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In this paper we investigate the nonlinear development of the most unstable

ABSTRACT

Gortler mode within a general three-dimensional boundary layer upon a suitably
concave surface. The structure of this mode was first identified by Denier, Hall &
Seddougui (1991) who demonstrated that the growth rate of this instability is O(G%)
where G 1s the Gortler number (taken to be large here), which is effectively a measure
of the curvature of the surface. Previous researches have described the fate of the
most unstable mode within a two-dimensional boundary layer. Denier & Hall (1992)
discussed the fully nonlinear development of the vortex in this case and showed that
the nounlinearity causes a breakdown of the flow structure.

The effect of crossflow and unsteadiness upon an infinitesimal unstable mode was
clucidated by Bassom & Hall (1991). They demonstrated that crossflow tends to
stabilise the most unstable Gortler mode, and for certain crossflow/frequency combi-
nations the Gortler mode may be made neutrally stable. These vortex configurations
naturally lend themselves to a weakly nonlinear stability analysis; work which is de-
seribed in & previous article by the present authors. Here we extend the ideas of
Denier and Hall (1992) to the three dimensional boundary layer problem. It is found
that the nmumnerical solution of the fully nonlinear equations is best conducted using a
method which is essentially an adaption of that utilised by Denier and Hall (1992). The

influence of crossflow and unsteadiness upon the breakdown of the flow is deseribed.
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§1 Introduction

The aim of this article is to further our understanding of the effects of unsteadiness
and crossflow upon the fully nonlinear development of unstable Gortler modes. The
nitial derivation of the governing equations for these modes was given by Gortler
(1940) whose results were modified by Hammerlin (1956). These early works ignored
nonparallel effects present due to boundary layer growth and Smith (1955) added
terms in an attempt to rectify this deficiency. Until recent years it was unclear as to
the mmportance of the nonparallel terms: this question was resolved by the results of
Hall (1982 a,b, 1983). In this series of papers Hall showed, using a combination of
asymptotic and numerical techniques, that for order one wavenumber vortices there is
no unique neutral linear stability curve. More precisely, the stability characteristics of
such wavenumber modes are entirely dependent upon the initial form and location of
the disturbance. However for small wavelength vortices a unique neutral curve does
exist and on this curve the vortex wavenumber & is O(G7) where G is the (assumed
large) Gortler number. For further reading concerning the development of the stability
theory for Gortler vortices the reader is referred to Hall (1990).

The most unstable Gortler mode (i.e. that infinitesimally-sized vortex which has
the largest growth rate) was obtained by Denier, Hall & Seddougui (1991) and Tim-
oshin (1990). By considering the stability properties of the essentially viscous modes
of wavenumber O(G li) together with those of the inviscid modes of O(1) wavelengths
it was possible to identify an intermediate wavenumber regime in which the vortex
growth rate is largest. These unstable modes are confined to a region of depth of
O(G~ %) and possess growth rates of size O(G% ). The stability properties of O(GIE)
wavenumber vortices are deduced by solving a sixth-order ordinary differential system
with appropriate boundary conditions and the solution of this system reveals that the
unique most unstable mode has wavenumber k& = 0.476G% and growth rate 0.312G%.

To date there has been relatively little attention paid to the nonlinecar stability
properties of Gortler vortices. Perhaps the first work was performed by Aihara (1976)
who attempted to describe the nonlinear evolution of Gortler vortices using parallel
arguments. Later calculations by Hall (1988) remedied these defects and showed that
as O(1) wavenumber modes evolve downstream so the energy of the flow concentrates
itself in the fundamental and mean flow correction. This suggests far downstream the
flow can be adequately described by a mean field /first harmonic structure and such a
configuration was elucidated for short wavelength modes using both weakly nonlinear
and fully nonlinear approaches by Hall (1982 b) and Hall & Lakin (1988) respectively.

A fuller deseription of the nonlinear stability of Gortler modes may be found in
Denier & Hall (1992). In that paper the authors argued that in a number of practical

systems, especially where significant curvature occurs such as the case of flow over




turbine blades, one would expect the small localized surface imperfections may well
trigger the most unstable linear Gortler mode. (This conclusion relies on the result
of the linear receptivity theory given by Denier, Hall & Seddougui (1991).) This
motivated a careful study of nonlinear evolution of the most unstable mode which was
tackled in the following way. Denier & Hall (1992) took an arbitrary form of initial
disturbance at a typical streamwise location, say + = 1. By integrating the linear
form of the vortex equations over a long distance, up to r = 101, a flow profile was
obtained which is dominated by the most unstable mode described by Denier et al
{1991). From r = 101 onwards the full nonlinear equations replaced the linear ones
and the most unstable vortex mode was marched further. Typically 8 or 16 harmonics
of the fundamental were retained during this calculation. It was found that at a critical
point the flow contains a region of reverse flow and the analysis is then no longer valid.
Denier & Hall (1992) interpreted this breakdown as being responsible for the vortices
moving away from the wall and into the core of the boundary layer.

The effect of crossflow and unsteadiness on the most unstable Gortler mode was
discussed by Bassom & Hall (1991). The primary result arising from this work was
the demonstration that a relatively small crossflow could completely stabilise the most
unstable mode. Additionally, by allowing for vortex unsteadiness, it was shown that
suitable combinations of crossflow, vortex frequency and wavenumber could lead to
neutrally stable configurations. A weakly nonlinear stability analysis pertaining to
such configurations was conducted by Bassom & Otto (1992) who derived classical
‘Stuart-Watson’ (1960) type evolution equations for near-neutral modes. They con-
cluded that the weak-nonlinearity has a stabilising effect and derived equations for
the supercritical equilibrium amplitudes.

The results of Denier & Hall (1992) and Bassom & Hall (1991) provide the mo-
tivation for the current study. Within a two-dimensional boundary layer the effect of
nonlinearity on the most unstable mode tends to lead to a finite-distance breakdown
whereas crossflow appears to stabilise the flow. With these two mechanisms tending
to have opposite effects it is clear that in many practical situations. where three -
dimensionality is undoubtedly important. it is of great interest to determine which
of these two conflicting hehaviours dominate. We attempt to answer this question by
considering the full nonlinear vortex equations and employ numerical techniques which
are similar to those used in Denier & Hall (1992) but modified in certain ways (detailed
later). These improvements significantly speed up the computations and allow us to
obtain a greater range of results than those found by Denier & Hall (1992).

The strueture of the remainder of this article is as follows: 1n section 2 the fully

noulinear equations are derived and a brief deseription of the numerical procedures




used are outlined in section 3. Details of the results are presented in section 4 and in

section 5 some brief conclusions are drawn.

§2 Formulation

As in Hall (1985) we consider a boundary layer flowing over the cylinder y = 0,
—o00 < z < oo where the Z-axis is a generator of the cylinder, § measures the distance
normal to the surface and # denotes the distance along the surface. The Reynolds
number R, and Gortler number G are defined by

UoL 1
R.=—=, G=2RZ,

v

where Uy 1s a typical flow velocity in the Z-direction, L is a characteristic streamwise
lengthscale and » is the kinematic viscosity of the fluid. Furthermore the curvature of
the cylinder is supposed to be % X0 (7’:) and with these definitions § = L/b, where b is
a typical radius of curvature of the cylinder (Gortler vortices are typically observed in
flows over concave surfaces which corresponds to the choice xg > 0 ). The Reynolds
number is supposed to be large whilst § is sufficiently small so that as § — 0 the
parameter G 1s fixed and is of order one. The basic three-dimensional boundary layer

is taken to be of the form

u=U, (a(X,Y),Re %6(X,Y),R§%A*ID(X’Y)) (1 +0 (R"_%))

1
where X = #/L and Y = §RZ2 /L and the crossflow parameter A\* is of order one.
1
It 1s convenient to define the scaled spanwise coordinate Z = 2R2 /L and let T be
the temporal variable scaled on L/Uy. The basic velocity profile is perturbed by the

quantity

(U(T, X.Y,Z),R:*V(T.X,Y,2),R; W (T. X, Y,Z)) :

—1
and the pressure field by R, 2P (T, X,Y,Z). Substituting this flow forr. into the

continuity and Navier-Stokes equations yields the system
Ux+Vy +Wz =0, (2.1a)

~Ur+Uyy +Uzz —uyV —uUx—-uxU —oUy - \"wU,

(2.1b)
=UUx +VUy + WUz,

~Vr+ Wy +Vzz —GxulU — Py —uVyx —7xU —7Vy - Ty V = AWV,

G . (2.1¢)
=UVx +VVy + WV + ?\U 2,




~Wr+Wyy +Wzz — Pz —uWx — NwxU - oWy — MVwy = X'oW,

(2.1d)
=UWx +VWy + WWg,,

where terms of relative order O(R:%) have been neglected. It is worth noting at this
point that the linearised system studied by Bassom & Hall (1991) is obtained by setting
the right-hand sides of (2.1 b-d) to zero whereas the nonlinear equations examinec
by Denier & Hall (1992) to determine the development of steady nounlinear vortices in
two- dimensional boundary layers can be retrieved by setting A* and Jr equal to zero.
We now invoke the scalings proposed by Denier et.  al. (1991) who demonstrated
that in high Gértler number flows the most unstable vortices have O(G'3 ) wavenumbers
and are confined to a layer of thickness of ()(G_%) adjacent to the cylinder. These
modes have a spatial growth rate of O(G3) and we use the results of Bassom & Hall
(1991) who illustrated that the three-dimensionality of the basic flow significantly
affects the two -dimensional stability results once the scaled crossflow parameter A\*
becomes O(GS ). Therefore it is convenient to define the O(1) crossflow parameter A
by
At = GEA (2.2a)
To reflect the fact that the vortices are confined to a region of depth O(G _%) adjacent

to the cylinder we introduce the O(1) boundary layer coordinate y defined by
y=G3Y, (2.20)
and in this layer the basic flow may be expanded as a Maclaurin series of the form
u=G"F i (X)y + {,—G"‘%/uz(X)f + éG_%/m(X)y” +- (2.2¢)

w = G'_-%,ugl(X)y + %G‘-%/z,n(X)y” + éG-gpgg(X)y3 +--0 . (2.2d)

To determine the form of the vortex disturbance we appeal to the findings of Bassom
& Otto (1992) who identified the crucial perturbation size at which the governing
equations become fully nonlinear (although these authors made no attempt to solve

these fully nonlinear forms). The disturbance forms are then

C=GH (L + G+ G L+ ). V=6F (h+GRn 4G+ ).
(2.3a.b)

WG+ R 6 i, ). P=GH(R+GTEP+GTER ).
(2.3c.d)

where Uy, Vo, Wy Py, UyL . oL etel are all functions of X, y. the temporal and the span-

wise vartable. It 1s now convenient to tmplement the result of Bassom & Hall (1991)




that the leading order behaviour in the downstream coordinate is purely oscillatory

and we do this by introducing the coordinate and temporal variations given by
X=G %r, Z=Br+G 5z, T=G %t (2.4a)

where 3 = ;\;121 /#t11. This then implies that the streamwise and spanwise derivatives
become
0 Lot 2 _yetl 0 gt (2.4b)
—_ - _ -, — 2.
0X ox 0z oz 0z
The desired governing equations are obtained by substituting (2.2)-(2.4) into equations
(2.1). Leading order terms in the momentum equations yield that Wy = #U;. Next

order terms in equation (2.1 b) give the first relationship

( o* % y?a 0 0

g , .
dy? + 9-2 92 9 oT ﬂnJa )Uo — p11Vo = RHS,, (2.5q)

where the precise form of RHS; is given presently and o = Azz — Buar- A second
equation is derived by following a procedure similar to that described by Bassom & Hall
(1991). By considering the second order terms in the y and = momentum equations
(2.3), eliminating the pressure by cross—differentiation and applying the continuity

equatiion it is a routine but lengthy task to obtain

( 0* 0 y’a 0 0 0 ) ( 0? 0*

WV 0*U,
+ - “nyxz ) \az T
3y T2 2 9 aT oz )\ 82 T 52

) Vota—— 5. oMY = RHS,
(2.50)

where again we shall specify RHS; shortly. The forms of RHS; includes reference to

the combination W, — 3U; which therefore needs to be expressed in terms of quantities

with subscript zero. This is best accomplished by integrating the continuity equation

. . U, 9V
Wy - BU; :d)o(z,y)—/[—aTO+ ay"]aL (2.5¢)

The aim of this article is to consider the nonlinear evolution of modes which are periodic

to give

1 .
in the spanwise direction, with fundamental wavenumber (xou?,)® k say, and periodic
in time. Now it is advantageous to introduce scalings first proposed by Bassom & Hall

(1991). It is found that if we transform according to

-

ay - (XO“%I) kay’ 0; — (‘(0»(‘11)i k., 0r — Xr?l‘f]arw (2.6a - c)

-1 3 12 3

Uo = xo "1y U, Vo = xo 1 Vs ar = xg ,UHOT. (2.6d - f)
2 3 - X (p1ptaz — fi gt

Yo = \& i, 0, ) = AlHunfa2 121112). (2.6g — h)

T3
5 3
2u11%0

(1]




then the transformed equations (2.5 a,b) are independent of the particular boundary
layer under consideration. Therefore the ensuing results are potentially relevant to
a wide class of basic configurations. In this nondimensionalised coordinate system
we restrict ourselves to flow quantities the fundamental mode having spanwise and
temporal variation given by exp [i (= + Qf)] . so that Q represents the nondimensional
frequency of the fundamental vortex component.

Upon making the transformations (2.6) the leading order vortex equations (2.5

a,b) become

0* N 02>‘, 200V y U 18080 128D 1 925 (2.7a)
dy? " 9z W0z k02 K 92 K 9zay K dxoy "
Vv 1 -

LU) - 15 = k_25(3)’ (2.70)

where the operator L is defined according to

v 0% Ayt Oy 10y y oy
] = - 2, :
Lvl=5r+ 32 " o: ®aT ror (2.7¢)

and

{95— +L8—H (L} Lt (@27d)

, ad |- ol oV
Q) _yr 2 |4 _ = -
5=t or {d) /[01 LQ/}d}

A ou  av] i
+H—0—§[c‘)—‘—/[0$+kay]d~] (2.7¢)
: oU av oU oV
‘[“’"/[Or "a—yJ"] (ar "E)
ot ol aU [ . oU oV
(3) - — |6 = — i dz]. 2.7
S =US +Hau+l.av[ /[ar Lay}d] (2.7)

To complete the governing equations it is necessary to determine ¢. This is achieved
by noticing that W7 — 83U satisfies

9P

5(2)
- +

L (IV] - IJL"I) = (U/I'() + =

[dentifyving the component of this equation independent of = yields

27
0* y 0 1 (2)}
R = dz. :
[01, mar] w2 /{ RO (

SV
~1
KQ




To close the system requires specification of appropriate boundary conditions. Clearly
we require the velocity components U, V to vanish on y = 0 (and by continuity so
must 9V/dy). Additionally the mean flow terms ¢ = 0 on y = 0 and in order that
the disturbance be confined to the boundary layer we demand that the streamwise
velocity U tends to some function of r as y — oc.

We notice that equations (2.7) are the appropriate generalisations of those solved
by Denier and Hall for the most unstable nonlinear vortex within a two--dimensional
boundary layer (their equations are recovered by setting A = ¢ = 0 and setting 97-=0).
This allowed us to compare numerical results against their previously published ones

as a check of our numerical methods.

83 Numerical Methods

The methods employed to solve system (2.7) are similar in essence to those used
in Denier & Hall (1992). However it was found necessary to introduce a number of
amendments to their code in order to speed up the computations which in turn had
the benefit of allowing an increased number of results to be obtained.

Denier & Hall (1992) solved the two-dimensional counterparts of equations (2.7)
as follows. They decomposed each of the flow velocities U, V, W into their Fourier
components and rewrote the governing equations in terms of these components. By
utilising a scheme based upon that implemented by Hall (1988) they obtained finite-
difference equations for the mean flow and harmonic terms. These equations contain
only one streamwise derivative and a straightforward method, based upon solving one
tridiagonal and one pentadiagonal system, may be used to march the solution from
one streamwise station to the next. For more details of the practicalities of the scheme
the reader is referred to Denier & Hall (1992).

One marked difference between our present work and that of Denier & Hall (1992)
is that we chose to calculate the nonlinear terms in physical space rather than trans-
form space, as this is a computationally ‘cheaper’ policy and so allowed us to retain
more modes in our calculations. This necessitates transforming from Fourier space
to physical space, effecting the calculations and extracting the Fourier coefficients. It
was decided to employ Fast Fourier Transforms to do this which has the benefit of
reducing the cost of the transformations from O(N?), (the cost of reducing N modes
and using the Fourier transform directly) to O(5N log N — 6N). The code used was
based on the original Cooley and Tukey (1965) algorithm and was thus limited to .V
being an integral power of 2.

Two other changes were made to the code used by Denier & Hall (1992). As
was described in the introduction, these authors were concerned with the development

of the most unstable Gortler mode within a two dimensional boundary layver. To
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achieve this most unstable mode Denier & Hall (1992) took an arbitrary disturbance
and then marched the linear stability equations for a long distance downstream before
changing to the nonlinear system. This of course had the effect of ensuring that the
most unstable component of the original disturbance was then dominant over all the
other components so that when the full nonlinear equations were invoked the input
vortex flow was dominated by the most unstable mode. A drawback of this method
is that the lead-in time in which the linear mode develops proves to be a significant
proportion of the total computation time. To alleviate this difficulty we used the
program described by Bassom & Otto (1992) to compute the unstable eigenfunction
directly. This had the effect of making the lead-in time to the nonlinear equations
redundant and thus we could start our computations of the full nonlinear system almost
immediately. Substantial reduction in the computational time was also achieved by
using a stretched grid in the y-direction (normal to the cylinder surface) as opposed
to a uniform one, and the scheme eventually chosen for this process was taken from
Macaraeg. Streett & Hussaini (1988). A grid is required which encompasses the region
between y, = 0 and y, = ymar. where the subscript p denotes the physical coordinate
and y,,q.r denotes some outer bound at which the asymptotic forms of the solution of
the system (2.7) are supposed to have been attained. A notional computational grid

0 < y- € 1 is introduced which is related to y, via

Yy, = Ymar ((2 - l)Cl Ye
P (c2 —yH"

with the value (¢y — 1) taking values between 0.2 and 1. The quantity (cy; — 1) rep-
resents the degree of stretching between the large and small steps whilst ¢; controls
the rate of stretching. 1 < ¢; € 6. For most of the calculations reported here we used
¢y = 2.4 and ¢; = 2 which allows 100 grid points to be distributed between y, = 0
and y, = 50. The resulting distribution of points and the corresponding step lengths
are illustrated in figure 1. Notice that as y — yuq, the step lengths become greater
than unity which in a finite difference scheme may induce errors. In the present case
gradients of the dependent functions in this regime are minuscule and so this possible
difficulty did not arise. This particular non—uniform stretching of the grid points al-
lowed a twenty fold reduction in the number of grid points over the regular grid used
in Bassom & Hall (1991) and a four-fold improvement over the piecewise constant step
length grid used in Bassom & Otto (1992).

As previously mentioned the solution strategy used here is essentially that de-
scribed in Hall (1988). Suppose that the solution (. V. Ug,. ¢0) is known at some
specified station. r. and suppose further that a guess is made for the solution at r +e.

(0 A0 0 . . . . .
(( : ' ]( ' o(l )). The nonlinear terms on the right -hand sides of equations (2.7 a.b)

N




were calculated using these guesses and the system solved to provide updated values
(U ]( 1), Vl(”, <j>(1])). These updated variations were then put into the nonlinear terms
and the process repeated. When the difference between successive iterates was than
some norim convergence was deemed to have occurred and this process marched onto
the next step. For a computational grid composed of M points and a calculation with

N modes retained then the convergence norm used was

k=N/2-1 =M
> Xt - o v - vl < 07w
k=—N/2 j=1

where U](- 'L) denotes the nM iterate of the k" Fourier component of the flow quantity
U evaluated at the j*P y-position.

The equations (2.7 a,b) may be discretised for any particular mode into the forms

UpUm+2 + bm Um+41 + CmUm +dmvm-~l +emtm-2 +fm U = Vin, (m = 3,- - M — 1)
(3.1a)

and
ImUm+1 + Amtm + tmttm—1 + Jmtm = Up,. (m=2,---M—-1) (3.16)

This system was solved using a technique outlined in Appendix B of Bassom & Otto
(1992). This solves the problem (3.1) in one sweep rather than treating the pair (3.1
a,b) as distinct pentadiagonal and tridiagonal problems. In esscnce, the equations are
solved by performing an outward forward elimination followed by a back substitution.

Earlier we alluded to the fact that significant computational saving was obtained
by utilising Fast Fourier Transforms in preference to decomposing the flow quantities
mrto their respective components. Standard procedures were implemented so that to

change between physical and transform spaces we write

k=X
2 -~
¥y = etk j e 1N,
—Y
=N
¥ 1} —ikz: N N

where z; = 2n(; — 1)/N for j € [1,N] and where quantities with tildes are in the
transform space and those without in the physical space. Denier & Hall (1992) were

able to restrict themselves to using a cosine basis due to the nature of Gortler vortices




with two dimensional boundary layers but the addition of temporal periodicity and
crossflow prevented us from doing this.

For the majority of the caleulations presented below the number of modes retained
was 16 and a fairly large step nsed in the streamwise direction. typically € = 0.01.
Denier & Hall (1992) found in their caleulations that these parameter choices gave
results to within graphical accuracy. Further testing. using 100 points in the normal
direction and with y,,.. = 30 has confirmed that similar choices are satisfactory for

the three dimensional computations performed here.

%4 Results

We have detailed the numerical method by which we investigated the solution
properties of system (2.7) although as yet we have left the definition of the amplitude
of the nitial vortex unspecified. As deseribed. we initiated our computations with a
mltiple of the eigenfunctions of the linearised versions of system (2.7). For a specified
vortex waverumber k. frequency  and crossflow A the method outlined by Baxsom
& Otro (1992) was used to compute the corresponding linearised growth rates 3, and

the respective eigenfunetions normalised so that the energy defined by

y=xc )
/ (C?-- 175)dy
y=10

is equal to A7 We refer to A\ as the amplitude of the initial condition.

Our first caleulations were performed primarily as a verification of our code against
the established results of Denier & Hall (1992). Thenee we considered the case of a
purely two-dimensional boundary layer and steady vortices (A = Q = 0). Denicr &
Hall (1992) found that as the vortex evolves nonlinearly downstream then at some
poiut their computations broke down i1 a singularity. Careful investigation revealed
that at this location the skin friction was of the flow vanishes and then any solution
scheme which relies upon a marching technique becomes invalidated. The vanishing of
the skin friction was interpreted as being indicative of the vortices breaking away from
the wall and moving into the core of the boundary layer. Our resnlts for various initial
amplitudes A ar- indicated on figure 2 where we show the location of the breakdown
poiut rp as a funetion of A for the most unstable Gortler mode with vortex wavemunber
ko= 0476 (the dist :hance was introduced at » = 1 so the distance travelled by the
perturbation before breakdown is o, — 1), Not surprisingly. the breakdown location
o4t a monotone deereasing function of the amplitude A and as N — 0 <o rp -» x
and the linear problem is retrieved. For 211 the other calculations reported upon here
a simlar trend is ol erved <o that in all cases we chose A = 0.2; this selection was

made purely for ilinstrative purposes and has no speecial signiicance whatsocever.
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In figure 3 we demonstrate another feature of the two-dimensional results. Figure
3a mdirates the dependence of the linear vortex growth rate 3, as a function of the
vortex wavenumber & for the first two modes. As is now well documented by Denier
et al. (1991). Denier & Hall (1992) the most unstable mode has growth rate 3, =
0.312 at & = 0476 and 4, — 0 as k — 0 or & — oo. We note however, that for a
significant range of scaled wavenumbers, roughly 0.3 < & < 0.8, the vortex growth
rate is not much reduced from the maximum in as much as it is at least 90% of
the maximum. This will have important consequences for later results. Figure 3b
Hlustrates breakdown point xp as a function of k for the first two modes. As is to be
expected for fixed initial amplitude A and fixed wavenumber the first mode always
breaks away from the wall before the second one and this trend continues for higher
modes. However, it is also observed that for the primary mode, r, is a monotone
decreasing function of k. Therefore for any fixed initial amplitude it 1s not the most
unstable mode which breaks up first. Indeed we previously remarked that for a whole
range of wavenumbers surrounding the most unstable value linear growth rates are not
too different from the largest growth rate. This has potentially important consequences
for a number of practical flows as it demonstrates that the brealkdown properties of the
flow are crucially dependent on the nature of the physical characteristics of the flow
and are sensitive to the nature of the evolution of the flow. More precisely, suppose
that the vortex motion starts with extremely small amplitude. Then one would expect
there to be a large distance over which the motion develops essentially in a linear
manner. During this time the most unstable linear mode would overwhelin modes of
other wavelengths and once the vortices had grown sufficiently so that nonlinearity is
immportant the flow behaviour would be dominated by that of the most unstable mode.
On the other hand if the initial vortex amplitude is not tiny, nonlinear effect are likely
to be important a relatively short distance downstream by which stage it 1s unlikely
that the most unstable mode domina:es the others. In this case the behaviour of the
most unstable vortex is not likely to dictate the properties of the breakdown of the
fow.

We turn now to consider cases with nc.. zero crossflows. As noted by Bassom &
Hall (1991) we may restrict our attention to cases in which the crossflow parameter
A > 0 siuce by suitably transforming the system (2.7) we can relate flows with A<0
to appropriate counterparts with A>0. In figure 4 we recall the results of increasing
crossflow on the linear, stationary vortex mode. As discussed in detail by Bassom &
Hall (1991) the effect of crossflow on linear vortex structures of wavelength O(G ~%) s
primarily a stabilising one. Indeed figure 4 illustrates that when A > 0.410 the vortex

B ey . 1 .
morde is stabilised for all wavenumbers in the O(G¥) regime.
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Figures 5 a& b show the variations of the maximum growth rate (/3,),,,, and
the corresponding vortex wavenumber k,,,, for increasing crossflow parameter A. As
already noted, increasing \ lowers (3r)ar and it is the mode with wavenumber b ~
0.407 which is the last to be stabilised. Further &,,,, is not a monotoue function of A

as might have been anticipated. Figure 5b, as well as showing (/3,) indicates the

maz’
growth rate of the mode with wavenumber & = 0.476 (the value of k,,,., for the case of
zero crossflow). It can be seen that the difference in growth rates of the most unstable
mode and that with & = 0.476 is very small over the whole range of A considered.
This reinforces the earlier comment that there is a significant wavenumber regime over
which the linear growth rate of the vortex mode is almost constant.

For each crossflow A we integrated the appropriate most unstable linear eigenmode
with initial amplitude A = 0.2 until breakdown occurred. and then repeated the
experiment with vortex wavenumber k& = 0.476. The results are summarised in figure
5c. It is seen that as well as exercising a stabilising influence on the linear mode,
increasing the crossflow tends to have a similar effect on the nonlinear modes. Clearly
the greater X, the greater the delay downstream before the initially most unstable
mode breaks away from the wall. Additionally, for the same initial amplitude A and
crossflow A the mode with k = 0.476 breaks up befure the linearly most unstable mode.
Further investigations have suggested that for all choices of A and vortex frequency
2 then if two linear modes of different modes k1 > ky are such that if initially have
the same amplitude then if they are marched downstream then it is the one with the
higher wavenumber which breaks down first.

Finally, we discuss in more detail the influence of unsteadiness on our findings. In
their study Bassom & Hall (1991) made some comments concerning the properties of
time -dependent linearised vortices. For the majority of their work these authors were
primarily interested in examining neutrally stable modes although they did compute
a few non-neutral ones (sec their figure 16). Bassom & Otto (1992) showed that for
fixed wavenumber k then as the frequency Q2 of the mode increases so the crossflow
required to maintain neutral stability grows. In particular it was shown that for a
non- dimensional vortex frequency € the stability properties of the vortex are sensitive
to the sign of Q. In figures 6 a& b we illustrate a facet of this sensitivity. For each
frequency 2 and crossflow parameter X we show the wavenumber of the most unstable
For Q < 0, it

it is observed that as \ increases from zero so kma.r decreases whereas for 2 > 0 this

linear mode. kpqr, together with the growth rate of that mode (43;),,,,-
is not the case. Correspondingly, when © < 0 the growth rate of the most unstable
mode is monotone decreasing in A whereas when > 0 then as A increases from zero so
there is a crossflow range over which (3,) increases. This increase is not indefinite

mar
however and there is a critical A, dependent upon , after which the growth rate




decreases. We also note that if ; > Q3 > 0 then max; 3, (Ql: :\) < max; /I, (Qg; 5\)

so that over all  and all A > 0 the mode with th. greatest growth rate is stationary
and exists in a two—dimensional boundary layer.

The breakdown characteristics of unsteady flows are described by figure 6¢. For
each frequency € and A we marched the linearly most unstable mode of amplitude
A = 0.2 from = 1. We can observe the somewhat conflicting roles played by
crossflow and frequency.

In the main, for a prescribed ) increasing X delays breakdown whereas for fixed
M and increasing € this phenomenon is enhanced. Notice, however, one important
feature which runs against this general rule. For positive  then a small to moderate
crossflow actually tends to promote breakdown although larger crossflows do reverse
this effect. An attempt was made to verify this trend by considering larger values of
Q) than those illustrated in figure 6. However problems were encountered as 0 grew
and these difficulties can be attributed to a number of causes. Following on from work
elucidated in Bassom & Hall (1991) it is the case that for small crossflow the most
unstable linear mode first has a small wavenumber relative to the implied scaling. As A
grows then the most unstable mode corresponds to an eigenfunction that moves away
from the wall at y = 0. At € greater than about 2 this movement occurs quickly for
small changes in ) so that for quite moderate values of A the eiegnmode is far removed
from the boundary. As found both by Bassom & Hall (1991) and Bassom & Otto
(1992) the numerical solution of the governing equations becomes non-trivial as the
vortex moves out since boundary conditions need to be imposed at the wall. Clearly
for modes concentrated away from the wall large changes in A, X or © can lead to
almost imperceptible changes in the values of the eigenfunctions at the wall and thus
reliable numerical convergence is renaered very difficult. However, our limited further

computations for { > 1.5 are in agreement with the general behaviour described above.

§5 Conclusions & Discussion

In this work we have detailed the nonlinear spatial evolution of unstable Gortler
modes in a three-dimensional boundary layer. In particular, the roles played by vortex
wavenumber, frequency, and the crossflow component of the underlying base flow have
been described. We feel that of particular importance is our finding that ( all other
factors being equal) of two modes of wavenumber within the O( G+) regime the one
vith the smaller wavelength will be the first to breakdown. This then suggests that in
practical situations it may not be the most unstable linear mode which is of ultimate
importance.

In many cases the relevant calculation to describe the breakdown of a flow is one

of a receptivity type. In this scenario small disturbances within the boundary layer
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or on the wall of the cylinder can trigger Gortler vortices and the precise method
of this triggering frequently excites modes of a preferred wavenumber. If this occurs
m practice then our calculations provide a description of the evolution of the mode.
Conversely, if a range of wavenumber modes is excited two eventualities would seem to
be possible. First, suppose that the initial disturbance is very small. Then it is to be
expected that the perturbation travels a long way downstream before nonlinearity has
significant effect, the most unstable linear mode will be dominant before this point and
its evolution characteristics will essentially describe that of the whole flow. Second,
suppose that the initial perturbation is not so small. Qur results summarised by figure
3 have shown that although there is a unique most unstable mode for each crossflow A
and frequency  vortices with wavenumbers in a fairly-large region surrounding that
of the most unstable mode have growth rates not very different from the maximum.
Therefore, by the time nonlinearity is significant it is not clear that the most unstable
mode would be dominant and the breakdown characteristics of the whole flow would
involve calculations more involved than those reported here. However we have shown
that for given mode amplitude it is the higher-wavenumber modes which appear to
breakdown first so that these components of a spectrum of excited modes may well
prove to be the important ones.

Denier & Hall (1992) showed that when their calculations for nonlinear modes in
two-—dimensional boundary layers terminated, this corresponds to the skin friction of
the flow vanishing at some point. Once this happens marching schemes as used both
here and in Denier & Hall (1992) cannot be continued. We confirm this finding for
our three dimensional cases as well but we also observed that before the skin friction
vanishes the velocity profile develop inflection points at positions away from the wall.
The appearance of those inflection points suggest that the flow will become susceptible
to Rayleigh waves which would give an alternative route to the ultimate breakdown.
The analysis of these modes would be of interest.

Finally, we recall that all our calculations have been concerned with considering
the evolution of perturbations of a specified wavenumber. Of course in some situations
a spectrum of modes may well be present. We have identified situations in which we
might expect one mode to dominate the others before nonlinearity sets in but in the
other cases calculations would be needed which account for an initial perturbation
which contains a number of modes. The development of a code to perform such calcu-
lations might well be formidable but it would give the definitive theoretical description

of nonlinear Gortler vortex behaviour in three-dimensional boundary layers.
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Figure 1: Distribution of grid points and corresponding spacing for the calculations
performed here. The computational coordinate y. satisfies 0 < y. < 1 and is related

to the physical coordinate y, by y, = 50y./(2 — y?)**.
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Figiae 20 Location of breakdown point ry as a function of initial vortex amplitude A

for the most unstable mode with A = 0. Q = 0.
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Figure 3:

a) Linear vortex growth rates 3, as a function of wavenumber & for the two most
dangerous modes in a two-dimensional boundary layer.

b) Breakdown point rj, as a function of wavenumber & for the modes in figure 3a with
assumed initial amplitude A = 0.2. The symbols denote corresponding points on the

curves of a) and b).
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Figure 4: Growth rate of 3, of the -uost dangerous stationary vortex modes within
a boundary layer with increasing crossflow A. The curves correspond to A varying
between 0.005 and 0.410 in 9 equal steps. The indicated points show the locus of the

wavenumber of the most unstable mode as the crossflow varies.
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Figure 5:

a) Wavenumber of the most unstable stationary mode and b) its corresponding growth

rate as a function of crossflow .

¢) Breakdown point rp as a function of crossflow A for 7) the most unstable mode and

#) the mode with & = 0.476 for initial amplitude A = 0.2.
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a) Wavenumber of the most unstable nonstationary modes and b) corresponding
growth rates 3, as functions of A. Here we have considered = —1,0.5.0.0.5.1.1.5.
¢) Breakdown point r, as a function of crossflow X for the modes with frequencies

and wavenumbers k as given in figure 6a) and initial amplitude A = 0.2.
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