
NASA Contractor Report 189710
(V)= ICASE Report No. 92-45

S~DTIC

__ICASEOT2

FULLY NONLINEAR DEVELOPMENT OF THE MOST
UNSTABLE GORTLER VORTEX IN A THREE
DIMENSIONAL BOUNDARY LAYER

S. R. Otto
Andrew P. Bassom

Contract Nos. NASI-18605 and NASI-19480
September 1992

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, Virginia 23665-5225

Operated by the Universities Space Research Association

........... ............................ . . "."i ..

NAil'SA
National Aeronautics and
Space Administration

Langley Research Center 92- 28194
Hampton,. Virginia 23665-5225 !! I I Ii I. II II I1 I'I II



FULLY NONLINEAR DEVELOPMENT OF THE MOST UNSTABLE
GORTLER VORTEX IN A THREE DIMENSIONAL BOUNDARY LAYER

S. R. Otto*
ICASE,.Tajistop 132c. -

NASA Langley Research Center

Hampton. VA 23665-5225, USA

Andrew P. Bassoin

Department of Nlathemnatics

University of Exeter, North Park Road

Exeter. Devonl. EX4 4QE., UK

ABSTRACT

In this paper we investigate the nonliniear development of the most umstable

G(*)rtler niode within a general three-dimensional boundary layer upon a suitab~ly

concave surface. The structure of this mode was first identified by Denier, Hall &

Seddougui (1991) who demonstrated that the growth rate of this instability is O( G!5-

where G Is the G("ritler number (taken to be large here), which is effectively a measure

of the curvature of thme surface. Previous researches, have dlescribed the fate of the

most unlstab~le mode within a two -dimensional boundary layer. Denier &- Hall (1992)

dhisculssedl the fully nonlhinear develop~ment of the vortex inI this case and showed that

the nionlinearity cassa b~reakdlown of the flow structure.

The effect of crossflow andl unsteadiness upon an infinitesima~l unstable mnodle was

elucidated by Bassomn &- Hall (1991). They demonstrated that crossflow tendls to

stalbilise the most lllstalble G(*rtler niode, and for certain crossflow/frequency coniibi-

ijatiolis tihe cG(;*rtler muode may be inade neutrally stable. These vortex configurations

naturally lend themselves to a weakly nonlinear stability analysis; work which is (le-

scril in a previous artic-le by the p~resent authors. Here we extendl the ideas of

Denier amil Hall (1992) to the three dimensional bounidary layer p)roblemn. It .,is foundl(

that tihe zImII m1crical solution of the fullv nonlinear equmatiomns is best condluctedl using a

mtethlod which is esenitially an adaiption of that utilised by Denier and Hall (1992). The

itiflumemice of crossflow and unmsteadiiness upon the breakdown of the flow is dlescrib~ed.

* R,,,ýarir was s~iIj)4)rt~rl bY t he National Aerronauijtcs and Spare Administration undjer NA.SA conl-

tracts %,, N A I I 0fi and( NAS I 1!945%) while the atithor was inl residence at the Institute for Computer

Apptdi( att oii inl Scinc and IEugineecring ( (SKNASA Langley Research Center, Ilampton, VA 23665



§1 Introduction

The aim of this article is to further our understanding of the effects of unsteadiness

and crossflow upon the fully nonlinear development of unstable G"rtler modes. The

initial derivation of the governing equations for these modes was given by Giirtler

(1940) whose results were modified by Hamnmerlin (1956). These early works ignored
nonl)arallel effects p)resent due to boundary layer growth and Smith (1955) added

terms in an attempt to rectify this deficiency. Until recent years it was unclear as to
the importance of the nonparallel terms: this question was resolved by the results of

Hall (1982 a,b, 1983). In this series of papers Hall showed, using a comnbination of
asymp)totic and numerical techniques, that for order one wavenumber vortices there is

no unique neutral linear stability curve. More precisely, the stability characteristics of

such wavenumber modes are entirely dependent upon the initial form and location of

the (listlirbance. However for small wavelength vortices a unique neutral curve does

exist and on this curve the vortex wavenuml)er k• is O(G¼) where G is the (assumed

large) G6rtler number. For further reading concerning the development of the stability

theory for G6rtler vortices the reader is referred to Hall (1990).

The most unstable Giirtler mode (i.e. that infinitesimally-sized vortex which has
the largest growth rate) was obtained by Denier, Hall & Seddougui (1991) and Tim-

oshin (1990). By considering the stability properties of the essentially viscous modes
of wavenuiilber O(G 1 ) together with those of the inviscid modes of 0(1) wavelengths

it was possil)le to identify an intermediate wavenumnber regime in which the vortex

growth rate is largest. These unstable modes are confined to a region of depth of

O(G-[) and possess growth rates of size O(Ga ). The stability p)roperties of O(G5)
wavenumber vortices are deduced by solving a sixth-order ordinary differential system

with al)p)roI)riate b)oundary conditions and the solution of this system reveals that theSI 3

unique most unstable mode has wavenumnber k = 0.476G' and growth rate 0.312G,.

To date there has been relatively little attention paid to the nonlinear stability

I)roperties of Gi;rtler vortices. Perhaps the first work was 1)erfornledl by Aihara (1976)
who attempted to describe the nonlinear evolution of G5rtler vortices using parallel

arguments. Later calculations by Hall (1988) remedied these defects and showed that

as 0(1) waveinimler modes evolve downstream so the energy of the flow concentrates

itself inl the fnndamental and mllean flow correction. This suggests far downstream the

flow can b)e adequately descril)ed by a. mean field/first harmonic structure and such a
configuration was elucidated for short wavelength modes using both weakly nonlinear

and fully nonlinear al)proaches by Hall (1982 1)) and Hall &, Lakin (1988) respectively.

A fuller description of the nonlinear stability of G(rtler modes may be found in
Denier &, Hall (1992). In that paper the authors argued that in a number of practical
systems, especially where significant curvature occurs such as the case of flow over
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turbine blades, one would expect the small localized surface imperfections may well

trigger the most unstable linear G6rtler mode. (This conclusion relies on the result

of the linear receptivity theory given by Denier, Hall &, Seddougui (1991).) This

motivated a careful study of nonlinear evolution of the most unstable mode which was
tackled in the following way. Denier &- Hall (1992) took an arbitrary form of initial

disturbance at a typical streamwise location, say .r = 1. By integrating the linear
form of the vortex equations over a long distance, up to ,r = 101, a flow profile was

obtained which is dominated by the most unstable mode described by Denier et al

(1991). From x = 101 onwards the full nonlinear equations replaced the linear ones

and the most unstable vortex inode was marched further. Typically 8 or 16 harmonics
of the fundamental were retained during this calculation. It was found that at a critical

point the flow contains a region of reverse flow and the analysis is then no longer valid.
Denier &- Hall (1992) interpreted this breakdown as being responsible for the vortices

moving away from the wall and into the core of the boundary layer.
The effect of crossflow and unsteadiness on the most unstal)le G6rtler mode was

discussed by Bassom & Hall (1991). The primary result arising from this work was
the demonstration that a relatively small crossflow could completely stabilise the most

unstable mode. Additionally, by allowing for vortex unsteadiness, it was shown that
suitable combinations of crossflow, vortex frequency and wavenuml)er could lead to

neutrally stable configurations. A weakly nonlinear stability analysis pertaining to

such configurations was conducted by Bassom &, Otto (1992) who derived classical

'Stuart -Watson' (1960) type evolution equations for near-neutral modes. They- con-

chuded that the weak--nonlinearity has a stabilising effect and derived equations for

the supercritical equilibrium amplitudes.

The results of Denier & Hall (1992) and Bassom & Hall (1991) provide the mo-

tivation for the current study. Within a two-dimensional boundary layer the effect of

nonlinearity on the most unstable mode tends to lead to a finite-distance breakdown

whereas crossflow appears to stal)ilise the flow. With these two mechanisms tending
to have opposite effects it is clear that in many practical situations, where three

dimensionality is undoubtedly important, it is of great interest to determine which
of these two conflicting behaviours dominate. XVe attempt to answ-er this question by

considlering the full nonlinear vortex equations and employ numerical techniques which

are similar to those used in Denier & Hall (1992) but modified in certain ways (detailed

later). Tlhse illi)rovenleilts significantly speed ilp) the computations and allow us to
obtain a greater range of results than those foimnd by Denier & Hall (1992).

Tle structure of the remainder of this article is as follows: in section 2 the fully
1ionilijtar c(Illations are derived and a brief description of the numerical procedures
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used are outlined in section 3. Details of the results are presented in section 4 and in
section 5 some brief conclusions are drawn.

§2 Formulation

As in Hall (1985) we consider a boundary layer flowing over the cylinder • 0,

-oo < - < oo where the >-axis is a generator of the cylinder, i measures the distance

normal to the surface and ,i denotes the distance along the surface. The Reynolds

umbl)er Re and G6rtler number G are defined by

UoLRe -I G = 2R'b,,
1'

where U0 is a typical flow velocity in the k-direction, L is a characteristic streaniwise

lengthscale and v is the kinematic viscosity of the fluid. Furthermore the curvature of

the cylinder is supposed to be !X0 (o ) and with these definitions 6 = L/b, where b is

a typical radius of curvature of the cylinder (G6rtler vortices are typically observed in
flows over concave surfaces which corresponds to the choice Xo > 0 ). The Reynolds

number is supposed to be large whilst 6 is sufficiently small so that as 6 -* 0 the

parameter G is fixed and is of order one. The basic three-dimensional boundary layer
is taken to be of the form

u U0 (ii(X , Y ) , R e- i (X , Y ) ,R e- A-w,(X , Y )) 1+ 0 R e-!-)

1

where X = i/L and Y = 9Re- /L and the crossflow parameter A* is of order one.

It is convenient to define the scaled spanwise coordinate Z = 5R /L and let T be

the teinporal variable scaled on L/Uo. The basic velocity profile is perturbed by the
quantity

uU (T,iX, (,(T)Y,Z) ,Re-V (T,X,Y,Z) ,Re W (TX,YZ))

and the pressure field by Re 2 P(T,X,Y,Z). Substituting this flow forr. into the

continuity and Navier-Stokes equations yields the system

Ux + Vy + Wz = 0, (2.1a)

-UT + U +ix xU - ITUy -i- U-

= UUx + I"LI. + WUz,

-V7, + V,-.y + V7,z - G-U - P, - iTVx - Fx LT - -Vy - Ty V - A* iV

LT= 1X + Vj,'Y + 1I7z + G N2, (2.1)

3



4 'VT + 14'Yy + I'Vzz - Pz - -FLUVx - A*.u-,[ - M'Vy - A*r~,- AT ý d

U11x + UVI~y + IT'TV~Z. (.

where termis of relative order O( R,7 ) have been nieglectedl. It is worth noting at this

p~oint that the linearisedl system studied by Bassom &:, Hall (1991) is obtained by setting

the right-hand sides of (2.1 b)-cl) to zero whereas the noniinear equations examined

by Denier k Hall (1992) to determine the dlevelopment of steady nonhinear vortices ini

two dimnensional boundary layers cani be retrieved by setting A* and (97 equal to zero.

We nowv invoke the scalings proposed by Denier et. al. (1991) who demonstrated

that in high G6rtler number flows the most unstab~le vortices have O(G 15 ) wavenumbers

and are confined to a layer of thickness of O(G )adjacent to the cylinder. These

modes have a spatial growth rate of O(G 5 ) and we use the results of Bassomi k Hall

(1991) who illustrated that the three-dimensionality of the basic flow significantly

affects the two dimensional stability results once the scaled crossflow parameter A~*

becomes O( G s). Therefore it is convenient to define the 0(1) crossflow p)aram~eter

A*~A (2.2a)

To reflect thle fact that the vortices are confined to a region of depth O(G - adjacent

to the cylinder we initrodutce the 0(1) boundary layer coordinate y defined by

G Y (2. 2b)

anid in this layer the basic flow may~ be expanded as a Maclaurin series of the form

it = G-5ItI I (X).y + ý~G- 5 1 1(X)Y2 + !G- 51 113 ( X)Y3 + (2.2c)

it, = G_ i21 ()j+!-122(Xy!j +±- ~G 12 3 (Xiy (2.2d)

To determinie the formi of thme vortex dlistui rbance we appeal to the findings of Bassoin

k- Otto (1992) who identified the crucial perturbation size at which the governiing

equ11ations become fully nonlinear ( although these authors made no attemnpt to solve

these fidlvy nonlinear forms). The (list urbance formis are then

u - c~~ (u11 ±G~~(V +GL2 .. ) ( G-1- V+ ±G-1V2±.)

(2.3a, b)
IU V G ý (11-0 + G-V -LI-± G_ 211 2 + . P - G' (Po + G- rP, r, 5G %%P 2 +

(2.3c,(1)
%divre Un 1( . t) P0, O... ..t are all funmct ions of X, y. the tc'nipora~l and thme s-pan-

Wili' variable. It is 110w V01iVel1iemlt to Implement. the resuilt of Bassoni k Hall (1991)
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that the leading order behaviour in the downstream coordinate is purely oscillatory

and we do this by introducing the coordinate andi temnporal variations given by

where /1 = A11 21 /it 11. This then implies that the streamwise andl spanwise derivatives

bcm.a 3 a (9 aa
OX 0.1 Ox' Oz OZ ~(.b

The desired governing equations are obtained by substituting (2.2)-(2.4) into equationis

(2.1). Leading order terms inl the momientumi equations yield that WO7 = /3U0. Next

order terms in equation (2.1 1)) give the first relationship

( a2 92 Y2 a 1 aT lL Y ) Uo - illIVo =RHSl , (2.5a)

where the precise form of RHSI is given p~resently and a =12 - /31121. A second

equation is derived by following a p~rocedure similar to that described iby Bassomi & Hall

(1991). By considlering the second order terms in the y and Z miomentuin equations

(2.3), eliminating the pressure by cross-differentiation and applying the continuity

equation it is a routine but lengthy task to obtain

2 a 2 Y2 a' 0 a 0 2 0 2 \ V + D V 2[T0 = R

(2.5b)

where again we shiall specify RHS 2 shortly. The forms of RHS2 includes reference to

the combination W1 - 4JU, which therefore needs to be expressed in terms of quantities

with subscript zero. This is be st accompllishedl by integrating the continuity equation

to give

The aim of this article is to consider the nonlinear evolution of modes which are lperiodlic
inl the spanwise direction, with fundamental wavenumiber ('Ii ) k say, amid lperiodlic

in time. Now it is advantageous to introduce scalings first p~roposedl ly Bassoin &- Hall

(1991). It is found that if we transform according to

Y ((0/,1Oj, kD ~f, O ( 0 p 1 )X kDo il I~ ax (2.6a - c)

1 3 2 2 4

U0 = X'O ill IU, V0  "V, I aT -- NOII{IT, (2-6d -f)

,k il 1 -5 A (¶ it 2 - 21I) (2.6g - 1i)
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then the transformed equations (2.5 a,b) are independent of the particular boundary

layer under consideration. Therefore the ensuing results are potentially relevant to

a wide class of basic configurations. In this nondimensionalised coordinate system

we restrict ourselves to flow quantities the fundamental mode having spanwise and

temploral variation given by exp [i (z + Q2t)J, so that 0 represents the nondimensional

frequency of the fundamental vortex component.

Upon making the transformations (2.6) the leading order vortex equations (2.5

a,1)) become

02 o2 2U 1 0 2 S{l) 1 D2 S(2) 1 0 2 S(a)L~~~ ~ -+--••' ,: : a. : =U 0- -• 0---- - -. o. , (2.7a)
Oy2 OZ2 ý.30 Z k.3 D0Z2 k2 DZ2  k2DOZ~y k3DOX~y

L( )-V = 1 S(3), (2.7b)
) 2F- k 2

where the operator L is defined according to

02 02 " Ay2 D/, 1i , y 0
L [ 32 + Dz2  k3 3: k2 0T 3 ,r' (2.7c)

•111(l

S('2) L,[, a aJDLT± sJ

1+ ( OVl 2.7

OWr + I .'k ±-O- 6 - - [ Or + ] (2.7f)

To complete the governing eqluat ions it is necessary to dletermine O. This is achieved
by" noticing that k - 3U[ satisfies

L (W 1 - ,U1 ) - oyti, + ± +

IIdelt ifyi .g the (NIi1omponet of this equa tion independe~nt of z yields

,' r . 1 + S (2) dz. (2 .7 g)

+ V + A. n
O~r y 5z k O~ I6



To close the system requires specification of approp)riate boun(lary conditions. Clearly

we require the velocity comnponents U, V to vanish on y = 0 (and by conitiiiitv so

must aV/0y). Additionally the mean flow terms 6 = 0 on ! = 0 and in order that
the disturbance be confine(l to the. boun(lary layer we demand that the streamuwis(e

velocity U tends to some function of x as y -4 0.

We notice that equations (2.7) are the appropriate generalisations of those solved

by Denier and Hall for the most unstable nonlinear vortex within a two -dimensional

boun(lary layer (their equations are recovered by setting A = 6 = 0 and setting 0"/'=0).

This allowed us to compare numerical results against their previously publishe(l ones

as a check of our numerical methods.

§3 Numerical Methods

The methods emlployed to solve system (2.7) are similar in essence to those used
in Denier & Hall (1992). However it was found necessary to intro(duce a number of

amendments to their code in order to speed up the computations which in turn had

the benefit of allowing an increased number of results to be obtained.

Denier & Hall (1992) solved the two-dimensional counterparts of equations (2.7)

as follows. They decomposed each of the flow velocities U, V, TV into their Fourier

conmp)onents and rewrote the governing equations in terms of these comptoncnts. By

utilising a scheme based upon that implemented by Hall (1988) they obtained finite-

difference equations for the mean flow and harmonic terms. These equations contain
only one streamwise derivative and a straightforward method, based upon solving one

tridiagonal and one pentadiagonal system, may be used to march the solution from

one streamwise station to the next. For more details of the practicalities of the scheme

the readher is referred to Denier & Hall (1992).

One marked difference between our present work and that of Denier & Hall (1992)

is that we chose to calculate the nonlinear terms in physical space rather than trans-

form space, as this is a comlntationally 'cheaper' policy and so allowed us to retain

more modes in our calculations. This necessitates transforming from Fourier space

to physical space, effecting the calculations and extracting the Fourier coefficients. It
was decided to employ Fast Fourier Transforms to (lo this which has the b)enefit of

reducing the cost of the transformations from O(N2 ), (the cost of reducing N modes

anmd using the Fourier transform directly) to O(5N log N - 6N). The code used was
base(L oni the original Cooley amin( Tukey (1965) algorithm and was thus limited to N

being an integral power of 2.

Two other -hainges were ina(le to the code used by Denier & Hall (1992). As
was described in the introduction, these authors were concerned with the (Ievelopmiient

of the most umstable Gortler mio(le within a two dimnensional bomnndarv layer. To



achieve this most unstable mode Denier & Hall (1992) took an arbitrary disturbance

and theni marched the linear stability equations for a long distance downstream before

changing to the nonlinear system. This of course had the effect of ensuring that the
illost unstal)le comlponent of the original disturbance was then dominant over all the
other components so that when the full nonlinear equations were invoked the inliut

vortex flow was dominated by the most unstable mode. A drawback of this method
is that the lead-in time in which the linear mode develops proves to be a significant

p)roportion of the total computation time. To alleviate this difficulty we used the

program descril)ed by Bassoni & Otto (1992) to compute the unstable eigenflnction
directly. This had the effect of making the lead--in time to the nonlinear equations
re(dun(ant and thus we could start our computations of the full nonlinear system almost

immediately. Substantial reduction in the computational time was also achieved by
using a stretched grid in the ij-direction (normal to the cylinder surface) as opl)osed
to a uniform one, an(l the scheme eventually chosen for this process was taken from

Macaraeg. Streett &- Hussaini (1988). A grid is required which encompasses the region
b)etween yp = 0 and myp = Y,,,,,r where the subscript p denotes the physical coordinate

an11d Y/m(,, denotes some outer bound at which the asymptotic forms of the solution of
the system (2.7) are supposed to have been attained. A notional computational grid

0 < Y, < 1 is introduced which is related to yp via

Ymx (c 2 - 1 )cI Yr
up (C2 - y)

with the value (c"2 - 1) taking values between 0.2 and 1. The quantity (c 2 - 1) rep-

resents the degree of stretching between the large aid small steps whilst cl controls
the rate of stretching. 1 < c1 <_ 6. For most of the calculations reported here we used

'l = 2.4 and <'2 = 2 which allows 100 grid 1 points to be distributed between yp = 0

and !i = 30. The resulting dlistribution of points and tile corresponlding step lengths
are illustratedl in figure 1. Notice that as y -+ y,,,,, the step lengths become greater
than unity which in a finite difference scheme may induce errors. In the present case

2ura(dients of the dependent functions in this regime are minuscule and so this possible
difficulty did not arise. This particular non--uniform stretching of tile grid points al-

lowed a twenity fold reduction in the nummber of grid points over tile regular grid used

in Bassoin & Hall (1991) and a foir--fold improvemilent over tile piecewise constant step

length grid used in Bassorm &- Otto (1992).

As previously mentioned the solutionl strategy used here is essentially that de-
">crl,)(ed in Hall (1988). Suppose that the solution (CUo. 1 0, C0 , oo) is known at some
specified station. r. and suppose further that a guess is made for the solution at .r + F.

(I .1)I .I ). The nonlinear terms on the right hand sides of equations (2.7 ab
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were calculated using these guesses and the system solved to provide updated values

(ul 1) v~, 01) These updated variations were then put into the nonlinear termis
and the process repeated. When the difference between successive iterates was than

some normn convergence was deeined to have occurred and this lprocess marched onto

the next step. For a computational grid composed of M points and a calculation with

N modes retained then the convergence norm used was

k=N/2-1 j=M

Z: EZ[L..~I - LI Iv), +Vll - 1/10 < 106N
k=-N/2 3=1

where [T') denotes thie 11th iterate of the kth Fourier component of the flow quantity
U evaluated at the jth y-position.

The equations (2.7 a,b) may be discretised for any particular mode into the forms

a(i1i+ 2 +bmi+l +cm±t, mn+dm-in-v I -- mVm--2 +fmUm Vn= , (m = 3,''-. -- 1)

(31a)
and

gn t ,,+I + hnzu ,, + imU,,- + j,,Vmn = U1n. (7n = 2,. Al - 1) (3.1b'b

This system was solved using a technique outlined in Appendix B of Bassoni & Otto
(1992). This solves the problem (3.1) in one sweep rather than treating the pair (3.1

a.b) as distinct pentadiagonal and tridiagonal problems. In essence, the equat;ons are
solved by performing an outward forward elimination followed by a back substitution.

Earlier we alluded to the fact that significant computational saving was obtained
by utilising Fast Fourier Transforms in preference to decomposing the flow quailtities

into their respective components. Standard procedures were implemented so that to

change between physical and transform spaces we write

ý41 j= E wte ik"z E [1,XNJ,

k=- N

1 j=N N N
'k = . ,!,,-ikz, k E [- , - _

N E- 2 2j=l

where z, = 27r(j - 1)IN for j E [1, N] and where quantities with tildes are in the

transform space and those without in the physical space. Denier k- Hall (1992) were

able to restrict themselves to using a cosine basis due to the nature of G6rtler vortices

9



withi two dIimlensionial boundary lavers blitt the addlitioni of temtporal p~eriodlicity and~
Cross:-flowv prevented us" froml doing hIls.

For thle majority of the raah'ulatiolis pre'senited( below the muiil )er of in()(les ret ained
was 16 and a fairly large s;tep) isedi~ the streanliwise dlirectioni. typiceally 0.01.
Denier k& Hail (1992) foundi( in their calcida' tiloll. that these lparaliiiter choices gave

resullts to within graphical accuriacy. Fuirthecr testing. uising 100 points in the normal
dlirectioni anil with Ymaý =30 has confirmed that similar choices are satisfactory for
lie thlree dhimensional comjputa at ions performedhe.

~4 Results

W~e have detailed the numilerical meithiod by which we investig~ated the soluitionl

lpfl))('It it's of systemi (2.7) althoughl zvs vet we have left the deýfinitionl of the amlplituide
of thle Initial vortex lilisJpec'fiedl As described, we initiated ouir compjutationis with a
ii iiut iple of thle eig icnfuiictions, of the liiiearised vc-(rsions of system (2.7). For a specified

vortex wNavriN iwj,1jjbr k. frequenicy Q anld crossflow A the method outlinied by Bas-oii
k- Ot to ( 1992) was uised to comlpute the corresp)onding linearised growth rates .1, and~

lhe resp~ective eigeiifuilictioiis normn11alised so that tihe eniergy (defined by

Is eulto __\. NNe ree to A asý thle amlphit uide of the initial conlditionl.
On)r first calcullationls weIreperforlnedl primtarily as- a vecrificationof our -ode( agains."t

the established jesuilts of Denier k Hall (1992). Thence we consideredI the case of a

pitrrelv t wo-diticilsioiial 1 otuiitarv layer and stcadyv vort ice; 6 = Q -= 0). Denieir &-
Hall (1992) foundI that as the vortex: evolves nonlinearly dlowist ream thlen at somei

po~int their Coiiput ations" 1broke down ii, a slingilarit v. Ca"'reful invest I -atilonl revealed
that at t his loca tion the sk-in frict ion was of the flow vainishes andl thlen any-, s-ollut io
Scheillie which rchii It1lt'oIil) i a miarchlin g t et'iii(itiie 1 econic.,' inivalidLate(d. The vii iilihini:, of

lhe -,kinl frict ion was initerpreted ais being indicative of thle vortices, 1 wak~1ng away from
lthe wall atili nitivinig into thit core' of the bouuidarv layer. Ut a' resuilts for variouii. initial

a Iii]lit 1itd,- A ar , initicatedi onl figuire 2 wh-lere wev show thle locationl of thle b)reakdlowni

po int .1- as a funlction oif A foi' the miost tixistablc)t Gor)itl hr iiiodc with vortex waveivnuiiltr
A. 0.476 ( thle (his, :1 tarice was lilt roduiced at x 1 I s thle (listanice t ravelled by the

pt'rtiirbat ion 1 efore b reakdown is x6 - 1). Not suirprisingly, the 1 urak town locationl
.1-, is a itioliot onet lecreasing fumct ion of the amplitudeit A aiith as A '- 0 so . 1-h -+ * NA

a ild tilit, Ilicat'tr prb)el)lt'i Is ret rie'ved . For ý' II the ot her cacicula tions reported npioii lit're

; IiiiI t rt'ii Iis oh' t'rved so t ha t inl all ca~sts wt' chose A 0.2: t his select non was
1ma 1t' pli ut ' fowrh 1;st rat ive pr rpost"s anid has n1o special s-ig-iificantcv whatsoever.
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In figure 3 we demonstrate another feature of the two -limensional results. Figure

3a iiioliates the dependence of the linear vortex growth rate 34, as a function of the

vortex wavenumbler k for the first two modes. As is now well documenedt by Denier
ct al. (1991 ), Denier & Hall (1992) the most unstable Inode has growth rate 3r =

0.312 at k = 0.476 and 3, --4 0 as k -- 0 or k --+ 00. 'We note however, that for a
significant range of scaled wavemninbers, roughly 0.3 < 4' < 0.8, the vortex growth

rate is not much reduced from the maximum in as much as it is at least 90% of

the maximiun. This will have important consequences for later results. Figure 31)

illustrates breakdown point •b as a function of k for the first two modes. As is to be

exlpected for fixed initial amplitude A and fixed wavenumber the first mode always

breaks away from the wall before the second one and this trend continues for higher

modes. However, it is also observed that for the primary mode, Xb is a monotone

decreasing function of k. Therefore for any fixed initial amplitude it is not the most

unstable mode which breaks up first. Indeed we previously remarked that for a whole

range of wavenumbers surrounding the most unstable value linear growth rates are not

too different from the largest growth rate. This has potentially important consequences

for a number of practical flows as it demonstrates that the brea!.-down properties of the

flow are crucially dependent on the nature of the physical characteristics of the flow

and are sensitive to the nature of the evolution of the flow. MIore precisely,, suppose

that the vortex motion starts with extremely small amplitude. Then one would expect

there to be a large distance over which the motion develops essentia ly in a linear

manner. During this time the most unstable linear mode would overwheln modes of

other wavelengths and once the vortices had grown sufficiently so that nonlinearity is

imp)ortant the flow behaviour would be dominated by that of the most unstable mode.

Oil thie other hand if the initial vortex amplitude is not tiny, nonlinear effect are lik(ely

to be important ai relatively short distance downstream by which stage it is unlikely

that the most unstable mode domninaTes the others. In this case the behaviour of the

most unstable vortex is not likely to dictate the properties of the breakdown of the

flow.

We turn now to consider cases with no:, zero crossflows. As noted by Bassom &

Hall (1991) we may restrict our attention to cases in which the crossflow parameter

A > 0 sice by suitably transforming the system (2.7) we can relate flows with A < 0

to approp)riate counterparts with A > 0. In figure 4 we recall the results of increasing

crossflow on the linear, stationary vortex mode. As discussed in detail by Bassom &

Hall (1991) the effect of crossflow on linear vortex structures of wavelength O(G- ) is
primarily a. stabilising one. Indeed figure 4 illustrates that when A > 0.410 the vortex

mode is stahilsed for all wavenumi)ers in the O(G') regime.
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Figures 5 a& b show the variations of the maxinmum growth rate (/b ),al and

the corresponding vortex wavenuniler k-,,1ar for increasing crossflow parameter A. As

already noted, increasing A lowers (ir),ax and it is the mode with wavenumnber k

0.407 which is the last to be stabilised. Further k,,,•, is not a monotone function of A

as might have been anticipated. Figure 5b, as well as showing (/ir),, , indicates the

growth rate of the mode with wavenumber k = 0.476 (the value of kmi,,x for the case of

zero crossflow). It can be seen that the difference in growth rates of the most unstable

mode and that with k = 0.476 is very small over the whole range of A considered.

This reinforces the earlier conmment that there is a significant wavenunlber regime over

which the linear growth rate of the vortex mode is almost constant.

For each crossflow A we integrated the apl)ropriate most unstable linear eigenmode

with initial amplitude A = 0.2 until breakdown occurred. and then repeated the

experiment with vortex wavenunilber/k = 0.476. The results are summarised in figure

5c. It is seen that as well as exercising a stabilising influence on the linear nmode,

increasing the crossflow tends to have a similar effect on the nonlinear modes. Clearly

the greater A, the greater the delay downstream before the initially most unstable

mode breaks away from the wall. Additionally, for the same initial amplitude A and
crossflow A the mode with k = 0.476 breaks up before the linearly most unstable mode.

Further investigations have suggested that for all choices of A and vortex frequency

0 then if two linear modes of different modes k, > k2 are such that if initially ihve

the same aniplittde then if they are marched downstream then it is the one with the

higher wavenumber which breaks down first.

Finally, we discuss in more detail the influence of unsteadiness on our findings. In

their study Bassom & Hall (1991) made some comments concerning the properties of

time dependent linearised vortices. For the majority of their work these authors were

primarily interested in examining neutrally stable modes although they did compute

a few non-neutral ones (see their figure 16). Bassom &, Otto (1992) showed that for

fixed wavenumber k then as the frequency Q of the mode increases so the crossflow

required to maintain neutral stability grows. In particular it was shown that for a

nonm- dimensional vortex frequency 0 the stability properties of the vortex are sensitive

to the sign of Q. In figures 6 a& b we illustrate a facet of this sensitivity. For each

frequency Q2 and crossflow parameter A we show the wavenumber of the most unstable

linear mode. k,,,ar, together with the growth rate of that mode (fi),,,ar.For 0 < 0, it

it is observed that as A increases from zero so knar decreases whereas for 0 > 0 this

is not the case. Correspondingly, when 0 < 0 the growth rate of the most unstable

mode is monotone decreasing in A whereas when 0 > 0 then as A increases from zero so

there is a crossflow range over which (/0), .a, increases. This increase is not indefinite

however and there is a critical A. dependent upon 0, after which the growth rate

12



dlecreases. We also note that if Q, > Q2 > 0 then nax 13r (01; \) < iax 13r (0 2 ;

so that over all f and all A > 0 the mode with t]b " greatest growth rate is stationary

and exists in a two-dimensional boundary layer.

The breakdown characteristics of unsteady flows are described by figure 6c. For

each frequency 0 and A we marched the linearly most unstable mode of amplitude

A = 0.2 from x = 1. We can observe the somewhat conflicting roles played by

crossflow and frequency.

In the main, for a prescribed Q increasing A delays breakdown whereas for fixed

Aand increasing 0 this phenomenon is enhanced. Notice, however, one important

feature which runs against this general rule. For positive Q then a small to moderate

crossflow actually tends to promote breakdown although larger crossflows do reverse

this effect. An attempt was made to verify this trend by considering larger values of

Sthan those illustrated in figure 6. However problems were encountered as Q grew

and these difficulties can be attributed to a number of causes. Following on from work

elucidated in Bassom & Hall (1991) it is the case that for small crossflow the most

unstable linear mode first has a small wavenumber relative to the implied scaling. As A

grows then the most unstable mode corresponds to an eigenfunction that moves away

from the wall at y = 0. At f greater than about 2 this movement occurs quickly for

small changes in A so that for quite moderate values of A the eiegnmode is far removed

from the boundary. As found both by Bassom &- Hall (1991) and Bassom & Otto

(1992) the numerical solution of the governing equations becomes non-trivial as the

vortex moves out since boundary conditions need to be imposed at the wall. Clearly

for modes concentrated away from the wall large changes in /3, A or Q can lead to

almost imperceptible changes in the values of the eigenfunctions at the wall and thus

reliable numerical convergence is rendered very difficult. However, our limited further

computations for Q) > 1.5 are in agreement with the general behaviour described above.

§5 Conclusions & Discussion

In this work we have detailed the nonlinear spatial evolution of unstable G6rtler

modes in a three-dimensional boundary layer. In particular, the roles played by vortex

wavenumber, frequency, and the crossflow component of the underlying base flow have

been described. We feel that of particular importance is our finding that ( all other

factors being equal) of two modes of wavenumber within the O(G") regime the one

with the smaller wavelength will be the first to breakdown. This then suggests that in

practical situations it may not be the most unstable linear mode which is of ultimate

importance.

In many cases the relevant calculation to describe the breakdown of a flow is on0V

of a receptivity type. In this scenario small disturbances within the boundary layer

13



or on the wall of the cylinder can trigger Girtler vortices and the precise method
of this triggering frequently excites modes of a preferred waveumbl)er. If this occurs
in practice then our calculations provide a descril)tion of the evolution of the mode.
Conversely, if a range of wavenumbner modes is excited two eventualities would seem to
be possible. First, suppose that the initial disturbance is very small. Then it is to be
expected that the perturbation travels a long way downstream before nonlinearity has
significant effect, the most unstable linear mode will be dominant before this point and
its evolution characteristics will essentially describe that of the whole flow. Second,

suppose that the initial perturbation is not so small. Our results summarised by figure
3 have shown that although there is a unique most unstable mode for each crossflow A
and frequency Q vortices with wavenumlbers in a fairly-large region surrounding that

of the most unstable mode have growth rates not very different from the maximum.
Therefore, by the time nonlinearity is significant it is not clear that the most unstable
mode would be dominant and the breakdown characteristics of the whole flow would
involve calculations more involved than those reported here. However we have shown
that for given mode amplitude it is the higher-wavenumber modes which appear to
breakdown first so that these components of a spectrum of excited modes may well
prove to be the important ones.

Denier & Hall (1992) showed that when their calculations for nonlinear modes in
two- dimensional boundary layers terminated, this corresponds to the skin friction of
the flow vanishing at some point. Once this happens marching schemes as used both
here and in Denier & Hall (1992) cannot be continued. We confirm this finding for
our three dimensional cases as well but we also observed that before the skin friction
vanishes the velocity profile develop inflection points at positions away from the wall.
The appearance of those inflection points suggest that the flow will become susceptible
to Rayleigh waves which would give an alternative route to the ultimate breakdown.
The analysis of these modes would be of interest.

Finally, we recall that all our calculations have been concerned with considering
the evolution of perturbations of a specified wavenumber. Of course in some situations
a spectrum of modes may well be present. We have identified situations in which we
might expect one mode to dominate the others before nonlinearity sets in but in the
other cases calculations would be needed which account for an initial perturbation
which contains a number of modes. The development of a code to perform such calcu-
lations might well be formidable but it would give the definitive theoretical description
of nonlinear G6rtler vortex behaviour in three-dimensional boundary layers.
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Figure 1: Distribution of grid points an1d corresponding spacing for the calculations

performed here. The computational coordinate yr satisfies 0 < Y,, < 1 an1d is rla,,d

to the physical coordinate yp b)y yp = 50y,/(2 - y,) 2 4 .
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F;giic 2: Lo,'ation of breakdown point Xb as a function of initial vortex amplitude A

for the most unstable mode with 0, 0 = 0.

18



D..20 0 n..*-

c/

. 0.2 0.4 0.6 0.8 1.0
k

""Figrre.3:

"0,k

8

x

4

2-

0.0 0.2? 0.4 0.6 0.8 1 .0

k

Figure 3:

a) Linear vortex growth rates 3 r as a function of wavenuniber k for the two most

dangerous modes in a two-- dimensional boundary layer.

1)) Breakdown point ,rh as a function of wavenuilber k for the modes in figure 3a with

assumed initial amplitude A = 0.2. The symbols denote corresponding points on the

curves of a) and 1)).
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Figure 4: Growth rate of /A3 of the most dangerous stationary vortex modes within

a boundary layer with increasing crossflow A. The curves correspond to A varying
between 0.005 and 0.410 in 9 equal steps. The indicated points show the locus of the

wavenurmber of the most unstable mode as the crossflow varies.
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Figure '3:
a) X•'aveI~nulmr of the most unstab~le stationary mode and b) its correspond~inlg growth
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c') Breakdown point .rb, a~s a function of c-rossflow A for i) the most iunst able nlode and

ii) the mode with K, 0.476 for initial amplitude a.\ 0.2.
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a) W~avvenumler of the most unstab~le nonstationary modes and b)) corresp~onding
g~rowth rates .3, as flmctions of ý. Here, we have considered Q = - 1, 0.5, 0.0.5.1.1.5.
c) Breakdown point .r, as a, flmction of crossflow ý for the mnodes with freque'ncies S)
and waverninibrs k as given In figure 6a) and initial amplitude A% = 0.2.
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