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Abstract

Many contemporary operating systems utilize a system call interface between the
operating system and its clients. Increasing numbers of systems are providing low-level
mechanisms for intercepting and handling system calls in user code. Nonetheless, they
typically provide no higher-level tools or abstractions for effectively utilizing these
mechanisms. Using them has typically required reimplementation of a substantial
portion of the system interface from scratch, making the use of such facilities unwieldy at
best.

This dissertation presents a toolkit that substantially increases the ease of interposing
user code between clients and instances of the system interface by allowing such code
to be written in terms of the high-level objects provided by this interface, rather than in
terms of the intercepted system calls themselves. This toolkit helps enable new
interposition agents to be written, many of which would not otherwise have been
attempted.

This toolkit has also been used to construct several agents including: system call
tracing tools, file reference tracing tools, and customizable filesystem views. Examples
of other agents that could be built include: protected environments for running untrusted
binaries, logical devices implemented entirely in user space, transparent data
compression and/or encryption agents, transactional software environments, and
emulators for other operating system environments.
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Chapter 1

Introduction

1.1. Terminology

Many contemporary operating systems provide an interface between user code and
the operating system services based on special "system calls". One can view the
system interface as simply a special form of structured communication channel on which
messages are sent, allowing such operations as interposing programs that record or
modify the communications that take place on this channel. In this dissertation, such a
program that both uses and provides the system interface will be referred to as a
"system interface" interposition agent" or simply as an "agent" for short.

1.2. Thesis Statement

The thesis of this dissertation is that a toolkit can be constructed that substantially
increases the ease of interposing user code between clients and instances of the system
interface by allowing such code to be written in terms of the high-level objects provided
by this interface, rather than in terms of the intercepted system calls themselves.
Providing an object-oriented toolkit exposing the multiple layers of abstraction present in
the system interface provides a useful set of tools and interfaces at each level. Different
agents can thus exploit the toolkit objects best suited to their individual needs.
Consequently, substantial amounts of toolkit code are able to be reused when
constructing different agents. Furthermore, having such a toolkit enables new system
interface implementations to be written, many of which would not otherwise have been
attempted.

Just as interposition is successfully used today to extend operating system interfaces
based on such communication-based facilities as pipes, sockets, and inter-process
communication channels, interposition can also be successfully used to extend the
system interface. In this way, the known benefits of interposition can also be extended
to the domain of the system interface.

3
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1.3. An Informal Perspective

The following figures should help clarify both the system interface and interposition.
Figure 1-1 depicts uses of the system interface without interposition. In this view, the
kernel1 provides all instances of the operating system interface. Figure 1-2 depicts the
ability to transparently interpose user code that both uses and implements the operating
system interface between an unmodified application program and the operating system
kernel. Figure 1-3 depicts uses of the system interface with interposition. Here, both the

kernel and interposition agents provide instances of the operating system interface.
Figure 1-4 depicts more uses of the system interface with interposition. In this view
agents, like the kernel, can share state and provide multiple instances of the operating
system interface.

mail make

07." •Operating System Interface
em (openo, reado), stato,

System Kernel forko, kill(), _exit(),
signals, ... .

Figure 1-1: Kernel provides instances of system interface

Application Program

Your code here! Operating System Interface

F Operating System Kernel

Figure 1-2: User code interposed at system interface

1The term "kernel" is used throughout this dissertation to refer to the default or lowest-level
implementation of the operating system in question. While this implementation is often run in processor
kernel space, this need not be the case, as in the Mach 3.0 Unix Server/Emulator [Golub et al. 90).
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emacs Untrusted
Binary

csh Compress! Restricted
Uncompress Environment

Operating System Kernel

Figure 1-3: Kernel and agents provide instances of system interface

HP-UX
Compiler

make HP-UX
_ Emulator

emacs Customized Filesystem View

Operating System Kernel

Figure 1-4: Agents can share state and provide multiple instances of system interface

1.4. Motivation

Today, agents are regularly written to be interposed on simple communication-based

interfaces such as pipes and sockets. Similarly, the toolkit makes it possible to easily
write agents to be interposed on the sysiam interface.

Interposition can be used to provide programming facilities that would otherwise not be
available. In particular, it can allow for a multiplicity of simultaneously coexisting
implementations of the system call services, which in turn may utilize one another

without requiring changes to existing client binaries and without modifying the underlying

kernel to support each implementation.
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Alternate system call implementations can be used to provide a number of services not
typically available on system call-based operating systems. Some examples include:

" System Call Tracing and Monitoring Facilities: Debuggers and program
trace facilities can be constructed that allow monitoring of a program's use
of system services in a easily customizable manner.

" Emulation of Other Operating Systems: Alternate system call
implementations can be used to concurrently run binaries from variant
operating systems on the same platform. For instance, it could be used to
run ULTRIX [Digital 89a, Digital 89b], HP-UX [Clegg et al. 86], or UNIX
System V [AT&T 86] binaries in a Mach/BSD environment.

"* Protected Environments for Running Untrusted Binaries: A wrapper
environment can be constructed that allows untrusted, possibly malicious,
binaries to be run within a restricted environment that monitors and
emulates the actions they take, possibly without actually performing them,
and limits the resources they can use in such a way that the untrusted
binaries are unaware of the restrictions. A wide variety of monitoring and
emulating schemes are possible from simple automatic resource restriction
environments to heuristic evaluations of the target program's behavior,
possibly including interactive decisions made by human beings during the
protected execution. This is particularly timely in today's environments of
increased software sharing with the potential for viruses and Trojan horses.

* Transactional Software Environments: Applications can be constructed
that provide an environment in which changes to persistent state made by
unmodified programs can be emulated and performed transactionally. For
instance, a simple "run transaction" command could be constructed that
runs arbitrary unmodified programs (e.g., /bin/csh) such that all
persistent execution side effects (e.g., filesystem writes) are remembered
and appear within the transactional environment to have been performed
normally, but where in actuality the user is presented with a "commit" or
"abort" choice at the end of such a session. Indeed, one such transactional
program invocation could occur within another, transparently providing
nested transactions.

* Alternate or Enhanced Semantics: Environments can be constructed that
provide alternate or enhanced semantics for unmodified binaries. One such
enhancement in which people have expressed interest is the ability to
"mount" a search list of directories in the filesystem name space such that
the union of their contents appears to reside in a single directory. This
could be used in a software development environment to allow distinct
source and object directories to appear as a single directory when running
make.
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1.5. Problems with Existing Systems

Increasing numbers of operating systems, e.g., Mach [Accetta et al. 86], SunOS
version 4 [Sun 88a], and UNIX System V.4 [AT&T 89], are providing low-level
mechanisms for intercepting system calls. Having these low-level mechanisms makes
writing interposition agents possible. Nonetheless, they typically provide no higher-level

tools or abstractions for effectively utilizing these mechanisms, making the use of such

facilities unwieldy at best.

Part of the difficulty with writing system call interposition agents in the past has been
that no one set of interfaces is appropriate across a range of such agents other than the
lowest level system call interception services. Different agents interact with different

subsets of the operating system interface in widely different ways to do different things.

Building an agent often requires implementation of a substantial portion of the system
interface. Yet, only the bare minimum interception facilities have been available,
providing only the lowest common denominator that is minimally necessary.

Consequently, each agent has typically been constructed completely from scratch. No

leverage was gained from the work done on other agents.

1.6. Key Insight

The key insight that enabled me to gain leverage on the problem of writing system
interface interposition agents for the 4.3BSD [Leffler et al. 90] interface is as follows:
while the 4.3BSD system interface contains a large number of different system calls, it

contains a relatively small number of abstractions whose behavior is largely
independent. (These abstractions are such things as pathnames, descriptors,
processes, process groups, files, directories, sockets, links, etc.) Furthermore, most
calls manipulate only a few of these abstractions. 2

Thus, it should be possible to construct a toolkit that presents these abstractions as
objects in an object-oriented programming language. Such a toolkit would then be able
to support the substantial commonalities present in different agents through code reuse,
while also supporting the diversity of different kinds of agents through inheritance.

2For a detailed taxonomy of the use of these abstractions, see Appendix A.
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1.7. Plan of Dissertation

This dissertation is structured as follows:

Part I presents an overview the problem addressed by this dissertation. Chapter 1

presents the thesis statement, some of the motivations for investigating it, and a key

insight underlying the approach taken. Chapter 2 presents an overview of the approach

taken in researching the topic. Chapter 3 presents an overview of other work related to

the thesis topic.

Part II presents the design and implementation of the system interface interposition

toolkit. Chapter 4 describes the high-level services implemented by the toolkit using

several actual interposition agents to illustrate their use. Chapter 5 descibes the low-

level services implemented by the toolkit which are necessary for building interposition

agents.

Part Ill presents the evaluation and results of this research. Chapter 6 presents an

assessment of how well the design goals were met. Chapter 7 presents the results of a

comparison to a best available equivalent implementation. Chapter 8 analyzes the Mach

dependencies present in the low-level toolkit services and problems which were specific

to the Mach and 4.3BSD interfaces. Chapter 9 analyzes the security implications of

interposition on the system interface. Chapter 10 presents some lessons learned

through this research which might benefit future interposition toolkit and agent writers.

Chapter 11 discusses possible future work in this area. Chapter 12 summarizes my

conclusions and outlines the contributions of this research.

Finally, Part IV contains the appendices and a list of other works referenced in this

dissertation.



Chapter 2

Research Overview

2.1. Design and Structure of the Toolkit

I have designed and built a toolkit on top of the Mach 2.5 system call interception
mechanism [Accetta et al. 86, Baron et al. 90, Golub et al. 90] that can be used to
interpose user code on the 4.3BSD [Leffler et al. 90] system call interface. The toolkit
currently runs on the Intel 386 [Intel 861/486 [Intel 90] and the VAX [Digital 81b, Digital
81a].

This toolkit is structured in an object-oriented manner, allowing programs to be written
in terms of several different layers of objects by utilizing inheritance. Abstractions
exposed at different layers include such objects as pathnames, file descriptors,
processes, signals, sockets, devices, etc., as well as the system calls themselves. The
structure of the toolkit permits the agent to be written using whatever levels of
abstraction are appropriate to the task it performs.

2.2. Design Goals

The four main goals that I attempted to achieve in building the toolkit were:
1. Unmodified System: Unmodified applications should be able to be run

under agents. Similarly, the underlying kernel should not require changes
to support each different agent (although the kernel may have to be
modified once in order to provide support for system call interception, etc.
so that agents can be written at all).

2. Completeness: Agents should be able to both use and provide the entire
system interface. This includes not only the set of requests from
applications to the system (i.e., the system calls) but also the set of upcalls
that the syster:: can make upon the applications (i.e., the signals).

3. Appropriate Code Size: The amount of new code necessary to
implement an agent using the toolkit should only be proportional to the
new functionality to be implemented by the agent - not to the size of the
system interface. The toolkit should provide whatever boilerplate and tools
are necessary to write agents at levels of abstraction that are appropriate
for the agent functionality, rather than having to write each agent at the
raw system call level.

9
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4. Performance: The performance impact of running an application under
an agent should be negligible.

2.3. Motivation for an Object-Oriented Toolkit

An underlying premise behind object-oriented programming is that when implementing

similar functions it should be possible to extract the commonalities between them and
share the implementations of the common functionality. The incremental work of

building another similar function should then be proportional only to the differences. This
approach pays off when substantial commonality exists between multiple logical
functions. Some examples of such commonality are:

"* For wide classes of interposition agents, much of the functionality needed to
build each agent is also needed by other agents. Nearly all need translation
from machine-specific system call numbers and argument formats to logical
system call interfaces.

"* Any agents manipulating open () ed objects need support for file (or socket)
descriptors.

"* Any agents manipulating pathnames need support for pathname component
walking; many also need support for translating pathnames to open objects.

"* Some facility for object reference counting or garbage collection is needed
by most agents.

"* Facilities for sharing objects among multiple client processes are needed by
many agents, particularly those that allow changes made by one client
process to be seen by another.

Not every agent needs to modify the behavior of the entire system interface. Indeed, to

the extent that an agent does not modify the behavior of a particular portion of the
system interface, it should be possible to pass uses of that portion through to the next
level of system interface largely unmodified for execution. An object-oriented structure
readily facilitates composing agents from just those toolkit components that will benefit
them, while using inheritance to automatically access those functions that the agent has
custom built.

Finally, an interposition toolkit should both be easier to use and provide more long term

benefits than ad hoc approaches. One alternate approach to writing agents would be to
always write one by copying another one and modifying it. This has several drawbacks.
Such modifications tend to be of an undisciplined "whatever makes it work" nature; the
toolkit approach helps maintain clean interfaces. Even for similar agents, any
improvements made to one are not reflected back into the other; any improvements
made to toolkit objects are shared by all clients. Ukewise, as new agents are built with

the toolkit, any new useful objects developed can be added to the toolkit suite, improving
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its usability over time; such accumulation of useful tools would be iess likely with an ad

hoc approach.

2.4. Using the Toolkit to Build Applications

As I built the toolkit, I also used it to implement several interposition agents. These

agents provide:
"* System Call and Resource Usage Monitoring: This demonstrates the

ability to intercept the full system call interface.

"* User Configurable Fliesystem Views: This demonstrates the ability to
transparently assign new interpretations to filesystem pathnames.

"* File Reference Tracing Tools that are compatible with existing
tools [Mummert & Satyanarayanan 92] originally implemented for use by the
Coda [Satyanarayanan et al. 90, Kistler & Satyanarayanan 92] filesystem
project: this provides a basis for comparing a best available equivalent
implementation to a facility provided by an agent.

These and other agents are discussed in Section 4.2 and Appendix C.
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Chapter 3

Related Work

This chapter presents an overview of past work providing the ability to interpose user
code at the system interface or to otherwise extend the functionality available through
the system interface. This topic does not appear to be well described in the literature;
despite intensive research into past systems I have been unable to find a
comprehensive treatment of the subject.

In particular, no general techniques for building or structuring system interface
interposition agents appear to have been in use, and so none are described. Even
though a number of systems provided mechanisms ,', which interposition agents could
be built, the agents that were built appear to have shared little or no common ground.
No widely applicable techniques appear to have been developed; no literature appears
to have been published describing those ad hoc techniques that were used.

Thus, the following treatment is necessarily somewhat anecdotal in nature, with some
past interposition agents and other system extensions described only by personal
communications. Nonetheless, this chapter attempts to provide a representative, if not
comprehensive, overview of the related work. It describes a number of past and present
systems that provide mechanisms for extending the functionality of the system interface,
with a particular emphasis on those where the potential extension mechanism was
actually used to build useful extensions to the services provided via the system interface.

The related systems presented are grouped into rough categories by the particular low-
level mechanism through which the system interface may be extended. Despite the
apparent differences between the mechanisms provided by different systems, similar
higher-level techniques can actually be used with a variety of low-level mechanisms.
(The hiding of the differences between low-level system interface interposition
mechanisms by the interposition toolkit is described in Section 4.2.2.) Thus, while the
different techniques presented below have often been thought of as separate, a closer
inspection will reveal that they are often overlapping, and in fact can be encompassed
within in a common framework provided by a higher-level interposition toolkit.

13
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3.1. Message-Based Systems

Message-based systems commonly allow applications to transparently intercept and

modify communication occurring across an interface. This is typically accomplished

either by establishing alternate bindings for the interface's communication channels at

bind time or by transparently interposing an active agent on an existing communication

channel. For instance, the Accent [Rashid & Robertson 81] and V [Cheriton 88] systems

regularly used both of these approaches to good effect

3.2. System Call-Based Systems

There are a large number of system call-based interfaces in existence. Some

advantages often cited for this approach include the controlled crossing of operating

system protection boundaries and the potential efficiency of implementation. Yet, just as

it is useful to interpose active agents on message-based interfaces, the same benefits

can be made available to system call-based interfaces as well. Indeed, in considering

the relative merits of message-based and system call-based systems in the context of

implementing process migration for the Sprite [Ousterhout et al. 88] operating system,

Douglis and Ousterhout reached the conclusion that the two approaches are largely

equivalent [Douglis & Ousterhout 911. Likewise, this thesis demonstrates that

interposition can equally well be applied to both message-based and system call-based

systems, despite previous conventional wisdom to the contrary.

A large number of system call-based systems have allowed application code to

implement system calls. Some examples are:

" OS6 [Stoy & Strachey 72a, Stoy & Strachey 72b] was a single-user system
for the Modular One computer implemented in BCPL [Richards
69a, Richards 69b]. Separately compiled code segments communicated
with one v. )ther by making indirect calls through the BCPL "global vector".
Some slots in the global vector were reserved by convention for calls to
system functions. However, programs could supply new values for these
slots and serve as "the system" for subordinate programs. Furthermore,
any routine could either be called via a normal procedure call, or could be
"run", which involved protection against failure of the subordinate process.

This capability of one program to serve as "the system" for other programs
was used in OS6 to implement several enhancements to the base system,
including a multi-terminal file editing system and a batch processing job
queue. Both were run as normal applications on the base system [Stoy 92].
Other simpler enhancements to the base system implementation such as
replacing the heap storage allocation routines with versions that also kept
statistics were likewise implemented in this manner.

"* The CAL TSS [Sturgis 741 system for the CDC 6400 was implemented as a
set of layers with each layer being implemented by a program that ran on
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the virtual machine implemented by the previous layer. Each layer could
provide "virtual instructions" and objects manipulated by those instructions,
which it would interpret for subsequent layers. Instructions not provided by
a given layer would be interpreted by the next layer.

This layered implementation technique was used pervasively in the
construction of CAL TSS. It was used both for implementing new services
and for implementing "ghost" versions of existing services for debugging
purposes.

" The TENEX system [Bobrow et al. 72] (which was later released by DEC as
TOPS-20 [Digital 78]) allowed superior processes to intercept system calls
on behalf of inferior processes via the tfork JSYS [BBN 71, Thomas 75].
Intercepted system calls made by inferior processes would cause a
software interrupt to occur in the intercepting superior processes.

One major application of this facility was to implement both the
RSEXEC [Thomas 73] and National Software Works [Forsdick et al. 78]
Arpanet resource sharing environments that allowed participating TENEX
systems to share files with one another via the Arpanet. Other applications
included system call monitoring facilities, a restricted environment used
during on-line student programming examinations that prevented accesses
to other student's files which could have potentially been used for
cheating [Wohl 90], and even a monitor crash dump debugger that allowed
programs to be run in an environment emulating that of the crashed
monitor [Schilit 90]. The TENEX interception facilities had a relatively large
number of applications written for them compared to other systems
providing system call interception facilities, despite the fact that such
applications were typically coded in assembler [Wohl 90].

"* The MIT Incompatible Timesharing System (ITS) [Eastlake et al. 69] for the
PDP-6 and PDP-10 provided a system call interception facility. This was
used both to emulate TENEX/TOPS-20 and for trapping system calls in the
debugger [Macrakis 90].

"• The IBM Virtual Machine (VM) operating system for the System
370 [Parmelee et al. 72] allows for software emulation of a virtual 370. This
has been used to run multiple virtual operating systems on a single physical
processor.

Unlike other systems that support interception of relatively high level calls to
operating system services, VM provides the ability to implement an
operating system on top of a software emulation of the bare machine. Thus
each operating system run on top of VM must implement all system
services (e.g., file systems, processes, etc.) from scratch.

"• The IBM MVS operating system [IBM 87] allows privileged applications to
perform "SVC screening" on behalf of other applications. Unlike VM, which
provides a virtual copy of the bare machine, MVS provides a means of
intercepting selected high-level system services invoked via the svC
instruction. This has been used to emulate pieces of somewhat different
IBM operating system environments on top of MVS [Clayton 90].

"* The Dartmouth Time Sharing System (DTSS) [Koch & Gelhar 86] for the GE
635 provided a facility called "squeeze" for intercepting system calls. Calls
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made from a given range of virtual addresses (in the range that was
"squeezed") would cause software interrupts in another portion of the virtual
address space. This was used in building a program debugger for DTSS,
and for emulating an older GE/Honeywell batch operating system called
GCOS [Colvin 90].

"UNIX System V.4 [AT&T 89] provides /proc operations for intercepting
system calls. Execution of an intercepted system call causes the target
process to stop, at which point it can manipulate the target process using
other /proc operations. Thus far this facility has only been used in
debuggers and to build a system call monitoring tool called
"truss" [Gomes 90].

" SunOS version 4 [Sun 88a] provides a similar ptrace () operation. Like
the System V /proc facility, it causes a program that makes an intercepted
system call to stop, at which point the stopped program can be manipulated
by another process using other ptrace () operations. This facility has
been used in debuggers and to implement a system call monitoring program
called "trace" [Gingell 90].

" Interposition is used by a number of Macintosh [Apple 88] applications to
enhance or modify the behavior of the Macintosh operating system. Mac
applications intercept system calls by replacing entries in the operating
system's system call dispatch table with addresses for application-provided
routines, usually saving the old values to be used intemally and possibly
restored later.

Applications of interposition in the Macintosh range from the very simple to
the fairly complex. As a simple example, some Mac applications built with
MacApp [Apple 90] use interposition to temporarily override the behavior of
cursor setting functions such that a "work in progress" cursor will be
displayed. As a more complex example, FileSaver, one of the Norton
Utilities for the Macintosh [Norton 90] intercepts all the file manipulation
system calls in order to support an "UnErase" file operation.
DiskDoubler [Salient 91] reimplements all filesystem operations to provide
transparent filesystem data compression. Another application, Super
Boomerang [Now 90], supplements the "Open..." file selection menu used
by many applications to include file status information in addition to the
usual file names. As a final example, the SAM [Symantec 91 a] anti-virus
software intercepts destructive file operations made by applications,
informing the user of any suspicious behavior and asking for confirmation
before allowing them to proceed.

Interposition is widely used by MS-DOS [Microsoft 91] applications both to
provide new implementations of existing MS-DOS facilities and to extend
the system interface by providing new facilities through new system calls.
As in the Macintosh, MS-DOS applications intercept system calls by
replacing system trap dispatch table entries with the addresses of new trap
handler routines, which themselves may make use of the old trap handlers.

Applications of interposition in MS-DOS range from the very simple to the
extremely complex. At the simple end, the Doskey [Microsoft 91] program
reimplements keyboard reading calls to provide a command line editor and
command history. At the other extreme, Microsoft Windows [Microsoft 87]
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interposes on the entire set of user interface calls, providing new
implementations of them for the Windows environment, as well as providing
a large set of new calls not otherwise available. Others provide more
constrained services. For instance, Stacker [Stac 92] reimplements the
filesystem operations to provide transparent filesystem data compression.
The eXtended Memory Specification (XMS) implemented by the
HIMEM. sys driver specifies a new set of calls for accessing memory with
addresses above 1024K [Duncan 90]. Similarly, the DCA/Intel
Communicating Applications Specification [DCA/Intel 91] specifies a set of
conventions for applications that provide or use a new set of calls
supporting facsimile communication. Finally, both the Norton
AntiVirus [Symantec 91b] and PC-cillin [Trend 90] anti-virus applications
intercept destructive file operations made by applications, informing the user
of any suspicious behavior and asking for confirmation before allowing the
operations to proceed.

3.3. Relinking and Recompilation

A number of systems have been built that provide alternate system interface semantics

for programs that have been relinked or recompiled. Some examples are:
"* The Multics system [Organick 72] provided dynamic program linking

facilities, which could be used to provide alternate versions of system
services at run time.

"* The Newcastle Connection [Brownbridge et al. 82] made multiple UNIX
systems appear to be a single system to programs that had been statically
linked with an alternate system call library.

"* Three modern UNIX systems, OSF/1 [OSF 90], SunOS version 4 [Sun 88a],
and UNIX System V.4 [AT&T 89] provide dynamic linking facilities, which
may be used to tailor the system services used by a program at run time.

"* Some thread systems are implemented as libraries that effectively provide
new instances of the system interface for each thread. This may be done
either to implement threads on top of a single-threaded system interface or
to multiplex multiple library-level threads on top of a potentially different
number of threads provided by the underlying system. For instance,
versions of the Mach C Threads [Cooper & Draves 88] package utilize both
schemes.

3.4. Interposition on Subset Interfaces

A number of other systems provide for partial system call interception or related

facilities. The most common type allows for interception of filesystem operations only.
Some examples are:

• The NFS filesystem interface [Walsh et al. 85, Sandberg et al. 85, Sun 86]
has been used to construct active agents that intercept filesystem
operations. The Sun NSE source control system [Sun 88b] is a good
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example of an agent utilizing the NFS filesystem mechanism to interpose
agents providing new filesystem semantics.

" The ITOSS system [Rabin & Tygar 87] allowed executable processes called
"sentinels" to dynamically extend the security model of a 4.2BSD
system [Joy et al. 83]. A sentinel is invoked to make access control
decisions whenever an access is attempted to a file which is guarded by the
sentinel.

"* The Watchdogs system [Bershad & Pinkerton 881 provided a mechanism
that allowed application processes to implement user-defined filesystem
semantics. It has been used to implement file compression and biff style
file watching.

"* The Taos operating system [McJones & Swart 87] for the Firefly [Thacker et
al. 87] provides a mechanism for dynamically adding new filesystems
implementations. System calls referencing files implemented by these
filesystems are translated into RPC calls on corresponding user space file
servers. This capability has been used to implement direct access to file
versions stored in the Vesta configuration management system [Swart
92, Brown 92]. Several other systems provide similar services.

Taos also provides a different facility that can be used to interpose on all
pathname references. This allows programs to both record and/or modify
all pathname references made by other programs [Swart 92].

3.5. Operating System Structuring Work

A number of other efforts have focused on different approaches to structuring operating

system implementations than the monolithic kernel approach. These typically seek to

provide a collection of logically distinct services implemented as a collection of servers.

These interfaces taken together may then be viewed as the "system interface". The

Accent [Rashid & Robertson 81] system took this approach.

Daniel Julin at CMU is currently investigating construction of generic operating system

components that can be configured together to support a variety of different operating

system interfaces and environments under Mach [Julin et al. 91, Guedes & Julin 91]. In

many ways, his work is complementary to my own. His research investigates means of

structuring and implementing flexible operating systems; my research provides a means

of providing diverse implementations of operating system features to existing programs.

Existing 4.3BSD programs could use agents constructed with my toolkit as an interface

to operating system services provided as part of Julin's work.

Finally, a related body of operating system structuring research has attempted to

explore new designs for operating systems and operating system interfaces that are well

suited for extensibility. Such systems as Choices [Campbell et al. 87] and

Upto [Druschel et al. 92, Druschel et al. 91] have explored using object-oriented
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interfaces and implementations to facilitate providing flexible and extensible operating

system services. The interposition toolkit uses similar techniques to attempt to provide

comparable flexibility and extensibility for an existing operating system interface as these

systems do for new system interfaces.

3.6. Overview of Past Agents and Conclusions

A large number of systems have provided low-level facilities sufficient to interpose user

code at the system interface. Both the number and types of interposition agents that
have been built using these far- ies have varied widely between the different systems.

Those agents that have been built can be broken down into five somewhat overlapping

categories:
1. Complete operating system emulations such as VM emulating OS/360 or

TSO, TENEX emulating TOPS-10, and RSEXEC emulating an Arpanet-
wide TENEX.

2. Debuggers and debugging facilities, such as those for CAL TSS, DTSS,
ITS, and SunOS.

3. System call trace facilities, such as those for TENEX, UNIX System V.4,
and SunOS version 4.

4. Adding new facilities to the operating system interface, as was done in
OS6, CAL TSS, and MS-DOS.

5. Providing enhanced implementations of the existing operating system
interface (often enhanced filesystem implementations), as was done in
CAL TSS, TENEX, the Newcastle Connection, NFS, ITOSS, Watchdogs,
Taos, and particularly in the Macintosh and MS-DOS.

Each of these interposition agents was constructed by hand; almost no code was

reused. In particular, whatever boilerplate code was necessary in order to intercept,

decode and interpret calls made to the raw system interface typically had to be

constructed for each agent. Whatever levels of abstraction that were necessary in order

to build each agent were typically constructed from scratch.

Nonetheless, despite these difficulties, a number of applications of interposition have

been built, taking advantage of the apparent flexibility and configurability provided by

utilizing a layered approach to system implementation. In particular, the fact that today

people pay real money for interposition agents that provide enhanced implementations

of operating system interfaces (see [Norton 90, Salient 91, Now 90, Symantec
91 a, Microsoft 87, Stac 92, Symantec 91 b, Trend 90] to name just a few) appears to

validate the claim that interposition can be a useful and effective system building

paradigm.
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This dissertation presents a toolkit that attempts to simplify the construction of

interposition agents. It does this by providing multiple structured views of the objects

present in the system interface, allowing agents to be written at whatever levels of
abstraction are appropriate to their particular functions, leveraging off of existing toolkit

code whenever possible. While the toolkit itself is specific to a particular system
interface, many of the techniques used should be applicable to other interfaces as well,

as discussed in Section 10.4.



Part II

Design and Implementation
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Chapter 4

Description of the Toolkit

4.1. Toolkit Overview

Diffet.nt interposition agents need to affect different components of the system call
interface in substantially different ways and at different levels of abstraction. For
instance, a system call monitoring/profiling agent needs to manipulate the system calls
themselves, whereas an agent providing alternate user filesystem views would prefer to
manipulate pathnames and possibly file descriptors. I believe that the failure to provide
such multi-layer interfaces by past system call interception mechanisms has made them
less useful than they might otherwise have b3en.

The base layer of the toolkit handles intercepting the system calls themselves. Such
operations as monitoring system call usage are done at this level. These facilities are
discussed in Chapter 5.

The second layer of the toolkit is structured around the primary objects provided by the
system call interface. In 4.3BSD, such objects include pathnames, file descriptors, pids,
and process groups. Such operations as pathname transformations, filesystem usage
monitoring, and process usage monitoring are done at this level.

A third set of toolkit layers focuses on secondary objects provided by the system call
interface, which are normally ac.:essed via primary objects. Such objects include files,
directories, symbolic links, devices, pipes, and sockets. Operations that are specific to
these secondary objects such as file encryption, directory transformations, etc. are done
by these layers.

The toolkit is implemented in C++ [Stroustrup 87] with small amounts uf C [Kernighan
& Ritchie 78] and assembly language as necessary. This allows the benefits of object-
oriented programming to be brought to bear. In particular, an object-oriented structure is
useful given that multiple different implementations of similar objects are present in most
interposition agents.

23
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4.2. The Toolkit Layers

The following section illustrates the different layers of the toolkit through examples of

their uses in specific agents. These layers are listed below in order of increasing levels

of abstraction:
"* Program Loader

"* System Call Interception, Numeric, Symbolic

"* Symbolic Trace

* Descriptor, Open Object, Pathname, Directory

These layers are presented through examples in the following section.

4.2.1. Program Loader

Application Program

Agent

Operating System Kernel or Agent

Figure 4-1: Loader used to load agent, application images

The first code that must be implemented in order to run an application under an

interposition agent is a program loader. This is used for two things:

1. It is used by an initialization program to load the executable agent image
into memory.

2. It is used by the agents to load executable application images into
memory.

A loacar must be written primarily because of an assumption present in the 4.3BSD

interface that the operating system loads all program images into memory; the loader

that is part of the execve () system call can not be used separately. Since agents need

to able to load program images without doing a complete exec, a loader had to be
provided by the toolkit. The loader is discussed further in Section 5.4. Figure 4-1

illustrates the use of the program loader by an initialization program that loads an agent

image into memory, which in turn loads an application program image.
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4.2.2. System Call Interception, Numeric, Symbolic Layers

Application Program

Provide sys interface Time Manipulation Agent

Numeric

Symbolic

Use sys interface

OperatingSystemKernelorAgent]t

Figure 4-2: Apparent time of day manipulated using symbolic toolkit layer

Figure 4-2 presents the internal structure of a simple agent that changes the apparent

time of day. In this and subsequent illustrations, unshaded boxes within the agent

represent code provided by the toolkit and shaded boxes represent code that is specific

to the particular agent. The structure of these example agents will be explored in order

to illustrate the layers provided 1y the interposition toolkit.

The lowest-level layers provided by the toolkit are those that intercept calls made on

the system interface and those that make calls on the next level of system interface.
These layers hide the particular mechanisms used to intercept system calls and signals,

those that are used to call down from an agent to the next level system interface, and

those that are used to send a signal from an agent up to the application program. This

layer also hides such details as whether the agent resides in the same address space as

the application program or whether it resides in a separate address space. These

facilities are discussed further in Sections 5.2, 5.3, and 5.5. These layers are indicated
in Figure 4-2 by the boxes labeled "Provide sys interface" and "Use sys interface". For
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a presentation of the primary interfaces provided by the base toolkit layer, see Section
B.1.

The next layer provided by the toolkit views the system interface as consisting of

vectors of untyped numbers. At this layer, for instance, a read () system call request is
represented as a vector of four numbers: a "3" for "SYSread", plus three other

numbers corresponding to the descriptor, the buffer address, and a count. This layer is
indicated in Figure 4-2 by the box labeled "Numeric". While the system interface can be
completely described by these sets of numbers, this is not a particularly useful level of

abstraction at which to write interposition agents. For a presentation of the primary

interfaces provided by the numeric system call toolkit layer, see Section B.2.

The next layer provided by the toolkit views the system interface as consisting of a set

of typed virtual functions (or "methods" if you prefer the Smalltalk [Ingalls 80]
terminology) with typed arguments on a system interface object. This layer is indicated
in Figure 4-2 by the box labeled "Symbolic". It is the first that provides sufficient
abstraction to make it easy to write simple interposition agents. For a presentation of the
primary interfaces provided by the symbolic system call toolkit layer, see Section B.3.

Indeed, using the symbolic system call layer, it is possible to change the apparent time

of day by implementing a derived version of the symbolic system call class that overrides
the gettimeofday() function, replacing it with one that provides agent-specific
behavior. The new gettimeofday () routine, plus initialization code, are all the agent-
specific code then necessary to implement the simple time manipulation agent in Figure
4-2. For examples of actual code from this agent, see Section D.1.

4.2.3. Symbolic Trace Layer

Figure 4-3 presents an agent that traces the execution of client processes, printing

each system call made and each signal received by a program. As before, unshaded
boxes within the agent represent code provided by the toolkit and shaded boxes
represent code that is specific to the particular agent. For examples of actual code from

this agent, see Section D.2.

The tracing agent is implemented by a derived version of the "Symbolic" system call

class that performs system call tracing. This derived class is indicated in Figure 4-3 by
the box labeled "Trace". As well as being used to provide a system call tracing agent,
this derived version of the symbolic system call class can be inserted into the class
hierarchies of other more complex agents that are derived from the symbolic system call

class. Thus, tracing versions of these agents can also be built through simple class
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Application Program
I'M ,!11 P7077= !I!J

Provide sys interface Syscall Trace Agent

Numeric

Symbolic ]
Trace

Use sys interface

Operating System Kernel or Agent

Figure 4-3: Tracing implemented as derived form of symbolic layer

composition. For instance, a version of the union directory agent (described in Section

4.2.4) that also traces all system calls was easily produced. This was done by building a

new version of the union directory agent identical the original version except that its

class hierarchy was modified by inserting the tracing form of the symbolic system call

class directly above the symbolic system call class normally used by the agent. This

capability has proven to be particularly useful when debugging new agents.

4.2.4. Descriptor, Open Object, Pathname, Directory Layers

Figure 4-4 presents an agent that implements an abstraction called a union

directory [Korn & Krell 90, Hendricks 901. Union directories provide the ability to view the

contents of lists of actual directories as if their contents were merged into single "union"

directories.
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Application Program

Provide sys interface j Union Directory Agent

Numeric

Symbolic

Descriptor

Open Object

Directory . r . nt...t.

Pathname

Use sys interface

F Operating System Kernel or Agent 1
Figure 4-4: Union directories use derived forms of pathname, directory objects

The union directory agent illustrates uses of several toolkit layers that provide object-

oriented views of particular abstractions present in the system interface. These layers

make it possible to write derived classes that directly modify the behavior of these

abstractions themselves, rather than having to write new versions of every system call

that uses the abstraction in order to accomplish the same effect.

The two main system interface abstractions whose behavior is modified by the union

directory agent are pathnames (indicated by the "Pathname" box in Figure 4-4) and file

descriptors (indicated by the "Descriptor" box in Figure 4-4). The behavior of
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pathnames needs to be augmented since it must be possible to have names for a union
directories. Similarly, the behavior of descriptors needs to be augmented since a union
directory can be opened, and so it must be possible to have a descriptor for union
directories. Neither of these capabilities are implemented by the base system; both are
implemented by agent code that is specific to the union directory agent (indicated by the
shaded boxes in Figure 4-4). For a presentation of the primary interfaces provided by
the descriptor management and pathname management toolkit layers, see Sections B.4
and B.5, respectively.

Two other more specialized abstractions found in the toolkit are also used by the union
directory agent. The first is reference-counted open objects (indicated by the "Open
Object' box in Figure 4-4). This layer does the bookkeeping necessary to support
multiple references to the same object, such as those that are produced by dup (). The
second specialized toolkit abstraction used by the union directory agent is the directory
object. This object provides an implementation of open directories whose contents can
be listed. The primary interfaces for these toolkit classes are also presented in Sections
B.4 and B.5, respectively.

Given the toolkit objects described above, writing the union directory agent is relatively
straightforward. Most of the work is actually done by the underlying system and by the
default toolkit class implementations. Only the differences between the desired and the
default behavior need to be written. In particular, only two small derived classes needed
to be implemented for the union directory agent

The first of these classes maps client pathnames to either pathnames for normal
objects provided by the underlying system, or to references to union directory objects
implemented by the agent. This class is used by open () and other calls that use

pathnames. It is indicated by the "Map names" box in Figure 4-4.

The second of these constructs the logical contents of a union directory from the actual
contents of a list of underlying directories. This class is used by getdirentries ()
and related calls. It is indicated by the "Merge contents" box in Figure 4-4.

4.2. Toolkit Summary

The system interface interposition toolkit provides multiple views of the system
interface with multiple levels of objects that correspond to the abstractions present in the

system interface. This allows the behavior of these abstractions to be modified by
implementing derived versions of these classes. Agents can be written using those
toolkit components that are appropriate to the particular agent functions.
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The low-level toolkit layers upon which the higher-level toolkit layers described in this

chapter are built are described in Chapter 5. A complete list of toolkit modules and

classes is presented in Appendix B.



Chapter 5

Boilerplate

This chapter describes the lowest layers of the toolkit. These layers perform such

functions as agent invocation, system call interception, incoming signal handling,

performing system calls on behalf of the agent, and delivering signals to applications

running under agent code. Unlike the higher levels of the toolkit, these layers are

sometimes highly operating system specific and also contain machine specific code.

These low-level layers serve to hide these details, allowing agents to be written to more

general and better behaved interfaces, leaving the details to the toolkit.

This chapter describes the low-level toolkit layers that are specific to the Mach

2.5 [Accetta et al. 86, Baron et al. 90] implementation of the 4.3BSD [Leffler et al. 90]

system interface. Some aspects of these layers would differ when implemented for

different operating systems that support different system interface interception
mechanisms.

Different aspects of the toolkit boilerplate code will be described in subsequent

sections.

5.1. Agent Invocation

Interposition agents built with the interposition toolkit are separately compiled programs

that are statically linked to be loaded at a machine-specific location in high memory that
is typically not used by applications. A special program called "run", which is part of the

toolkit, is used to load an agent into a new address space, initialize its stack and

arguments, and start it running. 3

The arguments passed to an agent typically consist of the pathname of a program to

run and the program's arguments. If agent-specific arguments are also to be passed,

they typically precede the program name, and are separated from the program name

and arguments by a final agent-specific argument consisting of two dashes ("--").

3For a discussion of the dependencies of run upon non-4.3BSD features, see Section 8.1.
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After an agent has initialized itself, including parsing and acting upon any agent-

specific arguments, it typically performs an emulated execve () call using the program

name and arguments passed in by run. This runs the program using the system

interface provided by the interposition agent.

Two examples of agent invocation are as follows:

run trace.agent csh

run timex.agent 'July 4, 1976 00:00' -- xclock -u 1

For examples of agents in use, see Appendix E.

5.2. System Call Interception

Interposition agents must be able to accept system calls made by the applications

running on them. The interposition toolkit uses the Mach 2.5/3.0 system call interception

facility called "task setemulation o" tO redirect system calls made by applications

to interposition agents. The tasksetemulation () call accepts an address space

identifier4 , a system call number, and a handler routine address as parameters. It

causes some state to be saved and control to be passed to the handler routine

whenever the system call is made within the address space; child processes inherit a

parent's system call emulation state.

The toolkit registers handlers for system calls implemented by interposition agents.

These handlers save any necessary state, switch to an agent stack, and call the next

level of toolkit services which collects the system call arguments and passes the saved

state and system call information to code which interprets the system call. Once the

system call has been executed and these services eventually return, the handler

switches back to the application stack, restores any saved context information, and

passes control back to the application.

5.3. System Call Invocation

An interposition must be able to use the system interface as well as provide it. Thus, it

must be able to make system calls to the system interface implementation on which it is

running, even if the call being made is also being intercepted by the agent.

4Mach address spaces are identified by ports and are known as "tasks".



Chapter 5: Bollerplate 33

The interposition toolkit uses a Mach 2.5 facility called "htgunixsyscall ()," to
make system calls on the kernel 4.3BSD implementation on behalf of agents. The

htg-unix syscall () call takes a system call number, a vector of system call

arguments, and a vector for results as parameters and performs the system call, even if

it is currently being intercepted with tasksetemulation(). It is like the indirect

system call syscall (), except that it can be used for all system calls, including those

with non-standard parameter passing mechanisms such as wait () and

sigcleanup ).

Agents typically invoke services provided by the symbolic system call toolkit layer in

order to make system calls down to the next layer. These are then passed down

through the lower levels of the toolkit and are performed using htgunix syscall 0.

Agents can also make system calls in the usual fashion using the system call stubs
provided in the C library. Those which are not being intercepted by the agent go directly

to the next level. Those which are being intercepted cause the agent to be recursively

entered. The recursive entry is detected and the system call is performed using
htg-unix-syscall ().

It was very convenient to be able to make normal system calls from within agents. This
meant that agents could use normal library code whether or not the code happened to
make any system calls. For instance, this allowed the normal standard output routines

to be used from within the trace agent, instead of having to write new ones which

avoided making any system calls.

5.4. Loading Applications

Programs are loaded and run under 4.3BSD using the execve () system call. This

call clears the caller's address space, closes a subset of the descriptors, resets signal
handlers, reads the program file, loads the executable image into the address space,
loads the arguments onto the stack, sets the registers, and transfers control into the

loaded image. No facility is provided which loads an executable image without first

clearing the address space.

Since the agents reside in the same address spaces as the applications running on
them6 , the execve () call must be reimplemented by every agent to allow the

5The acronym HTG, introduced by Doug Orr, stands for Honest To God.

eFor a further discussion on co-resident agents, see Section 10.2.
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application's portion of the address space to be reloaded, while maintaining the agent's
portion. Also, since two other system calls (iocti () and fcntl ()) are used to supply
implicit close-on-exec parameters to execve (), these calls must be reimplemented by
all agents as well. Thus, the toolkit provides a user space implementations of
execve (), iocti (), and fcntl (), allowing application processes to be reloaded with

new executable images, while preserving the agents sharing their address spaces. The

same user space program loader is used by the execve () implementation as is used
by the run program discussed in Section 5.1.

Several additional system calls are required in order to individually perform the many
operations typically performed by execve (), such as clearing the process address
space, reading a program image, closing descriptors, and resetting signal handlers.
Unfortunately, these extra operations result in some performance loss relative to the
kernel-based implementation 7 .

5.5. Signal Handling and Delivery

Signals implicitly permeate the 4.3BSD interface. Many calls can implicitly cause
signals to be synchronously generated. Many calls provide atomicity guarantees with
respect to signals. Signals can interrupt blocked system calls. Returning from a signal
handler called when a system call was interrupted can either restart the call or cause it
to return an error code, depending upon a per-signal state flag. Another flag can cause
signal handlers to be called on a different stack. In short, faithfully implementing any
4.3BSD system call in user space requires faithfully implementing the 4.3BSD signal

mechanism in user space. The interposition toolkit provides a complete implementation

of the 4.3BSD signal mechanism.

To do this, the toolkit intercepts the system calls which manipulate signal state,
maintaining all application signal state within the toolkit. The toolkit also establishes
handlers for all signals being handled by the application, allowing incoming signals to be
coordinated with the rest of the signal implementation. For instance, this allows delivery

of asynchronously arriving signals to be deferred while agent code is running.

Since the toolkit intercepts all signals handled by the application, it must also perform
all signal delivery to the application. Thus, the toolkit provides an implementation of the
code which pushes a signal frame and invokes a signal handler, as well as the system
calls (sigreturn () and sigcleanup ()) which pop a signal frame and return from a

signal handler. The toolkit sets the signal action of any signal not handed by the

7For an analysis of low-level toolkit performance characteristics, see Sections 6.4.3 and 6.4.4.
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application to match the action requested by the application, allowing the underlying

system implementation to perform any resulting signal actions, such as suspending,

resuming, or killing the process.

Many of the toolkit signal facilities are independently callable, allowing agents to tailor

the behavior of the signal implementation, just as they are able to tailor the

implementation of the system calls. For instance, this capability is used by the trace

agent to print a trace message for each signal received.

5.6. Minimum Boilerplate Necessary

A moderate number of the 4.3BSD system calls must be reimplemented by all agents

built on top of the Mach 2.5 system call interception and invocation facilities, as

previously discussed in Sections 5.4 and 5.5. This is necessary in order to provide a

faithful emulation of the 4.3BSD interface 8 . This section provides a comprehensive list

and short discussion of these calls.

5.6.1. Process Management Calls

* execve (, execv ()
oforko, vfork()

The exec calls must be reimplemented in order to allow programs to be loaded without

disturbing the agents which share their address spaces, as per Section 5.4. The fork
calls must be reimplemented so that per-process agent state can be initialized for new

processes.

5.6.2. Calls Supplying Hidden Exec Parameters

"* ioctl ()
"* fcntl ()

These miscellaneous control calls must be reimplemented because they supply implicit

close-on-exec parameters to the exec calls via their FIOCLEX and FSETFD

subfunctions, respectively.

OFor a further discussion on the degree to which the system interface can be faithfully emulated, see
Section 10.1.
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5.6.3. Address Space Management Calls

ebrko, sbrk()

The address space management calls are reimplemented because they are dependent
upon state which is initialized by the exec calls. Specifically, the exec calls initialize the
location of the address space "break" between allocated and unallocated memory.
These calls fail to work properly when an exec call has not first been performed.

5.6.4. Signal Handling System Calls

e sigvec ()
e sigblock (, sigsetmask ()
e sigpause ()
e sigstack ()
* sigreturn ), sigcleanup ()

The signal calls be reimplemented so as to make it appear that signal delivery only
interrupts application code, as per section 5.5.
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Chapter 6

General Results

This chapter presents an assessment of how well the toolkit design goals were met.

As discussed in SectiGn 2.2, these goals were:
1. Unmodified System

2. Completeness

3. Appropriate Code Size

4. Performance

Each of these goals will be discussed in turn.

6.1. Unmodified System

6.1.1. Unmodified Applications

Agents constructed using the system interface interposition toolkit can load and run

unmodified 4.3BSD binaries. No recompilation or relinking is necessary. Thus, agents

can be used for all program binaries - not just those for which sources or object files

are available.

Applications do not have to be adapted to or modified for particular agents. Likewise, a

general agent loader program (which is discussed in Section 5.1) is used to invoke

arbitrary agents, which are compiled separately from the agent loader. Indeed, the

presence of agents should be transparent to applications. 9

" course, an application that is intent on determining if it is running under an agent probably can, if only
by probing memory or performing precise performance measurements. This topic is discussed more fully in
Section 9.2.

39
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6.1.2. Unmodified Kernel

Agents constructed using the system interface interposition toolkit do not require any
agent-specific kernel modifications. Instead, they use general system call handling
facilities, which are provided by the kernel, in order to implement all agent-specific
system call behavior.

The Mach 2.5 kernel used for this work contains a primitive that allows 4.3BSD system
calls to be redirected for execution in user space. Another primitive permits calls to be
made on the underlying 4.3BSD system call implementation even though those calls are
being redirected. These facilities are discussed further in Sections 5.2 and 5.3.

6.2. Completeness

Agents constructed using the system interface interposition toolkit can both use and
provide the entire 4.3BSD system interface. This includes not only the system calls, but
also the signals. Thus, both the downward path (from applications to agents and from
agents to the underlying system implementation) and the upward path (from the
underlying implementation to agents and from agents to applications) are fully
supported.

Completeness gives two desirable results:
1. All programs can potentially be run under agents. By contrast, if

completeness did not hold, there would have been two classes of
programs: those that used a restricted set of features that which could
handle, and those that used features which agents could not handle. The
interposition toolkit avoids these problems.

2. Agents can potentially modify all aspects of the system interface. Agents
are not restricted to modifying only subsets of the system behavior. For
instance, it would have been easy to envision similar systems in which
agents could modify the behavior of system calls, but not incoming
signals.1

0

1°The treatment of signals is presented in Section 5.5.
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6.3. Appropriate Code Size

Table 6-1 lists the source code sizes of three different agents, broken down into

statements of toolkit code used, and statements of agent specific code.11 These agents

were chosen to provide a cross section of different interposition agents, ranging from the

very simple to the fairly complex and using different portions of the interposition toolkit.

Each of these agents is discussed in turn.

Sizes of Agents

Agent Toolkit Agent Total
Name Statements Statements Statements

timex 2467 35 2502

trace 2467 1348 3815

union 3977 166 4143

Table 6-1: Sizes of agents, measured in semicolons

6.3.1. Size of the Timex Agent

The timex agent changes the apparent time of day, as discussed in Section 4.2.2. It

is built upon the symbolic system call and lower levels of the toolkit. The toolkit code

used for this agent contains 2467 statements. The code specific to this agent consists of

only two routines: a new derived implementation of the gettimeofday () system call

call and an initialization routine to accept the desired effective time of day from the

command line. This code contains only 35 statements.

The new code necessary to construct the timex agent using the toolkit consists only

of the implementation of the new functionality. Inheritance from toolkit objects is used to

obtain implementations of all system interface behaviors that remain unchanged.

6.3.2. Size of the Trace Agent

The trace agent traces the execution of client processes, printing each system call

made and signal received, as discussed in Section 4.2.3. Like the timex agent, it is

built upon the symbolic system call and lower levels of the toolkit, which contain 2467

statements. However, the code specific to this agent is much larger, containing 1348

statements. The reason for this is simple: unlike the timex agent, the new work of the

"IINote: The actual metric used was to count semicolons. For C and C++, this gives a better measure of
the actual number of statements present in the code than counting lines in the source files.
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trace agent is proportional to the size of the entire system interface. Derived versions
of each of the 114 4.3BSD system calls (which are listed in Appendix A and summarized
in Table A-i) plus the signal handler are needed to print each call name and arguments.
The new code contains less than 12 statements per system call, 10 of which typically
consist of:

* 1 routine declaration
* 1 variable declaration
* 2 calls to prepare for output (1 before and 1 after the system call)
* 2 calls to perform output (1 before and 1 after)
* 2 calls to flush output (1 before and 1 after)
* 1 return statement
* 1 call to make the system call itself

As with the timex agent, the new code necessary to construct the trace agent using
the toolkit consists only of the implementation of the new functionality. Inheritance from
toolkit objects is used to obtain implementations of all system interface behaviors that
remain unchanged.

6.3.3. Size of the Union Agent

The union agent implements union directories, which provide the ability to view the
contents of lists of actual directories as if their contents were merged into single "union"
directories, as discussed in Section 4.2.4. It is built using toolkit objects for pathnames,
directories, and descriptors, as well as the symbolic system call and lower levels of the
toolkit. The toolkit code used for this agent contains 3977 statements. The code
specific to this agent consists of three things: a derived form of the pathname object that
maps operations using names of union directories to operations on the underlying
objects, a derived form of the directory object that makes it possible to list the logical
contents of a union directory via getdirentries () and related calls, and an
initialization routine that accepts specifications of the desired union directories from the
command line. Yet, this new code contains only 166 statements.

The new code necessary to construct the union agent using the toolkit consists only
of the implementation of the new functionality. As with the other agents, inheritance
from toolkit objects is used to obtain implementations of all system interface behaviors

that remain unchanged.



Chapter 6: General Results 43

6.3.4. Size Results

The above examples demonstrate several results pertaining the code size of agents
written using the interposition toolkit. One result is that the size of the toolkit code
dominates the size of agent code for simple agents. Using the toolkit, the amount of
new code to perform useful modifications of the system interface semantics can be
small.

Furthermore, the amount of agent specific code can be proportional to the new
functionality being implemented by the agent, rather than proportional to the number of
system calls affected. For instance, even though the union directory agent needs to
change the behavior of all 30 calls that use pathnames, and all 48 calls that use
descriptors, or 70 calls in all (eight of which use both)12, it is written in terms of toolkit
objects that encapsulate the behavior of these abstractions, rather than in terms of the
system calls that use them. Thus, the agent specific code need only implement the new
functionality since the toolkit provides sufficient underpinnings to make this possible.

Finally, there can be substantial code reuse between different agents. All the agents
listed above were able to use the symbolic system call and lower levels of the toolkit,
consisting of 2467 statements. Both the union and dfs_trace 13 agents, as well as
others also described in Appendix C, are also able to use the descriptor, open object,
and pathname levels of the toolkit, consisting of 3977 statements. Rather than
modifying an implementation of the system interface in order to augment its behavior,
the toolkit makes it possible to implement derived versions of the base toolkit objects,
allowing the base toolkit objects that implement the system interface to be reused.

A more detailed look at toolkit and agent sizes is presented in Appendix F.

6.4. Performance

Sections 6.4.1 and 6.4.2 discuss the performance implications of running applications
under interposition agents. Sections 6.4.3 and 6.4.4 discuss the performance of low-
level operations used to implement interposition. For a further discussion of agent
performance, see Section 7.5.

12See Appendix A and Table A-1 for details.

13Th. dfs_trace agent is described in Chapter 7.
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6.4.1. Application Performance Data

This section presents the performance of running two applications under several

different agents. The two applications chosen differ both in their system call usage and

their structure: One makes moderate use of system calls and is structured as a single

process; the other makes heavy use of system calls and is structured as a collection of

related processes. Likewise, the agents chosen range from very simple to fairly
complex. The results are discussed in Section 6.4.2.

6.4.1.1. Performance of Formatting This Document

Table 6-2 presents the elapsed time that it takes to format a preliminary draft of this

document with Scribe [Reid & Walker 80] on a VAX 6250 [Digital 81 b] both using no

agent and when run under three different agents. In each case, the time presented is

the average of nine successive runs done after an initial run from which the time was

discarded.

This task requires 716 system calls. When run without any agents, it takes 131.5

seconds of elapsed time.

Format this document

Agent NameI Seconds I% Slowdown

None 131.5 -

timex 132.0 0.5%

tra,-e 135.0 2.5%

union 136.5 3.5%

Table 6-2: Time to format this document

When run under the simplest agent, timex, an additional half second of overhead is

added, giving an effective additional cost of under one half percent of the base run time.

When run under trace, an extra 3.5 seconds of overhead are introduced. Furthermore,

when run under union, the most complex agent considered, there is only an additional

5.0 seconds, giving an effective agent cost of 3.5% of the base run time.

It comes as no surprise that trace, while conceptually simple, incurs perceptible

overheads. Each system call made by the application to the trace agent results in at

least an additional two write () system calls in order to write the trace output.14

"4Trace output is not buffered across system calls so it will not be lost if the process is killed.
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6.4.1.2. Performance of Compiling C Programs

Table 6-3 presents the elapsed time that it takes to compile eight small C programs

using Make [Feldman 79] and the GNU C compiler [Stallman 90] on a 25MHz Intel

486 [Intel 90]. In each case, the time presented is the average of nine successive runs

done after an initial run from which the time was discarded.

To do this, Make runs the GNU C compiler, which in turn runs the C preprocessor, the

C code generator, the assembler, and the linker for each program. This task requires a
total of 11877 system calls, including 64 fork( /execve () pairs. When run without

any agents, it takes 16.0 seconds of elapsed time.

Make 8 programs

Agent Name I Seconds I % Slowdown

None 16.0 -

timex 19.0 19%/O
trace 33.0 107%

union 29.0 820/6

Table 6-3: Time to make 8 programs

When run under the simplest agent, timex, an additional three seconds of overhead

are added, giving an effective additional cost of 19% of the base runtime. When run

under union, which interposes on most of the system calls and which uses several
additional layers of toolkit abstractions, the additional overhead beyond the no agent

case is 13.0 seconds, giving an effective additional cost of 82%/6 of the base runtime.
When run under trace, an additional 17.0 seconds of run time are incurred, yielding a

slowdown of 107%.

Again, it comes as no surprise that union introduces more overhead than timex. It
interposes on the vast majority of the system calls, unlike timex, which intemooses on

only the bare minimum 15 plus gettimeofday (). Also, union uses several additional
layers of implementation abstractions not used by timex.

As with the previous application, the larger slowdown for trace is unsurprising. Given
the large number of system calls made by this application, the total performance
becomes dominated by the output time required to write the trace log.

1sFor a discussion of the system calls that must be intercepted by each agent, see Section 5.6.
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An analysis of low-level performance characteristics is presented in Sections 6.4.3 and
6.4.4. Performance of an agent that performs file reference tracing is discussed in
Section 7.5.

6.4.2. Application Performance Results

The application performance data demonstrates that the performance impact of
running an application under an agent is very agent and application specific. The
performance impact of the example agents upon formatting this documer.t was

practically negligible, ranging from 0.5% for the timex agent to 2.5% for the trace
agent. However, the performance impact of the example agents upon making the eight
small C programs was significant, ranging 19% for timex to 107% for trace.
Unsurprisingly, different programs place different demands upon the system interface,
and different agents add different overheads.

The good news is that the additional overhead of using an agent can be small relative
to the time spent by applications doing actual work. Even though no performance tuning
has been done on the current toolkit implementation, the overheads already appear to

be acceptable for certain classes of applications and agents.

Furthermore, the agent overheads are of a pay-per-use nature. Calls not intercepted
by interposition agents go directly to the underlying system and result in no additional
overhead 16.

Finally, even though some performance impact is clearly inevitable, presumedly the

agent will have been used because it provides some benefit For instance, agents may
provide features not otherwise available, or they may provide a more cost-effective
means of implementing a desired set of features than otherwise available. The
performance "lost" by using an interposition agent can bring other types of gains.17

6.4.3. Micro Performance Data

This section presents the performance of several low-level operations used to
implement interposition and of several commonly used system calls both without and
with interposition. The results are discussed in Section 6.4.4.

'6For a discussion of the system calls that must be intercepted by each agent, see Section 5.6.
17For a discussion on the tradeoffs of using interposition agents, see Section 12.3.
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Table 6-4 presents the performance of several low-level operations used to implement
interposition. All measurements were taken on a 25MHz Intel 486 running Mach 2.5
version X144. The code measured was compiled with gcc or g++ version 1.37 with
debugging (-g) symbols present.

Performance of Low Level Operations

Operation p.sec

C procedure call with 1 argument, result 1.22

C++ virtual procedure call with 1 argument, result 1.94

Intercept and return from system call 30

htg-unixsyscall () overhead 37

Table 6-4: Performance measurements of individual low-level operations

Table 6-5 presents the performance of several commonly used system calls both
without interposition and when a simple interposition agent is used. The interposition

agent, time_symbolic, intercepts each system call, decodes each call and arguments,

and calls C++ virtual procedures corresponding to each system call. These procedures
just take the default action for each system call; they make the same system call on the
next level of the system (the instance of the system interface on which the agent is being
run). This allows the minimum toolkit overhead for each intercepted system call to be
easily measured. As before, these measurements were taken on a 25MHz Intel 486

running Mach 2.5 version X144; measured code was compiled with gcc or g++ version

1.37 with debugging (-g) symbols present.

Performance of System Calls

Operation itsec with ,xsec with psec
no time_symbolic toolkit

agent agent overhead

getpid() 25 170 145

gettimeofday () 47 214 167

fstat() 54 220 166
read() I K of data 370 579 209

stat () with 6 ufs name components 892 1101 209

fork 0, wait 0, and _exit() 10350 22350 12000

execve () with 6 ufs name components 9720 20000 10280

Table 6-5: Performance measurements of individual system calls
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6.4.4. Micro Performance Results

Two times from Table 6-4 are particularly significant. First, it takes 301sec. to intercept

a system call, save the register state, call a system call dispatchirng routine, return from

the dispatching routine, load a new register state, and return from the intercepted system

call. This provides a lower bound on the total cost of any system call implemented by an
interposition agent.

Second, using htg_unix._syscall ()18 to make a system call adds 37lisec. of

overhead beyond the normal cost of the system call. This provides a lower bound on the

additional cost for an agent to make a system call that otherwise would be intercepted by

the agent.

Thus, any system call intercepted by an agent that then makes the same system call

as part of the intercepted system call's implementation will take at least 671±sec. longer

than the same system call would have if made with no agent present. Comparing the

67lisec. overhead to the normal costs of some commonly used system calls (found in

Table 6-5) helps puts this cost in perspective.

The 671isec. overhead is quite significant when compared to the execution times of

simple calls such as getpid () or gettimeofday (), which take 25psec. and 471isec.,

respectively, without an agent. It becomes less so when compared to read () or

stat 0, which take 3701isec. and 8921isec., respectively, to execute in the cases

measured without an agent. Hence, the impact will always be significant on small calls

that do very little work; it can at least potentially be insignificant for calls that do real

work.

In practice, of course, the overheads of actual interposition agents are higher than the

67gzsec. theoretical minimum. The actual overheads for most system calls implemented

using the symbolic system call toolkit level (see Section 4.2.2) range from about 140 to

2101.isec., as per Table 6-5. Overheads for fork() and execve () are significantly

greater, adding approximately 10 milliseconds to both, roughly doubling their costs.

Some of the reasons for the higher execve () costs are discussed in Sections 5.4 and

5.6. While the current overheads certainly leave room for optimization (starting with

compiling the agents with optimization on), they are already low enough to be

unimportant for many applications and agents, as discussed in Section 6.4.2.

1 PFor a discussion of htg-unix_syscal 1 (), see Section 5.3.
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Finally, it should be stressed that these performance numbers are highly dependent

upon the specific interposition mechanism used. In particular, they are strongly shaped

by agents residing in the address spaces of their clients. See Section 10.2 for a

discussion on the possible implications of using other types of interposition mechanisms.
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Chapter 7

Comparison to a Best Available Implementation

This chapter compares a best available implementation of a task that was implemented
without benefit of the toolkit witn an equivalent interposition agent constructed using the
toolkit that performs the same task. In particular, this chapter compares a set of special
purpose distributed file reference tracing tools known as DFSTrace [Mummert &
Satyanarayanan 92], which were produced by Uly Mummert of the
Coda [Satyanarayanan et al. 90, Kistler & Satyanarayanan 92] filesystem project, with
an agent that was built using the system interface interposition toolkit to generate
equivalent traces.

The DFSTrace file reference tracing tools were chosen as a basis of comparison for a
number of reasons.

"* They implement an extension to the behavior of the system interface. In
particular, they add the ability to log use of portions of the system interface.
Thus, this task should be able to be implemented using the system interface
interposition toolkit.

"* They are a real system in actual use. This provides a basis for comparison
against a real system that was independently built, rather than just
comparing toolkit agents against systems that were built only for purposes
of comparison. Thus, a toolkit agent can be compared against a real
system, rather than just a straw man implementation.

"* They have a high quality of implementation. Their implementation has been
optimized so as to minimize the impact that they make upon overall system
behavior. Thus, a toolkit agent can be compared against a best available
equivalent implementation.

7.1. The DFSTrace file reference tracing tools

This section presents a brief overview of the structure of the DFSTrace file reference
tracing tools (Mummert & Satyanarayanan 92]. Figure 7-1 depicts the use of these tools.

The DFSTrace file reference tracing tools consist of several different components,
which taken together provide the ability to produce traces of file usage on multiple hosts,
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Figure 7-1: Structure of DFSTrace file reference tracing tools

and to later analyze these traces with a package of trace analysis tools. These

componet, "re described below.

7.1.1. Kernel Logging Code

The DFSTrace tools use a version of the Mach 2.5 kernel that has been modified to

add logging code to each of the filesystem related system calls. Each such system call

performed results in a variable-length structured log record being written to an internal

kernel buffer. The arguments and results of each logged system call are included the

log record.

Each log record is prefaced by a timestamp, process ID, and other identifying

information. References to open files are logged as kernel open file table numbers,

rather than as process specific file descriptor numbers. Also, system calls are counted

on a kernel wide basis, rather than on a per-process basis.
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7.1.2. Kernel Buffer Management Code

The DFSTrace tools utilize a kernel device driver that manages a buffer of log records.
This driver buffers records accepted from the kernel logging code and allows blocks of
these records to be read by user code via the /dev/dfstrace device. Operations for
all processes in the system are recorded in the order performed.

7.1.3. Per-Host Data Collection Program

A data collection program is run on each host on which tracing is being performed to
extract trace records from the kernel. This program reads blocks of trace records from
the kernel trace record buffer via the /dev/dfstrace device using one
LWP [Satyanarayanan 91] library lightweight process. It then transmits these records
via the internet using an RPC2 [Satyanarayanan 91] interface to the network data
logging server from a different lightweight process. Trace records are transmitted over
the network instead of being written to local files so that traces collected on a potentially
large set of machines can be recorded by a central data logging machine. This also
minimizes the impact of tracing on filesystem usage.

7.1.4. Network Data Logging Server

The DFSTrace tools use a server to write file reference trace data to log files. The
server can accept connections from multiple per-host data collection programs. Thus, a
single logging server is typically used to log the trace data from a number of different

machines.

7.1.5. Data Analysis Tools

A number of different programs exist for performing analysis of logged file reference
trace data files. These tools perform such functions as extracting file usage information
and access patterns, identifying periods of high activity, providing breakdowns of
processes by user, and providing summaries of operations used.
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7.2. The DFSTrace Agent

This section presents an overview of the structure of the dfs_trace agent, which was

built using the system interface interposition toolkit. The dfs_trace agent is intended

to provide equivalent functionality to the DFSTrace file reference tracing tools so that a

realistic comparison of an agent to a best available implementation can be performed.

Figure 7-2 depicts the use of this agent.

Workstation

File Reference
Trace Data
Analysis Tools

UserSpacePrograms File Reference

Trace

DFS Trace Per-Host Log Files
Agent Log Merge
Instances Server _

F 1 Network
Operating System Implementation Data LoggingServer

Client Machine Server Machine

Figure 7-2: Structure of dfsjtrace agent

The dfs_trace agent perforn,. DFSTrace style file reference traces by replacing the

kernel logging code, kernel buffer management code, and per-host data collection

program of the DFSTrace file reference tracing tools with two components: an agent

and a per-host log merge server. These components are described below. The

DFSTrace network data logging server and data analysis tools continue to be used and

require no modifications.

7.2.1. DFSTrace Agent

The original DFSTrace implementation uses kernel code that logs the traced system

calls made by all processes to an in-kernel buffer. The dfs trace agent replaces this
kernel code with agent code that logs the traced system calls made by processes run

under the agent to a per-host log merge server. For each logged call, the agent
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constructs a log record with an equivalent structure to that which would have been

constructed by the kernel logging code. It then sends the log record to the per-host log
merge server using a MIG [Draves et al. 89] interface via Mach IPC [Young et al.

87, Draves 90].

7.2.2. Per-Host Log Merge Server

The log merge server collects log records from all dfs_trace agents monitoring

processes on that host and merges them together into a single buffered stream of log

records. It then transmits these records via an RPC2 interface to the DFSTrace network

data logging server in the same way that the per-host data collection program did. Thus,

the per-host log merge server replaces both the kernel buffer management code and the

per-host data collection program.

As well as simply collecting log records, the log merge server synthesizes several

values that the DFSTrace kernel logging code would have taken from kernel data

structures. This is described in the following section.

7.3. Simulating Kernel Dependencies

There are number of ways in which the QFSTrace file reference tracing tools implicitly

depend upon the tracing being performed inside the kernel. This section examines
these dependencies, and describes how these situations are handled by the
dfs trace agent and log merge server.

7.3.1. Running Time Counter

The DFSTrace kernel logging code assumes that the time of day is represented as a
free running counter that can be directly read in the manner described by
Lamport [Lamport 88]. This can typically be done with two fetches, two stores, another
two fetches, and a compare; infrequently an additional fetch and store are required. This
method is used in a number of places by the kernel tracing code to obtain the time of
day.

The dfs_trace agent uses the gettimeofday() call provided by the underlying
system interface implementation in order to obtain the time of day. It must do this
because no free running time counter is typically available in user space [Black 90], and
in particular, none is available on the Intel 386 [Intel 86] or 486 [Intel 90], the machines
on which the dfs_trace agent is run. Thus, the assumption of a running time counter
can be removed, albeit at a much higher cost.
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7.3.2. Virtual File System File IDs

The DFSTrace file reference tracing tools assume that a filesystem type and file

system specific file identifier can be obtained for all referenced filesystem objects. This

allows objects resident in the different types of filesystems supported by Mach 2.5

through the virtual filesystem interface (VFS) [Kleiman 86] to be differentiated by

filesystem type. (Types supported are the Berkeley Fast Unix File System

(UFS) [McKusick et al. 84], the Andrew File System (AFS) [Howard et al. 88], the Sun

Network File System (NFS) [Sun 86], and the Coda File System [Satyanarayanan et al.

90].) Furthermore, for AFS and Coda files, the file identifier has a high probability of

uniquely identifying files present in their respective distributed file systems across

multiple machines. File identifiers are included in trace records both for objects explicitly

referenced by traced system calls, and optionally for all components of all referenced

pathnames.

The dfs_trace agent uses the stat () and fstat () calls provided by the

underlying system19 to obtain device and inode numbers for pathnames and open
objects referenced by descriptors. These are used to construct trace file identifiers that

describe all files as if they were UFS files. These identifiers will be the same as those

built by the DFSTrace tools for UFS files, and will differ for all other filesystem types.

Uniqueness of the file identifiers across machines is consequently lost, while uniqueness

of file identifiers within a single machine is still preserved. While global uniqueness is

potentially useful, in practice this property was never used [Mummert 92].

One property of file identifiers which was used by the original DFSTrace tools that the

dfs-trace agent does not preserve is the ability to identify the filesystem type of each

traced filesystem object. Some of the DFSTrace data analysis tools produced

breakdowns of filesystem activity by filesystem type. All activity reported by the

dfs_trace agent appears to have come from UFS filesystems. The reason for this is

that the 4.3BSD interface hides filesystem specific characteristics beneath a generic
filesystem interface. The generic filesystem interface makes it possible for programs to

operate the same on many different types of filesystems; indeed, programs can not

distinguish between filesystem types using normal 4.3BSD facilities. Thus, the

dfs_trace agent attempts to make a reasonable approximation by assuming that all

files are UFS files.

"9Oney calls made by applications are traced; calls made by the agent are not.
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7.3.3. Virtual File System File Attributes

The DFSTrace kernel logging code assumes that file attributes such as type, size,
owner, and reference count can be obtained directly from virtual filesystem [Kleiman 86]
data structures for all referenced filesystem objects. File attribute information is included
in trace records for most of the traced calls. For example, type, size and owner are
logged for open () calls and size is logged for close () calls.

The dfs_trace agent uses the stat () and fstat () calls provided by the
underlying system to obtain attribute information for pathnames and open objects. This
is approach is necessary since file attribute information is not available from in-memory
data structures in user space. Nonetheless, this approach allows the assumption that
attributes can be obtained from in memory data structures to be removed, albeit at a
much higher cost.

7.3.4. Quick Access to Miscellaneous Information

The DFSTrace kernel logging code assumes that other miscellaneous process
information can be obtained directly from kernel data structures. For instance, it
assumes that the process ID and current user ID can be obtained from memory. Such
information is included in all trace records. The current process ID is one component of
the record header included in all trace records; the current user ID is logged for the
fork () call.

The dfs_trace agent uses calls provided by the underlying system interface
implementation to access such miscellaneous information. For instance, it uses the
getpid () and getuid () calls to obtain the current process and user IDs. The agent
keeps a cached copy of the current process ID in memory which is initialized in each
child at process creation time. Thus, while an initial performance penalty is paid to
access the process ID, the cost is amortized over each access. While the agent does
not currently do so, caching could also be used to improve access to other pieces of
miscellaneous state in user space as well.

7.3.5. Per-Component Pathname Lookup Tracing

The DFSTrace kernel logging code instruments the internal kernel pathname
operations in order to be able to provide per-component traces of all pathname lookup
operations. This exposes such operations as descending into the directory hierarchy,
following symbolic links, and crossing mount points, which are normally performed
transparently.
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The dfs_trace agent simulates pathname lookup operations on a per-component
basis by explicitly traversing each pathname presented to the system interface. The
istat () call provided by the underlying system is used on each path component to
retrieve file identifier information and symbolic link values, and to determine when mount
points are being crossed. Thus, per-component pathname lookup traces can be
simulated by the agent, although at a much higher cost than is possible in the kernel.

7.3.6. Interleaved Traces of Multiple Processes

The DFSTrace kernel logging code records traced calls in the precise order executed
on a uniprocessor2° since the logging is done as part of the actual execution.
Subsequent components of the DFSTrace file reference tracing tools count on this
ordering.

The dfs_trace agent and the per-host log merge server simulate this property by
logging trace data recorded from each process by the dfs trace agent in the single
per-host log merge server. Each log record is immediately sent from the agent to the
single log merge server, which buffers them in the order received. Since Mach IPC ports
maintain a FIFO queueing discipline, this provides a reasonable approximation of the
actual order of execution. Small ordering inconsistencies could still result from the agent
being context switched between execution of a call and the logging of it. If it was
deemed important to do so, the log merge server could sort all incoming log records by
the enclosed timestamp.

7.3.7. Kernel Global File Table

The DFSTrace file reference tracing tools log all references to file descriptors as kernel
global file table indices, rather than per-process descriptor numbers. This makes it
easier to accumulate statistics on uses of actual objects, rather than on particular
references to the objects, which may be aliased to different descriptor numbers within a
single process, or may come from entirely different processes. Several operations such
as open (), read (), write (), seek (), and close () update and/or log open object
usage statistics, which are maintained on a kernel-wide basis.

The dfs_trace agent and the per-host log merge server simulate the kernel global
file table and operations upon it so as to be able to provide equivalent traces to those
produced by the DFSTrace tracing tools. They do so in the following manner.

2°The kernel logging code does not contain sufficient locking code to execute correctly on a
multiprocessor (Mummert 92].
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The dfstrace agent uses a specialization of the Open Object layer of the

interposition toolkit to open object statistics on a per-process basis independent of

particular process descriptor numbers. For instance, this means that toolkit code

handles descriptor allasing and renaming caused by such calls as dup (), etc.

Specialized forms of such operations upon open objects such as read(), write(),

seek (), and close () update per-process open object statistics.

Furthermore, when a new open object is created by such operations as open(), a

per-host unique open object ID is created and associated with that open object. This

unique ID consists of the creating process ID and a counter. This unique ID is inherited

across fork () operations, enabling operations from different processes through

inherited descriptors to be identified as operating on the same object. Each log record

that would have contained a kernel global file table index is augmented with the

corresponding unique open object ID when sent to the log merge server.

The per-host log merge server hashes each unique open object ID to a simulated

kernel global file table index. It then deposits the resultant simulated file table index into

the received log record constructed by the agent. Per-process statistics are merged to

form per-host statistics. Thus, the dfs_trace agent and log merge server together are

able to simulate the kernel global file table and the statistics that are kept in association

with it by the DFSTrace file reference tracing tools.

In comparison to some of the other kernel features that are simulated by the

dfs_trace agent and log merge server, the kernel global file table is actually relatively
inexpensive to simulate. While a substantial amount of bookkeeping must be done, no

extra system calls need to be performed.

7.3.8. Per-Machine System Call Counts

The DFSTrace tile reference tracing tools maintain traced system call counts on a

kernel wide basis. Running system call tallies are periodically logged, in addition to the

usual log records associated with each individual logged system call.

The dfs_trace agent and log merge server simulate the kernel wide system call

counts in a similar manner to the global file table simulation. Running counts are kept by

the agent on a per-process basis. The log merge server merges the per-process counts

to form per-host counts. As it is with the global file table, simulating the per-machine

system call counts is relatively inexpensive since it only requires additional bookkeeping

in memory and no additional system calls.
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7.4. Software Engineering Comparisons

This section compares the two tracing implementations based on several software

engineering criteria. Criteria used include code size, modularity, implementation time,

and code difficulty.

7.4.1. Code Size

Table 7-1 presents several measures of the amount of code in those portions of the

DFSTrace file reference tracing tools that were replaced by the dfs_trace agent and

the companion log merge server. Kernel and user space code are presented on

separate lines. As in Section 6.3, the actual metric used for statements was to count

semicolons. A second set of counts is presented that also includes the number of C

preprocessor directives (e.g., #define, #include, #if, #endif, etc.). Table 7-2

presents the same measures for the code that repla.,ed it. Agent and server code are

likewise presented on separate lines.

Original DFSTrace Tracing Implementation

Component Statements Statements + Files
Preprocessor

Directives

Kernel logging and buffer management 919 1321 30

Per-host data collection program 264 306 5

Totals 1183 1627 35.

Table 7-1: Code size for original OFSTrace tracing implementation

Interposition Agent Tracing Implementation

Component Statements Statements + Files
Preprocessor

Directives

dfs_trace agent 1040 1209 18

Per-host log merge server 317 375 6

Totals 1357 1584 24

Table 7-2: Code size for interposition agent tracing implementation

Several observations can be made by comparing the two tables:

* Code Size: The two implementations contain roughly the same amount of
code. This is unsurprising since they perform equivalent functions. The
interposition agent implementation contains 15% more statements than the
original. This is mostly due to the additional code needed to simulate kernel
features used by the original implementation, as described in Section 7.3.
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* Conditionals: When C preprocessor directives are included in the
statement counts the two implementations still contain roughly the same
amount of code, but in this case the interposition agent implementation
actually contains 3% fewer statements than the original. This is mostly due
to the large number of compile-time conditionals in the original
implementation, which allow the kernel to be built with tracing disabled. No
such conditionals are needed in the agent, since unlike the kernel tracing
implementation, the agent implementation consumes no additional
resources (other than disk space) and adds no overheads when not in use.

Table 7-3 presents several measures of the amount of code in those portions of the

DFSTrace file reference tracing tools that are used with both the original and the

interposition agent implementation of the tracing code. This is presented to provide a

more complete view of the total size of the DFSTrace file reference tracing tools.

Code Used With Both Tracing Implementations

Component Statements Statements + Files
Preprocessor

Directives

Network data logging server 395 431 2

Miscellaneous logging related files 344 460 9

Data analysis support library 4531 4962 42

Data analysis programs 1610 1757 11

Totals 7144 7916 69

Table 7-3: Code size for tracing tools used with both implementations

Finally, Table 7-4 summarizes these results, separately presenting sizes for those

portions of the original DFSTrace file reference tracing tools that are replaced by the

dfs_trace interposition agent and log merge server. Grand totals for the entire original

DFSTrace file reference tracing tools are then given.

Synopsis of Original DFSTrace Tracing Implementation

Component Statements Statements + Files
Preprocessor

Directives

Kernel logging and buffer management 919 1321 30

Per-host data collection program 264 306 5

Code used by both implementations 7144 7916 69

Grand Totals 8327 9543 104

Table 7-4: Code size synopsis of original tracing implementation



Chapter 7: Comparison to a Best Available Implementation 62

An important fact apparent from the summary is that a relatively small portion of the

original DFSTrace file reference tracing implementation is replaced by the equivalent

interposition agent. Depending upon which measure is used, only 14% (of statements)

or 17% (of statements and preprocessor directives) of the total system is actually

replaced. This fact is pertinent to the upcoming discussions of implementation time and

code difficulty in Sections 7.4.3 and 7.4.4.

7.4.2. Modularity

Table 7-5 presents several properties of the sources for those portions of the

DFSTrace file reference tracing tools that were replaced by the dfs trace agent and

the companion log merge server. Table 7-6 presents the same measures for the code

that replaced it. Agent and server code are likewise presented on separate lines.

Original DFSTrace Tracing Implementation

Component Machine Files Total
Dependent Modified Files

Files

Kernel logging and buffer management 12 26 30

Per-host data collection program 0 0 5

Totals 12 26 35

Table 7-5: File properties for original DFSTrace tracing implementation

Interposition Agent Tracing Implementation

Component Machine Files Total
Dependent Modified Files

Files

dfs_trace agent 0 0 18

Per-host log merge server 0 0 6

Totals 0 0 24

Table 7-6: File properties for interposition agent tracing implementation

Several observations can be made by comparing the two tables:
Modularity: The interposition-based file reference tracing implementation
has substantially higher modularity than the original kernel-based
implementation, as evidenced by using only 60% as many files. This is
largely due to the hooks necessary to instrument the kernel for file reference
tracing being scattered throughout 13 different files; in the dfs_trace
agent logging calls are made in only 3 files.
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* Code Modification: While the original implementation required changing
26 kernel files, the dfs trace agent code consists only of new files.
Rather than changing an existing implementation, it is implemented as
derived versions of base objects supplied by the toolkit.

* Machine Dependence: The original implementation contains 12 machine
dependent files. These actually break down as four files for each of three
supported machine types. While the traces themselves are machine
independent, the structure of the kernel requires machine dependent code
to be implemented for each machine type. By contrast, the dfs trace
agent contains no machine dependent code. The underlying machine
dependencies are hidden by the interposition toolkit.

7.4.3. Implementation Times

This section presents estimates of the times spent implementing the original DFSTrace

file reference tracing tools and the dfs_trace interposition agent and accompanying

log merge server. A discussion of the difficulty of implementing both sets of file

reference tracing tools based on these times is presented in Section 7.4.4.

7.4.3.1. Implementation Times for Original DFSTrace Tools

Table 7-7 presents very rough estimates of the amount of time spent writing and

debugging the original DFSTrace file reference tracing tools. These estimates were

gathered during an interview [Mummert 92] with the author, Lily Mummert, and are

based both on her working notes made during the implementation effort and her memory

of it. The corresponding amounts of time spent on the dfs_trace interposition agent

and accompanying log merge server are presented in Table 7-8 later in this section.

Very rough estimates of time to implement DFSTrace tools

Task Estimated Estimated
% Time Spent Days Spent

Kernel logging and buffer management 40% 34

Per-host data collection program 15% 13

Network data logging server 5% 4

Data analysis support library 20% 17

Data analysis programs 5% 4

Maintaining and using collected data 15% 13

Totals 100% 1 semester

Table 7-7: Very rough estimates of time spent implementing DFSTrace tools
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While the table presents the time estimates as if the work were done continuously for a

duration of a single semester on a full-time basis, of course in reality, it was performed
over a longer period, interleaved with other activities. A summary of major events in the

project follows.

The DFSTrace file reference tracing project began in the summer of 1989 with

feasibility studies. A prototype of the kernel logging code was running by the end of that

summer. Debugging and enhancements occurred during the summer of 1990. In early
1991, the kernel log data packing code was rewritten for increased portability and the

per-host data collection program was changed to use the new network data logging

server. In the spring of 1991, the data analysis support library and most of the data
analysis tools were written; it was then that the system saw its first real use. Experience

gained from the initial use led to several more enhancements: adding tracing for

read() and write () operations and for pathname resolution operations on a per-

element basis. During this time, bugs continued to manifest themselves and were only

sometimes diagnosed; in particular, one bug that crashed the kernel every night was
never identified and eventually just stopped manifesting itself. By the summer of 1991,

the system was essentially complete. Throughout the rest of 1991, kernel work

continued on an occasional basis, both to stay current with updated versions of the
mainline kernel and to continue fixing bugs. The execve () tracing code was
reorganized in late 1991. In early 1992, a support program was written to automatically

dump trace data to tape. From early 1991 on, the tools have proven valuable both for
providing traces to drive the DFSTrace file reference design and for other urianticipated
uses, such as debugging problems with machine configurations.

Several other points from my interview with Mummert bear mentioning:
"• Steep Kernel Learning Curve: She had to work through a steep leaming

curve before becoming productive in the kernel. While other aspects of the
project progressed rapidly, nothing involving the kernel was as simple or
progressed as quickly as she would have hoped.

"* Unproductive Debugging Environment: No source level debugger was
available for kernel code, making debugging the kernel code more tedious
than code for the rest of the tracing tools, which were implemented in user
space.

" Unanticipated Software Maintenance: An unexpectedly large amount of
time was spent maintaining and updating kernel code after it was already
largely working. Mummert estimates that even once the kernel code was
"done", she still spent a half day every two weeks on kernel maintenance.
This served largely to keep the kernel logging code up to date with new
versions of the kernel and to fix bugs introduced through version skew. This
caused considerable frustration as it became a time sink, with no effective
return for the time spent.
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Kernel Structure Unhelpful: Certain portions of the kernel were not well
structured for the task of implementing file reference traces.
Instrimentation could not be done in a particularly structured manner;
logging code was scattered throughout many different modules. Machine
dependent changes were needed for logically machine independent
functionality. Code paths through some operations were tortured and
unobvious. As much was spent on execve () as all the other calls put
together.

In summary, while the implementation of the majority of the DFSTrace file reference
tracing components proceeded efficiently and soon yielded correctly working results,
implementation of the kernel components consumed an disproportionate amount of time,
with bugs continuing to manifest themselves long after the initial implementation was
complete. Indeed, combining the results from Tables 7-4 and 7-7, we see that roughly
40% of the total effort was spent on only 11% of the code. The effective rate at which
working kernel code was written was approximately 27 statements per day, as opposed
to the rest of the code, where the effective rate was approximately 145 statements per
day.

While these rates are based on very rough istimates of the implementation times for
the DFSTrace tools, and are accurate to at most a single significant digit, one conclusion
remains unmistakable: implementing kernel code consumed a disproportionate amount
of time.

7.4.3.2. Implementation Times for Agent-Based Tracing Tools

Table 7-8 presents estimates of the amount of time spent writing and debugging the
df s -trace interposition agent and accompanying log merge server.

Combining results from Tables 7-2 and 7-8, this gives an 3ffective rate at which
working agent and server code was written of approximately 194 statements per day.

7.4.4. Code Difficulty

While it might be tempting to directly compare the amounts of time spent building the
kernel-based and agent-based file reference tracing implementations and to draw
sweeping conclusions about the relative productivity of the different implementation
strategies from those comparisor doing so would be grossly misleading (at best). Too
many uncontrolled variables were present during both implementations for direct
comparisons to be meaningful. Some of these were:

* Different ?rogrammers: The kernel-based and agent-basad tracing
implementations were produced by different programmers. That large
productivity differences exist between individual programmers is well
established [Brooks 75].
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Estimates of time to implement dfs_trace agent & server

Task Days Spent

Reworking kernel log data manipulation code to run in user space 2
interposition agent

implementing MIG interface between dfs_trace agent and log 1
merge server and analyzing interactions between MIG code,
RPC2 code, and the LWP lightweight process library used by the
RPC2 code that sends data to the network data logging server

Reimplementing trace data buffer management code to operate in 1
user space log merge server

Producing derived symbolic system call implementation that 1
performs tracing of most system calls

Producing derived open object implementation and log merge 1
server code that together simulate the kernel global file table
numbers used in DFSTrace-style file reference trace records

Producing derived pathname implementation that performs per- 1
element name resolution tracing

Totals 7

Table 7-8: Estimates of time spent building agent-based tracing implementation

e Different Design Constraints and Specifications: The original DFSTrace
protocols and tools were being designed as they were being implemented.
They were free to take advantage of useful facilities provided by their
kernel-based implementation environment, while avoiding those that would
be difficult or expensive [Mummert 92]. By contrast, the agent-based
tracing tools were constrained to compatibly implement the existing
DFSTrace log record protocols. While the agent lacked the freedom to
tailor the protocol to the implementation environment, it had the advantage
of implementing a precisely defined set of existing specifications.

* Different Experiences and Expertise: The programmers brought sets of
skills and weaknesses to their respective tasks. For instance, Mummert
was unfamiliar with Mach/BSD kernel programming, but was familiar with
multi-threaded programming when she began the DFSTrace
project [Mummert 92]; I was unfamiliar with the LWP [Satyanarayanan 91]
lightweight process library, the RPC2 [Satyanarayanan 91] remote
procedure call system, and the DFSTrace log record protocols, but was
intimately familiar with writing interposition agent code.

* Different Priorities: Mummert built the DFSTrace tools on a part-time
basis, while sometimes also working on other projects. I worked exclusively
on the agent-based tracing tools while implementing them. While the
implementation time was a primary interest to me, it was of secondary
interest to her. Or, as it was elegantly put by Mary Thompson: "Lily didn't
know she was in a race!"
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Nonetheless, the data on building the kernel-based and agent-based file reference

tracing implementations presented in Section 7.4.3, while essentially consisting of only

two data points, currently provides the best available basis for evaluating the software

engineering costs of constructing interposition agents using the interposition toolkit.

Thus, at least a few preliminary observations seem to be in order.

The dfstrace agent and accompanying log merge server took seven days to

implement, as per Table 7-8. Together, these are functionally equivalent 21 to the

DFSTrace kernel code and per-host data collection program, which took on the order of

fifty days to implement, as per Table 7-7. If all other factors were equal (which they

clearly are not), this would seem to indicate that interposition agents implementing some

tasks can be more efficiently constructed than can kernel modifications that perform the

same tasks.

While this result is not conclusively supported by the data available, two elements of

the data seem to lend it some credence:

1. Similar code size. The amounts of code in the two implementations are
quite similar. (The amounts were 1183 and 1357 statements for the
kernel-based and agent-based implementations, respectively, as per
Section 7.4.1.)

2. Similar non-kernel coding rate. The rates at which non-kernel code was
produced in the two implementations are also similar. (The rates were 145
and 194 statements per day for the kernel-based and agent-based
implementations, respectively, as per Section 7.4.3.)

These lend support to the possibility that the two results are at least somewhat

comparable. Particularly, the second result seems to indicate that Mummert and I may

be similarly productive when working outside the kernel.

Of course, I would like to be able to say that interposition agents can be constructed

more efficiently than some equivalent implementations constructed by other means, but

the scanty data currently existing neither proves nor refutes this claim. Substantially

more study would be required before any general conclusions could be drawn. All that

can currently be said with certainty is that the interposition agent-based implementation

of the DFSTrace file reference tracing tools was produced far more quickly than was the

original.

21with small exceptions, see Section 7.3.



Chapter 7: Comparison to a Best Available Implementation 68

7.5. Performance Comparisons

This section compares the performance of the two tracing implementations.

Measurements taken using the Andrew filesystem benchmarks [Howard et al. 88] are

used as a basis for comparison.

7.5.1. Overall Performance Comparisons

Table 7-9 shows the percentage slowdown in elapsed time for four different levels of

tracing under both the original DFSTrace tracing implementation, and under the

dfs_trace interposition agent implementation. The amount of trace data generated for

each of these levels is also presented.

Tracing Overhead for AFS Benchmarks

Tracing Level Original % Agent % Trace data

slowdown slowdown (K-bytes)

Default 3.0%/c 64% 525

Default, Read/Write 5.5% 69% 625

Default, Name Resolution 6.5% 133% 1480

All 7.0% 138% 1584

Table 7-9: Tracing overhead for the Andrew filesystem benchmarks

As Table 7-9 shows, while the original DFSTrace implementation causes applications

to run only slightly slower, ranging from 3% to 7% for the AFS filesystem benchmarks,

the equivalent agent-based implementation imposes a substantial performance penalty,

ranging from 64% to 138%. The reasons for this performance loss are analyzed in the

following sections.

7.5.2. Detailed Performance Analysis

This section analyzes some of the reasons that the agent-based file reference tracing

implementation is significantly slower than the original kernel-based implementation.

The analysis focuses on the performance of the default tracing level, which was chosen

because it exhibits the proportionately worst slowdown.

Tables 7-10 presents some initial statistics about the application and agent measured.

The AFS filesystem benchmarks perform 23093 system calls that are intercepted by the

dfstrace agent, 477 of which are successful fork()/execve() pairs. The

application causes 12655 trace records to be sent, totalling 525 kilobytes of trace data.
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AFS Benchmarks: System Calls
and Resulting Log Records

System calls intercepted 23093

fork ()/execve () pairs 477

DFSTrace log records sent 12655

Total size of log records 525K

Table 7-10: System calls made by AFS benchmarks and resulting log records

Table 7-11 presents the elapsed time to run the AFS filesystem benchmarks with and

without tracing. It also factors the system call and trace record counts from Table 7-10
into these times, yielding average slowdown figures of 2.90 milliseconds per intercepted

system call and 5.29 milliseconds per log record. While they serve as an interesting
starting point, these averages are not particularly informative. Thus, a number of more

detailed measurements were made in an attempt to understand where the performance

loss actually occurs.

dfs trace Agent Overhead Summary for AFS Benchmarks

Default Tracing Level Seconds Agent % jgsec per jisec per
elapsed slowdown sysca/ log record

Elapsed time with no tracing 105.0 - 4550 -

Elapsed time with agent tracing 172.0 - 7450 13590

Total slowdown 67.0 63.8% 2900 5290

Table 7-11: Agent tracing overhead summary, default tracing level

Table 7-12 presents a breakdown of where the additional time is being spent when the
AFS filesystem benchmarks are run under the dfs_trace agent at the default tracing

level. Both elapsed time and percent slowdown are presented for all costs. Where it
makes sense, the average slowdown per intercepted system call and per log record are

also presented. The remainder of this section discusses these overheads in greater

detail.

When detailed measurements were taken, two pleasant surprises were the small

amounts of time spent by the log merge server and in communicating with the log merge
server using the MIG [Draves et al. 89] interface and Mach IPC [Young et al. 87, Draves
90]. The log merge server time, which actually includes the time spent by the network
data logging server as well, accounted for only a 1.2% slowdown. Ukewise, the entire
Mach IPC and MIG costs accounted for only a 2.0% slowdown, despite the fact that
every log record was sent from the agent to the log merge server in an individual IPC
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dfs_trace Agent Overhead Analysis for AFS Benchmarks

Default Tracing Level Seconds Agent % lisec per plsec per
elapsed slowdown syscall log record

Log merge server 1.3 1.2% - 102

RPC and Mach IPC costs 2.1 2.00/6 - 165

Log message construction 28.3 27.00/6 - 2240

dfs_trace object layer 3.0 2.9% 129 237

openobject & pathname toolkit layers 5.6 5.3% 242 -

numeric & symbolic toolkit layers 5.0 4.7% 216 -

Syscalls implemented by base toolkit layer 18.7 17.8% 809 -

Not accounted for 8.0 7.6% 346 632

Total slowdown 67.0 63.8% 2900 5290

Table 7-12: Agent tracing overhead analysis, default tracing level

message. While this path could clearly be optimized by batching log records, etc., the
current 1651Lsec. overhead per log record is not a major contributor to the slowdown.
Neither of these caused a large portion of the 63.8% total slowdown.

Almost half of the additional overhead can be attributed to a single dfs_trace agent
routine, which constructs the tracing log records. It contributes a 27.0% slowdown to the
63.8% total. These costs are nearly all due to additional system calls that the agent
must make in order to obtain information needed for the log records, which the original
kernel-based implementation could obtain from in-memory data structures, as discussed

in Section 7.3. For instance, each log record is prefaced by a timestamp, as per Section
7.1.1, which the agent must obtain via a gettimeof day () system call, as per Section
7.3.1. Ukewise, each pathname referenced results in an additional stat () call, as per
Section 7.3.2; descriptor references result in f stat () calls, as per Section 7.3.3. Other
additional system calls are also required. While some optimizations of the agent-based
implementation are possible, it can probably never match the very low costs of the
kernel-based implementation for constructing DFSTrace log records, a core application
requirement.

About a quarter of the additional overhead can be attributed to the low-level toolkit

code which implements those system calls that must be implemented by each agent to
provide a correct system interface implementation. 22 It contributes a 17.8% slowdown to
the 63.8% total. Of the 18.7 seconds spent in this code, roughly 11 seconds, a 10%

22For a discussion of the system calls that must be intercepted by each agent, see Section 5.6.
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slowdown, can be attributed to just fork () /execve () overheads, assuming that the

actual fork 0)/execve () costs for this application and agent are similar to those

presented in Table 6-5. While these implementations can still be optimized, once again

the agent-based implementation can probably never completely match the performance

of the kemel-based implementation for these system calls.

An additional 12.9% slowdown can be attributed to code implementing three layers of

abstraction, two provided by the toolkit, and one specific to the dfs_trace agent. The
primary costs within these layers are memory allocation and deallocation (which of

course sometimes result in system calls) and C++ virtual procedure calls. Finally, the

remaining 7.6% slowdown has not been accounted for.

7.5.3. Conclusions from Performance Comparisons

A large percentage of the performance loss of using the dfstrace agent is a direct
result of the agent having to make several additional system calls per trace log record.
These system calls sometimes serve to gather information on objects maintained by the

operating system that is needed for DFSTrace style log records. For instance, the agent
must make system calls to construct file identifiers and retrieve file attributes for

referenced files. The directly instrumented operating system implementation has a

decided performance advantage for gathering such information, as the needed
information is typically available via only a few memory references or procedure calls,

instead of via a set of system calls. (Indeed, the easy availability of certain types of
information within the kernel influenced the decision to include it the the DFSTrace log

records in some cases [Mummert 92].) To the extent that such operating system
maintained information is needed by interposition agents, as it is in this particular agent,

clearly the faster the system call path, the better. Here, the system call overhead is a

limiting factor, and so the best interposition-based implementation will always fare

slightly worse than the best monolithic implementation ;n such cases.

That does not mean, however, that the gap need be as large as that between the

original DFSTrace implementation and the current df s trace agent. Faster
implementations certain key operations such as pathname lookup would go a long way

towards reducing the gap.

One clear candidate for improvement made evident by the comparison is the interface

for getting the time of day. While in the kernel, time can be obtained in a few instructions

(see Section 7.3.1), outside the kernel the cost is at least an order of magnitude higher;
the gettiimeofday () call normally costs 25isec. and an unoptimized agent manages
to raise this to 170psec., as per Table 6-5. As currently structured, the dfs trace
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agent makes at least two such calls per log record. Having a free running time counter

available in user space would eliminate most of this cost Indeed, some have argued
that free running time counters readable from user space should be ubiquitous [Black

90].

Another large percentage of the performance loss of using the df s_trace agent
comes from the current implementation of those system calls that must be implemented

by each agent to provide a correct system interface implementation. As discussed in the
previous section and Section 6.4.4, execve () is a prime culprit. In many ways, this

type of loss is similar to the previous: the toolkit implementation of execve () requires
several additional system calls to achieve the effect that the kernel accomplishes within
one. While many optimizations to the current implementation of such calls are clearly
possible, as in the previous case, the best monolithic implementation of these calls will
always fare at least slightly better than the best interposition-based implementation.

More performance loss occurs due to the flow of control constantly passing up and
down through several layers of abstraction, which are realized in the current
implementation as separate procedures. While each additional layer adds only a slight

overhead, in combination the overheads soon add up. However, unlike some of the
other overheads, these are not intrinsic. They are amenable to reduction by several
proven optimization techniques, from caching and inter-procedural analysis to dynamic

code synthesis [Massalin 92].

The original DFSTrace tools and protocols were designed to provide portable
distributed file reference traces with as little impact on overall system performance as
possible. As Table 7-9 demonstrates, they clearly met this goal. Use of an instrumented

operating system kernel to gather file references traces was a key to this success.

The dfs_trace agent attempted to duplicate the functionality and performance of the

original DFSTrace tools using a user space interposition agent to gather file reference
traces instead of a modified operating system implementation. While the functionality
was mostly duplicated 23 , the performance was in no way equivalent. Unlike the original
kernel-based implementation, the dfs_trace agent incurred significant performance

penalties gathering information critical to building DFSTrace log records due to having to
repeatedly cross the system interface boundary. While use of the agent still left the
resulting system quite usable, its use was not transparent with respect to perceived

system performance.

23For the one major exception, see Section 7.3.2.
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7.6. Conclusions from Comparisons

The exercise of attempting to build an interposition agent that was equivalent to the

original DFSTrace file reference tracing tools both in function and performance and then

comparing the result proved to be valuable in several respects. It provided a real basis

of comparison, which clearly pointed out both strengths and weaknesses of interposition

in general and of the specific interposition implementation used. It also served to

highlight areas where both the system interface used and its implementation could be

improved.

The two key points made evident by the comparison are:

" Agents can be easy to construct. It appears that constructing an
interposition agent that provides an enhanced implementation of the system
interface can be at least as easy and possibly easier than modifying an
existing operating system implementation to perform the equivalent
functions, as per Sections 7.4.3 and 7.4.4.

"* Agents may not perform as well as monolithic implementations. Agents that
need to access resources maintained by the underlying operating system
implementation will be limited in their performance by the overhead involved
in crossing the system interface boundary in order to access those
resources. Hence, the. best monolithic implementation of a given facility
needing access to system resources will always perform better than the
best interposition-based implementation of the same facility, as per Section
7.5.3.

Other points also made evident by the comparison are:

", Agents can be as small as the equivalent changes to a monolithic
implementation. Interposition agents built using the interposition toolkit can
contain no more new code than the amount of code changed or added to a
monolithic system implementation to implement equivalent facilities, as per
Section 7.4.1.

" Agents can be better structured than monolithic implementations.
Interposition agents built using the interposition toolkit can be more logically
structured and be more portable than a monolithic implementation of
equivalent facilities, as per Section 7.4.2.

" Agents require no system modifications. Unlike monolithic implementations,
where providing an enhanced implementation of a system often requires
modifying the code implementing the system, interposition agents can
provide enhanced implementations as an independent layer requiring no
modifications to the underlying system, also as per Section 7.4.2.

" Agents can only use facilities exported across the system interface. Some
information and facilities are unavailable to clients of the system interface
that are available to system interface implementations. Thus, there are
things that can be implemented within a given system interface
implementation that can not be implemented outside of it. For example,
some filesystem type information was unavailable to the dfs trace agent
that was available to the original kernel logging code, as per Section 7.3.2.
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Some facilities not currently exported across the 4.3BSD system interface
probably should be. Doing so could provide both interposition agents and
normal application programs useful facilities currently only available in the
kernel. For instance, supplying a free running time counter in user space
would significantly reduce the cost of obtaining the time of day, as per
Section 7.3.1.

Of course, the consequences of such additions should be carefully
considered. For instance, interposing on a running time counter may be
either impossible, or significantly more expensive than interposing on a
system call. At best, agents that manipulate the apparent time of day, such
as timex2 4 , would require additional mechanisms in order to do so.
Caution is in order: features added for the convenience of one type of
agent may actually make others more difficult or impossible to implement.

The comparison to a best available implementation presented in this chapter clearly
points out that there are tradeoffs involved between using a monolithic implementation of

a given facility versus an interposition-based implementation of the same facility and that
neither approach clearly dominates the other in all respects. These tradeoffs are

discussed further in Section 12.3.

2 'For a description of t imex, see Section 4.2.2.



Chapter 8

Low Level Results

This chapter evaluates some of the boilerplate at the low levels of the interposition

toolkit.

8.1. Mach Dependencies

The current interposition toolkit implementation supports building agents which

interpose on the 4.3BSD [Leffler et al. 90] interface provided by Mach 2.5 [Accetta et al.

86, Baron et al. 90]. While most of the toolkit is built using 4.3BSD facilities, and while

agents can be built using only 4.3BSD and toolkit facilities, a small portion of the toolkit
depends upon Mach facilities not provided by 4.3BSD. This section describes the

dependencies of the toolkit on Mach specific features.

e Memory Management Facilities: The loader used by the run program25

and the toolkit execve () implementation 26 depends upon several Mach
memory management facilities. Features used include the abilities to read,
write, copy, map objects into, allocate, deallocate, and list the contents of
the address spaces of other processes. Mach calls used are vmread (),
vm write(, vm-copy (), vm-map(, vmallocate 0,
vm deallocate (), and vm region (.

* Process Management Facilities: The loader also depends upon several
Mach process management facilities. Features used include the abilities to
suspend, resume, list the threads of, and abort any pending operations in
get the registers of, and set the registers of other processes and the threads
within them. Mach calls used are taskself (, task byunix_pid (,

task_suspendo, taskresume(, threadsuspend(),
thread-resume(), task threads(), thread abort(0,
threadsetstate (), and thread ge. state () .

System Call Interception Facilities: Interposition agents depend upon the
Mach system call interception and invocation facilities described in Sections
5.2 and 5.3. Mach calls used are task set emulation() and
htg_unix syscall().

2SThe run program is described in Section 5.1.

2OThe toolkit execve () implementation is discussed in Section 5.4.
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While the run program currently loads agents into separate processes and so depends
upon being able to manipulate the address spaces and process state of other
processes, this implementation is largely a historical artifact, and could easily be
changed to load agents into its own address space. While the loader is capable of
loading arbitrary binaries into other address spaces, only the run program actually uses
this capability. Thus, the dependence upon being able to manipulate the address
spaces of other processes could actually be easily removed. At that point, the only
features used beyond those provided by 4.3BSD would be the abilities to allocate and
deallocate memory at arbitrary locations, list the allocated memory regions in the current
process, and of course, intercepting system calls by agents and invoking intercepted
system calls from agents.

8.2. Problems Encountered with the 4.3BSD and Mach Interfaces

This section presents several problems encountered with the 4.3BSD [Leffler et al. 90]
and Mach [Accetta et al. 86, Baron et al. 90] interfaces when implementing the
interposition toolkit and agents.

8.2.1. Set-User-ID Programs

4.3BSD allows programs to be marked set-user-ID (Ritchie 79, Grampp & Morms 841,
causing future invocations of these programs to be run with the stored effective user IDs,
instead of with the IDs of the processes invoking these programs. Programs can also be
marked as set-group-ID, with analogous result upon the effective group ID. This can
work because the kernel is trusted to correctly load the program and has sufficient
access rights to change the effective IDs.

Agents, however, typically satisfy neither of these properties. They can not be trusted
to load the image correctly and they may have insufficient access rights to change to the
effective IDs. (They may also have insufficient access rights to even read the program
binary, as per Section 8.2.2, since set-user-ID programs are often protected execute-
only as well.) Consequently, set-user-id programs are typically only run by agents with
the permissions of the processes invoking them, rather than the stored effective ID
values.
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8.2.2. Execute-Only Programs

4.3BSD allows programs to be protected execute-only. Even though a process has

Insufficient access rights to read such a program binary, the kernel will still load and run

it for the process. Similarly to the set-user-ID case in Section 8.2.1, this can work

because the kernel is trusted to correctly load the program and has sufficient access

rights to read the program binary.

Likewise, agents satisfy neither of these properties. They can not be trusted to load

the image correctly and they may have insufficient access rights to read the program

binary. Consequently, execute-only programs often can not be run by agents.

Unfortunately, some commonly used programs are stored execute-only on some

systems. Such programs include ps, uptime, and even date.

8.2.3. Asynchronous Signals

4.3BSD signals can arrive asynchronously with respect to the flow of control of the

program. They can cause interruptions at any point unless disabled.

While the toolkit is prepared to handle signals during emulated system call execution

and defer their delivery until the system call returns, certain critical sections must be

protected against signal delivery. In particular, under some circumstances, signals need

to be masked off during the sequence which returns from a system call to the

application, but at the end of the return sequence the signals both need to be unmasked

and control must be transferred back into application code as an atomic operation in

order to both properly restore the application state and not lose signals. While this is

straightforward to do using sigreturn (), having to do so adds the cost of an agent

system call to the cost of every application system call handled by the agent in this

manner.

This atomicity is necessary because the agent is running as part of the application

process. If it were instead manipulating a separate suspended agent process, the

compound jump-and-set-signal-mask operation would be unnecessary. Of course, the

costs of such manipulation would likely be at least as high as those of the compound

operation. For a further discussion on such tradeoffs, see Section 10.2.
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8.2.4. Non-Uniform Parameter Passing

One annoyance of the 4.3BSD system interface is that system call parameters are not
always passed in a uniform manner. While most calls accept a vector of arguments in a
regular format a few calls such as wait()/wait3() 2 7 and sigcleanup() Use

irregular parameter passing mechanisms. Such calls sometimes accept arguments in
registers or processor status flag bits.

While the original Mach 2.5 htgunixsyscall ()28 implementation supported
making system calls that passed parameters in the regular fashion, it failed to handle the
irregular calls. Early in this work, I had to reimplement htgUnixsyscall () to be
able to pass parameters to the irregular system calls in order for agents to be able to use
the complete 4.3BSD system interface.

8.2.5. Lack of Agent Stacking

The Mach 2.5 system call interception and invocation facilities
tasksetemulation() and htgunix syscall() 2 9 do not support transparent
agent stacking - running agents on top of other agents. Only one user space system
call handler can be installed for each system cIll. Only the kernel system call
implementation can be called down to with htg_unixsyscall ().

In order to implement agent stacking using the Mach 2.5 facilities, some form of central

resource arbitration that is knowledgable of the stacked agents and the resources they

require would be necessary. This arbitration code would perform such tasks as

allocating portions of the address space to different agents, intercepting system calls

occurring within the address space and dispatching them to the correct agent,

establishing the bindings allowing one level of agent to call down to the system calls

provided by the next, and allowing one level of agent to signal the next layer up. David

Black has suggested the term "Traffic Cop" for such arbitration code.

2 7wait () and wait 3 () are actually the same system call.

28For a description of htg-unix-syscali (), see Section 5.3.

29For a description of task set emulat ion (), see Section 5.2.



Chapter 9

Sec' :ity Implications

This chaptor discusses the security implications of interposing user code at the sys*cm

interface. The first issue discussed is the nature of the trust relationships that need to

hold between applications, agents, and the underlying system implementation. Next,

issues of whether agents are transparent or visible to applications iulnning under them

are discussed. Finally, paper designs for two agents providing enhanced security

semantics are presented.

9.1. Trust Relationships

This section discusses the nature of the trust relationships that need to hold between

applications, agents, and the underlying system implementation and the circumstances
under which these relationships must hold.

9.1.1. Applications Trusting Agents

An interposition agent that provides the system interface to an application running

under it has complete control over the application. It can read, write, allocate, and
deallocate the application's address space; it can write the application's registers; it can

suspend and resume the application; it potentially implements all of the systc , services

used by the application. Agents can introduce covert channels [Lampson 73].

Thus, applications have no choict but to trust the instances of the system interface
provided to them by interpositiooi agents at the same level that they would trust

instances of the system interface provided to them by the operating system kernel3°. In

this sense, any agents used must be a portion of Trusted Computing Base (DoD 85] if

they are to be used as a component of a secure system.

3°The t-m "kernel" here, as elsewhere in this dissertation, refers to the default or lowest-level operating
system implementation; it is not meant to imply that this .,nplementation necessarily runs in processor kernel
space-
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9.1.2. Kernel Trusting Agents

An interposition agent is fundamentally user application code which runs on an
instance of the system interface just as other user code does. The kernel does not trust

normal applications, since they may be unintentionally incorrect or intentionally

malicious. For exactly the same reasons, it can not trust interposition agents.

9.1.3. Agents Trusting Applications

Agents built using the interposition toolkit reside in the same address spaces as the
applications that use them. This is largely an artifact of the Mach system call
interception mechanism used to support these agents, which redirects system calls to

handlers in the same address space31 . Agents written for MS-DOS and the Macintosh

also share this property, as per Chapter 3. Since this gives applications the ability to
modify the agents on which they are run, these agents have no choice but to trust
applications.

Not all agents, however, must trust the applications that use them. Some system call

interception mechanisms transfer control to agents running in separate protection

domains, often by sending a message or software interrupt. Examples are the TENEX
tfork JSYS, the System V /proc operations, and the SunOS ptrace () operations,

as per Chapter 3. Since agents written using such mechanisms run in separate
protection domains from the applications that use them, just as the kernel runs in a

separate protection domain, these agents need not trust applications.

Different levels of trust are appropriate for different kinds of agents. Two distinct

classes of agents have different security requirements in order to ensure correct

operation.

One class of agents needs to restrict the possible behaviors of applications using them

to a subset of those available to the agents. Such agents must be run in separate

protection domains from the applications and must not trust their client applications to

ensure correct operaton. Otherwise the agents, and thus the restrictions, could be

subverted by the applications.

For instance, Michael Fryd wrote an agent for Tops-20 [Digital 78] that implemented a

restricted environment used during on-line student programming examinations at

Carnegie-Mellon that prevented accesses to other student's files which could have

3 1For a discussion of the Mach system call interception mechanism, see Section 5.2.
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potentially been used for cheating [Wohl 90]. This agent ran in a superior process that

was protected from interference by client processes.

Even though such agents must be run in separate protection domains in order to
ensure correctnqss, agents that attempt to restrict the possible behaviors of applications
have been used even on systems where multiple protection domains are unavailable,
such as MS-DOS [Microsoft 91] and the Macintosh [Apple 88]. For instance, the Norton
AntiVirus [Symantec 91 b] for DOS and SAM [Symantec 91 a] for the Mac both attempt to
intercept destructive operations made by potentially malicious applications. While such
agents can not defend themselves from sufficiently clever applications, and so are not
foolproof, in practice they do succeed in preventing undesirable behaviors of
applications.

A distinct class of agents permit applications the full range of behaviors, while possibly
providing additional features through the system interface. Since the full range of
behaviors available to such agents are also made available to applications using them,
the ability to access and possibly modify the agent under which a an application is run
provides no new capabilities for the application. Thus, such agents may be run in the

same protection domains as applications using them and may trust their client
applications without weakening the correctness of the resulting system. Examples
include Stacker [Stac 92] for MS-DOS and DiskDoubler [Salient 91] for the Mac.32

Of course, even for agents that can trust applications, arguments exist for running
running agents in separate protection domains from their client applications. For
instance, doing so protects agents from unintentional corruption by incorrect
applications; program faults are better isolated when agents and client applications are
run in separate protection domains. But counter-arguments exist as well. For instance,
overall performance may be better if agents are co-resident with their client applications.
For a further discussion on issues of co-resident versus protected agents, see Section
10.2.

32For a further discussion of these and other agents, see Chapter 3.
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9.2. Agent Transparency

This section discusses whether agents are transparent or visible to applications
running under them and some of the implications of these properties. Possible
mechanisms by which applications might detect the presence of agents are presented.
Possible policies conceming the desirability of agent transparency versus agent visibility
are presented separately.

9.2.1. Mechanisms

There are a number of different mechanisms by which an application could attempt to
determine if it was being run under an agent. Some of these are:

*Probing memory for agent code. Co-resident agents may be detected by
applications running under them by probing memory for the presence of an
agent, particularly if agents are loaded at well-known addresses. Even
when agent addresses are not known a priori, this approach is clearly
feasible on machines having only 32 bits of address space to search,
requiring, for instance, only 220 accesses to probe every page when a 4K
page size is in use. Locating co-resident agents via exhaustive memory
search becomes more difficult at current processor speeds with larger
address spaces, such as the 64 bit address spaces provided by the MIPS
R4000 [MIPS 91] and the DEC Alpha [Sites 92], where roughly 250 probes
would be required.

"• Making precise performance measurements. Applications could attempt to
determine if they are being run under an agent by precisely timing calls on
the system interface, and comparing the results to known values for these
calls with no agents present for specific processor models and operating
system software versions. This approach counts on detecting the additional
overheads caused by interposition agents. While this approach will likely
lead to some false positives due to non-agent delays, such as paging and
being context switched, a careful implementation with access to accurate
timings will likely not produce many false negatives.

"* Using an explicit call to determine if agents are present. Some system
interfaces provide an explicit call for determining if agents are present. The
TENEX interface, for example, provides such a call to applications [Thomas
75]. Others such as Mach 3.0 [Golub et al. 90], MS-DOS [Microsoft 91],
and the Macintosh [Apple 88], which support co-resident interposition
agents, permit applications to determine the addresses of routines that
handle system calls. Of course, if such calls for querying an application's
interposition state are able to be intercepted by interposition agents, the
agents can always lie, and say that no agents are present. Nonetheless,
such a call could be provided via a trusted communication path [DoD 85] to
a trusted computing base (TCB), in a similar manner to the VMS [Digital 85]
trusted input path [Blotcky et al. 86], which can be used to establish a
secure communication path to the login program. Only in the presence of a
trusted communication path to a TCB can a negative result from such a call
be trusted.
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Using a call to query for extensions. Some interfaces define an extension
mechanism, and provide a call that queries for the presence of specific
extensions. For instance, the X Window System provides an extensions
interface [Scheifler & Gettys 86] that allows X servers to portably implement
extensions and X clients to portably query for their existence. While such
extensions may be implemented as part of the base system implementation,
they could also be implemented by agents layered on top of the base
implementation. If an application somehow knows that the base system
does not provide a given extension, then the presence of the extension can
be used as an indication of the presence of an interposition agent

There are a number of mechanisms by which applications can attempt to determine if
they are being run under agents. Some utilize explicit interfaces to query for the
presence of agents. With others, applications use implicit properties of their run-time
environments to ascertain whether agents are present. In conclusion, no matter how
closely an agent emulates the behavior of a native implementation of the system
interface that it presents to applications, I believe that sufficiently clever applications will
always be able to determine to within any chosen non-zero delta of accuracy that they
are being run under interposition agents.

9.2.2. Policies

There are a number of different policy positions that could be taken on the issues of
agent transparency versus agent visibility. Different policies are appropriate under
different circumstances. Some issues governing these policy decisions are:

"* "Truth in execution environment". One possible policy is that applications
should be told or be able to determine if they are running under interposition
agents. Just as people must be told in the United States if their telephone
calls are being recorded, under some circumstances applications should
probably be told that they are running under agents.

Certainly in a secure system, applications can only be trusted to the extent
that the facilities used by those applications are trusted. An application
running on an agent can only be trusted if the agent is trusted. In a system
supporting delegation [Gasser & McDermott 90, Lampson et al. 91], the
services provided by a system implementation can be readily distinguished
from those provided by that system implementation with an interposition
agent. Trust can be evaluated based on the total set of participating
components, since their authorizations are visible to the applications.

* Publicizing extensions. Agents will sometimes add extensions to the
system interface. In order to be able to use these extensions, applications
must be able to determine that they are present. In such cases, agents
must make themselves visible to interested client applications.

* Functional transparency. Agents must correctly emulate the normal
behavior of the system interface if applications run under them are to
function correctly. More precisely, agents must maintain all the invariants
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depended upon by the applications run on them if these applications are to
function correctly. This is the minimum sense in which agents must be
transparent

Complete transparency. Agents which attempt to non-invasively monitor
and possibly restrict the behavior of applications need to remain undetected
by applications run under them; if applications detect the presence of such
agents they could modify their behavior, invalidating the results of the
monitoring. For instance, one such type of agent provides restricted
environments for running untrusted binaries, a problem sometimes known
as Secure Remote Execution [Tygar & Yee 91]. While complete
transparency is clearly desirable for such agents, it is unlikely that agents
can remain undetected by sufficiently resourceful applications, as discussed
in the preceding discussion on mechanisms in Section 9.2.1.

9.3. Agents Providing Enhanced Security Semantics

This section presents a paper design for two agents that provide enhanced security
semantics beyond those provided by the base system implementation.

Such agents should be run in separate protection domains from applications, just as
the kernel is in a separate protection domain from applications, as per the trust
discussion in Section 9.1.

9.3.1. Agent Providing a Restricted Execution Environment

This section presents a design for an agent that provides a restricted environment in
which untrusted binaries can be safely executed. This problem is known in the security
literature as Secure Remote Execution [Tygar & Yee 91].

An agent supporting secure execution of untrusted binaries may need to constrain the

possible effects of these programs in the following areas:
"* Data Read: The agent may need to constrain the data which untrusted

programs can read. For instance, one possible policy is to limit untrusted
programs to reading files which are readable by all users.

"* Data Written: The agent probably needs to constrain the files which could
be written. For instance, one possible policy is to limit untrusted programs
to writing files which are writable by all users. A more sophisticated policy is
to make it appear to untrusted programs as if they can write anything which
a normal program would be permitted to, but to actually perform all writes to
a hidden shadow area, while simulating having written them in place.

"* Resources Consumed: The agent probably needs to to constrain the
resources that can be consumed by untrusted programs. For instance,
such resources as disk space, memory, and processes might need to be
limited by the agent.
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It is possible to construct an agent which guarantees that programs run under it can not
corrupt data. This can be done by intercepting all operations which reference or can

operate on filesystem objects and redirecting any which attempt to modify existing data

to a hidden shadow area, which is written to instead. Data in the shadow area is always

used in preference to data found in the normal file systems. The existence of the

shadow area would be hidden from the programs. For instance, a unique shadow area
could be created under the /trap directory when the agent is invoked. Then any writes
attempted to the file /usrl/mbj/.cshrc might actually be performed on a shadow

copy such as /tmp/untrustedshadow. 32260/usrl/mbj/. cshrc. Similarly, any
new files added to /usrl/rbj/bin/ would actually be added to

/tmp/untrusted_.shadow. 32260/usrl/mbj/bin/. Deleted or renamed filesystem
objects would also be recorded, and the apparent pathname space presented to the
programs would be updated accordingly.

This agent could be constructed using the pathname and descriptor layers provided by
the interposition toolkit. Derived versions of the toolkit pathname objects would be used
to map program pathnames into actual pathnames, with non-destructive accesses being
passed through and destructive accesses being mapped to pathnames in the shadow
area. A derived version of the toolkit directory object is needed to allow the apparent

contents of directories to be listed when the result is actually a composite of any original
directory, the contents of any shadow directory, and any recorded deletions or renames.
Derived versions of the toolkit descriptor objects are needed so that descriptors can refer
to agent objects such as simulated open directories.

If the agent needs to constrain the data which untrusted programs can read, an
additional access control check can be performed in the agent. This check for prohibited
read accesses would likely be in the same place as the check for attempted write

accesses to existing data.

If the agent needs to constrain the resources used by untrusted programs, it can
intercept all relevant resource allocation and deallocation calls and monitor the
resources in use. The agent can then prevent programs from exceeding the desired
resource constraints.

Finally, note that this agent would actually be very similar to the union directory agent
described in Section 4.2.4. The union agent already presents the contents of a list of
directories as if they were a single directory. The restricted environment agent would

mostly add additional bookkeeping to what is already done by the union agent.
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9.3.2. Agent Providing Extended Filesystem Protection Semantics

This section presents a design for an agent that provides enhanced filesystem
protection semantics beyond those provided by the base system implementation. While

most operating systems supply an existing mechanism for mediating access control that

is adequate for the purposes intended, the particular mechanism chosen may not be

appropriate in all circumstances or application domains. Indeed, the desirability of being

able to evaluate potentially arbitrary access control predicates was established by

ITOSS [Rabin & Tygar 871.

To accomplish this, the agent would intercept operations in which access control

decisions are made and allow for the execution of arbitrary predicates at these points.
These points are mostly those calls that use pathnames. As with the restricted

environment agent described in Section 9.3.1, these predicates could be added in
derived versions of the pathname objects provided by the interposition toolkit. The
toolkit code would then cause them to be invoked for all pathname accesses.

If access revocation [Denning 82] is required, all operations upon objects for which

access might be revoked must also be intercepted so as to be able to deny access
under circumstances requiring revocation. This could be done by producing derived
forms of the toolkit objects that represent reference counted open objects. References
to open objects would be validated by this code, and would return errors if access had
been revoked to the referenced open objects.

Under the UNIX security model [Grampp & Morris 84, Leffler et al. 90], the agent must
be run with sufficient permissions to allow it whatever types of access that it might grant
to clients. For instance, if general UNIX style set-user-ID [Ritchie 79, Grampp & Morris

84] and set-group-ID semantics must be emulated, this implies that the agent must be
run as root. Of course, this means that the agent has effectively taken charge of all

access control decisions for applications run under it, since root has full access to all
system resources. Under a security architecture with delegation [Gasser & McDermott
90, Lampson et al. 91], the agent must be authenticated to clients, but need not be
authorized to perform all operations permitted to clients.
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9.4. Security Conclusions

Interposition agents change the security characteristics of computer systems. Agents
can strengthen the security of the total system; they can also weaken it.

Programs run under interposition agents are no more secure than the agents
themselves, just as they are no more secure than the kernel which provides the base
operating system implementation. On the other hand, programs run under interposition
agents can be constrained by the security models implemented by the agents; these
models can be more secure than those provided by the base operating system
implementation.

At least the same level of care should be exercised when deciding if an agent is
trustworthy as is exercised when deciding if a normal application program is trustworthy.
The security of its client applications depends on it.
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Chapter 10

Lessons for Toolkit and Agent Writers

This chapter presents some of the lessons learned in building the interposition toolkit
and interposition agents for the Mach/4.3BSD system interface that might be valuable to
those writing future interposition toolkits or interposition agents.

10.1. Degree of Emulation

The system interface consists of both a set of interfaces and a set of invariants on the
objects manipulated by these interfaces. Some of these invariants are part of the
documented system interface specification; others are artifacts of the particular
implementation. Applications rely on both.

In order to successfully run an application using an instance of the system interface
provided by an interposition agent, the agent must preserve the subset of those
invariants that are depended upon by the application. This leaves toolkit and agent
writers with several possibilities:

* Preserve all invariants. If possible, this would allow all applications to be
run under the agent. However, this is actually not possible, since it is
impossible to determine all the invariants that applications might ever count
on.

*Preserve documented invariants. This would allow all applications that
obey the system interface specification to be run. Of course, most systems
are inadequately specified for this approach to strictly practical. Many
commonly used invariants are typically undocumented, often because they
seemed "obvious".

• Preserve invariants needed by a set of target applications. Preserving only
the subset of invariants needed by a chosen set of applications may be
substantially easier than attempting to maintain the complete set of
invariants. While, in a theoretical sense, it is still impossible to determine
the set of invariants depended upon by an arbitrary finite set of applications,
in practice, well-behaved applications tend to repeat their behavior on
successive invocations, and so an experimental approach can be sufficient.

89
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10.1.1. Examples of Invarlants Preserved

This section presents examples of system interface invariants maintained by the Mach

2.5 implementation of the 4.3BSD system interface that are counted on by some

applications and are preserved by all of the agents that I constructed. While thei 3 are

certainly thousands of invariants maintained, the following two illustrate invariants that

had to be explicitly preserved by toolkit code.

"* Least Free Descriptor Allocated: When a new descriptor is allocated by a
system call, 4.3BSD always ailocates the lowest numbered free descriptor.
While this property is not described in the open () manual page, it is
nonetheless depended upon by some applications, such as Unix
Emacs [Gosling 82]3. The toolkit descriptor management layer preserves
this invariant.'

"* Signals Interrupt Application Code: When a signal is delivered under
4.3BSD, the program counter at the point of interruption, which is available
to the signal handler, always points to application code that was interrupted.
In early versions of the interposition toolkit, agent code could be interrupted
by signals that were delivered to application signal handlers, with the
interrupted program counter pointing to the interrupted agent code. This
confused both some applications and the agents. Low-level toolkit code
was subsequently added to make it appear to applications that signals only
interrupt application code.

10.1.2. Examples of Invarlants Not Preserved

This section presents examples of system interface invariants maintained by the Mach
2.5 implementation of the 4.3BSD system interface that are counted on by some

applications and are not preserved by some of the agents that I constructed.
"* Zeroed Stack: The contents of the stack are zeroed by the kernel-based

execve () when a program is loaded. My agents leave some non-zero
words on the stack beyond the stack pointer. Some programs that neglect
to initialize stack variables will work on the kernel implementation, but fail
under agents. This is a case of programs depending upon an invariant that
is an artifact of a particular implementation which is not part of the system
interface specification.

"* SIxty-four Descriptors: The kernel is compiled to allow up to 64 open files
per process. This limit is available both through the getdtablesize ()
system call and through the symbolic constant NOFILE in
<sys/param.h>; the getdtablesize () call is meant to replace uses of

3Some applications, such as Unix Emacs, close descriptor zero, and then count on the the next open ()

call returning descriptor zero without checking the open () return value.

4The IEEE POSIX standards committee found that a sufficiently large body of existing practice depended
upon this behavior to warrant mandating it in implementations claiming conformance to the base POSIX
standard [IEEE 901.
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the older NOFILE constant, allowing the maximum number of open files to
be changed without requiring programs to be recompiled. Some agents,
such as the trace agent, require descriptors for their operation and so
reduce the number of descriptors available to applications. These agents
return the reduced number from getdtablesize () ; they return an invalid
descriptor error for references to agent descriptors. Some programs, such
as csh, use the value of NOFILE, rather than the number returned from
getdtablesize (), and so may attempt to reference agent descriptors.35

This is a case of programs depending upon an obsolete invariant.

*Contents of Directory on Single Device: The 4.3BSD directory format
requires that all entries in a directory reside on a single device.36 The union
directory agent can violate this invariant by constructing a single logical
directory from several actual directories which may reside on different
devices. Many programs do not list the contents of directories, and of those
that do, most never use this particular invariant; but not all programs will run
successfully under such agents. This is a case of an invariant that is part of
the documented system interface that is not depended on by a significant
set of applications.

10.1.3. Conclusions on Degree of Emulation

For applications to run correctly on agents, the agents must preserve all the invariants

depended upon by the applications. Minimally, this means that agent, and particularly
toolkit writers, must be aware of these invariants and the tradeoffs involved in

maintaining or not maintaining them. Maintaining only the invariants in the system
interface specification is insufficient to ensure that applications continue working;

maintaining some of the invariants that are in the specification is unnecessary for certain

classes of applications. Just as those who port or remplement operating systems must

be aware of the invariants depended upon by applications, toolkit and agent writers must

be aware of them as well.

35csh closes all unknown descriptors upon startup. It runs successfully under such agents because it
ignores the error returned from close () on an invalid descriptor, and because it never subsequently
attempts to use these descriptors.

36Directory entries contain an inode number but no device number.
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10.2. The Choice of Co-Resident Agents

The agents that I built reside in the same address spaces as their client processes.

This decision was made for several reasons:
* Existing Mechanism: The Mach system call interception mechanism

redirects system calls to handler routines in the same address space. This
made co-resident agents a natural choice for the Mach/4.3BSD
environment.

*Efficiency: System calls can be redirected very q~ickly within the same
address space, as no context switch needs to occurw'. Likewise, client data
can be accessed rapidly, without the use of any special cross-address
space mechanisms.

This decision had several drawbacks. Some of these were:
* Address Space Management: When agents are co-resident with their

clients, a portion of the address space must be dedicated to agent use, and
so becomes unavailable to applications. This must be done in such a way
that applications are unaffected. Also, if multiple agents are in use, care
must be taken that the agents use mutually exclusive ranges of the address
space, and do not interfere with one another's operation.

* Management of Other Resources: The address space is not the only
resource shared when agents execute as part of the client process. Such
resources as descriptors and the process signal state must be managed in
such a way that the agent's use of them is transparent to applications.

"* Code to Hide Agent: A substantial amount of code is necessary in order to
hide the presence of agents from applications sharing the same address
space and other process resources. The execve () call must be
reimplemented by the agent to allow the application's portion of the address
space to be reloaded, while maintaining the agent's portion. Much of the
descriptor management interface must be reimplemented to allow
execve ()'S implicit descriptor management (close-on-exec) to function
properly. The entire signal delivery mechanism must be reimplemented so
as to make it appear that signal delivery only interrupts application code,
hiding the fact that agent code could actually be interrupted as well. These
issues are discussed further in Section 5.6.

"* Lack of Agent Stacking: One of the largest drawbacks of co-resident
agents is that agent stacking - running agents on top of other agents -
can not be done transparently. Some form of central resource arbitration
that is knowledgable of the stacked agents and the resources they require is
necessary in order to perform such tasks as allocating portions of the
address space to different agents, intercepting system calls occurring within
the address space and dispatching them to the correct agent, establishing
the bindings allowing one level of agent to call down to the system calls
provided by the next, and allowing one level of agent to signal the next layer
up. These issues are discussed further in Section 8.2.5.

37For the time to intercept system calls under Mach 2.5, see Section 6.4.3.
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" Agents Trusting Applications: My agents have no choice but to trust
applications, since they run in the same protection domain. This makes it
impossible to write an agent that restricts the possible behaviors of
applications without the same restrictions being placed on the agent itself.
These issues are discussed further in Section 9.1.3.

"* Efficiency: Despite the efficiency advantage of being able to intercept
system calls and access application resources without context switching,
there are some performance drawbacks to co-resident agents. These come
mostly from the additional layers of code that are executed in order to hide
the agent and the resources it uses from client applications. The clearest
such example is that the cost of execve () is currently doubled by being
reimplemented in user space, as per Section 6.4.3. Some of these costs
could be avoided by running agents in separate address spaces, albeit at
the cost of additional context switches. Having built co-resident agents but
not separate agents, it would be premature to conclude that one type of
agent is necessarily more efficient than the other for all applications.

Having built co-resident agents for the 4.3BSD interface using the Mach system call

interception facilities, the shortcomings of this approach are now apparent. Not having

built agents residing in separate address spaces, the drawbacks of this approach are

less clear. Future toolkit and agent writers should be aware of these tradeoffs when

deciding between running future agents in the same or separate address spaces than

their client applications.

10.3. Toolkit Interface Design Criteria

This section presents some of the criteria and guidelines used when designing the

interposition toolkit interfaces. The main criteria were:

* Completeness: Interfaces should provide a complete encapsulation of the
abstractions manipulated by them. All operations that can be performed on
the objects manipulated by a given interface should be able to be performed
using that interface; clients of an interface should need no knowledge of its
implementation; side interfaces or special "trap doors" should be avoided if
at all possible.

e Independence: Interfaces should manipulate a single abstraction or
closely related set of abstractions whenever possible. Furthermore, side
effects of operations from one interface upon objects manipulated by other
interfaces should be avoided whenever possible.

* Increasing Levels of Useful Abstractions: New interfaces should be
introduced for each new level of abstraction at which agents might need to
produce a derived implementation.

Of course, these criteria are often in conflict with one other and real systems need to

strike a balance among them. For instance, in the 4.3BSD system interface, descriptors

and pathnames are nearly, but not quite, independent: the open () and creat () calls
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produce descriptors from pathnames; the getdirentries () and read() calls

produce sets of pathname elements from Jescriptors; the bind () and connect () calls

associate pathnames with descriptors. Thus, complete pathname and descriptor
interfaces are mutually dependent. Multiple inheritance is one technique that can help
with such situations. Parameterized or generic interfaces is another.

If anything, I found that adherence to good design principles was even more important
in building the interposition toolkit than it usually is. If the goals of flexibility and
extensibility were to be realized, the interfaces needed to be as clean and well-defined

as possible. Any shortcuts that I took in the design, or assumptions that I made about
how an interface would be used, tended to come back to haunt me: the shortcuts
reduced the flexibility of the toolkit objects; the assumptions often ended up not being
valid. In my experience building the interposition toolkit and agents using it, I found that
adherence to these good design principles helped produce clean interfaces that are both
flexible and extensible.

10.4. Applicability to Other Interfaces

This dissertation presents a toolkit that attempts to simplify the construction of
interposition agents. It does this by providing multiple structured views of the objects
present in the system interface, allowing agents to be written at whatever levels of
abstraction are appropriate to their particular functions, leveraging off of existing toolkit
code whenever possible. While the toolkit itself is specific to a particular system
interface, many of the techniques used should be applicable to other interfaces as well.

The success of this approach hinges on the ability to cast an existing interface into a

set of well-structured object-specific interfaces, each of which is sufficient to fully
encapsulate the behavior of the particular object. I believe that this should be possible
for existing interfaces that satisfy two key requirements:

"• the interface contains a reasonably small number of abstractions;

"* the behavior of these abstractions is largely independent.

Interfaces satisfying these properties should be amenable to this approach.

The 4.3BSD interface [Leffler et al. 90] satisfies these properties. Other interfaces,
such as the X Window System interface [Scheifier & Gettys 86], also do [Jones 92]. Not
every interface does. As a glaring counterexample, consider the C library (libc) taken as
a whole, which satisfies neither. The C library contains a huge number of abstractions
that are often implemented in terms of one another in interdependent and non-obvious
ways.
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Future Work

This chapter presents a brief look at some future research directions which could follow
from this work.

11.1. Construct New Agents

One obvious possibility that this research opens up is the ability to construct new
interposition agents. Such agents could include the restricted environment agent

described in Section 9.3.1 and emulators for variant operating systems, such as

HP-UX [Clegg et al. 86], on top of 4.3BSD [Leffler et al. 90].

11.2. Ports to Other Machines

The toolkit currently includes machine-dependent support for only the Intel
386/486 (Intel 86, Intel 90] and the VAX [Digital 81b, Digital 81a]. Machine dependent

support for newer processor families such as the SPARC [Gamer et al. 88], the

MIPS [Kane 87], and the HP Precision [Lee 89] can easily be provided.

11.3. Support for Multiple Threads

Mach 2.5 makes it possible to write multi-threaded programs which use both 4.3BSD
Facilities and Mach facilities. The interposition toolkit does not currently support such

multi-threaded programs.
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11.4. Support for Additional Abstractions

The abstractions currently fully supported by the toolkit are system calls, descriptors,

pathnames, and directories. Classes for other 4.3BSD abstractions such as time,

processes, protection, etc. could also be added. These classes would encapsulate all

the uses of their corresponding abstractions within the system interface, allowing the

behavior of these abstractions to be modified via inheritance.

Of course, not all system interface abstractions are as well-behaved as those currently
supported. For instance, consider the time abstraction: while the gettimeofday ()

call presents time in a straightforward manner, many other calls use time implicitly.

Such facilities as the modification and access timestamps on filesystem objects and
interval timers are closely related to, but not identical to the time of day. While support

for such abstractions may require more mechanism than is immediately apparent, it

should nonetheless be possible to provide it in such a manner that agents can
implement any desired policies.

As a side note, I believe that the use of multiple inheritance might help make it possible

to flexibly combine the objects representing such largely independent abstractions. For
instance, one independent class could have been written to encapsulate the uses of

descriptors and another could have been written to encapsulate the uses of pathnames.
A class that inherits from both of them could then have been used to capture the few
places such as open () and getdirentries () where there are interactions between
them. I expect that this strategy of combining largely independent classes, handling the
areas of interdependence with multiple inheritance, would become more important as
the number of not quite independent abstractions used within an agent grows. The
toolkit currently does not currently use multiple inheritance.

11.5. Building Stacked Agents

Another possible future direction is to support stacked interposition agents. Several
approaches are possible:

"* The "traffic cop" approach, as described in Section 8.2.5.

"* Providing Mach kernel support to treat application system calls as per-
thread Mach exceptions [Black et al. 88].

"* Using a mechanism in which one process can intercept another's system
calls, such as the SunOS version 4 [Sun 88a] ptrace () call.
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11.6. Support for Agents in Separate Address Spaces

The current toolkit only supports agents which are co-resident with their clients, as

discussed in Section 10.2. One avenue of future work is to construct a new set of toolkit

boilerplate which supports agents which are in separate address spaces from their

clients. Among other advantages, this would allow agents to be written which would be

protected from their client applications, as per Sections 9.1.3 and 10.2. One obvious

choice of platforms would be to produce toolkit boilerplate to use the SunOS version

4 [Sun 88a] ptrace () function for system call interception, as per Section 11.7.

11.7. Ports to Other UNiX-Like Operating Systems

Given that a number of contemporary operating systems present substantially similar
interfaces to that of the Mach 2.5/BSD system on which the toolkit has been developed,

a large portion of the toolkit should be portable and directly applicable to these systems
as well. Some of these systems are described in Chapter 3, Related Work. For
instance, the toolkit should easily port to SunOS, System V.4, and the Mach 3.0 Unix
Server/Emulator [Golub et al. 90]. These ports would allow useful interposition agents to
be easily portable among a range of contemporary operating systems.

A port to SunOS [Sun 88a] would seem to be an obvious choice for a number of
reasons. A separate address space version could be built using ptrace () to intercept
system calls. A co-resident version could be built using dynamic linking to perform
interposition for applications which follow the convention that system call traps are

obtained only from dynamically linked libraries, and are not embedded within the
application itself. Also, such a toolkit port might prove useful to members of the large

Sun user bass.

11.8. Application of Ideas to Other Interfaces

As discussed in Section 10.4, the techniques used to construct the interposition toolkit

for the 4.3BSD [Leffler et al. 90] interface should be applicable to other well-behaved
interfaces as well. For instance, this approach should be applicable to the X Window
System [Scheifler & Gettys 86] interface, as explored in [Jones 92].
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Chapter 12

Conclusions

12.1. Summary of Results

This research has demonstrated that the system interface can be added to the set of
extensible operating system interfaces that can be extended through interposition. Just
as interposition is successfully used today with such communication-based facilities as
pipes, sockets, and inter-process communication channels, this work has demonstrated
that interposition can be successfully applied to the system interface. This work extends
the known benefits of interposition to a new domain.

It achieves this result through the use of an interposition toolkit that substantially
increases the ease of interposing user code between clients and instances of the system
interface. It does so by allowing such code to be written in terms of the high-level
objects provided by this interface, rather than in terms of the intercepted system calls
themselves.

The following achievements demonstrate this result:
* an implementation of a system call interposition toolkit for the 4.3BSD

interface has been built under Mach,

* the toolkit has been used to construct the agents previously described,

* major portions of the toolkit have been reused in multiple agents,

* the agents have gained leverage by utilizing additional functionality provided
by the toolkit, substantially simplifying their construction, and

* the performance cost of using the toolkit can be small relative to the cost of
the system call interception mechanism and the operations being emulated.
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12.2. Thesis Contribution

This research has demonstrated both the feasibility and the appropriateness of

extending the system interface via interposition. It has shown that while the 4.3BSD

system interface is large, it actually contains a small number of abstractions whose

behavior is largely independent. Furthermore, it has demonstrated that an interposition

toolkit can exploit this property of the system interface. Interposition agents can both

achieve acceptable performance and gain substantial implementation leverage through

use of an interposition toolkit.

These results should be applicable beyond the initial scope of this research. The

interposition toolkit should port to similar systems such as SunOS and UNIX System V.

Agents written for the toolkit should also port. The lessons learned in building this

interposition toolkit should be applicable to building similar toolkits for dissimilar systems.

For instance, interposition toolkits could be constructed for such interfaces as the MS-

DOS system interface, the Macintosh system interface, and the X Window System

interface.

Today, agents are regularly written to be interposed on simple communication-based

interfaces such as pipes and sockets. Similarly, the toolkit makes it possible to easily

write agents to be interposed on the system interface. Indeed, it is anticipated that the

existence of this toolkit will encourage the writing of such agents, many of which would

not otherwise have been attempted.

12.3. Applicability and Tradeoffs

Interposition is one of many techniques available. As in other domains such as pipes,

filters, IPC intermediaries, and network interposition agents, sometimes its use will yield

a substantial benefit, while sometimes its use would be inappropriate. As with other

layered techniques, peak achievable performance will usually not be achieved.

Nonetheless, interposition provides a flexibility and ease of implementation that would

not otherwise be available.
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12.4. Vision and Potential

The potential opened up by interposition is enormous. Agents can be as easy to use
as filters. They can be as easy to construct as normal application programs. The
system interface can be dynamically customized. Interface changes can be selectively
applied. Indeed, interposition provides a powerful addition to the suite of application and
system building techniques.
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Appendix A

The 4.3BSD System Interface

As part of the preliminary investigation into this topic, I performed a detailed study of

the 4.3BSD [Leffler et al. 90] system interface, producing a taxonomy of the objects used
by each of the system calls. This taxonomy is presented in Section A. 1. Some statistics

gathered from the taxonomy ale presented in Table A-1.

4.3BSD System Interface Object Usage Statistics

Categorization of System Calls # of Calls

All system calls implemented 114

Calls using pathnames 30
General purpose 7
Directory specific 6
File specific 6
Symbolic link specific 2
Socket specific 2
Device specific 5

Calls using descriptors 48
General purpose 18
Directory specific 1

File specific 1

Socket specific 17
Calls implicitly jsing descriptors 6

Calls not using pathnames or descriptors 44

Calls using PIDs 16
Calls implicitly using PIDs 3

Calls using process groups 7

Calls using UlDs or GIDs 20
Calls implicitly using UIDs or GIDs 4

Calls using time 121

[Calls using signals 131

Table A-1: 4.3BSD system interface object usage statistics
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This taxonomy shows that while there are a moderately large number of calls, most of

them only manipulate a few different kinds of objects. The toolkit capitalizes on this

specificity, taking advantage of the fact that the behaviors of the abstractions present in

the system interface, and thus the system calls using them, are largely independent.

See Section 1.6 for a discussion the use on this property of the 4.3BSD system interface

by the interposition toolkit.

A.1. 4.3BSD System Interface Taxonomy

The remainder of this appendix presents a taxonomy of the different objects used in

each of the 4.3BSD system call interfaces. Those calls that are obsolete,

unimplemented, or undefined are not presented. A key to abbreviations and terms

immediately follows the list of system calls and abstractions used.

4.3BSD System Calls and Abstractions Used

System System # Status Uses Uses Re- Uses Uses Other
Call Call of Path- Descrip- stric- PIDs UIDs/ Abstractions

Name S Args names tors tions GlDs Ustad

syscall 0 7 y y y y system calls

-exit 1 1 i i status

fork 2 0 i .

read 3 3 y mem

write 4 3 y merm

open 5 3 y y !S mode

close 6 1 y

creat 8 2 y y Ws~d mode

link 9 2 y f

unlink 10 1 y !d

execv 11 2 y i f i mem

chdir 12 1 y d

mknod 14 3 r y bic mode, dev

chmod 15 2 y mode

chown 16 3 y y

brk 17 1 o mem

Iseek 19 3 y !s

getpid 20 0 y

mount 21 3 r y b,d blk

umount 22 1 r y b blk
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4.3BSD System Calls and Abstractions Used (continued)

System System # Status Uses Uses Re- Uses Uses Other
Call Call of Path- Descnp- stric- PIDs UIDs/ Abstractions

Name # Args names tors tions GIDs Used

getuid 24 0 y

ptrace 26 4' y mem, status

access 33 2 y mode

sync 36 0 filesystems

kill 37 2 y pgrp, sig

stat 38 2 y y dev, fsys, time

stat 40 2 y y dev, fsys, time

dup 41 2 y

pipe 42 0 y p

profil 44 4 mem, time

getgid 47 0 y

acct 51 1 r y f i time, tty, fsys

ioctl 54 3 y many y y dev, pgrp, etc

reboot 55 1 r bootflags

symlink 57 2 y I

readlink 58 3 y I mem

execve 59 3 y i f i mem

umask 60 1 mode mask

chroot 61 1 r y d
fstat 62 2 y y dev, fsys, time

getpagesize 64 1 page size

vfork 66 0 i y

vread 67 3 o y mem

vwrite 68 3 0 y mem

sbrk 69 1 mem

mmap 71 6 y mem

munmap 73 2 mem

vhangup 76 0 r t try

getgroups 79 2

setgroups 80 2 r y

getpgrp 81 1 y pgrp

setpgrp 82 2 y pgrp

setitimer 83 3 time, sig
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4.3BSD System Calls and Abstractions Used (continued)

System System # Status Uses Uses Re- Uses Uses Other
Call Call of Path- Descip- stric- PIDs UIDs/ Abstractions

Name # Args names tors tions GIDs Used

wait 84 3 y time, sig

swapon 85 1 r y b bik

getitimer 86 2 time, sig

gethostname 87 2 host name

sethostname 88 2 r host name

getdtablesize 89 0 i

dup2 90 2 y

fcntl 92 3 y y sig

select 93 5 y mem

fsync 95 1 y !s filesystem

setpriority 96 3 y y pgrp, prio

socket 97 3 y s sockopt

connect 98 3 y y s sockaddr

accept 99 3 y S sockaddr

getpriority 100 2 y y pgrp, prio

send 101 4 y s mem

recv 102 4 y s mem

sigreturn 103 1* sigmask, regs

bind 104 3 y y s sockaddr

setsockopt 105 5 y s sockopt

listen 106 2 y s socket backlog

sigvec 108 3T sig, sigmask

sigblock 109 1 sigmask

sigsetmask 110 1 sigmask

sigpause 111 1 sigmask

sigstack 112 2 sigstack

recvmsg 113 3 y s mem

sendmsg 114 3 y s mem

gettimeofday 116 2 time

getrusage 117 2 rusage

getsockopt 118 5 y s sockopt

ready 120 3 y mem

writer 121 3 y mem



Appendix A: The 4.3BSD System Interface 109

4.3BSD System Calls and Abstractions Used (continued)

System System # Status Uses Uses Re- Uses Uses Other
Call Call of Path- Descrip- stric- PIDs UIDs/ Abstractions

Name # Args names tors tions GIDs Used

settimeofday 122 2 r time

fchown 123 3 y Is y

fchmod 124 2 y Is mode

recvfrom 125 6 y s mem, sockaddr

setreuid 126 2 y

setregid 127 2 y

rename 128 2 y

truncate 129 2 y f file length

ftruncate 130 2 y f file length

flock 131 2 y Is file lock

sendto 133 6 y s mem, sockaddr

shutdown 134 2 y s

socketpair 135 4 y s sockopts

mkdir 136 2 y d mode

rmdir 137 1 y d

utimes 138 2 y is time

sigcleanup 139 0* 0 sigmask, regs

adjtime 140 2 r time

getpeemame 141 3 y s sockaddr

gethostid 142 0 hostid

sethostid 143 1 r hostid

getrlimit 144 2 i rlimits

setrlimit 145 2 i rlimits

killpg 146 2 pgrp, sig

setquota 148 2 r y b,f i fsys, quota

quota 149 4 y blk, quota, tty

getsockname 150 3 y s sockaddr

getdirentries varies 4 y y d mem



Appendix A: The 4.3BSD System Interface 110

Key to Abbreviations and Terms

Abbreviations and terms used in the 4.3BSD system call taxonomy are:

Number of arguments:
Indicates arguments passed in irregular fashion,
or argument count varies between machines

System call status values:
o System call obsolete but implemented
R Root privileges required to use system call

Uses pathnames, descriptors, PIDs, and UlDs/GIDs values:
y Abstraction is explicitly used
i Abstraction is implicitly used

Restrictions on objects referenced by descriptors, pathnames:
b Block special device
c Character special device
d Directory
f Regular file
I Symbolic Unk
p Pipe (pipes are also sockets)
s Socket
t Terminal device
I Separates multiple permissible object types
I Prefixes impermissible object types

Separates different restrictions on multiple arguments

Other abstractions used:
blk Block device number
dev Device number
fsys File system
gid Group identifier
hostid Host identifier
mem Process memory
mode Access mode, sometimes including object type bits
pid Process identifier
pgrp Process group identifier
prio Scheduling priority level
quota File system quota information
regs Processor registers
rlimits Process resource limits
rusage Process resource usage information
sig Signal number
sigmask Set of signal numbers
sigstack Signal stack information
sockaddr Socket address
sockopt Socket option
status Process exit status
try Terminal device
uid User identifier



Appendix B

Toolkit Layers and Classes

This appendix presents the actual classes implemented in the interposition toolkit.

B.1. Base Toolkit Layer

The base toolkit layer primarily consists of a set of C routines that implement the bare
minimum of the 4.38SD system calls that must be intercepted by each agent, as per
Section 5.6. It also contains the rest of the boilerplate described in Chapter 5 such as

the loader and the signal emulation code.

The primary interfaces provided by the base toolkit layer are as follows:
extern int emul fork(int rv[2]);
extern int emul execv(int *args, int rv[2], void *regs);
extern int emul ioctl(int d, unsigned long request, void *argp, int rv(2J);
extern int emul-execve(int *args, mnt rv[2], void *regs);
extern int emul-obreak(void *addr, int rv[2]);
extern int emul-sbrk(int delta, int rv(2J);
extern int emul fcntl(int d, int cmd, int arg, int rv[2]);
extern int emul-sigblock(int mask, int rv[2]);
extern int emul sigsetmask(int mask, int rv[2]);
extern int emulsigpause(int mask, int rv[2]);
extern int emul sigstack(struct sigstack *ss, struct sigstack *oss, int rv[2]);

extern int emul sigreturn(int *args, int rv[2], void *regs);
extern int emul sigvec(int *args, int rv[2], void *regs);
extern int emulosigcleanup(int *args, int rv[2], void *regs);

extern void emul handle_signal(int sig, int code, struct sigcontext *context);

extern int htgsyscall(int number, int args(], int rv(21,
struct emulregs *regs);

B.2. Numeric System Call Layer

The numeric system call layer views the system interface as consisting of vectors of

untyped numbers. The 4.3BSD system call numbers and the numbers of arguments for
each system call are listed in Section A.1.

111
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The primary interfaces provided by the numeric system call class are as follows:
class numeric syscall
public:

virtual int syscall(int number, mnt argsE], int rv(2], void 'regs);
virtual void init (char 'agentargv[]);
virtual void signal handler(int sig, int code, struct, sigcontext *context);
void register-interest (mt number);
void register-interest-range(int low, mnt high);

8.3. Symbolic System Call Layer

The symbolic system call layer views the system interface as consisting of a set of
typed virtual functions. It is the first layer that provides sufficient abstraction to make it
easy to write simple interposition agents.

The primary interfaces provided by the symbolic system call class are as follows:

class symbolic syscall
public:

virtual void init (char *agentargv[]);
virtual void mnit-childo;

virtual mnt sys-exit (mt status, mnt rv(2]);
virtual mnt sys_fork(int rvE2]);
virtual mnt sys_read(int fd, void 'buf, mnt cnt, mnt rv(2]);
virtual mnt sys-vrite(int fd, void *buf, mnt cnt, mnt rvE21);
virtual mnt sys open(char *path, mnt flags, mnt mode, mnt rv(2]);
virtual mnt sys -close(int fd, mnt rv[2]);
virtual mnt sys creat(char 'path, mnt mode, mnt rv[2]);
virtual mnt sys-link(char 'path, char *newpath, mnt rv[2]);
virtual int sys_unlink(char 'path, Int rv[2]);
virtual mnt sys-execv(int 'args, mnt rv(2J, struct emul regs *regs);
virtual mnt sys chdir(char 'path, mnt rvE2J);
virtual int sys-mknod(char *path, mnt mode, mnt dev, mnt rv[2]);
virtual mnt sys_chmod(char 'path, mnt mode, mnt rv(2]);
virtual mnt sys_chown(char 'path, mnt user, mnt group, mnt rv[2]);
virtual mnt sys_obreak(void 'addr, mnt rvE2l);
virtual mnt sys lseek(int fd, off-t offset, mnt whence, mnt rv[2fl;
virtual mnt sys~getpid(int rv[2]);
virtual mnt sys-mount (char 'special, char 'name, mnt rwf lag, mnt rv[2]);
virtual mnt sys_umount(char 'special, mnt rv[2]);
virtual mnt sysgetuid(int rv(2]);
virtual mnt sys~ptrace(int request, mnt pid, void *addr, mnt data,

void *addr2, mnt rv(2]);
virtual mnt sys_access(char 'path, mnt mode, mnt rv[2]);
virtual mnt sys_sync(int rv(2]);
virtual int sys_kill(int pid, mnt sig, mnt rv[2J);
virtual mnt sys_stat(char *path, struct stat 'statbuf, mnt rvt2]);
virtual mnt sysls3tat(char 'path, struct stat 'statbuf, hit rv[2]);
virtual mnt sys~dup(int oldd, int rv[2J);
virtual mnt sys~pipe(int rv(2]);
virtual mnt sys~profil(void 'buff, int bufsiz, mnt offset, mnt scale,

int rv[2));
virtual mnt sys~getgid(int rv(2]);
virtual mnt sys_acct(char 'file, mnt rv(2]);
virtual mnt sys_ioctl(irit d, unsigned long request, char *argp, mnt rv[21);
virtual mnt SYs_reboot(int howto, mnt rv[2]);
virtual hit sys_symlink(char 'contents, char 'newpath, mnt rvf2]);
virtual mnt sys_readlink(char 'path, void 'buf, mnt cnt, mnt rv(2]);
virtual mnt sys_execve(int 'args, mnt rv[2], struct emul-regs 'regs);
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virtual int sys_umaskilint mask, int rv[2]);
virtual mnt sys-chroot(char *path, Int rv(2]);
virtual int sys_fstat(int fd, struct stat *statbuf, int rv(2]);
virtual int syasgetpagesize(int rv(21l;
virtual int sys-vfork(int rv[21);
virtual int sys_vread(int fd, void *buf, int cnt, mnt rv[2]);
virtual mnt sys vwrite(int fd, void *buf, int cnt, int rv[2]);
virtual mnt sys sbrk(int incr, mnt rv(2]);
virtual int. sysnusap(void *addr, int. In, mnt prot, int. share,

mnt fd, off t offset, mnt rv[2]);
virtual mnt sys-munmap(void *ad~dr, mnt len, mnt rv[21D;
virtual mnt sys -vhangup(int rv(2]);
virtual int. sys-gotgroups(int gidastlen, mnt *gidset, mnt rv[2]);
virtual int. sys setgroups(int ngroups, int *gidset, mnt rv[21);
virtual mnt sys getpgrp(int pid, mnt rv(2]);
virtual mnt sys setpgrp(int pid, mnt pgrp, mnt rv[21);
virtual mnt sys_setitimer(int which, struct itimerval *value,

struct, itimerval tovalue, mnt rv(2]);
virtual mnt sys -wait(int *args, mnt rv[21, struct emul regs *regs);
virtual mnt sysswapon(char *special, mnt rv(2]);
virtual mnt sys-getitimer(int which, struct itirnerval *value, mnt rvf2]);
virtual int sys-gethostname(char *name, int namelen, mnt rv(21);
virtual mnt sys_sethostname(char *name, int. namelen, int. rv[2]);
virtual mnt sys-getdtablesize(int rv(2]);
virtual mnt sys-dup2(int oldd, mnt newd, mnt rv[2]);
virtual int. sys_fcntl(int fd, mnt cmd, mnt arg, mnt rv(21l;
virtual mnt sys_select(int nfds, fd set *readfds, fd set *writefds,

fd -set *exceptfds, struct timeva~l *timeout, int. rv(2]);
virtual mnt sys fsync(int fd, mnt rv[21);
virtual mnt sys setpriority(int which, int. who, mnt prio, mnt rv[2]);
virtual mnt sys_socket (mt domain, mnt type, int protocol, mnt rv(2]);
virtual mnt sys_connect(int s, struct sockaddr *name, mnt namelen,

mnt rv[2]);
virtual mnt sys-accept(int s, struct sockaddr *name, mnt *namelen,

mnt rv(2]);
virtual mnt sys~getpriority(int which, mnt who, mnt rv(2]);
virtual mnt sys_send(int s, void *msg, int len, mnt flags, mnt rv[21);
virtual mnt sys_recv(int 3, void *buf, mnt len, mnt flags, mnt rvf2]);
virtual mnt sy3ssigreturn(int *args, mnt rv(2], struct. emul regs *regs);
virtual mnt sys -bind(int 9, struct sockaddr *name, mnt namelen, mnt rvt2]);
virtual mnt Sys-setsockopt(int s. mnt level, mnt optname,

void *optval, mnt optlen, mnt rv(2]);
virtual mnt sys_listen(int a, mnt backlog, int rv[2]);
virtual mnt sys sigvec(int *args, mnt rv(2], struct emul-regs *regs);
virtual mnt sys sigblock(int mask, mnt rv[2]);
virtual mnt sys sigsetmask(int mask, mnt rv[2]);
virtual mnt SYS_3igpause(int mask, int rv(2]);
virtual mnt sys sigstack(struct sigstack *ss, struct sigatack *oss,

int rv[21);
virtual int. sys recvmsg(int s, struct msghdr *msg, mnt flags, mnt rv[2]);
virtual mnt sys sendrnsg(int s, struct msghdr *msg, mnt flags, mnt rv[2]);
virtual mnt sys~gettimeofday(struct timeval *tp, struct timezone *tzp,

mnt rv(21);
virtual mnt sys-getrusage(int who, struct rusage *rusage, int rv(2]);
virtual int sys~getsockopt(int a, mnt level, mnt optname,

void *optval, mnt *optlrdn, mnt '1[2]);
virtual mnt sys_readv(int fd, struct iovec *iov, mnt iovcnt, int rv(2]);
virtual mnt sys-writev(int fd, struct. iovec *iov, mnt iovcnt, int. rvf21);
virtual int. sys_settimeofday(struct timeval *tp, struct timezone *tzp,

mnt rv[21);
virtual mnt sys_fchown(int fd, int user, mnt group, mnt rv[2J);
virtual mnt sys_fchmod(int fd, mnt mode, int rv(21);
virtual mnt sys_recvfrom(int s, void *buf, int len, int flags,

struct sockaddr *from, int *fromlen, mnt rv(2]);
virtual mnt sys_setreuid(int ruid, Int euid, mnt rv[21);
virtual mnt ays setregid(int rgid, mnt egid, int rv(21);
virtual int. aye_rename(char *oldpath, char *newpath, mnt rv[2]);
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virtual int eye-truncate(char *path, off-t offset, int rv(2]);
virtual int aye_ftruncate(int fd, off-t offset, int rv(2J);
virtual int eye_flock(int fd, int operation, int rv[21);
virtual int eye_sendto(int s, void 'meg, mnt lon, int flags,

etruct eockaddr *to, mnt tolen, int rv(2]);
virtual mnt sye_shutdown(int a, int how, mnt rv[2]);
virtual mnt eye eock~tpair(int domain, int type, mnt protocol, mnt sv[2],

mnt rv[2J);
virtual mnt aye-mkdir(char 'path, mnt mode, int rv[21l;
virtual mnt eye_rmdir(char 'path, mnt rv(2]);
virtual int eye-utimee(char 'path, etruct timeval tvp(2J, mnt rv(21);
virtual int eye -oeigcleanup(mnt 'args, mnt rv[2], etruct emul regs 'regs);
virtual int eye adjtime(etruct tirneval 'delta, etruct timeval 'olddelta,

int rv[2]);
virtual mnt eye getpeernam.(int a, struct eockaddr *name, mnt 'namelen,

int rv[21);
virtual int eye gethoetid(int rv[2]);
virtual mnt esye_eethoetid(long ho3tid, int rv[21);
virtual mnt eye getrlimit (mt reeource, etruct rlimit *rlimit, int rv(2]);
virtual mnt eye_eetrlimit(int resource, etruct rlimit 'rlimit, mnt rv(21);
virtual mnt eye killpg(int pqrp, mnt eig, int rv[2]);
virtual mnt eye-eetquota(char *special, char 'file, mnt rv[21);
virtual mnt eye quota(int cmd, int uid, mnt arg, void 'addr, mnt rv(2]);
virtual mnt sye getsockname(int s, struct sockaddr *name, mnt 'namelen,

mnt rv[2]);
virtual mnt eye getdirentriee (mt fd, void 'buf, mnt cnt, long 'basep,

mnt rv(2]);

virtual mnt unknown_eyecall(int number, mnt 'arge, mnt rv(2J,
etruct emul_rege 'rege);

virtual void eignal-handler(int sig, mnt code, etruct eigcontext 'context);

B.4. Descriptor Management Classes

Descriptor management is done through three classes, descriptor_set,
descriptor, and open -object. The descriptor-set class provides operations
that affect the set of descriptors, i.e., those that allocate or deallocate descriptors. The
descriptor Class provides operations on the objects referenced by descriptors. The
open object provides for operations on reference counted open objects through
multiple descriptors.

The primary interfaces provided by the descriptor-set class are as follows:
class descriptor-set I
public:

// Descriptor set manipulation routines

virtual void mnit (char 'agentargv(], class DESCSYMBOLICBASE 'desc-sym);
virtual DESCRIPTORCLASS 'lookup(int d);

protected:
virtual mnt alloc(int 'd, DESCRIPTORCLASS 'desc);
virtual int alloc~geq(int 'd, mnt lower bound, DESCRIPTORCLASS 'deec);
virtual mnt enter(int 'result, mnt d, DKESCRIPTORCLASS 'd-esc);
virtual void remove(int d);

public:
IISystem calls with knowledge of descriptors
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virtual int exit (int status, int rv(2]);
virtual mnt fork(int rvf2j);
virtual int open(char *path, int flags, int mode, int rv[2]);
virtual int close(int fd, int rvE21);
virtual int execv~int 'arga, int rv(2], struct emuj._regs *regs);

virtual int dup(int oldd, mnt rv[21);
virtual int. pipe(int rv(2]);
virtual mnt execve(int *args, mnt rv[2], struct emul_regs *regs);
virtual mnt vfork(int rv[2j);
virtual mnt getdtable31ze(int rv(2]);
virtual mnt dup2(int oldd, mnt newd, mnt rv(2]);
virtual mnt fcntl(int fd, mnt cund, hit arg, mnt rv[21);
virtual mnt select(int nfds, fd -set *readfds, fd-set *writefds,

fd -set *exceptfds, struct timeval *timeout, mnt rv[2I);
virtual int. socket(int domain, int type, int protocol, mnt rv[2]);
virtual mnt accept(int 3, struct sockaddr *name~, int namelen, mnt rv[2]);
virtual mnt recvmsg(int s, struct maghdr *msg, int flags, mnt rv[2]);
virtual mnt endmsg(int 9, struct msghdr *msg, mnt flags, mnt rv[21);
virtual mnt socketpair(int domain, int type, mnt protocol, int sv[2],

mnt rv[21);

protected:
// Member functions used internally

virtual void close on execo;
virtual void close-on-exito;

The primary interfaces provided by the descriptor class are as follows:
class descriptor
public:

// Object manipulation system call analogues

virtual mnt read(void *buf, mnt cnt, int rv(2J):
virtual mnt vrite(void 'buf, mnt cnt, mnt rv[2]);
virtual mnt close(int rv(2]);
virtual int lseek(off -t offset, mnt whence, mnt rv(21);
virtual mnt dup(int rv(2]);
virtual mnt ioctl (unsigned long request, char *argp, mnt rv(2]);
virtual mnt fstat(struct stat *statbuf, mnt rv(2]l;
virtual mnt mmap(void 'addr, mnt len, mnt prot, int share,

off t offset, mnt rv[21);
virtual int dup2(int newid, int rv[2]);
virtual mnt fcntl -dupfd(int lower -bound, mnt rv(2]);
virtual mnt fcntl(int crod, int arg, mnt rv[2]);
virtual mnt fsync(int rvt2]);
virtual mnt connect (struct sockaddr 'name, mnt namelen,

mnt rv[2]);
virtual mnt accept (struct sockaddr *name, mnt 'namelen, mnt rv[2]);
virtual mnt send(void *msg, mnt len, mnt flags, int rv[2]);
virtual mnt recv(void *buf, mnt len, mnt flags, mnt rv[2]);
virtual mnt bind(struct sockaddr *name, mnt namelen, int rv(2]);
virtual int setsockopt(int level, hit optname,

void *optval, mnt optlen, mnt rv[2]);
virtual mnt listen(Int backlog, mnt rv(2]);
virtual mnt recvmsg(struct msghdr 'msg, mnt flags, mnt rv(2]);
virtual mnt sendmsg(struct msghdr 'mag, mnt flags, mnt rv[2]);
virtual mnt getsockopt(int level, int optname,

void 'optval, mnt 'optlen, mnt rv[2]);
virtual mnt readv(struct iovec 'iov, mnt iovcnt, mnt rv[2J);
virtual int writev(struct Lovec 'iov, mnt iovcnt, mnt rv(21);
virtual int fchown(int user, int group, mnt r'v[2]);
virtual mnt fchmod(int mode, mnt rv(21);
virtual mnt recvfrom(void 'buf, mnt len, mnt flags,

struct sockaddr 'from, int *fromlen, mnt rv(21);
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virtual int. ftruncate(off t offset, int rv[2]);
virtual int. flock(int operation, mnt rv(2J);
virtual int sendto(void *nwg, mnt len, mnt flags,

struct sockaddr *to, int tolen, int rv[2]);
virtual mnt shutdown(int how, mnt rv[2]);
virtual int getpeername(struct 3ockaddr *name, int *namlej~n,

mnt rv[21);
virtual int. getsockname(struct sockaddr *name, mnt *namelen,

mnt rv(2]);
virtual mnt getdirentries(void *buf, mnt cnt, long *basep, mnt rv[2]);

// Member functions used internally

virtual void implicit-close(0;

The primary interfaces provided by the open-Object class are as follows:
class openobject
protected:

mnt reference-count;

public:
// Object manipulation system call analogues

virtual mnt read(void *buf, mnt cnt, mnt rv[21l;
virtual mnt write(void *buf, mnt cnt, mnt rv(2]);
virtual int close(int rv[2]);
virtual mnt lseek(off_ý offset, mnt whence, mnt rv(2]);
virtual mnt ioct' 3 iAgned long request, char *argp, mnt rv(2]);
virtual mnt f stat itruct stat *statbuf, mnt rv(2]);
virtual mnt --r -ý(void *buf, mnt cnt, int rv[2]);
virtual mnt ¶r,..imte(void *buf, mnt cnt, mnt rv(2]);
virtual i-t. mmap(void *addr, mnt len, mnt prot, mnt share,

off t offset, mnt rv[2));
virtua int. fcntl(int cm~d, mnt arg, mnt rv[2]);
virtuaal int fsync(int rv[2]);
vi .tual mnt connect (struct sockaddr *name, mnt namelen,

mnt rv[2]);
virtual mnt accept(struct sockaddr *namie, mnt *namelen, mnt rv[2]);
virtual mnt send(void *msg, mnt len, mnt flags, mnt rv[2]);
virtual mnt recv(void *buf, mnt len, mnt flags, mnt rv(21);
virtual mnt bind(struct sockaddr *name, mnt namelen, mnt rv[2]);
virtual mnt setsockopt.(int level, int optname,

void *optval, mnt optlen, mnt rv[2]);
virtual int listen(int backlog, mnt rv[2]);
virtual mnt recvmsg(struct msghdr *msg, mnt flags, mnt rvE2l);
virtual mnt sendmsg(struct msghdr *msg, mnt flags, mnt rv[2]);
virtual mnt getsockopt(int level, mnt optname,

void *optval, mnt *optlen, mnt rv(2]);
virtual mnt readv(struct iovec *iov, mnt iovcnt, mnt rv(21);
virtual mnt writev(struct iovec *iov, mnt iovcnt, mnt rv[2]);
virtual mnt fchown(int user. mnt group, mnt rv[2]);
virtual mnt fchmod(int mode, mnt rv(2]);
virtual int recvfrom(void *buf, int len, mnt flags,

struct sockaddr *from, mnt *fromlen, mnt rv[21l;
virtual mnt ftruncate(off t offset, mnt rv[2]);
virtual mnt flock(int operation, mnt rv(2]);
virtual mnt sendto(void *Mag, mnt len, mnt flags,

struct sockaddr *to, mnt tolen, mnt rv(21);
virtual mnt shutdown(int how, mnt rv(21);
virtual mnt getpeername(struct sockaddr *name, mnt *nmln

mnt rv[2]);
virtual mnt getsockname(struct 3ockaddr 'name, mnt *namelen,

int rv(2]);
virtual mnt getdirentries (void 'buf, mnt cnt, long *basep, int rv[2]);



Appendix B: Toolkit Layers and Classes 117

// Member functions used internally

virtual void referenceo;
virtual void implicit_closeo;I;

B.5. Pathname Management Classes

Pathname management is done through three classes, pathnameset, pathname,

and directory. The pathnamxe_set class provides operations that affect the set of

pathnames, i.e., those that create or remove pathnames. The pathname class provides

operations on the objects referenced by the pathnames. The directory class

provides operations on open directories which list the names in the directory.

The primary interfaces provided by the pathname_set class are as follows:
class pathnameset : public descriptorset
protected:

virtual int getpn(char *path, int flags, pathname **pn);

public:
virtual void init(char *agentargv[], class PATHSYMBOLICBASE *path sym);
// System calls with knowledge of pathnames

virtual int open(char *path, int flags, int mode, int rv[2]);
virtual int link(char *path, char *newpath, int rv[21);
virtual int unlink(char *path, int rv[2]);
virtual int execv(int *args, int rv[2], struct emul regs *regs);
virtual int chdir(char *path, int rv[2]);
virtual int mknod(char *path, int mode, int dev, int rv[2]);
virtual int chmod(char *path, int mode, int rv[2]);
virtual int chown(char *path, int user, int group, int rv(21);
virtual int mount(char *special, char *name, int rwflag, int rv[2]);
virtual int umount(char *special, int rv[2]);
virtual int access(char *path, int mode, int rv[2]);
virtual int stat(char *path, struct stat *statbuf, int rv[2]);
virtual int lstat(char *path, struct stat *statbuf, int rv[2]);
virtual int acct(char *file, int rv[2]);
virtual int symlink(char *contents, char *newpath, int rv[2]);
virtual int readlink(char *path, void *buf, int cnt, int rv[2]);
virtual int execve(int *args, int rv[2], struct emulregs *regs);
virtual int chroot(char *path, int rv[2]);
virtual int swapon(char *special, int rv(2]);
virtual int connect(int s, struct sockaddr *name, int namelen,

int rv[2]);
virtual int bind(int s, struct sockaddr *name, int namelen, int rv[2]);
virtual int rename(char *oldpath, char *newpath, int rv[2]);
virtual int truncate(char *path, off t offset, int rv[2]);
virtual int mkdir(char *path, int mode, int rvE2]);
virtual int rmdir(char *path, int rv[2]);
virtual int utimes(char *path, struct timeval tvp(2], int rv[2J);
virtual int setquota(char *special, char *file, int rv[2]);

The primary interfaces provided by the pathname class are as follows:

class pathname {
public:

virtual mnt open(int flags, mnt mode, mnt rv[21, OPENOBJECTCLASS **oo);
virtual int link(pathname *newpn, int rv[21);
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virtual int unlink(int rv(2]);
virtual mnt chdir(int rv(21);
virtual int mknod(int mode, int dev, int rv(2]);
virtual int. chmod(int miode, mnt rv[2]);
virtual int chown(int User, int. group, mnt rv[2]);
virtual int inount(pathname *dirpn, int rwflag, int rv[2J);
virtual mnt umount(int rv[21);
virtual mnt access(int mode, int rvf2J);
virtual mnt stat(struct stat *statbuf, mnt rv[2]);
virtual mnt lstat(strUCt stat *statbuf, mnt rv[2]);
virtual int. acct(int rvf21);
virtual mnt symlink(char *contents, mnt rv[2fl;
virtual mnt readlink(void *buf, mnt cnt, mnt rv[2]);
virtual mnt exec(char **argv, char **envp, mnt rv[21,

struct, emul_regs *regs);
virtual int chroot(int rv[2]);
virtual mnt swapon(int rv(21l;
virtual mnt connect unix domain(int 3, mnt rv[2]);
virtual mnt bind-unix-do-main(int s, int rv[2]);
virtual int. rename(pathname *newpn, mnt rv[2]);
virtual mnt truncate(off t Offset, mnt rv(2]);
virtual mnt mkdir(int mode, mnt rv(21);
virtual mnt rmdir(int rv[2]);
virtual mnt utimes(struct timeval tvp[2), mnt rv[2]);
virtual mnt setquota(pathname *filepn, int rv[2]);

The primary interfaces provided by the directory ciass are as foiiows:
class directory : public OPENOBJECTCLASS
public:

virtual mnt next direntryo;
struct. direct *d~irentry; // Set by next direntry()

public:
virtual mnt read(void *buf, mnt cnt, mnt rv(2]);
virtual mnt lseek(off -t offset, mnt whence, mnt rvf2]);
virtual mnt getdirentries (void *buf, mnt cnt, long *basep, mnt rv[21);
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Specific Agents Constructed

This appendix presents a brief description of the agents constructed during this
research.

C.1. helloworld

Uses: No toolkit code.

The helloworld agent prints its arguments and exits. It is used to test the run

program and its use of the loader.

C.2. simple

Uses: Base toolkit layer.

The simple agent interposes on only the bare minimum of the 4.3BSD system calls
that must be intercepted by each agent, as discussed in Section 5.6. It is used to test
the low-level toolkit boilerplate and to provide best case toolkit implementation timings.

C.3. timenumeric

Uses: Numeric system call layer.

The time-numeric agent is used to time the numeric system call toolkit layer.
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C.4. time-symbolic

Uses: Symbolic system call layer.

The time-symbolic agent is used to time the symbolic system call toolkit layer.

C.5. timex

Uses: Symbolic system call layer.

The timex agent makes it appear that the current time is sometime in the past.

C.A. trace

Uses: Symbolic system call layer.

The trace agent prints system call names, arguments, and results and signals
received as programs are run. It is implemented as derived version of the symbolic

system call class called tracesymbolic which prints calls, etc. as they are executed.

C.7. descsymbolic

Uses: Simple descriptor management layer.

The descsymbolic agent exercises the simple toolkit descriptor management

classes. Exported descriptor numbers correspond to those in underlying
implementation.

Related Agents: desc_trace, tracedesc.

The desc trace and tracedesc agents use the trace_symbolic class to trace

the calls being made by and upon the desc symbolic agent, respectively. The tracing
versions were helpful in debugging the original.
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C.8. open object

Uses: Full descriptor management layer.

The open-object agent exercises the toolkit descriptor management classes that
perform reference counting of underlying open objects. Exported descriptor numbers
are managed independently of those in underlying implementation.

Related Agents: traceoo, traceootrace.

The traceoo and trace oo trace agents use the trace symbolic class to
trace the calls being made upon, and both being made upon and by the open_object

agent, respectively. As in the simple descriptor management classes, the tracing
versions were helpful in debugging the original.

C.9. pathname

Uses: Pathname management, descriptor management layers.

The pathname agent exercises the toolkit pathname management functions. Exported

pathnames correspond to those in underlying implementation.

Related Agents: tracepath.

The trace_path agent adds tracing to the pathname agent.

C.10. dashed

Uses: Pathname management, descriotor management layers.

The dashed agent supports the use of "-" in pathnames with the VMS meaning (as an

alias for ".."). This exercises the toolkit pathname management functions, providing a
simple test of augmenting the underlying implementation's pathname semantics.

Related Agents: trace-dashed.

The tracedashed agent adds tracing to the dashed agent.
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C.11. union

Uses: Pathname management, descriptor management layers.

The union agent allows the contents of several directories to appear as a single

directory. This provides an example of an agent that rearranges the pathname space

relative to the underlying implementation.

Related Agents: traceunion.

The trace-union agent adds tracing to the union agent.

C.12. dfs trace

Uses: Pathname management, descriptor management layers.

The dfs trace agent implements a file reference tracing capability compatible with

that provided by the DFSTrace [Mummert & Satyanarayanan 92] file reference tracing
tools. This provides a basis for comparing an agent with a best available equivalent
implementation that was independently produced.

Related Agents: trace_df s trace.

The tracedfs_trace agent adds tracing to the dfs trace agent.



Appendix D
Example Agent Code

This appendix provides some examples of actual agent code.

D.I. Timnex Agent

The following code samples are from the timex agent:
extern "C"[
mnt parsedate (char *datestr, struct tin *tm, int currtin, mnt past, int error);
long gtiine (struct tin *tin);

void timex symbolic syscall: :init (char *agentargv Ii)

mnt rv(2];
struct tizneval tv;
symbolic-syscall:: mit (agentargv);
(void) syrnbolic-syscall::sys_gettiineofday(&tv, 0, rv);

if (agentargvfl] !- 0)1
struct tin tins;
long funkytirne;
if (parsedate(agentargvtl], &tms, 1, 1, 1) !- 0)

fprintf(stderr, "1timex: Can't parse tine \"%s\"\n", agentargv[l1);
exit (1);

f unkyttine - gtine (&tlns);
offset - funkytizne - tv.tv-sec;

else(
srandom(tv.tv sec + tv.tv-usec);
offset -- (random() & Oxlfffffff); II 70s or '80s anyone?

printf("[ Actual tine - %d, offset - %d ]\n", tv.tv-sec, offset);

mnt timex_symbolic syscall::sys_gettiineofday(struct timeval *tp,
struct tiinezone *tzp, mnt rv[2])

mnt ret;
#if DEBUG

printf("( sys-gettimeofday(Ox%x, Ox%x) J\n", tp, tzp);
*endif DEBUG

ret - symbolic syscall::sys gettimeofday(tp, tzp, rv);
if (ret >- 0 S&& tp) f

tp->tv-sec +- offset;

return ret;
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D.2. Trace Agent

The following code samples are from the trace agent:
class TRACESYMBOLICCLASS : public TRACESYMBOLICBASE
public:

virtual void init (char *agentargv[]);
virtual void init-childo;

virtual mnt sys~exit(int status, mnt rv[2]);
virtual int sys_fork(int rv(21);
virtual mnt sys_read(int fd, void *buf, iut cut, int rv[2J);
virtual mnt sys-write(int fd, void *buf, int cnt, int rv[2]);
virtual mnt sys open(char *path, mnt flags, mnt mode, int rv[21D;
virtual mnt sys~close(int fd, int rv[21);

private:
mnt trace-fd; //dupoed copy of stdout's descriptor
mnt dtablesize; IISimulated descriptor table size
FILE *f; //Trace output stream
mnt trace~pid; IICached copy of process pid

void print start 0;
void print ret(int ret, mnt rvf21);
void print retx(int ret, mnt rv(21);
void print reto(int ret, mnt rv[2]);
void print ret2(int ret, mnt rv(21);
void print fdset(int nfds, fd-set *fds);

void TRACESYMBOLICCLASS::init-child()

TRACE SYMBOLICBASE::init-childo;
trace~pid - getpido;

mnt TRACE SYMBOLICCLASS::sys-exit(int status, mnt rv[2])

register mnt ret;
print_start () ;
fprintf(f, "_exit(%d) .. \n", status);
fflush(f);
ret - TRACESYMBOLICBASE::sysexit(status, rv);
print start();
fprintEf(f, "... _exit(%d) ->", status);
print ret (ret, rv);
return ret;

mnt TRACESYMBOLICCLASS::sys_fork(int rv[2])

register mnt ret;
print_start ();
fpriutf(f, "fork() . Jn)
fflush(f);
ret - TRACESYMBOLICBASE::sys fork (rv);
print_starto;
fprintf(f, "... fork()-o
print ret2 (ret, rv);
return ret;

mnt TRACE SYMBOLIC CLASS::sys read(int fd, void *buf, mnt cnt, mnt rvE21)
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register int ret;
print-start 0;
fprintf(f, "read(%d, Ox%x, Ox%x) .. ]\n", fd, buf, cnt);
fflush(f);
ret - TRACESYMBOLICBASE::sya_read(fd, buf, cnt, rv);
print_start ();
fprintf(f, "... read(%d, Ox%x, Ox%x) ->", fd, buf, cnt);
print-retx(ret, rv);
return ret;

int TRACESYMBOLICCLASS: :sys write(int fd, void *buf, mnt cnt, mnt rvf2])

register mnt ret;
print_start ();
fprintf(f, "write(%d, Ox%x, Ox%x) .. ]\n"I, fd, buf, cnt);
fflush(f);
ret - TRACESYMBOLICBASE::sys-vrite(fd, buf, cnt, rv);
print_starto;
fprintf(f, "... write(%d, Ox%x, Ox%x) ->", fd, buf, cnt);
print retX(ret, rv);
retur-n ret;

mnt TRACESYMBOLIC CLASS::sys open(char *path, mnt flags, mnt mode, mnt rv[2])

register mnt ret;
print-start 0);
fprintf(f, "open(\"%s\", O%o, O%o) ->", path, flags, mode);
fflush(f);
ret - TRACESYMBOLICBASE::sysý_open(path, flags, mode, rv);
print-ret(ret, rv);
return ret;

mnt TRACESYMBOLICCLASS: :sys close(int fd, mnt rv[2])

register mnt ret;
print_start.( 0;
fprintf(f, "close(%d) ->11, fd);
if (fd >- dtablesize)I

fprintf(f, 11 (fd >- simulated dtablesize %d, ignored)", dtablesize);
ret -EBADF;

Ielse
fflush(f);
ret - TR'l.CESYMBOLIC-BASE::sys~close(fd, rv);

print-ret(ret, rv);
return rot;

void TRACESYMBOLICCLASS::print~start()

fprintf Cf, "[ %d: ", trace~pid);

void TRACESYMBOLICCLASS::print ret (mt ret, mnt rv(2])

if (ret -- ESUCCESS)
fprintf(f, "%d J\n"O, rv(O]);

else if (ret -- E JUSTRETORN)
fprint~f(f, "JU-STRETURN ]\n");

IelseI
char *errstr - strerror(ret);
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if (errstr)
fprintf(f, " errno-%d (%s) ]\n", ret, errstr);

else
fprintf(f, " errno-%d ]\n", ret);
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Examples of Agent Usage

This appendix contains transcripts of several simple sessions in which interposition
agents were used.

This session shows two uses of the trace agent:
% run trace.agent sync

8364: execve("/bin/sync", Oxbffff87c, Oxbffff884) ... I
8364: ... execve(...) -> JUSTRETURN ]
8364: sync() -> 0 ]
8364: _exit(0) ... I

% run trace.agent echo Watch echo run!
[ 8366: execve("/bin/echo", Oxbffff860, Oxbffff874) ...

8366: ... execve(...) -> JUSTRETURN
8366: fatat(1, Oxbffff3dc) -> 0 1
8366: getpagesize() -> OxlOOO I
8366: obreak(Oxll3aO) -> 0 ]
8366: obreak(Oxllffc) -> 0 ]
8366: obreak(Oxl4ffc) -> 0
8366: ioctl(l, TIOCGETP, Oxbffff3b4) -> 0

[ 8366: write(l, 0x12000, OxlO)
Watch echo run!

8366: ... write(1, 0x12000, OxI0) -> OxlO
8366: close(0) -> 0 ]
8366: close(l) -> 0

C 8366: close(2) -> 0 1
[ 8366: _exit(0)

This session shows two uses of the timex agent:
% date
Wed Aug 19 02:36:11 EDT 1992

% run timex.agent date
C Actual time - 714206177, offset - -355386281 1
Fri May 15 20:11:36 EDT 1981

% run timex.agent 'July 4, 1976 00:00' -- date
Actual time - 714206181, offset - -508901781 1

Sun Jul 4 01:00:00 EDT 1976
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This session shows a use of the union agent:
%is /usr/mbj/bin

ac gdb.ss mtime tabconvert without
clnztime guess-term notice task-resume xll.commands
cmp_mrtime intersection ok task suspend xll.start
copy kermit package thread-abort xroach
countargs killer bee port alias thread resume xshow
date lastlog rese~t -tty thread suspend xt
date daemon loop run tidy
dev -lookup it shar tidy week
dev -register merge4 stat unpackage
flip merge5 sunciock vm-regions

'5echo $path
/usrl/mbj/bin /afs/cs.cmu.edu/user/mbj/bin /usr/locai/bin /usr/ucb /ibn
/usr/bin /uar/Xil/bin /usr/vice/bin /usr/local/sdm/bin /usr/local/rcs/bin

%5 run union.agent 'echo $path' -- is /usr/mbj/bin
Mail editres makedepend rwho utimes
X egrep makepath rxgen uudecode
Xblit emacs man sccs uuencode
Xvga enroll maze sccstorcs uwm

Ieqn md scout vacation
ac error merge script vgrmnd
addbib ex merge4 sod vi
aedp~ot expand merge5 sendbug view
alarm explain mesg service vm -regions
apply expr mig setmodes vm -stat
appres f mkdep sh vpasswd
apropos false mkdir shar w
ar fgcc mkdirhier showrgb w.iv25
arli fgrep mkfontdir showsnf wall
as file mkstr size washtool
assign find more sleep wc
at finger inset snapshot wh
atobm flip msgs soelim what
atoplot fmt Mt sort whatabout
atq fold mtime sortbib whatis
atrm fpr muncher spell whenis
awk from my speilin whereis
basename fs name version spellout which

..52 #4nei of text omitted..
crypt lex rcsit tp xrefresh
csh lint rcsmerge tr xrn
ctags listfiles rcsstat translate et xroach
cu listres rcstime troff xrotmap
date in rdist true xscope
date daemon lock refer tset xsend
dc log release tsort xset
dd logger reset tty xsetroot
deassign login reset -tty twin xshow
delay look resize ii xshowcmap
deiiv lookbib rev udebug xstdcmap
deroff loop rgen ul xstr
dev lookup iorder rlog uncompress xt
dev register ipq riogin unexpand xterm
df ipr rm unifdof xwd
diction 1prm rmail uniq xwininfo
diff iptest rmnir units xwud
diff 3 is roffbib unlog yacc
du it rpcgen unloose yes
duinbplot m4 rsh unpackage zcat

emachine ru up
echo mail run uptime
ed mailq runat uptime.iv25
edit make muptiine users
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Sizes of Toolkit Layers and Agents

This appendix presents a detailed look at the source and binary sizes of the toolkit and

agents.

F.I. Statements of Code Per Toolkit Layer

Toolkit Statements by Layer

Toolkit Machine Machine Total
Layer Independent Dependent Statements

(Intel 386)

Loadei 565 71 636

Base 785 195 980

Numeric 104 39 143

Symbolic 667 41 708

Trace 1305 43 1348

Descriptor 635 0 635

Open Object 311 0 311

Pathname 485 0 485

Directory 79 0 79

Table F-1: Toolkit statement counts listed by layer
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F.2. Statements of Agent Specific Code

Agent Specific Statements

Agent Machine Machine Total
Name Independent Dependent Statements

(Intel 386)

simple 62 76 138

time-numeric 6 0 6

time-symbolic 7 0 7

timex 35 0 35

trace 1305 43 1348
desc-symbolic 8 0 8

open-object 0 0 0

pathname 8 0 8

dashed 52 0 52

union 166 0 166

dfs trace 1040 0 1040

Table F-2: Agent specific statement counts
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F.3. Sizes of Agent Binaries

Sizes of Agent Binaries

Agent Code Data Zero Total
Name Bytes Bytes (bss) Agent

Bytes Bytes

simple 53216 5184 1028 59428

time-numeric 57312 5896 916 64124

timesymbolic 69600 6848 916 77364

timex 85984 12692 7468 106144

trace 98272 7064 936 106272

descsymbolic 81888 8268 916 91072

open-object 81888 10900 916 93704

pathname 94176 14008 916 109100

dashed 94176 16280 916 111372

union 98272 17448 944 116664

dfs trace 126944 18124 3148 148216

Table F-3: Sizes of Agent Binaries
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