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Abstract

The TRAINS project is a long-term research effort on building an intelligent planning assistant that
is conversationally proficient in natural language. The TRAINS project serves as an umbrella for
research that involves pushing the state of the art in real-time planning, planning in uncertain
worlds, plan monitoring and execution, natural language understanding techniques applicable to
spoken language, and natural language dialog and discourse modelling. Significant emphasis is
being put on the knowledge representation issues that arise in supporting the tasks in the domain.
This report describes the general goals of the TRAINS project and the particular research directions
that we are pursuing.

I'This research was supported in part by Rome Lab contract F30602-91-C-0010, by ONR/DARPA grant N000O14-82-
K-0193, by ONR grant number N00014-90-J-1811, and by NSF grant IRI-9003841.




et ————mm—— et uryo ety i ————— —— ey S SRV

SECURITY CLASSIFICATION OF THIS PAGE (When Dats Entered)

REPORT DOCUMENTATION PAGE e rEAD INSTRUCTIONS
1. REPORT NUMBER 2. GOVT ACCESSION NO.J 3. RECIPIENT’'S CATALOG NUMBER
TR 382 and TN 91-1
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED
The TRAINS Project technical report / note

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

N00014-82-K-0193
James F. Allen and Lenhart K. Schubert N00014-90-J-1811

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

AREA & WORK UNIT NUMBERS
Computer Science Dept.
University of Rochester
Rochester, NY, 14627, USA

11. CONTROLLING OFFICE NAME AND ADDRESS. 12. REPORT DATE
Defense Advanced Research Projects Agency May 1991
1400 Wilson Blvd. 13. NUMBER OF PAGES
Arlington, VA 22209 39 pages
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Oflice) 15. SECURITY CL ASS. (of this report)
Office of Naval Research unclassified
Information Systems
Arlington, VA 22217 T2 DECLASSIFICATION/ DOWNGRADING

16. DISTRIBUTION STATEMENT (of this Report)

Distribution of this document is unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

None.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

planning: natural language understanding; dialog systems

L3

20. ABSTRACT (Continue on reverse side If necessary and identify by block number)

DD ,j:’:“n 1473  EOITION OF 1 NOV 65 1S OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)




20. ABSTRACT

The TRAINS project is a long-term research effort on building an intelligent
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TRAINS project serves as an umbrella for research that involves pushing the state of
the art in real-time planning, planning in uncertain worlds, plan monitoring and
execution, natural language understanding techniques applicable to spoken
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emphasis is being put on the knowledge representation issues that arise in
supporting the tasks in the domain. This report describes the general goals of the
TRAINS project and the particular research directions that we are pursuing.
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1. Introduction

The TRAINS project is a long-term research effort on building an intelligent planning assistant
that is conversationally proficient in natural language. The name of the project comes from the
domain used to test and demonstrate the ideas: the system acts as an intelligent assistant to a person
(the manager) attempting to solve transportation problems involving freight trains and factories in
a simulated world. The system assists in formulating plans, and monitors these plans as they are
executed by the simulated agents in the TRAINS world, providing updates and support to the
manager in replanning as necessary. The system does not have direct access to the (simulated)
world, which is constantly changing as the (simulated) TRAINS-world agents, namely train
engineers and factory managers, go about their tasks. Rather, the system must interact with these
agents to find out information about the world, and synthesize this partial information into a
coherent and reliable representation the the overall world.

The goal is to allow manager and system to communicate using unconstrained natural language
and a graphics interface. Ultimately this will be spoken language, although at the start we are using
keyboard input with no graphics support. The initial test input, however, is based on transcripts of
spoken dialogs collected in a situation where a person played the role of the system. The input is
thus full of false starts, ungrammatical sentences and other complexities not handled by systems
that process written language. The dialogs themselves also exhibit complex behavior as both the
manager and system take initiative at times in the dialog, and there are a large number of
clarifications, corrections and acknowledgements in the dialog.

The TRAINS project serves as an umbrella for research that involves pushing the state of the art
in real-time planning, planning in uncertain worlds, plan monitoring and execution, natural
language understanding and natural dialog systems. Significant emphasis is being put on the
knowledge representation issues that arise in supporting the tasks in the domain. The general
research goals of this project fall into the following main areas:

» Parsing real utterances: Current parsers are not robust or tailored to the high level of
"ungrammaticality” present in spoken language, which includes numerous sentence
fragments, word errors, and false starts;

» Interactive man-machine dialog: which involves mi:.ed initiative dialogs and a high
incidence of discourse-level phenomena (e.g. clarification, acknowledgment, confirmation,
correction, and so on);

* Real-Time plan reasoning: the simulated world is continually changing and the agents may
have other goals besides what the system has sent them. If the planner waits too long
before doing something, an opportunity to achieve a goal may pass; and

* Plan execution and monitoring: the use of causal and temporal reasoning, planning and
plan recognition to effectively monitor a dynamic, uncertain world during a plan's
execution, and replan as necessary to maximize the plan's chance of success.

The system can roughly be broken into three major clusters of subsystems. The language
subsystem involves parsing, semantic interpretation, de-indexing (i.e. tense and reference
processing), generation, and structurally-based discourse processing. The emphasis in the research
1s in dealing with real utterances and dialogs as they are spoken, full of restarts, sentence fragments
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and a high level of discourse-level phenomena (e.g. clarification, acknowledgement, confirmation,
correction, and so on).

The plan reasoning subsystem involves reasoning about both the dialog and the task domain.
This includes plan construction, plan recognition, plan execution and plan monitoring at these
levels. Remember that in TRAINS, execution is done by the TRAINS-world agents. As far as the
system is concerned, executing an action involved dispatching the act to a TRAINS-world agent,
and interpreting reports that come back from the agents to update the world model. When
unexpected things happen in the world, the system must recognize whether it impacts the current
plan or not, and must initiate re-planning with the manager if necessary.

The third subsystem is the simulated world. The TRAINS world is captured by a mult-level
simulation. The physical properties of the world, including the actual actions that can be performed
and external events that might occur, form the base for simulating the effects of actions on the
world. Operating on this "world" are the TRAINS-world agents, the factory managers and train
engineers, who actually "perform” actions in the world in accordance with the instructions that they
receive from the planning system. These agents may have limited planning abilities themselves in
order to create plans to solve typical low-level problems in the TRAINS world.

This technical report gives an overview of the project and serves as a general introduction to a
series of technical notes on the various subparts of the TRAINS project. Updated lists of the
available TRAINS reports will be published on a regular basis.

2. An Overview of the Initial Demonstration System

To start the project, we built an initial prototype system by adapting our previous research and
applying it to the TRAINS world. While very limited compared to the eventual system, it does give
a flavor for some of the complications that arise in the domain. In TRAINS-90, the dialog only
concerned the specification of a simple plan, which was recognized and refined by the system and,
when the dialog was completed, sent to the TRAINS-world agents and executed on the TRAINS
simulator.

Consider two sample dialogs that currently run on the prototype system. These dialogs, while
constructed, are based on transcripts of actual spoken human-human conversations in the TRAINS
domain. As mentioned above, the current system only allows keyboard input. Figure 1 contains a
fragment of the TRAINS world relevant to the dialogs. It contains three cities named I, B and G.
There is an OJ factory at B, oranges at I and bananas at G. There is one train engine, E3, which is
on route between cities G and 1. There is an empty car at I, and E3 is pulling another empty car.
The two dialogs are variants of each other depending solely on the manager's response to a
clarification request. The input to the system is exactly as presented but the system responses are
currently simulated by table look-up from the goals sent to a dummy "generation module”. The
discourse reasoning system, however, does generate conversational goals that could plausibly
motivate the output.




Q) Factory City B

Orange Source/Wareho
empty car

City 1 ]
A

* Engine E3

empty car

City G

Banana Source/Warehouse

Figure 1: The domain fragment for the demo dialogs

The dialog follows. Actual input is in plain text and “"canned” system output is in italics.

MANAGER: We have to make OJ. 1)
There are oranges at | 2)
and an OJ factory at B. )
Engine E3 is scheduled to arrive at I at 3PM. 4)
Shall we ship the oranges? (&)

SYSTEM: Yes, (6)
shall I start loading the oranges in the empty car atI? @)

MANAGER: Yes, and we'll have E3 pick it up. (8)
OK? %)

SYSTEM: OK (10)

In response to the first five utterances, the system is able to construct a plan to use engine E3 to
ship the oranges at I to city B. But an ambiguity remains as to which car to use for the oranges.
This problem generates a discourse goal to agree on a particular car, which is the motivation behind
the systems response in (7). Since the manager accepts the system’s proposal, the system can then
fully specify an executable plan and transmit this to the TRAINS-world agents. In particular, the
factory manager at city I is told to load the oranges in the empty car at city I before E3 arrives and
to couple the loaded car to E3 when it does arrive. The engineer of E3 is told to go to city I, pick
up the car and take it to city B. Finally, the factory manager at B is notified to unload the oranges
and make OJ when E3 arrives there.




The alternate dialog is identical up to utterance (7). In this case, it continues as follows:

MANAGER: No, use the car attached to E3. 8)
SYSTEM: OK 9
In this case the system's suggestion is denied, and an alternate plan is suggested by the
manager in utterance (8). The system accepts this new suggestion and can then construct a similar
plan to the one above except that the factory manager must wait until E3 arrives and then load the
car attached to E3 with oranges. No coupling or decoupling is required in this second plan.

Figure 2 shows the overall architecture of the current system. The English input is first
analyzed by a GPSG-style syntactic parser that produces a parse tree. The parse tree is then
interpreted into an indexical logical form. This logical form strongly resembles the syntactic
structure of the initial sentence and contains many forms of indexical terms that will need to be
resolved in context. For instance, the indexical logical form does not indicate any scoping
restrictions of quantifiers or certain operators, and does not resolve any referential expressions
whose semantic interpretation requires a knowledge of context. For example, the sentence We have
to make OJ would be parsed into the surface logical form

(PRES (SPEAKER TELL HEARER
(THAT
((PRES MUST)
(WE (MAKE ( Ax (x = (K 0J))))))))

While this may look complex, it is simple to compute as it reflects the structure of the sentence
and could be paraphrased (ignoring tense operators) as " The speaker tells the hearer that it is an
obligation that they perform an action of type making something that is of kind OJ". There is
clearly not the space here to justify all the details, but the interested reader should see Schubert and
Pelletier [1982] and Schubert and Hwang [1990] for more details. This indexical logical form is
then used as input to a module that scopes the quantifiers and operators, resolves the anaphoric
referents based on the conversational context, and performs some automatic inference based on
meaning postulates. The final output is a fully scoped representation in episodic logic [Schubert
and Hwang 1989] as follows:

(Be (e AT-ABOUT Nowl2)
((Hum TELL Sys
(THAT (J el (el AT-ABOUT e)
(((K (Ax ((SetOf Hum Sys) (MAKE OJ)) ** x))
MUST-OCCUR)
**el)))
L3 ] e)




Human
Manager

Parser
Semantic Ll::tural
Interpretation Sysg:l::e
De-Indexing
Discourse
Plan | ilang:ng:?_z Rgso l_!:lg - Knowledge
Reasoning Domain . ’ Representatio
Systems Plan Reasoning and Reasonin;r
______ - Tools
Plan Monitoring
and Execution

'

"Reactive” Agents
(Engineers, Factory
Managers)

TRAINS World Simulator
Graphics display
of world

for debugging _

Figure 2: The TRAINS System Architecture

This form is then translated into a simplified representation used by the plan reasoning system.
The input to the discourse reasoner is then the surface speech act
(TELL Hum Sys (Obligaticn SysHum (Make-OJ ?agent ?event)))
In the current system, all inform acts are taken to be suggestions about the plan that the two
conversants are trying to construct. In particular, one may suggest goals to be pursued, or suggest
steps in the plan, or suggest conditions relevant to the plan, or otherwise suggest general
constraints on the plan. In this case, this sentence is clearly a suggestion of a joint goal (since it
explicitly mentions a joint obligarion). The discourse reasoner requests the domain plan reasoner to
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incorporate this as a joint goal. Since no other goals are currently known, the domain plan reasoner
finds the suggested goal reasonable and returns a success and updates the knowledge base that the
manager has proposed the goal of making OJ. A person might acknowledge this goal at this time
and make the goal a shared goal, or might wait for the next input. The TRAINS-90 system uses a
very simple turn-taking strategy: the speaker retains the turn until a question or request is made, at
which point the turn is given to the hearer. Since the first utterance is taken to be a suggestion, the
system waits for the manager to continue speaking.

The next utterance, while appearing to be a simple inform (i.e., that there are oranges at I),
must be interpreted by the system as a suggestion to use the oranges at I in order to make the OJ.
Similarly, utterances (3) and (4) suggest which factory to use, and which engine to use to ship the
oranges, respectively. Once the dialog is complete, the system has built an abstract plan that
involves loading the oranges into the car at I, coupling this car to engine E3 when it arrives at I,
moving E3 with the oranges to city B, unloading the oranges and starting production at the factory.
This abstract plan is then decomposed into individual instructions for each of the TRAINS-world
agents involved, namely, the engineer E3, and the warehouse manager at I and the factory manager
at B. Instructions are in the form of condition-action pairs. For example, one of the instructions to
the warehouse manager at I, W1, would be of the form

((AT C2 CITY-I)) -> (LOAD W1 C2 O1)

i.e. when car C2 is at city I, load it with the oranges O1.

This initial demo gives the general idea of the system but is currently limited in many important
ways that form the focus of our current research. These can be divided into planning issues and
language issues:

* Planning Issues

» the present system constructs a complete plan before it sends off anything to the agents—
the eventual system will need to be able to incrementally execute the plan while other parts
are yet to be defined;

» the present agents in the simulation do not have any other goals that would conflict with the
system's plan—the eventual system must be able to handle conflicts and the system must
decide whether to override the agents' other goals, or to renegotiate with the manager;

» The present system starts with a complete representation of the world with regard to what
trains and factories exist, where cars are, and so on—the eventual system will need to
query the TRAINS-world agents in order to find out much of the information about the
world.

* Language Issues

* The present system uses standard parsing technology and deals only with "grammatical”
sentences—the eventual system will deal with the fragmented utterances common in the
collected dialogs;

» The present system deals with typed input only—the eventual system would include both
speech input and graphics-based interaction;

+ the present system uses a rigid turn-taking strategy—the eventual system will allow more
natural turn-taking behavior and allow for interruptions;

* The present system deals with cimple forms of acknowledgement and clarification—the
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eventual system must deal with corrections and modifications involving retracting
information that has previously been mutually agreed upon, and correcting misconceptions
that the manager may have.

This rest of this report describes the research issues that are of prime concern in the TRAINS
project. These fall into three general areas: problems in plan reasoning and execution, problems in
natural language understanding, and problems in discourse-level reasoning and dialog
management.

3 Plan Reasoning, Plan Execution and World Monitoring

Most planning systems take a very narrow view of plan reasoning. In particular, they focus on
plan construction - producing a sequence of actions that will achieve some specified goal. The
representation of the world is very limited - typically a static world that changes only as the result
of the planner's actions. In a more realistic scenario such as the TRAINS world, there are many
different forms of reasoning related to plans. One is plan construction, but equally important is
plan recognition, and using plans to predict future states of the world when the system's
knowledge is incomplete. Furthermore, the plan-based reasoning is just one aspect of the more
general representation problem of representing causal and temporal information in TRAINS. Thus
we view planning as just one specialized form of reasoning within a more general system for
representing and reasoning about the TRAINS world.

One of the crucial problems in managing plan-directed activity in realistic settings is knowing
what state the world actually is in, and how that relates to the plan being executed. As important as
this is, the techniques developed in the Al planning community have for the most part failed to
address it. Traditional generative planning systems, for instance, can only operate with complete
descriptions of the world. Typically, change occurs only as the result of the planning agent's
actions, and the effects of that action can be computed precisely. In essence, planning in this
traditional way is a reasoning exercise, and not related to acting in the world. These research
projects have made progress in developing techniques for generating or adapting plans to
situations, but have not addressed the knowledge representation issues concerned with executing
plans with uncertain knowledge about a dynamic world.

In TRAINS, the world is constantly changing, so that the information the system receives tells it
what the world was like in the past, not what is true now. The actions that the system plans may
have unreliable effects, and the information the system receives may also be unreliable. How can
such a system tell whether its plan is being executed appropriately? How can it tell where it is in its
plan, given that most actions are being performed by other independent agents? Abstract reasoning
about the scheduled time of events cannot help significantly; the execution of actions cannot be
precisely controlled and unexpected situations may cause delays. Rather, the system must
continually be matching the rer orts it receives about the world to the representation of what it
expects in order to identify what part of the plan is being executed, and whether departures from
expectations are serious (and require replanning) or are insignificant variations.

The TRAINS project will address a range of specific technical problems that involve plan
reasoning in a variety of forms. In particular, we view the following as the key research problems:

» developing a representation of actions and plans that supports plan construction, plan




recognition, plan-based prediction, and other forms of reasoning using planning
knowledge;

+ developing a rich temporal-representation: we need to represent external events, continuous
change, simultaneous actions, and the past, present and future in order to relate the plan-
based expectations to the actual world;

* reasoning with highly partial, and possibly unreliable knowledge, both about the beliefs
and intentions of the manager, and the state of the world;

» inferring what was true in the past, what is true in the present and what may be true in the
future based solely on reports of the past;

* handling multiple levels of abstraction, both to allow for efficient plan reasoning about the
external agents' (e.g. the train engineers) behavior, and to enable a reasonable man-
miachine interface.

There are many different parameters that affect the complexity of problems ir the TRAINS
domain. The ones that will be of most concern to us are the following: Completeness: do we
have complete information about the world, or is it partial; Reliability: is the information we
receive reliable; Timeliness: is the information we receive about the present, or a report about
some situation in the past, or a prediction about the future; Real-Time: is the world changing as
the system reasons, or does it remain static until the reasoning stops; Complex goals: do the
plans involve specific goals that define success absolutely, or is there a set of utilities that capture
tradeoffs between various goals; Adaptability: can the system respond to changing plans as the
manager introduces new goals or revokes existing goals, and can the system diagnose and correct
user errors and misconceptions; Simulated-agent capabilities - are the TRAINS-world agents
performing the actions capable of planning independently, or do they simply “reactively” execute
the actions they are told to perform.

The TRAINS simulator [Martin and Miller 1991} is designed so that we can vary the different
sources of complexity mentioned above. In particular, we can start with a simulation where there is
no cost to reasoning (i.e. time does not move forward while the system is planning), where world
reports are accurate and complete, and where unexpected complications do not occur. We can then
successively relax the restrictions - say by allowing partial knowledge about the world, then by
introducing unreliability in the reports from the external agents, and then by introducing the real-
time aspects - namely that the world continually changes while the system is reasoning.

Particular representation issues concerned with plan reasoning, plan execution and world
monitoring are discussed in more detail in the rest of this section.

3.1 The representation of time and space

It is clear that the state-based approaches to representing the world (as used in STRIPS,
NOAH, NONLIN, DEVISER, SIPE, etc) will not be adequate in domains such as TRAINS. In
particular, these representations cannot handle extensive concurrency or uncertainty. Furthermore,
the TRAINS domain requires an explicit model of time. There are two basic approaches to
representing time, namely relative and metric time. Each has its advantages and scheduling
domains will require both capabilities. In particular, there are specific deadlines by which time
certain goals must be achieved, and these induce constraints on when planned actions can occur. A
metric representation of time is ideal for this. On the other hand, there are other constraints that
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cannot be captured by standard metric-based models. A train may need to be used for two different
tasks, for instance, but it may be that it doesn’t matter which task is done first. We would like to
express that these two actions cannot overlap yet may be in either order. This cannot be expressed
with current techniques using metric time for scheduling, except by enumerating the possible linear
orderings. It can be expressed concisely, however, in a relative-time model such as developed by
Allen [1983b].

One of the goals of this project is to develop a temporal representation that can accept and
reason with both forms of knowledge. It is a simnle matter to add metric time constraints to Allen’s
intervals and use them to initiate inference, but this is not a good long-term solution. In order to
handle huge amounts of temporal information, the system needs to take advantage of metric
information when it is available to represent the information more concisely than in Allen [1983b].
One interesting possibility is to partition the database into subparts, each one involving a
linearizable order. Each partition can then be represented using metric methods. Miller and
Schubert [1988] developed a system using this approach. The more general relative information
would only be used when necessary.

The other crucial representation problem in these domains is that of space. As with time, most
representations of space have been metric - co-ordinate based - treating the world as a grid. While
this might be a possible representation for the scheduling domains, it is certainly not an efficient or
convenient representation. In particular, there are specific constraints on how objects move through
space. In our train-based world, trains can only move on tracks. Airplanes, likewise, fly fairly
standard routes and are constrained to landing at airports. For most cases a graph representation of
space, specifying the connectivity and distance inivrmation seems most appropriate. This
representation uses an abstraction in the spatial domain - namely that of paths. Movement is
restricted along certain paths, and paths may have certain properties, such as travel-distance (which
may differ from absolute distance due to obstacles such as mountain ranges), or risk factors (say
unreliability of the track, or hostile activities), and so on.

Reasoning about motion connects paths with time and there is a close correspondence between
a path and the time it takes to traverse the path - temporal constraints can translate into travelling
constraints and vice versa. We will be building a representation that allows us to reason about
movement along paths through space and allow information about either movement constraints or
temporal constraints to affect each other in the appropriate way.

As a parting word, it is important to realize that the system needs to be able to operate in
situations where the complete state of the world is unknown. Any technique that depends on
having complete information about every time and location will not be of use. The constraint-based
representation of time, and the one we develop of space, is ideally suited for dealing with
incomplete information and integrating new information as it is incrementally added.

3.2 Inference and causality

All planning systems represent causal knowledge about the planner’s own actions - namely
each action’s prerequisites and effects. This information is used to compute the resulting state of
the world when a given plan is performed. This information is generally specific to a particular
reasoning task, usually plan generation, and is not directly usable for other tasks. For instance, the
system might receive a report that a certain action (not necessarily part of its plan) just occurred.
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What can it conclude about the world from this report? Standard planning models provide no
answer. However, the temporal planner developed by Allen and Koomen [1983] and Allen [1991]
represents all information about actions and events in a uniform temporal representation. In
particular, knowledge about an action may include much more than simply the action's effects. For
example, the fact that the action occurred may also introduce constraints on what the world was
like just prior to it execution, as well as during the action's execution.

External events and actions by agents other than the planner are also not easily handled in
traditional planning systems, yet are prevalent in the intended domain. An explicit temporal
representation, however, allows a uniform representation across the planner’s actions, other
agent’s actions and external events, and thus seems promising for integrating reports about these
different activities.

To interpret a report fully, the system must perform more extended causal inference. For
instance, consider a situation where train T1 needs to deliver half its cargo to destination A and the
other half to destination B, and the plan does not specify in what order this should be done because
either would be acceptable. When a report comes in that T1 has arrived at station C, which is on
the path to station B, the system should infer that T1 will be going to station B first, followed by
station A. Thus the system’s predictions about the plan and the world state may change
significantly based on a single simple observation. The techniques needed to do this are similar to
those developed in work on plan recognition (cf. Kautz and Allen [1986]).

As a final point, it is important to realize that reports generally state what has already been
done, or possibly what is expected in the near future, and rarely describe what is true in the
immediate present. In order to predict the present state of the world, the system must be able to use
causal knowledge to predict forward from reports about the past and backwards from reports about
the future. Many of the models of temporal projection, such as those developed by Dean and
McDermott [1988], and formal models such as Kautz [1986] and Shoham [1988] only allow
prediction forward in time. Using the temporal logic directly, we can define a version of
persistence that operates independently of direction (treating persistence as a form of non-
monotonic equality between temporal intervals). An initial version of this technique has been
developed in Allen et al (1991) and we expect to be able to extend it to the problems in the TRAINS
domain.

3.3 Uncertainty

Uncertainty pervades all aspects of the kind of complex, ever-changing problem domain under
consideration. The record of past events, the description of the current situation, anticipated future
events, the external sources of information, and the internal general knowledge used for inference
are all more or less unreliable. In such a setting it is crucial to work out the impact of uncertainty on
(a) representation , (b) inference , and (c) control .

Representation

Consider a scenario in the TRAINS domain where there are many transportation tasks to be
accomplished (with time and ordering constraints), and many different resources (engines, cars,
supplies, other agents) potentially available to accomplish the tasks. A plan/schedule is assumed to
be in effect already, so some of the tasks will be in a state of partial completion, and some of the
resources will already be in use (or partially used up, in the case of depletable ones). In the later
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stages of the project, new tasks and new resources may come on-line at any time.

In such a situation, allowing for uncertainty entails, for example, that the system can represent
such probabilistically qualified facts as "Train#4 probably departed within 5 minutes of the
scheduled time from station A"; "Train#4 is unlikely to encounter delays (such as loading delays at
scheduled stops) along its planned route”, and "Train#4 as likely as not will arrive at station B
within 20 minutes of its scheduled arrival time, and almost certainly within an hour of its scheduled
arrival ime". Such statements attribute qualitative or quantitative probabilities to propositions .

However, the basis of propositional probabilities often lies in statistical probabilities (relative
frequencies), such as that "Loading of tanker cars almost always finishes without a hitch", "The
probability of a signal being overlooked or misread by the train engineer is higher near the end than
near the beginning of the engineer's working day", or "Freshly harve:ted bananas survive a
week's storage unspoiled in at least 90% of all cases." So these kinds of probabilities need to be
representable as well, and their connection to propositional probabilities must be clearly
understood. The work of Kyburg [1987] provides a good starting point for incorporating both
types of probabilities into a general knowledge representation. In essence, Kyburg's statistical
probabilities are of the form P{AIB} € [p,q), i.e., they provide bounds on the conditional
probability of membership in set A, given membership in set B. The connection to propositional
probabilities is as follows: the probability of "b € A" is bounded by (p, q) if the conditional
probability P{AIB} is bounded by (p, q) and there is no subset B' of B such that bounds on
P{AIB'} conflicting with p, q are known. Bacchus [1989, 1990] generalized the representation of
statistical probabilities and their connection to propositional probabilities, with first-order formulas
replacing Kyburg's sets. Loui [1987) and Halpern [1989] provide some closely related studies.

It seems clear that simple numeric probability bounds will ultimately be inadequate, since the
probabilities of certain outcomes changes systematically with the values of certain parameters. For
example, the earlier rule about spoilage of bananas was quite crude, and what one would really like
to say is that the probability of remaining unspoiled declines monotonically with storage or transit
time, according to a formula such as e-*; (cf. Dean and Kanazawa [1988]) Another simple
example of this type is that the likelihood of a train derailing in a turn may well depend in a
quantifiable way on the speed of the train and the curvature of the track, and perhaps other factors;
at the very least we want be able to say that the faster the train and the tighter the turn, the greater
the risk.

Inference

Uncertain knowledge leads to a style of reasoning often called "evidential reasoning”. The work of
Kyburg and the other authors cited above is very much concemned with evidential reasoning in the
sense of making justifiable (or at least reasonable) probabilistic inferences about particular
circumstances based on those circumstances and on statistical facts and other general knowledge.
However, the work does not yet provide a general foundation for "combinatory" probabilistic
inference, i.e., probabilistic inference based on any number of uncertain facts and unreliable rules.
Yet such combinatory inference is extremely important in the kind of plan-based reasoning under
consideration. For instance, the above prediction that "Train#4 will almost certainly arrive at station
B within an hour of its scheduled arrival time" could depend on many more or less certain facts and
rules: that according to the current plan, the tracks to be used by the train are unlikely to be
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preempted by other trains, requiring sidetracking; that accidental track obstruction, derailment, or
engine trouble are extremely unlikely under the circumstances expected; that loading/unloading
delays are unlikely for the scheduled loading/unloading stops; etc.

Some aspects of this general problem which need to be investigated are "parallel” and "serial”
combination of information, and the avoidance of "zig-zag" or "circular" reasoning. Parallel
information combination involves the use of different lines of inference bearing on the same
conclusion. For instance, suppose we are interested whether a particular truck-delivered shipment
to be loaded onto a train will be available as scheduled. There may be an argument based on the
"track record” of the shipper that the delivery will probably be on time, and another argument
based on weather conditions that it will not. Somehow, a "compromise probability” (or probability
interval’ needs to be inferred. In other cases the parallel arguments may reinforce each other, and
should raise the overall probability. A key issue here is that of independence : clearly, parallel
arguments shouid reinforce each other only if they are (in some appropriate sense) based on
independent evidence.

Serial information combination involves "chaining" forward from uncertain premises using
unreliable general (e.g., statistical) and particular facts. Intuitively, certainty should attenuate with
inferential distance. But here, too, it is unclear how to implement this in a defensible way, or how
to take account of dependencies among uncertain facts used in a chain. The circular reasoning and
"zig-zag" fallacies arise from neglecting such dependencies. Suppose, for instance that a train is
headed from A to B, with a loading stop along the way. It is likely that the loading stop will
proceed without a hitch, but there is some possibility that it will involve a delay, and also some
possibility that it will not occur at all (if the load is unavailable). We might reason that since the
loading stop is quite likely to proceed without a hitch, the train is quite likely to arrive at B on time.
But if a train arrives on time, it is in general quite likely that any loading along the way either
occurred as scheduled or not at all; and (proceeding circularly) this increases the original
probability of the loading stop having occurred as ‘cheduled; or (proceeding in zig-zag fashion) it
increases the probability of the loading stop having been cancelled! Pearl [1988] offers partial
answers, but only (in essence) in a propositional logic setting, which is expressively inadequate for
present purposes. It is also worth noting that a large amount of work in "expert" (or "knowledge-
based") systems has been nominally concerned with the combinatory inference problem. However,
most of this work has been in the nature of providing efficient tools and environments for rule-
based programming, with little concern either for the meaning of rules or the formal foundations of
the combinatory methods provided. Nevertheless, we expect to derive some insights and
techniques from that literature.

A crucial consideration in combinatory evidential reasoning is the need for belief revision . The
system's knowledge about the world does not accumulate in monotonically increasing fashion, but
rather may involve retraction as well as addition of information.

For instance, a previous report by one of the agents (or an inference from such a report) may
be contradicted by another, later report; e.g., a shipment guaranteed to arrive according to an earlier
report may fail to show up, according to a later one. The question is not only how to adjust the
probability of the now dubious conclusion, but how to "distribute blame" among the (more or less
certain) beliefs that led to it. For example, the non-arrival of an expected shipment might cast doubt
on the assumption that it was ever loaded onto the designated train, or on the assumption that the
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shipment was not unloaded at an intermediate stop, or on the assumption that the designated train
has arrived. Which assumption is weakened the most depends on their certainty and how they, in
turn, were derived.

We see at least two promising directions for further research here. One concerns the non-
occurrence of expected events, the other the occurrence of unexpected events. For the former, we
propose to view probabilistic belief revision as a generalization of non-probabilistic "truth
maintenance systems" (e.g., Doyle [1979]). This involves keeping track of where conclusions
came from, via dependency records. These dependency records provide candidate "culprits” when
a proposition is contradicted. Even when the rules used for inference are statistical truths and the
facts fed into them uncertain, it appears possible to provide plausible methods of propagating belief
updates backward based on probability theory. Moreover, the dependency information also allows
avoidance of circular and "zig-zag" reasoning.

The second promising direction involves the notion of "explanation closure” proposed in
Schubert [1990] as a technique for solving the frame problem monotonically. Explanation closure
axioms provide complete sets of alternative explanations for some type of event, and thus allow
inference of the possible explanations from the occurrence of the event. A probabilistic version
would give "virtually all" plausible explanations. For instance, a set of alternative explanations for
a train derailment, at least one of which is almost certain to hold, is that the train went at excessive
speed around a bend, that it went over a mis-set track switch, or that it encountered track damage
or an obstruction. Even though one can conceive of other explanations, they can be discounted for
practical, probabilistic inference. In a particular instance, the system may have strong reasons to
believe that the derailed train was on an unobstructed, undamaged, uncurved section of track; it
may also know that the train went over a switch just as it derailed, and not be very sure, a priori ,
whether the switch was properly set (e.g., probability >= .75). Then the probabilistic closure
axiom would allow the system to conclude with considerable certainty that the switch was not
properly set, contrary to the previous belief. So closure reasoning can provide a type of belief
revision that somewhat resembles truth maintenance reasoning, but does not require explicit
dependency information.

Control

In the early years of the project, the time taken for inference will be a relatively unimportant
concern (since we will assume that reasoning cost is not traded off against other costs). There is
an interesting analogy between the behavior of the system in the first years of the project and the
behavior of a game-playing program without time constraints (or any other type of program that
tries to make an optimal decision based on a tree search and node evaluation.) The system can be
said to rely on "deep search” of the consequences of its actions (commands and requests to the
TRAINS-world agents) and of events in the simulated world, with little, if any, guidance from
“static evaluation” or "shallow search” for deciding where the most promising directions for deeper
search might lie.

Eventually, however, the amount of reasoning that can be done will compete with other actions
that the system can perform. In real-time reasoning, inferences cannot be pursued "at leisure”, but
only in a competitive, time-constrained fashion. There must be criteria for judging when an
inference task is sufficiently important and urgent to be pursued, and when the conclusions reached
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are firm enough and specific enough for the purposes at hand. Inevitably, such criteria will involve
use of cost/benefit knowledge; clearly an inference on which human lives may hinge deserves more
time and care than one with only some small economic consequences.

A conceptual difficulty that needs to be confronted here is that one seemingly cannot in general
know how important an inference will be until one has made it. Individually innocuous facts may
have startling consequences when appropriately combined. Imagine two tracks running in parallel
and connected by a spur. On each track there is a train approaching the spur, from opposite
directions. The switches are set so that the first train will move via the spur onto the second track;
however, by the time it does, the second train should have passed the spur, so there is no problem.
But now suppose that the second train makes an unexpected stop, and so the first train will reach
the spur first. What is likely to happen next? Note that quite a few facts have to be brought into the
reasoning process to foresee the imminent collision; and of course, one can easily think of
situations where the significant future event implied by current circumstances is still further
removed from those circumstances than in this example, in terms of the requisite inferencing.

Here again, the game-tree analogy seems helpful. What one wants is "rough and ready”
methods of anticipating important consequences quickly, albeit unreliably, i.e., the analog of static
evaluation or shallow search in game playing. This translates into having methods of inference and
action at various levels of abstraction, both "coarse-grained" and "fine-grained". For instance,
coarse- grained methods might include a rule that predicts a possible collision just on the basis of
two trains being somewhat near each other, and in motion. It would not make the prediction with
high probability, but given the high cost of collision, this would be enough to justify a more "fine-
grained” look at the situation the two trains are in, so as to confirm or disconfirm with greater
reliability that they are on a collision course. (Naturally, if the coarse-grained method also
anticipates that there may be almost no time left before the collision, the wise choice may be
emergency action rather than further thought.)

3.4 Abstraction?

The system must not only be able to represent what the world is like now, and what the plans are,
but must also be able to determine how much of the plan has been successfully executed with
regards to the given set of goals. In order to answer these questions, the system will be required to
represent and reason about how each of its tasks and subgoals are related to the achievement of its
larger goals. In addition, the system will often be required to tradeoff the increased accuracy
associated with reasoning about plan details against the computational cost of doing so, and hence
will specify plans for the autonomous agents (train engineers and warehouse managers) at different
levels of description. Further, because of the inherent uncertainty of the system's information,
reports of current world state may diverge from the system's predictions, and hence, previously
pertinent subtasks may need to be abandoned or replaced without disrupting the entire matrix of
other unaffected subtasks currently or soon to execute. The use of abstraction, in particular,
encoding the partonomic (the way in which tasks subdivide into smaller tasks) and taxonomic (the
alternative ways in which a task can be specialized) structure of a plan will figure prominently in
our overall system design. Our previous research in plan recognition [Kautz and Allen 1986];

2Josh Tenenberg contributed much of this section on abstraction.
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Kautz [1987] and abstraction [Tenenberg 1988] provides a hierarchical plan representation which
explicitly represents the dependencies of the different acdons in a plan. Plans are sets of actions
subject to given temporal constraints, (A before B, C during E, A after C, etc.) where some of the
actions are decompositions (or substeps) and some actions are specializations of others.
This structured approach is crucial in order to
1. encode the justification for each task in the plan with regards to the overall goals, allowing
the system to reason locally about plan revocation, failure and repair.
2. pursue a least commitment approach to resource management, allowing for the deferral of
specific resource choices until execution time,
3. provide information at an appropriate level of representation for interacting with the
manager .
Further, the appropriate level of abstraction that is used by the system will often depend upon
the level at which statistical information is available. Each of these aspects will be discussed in
turn.

Hierarchical Goal Structures

The goals of the system will arisc at different levels of abstraction. For instance, if the system has a
goal of getting 10K of bananas from city G to city A, then it might have subservient goals of
getting car 7 from city I to city G in order to affect the transfer of materials, which in turn requires
getting engine 3 from city B to city 1, setting track switches, etc. In problems of this nature, it will
be crucial that the system have explicit encodings of the goal/subgoal dependencies of the different
steps of the plan, so that strategies of least commitment can be employed, and so tha: plans can
easily be repaired following either plan revocation or failure. Without such an encoding, it is
conceivable that a large plan containing thousands of individual train movements would fail due to
the revocation or failure of a small subpart of the plan, such as engine 3 being currently used for
another, non-preemptable task. One of the hallmarks of intelligent behavior is the understanding of
the relationship between each subtask and the larger tasks and goals to which it is subservient.

Figure 3 provides a sample fragment of a plan hierarchy for moving cargo from one location to
another. The single line edges represent substeps, and the broad grey edges represent
specializations. For example, moving cargo is achieved by moving a train car to the cargo, loading
the cargo, moving the car to its destinaton, and unloading the cargo. Moving a car can be
specialized to MoveBoxCar, MoveFridgeCar, or MoveTankerCar, depending upon the type of car
that is available and/or required.

This plan structuring permits the adoption of a simple strategy for certain kinds of plan
augmentation by the manager. In particular, if the plan addition it selects is a specialization of an
already existing action, this can be handled by descending the plan hierarchy. For example, given
the initial goal of getting 10K of bananas to city G, the manager might specialize this by adding a
requirement that a box car must be used, resulting in a MoveBoxCar being used instead of the
more general MoveCar action.

Deleting part of a plan can additionally be facilitated by the hierarchy. If the manager requests a
deletion of a subpart of the plan, the system can ascend the hierarchy to either infer (or query the
manager) whether superior goals will continue to be pursued or will be abandoned. If pursued,
then sibling specializations or decompositions can be employed. For example, given the above plan
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loadCargo moveCar unloadCargo
moveTankerCar
moveEngine coupleEtoC moveEngine moveFridgeCar
moveBoxCar

Figure 3: A Simple Plan Hierarchy fragment

addition of using a MoveBoxCar, the manager might decide that this comes at too high a cost,
since the only boxcars are far away. By removing this constraint, the system is free to pursue the
use of any available train car.

Simple plan repair will likewise be handled in a similar manner. For instance, if the system
determines that a box car is unavailable when it was required, the system is able to infer, by
ascending the hierarchy, that this car is being used to transport bananas, and that another train car
can equally satisfy this goal.

Least Commitment

Because recovering from unexpected failures such as the one above exacts a computational cost, it
would be best to develop strategies to avoid them. One such strategy is to defer the choice of
resources as late as possible. For instance, given the same goal as above (getting 10K of bananas
to city G), if the system were to defer the choice of type of train car until execution time, then the
above problem might be avoidable since the availability of many resources changes rapidly over
time. Using abstraction, one can construct plans using a generic train car without specifying the
particular car type. Not only can one generalize by replacing specific object constants by variables,
but, using our encoded object taxonomy, one can specify the most general class of object for the
given task.

The intuition behind why least commitment is beneficial in the above example, is that the larger
a set of cars that one considers for carrying the cargo, the greater the likelihood that the plan will
eventually succeed, since it only requires that some car within the candidate set be available, rather
than a particular car. The statistical representation we will be using as described earlier allows this
intuition to be explicitly encoded. For instance, suppose the likelihood that any particular car is
available at a given time is relatively small, since train cars are highly utilized, but that the
likelihood that some car is available is quite high. Without the use of abstraction, one might
abandon easily satisfiable plans, believing falsely that they are unachievable. Without the use of
statistics, however, the gains obtained by planning at the abstract level are more difficult to
quantify. This will ultimately enable the system to choose the appropriate level of abstraction with
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which to plan a task in advance of its execution.

4 Natural Language Processing

To set the stage for our discussion of natural language processing (NLP), we begin with a brief
characterization of the state of the art, and our approach to overcoming current limitations. We will
then elaborate a little on the three input processing stages shown in Fig. 2 (syntactic parsing,
semantic interpretation, reference and tense interpretation, plus a input-driven inference stage not
implemented in the current system), and then describe the research issues associated with each of
these stages, in the context of the TRAINS project. Many further details of our methodology and
goals can be found in the technical reports on the TRAINS project ([Schubert 1991]; [Light 1991)).

4.1 State of the Art in Natural Language Processing

It is currently possible to analyze quite large subsets of English syntactically (e.g., Briscoe et al
[1987]; Harrison and Maxwell [1986]; Sager [1983]; Jensen and Heidorn [1983]). These systems
have quite substantial coverage of syntactic structure and large lexicons. However, current parsers

 are generally unforgiving of errors and thus inapplicable to real discourse, and

» are apt to give numerous alternative analyses of complex sentences (most of which are
intuitively irrelevant), thus placing an unreasonable burden on subsequent interpretation
and disambiguation processes.

In semantic interpretation, the situation is much worse. Only very small subsets of English can
be analyzed semantically, for the following reasons:

+ The meaning representations employed are expressively inadequate to handle such
pervasive phenomena as‘adjectival and adverbial modification, generalized quantifiers,
tense, aspect, temporal adjuncts, causal relations, propositional attitudes, and various types
of nominalization. This makes it impossible to express many intuitively simple ideas, or
leads to cumbersome circumlocutions that are hard to compute, understand, and use.

* The mapping from syntax to semantics is often very complex and "hidden" in procedures
specific to words, word categories and types of syntactic fragments. This makes extension
increasingly difficult - and brittle - as the size of the rule set grows.

» The role of context is poorly understood, so that it is extremely hard to get from a context-
dependent ("indexical"), ambiguous logical form to a context-independent one, usable in
concert with other knowledge in the system's (context-independent) knowledge base.

* The role of inference and plan reasoning is poorly understood, although they are known to
be crucial to arriving at the intended interpretation of an utterance, and at a coherent,
appropriate response. Part of the problem is again that most meaning or knowledge
representations are too weak and rigid even to express the knowledge needed for inference
and plan reasoning (e.g., meaning postulates, unreliable world knowledge and knowledge
about individuals' intentional states).

We believe that a great deal of headway can be made on these problems using
 error-tolerant, preference-seeking parsing;
» close coupling of syntactic and semantic theory development;
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* a "natural” meaning representation well-attuned to the expressive resources of natural
language, and easily computed from surface syntax;

» formally well-founded, modularized, compositional rules of interpretation, and formal
semantics for the meaning representation;

* a "divide and conquer" approach to the very complex transduction from surface form to
genuine understanding of an utterance, breaking the process into relatively simple,
conceptually independent, formally analyzable stages;

« experience with real discourse in a realistic domain; this will help us avoid the temptation to
focus on the easy problems, rather than the important ones.

4.2 The NLP Architecture

We now give a slight elaboration of the stages of understanding as we conceptualize them in
keeping with our divide-and-conquer strategy (cf., the first three boxes in Fig. 2). Figure 4
illustrates the conceptual subdivision of the understanding process with the example input, A train
pulled into the station. This is presumed to be part of some larger discourse; for instance, the
preceding sentence might have been Passengers crowded onto the platform. The first three
compartments in the figure correspond to the first three boxes in Figure 2. The first stage, syntactic
parsing, produces phrase structure trees like the one shown (except that syntactic features have
been suppressed).

The next stage, logical form (LF) computation involves two phases, namely (a) production of a
(very English-like) unscoped LF, one in which the exact scope of operators like 3 (there exists),
"past”, and “The" is still indeterminate; this indeterminacy is signalled by the angle brackets; and
(b) use of a heuristic algorithm to "raise” these operators to specific pre-sentential positions, with
variables taking the place of the original angle-bracketed quantified expressions.

Even after scoping of operators, the resultant LF is logically indeterminate, since for instance
“the station" has no specific meaning except in relation to a context, and similarly "past” has no
specific meaning except in relation to a particular context of utterance (specifically, the time of
utterance). So in the third stage a specific context structure called a tense tree is brought into the
picture, to help eliminate the remaining indeterminacy in meaning. The notion of a tense tree
[Schubert and Hwang 1990a,b] was originally developed to deal with tense, aspect, and time
adverbial interpretation, and is being modified for the TRAINS project to support reference
interpretation as well.

Finally, Fig. 4 shows a stage of input-driven inference, not currently implemented in TRAINS
(and omitted in Fig. 2), which could derive immediate consequences entailed or suggested by the
input. For instance, consider the following variant of the sentence under consideration: A modern
kind of high-speed train pulled into the station. This sentence is literally about a kind of train, not
about a particular one, but the existence of such a particular train is an obvious entailment. This
would be obtained through a meaning postulate (MP) which says that if an object-level non-stative
predicate (like pulled into the station) is applied to a kind of thing, then it applies to some instance
of that kind. Inferences based on MPs often convert the implicit content of a sentence into a more
explicit, useful form. Another type of example is the inference that the episode of passengers
crowding onto the platform probably immediately precedes or overlaps the episode of the train
arriving, and various other probable conclusions like the ones indicated. These sorts of inferences
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The train is a passenger train. Some people got on. Others
probably got off. The train probably didn't stay for long, etc.

Figure 4: The (conceptual) stages of understanding

are currently handled in the EPILOG system [Miller, Schubert and Hwang 1990] and are expected
eventually to play an important role in the TRAINS system, serving to bring to light entailments, to
link new utterances temporally and causally to previous ones, and contributing to reference
interpretation and more generally to the sense disambiguation process.

4.3 Parsing and Error-Tolerance
The parser we are developing is designed to be error-tolerant and preference-seeking. One key to
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Figure 5: Elastic unification in type hierarchies of features

error tolerance will be a kind of "elastic unification" based on feature hierarchies such as the
NUMB (i.e., number) hierarchy shown in Fig. 5. When the parser unifies two features on the
same path, such as COUNT and SING in the figure, the result is an error-free unifier, namely the
more specific of the two features -- in this example, COUNT. When it unifies features on divergent
paths, such as MORPHPLUR (morphological plural) and LEXPLUR (lexicalized plural), the
result is a (more or less severe) feature clash, but this is nevertheless accepted by the parser. As a
result, the parser would tolerate a phrase like the oranges shipment, even though morphological
plurals (like oranges) are generally discordant in prenominal position. Note that cattle shipment is
impeccable, as cattle is a lexical plural. The parser would also tolerate more severe clashes, as in
The train arrive at the station. On our account, this is judged as more severe because it involves
diverging paths higher in the feature hierarchy, namely divergence at the root of the paths to SING
and PLUR. Besides elastic unification, we plan to use a variety of additional techniques to attain
the kind of comprehensive error-tolerance needed in the TRAINS domain, We will enumerate these
after completing the description of the basic parser operation.

The "preference-seeking" character of the proposed parser entails that it should prefer certain
syntactic and semantic choices and combinations to others, and discard inferior choices and
combinations early on, so as not to be carrying along numerous alternatives at any time. Briefly,
this preference-seeking behavior will be achieved by (a) building syntactic sentence structures that
are as nearly complete as possible, given the words seen so far; (b) in these structures, propagating
inhibitory and excitatory potentials corresponding to semantic and syntactic preferences; and (c)
discarding all but the most highly activated global analyses "on the fly", retaining only 1-3 analyses
at any point and typically ending up with only one complete sentence analysis. Also, as a method
of preventing over-prediction of highly productive constructions such as coordination, we will
allow for delayed triggering of phrase structure rules. E.g., coordination rules will be triggered by
the coordinator or comma following the first coordinated constituent, rather than by that first
constituent.

The preference-seeking strategy was described in Schubert [1986], and major parts of the
parser have been implemented. However, it remains for future work to - <plore certain important
details of the parser design, such as parts of the feature propagation mechanism, the morphological
analyzer, the generation of semantic potentials, and how magnitudes of syntactic and semantic
potentials can be estimated in a systematic fashion.
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The current TRAINS parser does not use elastic unification or propagation of potentials.
Crucially, however, it does employ feature hierarchies like those described above, and the
grammar for the sample discourse is formulated in terms of this feature system. Also the parser and
grammar allow optional and iterated (Kleene-star) constituents. Thus the grammar and lexicon will
only require minor modifications in the change-over to the eventual error-tolerant, preference-
seeking parser. This is important since we have found grammar and lexicon development to be
even more time-consuming than parser development, even for a small lexicon. Also, the current
parser does allow for variable syntactic rule potentials, and these are used to prioritize the order in
which rules are tried. As well, it does incorporate feature agreement and propagation principles,
namely versions of the GPSG Head Feature Principle and Foot Feature Principle; this obviates the
need for explicit rules eq :ating features of mother nodes with those of daughter nodes, and for
separate mechanisms for unbounded dependencies. Also realization of agreement and
subcategorization principles is facilitated by the grammatical representation, though not fully
automatic (i.e., phrase structure rules must be explicitly annotated with agreement equations for
sets of agreement features, and rules which combine verbs (etc.) with subcategorized constituents
must be explicitly supplied). It is unclear as yet whether agreement and subcategorization principles
in the final parser design will be built-in or specified rule-by-rule. This depends very much on the
direction our grammar design takes as we try to accommodate more of the TRAINS dialogs and gain
better empirical insight into the grammar design/parser design trade-offs.

In the rest of this subsection, we enumerate additional kinds of errors (besides concord errors)
we plan to handle eventually. We expect to handle most of the phenomena by introducing new
phrase structure rules and lexical rules (often with inhibitory potentials, i.e., costs), with minimal
change to the parser itself. The reason for this expectation lies in two of the assumed parser
features: delayed triggering of certain rules and on-line pruning of "non-preferred” alternatives.
Delayed triggering can be used to curtail over-prediction of phenomena like restarted phrases, and
pruning of non-preferred alternatives ensures that the parser will quickly give up predictions of ill-
formed input when (syntactically and semantically) well-formed alternative analyses exist. Thus the
parser will not entertain a large number of ill-formed analyses, as an all-paths parser would (given
the same phrase structure rules for ill-formed input). An approach that allows for errors in the
normal course of parsing is preferable to standard methods of "post mortem" error correction (e.g.,
see Allen [1983a} and Mellish [1989]). For instance, post mortem error correction would fail to
detect an error in "I guess its time to quit" (whose most natural reading substitutes it’s for its),
since the uncorrected sentence is perfectly grammatical on a reading of its time 1o quit as a noun
phrase. See Schubert {1991] for further discussion.

Semantic "errors” such as selection restriction violations (My car drinks gasoline, Time flies)
are not errors for us at all. Rather, when a particular syntactic analysis corresponds semantically to
a familiar type of predicate-argument combination, a positive (excitatory) potential is generated for
that syntactic analysis. Consequently, it is more likely to "win out” over competing alternatives.
When a selection restriction is violated, the result is typically an unfamiliar type of predicate-
argument combination, which will not generate a potential and may therefore "lose" to alternative
analyses. But if there are no alternatives, the unfamiliar combination is readily accepted. Moreover,
even violated restrictions may generate excitatory potentials, if the violation is of a familiar,
"habituated” type. For instance, the application of a verb of motion to a temporal argument is quite
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familiar (near-idiomatic), as illustrated by Time flies, The hours creep by, The days rush past, etc.
This, for us, is part of the reason why the imperative reading of Time flies is ordinarily not even
noticed.

There are a number of phenomena on the borders of grammaticality that we will allow for. The
most important of these is ellipsis, or rather a variety of types of ellipsis. These do call for
modification of the parser, not just the addition of new phrase structure rules, namely the
incorporation of a conservative strategy for postulating null constituents, when the parse state
suggests that ellipsis may be present. (This is not a radical modification: the current backtrack
parser already contains simple mechanisms for postulating null constituents and traces.) The major
types of ellipsis are (i) null-headed NPs (e.g., those five, the first, whose, few, the wealthy); (ii)
phrasal answers to questions, and other phrasal utterances (e.g., engine E3, in answer to What
engine is available?); (iii) VP and predicate ellipsis (e.g., Shall I notify the factory or will you?; 1
will, Is it or isn't it?); (iv) conjunction reduction/gapping/stripping (e.g., There are oranges at I and
an OJ factory at B, Tanker 3 is ready to be filled and t4 emptied); Sag et al. [1984] suggest an
analysis which allows arbitrary phrase sequences in the second conioin, but this is over-
productive, and we instead have in mind a rule for recursive head deletion to account for this type
of ellipsis; (v) pronoun, auxiliary, or determiner ellipsis (e.g., Told you so, You hungry?, Trouble
is, ..., Pity he's sick, Hi, you there?, How much OJ currently at C?).

An important and challenging phenomenon in some of the dialogs we have collected are
complex sentences uttered interactively, in "instalments". For instance, in one dialog (see the first
excerpt in section 5.3), the manager utters What if we would stop it uhh, and follows up with three
further clauses. These additional clauses still belong to the same sentence (outlining a plan), but
each is followed by an acknowledgement by the system. The significance of this phenomenon for
discourse modelling is discussed in section 5.3, but it certainly raises problems for parsing and
interpretation as well. One might be tempted to regard the individual instalments as elliptic since
they are sentence fragments, but the difference is that they are not to be "completed” by positing
null heads or making structural analogies with preceding utterances, but rather by stringing them
together. Thus the parser and semantic interpreter will also have to proceed in instalments,
gradually building up a "complete” meaning.

Five other borderline phenomena are lists, parentheticals, telegraphic language, proscribed
colloquialisms, and deviant vocabulary. Again, we expect to handle most of these via new lexical
and phrase structure rules (with delayed triggering and/or inhibitory potentials). An example of the
use of lists is seen in I have four boxcars, b6 at city H, bS at city F, b7 at city B, and b8 at city I.
This example seems to involve conjunction reduction of the type in (v) above; as is usual, the list
itself occupies sentence-final position. Parentheticals in speech are likely to be prosodically marked
(corresponding to bracketing by commas, dashes, or dots in text, as in / think -- correct me if I'm
wrong -- there's an empty boxcar at city B). While in theory parentheticals can be described by
GPSG-style metarules, they seem to be another phenomenon (like ellipsis) which requires use of
delayed rule triggering to avoid over-prediction. Telegraphic language (and block language, as in
headlines) rarely occurs in human-to-human speech, but is necessary to deal with keyboard input.
Characteristics are the omission of articles, copulas, and and's. Examples of proscribed
colloquialisms are the use of adjectives as adverbs (He sings real good) and other abuses (e.g., So
I says to him..., Way to go!). These couid easily be handled in the grammar, with help from the
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morphological analyzer, though some distinctive style feature should be used. Under deviant
vocabulary we include "verbing" of nouns (He tricycled away), and perhaps "massifying" of count
nouns and "countifying" of mass nouns. (Note that the preceding sentence itself contains instances
of deviant vocabulary in scare quotes) "Massifying" and "countifying" are illustrated resprctively
by A year ago they started digging the hole for his house. A year later, there's suil more hole than
house; and How many orange juice will that give us?. (For some plausible grammatical apnr.vaches
see Pelletier & Schubert, 1984.) More difficult are creative coinages like workoFolic (easily
understood on first encounter by anyone who knows the meaning of al~oholic), trut these are not a
significant concern in the TRAINS domain. Potentially more important in TRAINS are ad hoc
abbreviations such as OJ, U of R, e’s (for engines), and personal initials. While we have no
immediate plans to deal with these "intelligently", we are designing the parser to accept unknown
words, tentatively classifying these into multiple ai. 2rnative categories as a function of their
morphology, the parser state, and any previous encou nters with the same (unknown) word.

In contrast with these borde-line phenomena, we regard the following as outright errors:
restarts, various word-level errors, a:.G various character-level errors. Restarts (also called
resumptions) are very coinmon and hence particularly important in the analysis of spoken language
(e.g., Ok, now uhh, .. me, let me cFeck on the uhh, where the .. where the engines are and the..
the boxcars are uhh). Here we expect to use (inhibited) phrase structure rules something like XP <-
- XP[broken-off] XP (with logical form obtained entirelv .iom the second, complete XP on the
right), XP[br~ken-off} <-- Y Z[omitted], and 7{on.iited] <-- .I..1-1--1,1uhi uhh. The second
rule («itl. RHS Y Z[erutted]) would be delayed so that it is triggered on its second daughter,
rather the e first, to avoid over-pred.ction of restarts. Restarts may be further complicated by

<ccurring « er successive turns (in instalments, as above). For instance, in the exchange

<S> 1 just found city E2

<M> City E2?

<S> uhh engine E2,
the first and third utterances together comprise a sentence with a restarted object noun phrase. In
general, therefore, we must allow for piecemeal parsing and interpretation of erroneous input,
spanning several turns (interspersed with the interlocutor's comments). Word-level errors include
word confusions (e.g., irregardless), preposition usage errors (e.g., Bush ought to have a better
grasp on the details -- see Blejer et al. (1989]), word doubling (e.g., the the), word omission
(There two engines at I), and word contraction and segmentation (I'll find away, I need in
formation). Common word confusions and doubling can be dealt with in the lexicon and grammar;
also, the "elastic unification" mechanism readily allows for preposition misuse. Word omission,
contraction and segmentation are more problematic and may (in the worst case) require error-driven
backtracking.

Other errors include mispronunciations or corresponding errors in keyboard input (e.g., The
train is stationery) and phoneme omission and insertion (e.g. He's goin too fast, He is
lacksadaisical). Since it will be some time before we will be attempting to handle speech input
directly, we expect to have to deal with analogs of mispronunciations in the transcribed keyboard
input. Some standard spelling correction techniques should be applicable here, but we will make a
minimal effort in this area until we have a clearer agenda for the switch to speech input.
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4.4 Semantic Interpretation

We have mentioned our commitment to close coupling of semantic and syntactic theory
development, use of a "natural" meaning representation, and modular, compositional design. In
particular, we are pairing phrase structure rules one-to-one with compositional rules of
interpretation, and striving to keep these interpretive rules simple.

We define rules of interpretation as compositional if they express the logical form of a
phrase in terms of the LF's of its top-level constituents, without any reference to the structure of
those constituent LFs. For example, the semantic rule for a declarative sentence simply says "apply
the LF of the predicate verb phrase to the LF of the subject noun phrase”. Note that a rule like the
following would not be compositional in our sense, since it makes reference to parts of the
constituent LFs: "If the LF of the noun phrase denotes an ANIMATE entity, create a case frame
whose AGENT is given by that LF, and whose event type, tense operator, OBJ, and IOBJ (if any)
are inherited from the LF of the verb phrase ...". The compositionality constraint tends to ensure
simplicity of the rules. As a further simplifying constraint, we are trying to keep the LF of any
uninflected word atomic. (Thus "deliver”, as a base-form verb, may be translated logically as
"deliverl”, "engine" as a singular noun may be translated as "engine2" or "locomotive", etc.) This
makes lexical semantics as simple as possible. The LFs of regularly inflected words are obtained
by rule, and "knowledge about word meaning" is stored as MPs (in the knowledge base) about
logical translations of words, rather than as semantic properties of words.

The quest for simple, compositional rules of interpretation has had, and continues to have, a
large impact on our choice of meaning representation. In fact, if lexical meaning representations are
atomic and higher-level rules apply the LF of one constituent to that of the other(s), we are bound
to obtain a rather "English-like" sentential LF (such as our Episodic Logic). We prefer the term
"natural” meaning representation, to suggest that a representation is not only intuitively close to
natural language, but also formally easy to derive from surface syntax and expressively equivalent
to natural language. The use of a natural meaning representation is a break with tradition in Al,
which has generally been to "shoehorn” sentence meanings into some expressively limited but
familiar logic or frame language.

In using a natural meaning representation we are of course following Montague, but our
(lexical and nonlexical) semantic rules are generally simpler than Montague's or those in other
Montague-like fragments. This is largely because of two reasons: (a) we do not interpret noun
phrases as properties of properties of individuals, but rather as simple terms (in the case of proper
nouns and pronouns) or unscoped quantified terms (in the case of noun phrases with determiners);
besides keeping the logic simpler (avoiding many lambda-abstractions), this also facilitates a
simple, uniform treatment of scope ambiguity; (b) in our logic we do not insist that the extension of
an expression (its value at an episode, or situation) be a function of the extensions of its parts (as is
done in all other intensional meaning representations we know of); instead, we merely require the
intension of an expression (a partial function on episodes/ situations) to be a function of the
intensions of its parts; this allows us to dispense with Montague's ubiquitous intension and
extension operators (and gives us what is called an "inherently intensional” logic in Schubert and
Pelletier [1989].

Episodic Logic already has many of the features we desire for a natural, easily computed
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meaning representation. We have experimented with fragments of children’s stories [Schubert and
Hwang 1989; 1990] and with the earlier 8-sentence TRAINS discourse fragment, and these
experiments have been encouraging. The TRAINS fragment prompted tentative solutions to such
phenomena as sentences expressing necessity or obligation (We have to make OJ, Shall I start
loading...), intensional verbs of creation (make OJ - note that making OJ is not a matter of there
being some OJ which is then made), the semantics of names (engine E3), time and place
complements and adjuncts (... loading the oranges in the empty car at 1, ... arrive at I at 3pm), and
infinitive complements (... scheduled to arrive...). However, our semantically annotated grammar
fragments and our experience with the LFs that they produce are stll too small to warrant
confidence about the stability and adequacy of the logic. Other problematic issues that we foresee
are the meaning of a planner "having" a needed resource (/ have two engines to work with), the
meaning of let’s (Let's do it, Let’s see, ...), and the meaning of references to strictly nonexistent
entities (the OJ which the factory was supposed to produce). No doubt many further problems will
come to light as we proceed, and significant overhauls of the grammar and Episodic Logic itself are
likely to result.

We should also remark that the present quantifier and operator scoping algorithm is very
simple-minded, and we plan to adopt more subtle strategies like those in [Hurum 1988}. Making
those strategies work on-line in the parser and interleaving them with de-indexing will be a
significant challenge.

4.5 De-indexing

The third stage, namely de-indexing using tense trees, is perhaps the most novel aspect of our
approach. The branches in a tense tree correspond to past, pres, futr, and perf operators, and can
be traversed repeatedly as input LFs containing these operators are processed. Typically, each new
traversal (or creation of new branches) is accompanied by storage of new episode tokens at the
nodes of the tense tree structure. The interpretive rules which give de-indexed LFs make reference
to the lists of tokens stored at the nodes. The status of the current implementation is comparable to
that of the semantic interpretation stage. We are currently able to deal with many past, present,
future, perfect, and temporal PP constructions, using quite simple recursive de-indexing rules for
the operators concerned, with allowance for (in principle) arbitrarily deep nesting of operators.
However, these rules are still quite tentative and they do not cover all operators which make
implicit reference to times, episodes, or situations.

More specifically, the idea is that for each operator there is a pair of rules, the first of which
specifies a transformation from a given surface LF and a given tense tree (with a specified focus) to
a non-indexical LF, and the second of which specifies the corresponding transformation of the
tense tree. The result of applying the rules to a new input LF and an initial tense tree, as was
illustrated in Fig. 4, is a context-independent (non-indexical) version of the input LF, with explicit
episodic variables and temporal relations among these variables which bring to light relations
implicit in the tense and aspect operators and temporal prepositional adjuncts and in the surface
sequencing of input clauses. The rules work rather well for the small discourse segments we have
studied, but undoubtedly will need to be extensively augmented and revised as we consider larger,
more varied discourses. Some issues we are aware of are: the semantics of simple past within a
clause immediately following a past perfect clause (The engineer had failed to notice the red light.
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He was very tired from a 16-hour shift.), clausal time adverbials (The engineer kept driving after
he had tried repeatedly to get a replacement), and noun phrase time reference (Due to lack of
refrigeration, the oranges were now a decaying mass of pulp -- note that the properties oranges and
decaying mass of pulp apply consecutively rather than concurrently).

We mentioned reference interpretation as an additional functicn of the de-indexing stage, and
our intention to make use of tense trees here as well. The reason this makes sense is that one of the
link types in tense trees is an embedding link, leading from a tense tree node to the root of an
embedded tense tree, where the embedded tree typically corresponds to a subordinate clause. Thus
the embedding-link structure of a tense tree structure reflects the clausal configuration of complex
sentences, and as such provides a convenient set of "hooks" to which clause-specific context
information can be attached. In particular, one can attach clause-specific history lists (i.e., entities
referred to) and focus lists (i.e., entities in focus) at these hooks; this would enable application of
coreference constraints similar to those used in discourse representation theory. For example, the
oddity of The engineer thought a train was approaching but jt wasn’t could be accounted for by
such constraints.

The current implementation relies on just a few ad hoc rules for reference interpretation, which
need to be replaced by a principled approach. We envisage the local, clause-specific context
structure as being the "fine structure” of larger discourse-segment structures like those standardly
discussed in the discourse structure literature (e.g., see Allen [1987, ch. 12-14)).

4.6 Input-driven Inference

Finally, the stage of input-driven inference (so far unimplemented) is needed to aid
disambiguation, including reference interpretation, to suggest causal connections and other
coherence relations, and to make the implicit content of input more explicit via meaning postulates.
For this stage we plan to use the approach of Schubert and Hwang [1989;1990], adapting parts of
EPILOG, the implemented system based on that approach. Some major research issues here are
identifying the kinds meaning postulates and world knowledge (often probabilistically qualified)
needed in the TRAINS domain, adjudicating among conflicting or compatible lines of inference
bearing on some conclusion, triggering them appropriately, and limiting forward chaining by
appropriate criteria. )

As an example of inference based on MPs, we mentioned the inference from kinds to instances
of those kinds above. Another example would be the inference from making OJ to some particular
entity having the OJ property (where it did not have that property before). This is crucial in
determining the reference of it in a sentence like The factory made OJ and loaded it into tanker cars.
The inference from A train pulled into the station to Probably some people got off the train and
some got on would be based on general world knowledge, and would be crucial to making sense
of a subsequent input sentence such as The crowd converged on the doors of the passenger cars.

Adjudicating among alternatives uncertain inferences is crucial to finding the most coherent and
plausible interpretation of an input. Note for example that depending on prior context, a crowd's
surge toward the doors of an arriving train might either be interpreted as being motivated by the
intention to board the train, or by the intention of meeting arriving passengers (or catching a
glimpse of arriving celebrities, etc.) To the extent that one interpretation has stronger support by
prior context and world knowledge, others diminish in credibility. We are exploring abductive
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methods similar to those proposed by Hobbs et al. [1988]. These authors view understanding as
chaining backward over implications with weighted antecedents towards a "best"explanation of
observed data (inputs). However, we think their methods handicapped by the built-in assumption
that the only explicit causal knowledge available to the reasoning agent is knowledge leading from
causes to effects. Our assumption is that knowledge leading directly from effects to (more or less
probable) causes -- much like a doctor's diagnostic knowledge -- will be available as well. This
turns explanatory reasoning into forward inference, and appears to finesse some logical and
computational problems inherent in abduction. Charniak & Goldman [1988] make proposals
similar to Hobbs et al.'s, but (appropriately, we think) within a probabilistic framework. They
emphasize chaining from subplans (or subparts) to plans (or wholes); however, this is also back-
chaining over implications, if plans (wholes) are regarded as implying their parts.

The problem of "triggering" appropriate inferences is important, since failure to make a relevant
inference may prevent the intended causal connection, prediction, or interpretation from being
discovered; or, if the system is too "trigger-happy", masses of irrelevant rules may be tried and too
many inferences generated. We are experimenting with criteria for terminating inferencing, such as
decline in the probability and “interest"” of the conclusions drawn. Note that the types of inferences
under discussion "shade over" into plan-based discourse reasoning (see next section), so that a
future task will be to smoothly integrate these forms of reasoning.

S Discourse Modelling

A focus of the discourse modelling part of the project is the use of planning models to attempt
to account for much of the discourse phenomena found in the TRAINS domain. But discourse
structure cannot be fully accounted for by general reasoning processes alone, so another part of
this project is investigating the structural properties of discourse and attempting to discover how
the structural properties interact with the reasoning processes and how the two mutually constrain
each other. In this section, we will briefly describe the goals and the approacii used to examine
these two research areas.

5.1 Dialog Collection

The TRAINS domain was carefully designed so that a significant part of it is within reach of
current (or near future) capabilities of plan reasoning systems. Because of this, we hope to be able
to fully specify and implement the reasoning underlying the "system" in the dialogs. In addition,
the domain was designed so that the dialogs could be quite free-ranging. In particular, the dialogs
exhibit complex behavior as both the manager and system take initiative at times, and there are a
large number of clarifications, confirmations, negotiations, corrections and acknowledgements.
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Figure 6: The map for dialog collection

We have collected an initial corpus of natural spoken conversations between two people
engaged in complex problem solving in the TRAINS world. One person (simulating the system) has
most of the information and detail about the domain, but the other (the manager) has a problem to
solve. The two are in different rooms and so have no visual contact, but they both have the same
map from which to work, as shown in Figure 6. A fragment from one of the dialogs shown in
Figure 7. Each utterance is roughly classified as to its function: whether it is primarily concerned
with making progress on solving the problem (plain text), or whether it is primarily concemned with
maintaining the conversation itself (in bold). The participants are labelled <M> (for manager) and
<S> (for system), although the system here was simulated by another person. Comments on the
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<M> ok, now uhh, let me, let me check on the uhh
<M> where the.. where the engines are and the.. the boxcars are uhh
setting the immediate conversation goals for the following dialog fragment
<M> I'm assuming,
indicating that <M> is asking for confirmation
<M> let's see, that ubh
<M> is holding the turn while he examines the map
<M> I have two engines to work with, engine E2 which is at city D
<M> and engine E3 which is at city A
<S> aah, yes.
the "aah” probably indicates that <S> is thinking about the answer (and
acknowledging that the question was understood)
<M> and uh, I've got two tankers, tanker tl is at city A,
<M> and tanker 2 is at city B
<S> that's right. hon, han.
<M> ok
<M> acknowledges the reply and indicates that he has accepted <S>'s reply
<S> there're.. there're other tankers as well.
<M> ok
<M> acknowledges <S>'s introduction of new information
<S> there're actually four tankers at city E
“actually” indicates that <S> believes <M> doesn’t know about these tankers
<M> four tankers at city E, ok
<M> acknowledges hearing the new information, and then accepts it
<M> uhh so, tankers t3, t4, t5, and t6 are all at city E.
<M> confirms his understanding of <S>'s assertions
<S> that's right
<S8> confirms <M>’s confirmation
<M> ok. and just uh
<M> acknowledges the previous exchange and signals a move to a new topic
<M> 1 have four boxcars, b6 at city H, bS at city F,
<M> b7 at city B, and b8 at city I.
<S> that's right.

Figure 7: An excerpt from the dialogs with the discourse functions identified

possible discourse function of the utterances concerned with maintaining the conversation are
presented in italics.

As can be seen, approximately half of the utterances are concerned with maintaining the
communication process. There are utterances that identify the goals of the next stretch of discourse,
and a large number of utterances that pertain to acknowledging the other participant's utterances
and in maintaining a smooth flow of control (i.e. identifying whose turn it is to speak). It has been
our claim for some time that this level of discourse interaction must be explicitly modelled if we are
to build systems that can converse in natural language. In previous papers we have described a
plan-based model that accounted for clarification subdialogs among other things [Litrnan and Allen
1987; 1990]. We are now attempting to develop an extended model that can account for all the
discourse-level interactions found in the corpus.

Using the collected dialogs, we are developing a taxonomy of discourse-level acts that is
specific enough so that different people can independently classify each utterance in the same way.
We are then using this data to create a database containing a transcription of each utterance
annotated by its discourse function. In addition, we are analyzing the actual speech signals to
extract prosodic information (primarily pitch contours, speech rate) and adding this information to
the database as well. We have started some preliminary studies on prosodic cues to the discourse
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acts in our taxonomy, but need to analyze additional data before we have significant results. Qur
initial efforts along these lines is described in Nakajima and Allen [forthcoming].

Rather than analyze the dialogs in terms of abstract discourse relations, our taxonomy is based
entirely on the intentions of the speaker. This allows us to integrate well with previously developed
computational sneech act models, and provides a slightly different view from the other approaches.
It is important to remember that just because a speaker intended an utterance in a certain way, it
doesn't mean that the hearer understands it that way. Establishing agreement between the speaker
and hearer as to what was intended is the primary reason for acknowledgements, clarifications and
corrections. In addition, even if an utterance is understood correctly, this doesn't commit the hearer
to accepting the intended consequernces of the act (e.g. believing the speaker's assertion, or
performing the requested act).

5.2 Speech Act Models

The main intentions underlying an utterance, or group of utterances, is classified by the speech act
that the utterance(s) is said to perform. In the TRAINS domain, the principal speech acts are as
follows:

REQUEST - the speaker intends to get the hearer to perform some action, and obliges the
hearer to respond to the request (e.g. Take engine E3 to city I;

SUGGEST - the speaker intends the hearer to consider the suggestion and if the hearer accepts
the suggestion, then the speaker is comitted to whatever the suggestion entailed (e.g. Let’s
take engine E3 to city I),

QUESTION - the speaker intends to get the hearer to respond with some information - This
includes yes-no questions and wh-questions (e.g. Where is engine E3?);,

PROMISE - the speaker intends to commit to the promised act if the hearer accepts the promise
(e.g. I'll find out when train E3 will arrive.)

INFORM - the speaker intends to make a claim about the world (e.g. Engine E3 is at city A);

ACCEPT - the speaker accepts the other agent's previous speech act, and thus is comitted what
the act entails (such as doing the requested action, accepting the suggestion, believing the
inform, and so on);

REJECT - the speaker rejects the other agent's previous speech act, nullifying the intended
effects.

Considerable work remains in defining this set of speech acts precisely within a planning
model. Most notably, we need a representation of obligation to properly handle promises and
offers.

It is important to realize that nearly every speech act can be used at different levels of the
conversation: they can involve the plan in the TRAINS world (the domain level), or the problem
solving process that the two agents are engaged in (the problem solving level), or the
understanding and managing of the conversation itself (the discourse level). Because of the
focus on the discourse-level acts in this paper, we will often distinguish these as separately named
acts. For example, consider the REQUEST act at the different levels. Two requests at the domain
level that are in the transcripts are:

<M> Can you have city I fill B6 with oranges, please
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<M> Pick up b8 and take it on up to city B please

At the problem solving level, two requests are:
<M> Let me know when E3 has B6 loaded.
<M > I need some help.

At the discourse level, a request may be a clarification request, as in the following example dialog
fragment where the clarification request is in bold italics. The ensuing clarification is also included.

<S> e3 is leaving city H, on its route to city F

<M> with BS

<S> with BS, yes

<S> to city H, that was

<M> that'’s right

While there is a correlation between syntactic forms and speech act types, the relation is quite

complex. In general, the appropriate speech act can only be identified after significant reasoning
about how the utterance fits into the current context, especially with what is previously known
about the speaker's general goals. Utterances that appear to be one type of speech act can actually
be used in different settings for a wide range of different intentions. The utterance Do you know
the secret?, for instance, can in one setting be a request, in another an offer to tell the secret, in
another simply a yes/no question, or a host of other acts. Perrault and Allen [1980] showed '
many indirect forms can be derived from the literal interpretation of an utterance by using plan
recognition techniques alone. Unfortunately, this approach is insensitive to the way sentences are
phrased and thus tends to overgenerate. Hinkelman and Allen [1989] (see also Hinkelman [1990])
extend this work so that phrasing can affect the interpretation, both by suggesting certain "default”
indirect readings, and by limiting the range of interpretations that can be derived by plan
recognition. These ideas will be tested extensively and extended as necessary in the TRAINS
project.

5.3 Utterance Acts

If there were a one-to-one mapping between utterances and speech acts, and all utterances were
unambiguous and perfectly understood, then classifying utterances by speech act would be a fairly
straightforward task. But this is not the case. In particular, often it takes several utterances and
exchanges before a speech act is completed. Consider the following excerpt from one of the
dialogs that involves making a suggestion.

<M> What if we would stop it uhh Suggestion started

<M> pull uhh those tankers of beer to city G Suggestion continued
<S> hnn-hnn Acknowledgment
<M> and then from city G, leave the tankers there Suggestion continued

<S> yes Acknowledgement

<M> gorocityl Suggestion completed

<S> right Acceptance of the suggestion

It takes the manager four utterances to make the suggestion, and the system acknowledged parts of
the suggestion twice before it was completed and accepted. Yet this whole subdialog needs to be
analyzed at some level as a single suggestion since the acceptance applies to the entire subdialog.
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We are investigating models to handle such phenomena by positing a more detailed level of
interaction in terms of utterance acts. At this level, an utterance may initiate a speech act, continue a
speech act, or correct what has been said so far. In addition, the other agent may acknowledge the
act so far, or request clarification or correction, and so on. Once the speech act appears to be
mutually understood between the two agents, it may then be accepted or rejected. W are currently
exploring models of this process and how the utterance act level relates to the speech act level.

When clarification requests are introduced, the structure of the dialog becomes even more
complex as entire sub-dialogs can occur in order to clarify the intent of the containing dialog. This
introduces a hierarchical structure to the dialogs as has been proposed by many (e.g. see Grosz and
Sidner [1986]). In addition, a dialog may be interrupted and later resumed as in the following
example, where indentation is used to indicate the segmentation structure:

<M> mean time we send E2 over to city | Suggestion initiated
<8> ohoops, hhhh. yes, one moment - I have to find engine E2 somewhere
Digression Introduction
<M> Its in city D right now, according to my best information
Response to digression
<M> But you're the system Continue response
<8> I just found city E2 Continue digression
<M> City E2? Clarification request
<S8> uhh engine E2 Correction
<8> that was to city A ? Clarification Request
<M> ahh cityl Correction
<S§> 1o city ] Confirming correction
<M> yes Acknowledge
<S> ok

Accept/Acknowledge completes the digression

<M> and I guess while that's going on ... Continuation of first utterance

This digression shows the need to be able to handle shifts in topic that are not a natural
progression or decomposition of the previous topic.Within the digression we see clarification
requests, corrections and acknowledgements. Finally, after the digression is completed, the first
sentence is continued that though the digression never occurred. This example shows strong
evidence for a stack-like structure of discourse topics as suggested by Grosz and Sidner and
others. The model of Litman and Allen (1990) used such a model within the planning framework
and suggests a way to integrate discourse processing and plan reasoning. The model, however,
will need significant extension before it can handle complexities such as those that arise in this
example. We believe that a closer analysis of the level of utterance acts may provide the framework
in which such complexities can be handled.

A speech act is realized by one or more utterance acts, beginning with an initiating utterance,
followed by possible clarifications and corrections, clarification requests, partial acknowledgments
and so on. The speech act is completed by an implicit or explicit acknowledgement.
Acknowledging a speech act does not commit one to accepting the consequences of the act, it
simply indicates that the speech act is understood. Thus the entire utterance level analysis is driven
by this process of establishing mutual belief about what speech act was just performed. Directly
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relevant to this research is work by Clark and his colleagues on establishing a common ground
(e.g. [Clark and Schaefer, 1989)) and work in Conversational Analysis (e.g. [Sacks et al, 1974;
Schegloff et al, 1977]).

5.4 Discourse Modelling and Reasoning

The discourse module must use the structural properties of the dialog and the domain plan
reasoner, to maintain the state of the dialog. For the most part, the state of the dialog is maintained
by keeping track of what information the two participants have proposed, what has been
understood and what has been agreed upon. In addition, the discourse model must maintain
structural information such as focusing and centering information to deal with problems such as
reference. In this section, we will concentrate only on those aspects of the model that interact with
the domain plan reasoning.

The domain plan reasoner uses planning and plan recognition techniques to maintain the current
state of the domain plans under discussion. See Ferguson [1991] for more details on the current
system. The discourse reasoner calls the domain reasoner to verify hypotheses about the discourse
function of the utterances, and to update the state of the plan as needed. Plan fragments in the
knowledge base must be characterized by ar least six different modalities to capture the state of the
discourse. These are organized hierarchically with inheritance so that we can examine the full plan
from either the manager's or th~ < 'stem'’s perspective as shown in Figure 8.

The modalities include:

+ the plan fragment suggested by the manager but not yet acknowledged by the system

(Manager-Proposed-Plan-Private);
+ the plan fragment suggested by the system and not yet acknowledged by the manager
(Systewn-Proposed-Plan-Private);

« the plan fragment suggested by the manager and acknowledged but not yet accepted by the

system (Manager-Proposed-Plan);

« the plan fragment suggested by the system and acknowledged but not yet accepted by the

manager (System-Proposed-Plan);

* the plan fragment that is shared between the two (i.e. accepted by both) (Shared-Plan); and

* the plan fragment constructed by the system but not yet suggested (System-Private-Plan).

Each context is associated with a particular form of plan reasoning as indicated in the figure. In
particular, the plan in the System-Private-Plan context is extended by plan construction (essentially
classical planning), where the plans in all the other contexts are extended by plan recognition
relative to the appropriate set of beliefs.

Figure 8 also shows how plan fragments may move between the various contexts. A
suggestion from the manager enters a new plan fragment into the Manager-Proposed-Plan-Private
context and initiates plan recognition with respect to what the system believes about uie manager's
private beliefs. Once acknowledged, this suggestion becomes "public” (i.e. it is in Manager-
Proposed-Plan). An acceptance from the system would then move that plan fragment into the
Shared-Plan context, again invoking plan recognition.

Planning by the system results in new actions in the System-Private-Plan context. To make
these actions part of the Shared-Plan context, the system must suggest the actions and then depend
on the manager to acknowledge and accept them. This model, while still crude by philosophical
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Manager Sugges

Privately Held Beliefs
[T sarcapetics

Figure 8: The different plan modalities from the system's perspective

standards, it seems rich enough to model a wide range of the discourse acts involving clarification,
acknowledgment and the suggest/accept speech act cycle abundantly present in dialogs in this
setting.

Because of the inheritance through the spaces, when the system is planning in the System-
Private-Plan context, it sees a plan consisting of all the shared goals and actions, what it has
already suggested, and all the new actions it has introduced into the plan privately but not yet
suggested.

Consider a simple example. Assume that the Shared-Plan context contains a plan to move some
oranges to a factory at B, but there is no specification of the engine to be used. The system might
plan to use engine E3. At this stage, the plan from the System-Private-Plan context involves E3.
The plan in the System-Proposed context, however, is still the same as the plan in the Shared-Plan
context, which still does not identify which engine to use. When the system makes the suggestion,
the plan fragment involving E3 is added to the system proposed plan (private). An
acknowledgment from the manager results in this plan fragment being added to the system-
proposed plan known to both agents. If the manager then accepts this, it then becomes part of the
shared plan. If the manager rejects the suggcsuon, then E3 does not become part of the shared plan
(at least, not without further discussion). This same type of scenario arose in the sample dialogs in

-35.-

]




the TRAINS-90 system when the system suggested using a particular car to use to move the
oranges.

The prototype system uses a simple model along these lines and can handle examples in which
the two agents are free to accept or reject suggestions as they are made in the dialog. It is described
in more detail in Traum [1991]. The system under development will extend the current one to
support acknowledgement behavior, plus some forms of negotiation between the agents in order to
arrive at a mutually agreeable plan.

6 Summary

The TRAINS domain is designed to balance the complexity of the planning task with the complexity
of the linguistic behavior. Too simple a planning domain would not allow rich dialogs, while a too
complex planning domain would not be implementable. The planning/scheduling domain is
sufficiently difficult to push planning research, yet within range of producing a reasonable
prototype system within the next five years. The linguistic phenomena that arise, on the other
hand, are highly complex and do not appear seriously constrained by the domain. As such, it is an
ideal research testbed for both natural language work and planning work. Our goal is to produce,
within a five year time span, a system with enough functionality that a naive user could be given a
problem in the TRAINS world and actually use the system to produce a solution. To realistically
approach this goal, we feel it is important to have a working system at all times, however limited it
might be. TRAINS-90 was the first iteration of this process, and we plan to produce a new system
cach summer throughout the five year time period, each year increasing the capabilities and
robustness of the system.

The TRAINS project is only in its initial stages, and this report describes our best attempt to
describe the current approaches and future goals from a standpoint of less than one year into the
project. As a result, much of what is proposed here will change significantly in the coming years.
Our progress will be documented with a series of technical notes, starting with the current set that
describes the system as of the Fall, 1990.
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