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Note to the Reader

(by C. R. Baker, August, 1992)
This report has previously been provided to Drs. C.E. Persons and D.H. Gingras of

NOSC (Naval Ocean Systems Center), in 1988. Recent interest by other personnel at NOSC
(now NCCOSC) having access to the report has indicated that it may be of wider interest.
We are thus publishing it as a LISS report, essentially unchanged except for omission of
possibly-sensitive frequency values and a lofargram, and with some explanatory notes added
on figures that were originally in color. The analysis is on data taken from a single hydro-
phone in the deep ocean.

As regards the signal detection results contained in the report, they have been extended
by work reported in reference (1) below. The later work used the NOSC data described here
to evaluate new detection algorithms derived from results in (2). That work, and approxima-
tions described in (3)-(5), led to the representation of signal-plus-noise as a filtered diffusion
when the noise is Gaussian, apparently a new concept in representation of sonar data, and
one which has led to the promising algorithms described in (1) and (3)-(5).

A second aspect of this report is on statistical analysis of the NOSC data. This led to
characterizing the data as nonGaussian signal-plus-noise and Gaussian noise. Some of our
more recent work with this same data set has indicated that the data properties are sensitive
to the particular subset being tested; for example, some subsets of the noise fail to pass tests
for normality.

As will be seen, this report strongly recommended that the Navy initiate a serious study
on detection of nonGaussian signals in Gaussian noise. Subsequently, Dr. Persons initiated an
SBIR task statement on this topic, which was approved and included in the DOD SBIR solici-
tation of October, 1988. A Phase I SBIR contract was let in 1989 for a survey of existing
approaches, and this led to a Phase II contract for algorithm evaluation, similar to the work
reported in I1 ) but with extensions to arrays. The new results on this problem described in
(3), and discussed far more completely in (4), have apparently been prominently employed
by the contractor for the SBIR work. In fact, the PI for the contractor awarded the SBIR
contracts stated (in the course of prepariný his proposal for the Phase II award) that he con-
sidered the approach developed in (4) as being the most promising for this problem.

A third aspect of this report is its venture into classification. This is by modeling the
data as a Gaussian mixture (spherically-invariant) process: Y = AX, where X is a Gaussian
process and A is a positive random variable independent of X. The parameters describing the
probability distribution of the "mixing random variable" A are the number K of values that A 1 --
can assume, and {(aj,pi):l:i_<K), where A = a, with probability pi. Although we investi-
gated the method of moments as a procedure for estimating these parameters, most of our
work (and all of that reported here) utilized a modification of the EM (Expectation-
Maximization) algorithm (6). In the literature, however, the number K of values that the

mixing random variable can assume is typically assumed known. Since this is a very impor-
tant parameter, and since the EM algorithm is known to be sensitive to its initial conditions,
we devised a data-based procedure for estimating the initial distribution of A, including the
value of K. Procedures for estimating K were also incorporated into the algorithm. .
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The work reported here consisted of estimating the parameters of A for data that was
not accepted as normal by statistical tests for normality. As could be expected from physical
reasoning, we found that the number of values of A with signal present was significantly
larger than with signal absent, for data in the low-frequency region. Differences in the (a, pi)
values were also observed. It seems reasonable that the differences exhibited would be
greater if the characterization were applied to an estimate of the signal, rather than to the
combined signal-plus-noise process. The same behavior seems likely in discriminating by
active sonar between a complex distributed target (e.g., submarine) and a less-complex target
(e.g., rocks, marine organisms) having a similar reflected energy level.

A natural approach is to apply this characterization to signal estimates obtained from the
procedures described in (1) and (3)-(5), an area of current interest to us.

We now turn to a very brief summary of some of our other work related to this report,
and in particular to the use of Gaussian mixtures. In (3), the detection of a known signal
imbedded in such noise is considered. The log-likelihood ratio is given, two constant-false-
alarm-probability detection algorithms are obtained, and the effect of sampling rate is
analyzed. That paper also demonstrates that the Class A impulsive noise model of David
Middleton is a special case of a Gaussian mixture.

In (7), the likelihood ratio for de:.ction of a random signal in Gaussian mixture noise is
obtained for the continuous-time problem, along with the capacity of a communication chan-
nel perturbed by such noise. The paper (7) is a purely mathematical treatment; discrete-time
algorithms for the detection of a random signal in Gaussian mixture noise are derived in (4),
currently the only source for those algorithms. The publication date of the book to contain
(4), which was given as 1990 when the paper was solicited, is at present not known to us.
However, copies of the paper can be obtained from the Department of Statistics at UNC-
Chapel Hill.

The thesis (8) applied the EM algorithm to model simulated data as a Gaussian mix-
ture. Other work, not published, has included the modeling of under-ice sonar data furnished
by NUWC (Dr. Roger Dwyer) as a Gaussian mixture. An example of the results obtained is
the noise distribution used to obtain the performance curves shown in Figure 1 of (3).

The results obtained in (2), which lead to the representation of the signal-plus-n-ise
process as a filtered diffusion when the noise is Gaussian, and thereby to the new algorithms
described in [3)-[5), provide a promising approach for detection of a random signal in
Gaussian and a large class of nonGaussian noise, particularly for signals that are broadband
and/or nonstationary and whose statistical properties are partially or wholly unlknown. At the
same time, physical rationale furnishes an incentive to continue work with Gaussian-mixture
noise processes. The results of (7) and (4) provide a means of combining these two areas in
the development of new algorithms for applications where the noise is either a Gaussian
mixture or contains an additive component of this type. Moreover, the use of such a model
appears to have potential as an aid to classification, and results obtained in the detection
problem should be useful in the extension to classification.
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0. GENERAL DISCUSSION

A. Introduction
This report summarizes results of a computational study of underwater acoustics data fur-

nished by the Naval Ocean Systems Center (Dr. C.E. Persons and Dr. D.H. Gingras). The data
contains several minutes of apparent noise-only data, followed by several minutes of apparent
signal-plus-noise, and then several more minutes of apparent noise-only data. The source of the
signal data was not furnished.

The purpose of the study was two-fold: (1) to study the statistical properties of the data;
(2) to evaluate performance of several detection algorithms. To summarize, the noise data was
found to be strongly Gaussian, the signal-plus-noise data nonGaussian. This points out a clear
need for the development of detection algorithms for such data.

The investigation in each area will now be briefly summarized.

B. Summary of Statistical Analysis
One objective of the statistical analysis was to determine if the non-Gaussian data sam-

ples could be modeled as a spherically-invariant random variable (SIRV): a random variable of
the form X = AY, where Y is a Gaussian random variable and A is a "mixing" random vari-
able independent of Y. We also refer to a SIRV as a mixture-of-normals. Such a random vari-
able has a density function that appears normal in its general form, but which is actually more
peaked and with heavier tails than a true Gaussian random variable with the same mean and
variance (see Appendix 2). A discussion of such a model is contained in [11. One well-
known model of Gaussian-plus-impulsive noise that is actually a SIRV is the "Class A" model
described in [2].

In the study summa-ized here, all data samples were subjected to four tests of normality.
Samples which failed at least two of these tests were modeled as having a spherically-invariant
distribution. Using a modified maximurn-likelihood algorithm, the distribution of the r.v. A (in
the representation X = AY) was estimated. The most interesting results of this work can be
summarized as follows:
(1) In the low-frequency band and mid-frequency the noise-only data appeared to be Gaus-

sian, with 6 out of 11 sample vectors in each segment passing all tests for normality. An
even stronger indication of normality was the estimated number of components for the
mixing random variable A. For Gaussian data, this should be equal to unity. This was
the value estimated for 10 of 11 sample vectors in the low-frequency band, and for 8 of
11 in the mid-frequency band.
In these same frequency bands, the signal-plus-uoise data did not appear to be Gaussian,
with 9 out of 11 sample vectors in each segment failing 2 of the 4 normality tests.
In the high-frequency band the situation was not as clear. Noise-only data appeared to be
tending toward nonGaussian, while the signal-plus-noise data appeared to be tending
toward Gaussian.
One may view the number of estimated components (possible values) of the random vari-
able A as an indicator of both the degree of non-normality and the complexity of the
data. In the low-frequency band, the estimated number of components for the noise-only
data was one (i.e., Gaussian data) for 10 of the 11 data samples. By contrast, the signal-
plus-noise data had a median of 3 for the estimated number of components for A.
Focusing on the low-frequency band, the noise-only data clearly appeared to be Gaussian.
The signal-plus-noise seemed just as clearly to be nonGaussian. Thus, the signal detection
problem for this data can be viewed as detection of a nonGaussian signal imbedded in
Gaussian noise.

-1-



C. Summary of Signal Detection Study
The signal detection study involved the empirical evaluation of four signal detection algo-

rithms. Two were quadratic detectors: the optimum detector under the assumption that boti,
the noise and signal-plus-noise were Gaussian, and the optimum deflection criterion detector
[3]. The other two were detectors that assume that the signal can be modeled as a determinis-
tic function, leading to a linear operation on the data. One of these detectors is the matched
filter, the other is the optimum detector assuming that the noise is a spherically-invariant ran-
dom process: X = AY, where X and Y are random vectors, Y is Gaussian, and A is a random
variable independent of Y. For the two linear detectors, the returned signal waveform was
estimated by using the sample mean of the signal-plus-noise ensemble.

The results of these evaluations show that the two quadratic detectors were considerably
superior to the two linear detectors, and that the performance of the two quadratic detectors
was about equal.

D. Suggestions for Further Investigations

1. Statistical Analysis
This single tape may represent too small a data sample to permit general conclusions to

be drawn for the type of ship and environment producing the data. However, in order to carry
out a more complete statistical analysis of such data, several extensions to the work reported
here are desirable.

First, algorithms are needed for testing whether or not the univariate data, when nonGaus-
sian, can be accepted as spherically-invariant (mixture of normals). This seems to be a reason-
able hypothesis, based on the data observed here, but a quantitative test of this hypothesis
should be implemented and applied.

A second major extension would be to improve the flexibility of the algorithm used to
estimate the distribution of the mixing random variable A in the representation X = AY previ-
ously discussed. The current algorithm is such that the estimated number of components
between iterations cannot increase; this restriction needs to be removed. Without this restric-
tion, it is likely that the estimated number of components for the mixing random variable A
will increase, in the signal-plus-noise situation. There is likely to be little change in the
number of components for the noise-only data, as it seems rather clearly to be Gaussian.

The third major extension that should be considered is to extend the nonGaussian model-
ing effort from one of modeling the univariate data to one of modeling multivariate data. Two
possibilities are the spherically-invariant random process (.X = AY, Y a Gaussian vector, A a
random variable independent of y) or a generalized spherically-invariant random process, or
GSIRP (X = AY, Y a Gaussian vector, A a di#gonal matrix whose non-zero components are
random variables independent of fl.

Finally, an interesting possibility is to model the data as a filtered diffusion:
U-I *-I

= •A(nZ) + W., with X. = JF(nJ)AZj, X the data, W white Gaussian noise, A a drift func-

tion, F a linear filter, A4 = Zj - Zn_,. Such a model has been considered in [1] and [4].

2. Signal Detection
As noted, the signal detection problem for this data appears to be that of detecting a

broad-band nonGaussian signal imbedded in Gaussian noise. The work reported here did not
include the performance evaluation of an optimum (likelihood ratio) detector for this nonGaus-
sian detection problem.

Of course, in order to obtain a likelihood ratio detector, one must know the distributions
of the signal-plus-noise process. Three reasonable possibilities for the signal-plus-noise pro-
cess that merit investigation are the following:
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a) X = AS + N, where N is Gaussian, S is Gaussian, A is a random variable independent of
both the random vectors N and S;

b) X = AS + N, where S and N are as in a), and A is a diagonal matrix whose non-zero com-
ponents are random variables, each independent of S;

c) X is a filtered diffusion, as discussed in D.I:
n-I

X(n) = YF(nj)AZj,
n=o

Z(n) = IA(n,Zj) + Wj,
j-0

with W white Gaussian noise, A a drift function, F a linear filter. A detection algorithm
for this model has been obtained [1]. Its implementation requires knowledge of the matrix
F and drift function A. The major difficulty is estimation of A, and some work on this
problem has been done by the ISS research program.

The computational results summarized here suggest the investigation of a detection algo-
rithm based on estimation of the number of components of the random variable A in the model
X = AY discussed in B. above. As discussed in Section B above, the median number of com-
ponents for the signal-plus-noise data was 3 in the low-frequency band, compared to I for the
noise-only data. As noted in D.1, the estimated number of components for A is likely to
increase (for the signal-plus-noise data) once the computer program is modified as described.

Of course, it may be that none of these algorithms will eventually provide a likelihood
ratio detector for the type of detection problem represented by the NOSC Tape data. However,
if this data set is representative, the problem is clearly (in the low-frequency and middle-
frequency bands of the data) one of discriminating between Gaussian noise and nonGaussian
signal-plus-noise. The computational results on modeling also indicate that the univariate data
exhibits significant statistical differences between the noise data and the signal-plus-noise data
(e.g., the number of estimated components for the mixing random variable A in the model X =
AY). To our knowledge, no optimim detection algorithm has been obtained for such data. In
an era when radiated ship noise is being dramatically reduced, a long-term investigation aimed
at obtaining a likelihood ratio detector seems to be a very important task, provided that the data
in this sample is representative of tactically or strategically important detection problems. Such
investigations should be carried out by researchers familiar with the statistical theory and with
access to a powerful computing facility. The problem is not apt to yield to either routine com-
putational investigations or to purely theoretical research on stochastic processes. At the same
time, regardless of the qualifications of investigators, the problem is too difficult to permit one
to expect a rapid solution. Nevertheless, likelihood ratio detection for nonGaussian signals in
Gaussian noise is an area of very little practical development. The NOSC Tape data indicates
that it is an area that could be extremely important to the Navy. We strongly urge the Navy to
consider a long-term research program on this problem.

-3-



I. STATISTICAL ANALYSIS OF NOSC TAPE

A. Randomness and Normality

The NOSC TAPE contained 15 min. of single-channel acoustical data (running from
11:40 to 11:55 am.) Sampling was done at 4096 hz, giving 3,686,400 data points for the 15
min. period. A sonargram of the data on the NOSC TAPE is presented in Figure 1.

Two 2 min. periods of time in the NOSC TAPE data were identified for analysis:

Period Time Feature
A 11:43:00-11:45:00 no target signal

- noise only
B 11:47:30-11:49:30 target signal

present

The data for these two periods were filtered and sampled and the results tested for normality
and randomness as is now described.

The two sets of data (each comprised of 491,520 data points) for periods A and B were
filtered using the following bandpass filters:

Filter Frequency band
low
mid
high

Thus, six sequences of 491,500 data points were produced; 3 for each time period. (A small
number of data points were lost as part of filtering.) For each of these six sequences, every
40th data point was extracted to create six new sequences of length 12,288. Each of these
sequences of data points was then segmented into 11 samples, each having 1000 data points.
The final result was that, for each time period, 33 samples of length 1000 were formed; 11
from each filter for each of time periods A and B. This process is diagrammed in Figure 2 and
Figure 3.
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Figure 1

This page originally displayed a lofargram from the array which contained the hydro-
phone from which the data discussed here was obtained. This lofargram enabled us to deter-
mine regions where the target was definitely present, and regions where it was definitely
absent. The signal data was primarily broadband in nature.

I
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D atime! period A
11:43:001:45:00

low mid high
filter filter filter

L o a d[ d[ b n~

sequnce ence

every every every
40th 40th 40th
point point point
saved saved saved

sampled sampled sampled

lowband midband highband
sequence sequence sequence

segmented segmented segmented

sample 1 sample 1 sample 1
sample 2 sample 2 sample 2
sample 3 sample 3 sample 3
sample 4 sample 4 sample 4
sample 5 sample 5 sample 5
sample 6 sample 6 sample 6
sample 7 sample 7 sample 7
sample 8 sample 8 sample 8
sample 9 sample 9 sample 9
sample 10 sample 10 sample 10
sample 11 sample 11 sample 11

Figure 2. Processing of data in time period A. 33 samples of
1000 data points were obtained.
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Data, time period B
11:4 7:30-11:4 9 :30

low mid \high

filter filter filter

[~]i[hband
ence snce sequence

every every every
40th 40th 40th
point point point
saved saved saved

sampled sampled sampled

lowband midband highband

sequence sequence sequence

segmented segmented segmented

sample 1 sample 1 sample 1

L4 sample 2 + sample 2 L sample 2

sample 3 sample 3 sample 3

sample 4 sample 4 sample 4

sample 5 sample 5 sample 5

sample 6 sample 6 sample 6

sample 7 sample 7 sample 7

sample 8 sample 8 sample 8

sample 9 sample 9 sample 9

sample 10 sample 10 sample 10

sample 11 sample 11 sample 11

Figure 3. Processing of data in time period B. 33 samples of
1000 data points were obtained.

8-



Four statistical tests of randomness were performed for each of the 66 samples. For each
of the tests, the sample is reported to have failed (F) the test if the test p-value was less than
0.05. That is, the hypothesis of interest was rejected, with the probability of error not exceed-
ing .05. Otherwise, the sample is reported to have passed (P). The four tests of randomness
used were:

A - 'Runs-up-and-down' test
B - 'Runs-above-the-mean' test
C - 'Runs-above-the-mean' test (on

absolute centered data)
D - Zero mean test

The results of these tests for each of the 66 samples can be found in Tables I and 2.

Four statistical tests of normality were performed for each of the 66 samples. For the first
three tests, E, F, and G, the sample is reported to have failed (F) the test if the test p-value was
less than 0.05. Otherwise, the sample is reported to have passed (P). For the fourth test, H, the
sample is reported to have failed the test if the test p-value was less than 0.1. The four tests of
normality used were:

E - Kolmogorov-Smimov one-sample test
F - D'Agostino test
G - Chi-square test
H - Kurtosis test

The results of these tests for each of the 66 samples can be found in Tables I and 2. We
define the nonnormality index for a sample to be the number of normality tests failed. Tables 1
and 2 also include the nonnormality index for each sample.

In cases where a sample failed two or more tests of normality, the sample data were
posited to follow a mixture-of-normals (spherically-invariant) law. In these cases, the distribu-
tion of a mixture of normal random variables was fitted to the empirical distribution given by
the sample. The algorithm used to make this fit is outlined in Appendix 1. The last column of
Tables I and 2 gives the estimated number of normal components for each sample. Thus, if a
sample failed less than two tests of normality then it was considered to be normal and the
number of normal components entered in Tables I and 2 for the sample is 1. Where the non-
normality index was 2 or more, the number of normal components entered in Tables 1 and 2
(in the last column) is that found by the fitting algorithm. Table 3 presents summary statistics
of the number of normal components found for each sample. A mixture of as many as seven
independent normal random variables was sometimes needed to achieve an adequate fit. The
normal density and the mixture-of-normals density found by the fitting algorithm are plotted
against the empirical density for three different samples in Figures 4, 5, 6, and 7.

-9-



Tests of Tests of No. of
Randomness Normality Nonnormality Mixture

Samples A B C D E F G H Index Components

1 passed all passed all 0 1
2 passed all passed all 0 1
3 passed all P F P F 2 1
4 passed all passed all 0 1

Lowband 5 passed all P F P F 2 4
samples 6 passed all P F F F 3 1

7 P P F P passed all 0 1
8 passed all passed all 0 1
9 passed all F F F F 4 1

10 passed all P F P F 2 1
11 passed all passed all 0 1

1 passed all P F P F 2 4
2 passed all passed all 0 1
3 passed all passed all 0 1
4 passed all P F P F 2 3

Midband 5 F P P P passed all 0 1
samples 6 passed all P F P F 2 2

7 PFPP PPFP 1 1
8 F P P P passed all 0 1
9 passed all F F F F 4 1

10 passed all passed all 0 1
11 passed all passed all 0 1

1 passed all P F P F 2 4
2 P P F P passed all 0 1
3 PFPP PF, FF 3 4
4 passed all P F P F 2 1

Highband 5 P P F P passed all 0 1
samples 6 passed all P F P F 2 2

7 passed all P F F F 3 1
8 P P F P passed all 0 1
9 passed all F F F F 4 2

10 passed all P F P F 2 1
11 passed all P F P F 2 5

Table 1. Results of analysis of NOSC Tape, time period A.
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Tests of Tests of No. of
Randomness Normality Nonnormality Mixture

Samples A B C D E F G H Index Components

I FFPP PFPF 2 7
2 FFPP PFPF 2 2
3 F F F P passed all 0 1
4 FFPP PFPF 2 6

Lowband 5 F F P P passed all 0 1
samples 6 passed all P F P F 2 4

7 PPFP PFPF 2 4
8 FFFP PFPF 2 6
9 passed all P F P F 2 2

10 FFPP P PFPF 2 3
11 FFPF PFFF 3 2

1 FFPP PFPF 2 5
2 FFPF PFPF 2 2
3 F P P P passed all 0 1
4 FFPP PPPF 1 1

.Midband 5 passed all P F P F 2 1
samples 6 passed all P F P F 2 2

7 PFPP PFPF 2 3
8 passed all P F P F 2 5
9 FPPP PFPF 2 2

10 PFFP PFPF 2 1
11 F F P P P F P F 2 2

1 FPPP PFPF 2 2
2 passed all P PP F 1 1
3 passed all passed all 0 1
4 passed all passed all 0 1

Higbband 5 P P P F passed all 0 1
samples 6 passed all passed all 0 1

7 passed all passed all 0 1
8 passed all passed all 0 1
9 PFPP PFFF 3 5

10 P P F P passed all 0 1
11 PFPP PFFF 3 4

Table 2. Results of analysis of NOSO Tape, time period B.
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The distribution of the mixing
random variable, A, found by
the M-NDE algorithm (Appendix 1)
for this sample is (k =4):

a = (164, 1.61, 1.54, 0.73)

p = (0.06, 0.07, 0.19, 0.68)

101/

Mixture density

Note that the fitted mixture-of-normals
density is more peaked and has heavier
tails than the normal density (with the
same variance.) This iss characteristic of
mixture-of-normals densities as is shown
in Appendix 2.

Figure 4. Normal density, fitted mixture-of-normals
density, and empirical density plotted for Sample 5

from the low-filtered, time period A data.
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The distribution of the mixing
random variable, A , found by
the MWNDE algorithm (Appendix 1)
for this sample is (k =5):

a - (1.20, 1.22, 1.19, 1.15, 0.70)

P = (0.05, 0.10, 0.12, 0.24, 0.49)

•..1.

Mixture density

Figure 5. Normal density, fitted mixture-of-normals
density, and empirical density plotted for Sample 8

from the mid-filtered, time period B data.
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The distribution of the mixing
random variable, A, found by
the MLN'DE algorithm (Appendix 1)
for this sample is (k =2):

a (1.59, 0.91)

p (0.10, 0.90)

I

Mixture density----- N•..,

Figure 6. Normal density, fitted mixture-of-normals
density, and empirical density plotted for Sample 2

from the mid-filtered, time period B data.
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The distribution of the mixing
random variable, A , found by
the MNDE algorithm (Appendix 1)
for this sample is (k =4):

a - (3.30, 0.96, 0.93, 0.83)

p (0.06, 0.08, 0.20, 0.66)

'I

Sis

Mixture

density

Figure 7. Normal density, fitted mixture-of-normals
density, and empirical density plotted for Sample 6

from the low-filtered, time period B data.
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Time period A Time period B
(noise only) (target signal present)

Mean=l.3 Mean=3.5
Lowband Median=l Median=3

Maximum=4 Maximum=7

Mean=l.6 Mean=2.3
Midband Median=l Median=2

Maximum=4 Maximum=5

Mean=2.1 Mean=l.7
Highband Median=l Median=l

Maximum=5 Maximum=5

Table 3. Summary statistics of no. of normal components needed to
adequately fit distributions of data samples.

The results of Tables I and 2 together with the summary statistics in Table 3 support the
following conclusions:

The noise-only signal (time period A) is Gaussian in the low- and mid-frequency
bands,

In the presence of a target (time period B), the received signal shows regular and
significant departures from normality - particularly in the low- and mid-frequency
bands,

Small, and apparently similar, departures from normality are present in both time
periods in the high-frequency band,

4
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II. DETECTOR PERFORMANCE USING NOSC TAPE

The sonargram corresponding to the 15 min. of data on the NOSC TAPE suggests the pres-
ence of a target signal during the period of time 11:47:00 - 11:52:00. Based upon this interpreta-
tion of the sonargram, the data were separated into three segments:

Number of
Segment Time Data Points Interpretation

1 11:40-11:47 1,720,320 noise only
2 11:47-11:52 1,228,800 signal present
3 11:52-11:55 737,280 noise only

Each segment of data was then divided in two by separating out every other data point. This
resulted in six sets of data: (A small amount of data was discarded in this process to produce
round numbers of data in each set.)

Parent Number of
Set Segment Data Points Interpretation

1 1 850,000 noise only
2 1 850,000 noise only
3 2 600,000 signal present
4 2 600,000 signal present
5 3 350,000 noise only
6 3 350,000 noise only

Next, sets I and 5 were joined together as were sets 2 and 6. The remaining four sets of data
were then segmented into groups of 100 data points to form vectors of length 100. Thus the data
were organized into the following final form:

Parent Number of
(New) Set Sets Vectors Interpretation

NI 1,5 12000 noise only
N2 2,6 12000 noise only
S1 3 6000 signal present
S2 4 6000 signal present

Data sets S2 and N2 were used to estimate the signal (plus noise) covariance, RS.4 N, and noise
covariance, RN , matrices, respectively, while data sets S1 and Ni were reserved to directly test
the performance of four signal detectors. In particular, data set SI was used to calculate the mean
signal (plus noise) vector, ms+N, and data set NI was used to calculate the mean noise vector,
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m)N. See Table 4.

Estimates Data set used

Mean signal vector, ms+Nj SI

'Mean noise vector, mN Ni

Signal covariance matrix, RS+N S2

Noise covariance matrix, RN N2

Table 4.

Using the estimates of noise and signal covariance and means, the signal-to-noise ratio
(SNR) can be calculated through the following formula:

Trace (Rs,4N+Ms+N mAN)SNR = T I
Trace (RN + mnN mN)

The signal-to-noise ratio was found to be, SNR = 1.27.

For a given input vector z, a signal detector indicates "signal present" if and only if its out-
put (the value of the detector test statistic) equals or exceeds a threshold; otherwise the detector
decision is "noise only". The performance of four signal detectors was tested. These four signal
detectors and their corresponding test statistics are presented in Table 5.

Signal Detector Detector Test Statistic

Deflection z T R• Rs 4NI R,.W'z

Matched filter ITS.NR•'z

Gauss vs. Gauss (zT - MN )T RW(zT )mN
- (z-mS+N)TRI.N(zXmS+N)

Constant False Alarm mST+N RIW'Z

Probability (CFAP) Vrz rRW'z

Table 5. Detector test statistics.
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Detection thresholds corresponding to selected false alarm probabilities are set based upon
detector performance with signals known to contain only noise. Data set Ni was thus used to set
detection thresholds for each of the four signal detectors.

Having found thresholds corresponding to selected false alarm probabilities, detector proba-
bility of detection can then be determined as the proportion of detector outputs which lead to the
decision "signal present" when, indeed, a signal is present in the noise at the detector input. Data
set SI was used to find these detection probabilities.

Detector performance is represented by detection probability as a function of false alarm
probability. Using data sets Si and NI as just described, detection probabilities were found for
chosen false alarm probabilities for each of the four detectors. The results are plotted in Figure 8.
The numerical probabilities from which the plots were constructed are tabulated in Appendix 3.
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Appendix 1

Mixture-of-Normals Distribution
Estimation Algorithm

The mixture-of-normals distribution estimation (MLNDE) algorithm described here fits a
mixture-of-normals distribution to a random sample of size 1000 of standardized (subtract sample
mean, divide by sample standard deviation) data.

The -NEDE algorithm considers distributions of mixture-of-normals random variables of the
form AX where A, X are independent random variables, X is N(0,1) and A is positive with
finite support

{a (i), a (2), ..., a (k)).

We write p (i) = P {A =a (i)), i=1,..,k, and define a ,p to be the vectors

a =(a (1), a (2), ... ,a (k
p = (p (1), p (2), ... , p (k)).

A is called a mixing random variable and the p (i)'s are called the mixing proportions of the dis-
tribution. Given an input, then, of 1000 data points, the M.kNDE algorithm outputs estimates of
k, a,p.

The 'MNDE algorithm excludes from consideration mixing random variables, A, with mixing
proportions p (i)<0.05. Thus A can have no more than 20 mixing components, a (i); i.e., k >20
is not allowed.

The '.NI'DE algorithm is diagrammed in the following hierarchy of flowcharts. Following the
flowcharts are remarks and explanations coded to the steps in the flowcharts. Note that succeed-
ing flowcharts are coded to those preceeding.
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11. Standardize datal1
2. Calculate

initial mixture1
3. Set
RUNNUM = 01I

____ ____ ___ ____ ____ __ 14. Set RUNNUM
= RUNNUM + I1

5. Calculate
best a for
current k

r7. Reduce ki

[9.Colapse] /

nesenough n + 1 no

Flow Chart 1. sNDE Algorithm.
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2.1. Determine
clumpsize. D

12.2. Set k = 011
2.3. Form D-diameter
balls about each (re-
mainin) data point

13AXFind most-

Ipopulated ball

12.9. Calculate p5> 2?

12.6. Set k = kle(1 -
12.7. Calculate a(k)

I
2.8. Remove data
points in most-
populated ball

Flow Chart 2. Step 2. Calculate initial mixture.
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15.1. Set I = 011

E5.2. Calculate posterior subpopulation.
probabilities P(jIX(i)) for each j = I.....k

and each data point XIi). i = 1.....1000

5.3. Calculate new
estimates of

components of p

5.4. Calculate new estimates
of components of a1
15.4. Set I = I+11

no

Some 507
p(-)'s too

small

y~es

Flow Chart 3. Step 5. Calculate best a for current k.
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-19.1. Compute RZI

RUNNUM

yes 9.3. Compute initial

collapsin auge, R

yes 9.5.Update col-

sing gauge,

9.6. Form I
R-diameter GiDBalls1

9.7. Collapse Most-
Populated BallBll

L9.8. Adjust7KII
9. Removep-i)'s < 0.051

Flow Chart 4. Step 9. Collapse.
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2. In Step 2 initial values are found for k and the vectors, a ,p.

2.1. Tracing through Step 2 of the algorithm reveals that the initial value of k is larger for
smaller clumpsizes, D.

2.7. a (k) is calculated as the average of the data points in the current most-populated ball.

2.9. The components p (i), i=I,...,k, of the vector p are found by

N

where

N =n (1)+n (2)+..+n (k)

and where n (i), i=1,...,k, are the populations of the k most-populated balls as found in
Step 2.4.

5.2. The conditional probabilities P {" I X(i)} that the data point X(i) comes from the subpo-
pulation characterized by A = a () are calculated, for each j--1,...,k, and each X(i),
i=1, .,000, by

p{• IX(i)} p r()f (X(i) I A=ay)
f (X(,))

where f ( IA =a (j)) is the normal density, N(0,a 2(j)), and f ( ) is the density of AX.

5.3. New estimates of the components p (j), j=l,...,k, are calculated by

1000

5.4. New estimates of the components a (j), j--1,...,k, are calculated by

1 2iy=X(;)p {i IX(i)).
1000 p(j)U_ 1  oý2

5.6. Two successive estimates a, p and a' , p' (k is Dot changing here) are considered close if

'~ ~ Y "') •]< 2Xie-kE [P' Y )-P (;)]• +

where

k* = ,;)
i-i
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k•'= )ja' (:).

5.7. Step 5 has never been found to terminate as a result of the condition: I = 500.

5.8. If any component of p is less than 0.0001 then a flag is set. This flag is later checked in
Step 6.

6. A mixing proportion, p (i), is too small if p (i) < 0.0001.

9.1. RZ is the minimum Lsearest-neighbor distance of a (i), i=1,...,k.

9.3. The collapsing gauge, R, is used to decide whether or not certain of the a (i)'s are close
enough to be merged together. Initially, if RZ >0.0002, we set R =RZ; otherwise we set
R=0.005. This ensures R >0.0002 and prevents an initially small RZ from blocking col-
lapsing in following iterations.

9.5. We set R = max{R,RZ).

11. The results, k, a , p, of the current iteration and the results, k , a' , p' of the previous
iteration are "close" if both of the following inequalities are satisfied:

k 2

2(P U) -p (/C)) + a a M 0001;-! ;-, I ja I a'Iooook

where

la a= 2(j)

Ia' I k= a' )2 2

12. For our samples, in running the MINDE algorithm, the number of iterations, RUNNUM,
never exceeded 10.
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Appendix 2

Characteristics of the
Mixture-of-Normals Density

A mixture-of-normals random variable, Y = AX, where A, X are independent random
variables, X is N(O,a2), and A is positive with finite support, {a (1),..., a (k)}, has density

YY(') r ex 1 a2 1

Then

fy(O) ; 7

and, using Jensen's inequality followed by Schwarz's inequality,

E[ >E[A- -- > 1

(The inequalities are strict provided A is nondegenerate.) Now E [Y 9 E [A 2 ] -- E [AVfr 2 so
that E [A] = 1 for Var [Y] = c-2. Then

1

fy(O) > -'7 "

Thus the density of a mixture-of-normals random variable, Y = AX, is more peaked than that
of a normal random variable with the same variance.

To see that the density of Y = AX has heavier tails than those of the density of a normal
random variable with the same variance, consider the limit

60f r(Zt

where f (z) is the N(O,a) density,

22

f (z 2=2
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We have

i 0 Y (z) P-- eXp[- I 2a+

For at least one term in the above sum, a (i)>I, otherwise E[A2 1#1 unless A =1 with probabil-
ity 1. So,

f (z)

and we conclude that, for nondegenerate mixing random variables, A, Y=AX has heavier tails
than the corresponding normal random variable (having the same variance.)
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Appendix 3

Probability of Detection Data

The data in Table 6 were used to construct the curves presented in Figure 8. The probabili-
ties of detection given in Table 6 for each of the four signal detectors were determined by the pro-
portion of times signals from data set S1 caused the signal detector output to exceed the detection
threshold. The detection thresholds were, in turn, set using noise signals from data set Ni to
maintain the false alarm probability at the prescribed value.

Probability of Detection

False
Alarm CFP Matched Delcin Gauss

Probability Filter vs. Gauss

0.001 0.0055 0.0008 0.0002 0.0002
0.010 0.0358 0.0244 0.0817 0.0590
0.020 0.0692 0.0553 0.3117 0.3055
0.030 0.1087 0.0887 0.4758 0.4822
0.040 0.1673 0.1371 0.6192 0.6397
0.050 0.2251 0.2014 0.7008 0.7080
0.060 0.2803 0.2775 0.7453 0.7538
0.070 0.3405 0.3403 0.7808 0.7867
0.080 0.3898 0.4014 0.8037 0.8115
0.090 0.4442 0.4617 0.822 0 0.8332
0.100 0.4863 0.5049 0.8410 0.8460
0.125 0.5658 0.5894 0.8778 0.8785
0.150 0.6283 0.6542 0.9013 0.9018
0.200 0.7158 0.7421 0.9367 0.9340
0.250 0.7689 0.7970 0.9542 0.9517
0.300 0.8064 0.8326 0.9673 0.9662
0.350 0.8352 0.8578 0.9765 0.9742
0.400 0.8561 0.8752 0.9832 0.9798

Table 6. Detector performance data.
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