-8 through 4-11 show a residential area having a larger variety of buildings including
townhouses. apartments. and large shopping areas. It also contains rather complex terrain. where
many of the townhouses are lower than the surrounding terrain.

Finallv. Figures 4-12 through 4-15 show an open area with no man-made structures, the
Denver ALV site. This stereo pair is included to show that the stereo matching algorithms are
capable of working in highly textured areas with no depth discontinuity. The most difficult
aspect of this scene was the very large disparity range, approximately 30 pixels.

4.4. Performance Evaluation

It is difficult to quantiiatively evaluate the results of any stereo matching algorithm working on
real. rather than synthetic. stereo image data. While random dot stereograms can provide
controlled three-dimensional scene structure we do not believe they are sufficient to evaluate
stereo matching algorithms in complicated imagery with natural and man-made structures. Two
different evaluations are possible. We can compare a disparity result to a reference disparity
map or we can compare different disparity results to one another. A true evaluation of the results.
however. requires the use of a reference "ground-truth’ disparity map for comparison.

It is actually very difficult to get a good reference disparity map for an arbitrary test scene.
One could imagine resorting to the use of existing digital elevation models. or paper maps with
terrain contours. Unfortunatelv. unless one is fortunate enough to find an area with high
resolution ground-truth, the accuracy of standard digital products or maps is insufficient,
especiallv with a ground sample distance around | meter per pixel. We have developed a display
100l to manually generate disparity maps allowing a user to select points on the registered images
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and generate accurate disparity values. The user views the scene using a Tektronics 920 stereo
display monitor with the imagery registered using a manual ground point selection. Once a
sufficient number of points have been selected. usually a couple hundred. but depending on the
complexity of the underlying terrain, we can generate a dense reterence disparity map of the
terrain by interpolation. Similarly. we add to the terrain disparity map. disparitv regions that
correspond to man-made structures. In some sense these manual disparity maps are detailed
cartographic descriptions of the scene and can be much more accurate than most traditional
paper-based maps. Figures 4-5. 4-9. and 4-13 show the manually produced dispanty maps for
the industrial. suburban house. and Denver terrain scenes.

At least three different performance measures can be calculated to evaluate a stereo disparity
result. We can evaluate the general performance on a scene. the performance for all the
buildings. or the performance on a building-by-building basis. The global average disparity error
is computed by finding the error for each point between an estimated disparity value and the
reference disparity map. This single statistic provides a quick quantitative measure of the quality
of the disparity map. One can further categorize points in the reference disparity map as high
gradient points. low gradient points. points with high disparity. or points with low disparity.
Based upon this classification it could be interesting to evaluate the performance of various
stereo matching algorithms for specific problems such as smoothing over depth discontinuities or
sensitivity to disparity range.

We describe statistics on the error between the reference disparity value and the disparity
resuit without any further classification. For our giobal measure we present the average error for
the entire scene and the percentage of points having an estimate within +/- one pixel disparity
from the reference for the entire scene. The use of +/- one pixel disparity reflects some of the
accuracy limitations in the reference disparity map and is discussed further in Section 4.4.3.
These simple parameters give us an idea of the magnitude of the errors in the scene. but do not
give much insight into their distribution. Other error metrics such as min/max error are not very
reliable since they can be caused by single point errors that may occur in either the calculated or
reference disparity map.
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Tables 4-1. 4-2. and 4-3 give the global error estimates for each of the three test scenes. These
global statistics show that S1. the area-based method. S2. the feature-band method and merge, the
combination of S! and S2. give very similar results across each of the three scenes. Interestingly,
these measures do not seem to statistically reveal the apparent perceptual improvement achieved
by merging the results of S| and S2. We believe that this argues for a more structural analysis in
addition to global scene measures.
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One way to address some of the issues that are hidden by global statistics is to measure the
influence of the disparity value on matching accuracy for each of the methods. The graphics in
Figures 4-16. 4-17. 4-18. 4-19, 4-20, and 4-21 plot error rates sorted by reference disparity.
Figures 4-16. 4-18. and 4-20 show the average error in pixel dispanty at each dispanty level for
each of the test scenes. Each contains three graphs showing the results for S1. s2. and the merged
result of S1 and S2. Figures 4-17, 4-19, and 4-21 show the percentage of points within +/- one
pixel of the ideal pixel disparity over each disparity range.

In general. these graphs indicate that the greater the actual disparity. the more likely the
various matching algorithms will make a mistake. This is reflected in both a higher average
error and a lower percentage of points within +/- one pixel of the actual disparity. These global
metrics al<o show that in areas of low disparity, S!. S2. and their merger give similar results. For
higher disparities S1 has much more of a problem in correctly estimating the disparity than does
S2. Further. in most cases. the rcsult of S1 and S2 merging produces an improved estimate
causing errors to decrease.
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Global Error Estimate for Stereo Matching

Using Figure 4-5 as ground truth

Stereo Min/Max Average ' % ot points ~ Ground Truth
Method Disparity | Error % { within +- | . Dispanty Range :
| (pixel disparity) | pixel disparity
Sl -12/13 | T%(1) J 58% | -2/15
s2 -5/14 6%(1) | 63% IEERE
S1+S2 -10/14 | 5%(1) | 59% L 208
Table 4-1: Statistics for different stereo matching methods on DC38008
Global Error Estimate tor Stereo Matching !
Using Figure 4-9 as ground truth |
Stereo Min/Max | Average % of points | Ground Truth |
Method Disparity . Error % within +- | ' Dispanty Range |
| (pixel disparity) | pixel dispanty i
S1 -12/12 i 5%(1) 63% -13/13 |
S2 -15/15 | 4%(1) 70% -13/13 |
S1+S2 -15/15 | 4%(1) 70% I .
Table 4-2: Statistics for different stereo matching methods on DC37405
Global Error Estimate for Stereo Matching
Using Figure 4-13 as ground truth
Stereo ! Min/Max Average % of points Ground Truth
Method | Disparity Error % within +- 1 Disparity Range
! (pixel disparity) pixel disparity
S1 ‘ -22/19 | 5%(2) 61% | -28/-1
S2 -26/1 6%(1) 70% -28/-1
S1+82 ! -25/1 6%(1) 70% -28/-1
Table 4-3: Statistics for different stereo matching methods on Denver scene

In areas with man-made structures giobal accuracy statistics do not adequately convey the
quality of the stereo matching system with respect to the buildings in the scene. In most cases
buildings may cover only a small portion of the scene and the background terrain will
statistically dominate the scene-wide estimate of disparity quality. Thus. we require 2 method
that allows buildings to be evaluated independently or as a class of objects in the scene.
Additionally. there are several metrics that can be used to evaluate both the dispanty estimate
and the quality of the depth jumps. We discuss these metrics in the following sections. Figures
4-22 and 4-23 are hand segmentations of the left image where we have associated a reference
building IDs. Figures 4-24 and 4-25 are graphs showing the actual building heights referenced
to the building IDs. We have also computed. for each building in the ground-truth. the height of
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the building over its surrounding terrain. We have assigned building ID’s based upon the
ground-truth disparity map so that taller buildings have larger numeric [D’s.
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Figure 4-22: Building Index for DC38008
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4.4.1. Quality of Building Disparity Estimate

In order to evaluate the performance of S1. S2 and the merged resuit on buildings in the scene
we can gather statistics on the disparity estimate for each pixel considered to be on the roof of
the building. As before. the average disparity error in pixel disparitv and the percentage of
points within +/- one pixel of the ground-truth estimation are good measures for performance.
Figure 4-26 shows the quality of the disparity estimate for each of the buildings in the DC38008
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industrial scene. The x-axis represents the ID number for each building and the y-axis shows the
errors in estimated disparity for a particular building across S1. S2. and the merged result. This
araphic. although a bit cluttered. shows no clear trend of performance advantage: both S1 and S2
produce a comparable result. although S2 appears to perform better. especially on buildings with
greater disparity. For most buildings the error is bounded between +/- two pixels. The result of
merging generally appears to improve the average error. As we have assigned building ID’s
sorted by disparity we can observe a trend towards increased error as we move along the x-axis.

We can also represent results using the disparity jump instead of the building ID to index the
results. These graphics represent the integration of the average disparity error over all buildings
with the same disparity jump. Figure 4-27 and 4-28 show the effect of disparity jump on the
disparity estimate and allow us to determine whether the actual height of a building over its
neighborhood (disparity jump) affects the disparity estimate produced by stereo matching. It
appears that S1 is comparable with S2 for smaller buildings. This is because low buildings can
satisfv the continuity constraint of the area-based method. S2 performs better on scenes with
buildings having significant height because low buildings can be easily masked by random
mismatches in the feature-based analysis. The merge of S1 and S2 produces results that combine
the best properties of both methods.

Figures 4-29, 4-30 and 4-31 provide similar statistics for the suburban house scene. DC37405.
As in DC38008 the average error for each building appears to be bounded by +/- two pixels. S2
appears to have slightly better performance than St. and the result of the merger almost always
improves the average error. Whereas S2 always appears to perform much better than S1 with
respect to the percentage points (within +/-1 pixel of the correct disparity in DC38008). (Figure
4-28) this is not the case for DC37405 as shown in Figure 4-31.

These statistics allow us to pinpoint problems at a much finer grain of detail than can be
accomplished with global analysis. Thus we can identify specific buildings in the scene and try
to understand. at the algorithmic level, whether there are specific situations where matching
could be improved. Once identified. these improvements should have an overall positive effect
on the rest of the scene. The result. of course. can be subjected to the same rigorous performance
analysis. Once we commit to working on complex scenes. as opposed to synthetic controlied
images. the visual inspection of disparity results to discover small variations in performance
becomes very unsatisfactory. except possibly at the earliest stages of experimentation. Such
manual inspection greatly limits our ability to detect subtle conceptual bugs or recogmze
possibilities for algorithmic improvement. In some cases we can perform systematic analysis
across multiple scenes. For example. in applying statistics that take into account the disparity
jump for individual buildings. we can aggregate performance information for all buildings across
all scenes to achieve a larger statistical sample.
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4.4.2. Quality of Delineation Estimate

In the previous section we described techniques to measure the accuracy with which we can
recover the height of buildings in the scene. For cartographic applications it is equally important
that we generate an accurate delineation of the buildings with respect to their surroundings. In
this section we discuss another metric which is the quality of the stereo delineation of each
building in the scene. We compute edge location which measures the distance of the estimated
disparity jump from that in the ground-truth disparity. We also measure edge sharpness which
corresponds to the shape of the disparity jump in the estimated disparity map. Ideally, we would
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expect the stereo matcher to generate a step disparity jump at the point where the actual dispanty
Jump occurs in the reference dispanity map. As before. we assume that the ground-truth disparity
map accurately captures the location and the height of the building edges. In order to allow for
measurement error. we tolerate some uncertainty in both the location of the edge (+/- one pixel)
and the height estimate on both sides of the edge (edge sharpness). The uncerainty in edge
sharpness is somewhat difficult to quantifv since it depends on both the height estimate on each
side of the building roof edge and on the height estimate of the neighboring ground. These
estimates may be biased. since in some cases we are interpolating the ground elevation from a
sparse network ot points. We can alleviate this error by making sure that we select
representative ground points as close to the buildings as possible.
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Building in DC37405 Each Disparity Jump in DC37405

Figure 4-32 shows how we compute the edge location and sharpness for each building in the
scene. The two waveforms represent the gradient of the reference disparity map and the disparity
result being evaluated. The peaks in the reference disparity map gradient represent the true edge
of the building in the scene. The evaluation process finds the best matching peaks in the Si1. S2,
or merged disparity map gradient within a neighborhood of the reference edge. The distance P
corresponds to the position error of the edge in the result dispanity map. The ratio Hd/Hr
corresponds to the sharpness evaluation of the edge. A ratio of one is perfect. The value Hd and
Hr correspond to the amplitude of the gradient related to the reference zero gradient.

Both the position error and the edge sharpness metric require that an edge point in the
reference disparity map be matched with an edge point produced by the stereo matcher under
evaluation. In many cases no such match is possible: that is. there is no suitable match for the
reference disparity edge. In the following examples between 35% (DC37405) and 50% (DC38008)
of the reference points are not matched. hence the matchable edges represent between 50-65% of

37



> 100.00g—
R
2
Al ”‘NL—— + - -
3 "% =
v S 31
% nw; 3 L—-—-——— .
b i
8 ssow} *
N |
i - '
] nmlp . NN l
E , N
: ! / I b
T 7o} . . “
2 l :‘
) wl‘ \\?,_7&\ {
. .
- .. L 1
H l - M :
H &5.00 [} Vxﬁ H
e
& | . .
60.00| e em e e e Sl -
. -
55.00
so.00L =
1 T F 3 ] s 3 - ]
dispenty jump

Figure 4-31: Percentage of Good Points for
Each Disparity Jump in DC37405

o /\ AN \ "

Figure 4-32: Gradient Matching for Edge Evaluation
the reference points in the scene. Figures 4-33 and 4-35 represent the average position error for
the matchable edges across all buildings in DC38008 and DC37405, respectively.

Figures 4-34 and 4-36 shows the percentage of edges produced by the stereo matchers that are
within +/- one pixel of a reference disparity map edge. These graphs are the subset of points
lving in the band +/- one position error from Figures 4-33 and 4-35 respectively, plotted with
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respect to all edges in the reterence disparity map. In both cases the position error metric shows
that the ability to accurately delineate the disparity depth jump appears to be much weaker than
visual examination of the disparity maps might indicate.
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Figure 4-33: Edge Position Error for DC38008 Figure 4-34: Percent Good Edgels for DC38008
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Figure 4-35: Edge Position Error for DC37405 Figure 4-36: Percent Good Edgels for DC37405

For the evaluation of disparity sharpness we calculate the average edge ratio and the sharpness
of edge points whose edge position is within +/- one pixel of the reference edge. Figure 4-37
represents the average edge sharpness ratio for all matchable edges across all buildings in
DC38008. A ratio of one indicates a perfect step edge. Figure 4-38 shows the sharpness of edge
points that are within +/- one pixel of the reference position for all buildings in DC38008. Figures
4-39 and 4-40 show the same results applied to the buildings in DC37405.

We can make several observations based upon this performance data. First. it is clear from
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this analvsis that S1 does nc  ~ form as well as S2 in terms of disparity delineation. Its ability to
estimate the sharpness of the disparity jump (edge ratio) is likewise poorer than that ot S2.
However. there are some comparative advantages. SI gives comparable results in the case of
buildings with low dispanty. On the DC37405 scene the S1 and S2 results are similar because the
buildings in this scene do not have large disparity jumps.
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It is interesting to note that errors in delineation, position. and sharpness increase as the height
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of the buildings increase. This is an artifact of occlusion. where higher buildings will occlude a
larger area. making it more difficult to detect the exact position of the dispanty jump. Edge
errors seem to be comparable for both S1 and S2 for buildings with low dispanty. As expected.
S1 does not delineate tall buildings well and the merged result combining S! and S2 sometimes
produces a result that is an improvement over each individual method but. more otten. simply
decreases the maximal error.

4.4.3. Limitations of Performance Evaluation

The common theme in this section on performance evaluation is to describe a vanety of
quantitative measures that allow us to objectively judge how well a particular set of
registration/matching techniques perform with respect to a manually compiled three-dimensional
ground-truth model. and bv comparison. how well they perform with respect to one another. The
reterence disparity map is generated using monocular and stereoscopic visualization and 1s a
representation of the scene within a certain accuracy. In most cases the ground-truth
segmentation can be constructed with enough care to provide for accurate detection of gross
errors. and as a common basis for general comparison between matching methods. However. the
actual accuracy of the reference disparity map has to be considered if we attempt to use it for the
analvsis of scene micro-structure. such as roofs with shallow pitch that are modeled as flat
surfaces. small super structures such as building air conditioner units. stair well towers. and other
small roof structures. These superstructures can add an error bias into the overall statistics. This
bias is likely to be small: consider the fraction of error introduced in the case of a nine story
building where we have not correctly modeled an air conditioner unit that nises another story
over 15% of the total roof surface.

Nevertheless. we are sampling only a small subset of the actual three-dimensional points in the
scene. If we count all of the building edge pixels and terrain web points manually selected for
scenes such as DC38008 and DC37405. less than 3% of the scene points are used to produce the
dense reference disparity map. These points are represented in a triangulated irregular network
(TIN) for the terrain upon which is superimposed the building roof structures. We linearly
interpolate the network in order to calculate the dense disparity map. Interestingly, S2 gives us
matches for approximately 12% of the scene points which is typical for feature-based maiching
algorithms. As such. our performance analysis is subject to possible errors in the evaluation of S2
matching algorithm introduced due to interpolation from the sparse disparity map.

Given the lack of performance evaluation techniques in computer vision for three-dimensional
scene modeling we are probably content simply to know the height of the buildings and the
general shape of the underlying terrain. But we should understand that if we attempt to push
performance analysis to detail the small effects of subtle algorithmic changes we may run up
against fundamental limits in our ability te recover these micro-structures. Thus. in our
calculations. we have added an uncertainty of +/- one pixel of disparity to the ideal ground-truth
value and feel that this covers a large fraction of the inherent inaccuracies. In summary. our
disparity performance evaluation has to be considered as a method to easily detect large
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mismatches by the stereo analysis svstem: it may have some limitations in the fine evaluation of
disparity values. Nevertheless. we see such techniques as the only method for effective
comparison of disparity resuits.
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5. Refinement of Disparity Estimates

One common problem for systems that interpret multiple sources of sensed data is the fusion
of partial results from a variety of sources. This probiem appears under many guises. For
example. given a set of different scene descriptions generated from a single image using a
variety of image analvsis techniques. how does one intelligently combine such partial
information? [16]. The introduction of additional sensor types. temporal imagery. and multiple-
look imagery create dimensions along which information fusion must be performed: as such, the
complexity of the problem can increase. In some cases. increased amounts of data provide
improved information. This may not necessarily follow, however. complex systems having
different sources of error may not reinforce correct partial interpretations nor refute incorrect
ones.

In this section we describe recent research in techniques to improve the accuracy of a stereo
disparity map using a segmentation of the left intensity image of a stereo pair. Thus. we are able
to recover trom mismatches generated during stereo matching by re-utilizing the intensity image
that was originally used in the matching process. We give some experimental results on
disparity refinement and describe techniques that allow for the integration of additional scene
segmentations to provide for a more robust refinement process.

5.1. Disparity Refinement Procedure

In our research we utilize scene domain cues derived from monocular analysis and stereo
analysis of left/right stereo image pairs. In the case of monocular analysis. one source of
information is a region based segmentation of the left or right image. In the case of stereo
analysis. our cues are primarily disparity maps derived from area-based and feature-based stereo
matching algorithms. These image-based cues are different manifestations of man-made
structures and terrain surfaces in the scene. In the case of three-dimensional reconstruction. we
can make the assumption that the scene is composed of surfaces whose information content is
primarily in terms of surface orientation and radiometry. Under these assumptions. we will see
how estimates of three-dimensional scene structure (as encoded in a scene disparity map) can be
improved by the analysis of the original monocular imagery.

We have two sources of information that can be viewed as different representations of the
physical surfaces found in the scene: disparity maps resulting from different stereo matchers
providing the heights of the surfaces in the scene and the initial intensity images representing the
radiometric properties of the surfaces in the scene. Figures 4-4 and 4-7 show an example of
“initial” data used for these data fusion experiments. Figure 4-4 is a high resolution aerial image
containing a variety of buildings with complex shapes. typical of an industrial area. Figure 4-7 is
a disparity map derived using a feature-based stereo matching algorithm. It is important to note
that these two sources of information are "registered”. That is. there is a pixel-by-pixel
correspondence between points in the intensity image and points in the disparity map. In some
many cases one issue complicating the use of multi-source information is the accurate
registration or correspondence between the information sources themselves.
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An intensity image. subject to sampling and digitization errors. poses difficulties for
monocular analysis techniques such as segmentation. On the other hand. most stereo matching
algorithms are fooled by different variations in the stereo pairs. which cause mismaiches in the
disparity maps. The mismatches in disparity maps primarily result from geometric and
radiometric differences in the left and right images. rather than local digitization or sampling
errors in the intensity images. Thus. it is possible to use information from the intensity images to
reduce the number of mismatches introduced by stereo matching processes.

5.1.1. Region based interpretation

Our approach utilizes surface illumination information. provided by the segmentation of the
monocular images into fine surface patches of nearly homogeneous intensitv. to remove
mismatches generated during stereo matching. First. we segment the intensitv image into
uniform intensity regions. These regions correspond to approximately planar surfaces in the
image. We assume that the orientation and surface material are the primary factors for the
radiometry of the image. Under these assumptions. uniform image radiometry is produced by a
planar surtace. of a certain orientation and material. in the scene.

These surtaces should have continuous linear disparity values (i.e.. the disparity values of
these regions are represented by continuous linear functions). Since the disparity map contains
some noise. however. most of the regions segmented in the intensity image have disparity
functions that are neither linear nor continuous. Ideally, we would like to approximate the actual
disparity functions over the uniform intensity regions by the appropriate linear functions.

The problem of approximating a surface in three-dimensional space to a reasonable planar
surface is a difficult one: we approximate such surfaces by horizontal surfaces. Then. the
disparity values for each region will be the same for each pixel. and the problem is reduced to the
selection of the best value for the heights of these surfaces. The general problem is that of
locating of the surface which satisfies the equation

ax+by+cz+d=0
Given (x.y), we should be able to obtain

z = (-ax-by-d)/c
We assume here that z'= -d’/c” only. Then the problem is to find (-d’/c") that best fits the surface
o0 that

ax+by+c*(-d’/c")+d~=0
or to find z' so that z-z° would have a minimal value over the region (this can be the weighted
mean of the z distribution or the most ‘representative’ value of the z distribution). In other
words. we need only select a single disparity value for each region. Since we are using an over-
segmentation of the image. a piecewise planar disparity map gives a good approximation of the
relief in the scene. Furthermore. since we are interested in building extraction in aenal images.
this approximation will be adequate.

This region-based interpretation has been developed for two different applications. We show
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how this approach can support information fusion from different segmentations and well as
across multiple Jisparity estimates based upon a local decision making evaluation. In Section
5.2.1 we describe how improved disparity maps may be obtained by correcting the mismatches
produced by stereo matchers and by refining the disparity discontinuities. In Section 5.2.6 we
present preliminary results in the extraction of building regions from the scene using the height
information in these disparity maps.

5.1.2. Intensity Segmentation Techniques

The general scene segmentation problem is. of course. a very difficult one and has a long
history in image processing and computer vision. There are no universal segmentation
techniques that work well across a variety of imagery and tasks. Such low level algonithms
typically differ in their approaches: they may utilize intensity-based. area-based. or edge-based
techniques. Some systems combine these techniques into hybrid aigorithms. We have
concentrated on those segmentation methods that produce (nearly) uniform intensity regions
because we wish to detect those image regions that correspond to oriented surface paiches in the
scene. We utilize a region segmentation algorithm based upon the histogram splitting
paradigm [17] and a region growing algorithm [18] which takes into account edge strength and
shape criteria [19]. Interestingly. while neither of these methods give completely satisfactory
segmentation results. they provide good over-segmentations that rarely merge object,background
boundaries. Both techniques will also provide different segmentations based upon modification
of a small set of parameters. In our experiments we generated three scene segmentations: two by
using different parameters for histogram selection. and one by using region growing. These
segmentations provided the basis for our work in intensity/disparity fusion. the goal of which
was to produce an improved three-dimensional scene interpretation.

Figures 5-2 - 5-4 show examples of these segmentations on the DC38008 industrial left intensity
image. We ran the experiments on smoothed images (Figure 5-1) to remove intensity noise.

5.1.3. Machineseg

One of the major difficulties with region growing techniques in complex scenes is the
difficulty in determining automatic stopping conditions for the merging procedure.
MACHINESEG [19] is a region growing system that tries to preserve edges between regions and
stops the growing procedure when certain shape or spectral criteria are not satisfied inside the
region. It adds a decision procedure to evaluate the effect of the next merge operation and either
allows the merge to proceed or to be rejected. In the case of disparity map refinement. we want
the regions to be sufficiently uniform that they could be treated as planar (or at least "soft")
surfaces. We also limited the size of the generated regions so that very small regions could not
be generated. as these could be considered noise or non-representative regions. As can be seen
in Figure 5-2. since we are not considering the small region. our segmentation is not a complete
partition of the image: it does. however. obtain most of the representative surfaces in the image.
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Figure 3-1: Nacao nltered lett Figure 3-2: MACHINESEG segmentation
HMage 1or DO SSo0N On DO NN

S 14 Colorseg

This tistogram sphitung techmigue 18 based on the extraction ot regions with limited intensin
ranges n other words. regton of approximately unitorm antensiies ), The technique searches tor
the peaks i the histogram ot the image and segments the regrons w hose mtensiy values tall in
wndows dround these peaks. The regions are then removed from the mmage and the process
continues untid all the pixels n the wmage have been removed. This process results 1 a
seementation composed ot connected regions. each having an ntensity range fess than g certain
threshoid. This techmique does not guarantee preservation ot the edges (n parucular. small
srwesy but 1t may rgnore local noise with strong edges that other technigues will classity as
ceotons, s n the previc o technique. we removed very small regrons dess than 20 pixedsy that

Lould be considered as noise. tor turther processing.

in our experiments. we  cenerated  ditfereni segmentations with  difterent segmentation
techmigues. For instance. using the colorseg techmique we generated (wo segmentaiions ot the
images. one with “umtormuity - detined as a maximum ot 10 intensity levels inside the region (o
tolerate sensor noise and allow for imperfect planar surtaces) and another with “unitormity
detined as a maximum ot 20 mtensity levels (1o tolerate more notse)  An esumation ot the noise
or the average intensity range tor the surtaces in the image 18 dehcate problem. and the use ot
ditferent segmentations to estimate the mtensity range inside the regions does not necessariiy
increase the rehabihity of the process. [t is thus important that we obtain ditterent segmentations
ot the scene that are nor consisient. such as those n Figures 3-3 and 3-4. The tusion of these
data may overcome some of the inherent problems of a single segmentation since they provide
different local evaiuation contexts tor disparity estimates in the scene. In the tollowing sections

we show how we can merge intormation using ditferent intensity segmentations,




Figure 53-3: COLORSEG segmentation Figure 3-4: COLORSEG segmentation
wath 1O mntensity levels with 20 mtensity levels
SCNSIOVEY Tor DOASOON SCNSIIVIY TOT DOIS00N

L5 Disparity map results

Our mtial height mtormatton for the industrial scene was derived using two ditferent stereo
matchine alcorthms. Given these sets ot herght intormation, which may or may not be rehable
Or umgue. 1t becomes necessary 1o use i data tusion process 1 order o maximize the amount of
usetul itormanon gained trom these sets ot herght estimates.

We used 2 ditferent matching techniques. one area_based (S1) and the other teature_based
'N20.0Siouses the method ot ditferences technique on neighborhoods ot the image in hierarchical
rastion 1100 T S2 pertorms a hierarchical matching ot epipolar mtensity scanhines in the lett
and richt image (2010 The results ot these stereo matching algonthms are different: Sigives us a
dense dispartts map e, a map contaming a dispanity vaiue tor each mixel in the imace). while
S2oonves us a sparse dispanty map (e a map contamning a dispanty value tor those pixels

corresponding to peaks or vallevs in the itensity images).

Since we used umitorm seemented regions that we assumed to be honizontal planes. a logical
mterpolation method tor the sparse 82 disparity map is step interpolation. This produces a dense
disparity map consisting ot regrons with unitorm disparity values. which may be more easiy
mtegrated with a dense map produced by St Our tuston mechanism will have to correct
musmatches i the stoor s2 disparity maps and then choose the better unigque disparity value tor
cach pivel m the scene. 1t will have to merge very ditferent dispanity intormation. such as that
shown i Freures 3-6 and 3-3. the two left disparity maps tor the DC3S00N scene.
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5.2. Fusion Experiments

After different intensity segmentations and different disparity results were obtained. we
applied a very simple fusion technique and developed a few experiments tor the two applications
under consideration. Most ot the experiments have been performed for the disparity refinement
process. but the results have been used for the building extraction process as well.

Figure 5-5: S1 lett disparity Figure 5-6: S2 left disparity
result for DC3800K result for DC3800K

3.2.1. Disparity refinement
In order to refine the disparity maps (i.e.. to remove mismatches. improve disparity
discontinuities and obtain the best height estimate for each point in the scene). several
approaches have been explored:
e Dispanity refinement using one segmentation
¢ Disparity retinement using several segmentations

e Disparity refinement using one segmentation and several disparity maps
e Disparity refinement using several segmentations and several dispanity maps

3.2.2. Simple disparity refinement

In this first approach. a histogram is constructed for each segmentation region. The values of
each histogram are the disparity values in each region. The most representative value ot each
histogram 1s then selected. In our case. this value was simply that of the highest peak in the
histogram. We chose this value tor two reasons. The step-interpolated S2 disparity maps result
in disparity histograms having only a few values. which correspond to real height values or
matching noise. If the matching s reasonably robust. the noise will introduce local maxima in
the histogram that will be smaller in magnitude than the best height estimate. Further. a typical
region histogram for an S2 disparity map exhibits one or two large peaks and a few noise peaks
that intluence the average value of the histogram. making it less reliable as a representative
value.

48




For non-honizontal regrons and $1 results. the average disparity may suffice 10r a reasonable
measure ot the height ot the region. A contidence score can be generated for these disparuy
~adues based on the charactenisuies of the histograms tand. conceivably. on the type ot dispanin
map used as well as the nature of the regron histograms). Finally. this disparity vaiue s assigned
to the enure region. under the assumption that 1t will be a better esumate ot the hewght tor the

: whole recion. In most cases. this removes a large number of the mismatches. but whenever our
mitial assumptions about scene radiometry are not valid. our height esnmates may ditter from
the correct height value.

We implemented this approach tfor each segmentation and disparity map and generated new
dispanity maps that were based on the initial intensity regions and disparity values. The pixels
that were not considered during the segmentation were removed from these new disparity maps.
Freures 5-7 and 3-8 show the results of the disparity improvement process tor the ditferent
~cgmentations using the 82 disparity map. and Figures 3-9 and 3-10 show the results ot the
dispanity mprovement process tor the s disparity map.

Figure 3-7: S2 lett disparity Figure 5-8: S2 left disparity
result tor DC38O0R result for DC3800R
improved using SEGI10 improved using SEG20

[t 1~ worth noting that a common methodology 1s utilized among all ot the approaches
described in this section. A set of attributes 15 computed tor each region in each segmentauon.
Among these attributes are the statistics tor the disparity values inside a region. the best disparity
vatue. and a contidence score tor this value. This allows the computation to proceed at a
symboiic level on a region-by -region basis.
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the disparitv estimate attribute (computed for a given disparity map) as well as a confidence
score for this estimate. The confidence score is then used to select the best dispanty value.
which is then assigned to the pixel. Currently a simple decision is made to select the dispanty
value having the highest confidence score.

An attempt is made to maximize the score tor each pixel in the entire image. This is done by
selecting a dispanty value in all of the regions resulting from the union ot the segmentatons. In
other words. the segmentations were merged and the best height value was selected tor each of
these regions. by utilizing the confidence scores computed for each region. The scoring method
currently in use takes into account information about the nature of the segmentation used.

In particular. higher confidences can be assigned to sufficiently large regions in a constrained
segmentation such as SEG10 than to the equivalent regions in SEG20. Information of this nature
must be incorporated in the confidence function for each segmentation region.

Figures 5-12 and 5-11 show the results of merging the SEG10 and the SEG20 segmentations tor
the S2 and the S! disparity maps. respectively. Depending on the confidence scores of the
disparity values selected for each segmentation. we were able to obtain improved disparity
estimates for some of the regions. Comparing these results to Figures 5-7 and 5-8. dispanty
maps obtained with the simple method. we observe some of the failings of both approaches. The
initial segmentations. in some cases, are under-segmented instead of over-segmented. resulting
in the grouping of regions that should have been assigned differem height estimates. Another
factor is the confidence evaluation function for the regions of the segmentation. which only takes
simple properties of the disparity histograms of each region into account.

5.2.4. Multi-Disparity Disparity Refinement

In this approach. several different disparity maps are merged using a single segmentation.
looking for consistent areas across disparity maps. This approach is similar to the simple
disparity ifnprovement approach. except that we now attempt to select the best disparity value
based on a set of differing confidence scores. The score established for each disparity map at
each pixel should be dependent on the stereo matching algorithm used to generate the map, and
should also take into account the nature of the possible mismatches resulting from each stereo
matching technique.

The major problem with all of the refinement approaches discussed in this final report is the
development of a reasonable confidence evaluation function for each set of data. Currently,
confidence is evaluated by a scoring function that utilizes the standard deviation and the
disparity range of the histogram for each region. as well as the size of the region. Ideally. this
scoring function would also take into account the nature of the dispanty map. As an initial
experiment. we defined a similar scoring function for each disparity map and checked for
disparity consistency across segmentation regions. In Figure 5-13. the areas where dispanty
values differ between S1 and S2 are marked in black. as we do not use any score difference
information to select the most probable height value at this stage.
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5.2.5. General Disparity Refinement

For the general case we cun merge the results of different dispurity maps and different
segmentations and look tor consistency across the results. The approach 1s simifar to the muiu-
segmentation method: however. we should be able to add additional height hypotheses according
to the ditterent segmentauons.

Again. the processes can be decomposed into two stages. The first stage will cather the
nformation and convert it into a common representation (i.e.. region attributes). As an example.
tor each segmentation we should obtain a list ot height estimates with scores associated with
cach ot the difterent disparity maps we can use (S1 and S2). The second stage will attempt to
merge this information by selecting the “correct” value trom the available intormation. by
comparing scores bused on the nature and quality of the different pieces ot information. It we
can precisely evaluate the quality or confidence n the informaton. we should be able to
maximize the amount of accurate dota we merge from our different information sources.

There are sull many experniments that have vet to be pertormed. In particular. experimentation
needs to be done on merging the two different disparity values for the three ditferent
segmentations.

Figure 5-13: S1 left dispanty
and S2 left disparity
merged using YAK

5.2.6. Building extraction

This second application ot intormation fusion i1s an attempt to validate this region-based
approach for scene interpretation. Using the previously described methods. we can obtain an
estimate of the height of each of the composite regions in each segmentation. According to our
representation of the scene. buildings are composed of a single intensity region or a group of
intensity regions. and. in general. are higher than their surroundings. Therefore. regions
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representng parts ot a buiiding shouid be higher than their neighboring regions.

ror cuch regton. a list of 1ts nerghboring regions s constructed. and the dis ity values tor
cach ot these regions are obtained. Then. 4 weighted histogram 1« compute: 1.0t takes 1nto
account shared boundarv length and dispanity intormation. This weightea ~.ore v then
~ompured with the height ot the region to label the region as buiiding structure or backeround
twerriin. - This building extraction process can use either the mital dispanity map or the refined
Jdispanty map.

A retinement process s used to group netghboring regrons with the same height in order to
obtain an intermediate segmentation contaming fewer tand larger) consistent regions.  This
srouping procedure merges connected recions having the same height to torm a single region.
This allows the butlding extraction process 1o use farger. and hopetully more consistent. disparity
rewions as a basis tor the neighborhood dispanity analvsis. The quality of this anaivsis 1s again
Jdependent on the accuracy ot the dispanty estimate. as 1n the previous tusion process. Figure
*-14 shows the result ot such an analvsis. The white regions correspond 1o sections o1 buildings.
The buiding extraction. as done by hand. 1~ 1 Figure 3-13. The building extraction process
described here allustrates one tacet of scene mterpretation that can be pertormed within our
rethinement tramew ork.

Figure 3-14: Building regions tor Figure 5-15: Building regions tor
DC38008 extracted DC3800% extracted
using the merging manually

of SEG)0 and SEG20
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6. Database Support for Spatial Databases

Automated cartographic feature extraction requires database support to store and retnieve
existing map knowledge. and to incrementally update spatial databases as new information
becomes available. We have begun some preliminary work in addressing such issues using
realistic digital map databases. ~CONCEPTMAP. our spatial database system. provides a
framework for storage and retrieval of many types of image data. including images and
associated attributes, object boundaries (in image or map coordinates). correspondence
information. et cetera. The ability to treely import and export this type of information 1s another
important feature that CONCEPTMAP provides. To this end. we have initiated work to integrate
ITD cartographic data. DMA’'s Interim Terrain Data format. into our spatial database
management system, as well as to provide an efficient graphical user interface to the database.

The integration process includes the decoding of low level ITD symbolic and spatal data. the
building of a representation for the ITD data structure specifications. and the automated
generation of formated information that can be directly integrated in a known spatial database
management system. The user interface supports ways of querving the data dictionaries and the
data structure of the database. It also allows to display and interactively select spatial
information. Finally, it provides simple means of performing semantic queries on muiti-layer
data.

6.1. Integration

A general decoding program has been written to read the raw ITD data format and produce
human readable ascii information. This program uses a simple assembly-like language where
:ach instruction is able to read an arbitrary binary data stream and produce an (Attribute.Value)
pair text output. The processor is able to interpret numeric data on the fly to parameterize loops
and decode dynamic data structures.

A set of utilities has been developed to extract the spatial information from the decoded data
and produce specific data file formats for display purposes or for future database integration. Part
of this process makes use of global information for absolute positioning, or segment naming
conventions to provide links to the symbolic data. This is supported by a simple mechanism
where the global information on a given data set is centralized in configuration files.

In order to check symbolic data consistency and produce ITD symbolic data in a format suited
for the integration in a known database system. or more simply in user readable format. a data
representation of the complete ITD format specifications has been built. The ITD data structure
is organized in three ievels: the feature level. the aturibute level. and the physical structure level.
These levels are described in text files so that they can easily be modified with a text editor.

The data output formats of the various steps towards integration are consistent so standard
tools could be developed. All the data involved after the first stage of decoding is represented as
(attribute.value) pairs stored in text format (ascii files). This format is very useful for
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experimentation. It makes it easy to read and interpret the output ot a process as well as edit the
input of a process for testing. The text format is also justified by the fact that most ot the
processing involves svmbolic data.

Some programs were developed to transform the ITD symbolic data into a format that can be
used by a database management system. From the first two levels of the structure specification. a
teature dictionary is generated. This dictionary. the feature and attribute levels. the physical
structure and the global configuration files specific to the data set can then be used by an
integration program (or database compiler) to automatically generate an arbitrary database
tormat.

For experimental purposes. our first database compiler outputs an (attribute.value) pair text file
tormat. The tools designed for text file parsing have been extended to support feature oriented
structures (processing ot paragraphs as separate features). The second part of this report shows
how a simple database management system was developed with these tools to expenment on
user interface issues.

The next step is to write an ITD database compiler for the CONCEPTMAP spatial database.
Already. the spatial information can be integrated in CONCEPTMAP. and work is in progress to
automatically generate CONCEPTMAP symbolic data dictionaries.

6.2. Interface

Once the ITD cartographic data has been organized and compiled into a usable database. the
next issue is to design a user interface to this database. In the process of designing a high level
graphical user interface, three levels of interfacing have been developed. The first level involves
utility programs executed from the UNIX command line. This level is useful to define and
develop the various functionalities needed. but is the most primitive interface. The second level
1s the integration of a set of functions in a common context (it is possible to have a current
working data set. and help facilities). This level is still command line oriented. but is the best that
can be implemented on a regular terminal. The last level is the graphical user interface
implemented on a Unix workstation with the X Window System. The goal is to simplify the task
of the user by guiding his steps through a session in order to optimize the use of the system by
reducing the interaction time. in particular for complex tasks.

6.2.1. The database system

The first utilities that we developed provided a way to consult data and link the spatial ITD
data to the symbolic data. One of the utilities allows the user to pick a segment on a graphic
display and get in return the symbolic information for the feature corresponding to that segment.
Another one can filter symbolic data files to extract a class of features.

An initial version of the database query system consisted of a command line interface
developed using Cl. the Command Interpreter, which integrated the various functions provided
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by the consultation utilities. In this first system. the user could consult the ITD data structure
specifications. display the ITD spatial data. and consult the compiled version ot the ITD
svmbolic data. Then. a simple query system was added to search through the ITD svmbolic data.
This query svstem is based on data filters. The concept of a data filter in this system 1s analogous
to UNIX filters. but is implemented slightly differently (no fixed length butters) and adapted to
this particular data format (more rigid and simple svntax. feature oriented format).

In this system. a feature presented at the input of a filter will generate on its output a new
feature (generally itself or NULL). Therefore. when this filter is applied to a feature tile it will
generate a new feature file. In a database context. such a filter can be considered to be a query
primitive and the filtered feature file corresponds to the result of this query. In this model. filters
can be chained together to achieve the 'AND’ operation or put in parallel to realize the "OR’
operation.

During a database query session. a complete trace of the different outputs obtained is kept by
the svstem. A history is associated with each partial result so that it 1s possible to reconstruct the
processing steps that lead 1o the result. It is possible to save the history along with partial results.

6.2.2. The graphical user interface

A first cut at the graphical interface for representing the feature files and filters was developed
using the X Window System. The current interface is simple. though it does demonstrate the
methods for graphically combining filters. It also shows how it is possible to back-propagate a
query until a database match is found. This information is loaded as a text file and the varous
filters are applied in the right order until the query is satisfied. There are several benefits gained
by using the simple representations. Because of the use of the XWindows and since our database
representation is text based. the query system is easily ported from one platform to another. We
currently have the system running on VAX and Sun platforms.

The current graphical interface is an adaptation of the command line interface. employing the
XCI package. XClI is an adaptation of the CI command interpreter interface in the X Window
environment. It replaces the command line by menus and dialog boxes for user input. Figure
6-1 shows an example of the user’s interaction with the interface. For the output. separate
windows are used to display svmbolic and spatial data. A custom graph. ‘s package, again based
on X. is used to display the spatial data. The interface packages are used only as building blocks
for the database query system. so other projects within our group will be able to take advantage
of the work done to produce these interfaces.
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7. Conclusions

Computer vision and image understanding address difficult problems in a variety of task
domains. In many cases. such as in certain industrial robotics applications. one can choose to
engineer the problem domain in order to make automated sensing and manipulation tractable
using current technology. In cartography. however. one is presented with two-dimensional
images of the unconstrained three-dimensional world. We can not paint red squares on the
corners of buildings in order to make roof detection more tractable for our computer vision
techniques. Success and failure in these tasks are easily determined since we have a well
understood basis for human performance in the cartographic community.

Although 1t 1s clear that humans bring a great deal of knowledge and context to bear when
atternpting to understand the structural and spatial relationships inherent in a scene. we are still a
long way off from having such a level of expertise embodied in computer interpretation svstems.
The variety and complexity of man-made structures and natural terrain make the automated
extraction and analysis one of the most difficult challenges for computer vision research.

"1 this final technical report under contract DACA 72-87-C-0001 we have described our progress
wward automated cartographic feature extraction. Our research has put particular emphasis on
built-up areas containing large numbers of complex man-made structures. Over the past three
vears we have attempted to address a fairly broad set of problems includi:ig scene registration.
stereo analysis. shadow analysis. and building detection. Each of these areas addresses an
important set of issues toward the development of automated tools for cartographic feature
extraction.

In several cases we can see the inter-relationship between these different areas. The use of
~hadow cues for both registration and building detection, the use of monocular segmentations to
refine dispanity maps. and the fusion of various building hypothesis illustrate the need for many
capable modules that can be used for a variety of purposes. Such a suite of feature extraction
tools may provide the required foundation for more capable and robust systems that can reason
about the structure and contents of the scene. Such a system needs to combine 'bottom-up’
analysis across multiple images with a priori map knowledge to achieve the level of accuracy,
robustness. and general performance required in order to be a useful and cost effective
alternative to current manual map compilation techniques.
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