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FOREWARD 

This report is composed of reprints of papers published over the course of this pro- 

gram. The first paper, "Mass Storage for Digital Optical Computing," discusses the suit- 

ability from an architectural point of view of planar optical media and thick holographic 

optical media as mass memory in a digital optical computer. The capability of optical 

memory disks in particular are covered in the second paper, "Optical Memory Disks in 

Optical Information Processing." In this paper, characteristics such as contrast, diffraction 

efficiency, and phase uniformity are measured, and conclusions about the performance of 

optical disks in various architectures are given. For example, the paper covers parallel 

readout of data stored as either images or holograms stored on the disk. The use of optical 

disks in neural networks is introduced in the second paper and covered in depth in the 

third, "Optical-disk Based Artificial Neural Systems." The third paper describes exper- 

imental results from using an optical disk in two different neural network architectures. 

The first system uses the disk to store and implement the neural network connections in 

an optical character recognition system. In a second experiment a feed forward neural 

network reads connection patterns in parallel from an optical disk for implementation on 

an optoelectronic chip. Another neural network system that uses optical disks is described 

in the fifth paper, "Optical Implementation of Radial Basis Classifiers." In this system 

the disk stores reference radial basis functions which are read off in parallel by the neural 

network classifier. The fourth paper, "Image Correlators using Optical Memory Disks," 

describes an experimental demonstration of an image correlator that not only uses an op- 

tical disk to store a large library of images, but also as the spatial light modulator in the 

correlator. 

r: •D 1 

Accession ror 

"NTIS GRA&I 
DTIC TAB 
Unannounced 
Justificatl 

a 
D 

By  
Distribution/^  

Availability Cod«*_ 

lAvail oad/or 
Diet. I Special 

* 

A 



in 

Mass storage for digital optical computers 

Demet.ri I'saltis, Alan Yamamura, and Hsin-Yu Li 

California Institute, of Technology 
Department of ECleclrical lOngineering 

Pasadena, CA 91125 

ADSTRACT 

Optical memory and computing technologies have progressed significantly 
.. the last few decades. In this paper, we review some of tin.* current planar and 

it-1)"optical memories and dis<-irss how well they meet tin» re«piirem»Mits for mass 
memory in digital optical computers. 

1. INTRODUCTION 

A computer consists of nonlinear processing elements {e.g., switches), inter- 
connections, memory, and input/output peripherals. Most of the work in optical 
computing, including the digital approach, has concentrated on the switches, 
interconnections, and how these can be put together into architectures that per- 
form useful tasks. Tanguay has pointed out the need to consider all the elements 
that comprise a computer, including the memory and I/O, in order to design 
overall systems that can have practical impact1. It is interesting to ponder why 
so little attention has been given recently to memories with parallel access capa- 
bility, a subject of intense study in the sixties and early seventies-'. Among all 
the uses of optics in computers, memory seemed to be the most likely to have 
an early impact, and in a way, this has proven to be correct with the advent 
of optical disks. However, largely duo to material and device limitations, paral- 
lel optical memories never became practical. Perhaps, it is precisely this early 
focus on optical memories, which did not succeed, that discouraged continued 
research in this area, whereas the relatively new areas of optical switches and 
interconnections received most of the attention of researchers. 

It is now time to rerxamine parallel optical memories,-in particular their 
role in optical computers. There arc several reasons for this: 

a. The optical device technology (optical switches, spatial light modulators, 
detectors, holograms, etc.) has progressed dramatically since the early sev- 
enties, and this has created new possibilities. 

b. To a lesser extent, materials that can be used as the storage medium, have 
advanced. Photorefractives, organic materials, and magnetooptic media are 
still the prime candidates (as they were twenty-five years ago), but in some 
cases the understanding of these materials has increased considerably. 

c. Optical computing has progressed significantly. As optical computers start 
to become practical, tlicy will demand a parallel memory with possibly a 
huge storage capacity. A "neural network is an example of a massively par- 



allel computer architecture that maps well to optics and typically requires 
a very large mass memory with rapid access. 

In this paper we will do three things. First we will discuss in general terms 
the requirements for a mass memory in a digital optical computer. We will 
then outline some of the optical memories that can be implemented with planar 
storage media, and finally we will discuss 3-D storage in volume holograms. 

2. MASS STORAGE MEMORY 

In almost all modern computers there are two types of memories: random 
access (RAM) and mass storage. In serial, von Neumann computers, the RAM 
is modified by a single central processing unit, and it stores the program that is 
currently being executed (or part of it), the data, and intermediate results as well 
as the operating system (or the necessary part of it). The mass memory (disk and 
tape) stores everything else. The capacity of the mass memory is much larger 
than the RAM, but information is retrieved and stored at much lower rates. 
RAM and mass memories are also part of parallel computers. The organization 
of the memory is a much more difficult task in a parallel computer, however. The 
RAM is organized either as "shared memory," which allows processors can use, or 
it is distributed throughout a "multiprocessor architecture," with each processor 
having its own memory. The mass memory in parallel architectures is standard 
disk or tape memory. Such systems are typically intended to operate without 
transfers to and from the mass memory during the execution of a program, 
since this would slow down the process. Therefore, the role of mass memory 
is usually not emphasized in the design of such architectures, even though in 
practice, mass memory is often a very serious bottleneck. A notable exception 
is database machines, which are specifically designed to search quickly through 
mass memory. 

Digital optical computers are generally considered to be very fine-grain, 
massively parallel processors. The basic components of a digital optical com- 
puter are shown in the block diagram of Fig. 1. It consists of optical gates, 
interconnections, and mass memory. The optical gates are physically 2-D ar- 
rays of nonlinear optical switches. They can be arranged in a single or multiple 
planes. These gates are used to construct the processing elements (PEs) as well 
as the RAM for the system. The interconnections between these gates specify 
their functionality and the architectural design of the system. In some highly 
dedicated architectures (e.g., cellular arrays for image processing) there may be 
little need for RAM memory, and the bulk of the available gates can be devoted 
to processors. However in most applications, the majority of the gates will have 
to be devoted to the memory function to store the program and intermediate re- 
sults. The tnird component, the mass memory, is interfaced to the RAM so that 
it can load its programs and data as needed. In Fig. 1, a double line connecting 
two blocks indicates parallel transfer of information, whereas a single line repre- 
sents a serial link. Notice that all links are parallel except for the transfer from 
the RAM to the mass memory. The low sensitivity of materials that might be 
used for fabricating the mass memory makes it very unlikely that a massively 
parallel (several thousand channels) parallel write memory can be made practi- 
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Fig. i.  Basic architecture of a digital optical computer. 

cal (i.e., fast enough). However, it is possible to "have an optical mass memory 
that has parallel readout. Notice that in an electronic implementation this link 
would also be essentially serial. It is not clear how significant parallel access 
to mass memory is, it may represent a new target of opportunity for optical 
computing. The specifications for a parallel readout optical memory may be as 
follows: 

• Large capacity (much larger than the capacity of the RAM).' 

• Parallel readout (103-106 channels). 

• Fast access. 

• Low probability of error Pe AS 10~5. 

In the following two sections we will consider planar and 3-D media and 
comment on the prospects of the various memory systems. 

3. 2-D PARALLEL READOUT OPTICAL MEMORIES 

In this section we will discuss optical memories constructed with a pla- 
nar medium. Such memories have been investigated intensively, for more than 
twenty-five years. There are a multitude of reasons why such memories have not 
yielded practical success.  One of them is probably the fact that there has not 
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Fig. 2.  Example of a 2-D optical memory system. 

been a clear, urgent need for them. In other words, present computers do not re- 
ally have the throughput to deal with the data rates that have been projected for 
these memories. Optical computers, if they come to maturation, should be able 
to make use of the capabilities of parallel optical memories. Another motivation 
for reexamining such memories is the emergence of optical disks that are used 
as serial memories. These same disks can also be used as parallel memories 
thereby providing a mature technology for recording very accurate, computer 
controlled memories. 

There is a wide variety of 2-D optical memory architectures. Reference 2 is 
an excellent review of early efforts in this area. Even though the details of the 
various architectures vary significantly, most share two basic characteristics: the 
data is organized in 2-D blocks or pages, and a scanning mechanism is used to 
address one of these blocks and transfer it to the output. We will describe one 
of these architectures as an example. This architecture is described in Reference 
2, and it is reproduced here as Fig. 2. The memory is a 2-D transparency 
on which the blocks of data are recorded on a regular 2-D grid. Each of the 
blocks is addressed by a separate laser diode from a corresponding 2-D grid of 
laser.diodes. The laser array serves as the scanner in this system. Each of the 
blocks is imaged to a common output plane with a pair of lenses arranged in the 
standard 4 — / configuration. The first lens is part of a lenslet array, one lenslet 
per page. The second is a common large lens. The memory is addressed by 
turning on only one laser diode at a time. In this way only one of the blocks is 
transferred to the output. This memory has specifications that can probably be 
made compatible with the requirements set forth in the previous section, with 
one important exception: storage capacity. The total number of bits (number 
of pages x number of bits per page) that can be stored in such a system is 
limited primarily by the passive optics of the system (big lens and lenslet array). 
A reasonable estimate for a practical system is probably 108 = 104 x 104 bits. 
This would require a 100 x 100 lenslet array, each lenslet having a 100 x 100 
pixels space-bandwidth product. This relatively small capacity is the biggest 
drawback of this type of memory. It might be argued that through careful 
engineering and clever design one might be able to design a system with the 
very rapid access of the system in Fig. 2 (limited only by the sensitivity of the 



Disk 

Output 
Array 

Fig. 3 Parallel readout version of an optical disk memory system. 

output detector) but with larger capacity. For instance, since the lenses seem 
to be the major limitation in Fig. 2, a lensless system can be designed using 
holography to try to overcome this limitation. Unfortunately, analysis of the 
holographic version of this system4 shows that it is not practical to increase the 
capacity with holography. 

The speed of the memory in Fig. 2 is derived from the fact that each laser 
diode addresses a separate block or page. Thus the access time becomes equal 
to the time it takes to turn one of the lasers on. All these systems that rely 
on an optical scanning mechanism have such fast access time but limited ca- 
pacity because the optical system/scanner needs to accommodate the entire 
space-bandwidth product of the memory. An alternative and complementary 
addressing mode is mechanical alignment. This is the method currently used in 
all serial mass memories including optical disks. A parallel readout version of 
this is shown in Fig. 3. Data is recorded on the disk, again on a 2-D array of 
2-D blocks or pages. The blocks are centered on a polar grid around the disk. 
The disk rotation and the motion of the readout head in the radial direction 
align one of the blocks on the disk with the readout head, and the block is then 
imaged onto an output 2-D array. The space-bandwidth product of the optics 
is only equal to that of a single block (104-106 pixels) and hence can be easily 
constructed. The capacity of the memory is equal to the number of bits that 
can be stored on the disk (1010 bits or more). The disadvantage of this type 
of memory is relatively slow speed because of the need for mechanical motion 
(10 — 100 msec access time to any block). 



Perhaps the biggest practical problem that needs to be worked out with 
a parallel access memory based on mechanical alignment is registration. The 
pixel size on the disk is approximately 1 fim and we need to register the image 
on the disk to the output detector array with that tolerance. The fact that 
we need to do this while the disk is spinning as fast as possible (to reduce the 
access time) makes the problem difficult. One possible solution to this problem 
is the use of Fourier transform holograms3. Instead of directly recording the 
block of data on the disk, we can instead record the 2-D Fourier transform of 
the data rather than an image of the data. Thus, the original block of data 
will be reconstructed at the output. The advantage of this method is that a 
small shift in the pattern recorded on the disk will not affect the reconstructed 
image because of the shift invariance property of the Fourier transform. This 
can simplify greatly the registration problem. The drawback of the holographic 
method is the large increase in the number of pixels on the disk that are needed 
to store the block. 

Since the optical disks we use store only unipolar binary amplitude infor- 
mation, a space-bandwidth product (SBP) penalty must be paid to record holo- 
grams on the disks. With only real information written on the disk, we must 
record both the desired information and its complex conjugate, thus automati- 
cally doubling the SBP used. In addition, with only unipolar information stored 
on the disk, the reconstructions typically have large DC spots, easily doubling 
again the SBP to accomodate a spatial carrier that moves the desired part of 
the reconstruction away from DC. Finally, with only one bit of dynamic range 
per pixel, a significant amount of noise appears spread throughout the recon- 
struction. Depending on the desired number of pixels and signal-to-noise ratio 
(SNR) desired in the reconstruction, an additional factor of 4 to 256 or more in 
disk SBP could easily be required. Fig. 4 shows the desired object and experi- 
mental reconstruction from computer generated holograms recorded on the disk 
as we vary the number of "on" pixels in the reconstruction. As the number of 
"on" pixels in the reconstruction increases from an initial value of 32, the SNR 
decreases steadily. With 512 "on" pixels, the signal is almost completely lost in 
the noise. Over a million pixels on the disk were used to encode the 1024 pixels 
in the reconstruction, corresponding to an additional factor of 1024 in required 
SBP for holographic recording when compared with imaging. 

4. 3-D STORAGE 

We saw in the previous section that there is a basic trade-off between speed 
and storage capacity when a 2-D storage medium is used. This impasse can to 
some extent be broken when a 3-D storage medium is used5. The classic method 
for storing a number of pages in a 3-D hologram is shown in Fig. 5. A hologram 
of each of the pages is formed with a plane wave reference. The angle of the 
reference beam is unique to each page. Each page can be reconstructed by illu- 
minating the recorded hologram with its own reference. Cross talk is eliminated 
because of the angular selectivity of a thick hologram. The storage capacity of 
such a module can be 109- 1010 bits (103 blocks with 106-107 pixels each). The 
access time to each block is determined by the time it takes to scan the refer- 
ence beam from one angle to another (a few microseconds or less). Notice that 
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Fig. 4 Desired objects and experimental reconstructions of CGIIs on disks with 
32, 128, and 512 pixels on respectively. 
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Fig. 5. Configuration for storing 3-D holograms. 

the space-bandwidth product of the scanner that deflects the reference beam is 
only equal to the number of pages (103). Thus, this 3-D storage scheme seems 
to combine the advantages (speed and storage) of the 2-D storage schemes of 
Figs. 2 and 3. This is indeed true, and this is why 3-D storage schemes are the 
most promising solution to parallel access optical memory. However, there is a 
serious problem with 3-D storage which ib a consequence of the fact that tne 
pages must be recorded through a sequence of holographic exposures. A further 
consequence of this is a requirement for a dynamic recording medium. Prob- 
lems that arise when multiple exposures are made en a simple crystal include 
reduction of the diffraction efficiency of each individual hologram6, fanning, and 
nonlinear intermodulation terms. 

Fig. 6a shows a binary pattern thai is recorded as a single page onto a 
Li.N'b03 crystal, according to the system described in Fig. 5. After the pattern 
is written on the crystal, we can reconstruct it (read it out) with the reference 
beam, as shown in Fig. 6b. As new patterns (additional pages) are written onto 
the crystal, the original pattern decays in diffraction efficiency leading to the 
situation shown in Fig. 6c, where the diffracted light is comparable to noise 
due to fanning, scattered light, detector noise, etc. Because the old information 
stored on the crystal ge' erased as new information is added, we try to achieve 
the maximal diffraction efficiency when writing the single images. However, if 
we try to write to saturation, the image quality deteriorates because of fanning 
and nonlinear intermodulation. Fig. 6d shows the result when we try to write 
the original pattern to saturation on the crystal. The highly distorted image is 
due to intermodulation effects. In practice, it is not advisable to write a single 
image to full saturation. 

Despite such problems several experiments have been performed that store 
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Fig. G a) Original pattern, b) Readout with diffraction efficiency 0.01%, c) 
Readout with diffraction efficiency 0.0017%, d) Saturation. 



up to 500 images1,8 in single photorefractive crystals. One of the most chal- 
lenging and important steps in this area is the development of materials and 
recording techniques that exhibit read-write and write-erase asymmetries which 
will allow us to better control the recording of information in three dimensions. 

5. CONCLUSION 

Table 1 summarizes our work by comparing the relative merits of nonme- 
chanical scanning, mechanical scanning (optical disks), and 3-D storage (volume 
holograms) in terms of their speed, density, and accuracy. Optical disks are 
presently the most practical form of optical mass storage; they are technologi- 
cally mature and provide high density and accuracy at the co-st of relatively long 
access times. Nonmechauical scanning systems, like paged imaging and holo- 
graphic memories, are plagued by low density and mediocre accuracy. Volume 
holography can provide high speed and density, but it is currently in the devel- 
opmental stage. However, if continuing research in both materials and recording 
techniques achieves success, volume holography may represent the best technol- 
ogy in the future for mass storage in digital optical computers. Finally, the 
above techniques may be combined to create new hybrid memories. Figure 7, 
for example, shows a volume holographic optical disk that provides the high 
density of volume holograms with the large capacity and simplified scanning of 
the optical disk. (A Bragg cell provides optical scanning in the radial direc- 
tion, complementing the mechanical scanning in the azimuthal direction.) Thus 
by utilizing the best aspects of several different technologies, hybrid memories 
could be developed that simultaneously provide high speed density, capacity, 
and accuracy. 

Table 1. Optical mass storage media comparison. 

Nonmcchanical 
Scanning 
Systems 

Mechanical 
Alignment 

(Disks) 

3-D 
Storage 

Speed High Low High 
Density Low High High 

Accuracy Medium High Low 

Practicality Low High Medium 
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Optical memory disks in optical information processing 

Demetri Psaltis, Mark A. Neifeld, Alan Yamamura, and Seiji Kobayashi 

We describe the use of optical memory disks as elements in optical information processing architectures. The 
optical disk is an optical memory device with a storage capacity approaching 1010 bits which is naturally suited 
to parallel access. We discuss optical disk characteristics which are important in optical computing systems 
such as contrast, diffraction efficiency, and phase uniformity. We describe techniques for holographic 
storage on optical disks and present reconstructions of several types of computer-generated holograms. 
Various optical information processing architectures are described for applications such as database retrieval, 
neural network implementation, and image correlation. Selected systems are experimentally demonstrated. 
Key words: Optical memory disk, spatial light modulator, optical computing, computer-generated holo- 
grams. 

I.    Introduction 
Ever since the introduction of the videodisc system 

in the late 1970s and the compact audio disk player in 
the mid-1980s, optical disk technology has been ma- 
turing at a rapid pace. Both write-once read-many 
(WORM) and magnetooptic read/write disk drives are 
presently available for high density storage on main- 
frames and personal computers. The conventional 
mode of both reading and writing used in present 
optical disk systems is serial. Specifically, a laser 
source will write one bit of data at a time on the disk, 
typically through a thermal mechanism.1 Readout is 
achieved by using a lower power beam to illuminate the 
location of each bit on the disk individually and, based 
on the reflected or transmitted intensity detected, the 
bit is decoded as a logical 1 or 0. Although serial 
readout is well suited to conventional computers, the 
optical disk itself is naturally a parallel readout de- 
vice.2,3 To see this, consider illuminating a large por- 
tion of the disk with a collimated beam. The reflected 
or transmitted light contains all the data originally 
recorded in the illuminated area and a simple imaging 
system makes these data available to a detector array. 
This parallel access capability can be attractive when 
trying to solve memory access and contention prob- 
lems in parallel computing architectures or when try- 

Seiji Kobayashi is with Sony Corporation, Tokyo 100-31, Japan; 
the other authors are with the California Institute of Technology, 
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ing to implement an intelligent memory search proce- 
dure as with database machines.4 Further, the optical 
disk represents a high resolution, computer controlla- 
ble, spatial light modulator (SLM) which may be used 
in various optical computing architectures. For exam- 
ple, images stored on an optical disk may serve as a 
library of references in an optical image correlator and 
holograms stored on the disk may serve as interconnect 
patterns for hybrid optical/VLSI based neural net- 
works. 

In this paper we discuss the application of optical 
disk technology to areas in which parallel retrieval may 
be advantageous. We begin by characterizing the disk 
system used in our work, a Sony prototype sampled 
format drive with both WORM and magnetooptic me- 
dia. In Sec. Ill we discuss parallel optical readout of 2- 
D blocks of data such as images. In the same section, 
we describe the use of optical disks as holographic 
storage media. We present and analyze several tech- 
niques for storing and retrieving data holographically 
and suggest some applications of holographic disk 
based storage. In Sec. IV we describe the use of optical 
disks as both storage and interconnect elements in 
neural network architectures. Finally, optical disk 
based image correlators are described and demonstrat- 
ed in Sec. V. All the applications we discuss here are 
designed to combine the parallelism and interconnec- 
tivity of optics with a mature optical disk technology to 
result in feasible optical systems that perform useful 
computational tasks. 

II.    Characterization 
The prototype Sony disk system used in most of our 

work (Fig. 1) can read and write both write-once and 
magnetooptic 5-in. reflective optical disks. The sys- 
tem records data as circular 1-^m diam pixels along a 

2038        APPLIED OPTICS / Vol. 29, No. 14 /  10 May 1990 



Fig. 1.    Sony prototype optical disk system. 

spiral on the disk with 20,000 turns between a 3-cm 
inner radius and 6-cm outer radius. The disk is divid- 
ed into thirty-two sectors, and each loop of the spiral 
from the beginning of sector 0 to the end of sector 31 is 
called a track. Because the radius of the tracks 
changes gradually with angle, we often model the 
tracks as concentric circles separated by 1.5 nm. Pix- 
els are recorded with a constant angular separation of 
.001°. This corresponds to an along track pixel-to- 
pixel separation that varies between .5 /j.m and 1 ^m 
depending on radial position on the disk. This pixel 
recording density yields a storage capacity of over 7 X 
109 bits on each side of the disk. The system is inter- 
faced to a personal computer (PC) which provides 
serial read/write access to the disks. The system can 
read or write up to 15 million bits/s. Consequently a 
1000 X 1000 image can be entered on the disk in 1/15 s. 
Since we can only write one line of the image per 
revolution, about 30 s are required to record the image 
in 2-D format on the "disk. Note, however, that a 
thousand images using the same tracks could also be 
written during the same amount of time. 

A variety of materials and recording mechanisms 
have been proposed for use in optical disks.1 We 
briefly describe the recording mechanism employed in 
the write-once disk that we use in our experiments (see 
Ref. 5 for further details). The disk contains four thin 
metal alloy films of Sb2Se3 (300 Ä), Bi2Te3 (150 Ä), 
Sb2Se3 (1400 Ä), and Al (1000 Ä) formed by sputtering 
deposition on a glass or plastic substrate. The thick- 
ness of the various layers is chosen so that they form a 
low (5%) reflectivity interference filter. During the 
recording stage, a focused laser beam heats a spot of 
the Bi2Te3 layer through absorption. The Bi2Te3 and 
Sb2Se3 then form a four-element alloy by diffusion, 
eliminating the sharp interfaces between the layers. 
The low reflectivity interference filter is thus de- 
stroyed increasing the reflectivity of the medium to 
12%.   This reflectivity difference is detected during 

readout and decoded as a logical 1 or 0. The reflectiv- 
ity of an interference filter is wavelength dependent. 
Our quoted figures are for the 633 nm He-Ne illumina- 
tion that we use, but the thicknesses of the layers are 
chosen to maximize the change in reflectivity for the 
laser diode wavelength of 830 nm. 

The magnetooptic disk contains a rare earth transi- 
tion-metal alloy of TbFeCo. During the recording 
stage, the laser heats a spot on the disk above 180°C, 
the Curie temperature of the material. As the spot 
cools below this temperature, the material within the 
spot retains the magnetization of an external field 
applied perpendicular to the disk surface. The polar- 
ization of a low power readout laser rotates on reflec- 
tion from the spot by an angle of ±0.15°, from the 
magnetooptic Kerr effect. The reflectivity of the 
magnetooptic disk is 17%, and the sign of the rotation 
angle depends on the direction of magnetization in the 
spot. This rotation is detected through a crossed po- 
larizer and decoded as a logical 1 or 0. Depending on 
the setting of the polarizers, the amplitude of the light 
corresponding to the two states can be either on/off or 
plus/minus.6 

Current disk systems use either continuous or sam- 
pled format schemes to maintain the position of the 
head over data in a track. Continuous format systems 
use a return signal either from a guide-groove em- 
bossed on the disk or the recorded data itself to con- 
stantly monitor and correct the position of the head 
relative to the data in a track. In contrast, sampled 
format systems, such as our experimental one, use 
tracking and timing information embossed along radi- 
al lines on the disk to periodically monitor and correct 
the head position. These lines of tracking and timing 
information appear every 270 pixels. Each line con- 
sists of a pattern of three embossed pits repeated in all 
20,000 tracks as shown in Fig. 2. The first two pits 
provide tracking information. They are displaced an 
equal distance from the center of the track, one toward 
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Fig. 2.    Sampled-format tracking and timing information system. 

the inside of the disk and the other toward the outside. 
If the head is exactly over the center of the track, the 
readout signal strength of the two pits will be equal; 
otherwise, the signal returning from one of the pits will 
be stronger than the other, thus indicating the direc- 
tion to move the head. The third pit provides timing 
information used to synchronize the system clock and 
the disk. 

There are two byproducts of the sampled format 
scheme that facilitate the parallel readout of data. 
First, the across track alignment of tracking and tim- 
ing information combined with the synchronization 
between recorder and disk rotation allows us to specify 
the position of individual pixels with submicron accu- 
racy in any one of more than one billion locations. 
This provides us with across track coherence, the abili- 
ty to radially align pixels across different tracks. In 
contrast, with continuous format systems, the position 
of pixels in different tracks can drift by several pixel 
widths within a single sector. Second, the absence of 
guide-grooves allows us to retrieve high contrast im- 
ages from low contrast media through schlieren imag- 
ing as described in Sec. III. 

When we consider using the disk as a spatial light 
modulator, a number of additional performance issues 
arise. The resolution is determined by the track spac- 
ing in the radial direction (1.5 £tm) and the minimum 
spot size in the azimuthal direction (0.5-1 jum). No- 
tice that there is an inherent sampling in the radial 
direction due to the tracks. At the outer tracks, where 
the recorded pixels do not overlap, the image is also 
sampled in the azimuthal direction. We see later that 
we can make use of image diffraction caused by this 
sampling. Figure 3 shows the far field diffraction 
pattern when a grating recorded on the disk is illumi- 
nated. The grating was formed by periodically record- 
ing two tracks with all pixels on followed by two tracks 
with all pixels off. In Fig. 3(a), the grating is recorded 
on the inner tracks where pixels overlap along the 
track. In this case, the image is sampled in only one 
dimension thus producing diffraction orders in one 
dimension only. Figure 3(b) shows the diffraction 
with the same grating recorded at the outer edge of the 
disk. In this case, sampling in both dimensions results 
in a 2-D diffraction pattern. The maximum spatial 
frequency that can be recorded without aliasing of the 
image spectra is one-half of the sampling frequency in 
each direction. 

(a) 

Fig. 3.    Far field diffraction pattern from grating:   (a) grating writ- 
ten on inner tracks (R = 3 cm); and (b) grating written on outer 

tracks {R = 6 cm). 

The reflectance function of the disk is basically bi- 
nary both for the write-once and the magnetooptic 
disks. We have observed some dynamic range in the 
reflectivity of the write-once disks, controllable by 
varying the exposure for each pixel. We have not yet 
characterized fully the grey scale capability of the sys- 
tem. In any case, some form of area modulation can be 
used to encode multiple grey levels at the expense of 
space-bandwidth product. We will demonstrate one 
such method in the following section. The contrast of 
the light reflected from the disk is low for the Sony 
write-once disks (2:1). For magnetooptic disks, the 
polarization of the modulated light is orthogonal to the 
polarization of the incident light and the use of orthog- 
onal polarizers in conjunction with the carrier encod- 
ing method discussed in the next section yields excel- 
lent contrast, limited primarily by the quality of the 
polarizers. 
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Fig. 4.    Interferogram of Sony WORM disk. 

Many of the processing architectures we propose use 
coherent processing techniques requiring phase uni- 
formity across the surface of the disk. We have used a 
Fizeau interferometer to measure the phase uniformi- 
ty of the Sony disks. Figure 4 shows a Fizeau interfer- 
ogram of a 24- X 36-mm area of a glass-covered Sony 
write-once disk taken with a He-Ne laser source pro- 
viding illumination. The figure shows numerous re- 
gions on the disk with optical thickness variations of 
less than a wavelength (X = 633 nm) over distances of 
several millimeters. These regions are sufficiently 
large to contain images or holograms thousands of 
pixels on a side. The greater phase variation towards 
the outer edge of the disk is most likely caused by index 
variations due to stresses induced during manufactur- 
ing. We have also tested plastic-covered disks which 
generally show greater phase variation than the glass- 
covered ones. 

In most uses, it would be more convenient if the 
optical disk system recorded pixels on a Cartesian grid. 
However, as noted earlier, our system actually writes 
pixels along curved tracks. We can neglect this curva- 
ture if we restrict attention to a small area of the disk. 
Consider a region at a distance R from the disk center. 
As shown in Fig. 5, we establish Cartesian coordinate 
axes with x in the azimuthal or along track direction 
and y in the radial or across track direction. Equation 
(1) converts the polar coordinates of the disk to the 
Cartesian coordinates in the region of interest: 

x = r sin(Ö) 
y = r cos(0) - R\ 

(1) 

The center-to-center spacing of the pixels in the radial 
dimension is 8r and the angular separation between 
adjacent pixels is <5« in azimuth. We now superimpose 
a Cartesian grid on this pixel structure with x and y 
spacings as follows: 

Ax = Rb, 

A, = br 
(2) 

Fig. 5.    Coordinate system for calculating the effect of track 
ture. 

curva- 

This choice for A.t and Ay provides the best match 
between the pixels recorded on the disk and the points 
on the Cartesian grid. We now calculate the deviation 
of the pixel locations from their presumed Cartesian 
locations. The presumed coordinates of the points on 
the Cartesian grid are 

x' = nAx 

y' = m\ 
(3) 

whereas the actual location of the pixels on the polar 
grid are 

r = R + mbr + n — 
2TT 

8 = nb„ 

(4i 

The actual Cartesian coordinates of the recorded pix- 
els, therefore, are 

/ ¥A AA 
x = [R + mbr + n ——   sin(n5„) « nAv + nm -     ' 

\ 2n I A 

/ 5A\ 4A o ^ 
y = I R + mbr + n —— I cos{nb„) — R ~ mA, + n --■   — - n- - 

\ 2ir) ■ 2TTR 2 

(5) 

We calculate the deviation between the actual pixel 
position and the presumed location on the Cartesian 
grid by subtracting Eq. (5) from Eq. (3): 

(r — x — x » nm AA 
~R~ 

x'y 

R 

4A ,A.r ,   A        x 
C>=y-yXn^R-n'2M = X2^R-2Rj 

(6) 

For an array of 1000 X 1000 pixels on the Sony disks, 
the worst case pixel placement error is 1.25% of the 
array size (12.5 pixels) in the x-direction (at R ~ 3 cm, 
A* = 0.5 fxm, and Ay - 1.5 nm) and 0.14% of the array 
size (1.4 pixels) in the y-direction {aXR = 6 cm, Ax = 1 
^m, and Av = 1.5 ^m). In applications where this kind 
of positional error is not tolerable, we need to compen- 
sate the curvature through optical techniques and/or 
the recording geometry. We describe such methods in 
greater detail in the following section. 

Diffraction efficiency is a key parameter in deter- 
mining overall system efficiency since many of the 
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optical systems presented in the following sections use 
light diffracted from the disk. Given an accurate 
model of the surface reflectivity of the disk and how it 
will be used in an optical system, we can calculate the 
expected efficiency of the disk in that application. We 
model the reflectivity pattern of the disk using the 
following equation: 

BSRRHHB&. 

r{x,y) =r0 + (rt - r0) V bnm8(x — nAx,y - mAy) 9 s(x,y),    (7) 

where bnm represents the binary pixel pattern, r0 and r\ 
the reflectivity of unwritten and written pixels, respec- 
tively, <8> the convolution operation, and s(x,y) the 
shape of each pixel. 

The light reflected from the surface of the disk 
Er(x,y) is the product of the reflectivity pattern of Eq. 
(7) with the field of the illuminating light beam Ei{x,y)\ 

Er(x,y) = EifayMxj). (8) 

We can use Fresnel diffraction to calculate the field 
due to light reflected from the disk at any distance 
from the disk, as follows: 

E(x,y,z) = Er(x'y)zexpfl)dxw, 
jXl2 

l2 = (x - x'f + (y - y')2 + z-. 

(9) 

(10) 

The efficiency 77 of the disk can then be found by 
integrating the intensity of light reflected by the disk 
over the region of space 2 where the optical system 
captures reflected light and dividing by the incident 
light energy: 

1 - 

\E(x,y,z)\2dxdydz 

lE^ytf-dxay 
(11) 

In the Appendix, as an example, we estimate the dif- 
fraction efficiency of the disk for schlieren imaging of 
the first diffracted order. Substituting parameters for 
the Sony write-once disk into Eq. (A7), [|rj2 = 0.12, 
|r0l2 = 0.05, Ax = 0.5 ^m, &y = 1.5 /xm, and Ar = 0.5 urn 
with b(x,y) = 1, n = 0, and m = 1], we find an estimated 
efficiency of rje = 0.112% compared with a measured 
efficiency of rjm = 0.114%. We estimate that the mag- 
netooptic disk will be almost 1000X less efficient than 
the write-once disk in most applications. This large 
loss in efficiency was also observed experimentally. 

III.    Imaging and Holography 
The fact that data can be retrieved in parallel from 

optical disks creates the possibility for eliminating 
some of the bottlenecks that currently exist in comput- 
ers due to the mismatch between mass storage media 
and semiconductor memories.2 A parallel random ac- 
cess memory would be one possible way to construct a 
parallel readout optical memory. In this case, M out 
of the N bits stored on a disk could be specified and 
retrieved simultaneously. In such a system, the appa- 
ratus that would scan the memory to realize this paral- 

Fig. 6.    Photograph of image written on Sony WORM disk. 

lei retrieval capability would have to be set in (jjj) * (N/ 
M)M distinct states to arbitrarily select any M-tuple. 
With N = 1010 and M = 1000, we obtain about 107000 

distinct states. It is clearly not practical to realize an 
optical scanning mechanism that can do this. There- 
fore, we conclude that we must somehow structure the 
stored data to reduce the complexity of the access 
mechanism. The most straightforward way to impose 
such structure is to arrange the stored data in 2-D 
blocks, M bits each, that are retrievable in parallel. 
This reduces the number of choices the access mecha- 
nism addresses to a practical {N/^) = 10" for the 
previously quoted numbers. In this section, we dis- 
cuss several methods, including holographic, for re- 
cording and retrieving 2-D blocks of data from optical 
disks. 

Figure 6 is a photograph of a binary image written on 
the Sony write-once disk as viewed through a micro- 
scope. This image consists of 4024 X 512 pixels re- 
corded on a polar grid. Note that the track curvature 
is not visible. The parallel lines, evident in the figure, 
are the radial strips of tracking and timing information 
described in the previous section. There are 270 pixels 
between each pair of these lines. Individual pixels are 
not discernible in this figure, but they are perfectly 
aligned in the radial direction resulting in the accurate 
recording of the letters in the figure. Note the poor 
contrast in Fig. 6. This is because the disk has an off- 
state (unwritten) reflectivity of 5%, while the on-state 
(written) reflectivity is only 12%. This large back- 
ground and low differential reflectivity results in the 
poor contrast seen in the photo. Rilum and Tanguay 
used an interferometric technique to eliminate the 
background light obtained on reflection from a 
stamped optical disk." This technique is not applica- 
ble to the Sony disk because the recorded data do not 
appear as embossed pits but rather as local variations 
in surface reflectivity. We use an alternative means 
for improving the contrast of the retrieved image. 
Since the binary image b(x,y) to be recorded on the 
disk is sampled by a polar grid, light reflected from the 
disk will be diffracted into many orders or sidebands 
whose center frequencies will be determined by the 
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grid spacing.   To make this clear, consider Eq. (12) for 
the reflectivity of the disk: 

r(x,y) = r0+ (r, - r0) b(x,y) j>  8(x — nAx,y — mAv) 9 s(x,y), 

(12) 

with the x-axis in the along track direction and the y- 
axis in the radial direction, as before. Since the back- 
ground reflectivity r0 is not sampled, energy in the 
first- and high-order diffracted fields arises only from 
the presence of the recorded image. Therefore, an 
image formed by the first-order diffracted field will not 
contain any bias light and will have high contrast. We 
can calculate how much energy is diffracted into the 
first-order and compare this to the total incident ener- 
gy to obtain an estimate for the efficiency of the disk. 
The Fourier transform of the reflectivity function is 

R(u,u) = r05(u,v) + (r, - r0 

[U,V) 
1    v-1 J        n m 

A.A..Z-   I        A A, 
S(u,v),    (13) 

where B(u,v) and S(u,u) are the Fourier transforms of 
b(x,y) and s(x,y), respectively. 

The term that contributes to the formation of the 
desired image is 

R1(UtV)=!J^I°B(uj>-j-)t (14) 

From these two equations we can express the disk 
efficiency as 

U = // |Ä1(u,u)|2dudü. (15) 

For the Sony optical disk we have calculated the disk 
efficiency to be 0.112% (see Sec. II for parameters). 
This value agrees well with the measured efficiency of 
0.114%. For a more detailed derivation of the efficien- 
cy of a schlieren imaging system used to image the 
optical disk surface, see the Appendix. An example of 
a high contrast image obtained by imaging the first 
diffracted order is shown in Fig. 7. The light diffract- 
ed by the tracks was selected to form this image. 

As described in Sec. II, when we assume that pixels 
are written on a Cartesian grid, the presence of track 
curvature leads to positional errors given by Eq. (6). 
In the schlieren imaging system described above, the 
positional error of a recorded spot can lead to ampli- 
tude and phase errors in its contribution to the reflect- 
ed field. We neglect the amplitude error since it only 
becomes significant when the position error e(x,y) is 
comparable to the distance between the disk and the 
image plane. The phase error observed in a given 
direction, however, can be approximated in most cases 
by the dot product between the wavevector in that 
direction k and the position error. Since \k\ is large, 
this phase error cannot be neglected. When we con- 
sider only the first-order diffracted beam, kx = 0 and 
the apparent phase error over the disk is given by 

ir(x>y;k) = k.((x,y) = - 
kyx2 

2R~ 
k_ 

2/ 
(16) 

CI T 
Fig. 7.    High contrast image obtained by imaging the first-order 
diffracted component of light reflected by the disk used in Fig. 1. 

<~\ 

K = 
for the +1 order, 

for the —1 order. 

(17) 

(18) 

This phase error can be modeled as a cylindrical lens at 
the disk plane with focal length / = ±RAy/X. For 
typical experimental parameters R = 4.5 cm, Av = 1.5 
urn, and A = 633 nm, the cylindrical focal length is 10.7 

This distortion can be corrected by an illumina- cm. 
tion system containing a cylindrical lens of focal length 
F. The product of the incident wavefront and the 
reflectance function of the disk in this case is 

Er(x,y) = E^yYrixj), (19) 

where Er(x,y) is the reflected field, Ei(x,y) = expO«*2) 
is the incident field corrected by the cylindrical lens, 
and r(x,y) is the apparent reflectance function of the 
disk surface including the phase error. The illuminat- 
ing optics should be chosen so that Er(x,y) = r(x,y), 
which yields a = —k/2f. With this value for a, the 
incident illumination is given by E[ = exp{—jkx2/2f) 
which can be generated by a line source located a 
distance / in front of the disk. A cylindrical lens with 
focal length F, at a distance F + f in front of the disk, 
can be used to form the line source. 

Correcting for this cylindrical lens effect does not, 
however, account for the positional errors of pixels due 
to the polar grid. In Sec. II we found that the position 
error of pixels in large images can exceed the pixel 
spacing. Since some applications require pixel posi- 
tion errors less than the interpixel separation, to mini- 
mize these errors we must make the interface to the 
disk conform to this polar recording format. For ex- 
ample, to accurately record an image sensed by a tele- 
vision camera, the camera should be modified to scan 
along curved lines matching the shape of the tracks on 
the disk. 

Although the optical disk is basically a binary stor- 
age medium, it can also encode grey level images. Area 
modulation can be used to code multiple reflectivity 
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Fig. 8.    Grey scale image written on optical disk using area modula- 
tion. 

levels for superpixels consisting of several bits. For 
example, turning on n out of N pixels in a superpixel 
can be used to represent the integer value n. Various 
superpixel coding techniques have been investigated 
in the past.8 We have implemented an area modula- 
tion scheme which uses a stochastic procedure to de- 
termine the position of on-pixel locations within each 
superpixel. In addition, this scheme improves the 
dynamic range of regions of low spatial frequency by 
stochastically selecting the value to be recorded in each 
element of an array of superpixels. Specifically, if a 
uniform region of p superpixels maps to a grey level 
between n and n + 1, randomly choosing between two 
levels for each superpixel in the region provides the 
entire p-superpixel region with an expected grey level 
equal to any one of p — 1 additional levels between n 
and n + 1. Figure 8 was generated using the area 
modulation recording scheme on the write-once disk 
and a schlieren imaging system as described above. 
The image shown consists of 512 X 480 superpixels 
each of dimension 6X4 pixels. The number of dis- 
tinct grey levels recorded on the disk therefore was 
twenty-five. The grey levels present in the original 
image are clearly evident in the figure. 

In addition to the recording and retrieval of images, 
the optical disk is an ideal medium for the storage of 
computer generated holograms (CGHs).9-12'25 The 
imaging technique described above may be thought of 
as simply the reconstruction of an image plane holo- 
gram. Any other computer generated hologram can 
just as easily be stored on the optical disk. We have 
investigated various techniques for the calculation and 
recording of CGHs on the optical disk. 

The first method we investigated is based on using 
the computer to form the holograms of the individual 
points that make up an image.  Thresholding a Fresnel 

Fig. 9.    Reconstruction of a binary Fresnel hologram stored on 
optical disk. 

hologram of a single point (xo>yo,zo) yields a Fresnel 
zone plate. It can be calculated by simply evaluating 
the real part of the Fresnel transform of a single point 
and thresholding the result, as shown below: 

hp(x,y) cc sgn Re &(x' - x0y - y0 

Xz, 
X exp( j ^-) [(x' - x)'2 + (v' - y)2}dx-dy' 

ex sgn 
Xz, 

[U - x0)2 + (y - y, 

(20) 

(21) 

The reconstruction of the object point is achieved by 
illuminating the reflection hologram hp(x,y) with a 
plane wave. One component of the reflected field is a 
spherical wave converging to the point (xoO'o.zo)- In a 
similar fashion, the Fresnel hologram of multiple 
points is calculated by summing many individual holo- 
grams and thresholding the result: 

h(x,y) = sgn 2/~-, [(x - xj2 + (y - yj2) (22) 

where (xm,ym,zm) are the coordinates of the dots with 
which we construct the image that is stored holograph- 
ically. They,,, terms are chosen in the range from 0 to 
XZQA A| — A"2, and the xm terms in the range from 0 to 
X^oA Aj — A-. This guarantees that the reconstruction 
of the first-order in the y-direction does not overlap 
with any of the other orders. In effect, this is how we 
construct an off-axis hologram. If the number of dots 
that comprise the image is far less than the space- 
bandwidth product of the hologram, a reconstruction 
with high signal-to-noise ratio (SNR) is obtained. 

Figure 9 shows the reconstruction of a binary Fres- 
nel hologram we have recorded on a write-once disk. 
The reconstructed object contains over 100 points. 
The hologram consists of a 1000 X 1000 array of pixels 
recorded on the disk at a radius equal to 4 cm. By 
simply illuminating the hologram with a raw beam, we 
observe a self-focused reconstruction at a distance of 
10 cm from the disk. The size of the reconstructed 
image is 3 X 5 cm which is much larger than the size of 
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Fig. 10.    Reconstruction of Fresnel hologram stored on magnetoop- 
tic disk. 

the hologram itself (0.7 X 1 mm). This is a convenient 
feature which allows us to match the high density 
storage medium with a lower resolution array of detec- 
tors. Figure 10 shows the reconstruction of a Fresnel 
hologram recorded on the magnetooptic disk. In this 
case, the reconstructed hologram was observed 
through crossed polarizers to enhance the contrast. 
This polarization filtering technique, made possible by 
the polarization switching property of magnetooptic 
modulation, is necessary in this case because of the 
lower efficiency of the magnetooptic disk. 

We can also record any conventional CGH (e.g., 
Lohmann or Lee).13"15 One CGH technique we have 
investigated consists of forming 1-D superpixels with 
position encoding of phase information. As can be 
seen in Fig. 11(a), each 1-D superpixel consists of four 
pixels along a specific track. By selecting the appro- 
priate combinations of pixels to record within a group, 
each superpixel can be made to represent any of the 
nine phasors including the zero phaser shown in Fig. 
11(b). We may also be able to represent a larger 
number of phasors without increasing the size of the 
superpixels by varying the size of the recorded pixels. 
In our system, this can be accomplished by either 
changing the energy used to write each pixel or by 
multiply exposing pixels. 

We can also store Fourier holograms by simply re- 
cording the complex Fourier transform of the object 
field as described above. The Fourier transform holo- 
gram can be calculated in a number of ways; for exam- 

Fig. 12.    Reconstruction of Fourier transform hologram. 

pie, we could use the fast Fourier transform algorithm 
or we could calculate a Fresnel hologram using Eq. (22) 
with a large ZQ. This latter approach is equivalent to 
calculating the Fraunhofer diffraction pattern of the 
object and is the approach we have chosen. Shown in 
Fig. 12 is the reconstruction from a binary Fourier 
transform hologram. The data for this hologram were 
computed by thresholding the real part of the Fourier 
transform of the object. The hologram consists of 
1000 X 1000 pixels written on the disk at a radius of 4 
cm. Reconstruction was achieved using a Fourier 
transform lens. 

One can also combine the Fourier and Fresnel holo- 
gram methods described above. For example, Fig. 13 
shows the image reconstructed from a hologram gener- 
ated using the Fourier transform in the along track 
direction and the Fresnel hologram in the across track 
direction. This transformation is given by the follow- 
ing equation: 

Track direction 

-oc ZXXXXXXXJD— 

oo©o 

C6©0 

Super pixel 
ceoo 

a] 
©ooo 

b] 

Fig. 11.    Schematic of CGH technique used to re- 
cord complex valued pixels:   (a) one-dimensional 
superpixel used to code phase information; and (b) 

complex values recordable using (a). 
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Fig. 13. Reconstruction of Fourier along track/Fresnel across track 
hologram. 

Fig. 14.    Multilayer feedforward neural network. 

h(x,y) =       b(x',y') exp 
Xz0 

. 2TT 
I -J T-- xx dx'dy'. 

(23) 

As before, we record a thresholded version of the real 
part of h(x,y). Reconstruction is achieved using a 
cylindrical lens. Another storage scheme might in- 
volve calculating the 1-D Fourier transform of each 
line of the object and storing these 1-D signals along 
separate tracks. One benefit of using the Fourier 
transform in the along track direction and an imaging 
lens across track is that across track coherence is no 
longer required for parallel readout of 2-D data arrays 
since each track reconstructs a shift invariant line of 
data.16 

We would also like to use the shift invariance proper- 
ty of the Fourier holograms in the along track direction 
to generate stationary reconstructions from a rotating 
disk. Unfortunately, this is not exactly true. As the 
disk rotates, the hologram experiences both transla- 
tion and rotation. Rotation of a Fourier transform 
hologram results in an equal rotation of the reconstruc- 
tion around the axis defined by the direction of the 
zero-order reflected beam. Thus, disk rotation results 
in apparent rotation and translation of the recon- 
structed image. We can neglect this motion if the 
reconstructed image moves less than a resolution ele- 
ment during the observation period.   The size of a 

resolution element in the reconstruction from an Nx X 
Ny -pixel Fourier transform hologram is given by 

XF 

**NX 

XF 

AM. 

(24) 

in the x- and y-directions, respectively. F is the focal 
length of the Fourier transform lens used in the recon- 
struction. 

The shift observed in the reconstruction plane as a 
function of disk rotation angle 6 is 

XF 
eM = ~ [cos(0) - 1] 

2A. 

(25) 

The hologram subtends an angle 6 = Nx5e. In order 
that the reconstruction remain stationary during a 
rotation of the disk by 6, we find the following limits on 
the size of the hologram: 

XF 
Nr< 

N,.< 

AxcA6) 

XF 

v#>„ 
(26) 

Making a small 6 approximation, we arrive at the fol- 
lowing set of constraints for Nx and Ny: 

Nr< 
v'4Av/i? 

A, 

(27) 

Thus, for the disk parameters in our experiment, the 
holograms must be smaller than 300 X 300 pixels, if we 
require the motion of the reconstruction to be negligi- 
ble. 

IV.    Neural Networks 
Neural network architectures are particularly well 

suited for the use of optical disks. This is due to the 
large memory that is typically required for the storage 
of the interconnecting weights in large networks. The 
optical disk not only supplies this storage capability, 
but in addition it provides the rapid access that is 
necessary for fast computation of the mapping of the 
network. Figure 14 shows a multilayer feedforward 
network, the most common neural network architec- 
ture. In this architecture, neurons are grouped in 
layers. The input to the;th neuron in the /th layer is x'j 
and its output is yj. The weight of the interconnection 
between the input of this neuron and the output of the 
kth neuron in the previous layer is wL. Equation (28) 
governs the operation of the network: 

tj = 2 "V (28) 

where f is typically a sigmoidal function. 
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Fig. 16.    Schematic of VLSI neural network crossbar implementa- 

tion. 

Fig. 15.    Optical disk/VLSI hybrid neural network implementation. 

An implementation of a feedforward network using 
optical disks combined with analog VLSI chips is 
shown in Fig. 15. The VLSI chip implements a single 
layer of the network. The weights that are used for 
propagating through one layer are optically loaded via 
the third dimension from the disk. An array of photo- 
diodes is integrated into the VLSI chip for this pur- 
pose. The weights for the different layers of the net- 
work are stored adjacent to one another along the 
azimuthal direction of the disk. To achieve a multi- 
layer network, we first download the weights for the 
first layer. The VLSI chip then evaluates the response 
of the first layer and stores the result. Meanwhile, the 
disk is spun so that the weights of the next layer are 
aligned with the chip, the new weights are downloaded 
and the response for the next layer is evaluated on the 
chip. This procedure is repeated until the response of 
the final layer is evaluated. 

There are several possible implementations of the 
basic idea described in the previous paragraph. We 
describe a particular chip design which we are im- 
plementing experimentally. A schematic diagram of 
this chip is shown in Fig. 16. The neurons and syn- 
apses are arranged as a crossbar. The output of each 
neuron in the top row is a voltage source that raises the 
potential of its corresponding vertical wire to 5 V if 
the neuron is on or sets it to 0 V if the neuron is off. 
The amount of current that flows from each verti- 
cal wire into a horizontal wire is determined by the 
channel resistance of the field effect transister FET at 
the corresponding intersection. The total current in 
each horizontal wire is the sum of the currents that 
were contributed from all the vertical wires. This 
summed current becomes the input to the neuron at- 
tached to each horizontal line. The neuron circuit 
accepts the input current, thresholds it, and generates 
an output voltage. The entire circuit is actually bidi- 
rectional.   A horizontal wire that was previously used 

to sum the currents that flow from the vertical wires, 
can also be used to broadcast the state (voltage) of the 
neuron attached to it. Consequently, if the weights 
can be dynamically updated, a single chip can be used 
for the implementation of a multilayer network with 
data going back and forth between the two sets of 
neurons. 

The strength of the connection between two neurons 
is increased by raising the gate voltage of the FET 
located at the intersection between the corresponding 
wires. The gate voltage is controlled by a circuit con- 
sisting of a series combination of a reverse-biased pho- 
todiode and a second, reset transistor. At the begin- 
ning of each cycle, the reset transistors are turned on, 
which sets the gates of the synapse transistors to 0 V. 
The reset transistors are then turned off for the rest of 
the cycle. The weights that are stored on the disk are 
imaged onto the chip. To facilitate this description, 
we will assume for the moment that the weights are 
binary (0,1) and we discuss later in more detail how to 
handle multivalued weights. When light from the 
disk strikes a photodiode on the chip, current flows 
through the photodiode charging the gate of the syn- 
apse transistor. This turns the transistor on, allowing 
current to flow between horizontal and vertical wires. 
We have not yet completed the testing of this chip, but 
we have characterized a circuit that consists of just two 
synapses that are however much more complex. 

Figure 17 is a circuit diagram of one of the synapses 
that were fabricated. This synapse is a multiplying 
digital-to-analog converter (MDAC)17 contributing a 
current to the target neuron proportional to the prod- 
uct between the signal received from the input neuron 
and the weight, encoded as a binary quintuple, that is 
optically received by a set of five photodiodes. The 
weight and the neuron activity can be bipolar. This is 
achieved through the use of a pair of horizontal and 
vertical wires for each neuron. We denote the wires in 
the vertical and horizontal directions by V^,V~ and 
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Fig. 17.    Synapse circuit diagram. 

Fig. 18.   Photograph of MDAC synapses. 

H* JI~, respectively. Four of the five photodiodes are 
dedicated to receiving the four bit weight value and the 
fifth, on the far left of Fig. 17, is for the sign bit. The 
five reset transistors in this design initially charge the 
gate voltages of the synapse transistors to Vdd- There 
are two pairs of pass transistors shown in Fig. 17. At 
any one time, one transistor of each pair is on and the 
other is off. In this manner, the setting of the pass 
transistors determines which two perpendicular wires 
are connected. The setting of the pass transistors is 
controlled by the sign bit with the help of the inverter 
circuit. The strength of the interconnection is deter- 
mined by the setting of the synapse transistor, which in 
turn is determined by the optical signal on the photo- 
diodes (the binary encoded weight). The channel re- 
sistance of an FET is proportional to its width-to- 

length ratio (W/L). The analog-to-digital conversion 
is performed by scaling logarithmically W/L in the four 
synapse transistors. For example, suppose we are re- 
ceiving a positive input signal along the vertical wires 
and the weight is negative. In this case, both vertical 
wires are set to 5 V by the output stage of the associated 
neuron. The sign bit through the pass transistors 
closes the circuit between the V~ and H~ wires. The 
amount of current that flows to H~ is proportional to 
the integer value corresponding to the four bit binary 
number detected by the photodiodes and also depends 
on the voltage setting {VIei < 5 V) of H~. If the sign bit 
flips, current will flow in the same direction but on Hj. 
The target neuron subtracts the currents on H* and 
H~ to form its output and hence a bipolar weight is 
realized. 

i 

2048 APPLIED OPTICS / Vol. 29, No. 14 /  10 May 1990 



The photograph in Fig. 18 shows the pair of synapses 
which was fabricated through MOSIS. The circuitry 
for the synapses is protected by a layer of metal. Each 
of the ten squares in the figure containing ir shaped 
features is a 26- X 27-^m opening in this protective 
layer which allows light to strike the 20- X 21-/xm 
photodiode located underneath. The plot of Fig. 19 
shows the current on H„ vs Vref for voltages of 5 V 
(neuron on) and 0 V (neuron off) on Vj. When Vref is 
set to 0 V (5 V), the resulting current swings between 0 
MA (-140 MA) and 140 nA (0 juA). In other words, 
when Vref is set to either 0 V or 5 V, this is a two- 
quadrant multiplier. If, however, Vref is set to any 
intermediate value, the output current swing is bipo- 
lar. In particular, for the circuit we fabricated, when 
Vref = 1.17 V, the positive and negative deviations of 
the current are symmetric and we have a balanced 
four-quadrant multiplier. 

The speed of the neural network chip is limited 
principally by the time required to discharge the gates 
of the synapse transistors through the photodiodes. 
The discharge current depends on the amount of light 
striking it and the voltage across the photodiode. Fig- 
ure 20 shows the current flowing though the synapse as 
a function of time as all the photodiodes are simulta- 
neously struck with light for three different intensity 
levels; Vref was set to 1.17 V for this measurement. As 
expected, the response time is inversely proportional 
to the light intensity and corresponds to a switching 
energy of 1.55 pJ. This chip was not optimized for 
speed (phototransistors could be used in place of the 
photodiodes); however, we can use the measurement of 
Fig. 20 to obtain an estimate for the speed with which 
we can operate such a network. Let us assume that we 
have available optical power equal to 1 W and a chip 
consisting of 100 X 100 synapses. The diffraction 
efficiency of the disk was estimated to be approximate- 
ly 0.1% which yields 1 mW total power incident on the 
chip, or 100 nW per synapse. Dividing the switching 
energy by the available power per synapse, we obtain 
15.5 /is response time. This corresponds to 3 Gbits/s 
transfer rate between memory and chip. Even though 
this is a remarkable rate, there is a lot of room for 
improvement in the speed in this design, through a 
disk with better light efficiency, the use of phototran- 
sistors, and a reduction in the number of bits used in 
the MDACs. 

In the neural network implementation described 
above, the disk is used only as a parallel read-out 
storage device and the electronic chip is used to per- 
form all the calculations. It is also possible to use the 
disks as computer-generated holograms or transparen- 
cies in many of the optical neural network architec- 
tures that have been previously proposed.18 In such 
optical neural networks, the analog multiplication 
needed to implement the weights is performed by 
propagating an incident light field through a transpar- 
ency (the disk in this case) and summing multiple such 
products onto a single detector location. To accom- 
plish this, the output of each neuron must be an optical 
signal.   This can be done through the use of spatial 

Synapse Curreni vs Vref 

Fig. 19.    Synapse current dependence on Vref. 

Time 
(ma) 

Fig. 20.    Synaptic time response dependence on light intensity. 
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Fig. 21.    Optical disk implementation of synaptic connections. 

light modulators or optoelectronics. The optoelec- 
tronic approach for building the neurons combined 
with implementation of the synapses on the disk is 
schematically shown in Fig. 21. The neurons can be 
fabricated in GaAs19 on which detectors, sources, and 
electronic circuits can be monolithically integrated. 
We can greatly increase the density of neurons on the 
GaAs chip compared to the previous approach, since 
we no longer require circuitry on the chip to detect the 
weights and multiply them with the neuron outputs. 
Second, since optics provides us with greater flexibility 
in performing the interconnections between the neu- 
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rons, we can, at least in principle, construct not only 
larger but also more general neural network architec- 
tures beyond multilayer feedforward networks. 

V.    Correlators 

The correlation function c{x,y) is defined as 

c(x,y) = J->\F{wx,w,)G*(wx,ws)\ (29) 

= S S f(x,y)g(x - x,y - y)dxdy, (30) 

where f(x,y) and g{x,y) are two real images, F(wx,wy) 
and G(wx,wy) are their respective 2-D Fourier trans- 
forms, and &~l\} is the 2-D inverse Fourier transform 
operator. It is well known that c{x$) is sharply 
peaked at the point (xo.^o) when f(x,y) = g(x — xo,y — 
yo). This property is what makes the correlation func- 
tion useful for pattern recognition because, regardless 
of the position of the input image g(x,y), c(x,y) will 
have a peak if f(x,y) and g{x,y) are matched. Since, in 
general, there are many versions of an image g that we 
would like to recognize, a reliable image recognition 
system should provide invariance to multiple object 
attributes. Often the best way to achieve this invari- 
ance is to use a large number of reference patterns / 
against which to compare g in order to obtain reliable 
recognition. 

Optical image correlators based on Fourier trans- 
form (FT) holograms were proposed by VanderLugt in 
1964.20 For optical correlation to be a realistic ap- 
proach to image recognition, we require a memory 
device sufficient to store a large reference image li- 
brary, an SLM which interfaces with this memory in 
real time, and a scanning or addressing mechanism 
which allows interrogation of the entire reference li- 
brary in a reasonable amount of time. The optical 
disk provides these three characteristics in one device. 
In this section, we describe several optical disk based 
image correlation architectures and present experi- 
mental results taken from selected systems.21,22 We 
will examine critical parameters associated with each 
architecture and evaluate each system in terms of pow- 
er and speed. 

A.    VanderLugt CGH Correlator 

The first disk based image correlator to be described 
is the simple VanderLugt correlator shown in Fig. 22. 
As can be seen from the figure, a Fourier transform 
computer-generated hologram recorded on the optical 
disk is used as a Fourier plane filter for the input 
image. The product of the transforms of the input and 
reference images is formed at the disk and an inverse 
transform yields the desired 2-D correlation in the 
output plane. As the disk rotates, a new correlation 
pattern is generated every time a different CGH aligns 
with the input image FT. Therefore, whenever there 
is a match between the input FT and the CGH, a peak 
occurs in the output plane of the system. The location 
of this peak, which corresponds to the location of the 
object of interest in the input plane, may be anywhere 
in the correlation plane. Therefore, a 2-D detector 
array is required to acquire the correlation data.   Fur- 

CQRRELATiaN 
=LANE 

Fig. 22.    Optical disk based VanderLugt correlator. 

thermore, since the correct correlation only occurs dur- 
ing the brief periods of alignment between the input 
FT and the CGH, the detector array need only be 
queried at these times. A pulsed laser or an electroni- 
cally gated detector array could be used to achieve the 
appropriate sampling. The proper operation of this 
system depends on the optical quality of various disk 
coating materials which are capable of introducing 
random phase distortions across the system filter 
plane. As we discussed in Sec. II, however, the optical 
quality of several commercially available disks is suffi- 
cient to make them suitable for these applications. 

As with other FT based architectures, one advantage 
of this correlator is its potentially high speed. The 
correlation rate in this system is limited by disk rota- 
tion rate and detectability of the correlation peak. 
Taking a typical disk rotation rate of 40 Hz, we calcu- 
late a correlation rate Rc = 400,000 correlations/s for 
100 X 100 pixel images. This correlation rate implies 
that to detect a correlation peak, each element of the 
2-D detector array in the output plane must have a 
bandwidth of « 400 kHz. Further, we can calculate 
the peak detectibility np given by the number of pho- 
tons detected at the correlation peak, by first calculat- 
ing the peak dwell time T, multiplying this by the 
expected power in the correlation peak PCI and divid- 
ing by the photon energy.   That is: 

np = rPJhv, (31) 

where v is the frequency of the optical field. Peak 
dwell time is given simply by r = l/NRc where N is the 
number of pixels in the reference image in the along 
track direction. In the case of random, bipolar images, 
the expected fraction of diffracted power that will be 
measured at the peak is 1/2. By random we mean that 
each pixel of the image is equally likely to take on 
either of the two possible values ±1. Given the disk 
diffraction efficiency, 77, and the source power Ps, the 
correlation peak power is 

Pc = 77P/2. (32) 

Substituting Ps = 10 mW and r? = 0.1%, we find an 
expected peak power Pc = 5 /xW.   This rate leads to an 
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easily detectable 105 photons in the correlation peak. 
The two most significant drawbacks of this system are 
alignment criticality and computational overhead. 
For each reference filter, a 2-D FT CGH must be 
computed and written on the disk. For a large refer- 
ence library the time required for this procedure can be 
long. More importantly, the alignment of the input 
FT and the CGH is critical to within the resolution of 
the CGH (» 1 urn). As the disk rotates, nonuniformi- 
ties resulting from wobble and disk center offset, lead 
to nonuniformities in reference image location with 
respect to the optical system. For example, the Sony 
WORM disks we use allow up to 1° of wobble and up to 
50 urn offset between the rotational center of the disk 
and the actual track center. These nonuniformities 
must be compensated for the output correlation to be 
accurate. 

B.    Photorefractive Correlator 

Since the wobble and offset problems introduce 
slowly varying nonuniformities (<50 wobble cycles/ 
rotation), the problem of alignment sensitivity can be 
effectively dealt with using real time compensation 
with feedback of the sort used in commercial disk 
drives; however, the computational overhead associat- 
ed with generating the desired reference library in the 
above system remains a problem. The system of Fig- 
ure 23 eliminates this processing time by allowing the 
reference images themselves to be recorded on the disk 
instead of FT CGHs. In this system, a photorefractive 
crystal or any other real time, temporary holographic 
storage medium is used to record a hologram of the 
input FT. During the recording phase, the disk illu- 
mination is blocked and the input transparency is illu- 
minated from the right. A hologram is formed be- 
tween the input FT and the reference beam as shown. 
This hologram will then be read out using the reference 
library. On readout, the input is blocked and the disk 
is illuminated. The product of the input and reference 
FTs is formed in the crystal and inverse transformed to 
yield the correlation output. 

If the photorefractive crystal is replaced by a thin 
medium such as a holographic plate, then the output 
pattern is exactly the desired 2-D correlation; however, 
it has been shown that when a thick hologram is used in 
the filter plane of such a system, the resulting output is 
a 1-D slice of the 2-D correlation pattern.23 This can 
be understood by considering the recording arrange- 
ment shown in Fig. 23. On recording, each plane wave 
corresponding to one of the points in the input image 
forms a grating with the reference beam. The result- 
ing hologram exhibits Bragg selectivity in the horizon- 
tal direction. On readout, a point along a given radial 
line on the disk can only read out those gratings formed 
by points along one vertical line in the input. Each 
such line on the disk reads out a corresponding array of 
holograms and generates a vertical array of spots in the 
correlation plane at the horizontal location corre- 
sponding to the reference beam FT. The coherent 
sum of all such reconstructions comprises the output of 
the correlator.   This output pattern is the desired 2-D 
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Fig. 23.    Photorefractive/optical disk based correlator. 

correlation multiplied, in the horizontal direction, by a 
sine function whose width is inversely proportional to 
the hologram thickness. In the system of Fig. 23, this 
property does not cause problems since all 1-D slices 
are obtained sequentially via disk rotation. Further, 
instead of requiring a full 2-D detector array at the 
output, a 1-D array is sufficient to sequentially detect 
each slice of correlation output. Despite the advan- 
tages gained in terms of computational overhead and 
detector simplicity, alignment compensation remains 
a critical issue with this system. The expected correla- 
tion rate obtainable using this system is again limited 
primarily by disk speed and peak detectability. A rate 
of 400,000 correlations/s is still easily achievable, 
yielding a detected signal at the correlation peak of 
more than 105 photons using again a 10 mW source. 

This system has been experimentally demonstrated 
using a thin hologram in place of the photorefractive 
crystal. For this experiment, we chose to use a Sony 
WORM disk as an SLM at the input as well as the 
reference. The results are shown in Fig. 24. Figure 
24(a) shows the image recorded on two Sony disks; one 
disk was used to record the filter plane hologram on the 
plate and the another was used to read out the holo- 
gram. The correlation plane output is shown in Fig. 
24(b). The characteristic autocorrelation peak ap- 
pears in the output. 

C.    Rotating Mirror Correlator 

The previous two Fourier transform based correla- 
tors implement Eq. (29) to generate the correlation 
function. While FT based systems are typically supe- 
rior in terms of speed, alignment and coherence re- 
quirements are relative disadvantages. We discuss 
next two systems which perform 2-D correlations 
based on Eq. (30). In these systems the correlation 
function is generated by calculating an inner product 
for every relative shift between input and reference 
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Fig. 24.    Disk based Fourier plane correlator results using a plate: 
(a) input image recorded on disk 1 and used to record the hologram; 
(b) correlation pattern obtained using disk 2 as reference to read out 

the hologram. 

images. Since these shifts will be generated sequen- 
tially, the correlation will appear as a 1-D signal repre- 
senting a raster version of the desired 2-D correlation 
pattern. As we will see, these systems sacrifice corre- 
lation rate for operational simplicity without align- 
ment criticality, while at the same time relieving 
source coherence requirements. 

A simple image plane correlator is shown in Fig. 25. 
An image of the input scene is formed at the disk on 
which a library of reference images resides. The total 
transmitted or reflected light is collected by a detector 
at the output. The rotation of a polygon mirror causes 
the input image to scan the disk radially while the disk 
rotation itself provides scanning in the orthogonal di- 
rection. The detected light therefore represents the 
instantaneous inner produce between the input and a 
shifted version of one of the references. All relative 
shifts between input and reference images are generat- 

Rotatlng 
Mirror 

Optical 
Disk 

Detector 

Fig. 25.    Rotating mirror correlator. 

ed using these two scanning mechanisms and as a 
result, the light collected at the output is exactly a 1-D 
raster signal of the desired 2-D correlation. An exam- 
ple of the output obtained from the rotating mirror 
correlator is shown in Fig. 26 along with a computer 
simulation of the desired 2-D autocorrelation function 
displayed as a 1-D raster. Figure 26(a) is the reference 
image written on a Sony write once disk. This image 
has up to 6912 pixels along track and comprises 1024 
tracks. The input to the system was provided by a 
transparency of the acronym CIT illuminated by a He- 
Ne laser. Figure 26(c) shows the correlation signal 
generated by the optical system for this input. The 
asymmetry in the optical autocorrelation is due to a 
slight mismatch between the input and reference im- 
ages. 

This system is capable of operating with incoherent 
illumination. One critical limitation, however, is its 
speed. The speed in this architecture is dictated pri- 
marily by the rates of the relative scanning mecha- 
nisms. Specifically, to generate an accurate correla- 
tion signal, the radial scan time must be less than the 
time it takes the references to rotate by 1 pixel. The 
correlation rate is thus limited by factors such as refer- 
ence image, pixel size, radial scan rate, disk rotation 
speed, and ultimately by illumination level and disk 
efficiency. For our experiment, the speed of the rotat- 
ing mirror is the limiting factor, and it results in a 
corelation rate of 400 correlations/s for 100 X 100 pixel 
images. This system, although significantly slower 
than FT based systems, provides a simple solution to 
the FT correlator alignment problems by operating in 
the image plane. As with any incoherent correlator, 
the present system is a unipolar architecture and some 
bias removal mechanism is necessary to retrieve a bi- 
polar or high SNR correlation signal. These bias re- 
moval techniques have been discussed at length in the 
literature.24 
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D.    Acoustooptic Correlator 

The most obvious way to improve the speed of the 
above system is to increase the speed of the radial 
scanning mechanism. Since the speed of commercial- 
ly available polygon mirror based scanners is limited to 
about 40 kHz, we have considered instead the system 
of Fig. 27 which utilizes an acoustooptic (AO) device as 
the radial scanner. The AO scanner can achieve scan 
rates up to 10 MHz. In this architecture, a chirp signal 
propagating in the AO device generates a moving cylin- 
drical lens with power in the horizontal dimension. 
This moving cylindrical lens becomes part of the sys- 
tem that images the input onto the disk. Consequent- 
ly, as the AO lens moves horizontally, the image 
formed on the disk is scanned radially. The orthogo- 
nal scanning is achieved by disk rotation as before and 
the light collected by the detector once again repre- 
sents the desired correlation signal. 

The correlation rate in this system is still con- 
strained by the radial scan speed; however, since this 
scanning is generated by virtue of the propagation of a 
RF chirp in the Bragg cell, the resulting correlation 
rate is much higher than before. The RF chirp param- 
eters are chosen so as to utilize as much AO space- 
bandwidth product as the input image requires, while 
minimizing scan time.   Specifically, 

tc=tA0(SBPlN/SBPA0), (33) 

Fig. 26.    Rotating mirror correlator results:    (a) reference image 
recorded on Sony disk; (b) computer-generated autocorrelation sig- 

nal; and (c) optical system output. 

where tc is the required RF chirp duration, £AO is the 
AO aperture, and SBP^ and SBPAO are the input and 
AO space-bandwidth products, respectively. We 
have built this system using a Te02 AO cell with a 70 fis 
aperture and a RF chirp centered at 40 MHz with a 
chirp rate of « 4 MHz//is. Using the above equation 
with SBPM = 100 and SBPA0 = 1000 the required 
chirp duration was calculated to be 7 us. A SAW 
device was used to generate the desired chirp signal. 
The resulting radial scan rate of 1/7 ^s ~ 140 kHz, 
yields a correlation rate of 1400 correlations/s. Again, 
this correlator is incoherent, but quasimonochromatic 
light would be required because of the wavelength 
sensitivity of the AO lens. The impulse response of 
the AO lens scanner is shown in Fig. 28. The image of 
an input transparency was formed on a CCD using one 
cylindrical lens with power in the horizontal dimension 
and the AO lens for vertical imaging. The input illu- 
mination was pulsed so that the AO lens might be 
frozen in various vertical positions. The delay be- 
tween the onset of the RF chirp and the laser diode 
pulse determines the position of the image on the CCD. 
As can be seen from the figure, the AO lens imaging 
characteristics are quite good. The output of the AO 
lens correlator is shown in Fig. 29. The input to this 
system was once again the transparency of the acro- 
nym CIT and the reference was a duplicate CIT writ- 
ten on an Optotech WORM disk using a simple record- 
ing system which we built. The correlator output is, 
therefore, the 2-D autocorrelation of the input image. 
The reference image shown in Fig. 29(a) is relatively 
large so that a radial scanning distance of 2 cm was 
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"^ Fig. 27.    Moving AO lens correlator. 

Fig. 28. Impulse response of the AO lens scanner: (a) optical 
system used to measure impulse response; (b)-(d) image formed on 
CCD for various delay times A, where A is the time between the 
leftmost edge of the chirp gate (upper trace) and the laser diode 
trigger (lower trace), (b) A = 2.5 ^s, (c) A = 5.0 ßs, (d) A = 8.0 MS. 

required to generate an accurate correlation signal. 
As can be seen from Figs. 29(b) and 29(c), the optical 
system output agrees well with the predicted autocor- 
relation signal of Figure 26(b). 

VI.    Conclusions 
This paper describes the use of optical memory disks 

in optical computing and optical information process- 

ing systems. The large SBP (~ 1010), simple computer 
addressability, natural scanning mechanism, and par- 
allel accessibility are all features making the optical 
disk a candidate for use as both memory and SLM in 
these systems. The sampled format recording scheme 
results in across track coherence, facilitating the stor- 
age of 2-D data on the disk. This format also results in 
the absence of grooves on the disk, which eliminates 
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(a) 

(b) 

(c) 

Fig. 29.    Output of AO lens correlator:   (a) reference on disk; (b) 
optical system output; and (c) magnified version of (b) to resolve 

individual radial scan peaks. 

sampling of the bias reflectivity thereby increasing 
image plane contrast. The third attractive character- 
istic of the disks we used is the optical flatness of the 
glass coating material. This allows these disks to be 
used in coherent processing such as holographic recon- 
struction and complex spatial filtering. 

Parallel optical access to images and holograms 
stored on disks provides the possibility of implement- 
ing specialized parallel computing schemes such as 
database machines, image correlators, and optical 
disk/VLSI hybrid neural networks. We have demon- 
strated several of these systems and have shown the 
potential advantage of such systems over their elec- 
tronic counterparts. Owing to the maturity of optical 
disk technology, the architectures described here are 
feasible using existing disk systems and readily avail- 
able supporting devices. 
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the design and testing of our VLSI neural net chip. 
Alan Yamamura is supported by a fellowship from the 
Fanny and John Hertz Foundation. 

Appendix:   Diffraction Efficiency for Schlieren Imaging 
We calculate, as an example, the diffraction efficien- 

cy of the optical disk in a schlieren imaging system. 
We start by modeling the disk surface according to the 
following equation: 

i(x,y) = r0 + (rj - r0) b(x,y) V 5(x - nA,,y - mAJ •    ( r 
® arc  — 

+ (r, - 2r, + r0) Y J[b(;c,y)ö(;t - nAx# - mAv)] ® circ/'-M 

X \ [b(x,y)5(x - (n + l)Ax,y - mAJ] ® circ (Al) 

where r2 = x2 + y2, b{x,y) is the desired binary image, 
A.t the along and Ay the across track spacing, Ar the 
radius of the written spots, and r, the complex ampli- 
tude reflectivity of areas written i times. Because 
spots written by the Sony system have a constant 
angular separation along track, Ax is actually a func- 
tion of radial position on the disk and varies between 
Ar and 2Ar. The third term in Eq. (Al) represents the 
overlap of adjacent spots in the along track direction 
when A.T < 2Ar (Fig. 30). We otherwise ignore track 
curvature for now and assume that the pixels lie on a 
Cartesian grid. The effects of track curvature are 
analyzed in Sees. II and III. 

Because the Sony write once material nearly satu- 
rates after a single exposure to the write beam such 
that r-2 « rh we drop the third term of Eq. (Al) and 
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account instead for the overlap by modifying the spot 
shape in the second term by assigning half of the over- 
lap region to each neighboring spot, as in Fig. 30. In 
this case, the mathematical expression for the spot 
becomes [circ X rect] and Eq. (Al) reduces to the 
following: 

i(xj) =r0 + (rx - r0) b(x,y) V 8(x - nAx,y - mAy) 

circ{ -— 1 rectf — (A2) 

Strictly speaking, the above equation models the re- 
flectivity incorrectly wherever a written spot is adja- 
cent along track to an unwritten one. Assuming, how- 
ever, that along track spatial frequencies in the image 
are low compared to the sampling frequency A"1, we 
expect separate clusters of written and unwritten 
spots, in which case there would be little energy in a 
term accounting for written spots next to unwritten 
ones. 

Using Eq. (A2) to model the reflectivity of the disk 
surface, we find the following Fraunhofer diffraction 
pattern: 

I(u,v) => r05{u,v) + (r2 - r„) B(u,v) ® -~ y 

Ar ® Ax smc(Axu)8(u) (A3) 

As expected, the sampling in the image plane corre- 
sponds to convolving the image spectrum with an array 
of impulses resulting in an array of image spectra or 
diffraction of the image into multiple orders. Schlie- 
ren imaging achieves high contrast because the pixels 
sample only the image and not the background, repre- 
sented by r0, sending all the energy in the bias to the 
zero-order. 

The fraction of incident light that goes into the 
n,mth diffraction order is given by integrating the 
magnitude squared of the appropriate term from Eq. 
(A3) as follows: 

Af(r. - r0) 

A,A„ 

</1(27rArp) 

n m 
B I u - — >v — — 

A„ A, 

® A, sinc(A,u)6(f) dudv. (A4) 

The shape of the written spots determines the char- 
acteristic [Ji ® (sine X <5)] envelope which modulates 
the entire diffraction pattern in Eq. (A3). Assuming 
that the pixels sufficiently oversample the input im- 
age, the envelope is nearly constant over the image 
spectrum allowing us to simplify Eq. (A4): 

Hn 
in ~ ro) 

A,AV 

Jx{2nArp) 
Ar ® A,. sinc(Axu)5(o) 

dudv 

u=nl\r,v=m/&... 
(A5) 

^ 

a>C(r/A') arc(r/Ar)rect(z/At 

2A, - Ar 

Fig. 30.    Model of spot shapes 

The remaining integral corresponds to the energy in 
the spectrum of the image which is equivalent to the 
energy in the image itself. Thus, the fraction of inci- 
dent light energy that goes into the n,mth diffraction 
order is given as follows: 

Hn 
A.A.. 

ArJ,(27rArp) 

\b(x,y)\2dxdy 

® A, sinc(Aru)5(u) 
u=n/\.v=m/X 

(A6) 

Defining useful light as the total energy going into 
image spectra of all orders, we estimate the light cap- 
tured by imaging a single order as a fraction of useful 
light: 

H„ 

I H„rm> 

J^irA.p) 
Ar ® Aj sinc(Axu)<5(t;) 

u=n/\,c=m/\ 

I 
J[(27rArp) 

Ar ® Ax sinc(Aj.u)5(y) 

(A7) 

u-n,/\.u=m'/\ 

Since the denominator is the sum of the squares of 
the Fourier series coefficients of an image with every 
spot written with unity amplitude, it is equivalent to 
the fraction of the disk covered by spots if all were 
written. This fraction varies between 0.877 at the 
innermost radius and 0.785 at the outermost. We can 
now simplify Eq. (A7) as follows: 

H., 

',m' = -"> 

J1(27rArp) 
Ar ® A 

P 
x sinc(Axu)5(u) 

2 

1     fV2   rV2 

A;A J-V2 }-^./2 
circl — I rectf t) 

2 
dxdy 

(A8) 

A 
5/,(2xArp) 

® Ax s\nc{Axu)5(v) u=n/bx.u=m/\ 

4A 
2A2 / Ax\     A 
 sin   I    H— 
ArA„ I 2A_ /     A y . *"~y 

I - 
2Ar 

(A9) 

Thus, Eq. (A6) shows the amount of light as a frac- 
tion of incident light that goes into the image spectrum 
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in each order. Equation (A9) shows the amount of 
image light in each order as a fraction of image light in 
all orders. These equations can be used to estimate 
the diffraction efficiency of the Sony write-once disk in 
a schlieren imaging system. The disk diffraction effi- 
ciency for other applications and/or disks can be esti- 
mated in a similar fashion given a model for the reflec- 
tion or transmission pattern of the disk and 
parameters for the appropriate disk characteristics. 
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Optical-disk based artificial neural systems 

ALAN A. YAMAMURA, MARK A. NEIFELD, SEIJI KOBAYASHI AND DEMETRI PSALTIS 

Optical disks provide a mature technology for the storage and implementation of the 
connection patterns required in artificial neural systems. In this paper, we briefly 
characterize optical disks before describing and presenting experimental results from 
two optical-disk based neural networks: a character recognition system and a 
multilayer feedforward neural network simulator. 

1. Introduction 
The majority of today's artificial neural network 
models [1] consist of two elements: a large number of 
simple processing elements {neurons) and the connec- 
tions (synapses) between them. The pattern of connec- 
tions determines the functionality of the network and is 
often generated through learning and modified through 
adaptation. Both electronic and optical technologies 
are currently being used to implement artificial neural 
networks. The key advantages of optics are its abilities 
to provide the large number of connections required by 
many neural network models and efficiently store the 
connection pattern specifications. While electrical 
signals must travel on physical wires that consume 
space, optical signals can propagate through free space, 
and optical memories such as disks are valued for their 
high density and high capacity data storage. Optical 
disks can also act as parallel readout storage elements 
and spatial light modulators [2]. Recently, optical disks 
have been used as a component in the implementation 
of neural networks [2-4]. In this paper, we describe two 
optical-disk based artificial neural systems. The first is 
an optical character recognition system that uses the 
disk both to store and to implement connections opti- 
cally. The second is a multilayer feedforward neural 
network processor that uses the optical readout capabil- 
ity of the disk to transfer the connection patterns in 
parallel from the disk to an optoelectronic processing 
chip. 

Received 5 June 1990. 

Authors'   address:   California   Institute   of   Technology   116-81, 
Pasadena. CA91125, U.S.A. 

Figure 1. Greyscale image recorded on an optical disk by 
area modulation. 

2.    The optical disk 
Using a prototype Sony system, we have recorded 
information in the form of images and holograms on 
reflective disks, 12 cm in diameter [2]. Data is recorded 
with 1 urn resolution as variations in the surface reflec- 
tivity of the disk yielding a storage capacity or space- 
bandwidth product (SBP) of well over 109 bits (that is, 
thousands of images or holograms of a million pixels 
each) per disk side. 

Figure 1 shows an image stored as a 2-D pixel array 
on the disk surface. Although the individual pixels can 
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represent only binary information, greyscales are 
recorded in this image with area modulation tech- 
niques. By imaging the light reflected by an area of the 
disk under uniform illumination, we can read out a 2-D 
array of data in parallel. In this case, the disk simply 
acts as an optical storage medium with parallel readout. 
The disk can also be used to implement weighted 
connections using a vector-matrix multiplication archi- 
tecture (figure 2(a)). Here, a vertical array of N neur- 
ons can be fully connected to a horizontal array of M 
neurons using a disk and a pair of anamorphic imaging 
lenses. The connection pattern is specified by an array 
of Nx M superpixels recorded on the disk. Light emit- 
ted by each neuron in the vertical array is imaged by the 
first lens onto a row of the connection matrix; light 
reflected by each column of the matrix is integrated by 
the second lens onto a neuron in the horizontal array. 

Information may also be stored in the form of 
computer generated holograms written on the disk. As 
in the case of the images, holograms on the disk can be 
used either to store data for parallel optical readout or 
to implement weighted connections. For parallel 
optical readout, we simply encode the hologram so that 
it reconstructs the desired pattern of points under 
illumination by a planewave reference. For weighted 
connections, the hologram is encoded to partition light 
emanating from each neuron and distribute it to the 
other neurons in a programmable fashion (figure 2(6)). 

Neurons Disk 

Holographic 
Optical . 

Element 

Neurons Disk 

Figure  2.    Optical  implementation  of neural connections: 
(a) vector-matrix and (b) holographic. 

Holographic storage has a number of potential 
advantages. First, optical elements may be encoded 
into the holograms to allow lensless readout or inter- 
connection. Second, holograms represent information 
in a distributed fashion, resulting in slow degradation of 
data or connections as the number of defects in the 
hologram increases. Third, shifting a Fourier transform 
hologram (FTH) results only in phase changes in the 
reconstruction; thus for small rotations the light re- 
flected by a FTH remains aligned with a detector array 
as the disk rotates [5]. 

Unfortunately, holographic recording also has a 
number of disadvantages. A large amount of SBP must 
be devoted to record and readout a hologram accur- 
ately. Superpixels (typically groups of 4-64 or more 
pixels) are usually required to record the amplitude and 
the phase of each sample point in the hologram. 
Additional SBP must be sacrificed to incorporate spa- 
tial carriers or holographic optical elements, if desired, 
in the holograms, as well as to improve the signal-to- 
noise ratio (SNR). Figure 3 shows the desired object 
and experimental reconstruction from computer gener- 
ated holograms recorded on the disk as we vary the 
number of pixels in the reconstruction. Starting from an 
initial value of 32 'on' pixels, the SNR decreases 
steadily. With 512 'on' pixels, the signal is almost 
completely lost in the noise. Over a million pixels on 
the disk were used to encode the 1024 pixels in the 
reconstruction, corresponding to an additional factor of 
1024 in required SBP for holographic recording when 
compared with imaging. 

3.    Optical character recognition system 

The first system we describe is an optical disk based 
system for the recognition of handwritten numerals. 
The recognition scheme is based on a K nearest neigh- 
bour strategy that uses a template library of 650 exemp- 
lars. The optical system compares an unknown input 
against the template library at a demonstrated rate of 
26 000 comparisons per second. Although shift, 
rotation, and scale invariances may be effectively elimi- 
nated through normalization procedures [6], author- 
dependent distortions are often dealt with by statistical 
techniques based on a large training set of exemplar 
patterns. Such approaches are typically based on com- 
putationally intensive algorithms requiring a great deal 
of both time and memory [7]. Whereas such compu- 
tationally intensive algorithms are difficult to realize on 
conventional computers, parallel access optical storage 
technologies such as the optical disk, can provide an 
efficient implementation. Optical parallel access to 
information stored on the disk provides a mechanism 
for high data retrieval rates and concomitantly large 
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processing speeds [2]. The combination of parallel 
access and large storage capacity makes optical-disk 
based architectures well suited to the efficient imple- 
mentation of several of the traditional pattern recogni- 
tion paradigms as well as neural network models. In 
this paper we will demonstrate experimentally an 
optical system which performs handwritten numeral 
recognition using the K nearest neighbour algorithm 
(KNN). 

Given a set of M training vectors which we will refer 
to as templates, the KNN algorithm classifies an unseen 
vector according to the class with the greatest represen- 
tation among its K nearest neighbours in the template 
set [8]. To realize this algorithm we must compute the 
M distances |JC—JC'|, for i=l,. . . , M where x is the 
unknown input vector and the JC'S are the stored tem- 
plates. The success of this algorithm depends on how 
well the template set represents the underlying problem 
at hand. As M becomes very large, the probability of 
error for the KNN algorithm is known to approach the 
optimum value, but the computational requirements 
can become impractical for conventional computers. 

.  . -... ;;-^.:Vr--: ' >■■■ 
i Figure   3.    Desired   (a,c)   objects 

and (b, d) experimental reconstruc- 
|  tions of CGHs on disks with (a, b) 

Wmk m   32 and  (c,d) 512 pixels,  respec- 
(d) tively. 

The optical system described here, however, is capable 
of performing —40 million such comparisons per 
second, and it is possible to store «106 templates of 104 

bits each on a single disk. Thus, this optical technique 
may be able to push the boundaries of the practicality 
of the KNN rule well beyond what is currently possible. 

A database of 950 16 x 16 handwritten numerals (95 
per class) was used to construct the training and testing 
sets for our experiments: 65 vectors were chosen ran- 
domly from each of ten classes to generate the 650 
element training set (figure 4); the remaining 300 vec- 
tors were used as a testing set. It was found that for a 
fixed template set size of 650 vectors, the recognition 
performance of the KNN algorithm was improved dra- 
matically if the 16 x 16 binary input vectors were first 
normalized for position and scale. Accordingly, a pre- 
processing step consisting of a centring operation fol- 
lowed by a scaling of the centred 16 x 16 character to a 
10 x 10 window was performed. The 10 x 10 templates 
were unraveled and stored as 100 dimensional vectors 
on the optical disk. Along with each binary template x, 
its complement x (that is x+x — (l, 1,..., 1)) was 
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generated and stored on the disk. Thus, we can 
implement bipolar valued templates by subtracting the 
inner products between the same input and the two 
stored vectors. The 650 templates and their comple- 
ments were recorded as 1300 radial lines on an optical 
disk, which serves as a parallel access template library 
in our experiment. The remaining 300 characters were 
preprocessed in the same way and recorded on trans- 
parencies to serve as testing inputs to our optical 
system. 

The optical system is shown in figure 5. An image of 
the input vector located on an input spatial light modu- 
lator (SLM) is formed on the optical disk along a radial 
line as shown. The light diffracted from the disk is 
collected on the photodetector and represents the inner 
product between the input vector and the vector 
recorded along the illuminated line. As the disk rotates 
the input is compared against all of the stored templates 
and an electrical signal representing the result of these 
comparisons is analyzed by postprocessing electronics 
to determine the correct classification of the unknown 
vector. In our experiment, the postprocessing elec- 
tronics were responsible for sampling the output of the 
photodetector and using the inner product data to 

calculate the KNN of the input vector. The inner 
product based distance metric used is given by: 

y= 
X'(xf-x') 

(1) 

where the \x*\h were computed using the optical system 
output when presented with the input vector having all 
its components equal to one. The disk rotation rate in 
our system was 20 Hz; therefore, the number of binary 
inner products being computed per second was 26 000. 
The resolution of the optical disk will allow storage of 
up to 106 templates of dimension 100 x 100. At a 20 Hz 
rotation rate, this corresponds to a computing rate of 
2x 10u binary operations per second. 

When tested on the 300 remaining vectors, the 
optical system achieved a recognition rate of 71% using 
a .£ = 5 KNN algorithm. It should be noted here that 
the 300 test vectors had not been seen by the system 
prior to testing. This performance is considerably 
below the performance of 83% correct classification 
predicted by a computer simulation. A model of the 
optical system predicts a 73% rate. This model included 
various error sources such as beam nonuniformity, 

131 132 133 134 135 136 137 !36 139 140 

141 142 143 144 145 146 147 1« 149 

17] 172     . 173 174 175 176 177 178 179 18 

181 182 183 184 185 186 187 18«    ~ 189 190 

Figure 4. 100 of 540 handwritten 
character templates   used   in   the 
character recognition   system   of 
figure 5. 
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Figure 5.    Optical character recog- 
nition system. 

electrical noise in the postprocessing electronics, 
sampling phase jitter, and quantization error. The most 
critical parameter is the input image contrast. These 
results are summarized in table 1. A plot of recognition 
rate versus input image contrast is shown in figure 6. 
The data plotted includes experimental values of the 
error sources mentioned above in addition to finite 
contrast. It can be seen from the graph that for our 
system operating at a measured contrast of <20:1, an 
expected rate of <75% is obtained in agreement with 
experiment. It is clear that noise sources only account 
for —20% additional recognition error and upon 
improvement of the input contrast, the optical system is 
expected to perform near the simulation rate of 83%. 

We have demonstrated an optical system capable of 
comparing an input vector against a large library of 
stored templates at MHz rates. This system is attractive 

Table 1. Comparison of the simulated, 
experimental and modeled character 
recognition rates for the digits 0-9. 

Class Simulation Experiment Model 

0 28 28 28 
1 27 19 17 
2 24 28 24 
3 23 9 15 
4 28 24 26 
5 24 26 21 
6 22 23 20 
7 24 26 17 
8 23 21 26 
9 26 9 24 

83% 71% 73% 

o  0-60- 

0      10     20     30     40     50     60     70      80     90    100 
Contrast 

Figure 6.   Recognition rate versus image contrast. 

from the perspective of data reduction in image recog- 
nition oriented tasks. The optical system can be 
envisioned to be an efficient preprocessor for high 
dimensional input data effectively reducing the dimen- 
sionality by projecting the input image onto stored 
templates or feature vectors stored on the optical disk. 
The reduced dimensionality output of the optical 
system is well suited not only to the KNN recognition 
algorithm demonstrated here, but also to many other 
pattern recognition and neural network schemes that 
require the calculation of inner products such as Parzen 
windows, multilayer networks and associative memor- 
ies, as well as hypersurface reconstruction networks 
using radial basis functions [9]. In general, we can 
envision hybrid pattern recognition systems utilizing 
high-speed optical preprocessors followed by more con- 
ventional electronic computing elements which 
together will be capable of realizing many different 
algorithms and networks in a flexible and efficient 
fashion. 
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4.    An optoelectronic multilayer network 
A hybrid optoelectronic implementation combines the 
strength of optics in communications with that of elec- 
tronics in computation [10]. In this section we present a 
multilayer feedforward neural network implementation 
that uses neurons and synapses fabricated on an inte- 
grated circuit. Each synapse contains a photodetector 
thus allowing the weights of the connections to be 
accessed optically from a disk as shown in figure 7. 

Because of its structure, a multilayer feedforward 
network can be implemented using a chip with only a 
single layer of neurons and synapses by repeatedly 
reconfiguring the synapses to implement the succeeding 
layer of the network before feeding the neuron outputs 
back to the synaptic inputs. The first advantage of this 
technique is that a single programmable chip can be 
used to perform multiple functions. Assuming 104 

synapses on each chip, a single disk can store almost 106 

different connection patterns. Depending on the aver- 
age number of connection patterns required to 
implement a function, a single chip and disk combi- 
nation could perform hundreds of thousands of differ- 
ent functions. Almost a million chips with fixed connec- 
tivity would be required to provide the same 
functionality. Secondly, for those tasks that are too 
large to fit on a single chip or wafer (but can be 
partitioned into pieces that can be implemented in a 
serial fashion), reconfigurable connections allow us to 
implement the entire network on a single chip, thus 
avoiding potentially long communication delays 
between separate chips implementing different parts of 
the network. When reconfigurable synapses are used, a 
set of weights must be stored for each layer of every 
function we would like the network to perform. Since 
the storage of weights on-chip consumes area that could 
otherwise be used for computation, weight storage on 
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Figure 7.    Optical reconfiguration of synaptic weights. 

Figure   8.    Optoelectronic   multilayer   feedforward   neural 
network chip. 

an optical disk can reduce the complexity of the circuit 
dramatically. Optical storage and readout of the weights 
shortens the time required to load the weights into the 
synapses. As the number of neurons TV in each layer 
grows, the number of synapses grows as 0(N2) while 
the number of pads would at best grow as O(N). Thus 
O(N) cycles would be required to electronically load 
the weights for each layer. However, with photo- 
detectors in each synapse, the weights for an entire 
layer can be read in optically in parallel in one clock 
cycle via the third dimension. 

We have designed and tested an integrated circuit 
(figure 8) containing two layers of 11 neurons and a 
15 x 15 synaptic array connecting them. (For the 
purpose of electrical characterization, some synapses 
do not connect to neurons). Each synapse (figure 9(a)) 
contains a synaptic transistor connecting a pair of 
neurons, one from each layer. The strength or weight 
of the connection depends on the gate voltage of this 
transistor. The gate voltage is determined by a pullup 
transistor to Vd(i and a reverse-biased photodiode to 
ground (G). The weight of a synapse is controlled by 
adjusting the amount of light striking the photodiode. 
We operate the synapses in a fashion that implements 
binary (0,1) weights. First, we turn on the pullup 
transistors with a reset signal that precharges the gates 
of the synaptic transistors thus setting all weights to 1. 
Next, we selectively illuminate the photodiodes in some 
of the synapses, discharging the gates of their synaptic 
transistors and setting the weights of the selected 
synapses to 0. We could implement analogue weights 
using the chip designed; however, the storage of ana- 
logue weights would consume additional storage space 
on the optical disk and possibly reduce the data transfer 
bandwidth. 
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Figure 9(b) shows the neuron circuit. Though this 
circuit is more complex than the synapse circuit, we can 
fortunately afford to consume more area with each 
neuron since there are only N neurons compared with 
0(N2) synapses. The voltage input of each neuron is 
determined by the output voltages of neurons in the 
previous layer and the strengths of the synaptic connec- 
tions to those neurons. To generate its output, each 
neuron applies a hard threshold to the input voltage by 
comparing it with an adjustable threshold voltage Vth; a 
cross-coupled inverter is used for the voltage compari- 
son. The output of the voltage comparator is Vdd if the 
input voltage is above Vth and G if below, thus provid- 
ing binary outputs. 

The switching energy Es of each synapse is an import- 
ant parameter which can be used to determine the 
optical power required to operate the network at a 
given speed. The switching energy can be determined 
using the following equation: 

£s = Mp>s, (2) 

where / is the intensity of the light uniformly illuminat- 
ing the chip, Ap = 474\im2 is the area of photodiode, 
and rs is the time required to switch the synapses. 
Figure 10 shows the current through an array of 
synapses as a function of the illumination time for a 
light intensity of 33-7 u.W cm"2. By averaging measure- 
ments for four intensities, we find a switching energy of 
0-7 pJ. 

The speed at which we can operate the system is 
limited by the maximum rate at which we can rotate the 
disk and still maintain alignment between the data from 

Pullupif'    Synaptic 

Photodiode 

X 

pad 

Figure 10.    Synaptic current (6-67 uA per vertical division) 
versus optical illumination time (1 ms per horizontal division). 

the disk and the detectors on the chip. When imaging 
data from disk to chip, we can access timing and 
tracking information stored on the disk through either 
auxiliary detectors on the chip or the serial read/write 
head currently used to record information on the disk. 
The timing information can be used to pulse the 
readout laser thus 'freezing' the rotation of the disk 
when the data is in azimuthal alignment with the chip. 
The tracking information could be used by a servo- 
mechanism to move the chip into radial alignment with 
the data on the disk. A better solution might be to 
connect the neurons in each layer like a shift-register 
and electronically 'reposition' the detectors. 

Neuron   Circuit 

to 
synapses 

(«) 
Control   logic     Threshold     Driver 

(b) 

Figure 9.    Circuit diagrams: (a) synapse, (b) neuron. 
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As mentioned earlier, storage of the weights in the 
form of a 2-D FTH provides some timing and tracking 
error tolerance because of the invariance of the inten- 
sity pattern of the reconstruction to shifts of the holo- 
gram. The major drawback of this scheme is the large 
cost in SBP required by holographic data storage. It is 
also possible to compromise between 2-D imaging and 
holographic readout by recording the data for imaging 
readout in one dimension and holographic readout in 
the other by use of an anamorphic optical system. For 
example, 1-D transforms used in the radial dimension 
to simplify alignment in the radial direction could be 
combined with a pulsed laser that provides alignment in 
the azimuthal direction. 

We could potentially spin disks on air bearings at up 
to 60 000 rpm. If we assume a 100 x 100 synaptic array 
on the chip and that we can maintain alignment at this 
disk rotation rate and use connection patterns stored 
consecutively on the disk, this rotation rate corre- 
sponds to a minimum clock period of 300 ns and a data 
transfer rate of 35Gbits_1. With a neuron switching 
time of 50 ns and RC delays of 100 ns in the synaptic 
array, we are left with about 100 ns to switch the 
synapses. Using a synapse switching energy of 1 pJ, we 
would then require 100 mW of optical power incident 
on the chip. Because of the poor optical efficiency of 
our disks, this corresponds to a 100 W laser source. 
However, by switching to disks that use different mat- 
erials (e.g. transmissive disks), we can achieve 10 to 100 

times greater efficiency reducing the power require- 
ments of the laser source to the 1 to 10 W range. 

We have implemented a two-layer heteroassociative 
memory using the chip and the optical disk. One of the 
input vectors, ( + + -M h — H h — + ), is 
displayed in the bank of LEDs at the top of figure 
11(a). These LEDs are used only for displaying the 
state of the neurons on the chip. Valid input vectors 
consist of 8 + Is (on LEDs) and 7 - Is (off LEDs). Each 
neuron in the second layer acts as a 'grandmother-cell', 
recognizing a specific input vector and associating it 
with a specified output vector. The first light pattern 
striking the photodiodes is chosen such that it connects 
each grandmother-cell neuron with only those input 
neurons that are set to -Is by the specified input 
vector. With the threshold set to find all seven -Is, the 
output of each grandmother-cell will be -1 if and only 
if the input corresponds to the specified vector. The 
LEDs on the left of figure 11(A, b) show that the second 
vector (second LED off) has been recognized. To 
readout the associated vector, the second light pattern 
connects each grandmother-cell with output neurons 
that are supposed to be -Is in the specified output 
vector. By setting the threshold to find a single -1, a 
grandmother-cell with a -1 output forces the outputs 
of the appropriate neurons ( \- -\ 1 \- -\ ) 
to -1 as shown at the top of figure 11(b). Since there 
are 11 neurons in each layer, we were able to store 11 
different  heteroassociations  using the  chip.   During 

(«) (b) 
—I   Figure 11. Heteroassociative mem- 

ory: (a) first layer, (b) second layer. 
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testing, the network successfully recalled all 11 associa- 
tions without error. 

We have also implemented a two-layer autoassocia- 
tive memory using the disk and chip with 10 input 
neurons, 5 neurons in the hidden layer, and 10 output 
neurons. This time, however, instead of using a 
grandmother-cell representation, we use a distributed 
representation in the hidden layer. We train the two- 
layer network using a combination of two algorithms. 
The first algorithm [11] uses learning by choice of 
internal representation and is designed for use with 
multilayer networks of binary threshold elements; the 
algorithm applies the perceptron learning rule to find 
the desired analogue weights in each layer. The second 
algorithm [12] is a modified version of the perceptron 
learning rule that finds binary weights. In this hybrid 
algorithm, we begin with randomly selected binary 
weights in the first layer. Presenting the training sam- 
ples at the inputs, the resulting internal representation 
is tabulated. We then train the second layer with the 
binary perceptron algorithm by first applying percep- 
tron learning and then thresholding the resulting analo- 
gue weights to generate binary weights. If the thres- 
holded binary weights do not produce the correct 
outputs, we exhaustively try all neighbouring binary 
weight vectors within a Hamming distance of 1 or 2. If 
this procedure does not successfully find weights for the 
second layer, we modify the internal representation by 
flipping bits and again apply the binary perceptron to 

the second layer using the new representation. Once we 
discover an internal representation for which a corres- 
ponding binary second-layer weight vector exists, we 
search for binary first-layer weights that generate the 
desired internal representation by applying the same 
binary perceptron algorithm to the first layer. If we fail 
to find the desired first-layer weights, we record the 
existing internal representation and again start training 
the second-layer weights, repeating the above process 
as required. 

Despite the fact that the chip provides unipolar 
binary weights (0 or 1), we assume the presence of 
bipolar binary weights (±1) while training the auto- 
associative memory since networks with bipolar binary 
weights have better functionality than those with uni- 
polar binary weights. We can nevertheless ensure that 
operation of the first layer using unipolar weights is 
functionally equivalent to that using bipolar weights by 
requiring that half the 10 input bits be +1 and half be 
— 1. (Though the weights are unipolar, the neuron 
outputs are bipolar.) In this case, we can regard the 
unipolar weight vector for each neuron to be the sum of 
a bipolar vector and a bias vector of all +ls. The inner 
product of the bipolar part with the input vector yields 
the desired result while the inner product of the con- 
stant bias with the half-on half-off input goes to zero. 
We implement bipolar binary weights in the second 
layer using a dual-rail coding system by taking the five 
hidden-layer neuron outputs generated by the first 

(«) (b) 

Figure 12.    Autoassociative mem- 
»ry: (a) first layer, (b) second layer. 
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layer and setting five additional hidden-layer neuron 
outputs to the complements of the first. Each output 
neuron can then connect to either the output of a 
hidden-layer neuron or its complement. The difficulty 
arising from the restriction to unipolar weights leads us 
to believe that future versions of the optoelectronic 
neural network chip should implement bipolar connec- 
tions. Bipolar connections can be provided by the 
simple addition of a single transistor to each synapse for 
negative weights connected to a second line providing 
an inhibitory input to each neuron. 

Figures 12(ß, b) show the recognition and recall of 
one   of   the   stored   vectors.    The   input    vector 
(-M M h) is shown at the top of figure 
12(A). The left side of figure 12(A) shows the corres- 
ponding internal representation ( + + + + -) in the 
hidden layer. The left side of figure 12(b) shows the 
addition of an externally generated complement to the 
internal representation ( + + + + — r-). The 
top of figure 12(b) shows the successful recall of the 
stored vector. We stored and recalled six vectors in this 
10-5-10 network, again without error. 

5.    Conclusions 
Artificial neural systems implement a computational 
paradigm inspired by biology by use of a large number 
of simple processing elements with massive inter- 
connectivity between processors. Optics may very like- 
ly play a vital role in neural network implementation 
because of its strengths in communications and memory 
storage. Optical disks can simultaneously provide a 
large number of connections and store an entire library 
of interconnection patterns. We have demonstrated 
some of these advantages provided by the use of optical 

disks in two experimental neural network implemen- 
tations. 
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ABSTRACT 

We describe two optical systems based on the radial basis function approach to pattern classification. 

An optical disk based system for handwritten character recognition is demonstrated. The optical system 

computes the Euclidean distance between an unknown input and 650 stored patterns at a demonstrated rate 

of 26,000 pattern comparisons per second. The ultimate performance of this system is limited by optical 

disk resolution to 1011 binary operations per second. An adaptive system is also presented which facilitates 

on-line learning and provides additional robustness. 

KEYWORDS: neural networks, radial basis functions, pattern recognition, optical disk. 

I. Introduction 

We describe two optical architectures for the realization of distance-based classifiers and in particular, 

radial basis function classifiers. The first is an optical disk based implementation. The 2-D storage format of 

the optical disk makes parallel access to data an attractive possibility. The optical disk can be thought of as a 

computer addressed, 2-D binary spatial light modulator or storage medium with a space bandwidth product 
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of 1010 pixels. A number of potential applications which take advantage of these characteristics exist and have 

been discussed elsewhere in the literature^1,2'. An optical disk based implementation of radial basis classifiers 

is quite natural owing to the large storage requirements typical of such pattern recognition algorithms. In the 

system described here, the optical disk based radial basis function classifier is demonstrated as a handwritten 

character recognition system. The second architecture is a parallel adaptive neural network which facilitates 

on-line learning and offers added robustness to noise and optical system imperfections. 

II. Radial Basis Functions 

The RBF approach to pattern recognition differs from neural networks which are based on supervised 

output error driven learning algorithms like Back Error Propagation (BEP) in a number of respects'3,4' li 

is typical for RBF based systems to incur very short learning times while requiring rather large network 

realizations. This approach therefore, bears some similarity to memory intensive sample based systems such 

as K-Nearest Neighbor (KNN) classifiers^. In such systems, learning time and learning algorithm complexity 

are traded for classification time and memory requirements. The motivation for using a RBF network 

to perform pattern recognition tasks comes from the relatively well established mathematical framework 

associated with regularization theory and hypersurface reconstruction^. In hypersurface reconstruction the 

problem is to construct an approximate function /(u>, x), which takes a vector x into a prescribed output 

/(r). The vector w is a parameter vector used to tune the estimate /. For simplicity, we will consider only 

one dimensional outputs. In order to construct / a set of training samples taken from f(x) (ie. the underlying 

hypersurface to be approximated) is provided {z^ —» f{zi)\i = 1,...,M). The problem then reduces to the 

choice of the form of / and the appropriate parameters w, such that f(w,Xi) = /(£i_) for i = 1 M. This 

problem is identical to the pattern recognition problem where one is given a set of training patterns and 

is asked to find a classifier / with the appropriate parameters w, such that the resulting machine classifies 

the training set correctly. In both cases we desire that future samples be mapped correctly and that the 

system behave well in the presence of noise In order to obtain these desirable characteristics in hypersurface 

reconstruction, a criterion of smoothness is often placed on the estimator /   The RBF approach may be 

3 



derived as the optimal solution to the regularized problem for a specific smoothing operator.^ The RBF 

solution defines an approximating function f(w, x) as a weighted sum of radially symmetric basis functions in 

9?'v. Given a training set X = {*!,/(*!);» = 1,..., M } comprising a set of M points {zi 6 %N \ i = 1, ...,Af} 

and the values of the unknown function f{x) at those points, the RBF approach specifies an estimator as 

f(UL,S) = X>e*p(-|*- Ü2Mh 0) 
1=1 

where the "centers" or "templates" {V], the "widths" {<r,-}, and the weights {a,} comprise the parameter 

vector tr = {Ü, <r,,a, : iis 1,..., A/}, and are determined from the training set. 

The RBF classifier seeks to approximate the underlying function as a sum of gaussian "bumps". Ac- 

cording to the above expression. / comprises A/ of these bumps each centered at V with width <r, and 

weighted by a, to form the final output. We may estimate the parameters tr from the training set such that 

f{xj) =s f(zt) using any number of supervised and/or unsupervised algorithms^3,7!. 

The RBF approach may also be considered as a neural network architecture as shown in figure 1. We 

define the RBF unit in Fig. la as a "neuron" with response given by 

y,=exp(-|x-Ü|2/<T,2), 

where C_ is called the "neuron center" and <r, the "neuron width." These units are depicted in the second 

layer of figure lb. The output layer of the RBF network consists of a single linear unit whose output is simply 

the weighted sum of its inputs. The overall network mapping then is Eq.(l) as desired. In figure 2a we show 

a RBF network for estimating a function of two input variables and in figure 2b we depict an example of an 

input space configuration of the mapping induced by such a network. The small disks in fig. 2b represent 

the training samples and the broken circles represent the e-1 contours of the four gaussian basis functions 

used to construct the RBF network. As a specific example of training such a network we utilized a k-means 

algorithm with k=4 to determine the centers of the basis functions^8!. This procedure results in determination 

of the four centers shown as large asterisks in the figure. In order to determine the widths associated with 

each center, a KNN algorithm was used. The five nearest neighbors to each center were chosen and the 

average of these five distances was used as at for the associated bump. Note that these procedures result 

in the determination of the centers ^ and the widths <r, in a completely unsupervised fashion. In this way 
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the first layer of a RBF network may be trained without using an error driven procedure thereby reducing 

training time Training of the output layer can be accomplished through the use of either a mean squared 

error minimization procedure (e.g., adaJine) or a relatively simple perceptron learning algorithm^. 

I'll. RBF Based Handwritten Character Recognition 

In this section we describe the implementation of the RBF classifier trained to solve a handwritten 

character recognition problem. We will consider the 10 class problem of identifying handwritten digits 0-9. 

Using a SUN3/60 workstation, several authors were asked to draw the numerals 0-9 on a 16x16 grid. The 

resulting database of 950 images (95 per class) was randomly separated into a 300 element testing set and 

a 650 element training set which will form our reference library. Examples of characters from the training 

and testing sets are shown in figure 3. 

In ordor to provide shift and scale invanance we first preprocessed both training and testing sets so that 

each 16* 16 image was centered (by repositioning each character within the 16x 16 grid such that the number 

of blank rows/columns of pixels is the same on either side of the character) and scaled to a 10x10 window 

(by stretching each character such that it's maximum extent is 10 pixels) Following this preprocessing, the 

10x 10 pixel input field is unrastered to form a 100 bit binary vector and each such vector V. corresponding 

to each of the 650 preprocessed training or reference images, is stored on the optical disk as a radial line. For 

each vector <\ we also store its complement fj, in the adjacent position. This method of encoding allows us 

to simulate bipolar templates on our disks which can store binary, unipolar reflectivity values. The pixel size 

in this experiment was chosen to be 177 tracks by 116 pixels along track. Track to track spacing is l.bfitn 

and pixel separation is approximately l.O^m This storage scheme allows us to record 1376 templates per 

disk 

The architecture we have implemented is shown in Figure 4. The preprocessed 100 bit binary vector T. 

is presented to the system shown in Fig 4 and the first layer of RBF units compute the RBF projections 

?;, = expi -\x - illV^i2)- ^'e nave chosen to use as RBF centers {^}, all 650 reference images of the training 

sot    This choice of centers also facilitated an earlier KNN based handwritten character recognition system 
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which has been reported elsewhere^10]. After the RBF projections are calculated in the middle layer, this 650 

dimensional intermediate representation is then transformed using the interconnection matrix W_ to arrive at 

a 10 dimensional output representation as shown. Each output neuron corresponds to one of the ten classes 

and a winner take all network then performs the classification. Since we have chosen to use the entire 650 

template training set as RBF centers, the only iterative learning required for the first layer of this network 

is for the widths {trv}. The second layer of course must also be trained to perform the desired classification 

on the resulting RBF representations. 

There are many potential training algorithms for {<r,} and W_. The most successful algorithm we found 

for computing the widths {<r,}, was to make cr, proportional to the distance between template V_ and its 

nearest neighbor. That is 

<Ji — ö min \tj__ — £_\, 

where the proportionality constant a is selected a priori. Training of the output layer was most successful 

when \V_ was initialized with a binary address algorithm and then trained using the perceptron learning 

algorithm. The binary address algorithm does not require specific knowledge of the intermediate represen- 

tations generated during training, it only requires knowledge of the class assignment of each of the 650 RBF 

centers. This reduces second layer computation time and improves network performance. The binary address 

algorithm defines the initial W_ as 

1    if    t±€ Qt 

Wij = 

( — 1    otherwise. 

Following this initialization, the perceptron algorithm is used to incorporate detailed knowledge of the 

training representations into the output layer weights. 

Using these procedures for training the RBF network, we have in computer simulation, a best RBF 

performance of 89% as shown in Table 1. Although the trend with increasing & is an improvement in network 

performance, in general we found that the broader the basis functions, the longer the perceptron algorithm 

will take to converge. For this reason, table 1 does not contain any entries for c > 1.2. We note here that 

the best RBF network performance of 89% is substantially better than the best KNN system performance 

of 83% using the same template library. This performance can also be compared with a single layer of 10 
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neurons, each trained with the perceptron algorithm using the 650 image reference library. The recognition 

rate in this case is 75% on the 300 element testing set. In general, we would expect an improvement in RBF 

network performance with variable centers where A/, C, and a, are all optimized. This case was not studied 

here as we are primarily interested in the performance of the optical implementation. 

In Figure 5 we show the RBF widths computed using the procedure described above Each row in the 

figure represents the widths associated with centers in a single class. There are therefore 65 blocks per row 

and 10 rows in Figure 5. Each block in the figure is a grey scale coding of the width associated with the 

corresponding template with dark = 0 width. Using this encoding, each row of the figure corresponds to 

the values of cr, for templates in a single class. It is interesting to notice that the second row in Figure 5 

■ ''^responding to handwritten ones, is particularly dark indicating that these vectors lend to be well clustered 

«T in general located close to other vectors Also in Figure 5 we can see that the width associated with one 

particular template representing a handwritten six, is quite broad indicating that this vector is basically 

isolated in the input space. I'sing the same display format as in Figure 5. Figure 6 shows the ten weight 

vectors of the second layer generated for the 'best' RBF network. The single bright row in each weight vector 

indicates that the weight vector is tuned to intermediate representations from essentially one class. 

IV. Optical RBF Classifier 

A schematic of the optical system used to compute the distance between an unknown preprocessed 

input image and each template stored on the disk in the format described above, is shown in figure 7. In 

this architecture, an Epson LCTV is used as a 1-D SLM to present the unrastered input character to the 

system An image of the input vector is formed as a radial line on the disk as shown, and the total diffracted 

intensity is collected by the output lens and measured using a Photodyne 1500XP detector The detector 

output represents the inner product between the input vector and the illuminated template vector. The 

postprocessing system for this experiment consists of two parts. First, a sample/hold (S/H) circuit is used 

to detect the peaks of the raw detector output. The amplitudes of these peaks represent the desired inner 

products    The S/H circuit is clocked by a signal which is phase locked to the sector markers that are recorded 



on the disk which appear as 32 bright radial lines and provide a strong diffracted signal. The second stage 

of postprocessing consists of an A/D converter board in an IBM PC followed by software which implements 

the nonlinearity of the second layer and computes the final output. 

The 650 reference images were preprocessed as described above and stored on the disk along with their 

complements, as 100 bit binary vectors. Using a disk rotation rate of 20Hz, these 1300 vectors were processed 

at a rate of 26,000 inner products per second equivalent to 2,600,000 binary operations per second. It should 

be pointed out that this relatively slow processing speed arises from a severe under-utilization of disk capacity. 

In this experiment a large pixel size was used (177 tracks by 116 pixels accross track) in order to provide 

alignment simplicity. A system which utilized the minimum disk resolution of roughly l^m pixels together 

with a disk rotation rate of 100Hz, would achieve an inner-product rate of 10' per second corresponding to 

a raw processing rate of 1011 binary operations per second. The 300 testing images were preprocessed as 

described in Section III, and stored in an IBM PC which drove the LCTV and provided input vectors to the 

system. An example of the raw detector output for the all ones input vector is shown in figure 8. The two 

tallest peaks in this trace correspond to sector markers on the disk and represent the inner product between 

the all ones vector and itself. From this data we can calculate the effective brightness per input pixel as 

measured at the detector as 0.6nW. This value is in good agreement with the known optical losses in the 

system. The other peaks in figure 8 provide normalization data which is stored in memory and read out 

during postprocessing. The PC samples the inner product signal once per peak, averages 4 rotations worth 

of data (total acquisition time ss02s) and computes the Euclidean distances from the inner products as : 

|x~d2 = |x|2 + |d2-2x.*i 

where x is the unknown input image and £1 is a stored template. Since our optical system actually measures 

tl  x and £1  x, we may form the distance for binary vectors as : 

|x|2 = UI)        1 = (1,1....,1) 

= x ■ (ii+F) 

so that 

i*-G2 = ld2 + *ii-*ti- 
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Once again, |Ü|2 for t = 1, ...,650 is stored in normalization memory and read out during the postprocessing 

stage. 

The optical disk based inner product calculations are collected by the postprocessing system which 

computes the required gaussian weighting and simulates the output layer where a classification is made. 

These postprocessing steps were carried out off line in software for our experiments. The classification rate 

for the optical RBF system was 83%. This is compared with a recognition rate of 79% using an optical 

KNN network based on the same template data. A comparison between the performances of the optical 

system and a computer simulation is shown in Table 2. The table entries indicate the number of correct 

classifications out of 30 for each of the 10 classes 0-9. The various noise sources in the optical system result 

in a 6% loss of recognition rate. In order to better understand the effect of these imperfections on the RBF 

network performance, a computer model was constructed which incorporates error sources such as finite 

contrast, nonuniform illumination profile, detector noise, and quantization noise. Using values for the error 

variables as measured from the optical apparatus, we found that nonuniformity of the illumination profile 

was the limiting factor in our experiment. A plot of classification rate vs. log of the 1/e2 gaussian profile 

width is given in figure 9. We can see from Fig. 9 that for the measured profile parameter of 1.8, the expected 

recognition rate drops to 86%. This rate then is the noise limited optical system performance and is close 

to the experimentally demonstrated 83%. The cumulative effect of these errors can be measured a second 

way, directly from the distance calculations. In figure 10 we show the 650 distances computed for a single 

input image (a handwritten 3) using both the ideal computer simulation and the optical system. From the 

figure we see that there is a substantial variation between these two plots. This variation can be quantified 

by computing the RMS distance error over the entire testing set as : 

ADRMS =   1   rM    jSim ' 

where dftm and d°pt are the Euclidean distances between the 300 input images and the 650 templates 

calculated from simulation and the optical system respectively. There are M = 195,000 such measurements 

in our case. For the results presented here, the RMS distance error was found to be ADRMS =28.5% . 

Although this error is quite large, the recognition rate obtained using the optical system is in satisfactory 

agreemer" with the expected rate attesting to the robustness of the RBF approach. 
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V. Parallel Optical Distance Computation 

In order to provide additional robustness to the optical system as well as increase the computation 

speed, a parallel non-disk implementation is proposed. We may observe from the previous discussion that 

the hardware implementation of a RBF network comprises two primary components: the subsystem to 

compute M parallel Euclidean distances and the basis function evaluation subsystem. Shown in Figure 11 

is an optical system which can be used to realize the required parallel distance computation for the case 

of binary vectors. A similar system can be used to compute the distances for continuous valued vectors; 

however, we will concentrate on the binary system for now. In Figure 11, an N-dimensional binary vector 

r is represented as a vertical intensity array in the input plane and each center V_ is stored in a vertical 

column of the ( transparency shown. This system is "dual rail" since it requires x, ( and their complements 

7. 1 respectively. We now show that using this representation, the distance computation may be performed 

entirely optically 

Given an input T and a center V_, we can write the Euclidean distance between these two vectors as 

<r=\*-ti\2, 

; = i 

N 

=£4 
J = I 

We can further write the component-wise distances d'. in the binary case, as the exclusive or (XOR) of the 

component bits. That is 

d] = z]t
i

} + xji). 

Writing rf] in this complement form makes the optical realization more clear. Returning to the system of 

Figure 11. light from the x spatial light modulator (SLM) is collimated in the x-direction and imaged in the 

y-direction so that immediately to the right of the transparency /, the cor.:ponent-wise product is formed 

between the input and alt of the centers.   That is, we generate the array {xjt'.;i = i,...,M;j = 1.....A'}. 

Similarly, in the lower arm of the system the complement array {xjt'; i = 1,..., M\ j = 1, V} is formed and 

these two arrays are simultaneously imaged onto a contrast reversing SLM . This superposition combined 
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with the contrast reversal yields the desired component distances dj to the right of the contrast reversing 

SLM. A good candidate for this contrast reversal SLM is the optically addressed FLC SLM.l11^ 

Returning once again to Figure 11, after the bitwise XORs are computed as described above, the desired 

array of distances is obtained by summing in the y-direction using the cylindrical lens shown. A simple ID 

SLM can be used to represent the desired widths so that immediately to the right of the output plane shown 

we obtain the desired terms {jx — tl\2/(rf;i s= 1,...,A/}. 

Although the system described above operates on ID arrays of data, a 2D version which is better suited 

to operating on image data is also possible. This 2D extension is straightforward and involves the use of 

l^nslet arrays for accessing the spatially multiplexed template images stored in the I and F planes. The details 

•■f the 2D system as well as those of an extended ID system capable of operating on continuous valued vectors 

are the subject of another paper and will not be discussed here; however, in order to indicate the expected 

performance limitations of these systems we consider the 2D binary version. If we assume that the inputs 

to our system are 100X100 pixel images then the number of centers in the RBF network will be limited by 

the spare bandwidth product (SBP) of the optical system. Realization of 900 centers will require a template 

mask with 3000X3000 pixels which in turn demands an optical system with SBP=9X106. This would be 

the largest feasible implementation. Notice that although the contrast reversal plane must have large SBP, 

the output plane requires only SBP equal to the number of centers. This is an attractive characteristic of 

the present system since on-line learning will require a programmable SLM in this plane for o~, adaptation. 

In the present example, this SLM would be required to have only 30X30 pixels. 

VI. Parallel Basis Function Evaluation 

Having defined the optical distance computer in the previous section we turn our attention to the 

second primary component of the optical RBF implementation. This component performs the basis function 

evaluation. Notice that the basis function evaluation requires only point operations in the plane of distances. 

Further, if we consider the case of a single output neuron (i.e., f(x) : 3£A — 9?1) then to complete the RBF 

computation after the distance computer requires only point operations followed by a global sum. With this 
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observation in mind we propose the optoelectronic postprocessing chip shown in Figure 12. 

The chip shown consists of an array of modules each module comprising a photodetector to detect 

the output of the optical distance computer, analog multipliers to realize the required width and output 

weighting and an exponentiation unit to realize the basis function evaluation. The output of each such 

module is summed on a common line to generate the network response. We should note here that all the 

required functions in a module are compactly achievable using analog VLSI or if more precision is required, 

the photodetector may be followed by an A/D converter and each module could then be implemented in 

digital electronics. The 2D extension of this postprocessing chip is once again straightforward and since there 

are no intermodule communication requirements, connectivity issues in the 2D arrangement do not arise. All 

computation in this postprocessing chip is local excepting the final sum. Also note that this implementation 

has the flexibility to allow for the realization of a variety of different basis functions as well as supporting a 

useful on-line learning algorithm which will be discussed further in the next section. 

The above "all electronic" postprocessing chip is particularly well suited to the case of a network with 

only one output. For the case of multiple outputs we have two alternative systems. If the number of outputs 

is relatively small (=s 10) then the most attractive alternative is simply the use of multiple postprocessing 

chips. This approach retains the simplicity and flexibility of the VLSI implementation. Alternatively, if 

the number of outputs is large, we may consider a hybrid approach wherein each [e~x] box in Figure 12 is 

followed by a light modulating element allowing the exponentially weighted distances to be read out optically 

using liquid crystal modulators for example.l12^ In this way an efficient, optical implementation of the output 

layer is facilitated. This approach has the advantage of providing scalability in terms of output units while 

retaining much of the convenience of the VLSI implementation. In this system, update of the output weights 

during a learning cycle is done optically, through the use of photorefractive holograms in the output layer.I13' 

VII. Learning 

The effective implementation of iterative learning algorithms is a common stumbling block in both 

electronic and optical neural network architectures.    In this section we suggest a learning algorithm for 
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RBF networks which is suitable for implementation using the optoelectronic hardware we have described. 

Associated with each of the postprocessing stages (i.e., all electronic and hybrid) is an implementation of 

the on-line learning algorithm. We will describe the all electronic single output implementation here. 

Referring to Equation 1 for the RBF network response function, we can define a criterion function for 

the "goodness" of an RBF network as 

M 

£=£(/(», aiW(2i))2, 
M 

t=i 

where E{ is just the error between the actual and desired network responses in the presence of training vector 

xV E is just the conventional "sum of squared error" function evaluated over the entire training set. If we 

assume that the training set T is fixed and that each training vector will be used as a single RBF center 

as before, then the learning procedure reduces to finding {cr,} and {a,} to minimize the error E. A simple 

gradient decent procedure is a candidate algorithm for the minimization of E. Using this procedure we can 

write expressions for the update of the network parameters ap and ap in response to the error measured for 

a single input training vector £\ These are 

A(l/^)2 = -Q,£;,|xl-^|2apeip(-|xi-^|2/^), (2) 

A(ap) =aaE,exp(-\x!_ - t±\2/<r2
p), (3) 

where aa and aa are acceleration constants for the width and output weight updates respectively^15!. Notice 

that these expressions define a "backward error propagation" type of rule for RBF networks. In this learning 

algorithm however, no special backward response function is required for the RBF units owing to the fact 

that the exp(x) function is its own derivative. All signals required to compute the updates defined in 

Equations 2 and 3 above are present in the forward path of the network. Furthermore we observe that all 

required learning signals are present in the electronic portion of the proposed implementation and that no 

intermodule communication is necessary. The implication of these observations is that rapid, parallel update 

of all network parameters can be realized with a simple modification of the postprocessing module presented 

earlier. In Figure 13 we show a block diagram of the modified postprocessing module. By incorporating the 
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additional "local" connections shown and adding accumulation registers to the [(l/<x)2] and [Xa] blocks, the 

on-line parallel RBF learning algorithm can be realized with little increase in overall circuit complexity over 

the non-adaptive system. In this way a 30X30 element adaptive postprocessing array, capable of facilitating 

on-line learning in a 900 center RBF network should be possible. 

VTII. Conclusions 

We have demonstrated an optical system which can implement a RBF pattern classifier. The exper- 

imental system achieved a processing rate of 2,600,000 binary operations per second corresponding to the 

computation of 13.000 Euclidean distances per second. The capability of the optical disk based system is 

limited by the maximum length of template vectors (% 104 bits), the maximum number of template vectors 

l^s 105) and the maximum disk rotation rate (=s 100Hz). These upper bounds correspond to a processing 

rate of % 1011 binary operations per second. 

This system was trained off-line, with the handwritten numerals 0-9 and achieved a recognition rate 

in computer simulation of 89% on a 300 element testing set. Similar performance (91% recognition rate) 

was achieved using the same off-line training procedure in an RBF network with 2000 centers, trained on 

segmented zip code data obtained from the U.S. post office database. The optical disk based 650 center 

system achieved a recognition rate of 83%. In this work it was found that factors such as nonuniform disk 

reflectivity, nonuniform illumination and finite contrast were all significant contributors to a 28% RMS error 

in the optical distance computation. Furthermore, since this large distance error resulted in only a 6% 

Degradation in recognition performance, the RBF approach was seen to be robust in the presence of such 

errors 

We might expect an on-line learning scheme in which optical system imperfections are present during the 

learning phase, to provide compensation for those imperfections and result in a recognition rate closer to the 

simulation value. We have described such an adaptive optical RBF hardware implementation. Combining 

on-line learning, more careful system design, more powerful learning algorithms to learn the optimal center 

and width values and a larger hidden layer (ä= 2000 units), the optical system should be able to approach 

the 91% recognition rate obtained in simulation for the zip-code data. 
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XI. Figure Captions 

Figure 1 : (a) Definition of RBF unite and linear units, (b) General RBF network. 

Figure 2 :   (a) RBF network for estimating a scalar function of two variables,   (b) Example input space 

configuration resulting from the network of (a). 

Figure 3 : Example of handwritten numerals from (top) the training set and (bottom) the testing set used 

in the optical RBF experiment. 

Figure 4 : RBF network for handwritten digit recognition. 

Table 1 : Classification results obtained using a 1-nearest neighbor rule for training the RBF widths. 

Figure 5 : RBF widths computed using the 1-nearest neighbor rule with c = 1.2. 

Figure 6 : Second layer weights computed using the perceptron algorithm after initialization with the binary 

address algorithm. The weights for neurons 1-10 appear consecutively from left to right and top to bottom. 

Figure 7 : Optical system used to compute the distance between an input and an array of stored templates. 

Figure 8 Example of raw detector output indicating the optically computed inner products. 

Table 2 : Performance comparison between optical RBF Classifier and simulation. Table entries indicate the 

number of correct classifications out of 30 for each class. 

Figure 9 : Predicted recognition rate vs. illumination profile width. 

Figure 10 : (a) Experimental and (b) actual distance vs. template number for a single input image (hand- 

written three number three). Template numbers 195-260 represent the class of handwritten threes. 

Figure 11 : Parallel optical distance computer. 

Figure 12 : Optoelectronic postprocessing chip. 

Figure 13 : On-line learning postprocessing module. 
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Image correlators are described and experimentally demonstrated that are implemented using optical memory disks 
to store a large library of reference images. 

Optical correlation for pattern recognition1 has long 
been considered a promising application for optical 
processing. One of the reasons such correlators have 
not been used in practice is that in many practical 
applications a single filter is not sufficient to produce 
reliable recognition. A straightforward solution to 
this problem is the use of spatial2 and temporal3 multi- 
plexing to search through a library of filters. The 
optical-disk correlator architectures that we describe 
in this Letter provide an extremely efficient method 
for performing such a search since they combine in a 
single device the large memory required for storage of 
the library of reference images, the spatial light modu- 
lator needed to represent the reference in the optical 
correlator, and the scanning mechanism to search 
temporally through the library. 

The first architecture that we describe is shown in 
Fig. 1. Each reference image is recorded as a two- 
dimensional (2-D) computer-generated Fourier-trans- 
form hologram (CGH) on the disk. The input image 
enters the system through the beam splitter, is Fourier 
transformed by the lens, and illuminates the hologram 
on the disk. The reflected light contains a term pro- 
portional to the product of the transforms of the input 
and reference images. The same lens retransforms 
the reflected light, and the correlation is produced at 
the output plane. An important question in this ar- 
chitecture is whether optical disks are suitable as holo- 
graphic recording media. Figure 2 shows the diffrac- 
tion pattern obtained with He-Ne laser light from a 
write-once disk manufactured by Sony on which we 
have recorded a 2-D grating. The sharpness of the 
characteristic diffraction pattern indicates that the 
glass cover of the disk has sufficient optical quality to 
allow coherent reconstruction. The rotation of the 
disk is used to perform a search through images cen- 
tered at the same radial position on the disk. An 
auxiliary scanning mechanism is needed in order to 
position the correlator head in the correct radial posi- 
tion. As the disk rotates it produces a correlation 
pattern at the output when the transform of the input 
and the reference hologram on the disk are in align- 
ment. 

The above architecture requires storage of the refer- 
ence images in the form of computer-generated Fouri- 
er-transform holograms. A disadvantage of this ap- 
proach is that it increases the computational overhead 

for recording the disk. Also, for a Lohmann-type 
computer-generated hologram the space-bandwidth 
product required to record the hologram is one hun- 
dred times greater than that of the image itself, and 
the resultant increase in area needed to record each 
image increases the optical power and phase uniformi- 
ty requirements. However, in many cases it is neces- 
sary only to record reference holograms as binary pat- 
terns,4 in which case each pixel of the image can be 
directly recorded as a separate spot on the disk. Gray- 
scale images can be recorded if necessary by the use of 
some form of area modulation, as is done with video 
disks, for example. 

We discuss two types of architecture that allow the 
reference images themselves, rather than their Fourier 
transforms, to be stored on the disk. The first is 
shown in Fig. 3. The input image goes through the 
beam splitter and is Fourier transformed by lens LI. 
A Fourier-transform hologram of the input is recorded 
in a photorefractive crystal, using a reference beam 
that is incident from the right. Once the hologram is 
recorded the input is blocked and the disk is illuminat- 
ed. Lens LI takes the Fourier transform of the refer- 
ence image that is in the field of view of the illuminat- 
ing beam, and lens L2 transforms the light diffracted 
by the hologram to produce the correlation at the 
output plane.   If a thick hologram is used, the shift 

CORRELATION 
PLANE 

Fig. 1. Optical disk-based Vander Lugt correlator. The 
reference images are stored on the disk as computer-generat- 
ed Fourier-transform holograms. 
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Fig. 2.    Diffraction pattern from a 2-D grating recorded on a 
write-once optical disk. 

PHGTOREFRACTIVE 
CRYSTAL 

REFERENCE 

INPUT 
PLANE 

Fig. 3.    Optical disk-based correlator implemented by using 
a photorefractive crystal in the Fourier plane. 

invariance is lost in one direction only.5 Select- 
ing this to be the along-track direction allows the disk 
rotation to restore 2-D shift invariance. The rotation 
of the disk is used to search through a library of images 
in the along-track direction. An advantage of this 
architecture is that it is invariant to a shift in the 
position of the recording on the disk. This eliminates 
the requirement for precise alignment of the correlator 
head, and in addition a time-delay-and-integrate de- 
tector can be used to integrate the traveling correla- 
tion pattern at the output, thereby increasing sensitiv- 
ity. Multiple holograms could be recorded in the crys- 
tal to address different radial positions on the disk, or 
the entire head can be mechanically scanned. 

The third architecture that we discuss is shown 
schematically in Fig. 4. The advantage of this archi- 
tecture is that it operates on the light intensity, and 
consequently the requirement for phase uniformity is 
greatly relaxed.6 As a result it is possible to imple- 
ment this architecture with most existing disk sys- 
tems. This correlator works as follows. The refer- 
ence images are recorded on the disk, and the input is 
imaged through a one-dimensional scanning device 
onto the disk.   The scanner can be either an acousto- 

optic device (AOD) (as shown in Fig. 4) or a rotating 
mirror. It provides the relative displacement in the 
radial direction between the input and reference im- 
ages that is necessary to calculate the correlation func- 
tion. The disk rotation provides the displacement in 
the orthogonal direction. The scanner translates the 
input image completely across the stored reference 
image each time the disk rotates by a distance equal to 
a pixel of the reference. The intensity of the light 
reflected from the disk at any one time is proportional 
to the product of the input and a shifted version of the 
reference. The reflected light is collected (integrated) 
on a single detector that produces as its output a tem- 
poral video signal of the 2-D correlation. This system 
was experimentally demonstrated with a flying-spot 
acousto-optic scanner in which a chirp signal propa- 
gates in the acousto-optic device acting as a traveling 
lens that scans the diffracted image at a rate equal to 
the acoustic velocity. This system completes a scan in 
30 iu.sec (the acoustic transit time across the acousto- 
optic cell), therefore a complete 2-D correlation of an 
image consisting of 102 lines takes approximately 3 
msec. A sample of experimental results obtained with 
a system like that of Fig. 4 is shown in Fig. 5. Figure 
5(a) is a photograph of the pattern recorded on a write- 
once disk (the acronym CIT), and Fig. 5(b) is an oscil- 
loscope trace of the detector signal produced by the 
optical system of Fig. 4. Figure 5(c) shows the same 
trace magnified to reveal the individual correlation 
lines produced by the acousto-optic scanner. The for- 
mat of the detector signal is similar to a video signal of 
the 2-D correlation, and it can be displayed in two 
dimensions by raster scanning the detector output on 
a 2-D monitor [Fig. 5(d)]. Correlations can be pro- 
duced with our experimental apparatus at rates up to 
1000,100 X 100 pixel reference images/sec. The opti- 
cally calculated correlation is in good agreement with 
the expected autocorrelation function of the CIT pat- 
tern. It should be pointed out that since this system 
operates on intensity, only positive quantities can be 
represented. Bipolar input and/or reference images 
can also be represented by adding a bias at the input 
stage and subtracting it from the output.   This tech- 

Fig. 4. Incoherent disk-based optical correlator imple- 
mented with an acousto-optic scanner. Tl, input transpar- 
ency; L's, lenses; BSl, beam splitter. 
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Fig. 5. Experimental demonstration of the system shown in Fig. 4. (a) The pattern recorded on the optical disk, (b) An 
oscilloscope trace of the detector output, (c) A magnified version of the signal shown in (b) revealing the correlations of the in- 
dividual lines,   (d) The 2-D correlation produced by raster recording the signal shown in (b). 

nique has been successfully used in a variety of inco- 
herent architectures.3 

More than 5 billion bits can be stored in the type of 
disk that we use for most of our research (a write-once, 
12-cm-diameter system from Sony). The number of 
100 X 100 pixel images that can be stored in such a disk 
is more than 5000, if we assume a generous factor of 
100 for loss of space-bandwidth product owing to 
representation (e.g., area modulation for gray-scale 
representation). The rate at which all these images 
can be interrogated for a possible match with the input 
is limited by one or more of the following factors: the 
scanning speed of the disk (40 Hz in our case), the 
speed of the radial scanning mechanism, and the sensi- 
tivity and the bandwidth of the output detectors and 
the electronics following them. As an example con- 
sider the system of Fig. 2. At a 40-Hz disk rotation 
rate we obtain 1000 image correlations per 1/40 of a 
second (i.e., 40,000 image correlations/sec), which 
yields a reasonable 4-MHz bandwidth per detector. 
The input optical power required for reliable detection 

of the correlation peak is only several milliwatts. It 
would be extremely difficult to duplicate this capabili- 
ty electronically, and it can be achieved with existing 
optical technology. Moreover it is precisely such ca- 
pability that is required for practical pattern-recogni- 
tion problems. 

The research reported in this Letter is supported by 
the U.S. Army Research Office. 
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