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ABSTRACT

A computational investigation of the fracture mechanics of metals and metal

matrix composites has been carried out. The ductile fracture of structural alloys was

analyzed through a two dimensional non-linear finite element approach, while the

mechanics of load transfer in silicon carbide (SCS-6) fiber reinforced titanium alloy (Ti-

15V-3Cr-3AI-3Sn) were studied using a local-global finite element analysis procedure.

The computed values of the J-Integral for compact tension specimens of steel

and aluminum alloys (0.533 < aIW < 0.884) remain path independent up to a certain

load which is attributed to crack initiation, and then diverge. There is a unique signature

of the strain energy density (dW/dV) ahead of the crack in the 0* direction: the strain

energy first decreases, reaches a minimum and then increases with increasing distance

from the crack tip. The minimum strain energy shows a unique dependence on the

applied load. This lea6 ,o the prediction of the fracture loads for the cracked

specimens.

A novel coordinate system rotation was employed in extracting the boundary

conditions from the two-dimensional global model to the three-dimensional local model

for the local-global finite element analysis of the unidirectional composite. The

mechanics of load transfer and the subsequent fracture and were studied over a range of

interface strengths (138 - 934 MPa). The analysis leads to the prediction of debonding

between fiber and matrix. The degree of load transfer from the matrix to the fiber was

found to depend upon both the angular orientation and distance from the crack front. An

optimum value of the interface strength, (oi)ops has been established for the composite

for its maximum load bearing capability.
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CHAPTER 1

INTRODUCTION TO MICROMECHANISMS

OF FRACTURE IN COMPOSITES

The micromechanisms of fracture in polymeric, metallic or ceramic composite

materials reinforced with strong, stiff fibers interact in a complex manner. These

include, but are not limited to, matrix and fiber cracking, crack bridging, delamination

and crack deflection. Metal matrix composites present the additional problem of yielding

and plastic deformation in localized regions. Depending on the composite system under

investigation, the interface will affect the stress distribution around a loaded crack tip.

In the past, work has centered on experimental observations of the micromechanical

causes of damage [1-2], closed form analytical procedures designed to calculate laminate

mechanical properties and damage accumulation [3-8], characterization of the interphase

region through finite element analysis and complex constitutive relations [9-14], and

local-global finite element calculations of cracked composites [15-17].

A broad base of knowledge is required to analyze damage in composite

materials. Some background on elastic-plastic fracture mechanics will first be given to

comprehend how plasticity plays a role on both the microscopic and macroscopic levels.

Next, the metallurgical and composite damage mechanisms in these composites will be

categorized and quantified to account for the multiple energy absorbing mechanisms.

Finally, a state of the art review will be given on analytical and computational

micromechanical modeling techniques.



Elastic-Plastic Analysis of Fracture

As noted by Orowan [18], the work required to fracture ductile, tough metal is

greatly increased due to an additional plastic deformation work (Yp). This deformation is

absorbed through a process of microvoid nucleation, growth and linking.

Microscopically these voids may begin to form in individual grains at stresses much

lower than the yield point. Depending the strain hardening mnd strain rate hardening of a

material, void nucleation and growth may occur homogeneously in areas of high

dislocation densities or may occur heterogeneously along grain boundaries or particle

inclusions [19]. Conversely, the plastic deformation of the metal on a large scale can be

experimentally observed on pre-polished and loaded samples as variations in the

material's surface roughness. Lee [20] found that the intensity of reflected light is

linearly related to the surface roughness, which is directly proportional to the effective

strain. This allows for an accurate measurement of the crack tip plastic zone size.

Numerical analyses have been performed verifying the extent of plastic deformation on

globally isotropic material models. Criteria such as the J-Integral are then used to

characterize the crack tip process zone.

Rice's J-Integral [211 has been formulated as a possible fracture criterion for

materials that exhibit nonlinear stress-strain behavior. J has been shown to accurately

predict crack initiation in structural alloys [22,23] and has been studied numerically as it

applies to limited crack extension (dJ/da) [24-28]. The need for a ductile fracture

criterion stems from the inherent plasticity that surrounds a crack tip prior and during

crack growth, thus exceeding the approximations used in linear elastic fracture

mechanics (LEFM). Elastic-plastic fracture mechanics (EPFM) must be employed when

the crack tip plastic zone (CTPZ) is large compared to the dimensions of the specimen.

Fracture parameters such as the crack tip opening displacement measurement (CTOD)
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and analytical solutions of the slip-line field have been studied as they relate to ductile

instability and have met with some success [29]. From the work of Hutchinson [30],

Rice and Rosengren [31], the stresses, strains, and displacements are known within a

radius, rp. from the crack tip in the case of large scale and general yielding for linear

hardening elastic-plastic materials. This zone is the so-called HRR zone (taken from the

work of Hutzhinison, Rice and Rosengren), while the material outside the crack tip

plastic zone remains in the elastic region. The stresses and strains within the HRR zone

may be described by the following equations:

- [ (n+) 0,(O,n) (1.1)
L~ euo0o In r]

Se0 j 1(n+l) rJ ,(0,n) (1.3)e~j ~ fi eo aoo In r

ui-u° UP ror J •"lu,<0, n)(13

The constants A to, o, come from the Ramberg-Osgood description of a material's

stress strain curve described by the following relationship:

_.. = P (9.)? (1.4)

The work of Hutchinson, Rice and Rosengren gained recognition due to the

variety of problems that could be described by the so-called HRR zone located near a

loaded crack tip of ductile materials. Attempts to solve for the stresses and strains
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within metals exhibiting power law hardening proved to be intractable in closed form

solution and finite element analysis was then used to solve these types of problems.

In the past, the path independence of J has been established, excluding contours

that pass through dissimilar media, holes or drastic dimensional changes or where a

large amount of crack extension takes place [32]. The stress intensity factors K and J

are only applicable if they uniquely characterize aj and eij at the location of fracture

initiation [33]. It has been shown analytically that the J-dominated HRR region is valid

up to 0.25 times the length of the plastic zone radius [34-37]. Thus the J-Integral has

been used to study fracture problems involving plasticity beyond the scope of LEFM

based on the K concept [38].

An alternative fracture criterion has been proposed by Sih [39-40] which is

capable of predicting the critical crack initiation load as well as the crack propagation

direction. By measuring the amount of strain energy absorbed by a material in front of a

crack tip, the strain energy density factors Stain and Sma" may be calculated, which refer

to dilatation (local volume changes) and distortion respectively. The critical value of

Sm,,m, may then be used as a failure criterion to predict the failure load of sharply defined

cracks or elliptical notches.

Toughness versus Work of Fracture in
Metal Matrix Composites

Several authors [41-421 have pointed out that characterizing the plane strain

fracture toughness (K¢ or K,¢) in composite materials is not as straight forward as in

isotropic metals. The inherent anisotropy of composite materials makes the fracture

mode mixed, even under simple tension. ASTM has established rigorous testing

procedures (E399) to measure the inherent fracture toughness of quasi-briule materials;
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however, a standardized test method for MMCs has not yet been developed. Friend

[41] points out that KC is not a measure of the material's homogeneous fracture

toughness since continuous fiber metal matrix composites are highly anisotropic.

Fracture toughness will be used in reference to the parameter rigorously established by

ASTM E399 and "toughness" will be used in reference to a measure of the materials

ability to absorb energy.

An alternative method of measuring the "toughness" of composite materials is by

measuring the fracture energy or work of fracture. The following definition has been

given by Davidson [42], "... work of fracture--the dissipation of the elastic energy

imposed in the specimen by the externally applied load per unit of new crack surface

formed." This measure of toughness may be obtained by calculating the area under a

load-crack opening displacement (COD) curve during 3 point bend, or the area under the

force-time curve in an impact test. Magata and Hall [43] have measured the area under

the load-COD curve, and found radically different values of toughness as compared to

KQ for their a-Al203/Mg system. Specifically, KQ is defined as the experimentally

determined value of the toughness of the composite that does not satisfy ASTM standard

E399. For composite materials it may be appropriate to measure the toughness using

both methods.

Energy Absorbing Micromechanisms

Pictured in Fig. 1.1 is the crack tip process zone or "local heterogeneous region"

in a continuous fiber MMC. Within the schematic are numerous mechanisms that

contribute to the total fracture in a fiber composite containing a distinct interfacial region.

The mechanisms are as follows: 1) fiber pull-out, 2) crack bridging, 3) crack deflection,

4) fiber breakage, and 5) matrix yielding and plasticity. Each mechanism will be treated
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Crack Matrix Yielding
Deflection and Plasticity

Pl~l-.out

Fiber Crack
Breakage Bridging

Figure 1.1. Schematic of the crack tip process zone in a continuous fiber metal matrix
composite showing distinct energy absorbing mechanisms.
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separately in detail, with the exception of matrix yielding and plasticity, which has been

previously discussed.

Fiber pull-out

Additional energy is expended during fiber pull-out, thus by increasing the pull-

out length, additional toughness may be gained. In the analysis given by Taya and

Arsenault [44], the average pull-out energy per unit area, Wpo, is given as follows:

for I<i1 (1.5)6d

( -1-1)3 V r, 13, (1.6)
6dl for

The maximum pull-out energy Wpo, is given when 1=lc*:

( m = v:d ca 2 (1.7)

24rj

Equation 1.7 shows that the maximum energy is expended in pulling out fibers given

high volume fractions, large diameter fibers, high fiber strengths and low interfacial

strengths.

Due to the desire to retain strength and stiffness, the bonding between fiber and

matrix is relatively high. Systems such as ca-A12 03/Mg [43], Boron/Al [45-46] and

SiC/Al [47] possess good chemical bonding and experience mechanical clamping due to

the differences in thermal expansion coefficients between the fiber and matrix. These

composites are not likely to exhibit fiber pullout. However, composites such as SCS-
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6/Ti-15-3 exhibit extremely poor interfacial bonding and large amounts of fiber pull-out

[48]. To promote fiber pull-out, Magata and Hall [43] thermally cycled their a-

AI2 03/Mg composite to debond the fibers from the matrix consequently lowering the

degree of interfacial bonding. Although the measured values of KQ decreased from

22.7 to 9.1 MPaNGi when tested in the longitudinal direction, the work-of-fracture

increased from 0.202 to 0.354 J from the uncycled to the cycled conditions. The 75%

increase in work-of-fracture would have gone unnoticed if both experiments had not

been conducted.

Crack bridging

In the case when the matrix separates ahead of the crack tip and the fibers are

exposed or "bridge" the crack, additional energy is required for crack propagation [44].

The additional plastic work (Wp) performed on the matrix by the fibers during crack

bridging is given by:.

Wp=,rd 2(Cji,- a)4Vo2  (1.8)

This phenomenon was highly noticeable in an A1203/AI composite formed through the

Lanxide® process [49]. Although the reinforcement was discontinuous, crack bridging

added to the toughness in the presence of lower volume fractions of alumina. In order

for the composite to exhibit crack bridging, a favorable stress state must be present.

Increasing triaxiality would, in effect, favor the rapid nucleation of microvoids.

Awerbuch and Hahn [46] noted that the presence of boron fibers in an aluminum matrix

acted to increase the triaxial stress state ahead of the crack tip, which could be seen from

the large regions of plastic deformation.
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Crack deflection

Irregular crack paths expend greater energy than selI-similar cracks due to the

decreased stress concentration at the crack tip. This may be directly caused by deflected

crack propagation in angle ply composites or interfacial crack propagation in

unidirectional composites. An indirect effect of the irregular crack path is crack closure,

which shields the crack tip thus reducing the effective stress concentration. The

irregular crack paths significantly increase the toughness in B/Al [45] and a-A1203/A!

[43]. Mahulikar et al. [2] have shown that fiber orientation plays an important role on

the failure mode of B4 C and SiC/Ti-6-4 metal matrix composites. Self-similar crack

propagation consisting of transfibral and interfacial failures occurs when the crack is

oriented at an angle greater than 45" to the fiber direction. If the properties of the

interface are altered by thermal cycling, then failure occurs primarily along the interface.

Thermal cycling forms reaction products along the interface creating a "band of

weakness" in which failure is favored. Clearly the degree of interfacial bonding is

related to the amount of crack deflection.

Recent analytical work by Gupta and Argon [14] on brittle composite interfaces

suggests that fiber breakage or delamination can be controlled by varying the elastic

constants of both the interphase and the fiber. This work has been made possible

through new techniques of measuring the material properties of the fiber and interphase

using a unique laser spallation technique [50]. The earliest reference to this type of

work can be traced back to studies of cracks adjacent to bimaterial interfaces. Gupta and

Argon use the following parameters A and p to define the degree of anisotropy in these

composites:

Sil
2(1.9)S22
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2S12 + S16

24S11S22(

These parameters (A and p) form the basis of the Dundur's parameters a and P [14] as

is given below:

(4S +4S2 (1.11)

(WY122+(471S2)

S-(4SlIS22+SI2)2-lN•IlS22+S12)IH 1n/s2} -/4~ 22 s )(1.12)

n = P •(1.13)

;! =2

MVM (1.14)

The Dundurs parameters Pi and p remain relatively constant when values of the elastic

constants for typical engineering materials are substituted. The final dependence for the

generalized delamination chart falls onto a choosing pl=l, p2= 1 , A2=1 and 2,2=1. By

plotting a against the ratio of the applied transverse stress to the strength of the

interface, the failure mode of the material may be predicted (see Fig 1.2). Above the

constructed line, cracks will deflect along the interface, while the lower region will result

in fiber failure. Knowing the elastic constants of the interface and the fiber, the ratio of

the transverse strength Lo the longitudinal strength may be calculated. In this manner,

delamination charts were analytically formulated to engineer composite materials that
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Figure 1.2. Delamination chart showing the mechanism of composite failure
(extracted with permission from the unpublished work of
Gupta and Argon [14]).
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provide both high transverse and longitudinal strength as well as high toughness (fiber

pull-out). Through such processes as CVD and PVD, the elastic properties of the

interface may be tailored to suit a specific application.

Fiber breakage

The ultimate strength of a CFM is highly dependent upon the strength of the

individual fibers. The strength of these fibers, unlike that of the metal matrices, is

statistical in nature and may be described using Weibull statistics. The less scatter in

strength the fibers possess, the easier it is to predict the failure of a fibrous composite.

Such a distribution can be given by the following relation [44]:

/(ca,) = lafp exp(-iaa(.

Micromechanical Modeling

Micromechanical modeling can be broken into two areas of interest analytical

modeling and finite element analysis. Analytical modeling makes simplifying

assumptions of the material's behavior yielding constitutive equations in closed form.

Finite element analysis solves for the stresses and strains of a discretized model

numerically. Both methods have their advantages and disadvantages. Analytical models

provide mathematically simple equations that can be used for design, but often at the

expense of realism. Under careful scrutiny, finite element analysis can yield reliable

solutions, but may require large amounts of computer resources.
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Analytical Formulations

To date, there has been a significant amount of work performed on determining

the mechanical properties of composites from the properties of the constituents. Hashin

[51] has categorized analytical procedures into three areas: the direct approach, the

variational approach and approximation techniques. These procedures may be applied to

statistically isotropic (particulate) composites as well as to fibrous composites. Of these

approaches, only the models using the direct approach will be considered. The direct

approach yields an exact solution of the effective properties of a composite considering a

geometric model. Below are highlighted some popular micromechanical models that are

relevant to metal matrix composites.

Vanishing fiber diameter model

This model was developed by Dvorak and Bahei-EI-Din [52,53] specifically for

analyzing micromechanical problems in metal matrix composites. The model was

evaluated using the 2-dimensional laminate AGLPLY program by Bigelow and Naik

[15]. The values of the longitudinal modulus and Poisson's ratio were found to be

within 6% of the experimentally determined values in the B/Al and SiC/Ti [0]8

laminates. Although AGLPLY was designed to predict the laminate response,

individual constituent stresses can be calculated. It was found that the constituent

stresses developed by mechanical loads were more accurate than stresses developed by

thermal loads when compared to finite element calculations [15].

Aboudi model

The Aboudi model [54,55] is capable of describing the effective behavior of

elastoplastic composites. The periodic and geometrical arrangements of rectangular
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parallelepipeds in the Aboudi model allow both continuous fiber and particulate

composites to be studied. The nonlinearity of the metal matrix has been accounted for

using elastoplastic temperature dependent constitutive relations. The complex derivation

and results are too lengthy to discuss in detail here. For the complete derivation and

constitutive relations, see reference 54.

Cox model

The Cox model, as summarized by Johnson and Birn "56], was designed to

analyze short fiber systems. This model ac- -ounts for the shear and axial stress

distribution along an embedded 4It ;r. The Cox model also derives the longitudinal

stiffness as given in equations (1.16-1.20) according to the coordinate system shown in

Fig. 1.3.

E:= EJVA[I tnl2)] + Em(1-Vf)

E Efil k (1.16)

2

T= EfE G~n sinhfl((l/2)-x)
"V2Ef/n[ll-//] coshf3(Jl/2) (1.17)

OF = Ef 1 (- coshP((I/2)-x)coshf3(31U2) (1.18)

0 =(1.19)

H = 2xrG,,1/ln[1/NrV-1 (1.20)
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In their evaluation, Johnson and Birt found the Cox model accurately predicted

longitudinal stiffness. However, the Cox model should not be used for very short fiber

composites (l/d-4) or for particulate composites due to inadequate load transfer through

shear.

Figure 1.3. Coordinate system used in deriving longitudinal stiffness of the Cox
model.

Paul model

The Paul model was derived to predict the elastic modulus of particulate

composite materials. This model assumes that the Poisson's ratio of the matrix equals

that of the reinforcement and that the strain in the matrix equals the strain seen by the

particles. The transverse and longitudinal elastic moduli are given in equation (1.21).
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E 22 = Ell Em[Em+(Ep-Em)Vp
2 /3]

Em+(EpEm) Vp213(1-V. "3) (1.21)

Johnson and Birt [56] found that the Paul model predicted an upper bound of elastic

moduli in particulate metal matrix composites, but should not be used for whisker

reinforced metals.

Computational Finite Element Analysis

The finite element method (FEM) has been the solution procedure of choice for

complex problems involving mechanical and hygrothermal loading of composite

materials [48,57-64]. This method has been applied to brittle [57,58] and ductile matrix

[59-63] composites. Current and past computational studies of composite materials can

be separated into two levels: a continuum or global level and a micromechanical or local

level. Some investigators have chosen to link these regimes through a local-global

analysis where the global stress state and loading history dictates the boundary

conditions for the local model. In the following sections, both levels of analysis will be

described along with example case studies.

Continuum approach

The object of a global analysis is to describe the overall mechanical response of a

composite structure. The material is considered statistically homogeneous down to the

ply level. Several finite element codes have been wriuen to account for fibrous

reinforcement and laminate design.
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Aboudi's vanishing fiber diameter (VFD) model and the plasticity theories

developed by Dvorak and Bahei-EI-Din [52,53] inspired codes such as PAC78 and

PAFAC. NASA researchers [6,15,62] have used these codes to observe strain

distributions ahead of geometrical discontinuities (such as notches and holes).

Relatively good comparisons with experimental results were noted.

The three-dimensional package, PAFAC, has been extensively used in studying

boron/aluminum and silicon carbide/aluminum systems [15,62]. The eight noded

hexahedral elements represent a composite continuum incorporating matrix and fiber

failure theories. The following equation predicts fiber failure in PAFAC:

'2 '2(1.22)
jUlt Ult

Where al I is the tensile stress in the fiber direction and a12 is the shear stress.

An ultimate strain criterion is used to calculate matrix failure:

( y+ (EMY - EMM+ 3(E~) , (1.23)

In a study of SCS-2/6061 Al, Johnson and Bigelow [62] noted good prediction of the

normalized strains ahead of a slit in [0/90]2 laminates. The numerical predictions from

PAFAC were compared to results obtained with an array of five strain gages positioned

ahead of the notch. In [±4 512s laminate poor correlation was found, possibly due to

fiber rotation and interlaminar yielding.

To overcome possible interlaminar nonlinearity, Hinrichsen and Palozotto [65]

have devised a cubic spline function. In effect, the assumption of plane sections

remaining plane is eliminated. This has been a problem in thick plate applications. In
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the past, thin shell elements have been "artificially softened" to simulate real life

applications, whereas Hinrichsen and Palozotto have generated accurate results without

empirically reducing G13 and G23.

A final application of continuum FEA concerns predicting the mechanical

properties of laminates. Johnson et al. [48] have used AGLPLY, a code employing

Aboudi's plasticity theories, for predicting the elastic/plastic behavior of symmetric

composite plates supporting in-plane loads. AGLPLY has successfully predicted overall

laminate moduli, ply stresses and strains throughout the loading history.

Micromechanics approach

A more desirable approach would be to predict the composites mechanical

properties based only on the mechanical properties of the individual constituents. In the

next segment, three representative micromechanics approaches will be discussed. Each

uses the material properties of distinct fiber and matrix regions. Dvorak and Teply [61]

developed an ingenious energy balance method to predict instantaneous composite

stiffness, while Lerch and Melis [66] used a straight ahead approach to describe the

stress state and slip band regions in cross ply laminates. Pagano and Tandon [64,67]

utilized a 3-cylinder assemblage model to study the effects of various coatings on the

stress distribution around a thermally loaded fiber.

On a micromechanical scale, it is important to establish a working representative

volume element (RVE) which accurately represents the composite. The only models for

which mathematically precise solutions may be obtained are the composite cylinder

assemblage and periodic arrays of identical fibers. The former may be solved

analytically, while the latter must be solved numerically. To date, a variety of periodic

fiber arrays have been used to determine mechanical property data for composite

materials.
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Dvorak and Teply [611 have presented a guideline that should be used to

construct accurate representative volume elements: a) when repeated it continuously

covers the cntire macroscopic volume of the composite and b) when loaded by uniform

stresses or strains, the local stresses and strains are identical within each RVE in the

macroscopic volume. Likewise, they represent the macroscopic composite by an

equivalent homogeneous volume (EHV) element. By equating the energy changes in the

RVE and the EHV when subjected to the identical boundary conditions, they determine

the instantaneous stiffness of the EHV. The energy change (AM/) from a known

solution state to a slightly perturbed state has been derived for the RVE and the EHV:

ATIEHV = A41=1 TA TLB'-_ A•TBA• (1.24)
2

AITRvE = AI1I -A-Aa -A Aa (1.25)
2

Through boundary conditions applied to the RVE and EHV, Dvorak and Teply

accurately predicted upper and lower bounds of elastic moduli using ABAQUS.

Displacement or strain was applied to the EHV to give an upper bound estimate, while

stress or traction was applied to give a lower bound estimate. The instantaneous

stiffness L of the macroscopic composite is at this point unknown. Next, the identical

boundary conditions were applied to the RVE having known instantaneous stiffness I,

(i represents the fiber and matrix). The energy terms in both the local and global models

were then equated to determine Lglobal. The following formula was used by Dvorak

and Teply to determine the energy change, A/l, for an upper bound estimate using a

displacement approximation:
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Mr= f ffJSddS(.6

The equilibrium model was then used for determining a lower bound estimate:

A; JV. J ~A TdadVJ *J A u*Td~dS (1.27)a U

Energy principles were used to show the upper and lower bound estimates. Dvorak and

Teply utilized the maximum principle for strain rates on the upper bound while the

elastic minimum complementary energy theorem was used for the lower bound.

Lerch and Melis [66] predicted the stress strain response of cross-ply laminates

from a micromechanical model. Residual stresses and fiber debonding were accounted

for through gap elements that opened at a critical, predetermined stress state. The

titanium matrix was modeled as elastic/plastic, while the fibers were assumed to remain

elastic to failure. Using the MARC finite element package, good correlation of the axial

and transverse stress strain behavior was found between the model and experimental

results.

A three phase cylinder model, distinguishing fiber, matrix and interphase regions

was utilized by Pagano and Tandon [67] to study the elastic response of multi-

directional coated fiber composites. By parameterizing the mechanical properties and

geometry of the interphase, the stress intensity about a thermally excited fiber was

documented experimentally and numerically. Their work centered on Nicalon reinforced
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BMAS, with fiber coatings composed of nickel and carbon. The derived constitutive

relations were solved using the numerical package, NDSANDS.

Objective and Scope of the Investigation

The primary objective of this investigation was to develop a local-global

micromechanical model for continuous fiber metal matrix composites. This finite

element model is to account for energy absorbing mechanisms such as fiber debonding

and matrix plasticity on a local level. Parametric studies of the interfacial bond strength

and fiber volume fraction are to be presented and analyzed to provide insight on the

mechanics of composite fracture. It was also intended that fracture in monolithic metals

should be well understood and could be related to matrix failure in the composite model.

Chapter 2 will describe the finite element analysis procedure and will outline the

various case studies. Modifications that were made to the PAPST code will be

highlighted along with various post processors used to analyze the data. Chapter 3 will

discuss the computational results of both the two dimensional elastic-plastic fracture

problems as well as the local-global composite fracture problem. Chapters 4 and 5 will

present important conclusions and give recommendations for future work, respectively.



CHAPTER 2

NUMERICAL PROCEDURE

To study the fracture characteristics of metal matrix composites, a two part

investigation was necessary. First a detailed, nonlinear finite element analysis has been

carried out on a variety of structural alloys. The numerical code, PAPST [68], was

modified to perform the present analysis. Furthermore, a local-global investigation has

been conducted using the commercially available package, ANSYS.

Fracture of Monolithic Metals

listed below are the capabilities and modifications that have been made to the

PAPSTcode. The execution procedure and additional postprocessors have been

documented to account for all the changes.

Capabilities of PAPST

PAPST (Plastic Axisymmetric/Planar Structures) can be traced back to another

finite element code, APES, which was limited to linear elastic fracture problems

[69,70]. Gifford and Nash subsequently modified this code to accept nonlinear material

characteristics and have published their findings on crack problems in elastic-plastic

materials [71]. To handle the mathematical instability at the crack tip, a special enriched

mode I singularity element was incorporated with 8x8 Gaussian quadrature.
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Away from the highly stressed regions, PAPST uses 12-noded isoparametric

quadrilateral 2-D elements with 4x4 Gaussian quadrature. All of the nodL. are located

on the perimeter of the element. These elements allow stresses to vary over the face of

the element thus requiring fewer elements to model a given structure. Both element

types are capable of handling linear hardening materials such as those studied by

Hutchinson [30], Rice and Rosengren [31]. A comparison to constant stress (strain)

triangular elements is given in the APES manual [69,70] showing the accuracy of using

these enhanced elements.

Solutions are obtained nonlinearly using the Newton-Raphson iteration

technique [72]. The nonlinear capability of PAPST incorporates the J 2-incremental flow

theory of plasticity and the Von Mises yield criteria. The incremental plasticity theory is

given as [68]:

eij= - S i (reaeu- E sj +

for ae= c. cwen and ue>0 (2.1)

ey = E- S

(otherwise) (2.2)

where ce is the effective stress and ae' is the Von Mises effective stress with respect to

the coordinates of the current center of the yield surface. PAPSTapproximates the true

stress-strain curve of a material using either multilinear or Ramberg-Osgood power

hardening approximations. PAPST is capable of modeling either purely kinematic or

isotropic hardening materials or may model a mixture of the two. Kinematic hardening

is when the center of the yield surface is found to move, while isotropic hardening is

when the yield surface expands uniformly. PAPST handles both plane stress and plane
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strain conditions. The J-Integral, an important parameter in nonlinear fracture

mechanics, may be calculated over 10 paths surrounding the crack tip.

Modifications Made to PAPST

The PAPSTcode has been in existence in some form or another since 1972. In

1984 this code was modified to run on the VAX mainframe environment by Bhagat et

al. [73]. The code was subsequently termed ARLPAPST which was substantially

expanded in its solution capability and integrated pre- and postprocessing subroutines.

ARLPAPST handled, at most, 50 elements or 500 nodes as was the case with PAPST.

The original int-,t uf this thesis was to model composite materials using ARLPAPST;

therefore the code was altered to handle an order of magnitude greater number of

elements and nodes.

Several arrays including those controlling boundary conditions, thermal effects,

spring elements and global solution matrices were altered in size. From personal

communications with Gifford [68], the following formula was used to determine the

array size of G, the global solution matrix, where N is the number of nodes:

G = 2 - (N + 1," (2.3)

Additional Postprocessors

Modifications were made to output the strain energy density, selected J-Integral

values and plots of the deformed mesh. To analyze crack instability, values of the strain

energy density (dWldV) were required. Since ARLPAPST generates dWldV when
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calculating J, a write statement placed in the code outputs dW/dV without additional

effort. This write statement was designed to only print out dW/dV along the first J-

Integral path to save disk space. The nodes along the path do not need to form a closed

contour. The post processors that were written to cut J and generate postscript output of

the deformed structure are listed in appendices A and B respectively. Finally, contour

plots were generated using SAS graph on IBM 3179 terminals and pen plotters.

Solution Procedure

The solution procedure for analyzing nonlinear elastoplastic fracture problems

with ARLPAPST is outlined in Fig. 2.1.

Materials Under Investigation

Two types of steel (HY-130 and HY-140) as well as two types of aluminum

alloys (7075 and 5083-0) have been investigated. The compact tension specimens that

have been analyzed conform to current ASTM standards, see Table 2.1. Multilinear

material modeling of the true stress strain curves are used to represent all the materials as

is shown in Fig. 2.2. Typical mesh designs are presented in Chapter 3 (refer to Figs.

3.1 and 3.2).

Local-Global Micromechanical Modeling

The second stage of this investigation centered on the fracture behavior of SCS-

6/Ti-15-3 composite. Johnson et al. [48] performed exhaustive experimental work on



26

(Start new problem

LDefine coordinate data, connectivity, material properties
and i-Integral paths. Create scratch disk for large files

( Create new lodscee

Assign input and output files using VMS1

DCL language

Submit batch job for execution

magnetic tape

Copy relevant nodal stresses and coordinates to SAS application file

Run subprograms JCUT.FOR and CONNECT.FOR to
analyze the J-Integral and deformed mesh, respectively

xproblem?/

fN o

Figure 2.1. Flowchart for analyzing elastic-plastic fracture problems using the
modified ARLPAPST finite element code
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Table 2.1. Compact tension specimen geometry and material data

Material W (mm) B (mm) a (mm) aIW arv (MPa) Condition Reference

HY- 130 50.8 25.4 39.04 0.7685 896.3 plane v [71]

50.8 25.4 41.22 0.8115

50.8 25.4 42.92 0.8843

50.8 25.4 25.40 0.5000

HY- 140 50.8 25.4 39.04 0.7685 965.3 plane v [71]

7075 Al 50.8 25.4 39.04 0.7685 413.7 plane v [74]

50.8 25.4 41.22 0.8115

5083-0 Al 152.4 45.7 81.28 0.5333 121.8 plane cr [75]

152.4 45.7 81.28 0.5333 121.9 plane s
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Figure 2.2. True stress-strain curves of HY- 130 steel, HY-140 steel and 5083-0
aluminum and 7075 aluminum.
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this material, characterizing the stress strain behavior of multi-ply systems. Their work

indicates that SCS-6/Ti-15-3 possesses a weak interface (138 MPa) which they have

documented. Lerch and Melis [66] have used their work to mode! cross-ply composites

and consider the work of Johnson et al. [48] to be comprehensive.

Material Properties

The compiled properties of silicon carbide SCS-6 fibers, as fabricated Ti-15V-

3Cr-3AI-3Sn and unidirectional as fabricated SCS-6/Ti-15-3 composite are listed in

Table 2.2. The nonlinear stress-strain data used for the local model is presented in Fig.

2.3. Only the elastic properties of the composite are used on the global level.

Numerical Approach

First a global elastic analysis was performed on composite using specimen

dimensions extracted from the work of Johnson et al. [48]. The center cracked plate

under study was modeled using the boundary conditions shown in Fig. 2.4. A fully

three dimensional global analysis was not performed due to a lack of experimental data

of the necessary five independent elastic constants. Instead a two-dimensional, plane

strain model, which incorporates three independent elastic constants, was studied with

orthotropic elements (STIF 82) using the ANSYS finite element code. A uniform

displacement of 2.5 •tm was applicd to the top edge of the model, corresponding to the

minimum displacement necessary to induce a transverse stress greater than 138 MPa, the

stress at which fiber debonding occurs. Four finite element meshes with varying

number of elements were then analyzed to optimize the numerical solution. A sample

input file is presented in Appendix C. The results of this optimization will be presented
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Table 2.2. Compiled properties of fiber, matrix and composite for SCS-6/Ti- 15-3
system (properties extracted from reference 48).

Properties of the fiber

Coefficient of Thermal 2.70 x 10.6 *F-1  4.09 x 10-6 *C-1

Expansion (ca)

Poisson's Ratio (v) 0.25 0.25

Fiber Diameter (d) 0.0056 in 0.014224 cm

Longitudinal Elastic 58.0 x 106 psi 399.9 GPa
Modulus

Transverse Elastic Modulus 58.0 x 106 psi 399.9 GPa

Ultimate Strength 465 x 103 psi 3208 MPa

Properties of the matrix (as fabricated)

Coefficient of Thermal 5.4 x 10-6 "F1  9.72 x 10-6 "C-1

Expansion (a)

Poisson's Ratio (v) 0.351 0.351

Longitudinal Elastic
Modulus 13.4 x 106 psi 92.39 GPa

Yield Stress 100.0 x 103 psi 689.5 MPa

Ultimate Stress 135.4 x 103 psi 933.55 MPa

Properties of the composite (as fabricated 1018 laminate)

Fiber Volume Fraction 0.325 0.325

Poisson's Ratio Mv) 0.299 0.299

Debond Stress 20 x 103 psi 138 MPa

Ultimate Strength 220 x 103 psi 1518 MPa
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Figure 2.3. Nonlinear stress-strain curve used to model titanium 15-3 matrix material
on the local level.
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Figure 2.4. Schematic of the macroscopic model showing boundary conditions, fiber
orientation and specimen dimensions.
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in Chapter 3. The displacements in the most highly stressed region of the optimized

model were then used as the boundary conditions for the local model.

The three-dimensional local model discretizes the fiber, matrix and interphase

into a unit cell after the work of Dvorak and Teply [611. A representative unit cell with a

volume fraction of 0.325 is shown in Fig. 2.5. Equation 2.4 enables the calculation of

the interfiber spacing ()A) of the unit cell model.

A = 2r [0.5373 AJX (2.4)

The fiber and matrix regions were constructed with 20-noded isoparametric elements

(STIF 95) using the ANSYS finite element code, while gap elements were placed along

the fiber-matrix interface.

A parametric study of the interface strength was performed by varying the fiber-

matrix debond stress. The tensile strength of the interface, oa, was set equal to 138

MPa, corresponding to the experimentally determined debond stress [48]. As an

extreme case, a- was equated to af, the fiber strength. From the initial analysis this gave

unreasonable results and an intermediate value was chosen, corresponding to the

strength of the matrix. The stiffness of the gap element is assumed to be equal to that of

the matrix (92.4 MPa). Various interface strengths are incorporated through changes in

radial interference (with units of displacement). To calculate the radial strain seen by the

gap elements and the surrounding material, the effective length acting on an individual

element is assumed to be of length 0.5), (see equation 2.4). Thus the interface strength

is modeled as an effective strain acting upon the fiber-matrix interface. Another effective

length may or may not be appropriate, but this length seems to be reasonable. Using

Hooke's law, the desired interface strength is divided by the gap stiffness to obtain the
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Figure 2.5. Represntative unit cell distinguishing fiber, matrix and interphase of a

0.325 volume fraction SiC/Ti composite. The fiber is modeled as elastic,
while the matrix is elastoplastic. Gap elements are used to simulate the

inteffaial region.
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gap strain. These strain values are multiplied by the factor 0.5), to obtain the

interference length. For model continuity, a small mathematical separation (0.01 .m) is

placed between the two nodes of the gap element.

The pictorial shown in Fig 2.6 emphasizes how the boundary conditions of the

global model are transferred to the local model. Part A of Fig. 2.6 represents the entire

specimen modeled by Johnson et al. [48]. Through the use of symmetry conditions,

part B of Fig. 2.6 was used as the global or *macro" model. The horizontal and vertical

displacements were extracted from the nodes of the global model corresponding to the

top and bottom layers of the local model as shown in part C of Fig. 2.6. The height of

the microscopic model (380.0 gim) corresponds to approximately four layers of "macro-

model" nodes as shown in Fig. 2.7. These displacements were plotted and fit with a

polynomial curve. The fitted curves and corresponding displacements will be presented

in the following chapter. When the R2 correlation of the data points was less than 0.92,

then visual interpolation from the graphs was used. The fitted displacement boundary

conditions were then transferred to the 3-dimensional local model via coordinate

transformation as is shown in part D of Fig. 2.6. The (x', y', z') axes denote the

coordinate system used to construct the local model. The (X, Y, Z) axes denote the

coordinate system of the global model. The displacements along the global Z direction

are assumed to remain unchanged.
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Figure 2.6. Pictorial flowchart showing the global model in parts A and B and the
local model in parts C and D. Note that the global model is 2-
dimensional and that the local model is 3-dimensional.
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Figure 2.7. Nodal plot of the global model near the crack tip region. The outlined
section represents the dimensions of the local model superimposed upon
the figure.



CHAPTER 3

RESULTS AND DISCUSSION

The objective of our research is divided into two separate stages. First, a

detailed analysis of elastic-plastic fracture in unreinforced metals is conducted, followed

by a study of the micromechanics of fracture in silicon carbide reinforced titanium. The

study of monolithic steel and aluminum alloys gave the opportunity to verify work that

has been performed in the past as well as serve as a benchmark for problems solved

using the updated version of ARLPAPST.

Monolithic Materials

Due to the ductile nature of steel and aluminum we were interested in the crack

tip plastic zone (CT'PZ) and its dependence on the crack length. J-Integral values were

established on several different paths in both steel and aluminum specimens and the

relative path independence of J will be defended. The strain energy parameters

(dW/dV)c and (dW/dV)mn,, presented by Bhagat et al. [72] were verified and will be

discussed at length. Finally, stress and strain contour plots are presented to study how

the stresses are distributed in front of the crack tip.
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Mesh Deformation

Plots of the deformed meshes of 5083-0 aluminum and 7075 aluminum are

given in Figs. 3.1 and 3.2, respectively. The deformed mesh shown in Fig. 3.1

corresponds to an applied load of 6122.5 pounds, while that in Fig. 3.2 corresponds to

an applied load of 2844 pounds. The J-Integral paths are located as shown. These

loads represent the crack initiation loads. In the next section, the crack initiation load

will be described in terms of the strain energy density.

Strain Energy Density

The strain energy density (dW/dV) in front of the crack tip as described by Sih

[39,40] was calculated using ARLPAPST. At a critical radius ro, the strain energy

density dropped to a minimum value designated (dW/dV)min as is shown in Figs. 3.3

and 3.4. Earlier studies have shown that this "U-shaped" signature is found only in the

&=0* direction ahead of the crack tip [72]. Note that in Fig. 3.4 the strain energy

density exhibits a jagged signature. This corresponds to unloading at the crack tip.

These values of (dW/dV)min were plotted against the applied load and at a critical load,

P*, the values of dW/dV began to decrease as is shown in Fig. 3.5. This peak value of

the strain energy density signifies the point at which the structure begins to expend

energy in the form of crack growth. The maximum value of (dW/dV)min is denoted as

(dW/dV)*min.

Three different crack lengths in HY-130 steel and two crack lengths in 7075

aluminum were analyzed. For the specimens in which the numerical solutions remained

stable, the failure load can be approximated by extrapolating the curve down the load

axis. For example, in HY-130 steel with a=1.623, the extrapolated curve
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Crack tip

Figure 3.1. Picture showing the deformed upper half of a compact tension specimen
model constructed of 5083-0 aluminum. The crack tip (a=-3.199 in) is
located as shown.
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Figure 3.2. Picture showing the deformed upper half of a compact tension specimen
model constructed of 7075 aluminum. The crack tip (a=1.537 in) is
located as shown.
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Figure 3.3. Strain energy density plotted against the radial distance from the crack tip
in HYY- 130 steel (a=1.537 in).
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Figure 3.4. Strain energy density plotted against the radial distance from the crack tip
in 5083 aluminum (a=3. 199 in).
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Figure 3.5. (dW/dV)min plotted against applied load for three crack lengths in
HY-130 steel (a=1.537 in, 1.623 in and 1.7685 in) two crack lengths in
7075 aluminum (a=1.537 in and 1.623 in) and one crack length in 5083
aluminum (a=3.199 in). Fracture load is determined by extrapolating
curve to the load axis.
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reaches the load axis at 4200 pounds, and when a=1.7623, the predicted failure load is

approximately 2100 pounds. The fracture loads of the aluminum specimens are less and

the trend is similar to that observed in the steel. The fracture loads of the smaller crack

lengths are consistent with fracture mechanics concepts.

Crack Tip Plasticity

The principal Von Mises stress distribution in loaded compact tension specimens

of 5083 Al, 7075 Al and HY-130 steel are shown in Figs. 3.6, 3.7a, 3.7b, 3.8a, 3.8b,

and 3.8c. The increasing size of the crack tip plastic zone with decreasing

crack length agrees with accepted plasticity theories. For example, in Figs 3.7a and

3.7b, the ligament ahead of the crack tip for the larger crack (a=1.623) exhibits full

plasticity for all the nodes along the ligament, while for the smaller crack (a=1.537)

there is a small region along the ligament that remains in the elastic region.

Even though all the J contour paths in 7075 aluminum (as shown in Fig. 3.7a)

pass through the CTPZ at P*, the variation from the averaged value of J is only 3%.

However, when the load is increased to 1. 13P* the variation from the average J value

increases to 7%. Figure 3.9 illustrates how J varies along the crack ligament in 7075

aluminum (a=1.537) for load increments from 0.21P* to 1.13P*. Similar trends can be

observed in HY-130 and 7075 Al as shown in Figs. 3.10, 3.11 and 3.12.

The crack initiation load may be predicted by studying the variation of J as a

function of applied load. Typically these plots exhibit asymptotic behavior, approaching

a critical value of P. This information can then be used to predict the critical loading

state of a cracked structure. The work of Hilton and Gifford [71] has been confirmed in

this investigation through the plot shown in Fig 3.13.
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Figure 3.7a. Contour plot of the Von Mises effective stress (psi) in 7075 aluminum
(a=1.537 in). The model is shown as 2:1 in inches.
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Figure 3.7b. Contour plot of the Von Mses effective stress (psi) in 7075 aluminum
(a=-1.623 in). The model is shown as 2:1 in inches.
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Figure 3.8a. Contour plot of the Von Mises effective stress (psi) in HY- 130
steel (a=1.537 in). The model is shown as 2:1 in inches.
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Figure 3.8b. Contour plot of the Von Mises effective stress (psi) in HY-130
steel (a=1.623 in). The model is shown as 2:1 in inches.
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Figure 3.8c. Contour plot of the Von Mises effective stress (psi) in HY- 130
steel (a=1.7685 in). The model is shown as 2:1 in inches.
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Figure 3.9. Variation of J along the crack tip ligament for 7075 aluminum
(a= 1.537 in). Note the variation of J is small until the load is increased
beyond P*. Note that I in*lb/inA2 = 0. 17513 kJ/mA2.
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Figure. 3.10. Variation of J along the crack tip ligament for 70175 aluminum
(a= 1.623 in). Note the variation of J is small until the load is increased
beyond P*. Note that 1 in~lb/inA2 = 0. 17513 kJ/MA).
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Figure 3.11. Variation of J along the crack tip ligament for HY- 130 steel
(a=1.623 in). Note the variation of J is small until the load is increased
beyond P*. Note that I in*lb/inA2 = 0.17513 kJ/mA2.
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Figure 3.12. Variation of J along the crack tip ligament for HY-130 steel
(a=1.7685 in). Note the variation of J is small until the load is increased
beyond P*. Note that 1 in*lb/inA2 = 0.17513 kJ/mA2.
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Metal Matrix Composites

SCS-6/Ti- 15-3, was chosen as our model system due to the technological

significance and substantial amount of published experimental work on this material

[48]. The goal in this segment of our investigation was to document the mechanics of

failure under various interface strengths. As discussed earlier in Chapter 1, certain

failure criteria will be documented and utilized to determine the direction and occurrence

of material failure. The local-global analysis of SCS-6/Ti 15-3 was studied using the

ANSYS finite element package.

Macro-Mechanics Analysis

In the analysis of orthotropic materials, an optimized mesh design is essential,

even more so than in the well documented cases of steel and aluminum. Four mesh

designs with 126 to 456 elements were loaded with identical boundary conditions as

was described in Chapter 2. In each case, the effective principal stress at a specified

node (r = 3.74 mm, 0 = 8.1°) was plotted as a function of the number of elements

within the mesh (see Fig. 3.14). This point is far enough away from the crack tip to

provide a stable solution. As a further check, the contour plots of the principal stresses

were recorded for the two meshes with the highest number of elements (refer to Figs.

3.15 and 3.16). Note that the 255 element model gives drastically different results from

that of the 456 element model. Only the results from the 456 element mesh design were

used in the boundary condition calculations

To accurately model the experimentally observed failure mechanisms, a

combination of failure criteria must be monitored. The initial mechanisms include fiber

pull-out and matrix plasticity. When loads are further increased, the fiber or matrix may
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Figure 3.14. Optimization of finite element mesh for global model considering the
effective stress at a radius of 3.74 mm away from the crack tip. The
material system is SCS-6/Ti-15-3.
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Figure 3.15. Effective stress contour plot in 255 element macroscopic model. The
plate is modeled using quarter symmetry, the crack tip is located in the
lower left corner.
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Figure 3.16. Effective stress contour plot in 456 element macroscopic model. The
plate is modeled using quarter symmetry, the crack tip is located in the
lower left comer.
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fail according to equations 1.22 and 1.23 respectively as was described in Chapter 1.

Since fiber pull-out and matrix plasticity may precede failure, the normal stress ratio and

Von Mises yield criteria will be used to predict fiber debonding and matrix yielding

respectively. The normal stress ratio in this case is equal to the transverse stress in the

composite divided by ai, the tensile strength of the interface. Thus when the normal

stress ratio exceeds 1.0 then interfacial failure will occur. Experimental results [48]

indicate that fiber debonding occurs at transverse stresses as low as 138 MPa, well

below the level required for matrix yielding and fiber failure. Thus the global model

took into consideration material nonlinearities, but the solution did not reach the required

stress state for plastic deformation.

As was described in detail in Chapter 2, the boundary conditions for the micro-

model were extracted from the solution to the global model. The critical external load

required to initiation fiber-matrix debonding was reached when OX= 138 MPa. Note

from Table 2.2 that this is well below the stress level necessary to induce yielding. The

induced displacements parallel (UX) and perpendicular (UY) to the direction of the crack

were then plotted and fit with the best curve as shown in Figs 3.17 and 3.18. The four

curves (A, B, C and D) represent the nodes of the macro-model as was depicted in Fig.

2.7. For the displacement along the crack tip direction, the fitted curves are given in

equations 3.1 and 3.2 for curves C and D respectively.

y = -0.506 - 1.046x10-4r - 1.804x10- 7r2  R2 = 0.972 (3.1)

y = -0.449 - 1.342x10- 4r - 1.627x10- 7r2  R2 = 0.995 (3.2)

For curves A and B, the R2 correlation was less than 0.92, therefore visual interpolation

was used to obtain the necessary points. For the displacements normal to the crack tip
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direction, the fitted curves are given in equations 3.3-3.6 for curves A-D respectivcly.

y = 1.091x10-3 - 5.144x10-3r -
2.435x10-5r2 - 4.987x10-r 3  R2 = 0.999 (3.3)

y = 0.172 - 1.252x10-3r - 3.690x10-6r 2 -

6.318x10-9r3 - 3.506x10- 11r4  R2 = 0.999 (3.4)

y = 0.253 - 8.688x10-4r - 1.269x10-6 r2  R2 = 0.998 (3.5)

y = 0.318 - 7.389x10-4r - 7.572x10-7 r2  R 2 = 0.999 (3.6)

Micro-Mechanics Analysis

The fiber, matrix and interphase regions are modeled as distinct materials on the

local level. Boundary conditions were extracted from elements of the global model, as

was described in the previous section, whose transverse stresses, ax, exceed the stress

required to initiate fiber debonding. The height and sides of the local model are each

380 pm. Three different values of oj were used under identical boundary conditions.

Figure 3.18 shows the deformed mesh when a1 = 138 MPa. The outlined area indicates

the plane of the crack. Note that complete fiber debonding occurred along all three

fibers. When the strength of the interface was increased to that of the fiber, extremely

high stresses were developed within the fibers. This case does not merit additional

discussion. As an intermediate value, cri was set equal to the strength of the matrix, and

load is effectively transferred to the fibers. Figure 3.20 shows the stress contours when
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Figure 3.17. Displacements obtained from the solution of the global model. The data
are interpolated using polynomial fits on layers D and C, while visual
interpolation is used on layers B and A (refer to Fig. 2.7).
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Figure 3.18. Displacements obtained from the solution of the global model. The data
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Figure 3.19. Deformed finite element mesh showing fiber debonding in
SCS-6ITi-15-3. Crack plane is outlined as shown.
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Figure 3.20. Effective stress contour in SCS-6/Ti-15-3 when j = 934 MPa. Note
that the stresses are concentrated within the fiber due to effective load
transfer.
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ai = ore. In this case the maximum stress within the fiber far exceeds its ultimate

strength, indicating instantaneous fracture of the fibers under the assumed nature of the

interface.

When relatively low loads (still well within the elastic limit) are developed about

the crack tip in the global composite, substantial damage occurs on a microscopic scale.

As was observed in monolithic steel and aluminum, the trend of stress decaying away

from the crack tip is maintained as is shown in Fig. 3.21. When the signature of the

stress field in the matrix near the crack tip is compared to the signature in monolithic

metals, similarities are found. Note that at a finite distance from the crack tip, the stress

increases then decreases once more.

By taking a closer look at the effective stresses near the interface region, it is

possible to document the mechanics of load transfer. Figure 3.22 shows the orientation

of a sectioned surface of the micro-model, including the three fibers labeled A, B and C.

Figures 3.23, 3.24 and 3.25 exhibit how load is transferred from the matrix to the fibers

using the right hand definite orientation described above. These three figures represent

different degrees of interfacial bonding: 138 MPa, 534 MPa and 934 MPa. The load

transfer ratio is defined in equation 3.7.

Load transfer ratio -ftber (3.7)
qknatrix

From these plots, it is evident that on the average, the broken fiber does not transfer load

as effectively as does the undamaged fibers. Also note that load transfer is not uniform

and that it depends upon the angular orientation and distance from the crack front. In

general, the interface regions on the plane of the crack front transfer more load than does

the plane furthest from the crack front.
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Figure 3.21. Plot of the effective stress against the radial distance from the crack tip in
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Figure 3.22. Schematic cross section of micro-model showing right hand definite
angular orientation. Fiber A corresponds to the broken fiber, while
fibers B and C remain unbroken.
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Figure 3.23. Part A shows effective load transfer in fibers A, B and C as a
function of angular orientation on the crack plane. Part B shows
effective load transfer on the plane furthest from the crack plane. The
interface strength is 934 MPa.
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Figure 3.24. Part A shows effective load transfer in fibers A, B and C as a
function of angular orientation on the crack plane. Part B shows
effective load transfer on the plane furthest from the crack plane. The
interface strength is 534 MPa.
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Figure 3.24. Part A shows effective load transfer in fibers A, B and C as a
function of angular orientation on the crack plane. Part B shows
effective load transfer on the plane furthest from the crack plane. The
interface strength is 138 MPa.
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Figure 3.26. Optimization of the interface strength considering the stress in the matrix
near the fiber-matrix interface (Ei = 92.39 GPa). The optimum value of

the interface strength, (Oi)opi , may be obtained by reading the interface
strength at the intercept of the two curves.
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An estimate of the optimum interface strength, (Ui)opi, can be made by picking a

single point in the matrix near the interface. The point chosen corresponds to the node at

which the greatest effective stress is observed. Figure 3.26 shows that as the degree of

interfacial bonding is increased beyond 730 MPa, the stress in the matrix exceeds 739

MPa, the stress in the matrix at the fracture strain of the SCS-6 fibers (0.8%).

Therefore, when fabricating SCS-6lTi-15-3 composites, it would be advantageous to

increase the degree of interfacial bonding to 730 MPa. Keep in mind that this analysis

uses an assumed value of the interface stiffness equal to that of the matrix stiffness.



CHAPTER 4

SUMMARY AND CONCLUSIONS

A series of materials have been evaluated numerically for their fracture behavior

and response to applied loads. Monolithic HY-130 steel, HY-140 steel, 5083-0

aluminum and 7075 aluminum have been studied using ARLPAPST, a nonlinear finite

element package. In the case of HY- 130 steel, 7075 aluminum and 5083-0 aluminum,

the strain energy distribution allows estimates of the crack initiation loads and the failure

load to be made. The effect of crack tip plasticity and crack tip unloading on the J-

Integral have been established. Values of the J-Integral were examined for a range of

crack to width ratios (0.533 -- aIW : 0.884) leading from small scale to extensive

plasticity. When the loads were increased above a critical load (which is attributed to

crack initiation), values of the J-Integral deviated from the averaged value across the

ligament of the specimens, up to 13%.

The damage mechanics in the composite were studied using a local-global

analysis. The boundary conditions for the three-dimensional micro-model were

extracted from the two-dimensional macro-model through an innovative concept of

coordinate rotation and interpolation. The results of the micro-mechanical modeling are

valid when considering only the non-dimensionalized quantities and not the absolute

numbers. The convergence test for the micro-model still needs to be performed. Within

this context, extensive deformation and interfacial debonding were found near the crack

tip of the composite even under the application of relatively low loads. These numerical

predictions confirmed the published experimental observations that SCS-6/Ti-15-3
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delamninates readily under loading. Extensive fiber debonding was observed when the

interfacial strength was set to 138 MPa. Loads were more effectively transferred when

the interface strength was increased above 138 MPa. Thus the optimum strength of the

interface under the assumed conditions of the model is between 534 and 934 MPa. The

signature of the effective stresses in the micro-mechanical model of the composite

signifies the crack propagation direction as in the case of matrix materials.



CHAPTER 5

RECOMMENDATIONS FOR FUTURE RESEARCH

The recommendations for future work in the area of local-global finite element

analysis will be itemized below:

9 An iterative load stepping solution procedure is needed to determine the exact point of

fiber failure and/or fiber matrix debonding.

e More values of the interface tensile strength, shear strength and stiffness need to be

analyzed to optimize the point at which delamination is favored over fiber fracture.

* The micromechanical model is designed to easily accept different crack lengths. The

effect of crack length on delamination and fiber fracture should be studied.

o The case of crack bridging should be studied by simply varying the boundary

conditions of the micro-model.
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APPENDIX A

J-INTEGRAL CUTTING PROGRAM

C J-Integral cutting program (JCUT.FOR) created by Mike House on
C 20-SEP-1990 11:19:07.02
C
C >>>OBJECTIVE<<< To cut the J-Integral values directly from the main
C PAPST output. Program can handle any number of
C increments.
C
C >>>COMMENTS<<< Must change the input and output files to be accessed
C by program within the open statements.
C----------------------------------------------- --------------------- -

CHARACTER* 1 A(132)
CHARACTER B* 10,LOADS*40
CHARACTER* 11 JINT(15,50),CHECK
OPEN(UNIT= 18,FILE='[mbh.monolith.HY- 130.PAPST6)papst6.out',
.STATUS='OLD')
OPEN(UNIT=21 ,FILE.='[mbh.monolith.HY- 130. PAPST6]j 130-3. OUT',
.STATUS='NEW')
REWIND 18
WRITE(*,10)

10 FORMAT(5X,'INPUT NUMBER OF PATHS CALCULATED FOR J-
.INTEGRAL')
READ *, NJINT
WRITE(*,40)

40 FORMAT(5X,'INPUT NUMBER OF LOAD INCREMENTS')
READ *, NINC

C----------
C CUT DATA FROM MAIN OUTPUT
C----------

DO 100 I=1,NINC
DO 200 J= I,NJINT

3 READ(18,5000) B,CHECK
5000 FORMAT(T 12,A 10,T39,A 11)

IF(B.EQ.'J INTEGRAL') THEN
JINT(J,I)=CHECK
GO TO 200

ELSEIF(B.EQ.'INCREMENT ') THEN
DO 5003 JJ=1,NINC+1

READ(18,5001) LOADS
5001 FORMAT(T14,A40)

WRITE(21,5002) LOADS
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5002 FORMAT(TI0,A40)
5003 CONTINUE

GOTO3
ELSE

GOTO3
ENDIF

200 CONTINUE
100 CONTINUE

C----------------
DO 450 JCOL=1,NINC

WRITE(21,110) JCOL
110 FORMAT(/T7,'VALUES OF THE J-INTEGRAL FOR INCREMENT

.'13//T3,'PATH',T 10,'J-INTEGRAL'/T3,'----',T 10,')------1)
DO 440 IROW=I,NJINT

WRITE(21,460) IROWJINT(IROW,JCOL)
460 FORMAT(T4,12,T 1O,A 11)
440 CONTINUE
450 CONTINUE

STOP
END



APPENDIX B

POSTSCRIPT CONNECTIVITY PROGRAM

C POSTSCRIPT Connectivity program
C created by Mike House on 20-AUG-1991 19:52:11.02
C
C >>>OBJECTIVE<<< To generate model meshes showing connectivity
C
C >>>VARIABLES<<< NN = Number of nodes in the mesh
C NE = Number of elements in the model
C MAXSPW = Specimen width in inches
C
C >>>COMMENTS<<< Necessary files includes the raw data file, all comer
C nodes and their connectivity (this is usually the data
C submitted to PAPST), a file containing the
C coordinates of the comer nodes, and the output file.
C ------ -------------------------------------------------------------------

REAL*8 X(5000),Y(5000),MAXSPW,DEFX(5000,50),DEFY(5000,50)
CHARACTER* 10 JUNKJUNK3
CHARACTER* 11 JUNK2
INTEGER C 1(500),C2(500),C3(500),C4(500),MAT(500),DEFORM

C
READ(7,12) NN,NE,NM

12 FORMAT(1315)
ISKIP = NM *2
DO 14 I=I,ISKIP
READ(7,15)JUNK

15 FORMAT(A 10)
14 CONTINUE

C
MAXSPW = 0.000001
DO 1000 I=I,NN

READ(1 1,20) X(I),Y(I)
IF(X(I).GE.MAXSPW) MAXSPW=X(I)

20 FORMAT(T 17,F9.7,1 1X,F9.7)
1000 CONTINUE

C Code now calculates size of grid to place onto paper
C

IWIDTH = 432.0/MAXSPW
C
C Postscript recognizes 72.0 dpi, therefore there are 72*8.5 columns
C 432.0 allows for 1.5" left margin and 1.0" right margin
C



WRITE(10,10) IWIDTH,1 WIDTH
C

WRITE(6, 16)
16 FORMAT(TS,'Is data in 2/corner mode or full mode? (1=2/corner)')

R.EAD(5,*) MODE
IF(MODE.EQ. 1) THEN
DO 6000J= 1,2

RE.AD(7, 18) Cl (J) ,C2(J),CO(J),C4(J),MAT(J)
WRITE( 10,2) X(CI1(J)),Y(C I(J)),X(C2(J)),Y (C2(J)) ,X(C3(J)),

.Y(C3(J)),X(C4(J)),Y(C4(J)),X(C 1(J)),Y (C 1(J))
6000 CONTINUE

DO 2000 J=3,NE
READ(7, 1020) Cl (J) ,C2(J) ,C3 (J),C4(J) ,MAT(J)
WRITE( 10,2) X(CI1(J)),Y(C 1(J)),X(C2(J)),Y (C2(Ji)),X(Ct-3(J)),

.Y (C3(J)),X(C4(J)),Y (C4(J)),X(C I(J)),Y (C 1(J))
2000 CONTINUE

ELSEIF(MODE.NE. 1) THEN
DO 19 J=1I,NE

READ(7,18) C 1(J),C2(J),O3(J),C4(J),MAT(J)
WRITE( 10,2) X(C 1(J)) ,Y(C I(J)),X(C2(J)),Y(C2(J)),X(O3(J)),

.Y(C3(J)),X(C4(J)),Y(C4(J)),X(C 1(J)),Y (C 1(J))
19 CONTINUE

ENDIF
WRITE( 10,5)

5 FORMAT(T2,' 0.6 setgray')
C

DO 46 J=1,NE
IF(MAT(J)EQ.2) THEN
WRITE( 10,4) X(CI1(J)),Y(CI1(J)),X(C2(J)),Y(C2(J)) ,X(C3(J)),

.Y(C3(J)),X(C4(J)),Y(C4(J)),X(C 1(J)),Y(C 1(J))
ENDIF

46 CON7INUE
C
C Now we want to read in displaced nodal values and add to X and Y
C

WRITE(6,4002)
4002 FORMAT(T5,'Print deformed mesh? (I=yes)')

REA)(5,*) DEFORM
I F(DEFORM.EQ. 1) THEN

GOTO 9998
ELSE

GOTO 9999
ENDIF

9998 WRITE(6,4003)
4003 FORMAT(T5,How many converged solutions?')

READ(5,*) INUM
DO 60011 1=1I,NN

DEFX(I 1,1)=X(I 1)
DEFY(I1,1)=Y(I 1)

6001 CONTINUE
C
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DO 4300 K=,IjNUM
4030 READ(15,4000) JUNK2
4000 FORMAT(TIO,AII)

IF(JUNK2.EQ.'NODE NUMBER') THEN
RE-AD( 15,*)
DO 4100 J=1,NN

READ(15,4010) DX,DY
4010 FORMAT(T25,E1 1.8,T45,El 1.8)

DEFX(J,K)=X(J)+DX
DEFY (J,K)=Y(J)+DY

4100 CONTINUE
GOTO 4300
ENDIF
GOTO 4030

4300 CONTINUE
C
C Now develop format for datafile
C
4200 WRITE(6,4201)
4201 FORMAT(T5,'Overlay which converged solution?')

READ(5,*) IC
DO 4301 J=1,NE

WRITE( 10,2) DEFX(C 1(J),IC),DEFY(C 1(J),IC) ,DEFX(C2(J) ,IC),
.DEFY(C2(J),IC),DEFX(C3(J),IC),DEFY(G3(J) ,IC),DEFX(C4(J,,IC),

4301 CONTINUE
2) FORMAT(2X,F1O.8,1X,F1O.8,' moveto, ',FIO.8,1X,F1O.8,' lineto 'I

I X,FIO.8, 1X,FIO.8,' lineto ',FIO.8, IX,FIO.8,' lineto '/1X,FIO0.8,
1X,F1O.8,' lineto stroke')

4 FORMAT(2X,F1O.8,1X,F1O.8,' moveto ',F10.8,1X,F10.8,' lineto 'V
* 1X,F1O.8, 1X,F1O.8,' lineto ',F10.8, 1X,FIO.8,' lineto '/IXFL.8,

*1XF10.8,' lineto fill')
C
C This is for all nodes given

C18 FORMAT(T8,13,T23,13,T38,13,T53,13,T70,j 1)
10 FORMAT(' %WTI 103 320 translate'/'0 setlinewidth'/

.T2,14,Ixx4' scale')
C
C This is for only corner nodes given
C
1020 FORMAT(T8,13,T 13,13 ,T 1 8,13,T23 ,I3,T70,I 1)
9999 WRITE(10,3)
3 FORMAT(' showpage')

STOP
END



APPENDIX C

PROGRAM LISTING OF 2-D ORTHOTROPIC PROBLEM

/SHOW,X1 1
/PREP7
/title, 2-D MMC Laminate
CSYSO ! Define cartesian coordinates
KAN,0 ! Define static analysis
KAY ,6,0 ! Small deflection option
ET, 1 ,82 ...3,,2
R,THICKNESS, 1.55E-3
K, 1,0,0 ! Define keypoints 1-8
K,2 ,2.65e-3 ,0
K,3,3. 175e-3,0
K,4,3.7e-3,0
K,5,6.35e-3 ,0
K,6,0,0.5215e-3
K,7,2.65e-3 ,0.525e-3
K,8,3. 175e-3,0.525e-3
K,9,3.7e-3 ,0.525e-3
K, 10,6.35e-3,0.525e-3
K,1 1,0,1.525e-3
K, 12,2.65e-3, 1.525e-3
K, 13,3. 175e-3,1.525e-3
K, 14,3.7e-3, 1.525e-3
K, 1S,6.35e-3, 1.525e-3
K, 16,0, 12.7e-3
K, 17,2.65e-3, 12.7e-3
K, 18,3. 175e-3, 12.7e-3
K, 19,3.7e-3, 12.7e-3
K,20,6.35e-3, 12.7e-3
/VIEW,1,I,1,1 ! Change perspective
L,2,1,3 ! List nodes as from,to,div,ratio
L,2,3,3
L,3,4,4
L,4,5.3
L,7,6,3
L,7,8,3
L,8,9,4
L.9,10,3
L,12,1 1,3
L12, 13,3

L,13,14,4
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L,14,15,3
L,17,16,3
L, 17,18,3
L,18,19,4
L,19,20,3
L, 1,6,3 ! Up and down segments
L,2,7,3
L,3,8,3
L,4,9,3
L,5,10,3
L,6, 11,2
L,7,12,2
L,8,13,2
L,9,14,2
L,10,15,2
L,11,16,10,3
L,12,17,10,3
L,13,18,10,3
L,14,19,10,3
L,15,20,10,3
ELSIZE,,2 !Default number of elem divisions
A, 1,2,7,6
A,2,3,8,7
A,3,4,9,8
A,4,5,10,9
AMESH,1,4
ELSIZE,,2
A,6,7,12,11
A,7,8,13,12
A,8,9,14,13
A,9,10,15,14
AMESH,5,8 ! MESH AREAS 5 TO 8
A,11,12,17,16
A,12,13,18,17
A,13,14,19,18
A,14,15,20,19
AMESH,9,12
ITER, 1, 1,1
KBC,0
MP,EX, 1,122.7266E9
MP,EY, 1,208.222E9
MP,NUXY, 1,0.299
LSBC,22 ! DEFINES SYMMETRIC BC'S
LSBC,17
LSBC,27
LSBC,3
LSBC,4
KD, 16,UY,2.4983954e-6,, 1
KD,17,UY,2.4983954e-6,, l
KD,18,UY,2.4983954e-6,, 1
KD, 19,UY ,2.4983954e-6,, l
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KD,20,UY ,2.4983954e-6,, 1
SBCTRA !TRANSFERS BC'S TO MESH
WAVE


