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Minimum Eigenvalue Separation1

Beresford N. Parlett2  and Tzon-Tzer Lu 3

Abstract

Consider real unreduced n x n symmetric tridiagonal matrices with all sub-

diagonal entries equal to one. Such a matrix has distinct real eigenvalues and Parlett

conjectured that they must differ by at least

2 (w - )•)/W" = o '"),

where w is the spread of diagonal entries and should exceed 4.

We show that the conjecture is true for w > 3n, but fails if w/n is too small.

The proof rests on two types of lower bound for eigenvalue separations and on detailed

estimates of the ratios of entries of eigenvectors; one set for componentwise ratio of

two different vectors, another for adjacent entries in the same vector. These results

have some independent interest.
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Chapter 1

Preliminaries

1.1 Introduction and Summary

For over one hundred years, the eigenvalue problem has been investigated by math-

ematicians, physicists, and engineers. Scientists explored the characterization, location,

perturbation and computation of eigenvalues, to name a few topics. This thesis is devoted

to the separation of eigenvalues. We will find the minimum gap between eigenvalues over

an interesting class of tridiagonal matrices.

We consider unreduced n x n symmetric tridiagonal matrices with all subdiagonal

entries 1. The typical matrix may be written

Jn(a) = tridiag (a(1) a(2) ... a(n) (1.1)

where a = (a(1), a(2),. .. , a(n)) denotes the diagonal and a(k) E R.

J(a) has distinct real eigenvalues and, in [10], Parlett conjectured that they must

differ by at least

2 (w

where w = max a(k) - min a(k) is the spread of diagonal entries and should exceed 4.
1<k<n 1<k<n

Our contribution is to settle this conjecture. It is true for w > 3n and probably for some

smaller ratio w/n. Nevertheless some condition on w/n is necessary because we have counter

examples for w > 4.

As will be shown later, the problem of finding the minimal separation of eigenvalues

for given n and diagonal spread w is a piecewise smooth constrained optimization problem.
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The first task is to find matrices that satisfy the Kuhn-Tucker conditions, but it is much

harder to deduce when these matrices are global extrema. Indeed, when W is not large

enough the rival configurations also satisfy the Kuhn-Tucker conditions and appropriate

the global minimum to themselves.

It is not immediately apparent but the eigenvalue gap does not start to get small

until a few eigenvalues are dearly separated from the others. This observation directs our

attention to the case w > 4.

The proof rests on detailed estimates of the ratios of entries of eigenvectors; one

set for componentwise ratio of two different vectors, another for adjacent entries in the same

vector. These results have some independent interest.

The motivation leads us to the definition of minimum eigenvalue separation, or

gap.

Definition I Let {Ai} be the set of eigenvalues of a matrix A, then the gap of A's spectrum

is

g(A) := min IA, - Ai.

In section 1.2 we survey some of the voluminous literature on gap. We also include

results on the first excitation energy of the Schr6dinger operator. We show, in section 1.3,

that the minimal gap is invariant under shift, duality, reversal of the diagonal, and their

combinations. In section 1.4 we normalize and formulate our minimization problem, and

give a complete description of the answer. When L is large enough, w, = (w,0o.... 0. )

becomes the minimizer. We compute the gradient of each eigenvalue separation with respect

to the diagonal in section 1.5. Section 1.6 includes formulas for the entries of normalized

eigenvectors and their symmetric properties.

Chapter 2 is devoted to our extremal matrix J(wl). Its eigenvalue equation and

eigenvectors can be expressed in terms of Chebyshev polynomials. By symbolic computa-

tion, we can derive the asymptotic expansions of two dominant eigenvalues and hence their

separation. Precise bounds are included as well. We also have the analogue for the dual

matrix J(wj).

Chapter 3 explores the ratios of the entries of eigenvectors. Let A,, and A,,-, be

two largest eigenvalues with corresponding eigenvectors Vn and vn_1 . We prove that the

ratio - is strictly monotonic as k increases. It follows that V(A,,- A,-0) obeys certain



3

sign pattern. Ashbaugh and Benguria's Comparison Theorem [1] is an easy consequence.

We also have inequalities for the ratios k and f-j(k+I) and establish convexity for

the components of an eigenvector.

Chapter 4 solves our minimization problem when the size of diagonal spread is

large enough. Suppose the eigenvalues axe in increasing order A1 < A2 < ... < A,. We

obtain a lower bound for each A\+l - A,, which indicates the middle ones always have bigger

lower bounds than A2 - A1 and A,, - A,. 1. Hence the middle separations can not compete

with the end ones. By duality we only need to consider A,, - An- 1. From the refinement

of Sun's theorem, the trace of the minimal matrix must be small. In view of the Kuhn-

Tucker condition, the sign patterns of V(A, - A,-, 1) yield all the possible local minimizers.

Then we use the ratio inequalities from the previous chapter to eliminate the unsymmetric

minimizers. Finally we prove J(wl) indeed minimizes A,, - A,,- 1 locally. We sketch the

whole process and state the main theorem in section 4.5.

1.2 Review of the Literature

The gap of a matrix indicates whether its spectrum is well separated. Hence the

separation of eigenvalues is closely related to the difficulty of eigenvalue computation. In

fact the number of iterations of many methods depends on the size of the gap.

Wilkinson [15, p. 308] studied

W 2 m+- = J 2m+i(a) with a(k) = Im + 1- kI fork = 1,2,...,2m + 1.

The largest two eigen-values of WV2m+i differ by roughly (m!)- 2. For example A20 and A21

of W21 agree for their first fifteen decimal digits! Nevertheless this is not the smallest gap

for such matrices.

Wang [14] generalizes Wilkinson's matrix W2m+, to

W 2 .+I(d) = J2 nm+(a') with a'(k)= Im+ 1-kid fork= 1,2,...,2m+ 1.

Then he gives upper and lower bounds for its gap.

Theorem 1.1 (Wang) For d > 0.92,

1 30m 2

2m(m!)2d2 l <g( 2m+(d)) < )2d2ml
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Sun [12, Theorem 1] considers real tridiagonal matrix

T, = tridiag a, a 2  .... an with bkIck > 0 for k = 2,3,,n,

C:2 C3 ... C,

(1.2)

and gives a lower bound for gap.

Theorem 1.2 (Sun) For n > 2, g(T,) > 2 ( fl bk.lck)l p 22- where
k=2

p = min{pi, maz(p 2 ,p 3 )}, P1 = Ai,

p2= (nX,, - ak), P3 = -( ak -1

-k=1k=

X.= ma~x f{ak + IbkI + ICkl}, A, = m~in {ak - IbkI - ICkl},
n<k<n 1<k<n

and cr = Ib =O0.

We mention that Al and 'n given in his paper are misprints. A, should be a lower

bound for the smallest eigenvalues of Tn and X, an upper bound for the largest one. They

can be estimated by the Gershgorin's Disk Theorem. For example W2m+1 has

,- = m + 1 and _A = -2.

While the deleted absolute row sums are used in Theorem 1.2, we may have following

different choices by columns

_n = ma~x {ak + Ibk-.. + lck+lI}, A-1 = min {ak - Ibk-11 - Ick+1l},

1<k<n 1<k<n

with b0 = Cn+I = 0.

Note that Theorem 1.2 can be improved and the refinement is stated in Theo-

rem 4.3. Table 1.1 compares the true value and several lower bounds from Theorem 1.1-3

and 4.3 for the gap of W 21 . In fact Sun uses
2m- 1 )--

An(W 2 m+i) - An.-i(W 2 .,+) > 2p2-" = 2  2 + 2m+ 1)2m-1

instead of Theorem 1.2 to get the bound 1.06 x 10-15 in the table.

Sun's [12, Theorem 2] for gap is wrongly stated since he mistakes J2X'(A,)/X"(A,)I

for IA,+1 - Ai , where x(A) = det(AI - T) and eigenvalues {Aj} of T are in increasing order.

The true formula is

2X'(A,)0 A,- Ak



true gap Theorem I1i Theorem 1.2 Theorem 1.3 Theorem 4.3
7 x 10-14 3.8 x 10-15 1.06 x 10-' 1.07 x 10-15 1.24 X 10-'5

Table 1.1: Low bounds for 9 (W21).

The minimum eigenvalue separation of two matricec is defined as following. Let

{Aj} and {fp} be eigenvalues of matrices A and B respectively, where A and B may have

different dimensions. Then for all pairs of A, and jij,

g(A,B):= min jA, - pj[.
I,,

Recall A, and An given in Theorem 1.2.

Theorem 1.3 (Sun [12]) The tridiagonal matrices Tn and T"_ 1 given by (1.2) have sep-
aration

n

g(Tn-l,T.) > bk-lCk . max{f3-2n, p(n)l-np(n - 1)2-.},
k=2

where P = 2- , / = L1-_(2n - 1)An - tr(Tn) - tr(T,- )],

P3 = I_3[tr(T.) + tr(T.,_) - (2n - 1)A1 ], P - min{f•, max(i 2 , P3)},

p(j) = rain{f1 , max(p2(j), P3(j))}, p2(j) = r.,, - t(T)],

P3(J) = _[tr(Tj) - jAj], for j = n, n - 1.

WVe remark that a centrosymmetric matrix, which is symmetric with respect to

both long diagonals, can be split into two smaller matrices such that each one owns half

of the original spectrum [3]. See section 1.6 for more detail. Therefore g(W 21 ) is equal to

the gap between two submatrices, and we can estimate g(WV21 ) by Theorem 1.3. The lower

bound is listed on Table 1.1.

In quantum mechanics, an eigenvalue corresponds to the energy level of a certain

state. A separation of eigenvalues thus represents the energy absorbed (or emitted) in the

transition from one state to another. A lot of recent research by physicists has focussed on

the first excitation energy, or in mathematical terms, the separation between the first two

eigenvalues. We give a brief survey of that literature here.
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First co,,sider the Schr6dinger operator in general dimension n. It is well known

that the lowest eigenvalue of the Schr6dinger operator is always non-degenerate. Hence it

makes sense to discuss the gap between the first and the second eigenvalues.

Let Ql be a smooth strictly convex bounded domain in Rn, potential V' f: --* R

be a nonnegative convex function, and A be the Laplace operator. The eigenvalues of

{ -Af + V(x)f = \f,

f=0 on Oil,

can be arranged in nondecreasing order 0 < A1  \ A2 _< A3 : "''. Singer, Wang, Yau, and

Yau [11] prove that

4d2 '
where d is the diameter of S. Under the same hypotheses, Yu and Zhog [16] improve the

estimate to r2
A2 - A1 >

Kirsch and Simon [7] give a Comparison Theorem for A2 - A1 of twu different

Schr6dinger operators and use it to find new bounds on the lowest band in a solid. For

bounded potential V(x), they also give a lower bound for A2 - A1 depending on the geometry

of the set C = {xI V(z) < A2 } and the maximum value of IV(z) - vf over the convex hull of

C and v E [A,,A 2].

For the one dimensional case, the Schr6dinger operator becomes - 2+ ' (z) in

an interval. It is also known that all the eigenvalues are nondegenerate and can be ordered

by A, < A2 < A3 < .... Hence each separation Ai+l - Ai never .-anishs.

Kirsch and Simon [6] provide the same type of lower bounds for Ai+ 1 - Ai in

one dimension as in [7]. Consider -d + V(x) on [a, b] with either Dirichlet or Neumann

boundary conditions at a and b. Assume V E C°O([a, b]) and

S=max{ IV - V(X)l : E E (a, b) and v E (Ai, A,+1 )},

then

A,+j - A, _> 7r-j exp[--y,(b - a)].

The exponential factor in such bounds are realized precisely in tunneling examples.

For the one dimensional Schr6dinger operator with a symmetric single well poten-

tial V(x) in a interval of length d and with Dirichlet boundary conditions, Ashbaugh and
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Benguria [2] obtain the optimal lower bound

3i-2

A2  - Al "• -.

Equality holds if and only if the potential is constant. A single well potential in [a, b] means

there is a c E [a, b] such that V is nonincreasing for z < c and nondecreasing for X > c.

The lower bound for A2 - Al comes from a general comparison theorem which

is stated below. Consider two Schr6dinger operators - + U(x) and - d2 + V(x) with

Dirichlet boundary conditions. Let {A,(U)} and {A,(V)} be their eigenvalues i.spectively.

Assume both U and V are centrally symmetric, and U - V is a singe well potential, then

A2(U) - A1(U) > A2(V) - A1(V)

and the equality holds if and only if U - V is constant.

The discrete analogue of Schr6dinger operator is a tridiagonal matrix of the form

-L + D, where L is the discrete laplacian

L- =tridiag -2 -2 -2
1 1 --. 1 1

and D is a diagonal matrix. Thus all the previous problems reduce to estimating the gap

between two adjacent eigenvalues of tridiagonal matrices.

Ashbaugh and Benguria published the discrete version of their resillts in [1]. For

example their Comparison Theorem becomes

,A2(-L + D) - A-(-L + D) > A2(-L + D) - A,(-L + D).

if the diagonals of D and D are centrally symmetric, and that of D - D is svmmetrik in-

creasing from the midpoint. In Chapter 3, we will provide a simple pioof of this Comparison

Theorem using our eigenvectors' ratios.

1.3 Symmetries

Only symmetric tridiagonal matrices are considered in this paper. The eigenvalue

problem is trivial for diagonal and bidiagonal matrices. So the simplest nontrivial form is

the tridiagonal. However there is no loss of generality since every symmetric matrix is or-

thogonally equivalent .o a symmetric tridiagonal matrix. In fact we assume all subdiagonal
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entries nonzero. Such tridiagonal matrices are called unreduced. In case some subdiago-

nal entries vanish, then the matrix becomes block diagonal with each block an unreduced

tridiagonal. We can take care of eigenvalues of each unreduced submatrices separately.

The unreduced symmetric tridiagonal matrices have the form

T(a) = tridiag a() a(2) . -. a(n),K /i 32 -"3,n-1 )
where a = (a(1), a(2),..., a(n)) is the diagonal, and all the 3i's are nonzero. The tridiagonal

matrix T, in (1.2) can be symmetrized to the form T(a) by scaling. More precisely, there

is a diagonal matrix D such that

T(a) = D T, D-1,

where a(k) = ak for k 1,2...,n, and 3 k= :bkc for k=1,2,...,n - 1.

Before formulating our minimization problem, it is necessary to understand the

behavior of eigenvalue separations. In this section we will accumulate the background

needed. We start with some invariant properties of eigenvalues and eigenvectors, and then

explore symmetries under which gap is invariant.

Let {A,(T)} and {si(T)} be the eigenvalues and corresponding normaJized eigen-

vectors of matrix T. It's well known that an unreduced symmetric tridiagonal matrix has

distinct real eigenvalues [9, 7-7-1]. In this paper we always order A, increasingly, i.e.

A, < A2 < ... < A,,.

Define the i-th eigenvalue separation to be

g,(T) := LA,(T) = Aj+(T) - Aj(T),

where L is the forward difference. Then the gap defined by Definition 1 is equivalent to

g(T) = min g1(T). (1.3)
1<i<n-1

For every eigenvector si, the first entry si(l) and the last one si(n) are always

nonzero [9, 7-9-5]. An easy way to see this is from the three-term recurrence; si = 0 if

si(1) = 0. Hence without loss of generality, we can assume si(1) > 0 for all i's.
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Theorem 1.4 Let f= 1e

a = (a(1),a(2),...,a(n))T and a' be a scalar, then for i 1,2,....,n,

i. Ai(T(a + ae)) = Ai(T(a)) + a', and si(T(a + cre)) = si(T(a)),

ii. A,(T(-a)) = -An-i(T(a)), and si(T(-a)) = f i(Ta

iii. A.(T(o'e - a)) = a' - A j..(T(a)), and si(T(a'e - a)) = f si(T(a)),

iv. assume in addition O3, = /3n-., for j = 1, 2, . .. , n - 1, then

Aj(T(Ia)) = A(T(a)), and si(T(Ia)) = 1s(T(a)).

Proof.

i. Since T(a + cre) = T(a) + cr1,

A,(T(a + cre)) = A1(T(a)) + a'

and eigenvector si(T(a + cre)) remains unchanged.

ii. Observe that f - = f and IT(a)f = - T(- a). Since eigenvalues are ordered increas-

ingly, A,(T(-a)) = Ai(-fT(a)I) = A,(-T(a)) = -A,...j(T(a)). Also

si(T(-a)) = si(-T(-a)) = si(IT(a)1) = f si(T(a)).

iii. Combine previous two,

Ai(T(a'e - a)) = a' + Ai(T(-a)) = 0'- An-i(T(a))

and

u1(T(o'e - a)) = si(T(-a)) = f sj(T(a)).

iv. By the symmetry of Oils, IT(a)I = -T(Ia). Since If f ,

Ai(T(Ia)) = A,(T(a)) and si(T(Ia)) = si(IT(a)I) = f si(T(a)).
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0

Although eigenvalues are invariant under all similarity transforms, not many of

them preserve the tridiagonal structure. f and 1 are among such few examples. Notice that

vector fa is just the reverse order of a.

Definition 2 Given vector a = (a(1), a(2),..., a(n)) and scalar w.

i. We denote the reverse order of a

aR := !a = (a(n), a(n - 1),..., a(1)).

ii. We define the dual of a with respect to w by

aw := we- a = (w- a(1),w- a(2),...,w - a(n)).

The duality is the combination of shift and reflection about origin. Of course we

can combine different operations in Theorem 1.4 to get other symmetries.

As a simple consequence of Theorem 1.4, the gap is invariant under shift, reflection

with respect to origin, and duality. In addition if 3j's are symmetric, then it's invariant

under reversing diagonal.

Corollary 1.5 Assume e, a, a are the same as in Theorem 1.4, then for i = 1.2,.... n

i. g,(T(a +- ae)) = g,(T(a)), and g(T(a + ae)) = g(T(a)),

ii. g,(T(-a)) = gn_(T(a)), and g(T(-a)) = g(r(a)),

iii. gi(T(a*)) = g,,_i(T(a)), and g(T(a*)) = g(T(a)),

iv. assume in addition j3i = 3,,-j for j = 1, 2,..., n - 1, then

gi(T(aR)) = g,(T(a)), and g(T(aR)) = g(T(a))

1.4 Normalization of the Problem

One certainly can try to find a tridiagonal matrix with gap smaller than that of

W2 ,, 1 , but we ask a more general question: what is the minimal gap over this type of

matrix? To make this minimization problem well posed, some normalization is needed. A

few simple observations will help:
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unreduced tridiagonal Our problem becomes trivial unless we exclude those matrices

with multiple eigenvalues, e.g. the identity matrix. Therefore we only consider unre-

duced tridiagonal matrices which always have distinct eigenvalues.

symmetric tridiagonal Also we only deal with symmetric case so that all the eigenval-

ues are real. The gap certainly can be defined, in a similar fashion, for complex

eigenvalues. But it is more difficult to analyze.

Ok's bounded below The off-diagonal elements play an important role for the distribution

of eigenvalues. Consider 0
whose eigenvalues are ±e. Its gap 2e has no lower bound if we let e - 0. Therefore

we need to fix a lower bound on the off-diagonal elements.

scalar multiplication Notice that the gap function is homogeneous under scalar multi-

plication, i.e.

g(aT ) = a g(T)

for all scalar a. Hence we can fix all the off-diagonal elements 13k > 1, which is just a

normalization constant.

n=2 The eigenvalues of J2(a) are

1[a(1) + a(2) ± /(a(l) - a(2))2 + 4].

Hence the gap
V/(a(i) - a(2))2 + 4 >_ 2.

Equality holds if and only if a(1) = a(2). Therefore there are infinitely many mini-

mizers. From now on only n > 2 is considered.

diagonal spread The size of the diagonal spread is crucial. In the next chapter we will

show that J(wl) has gap approximately 2/u•n- 2, which can be as small as possible

when w is not bounded. Hence the diagonal spread has to be fixed.

shift By the shift invariance Corollary 1.5(i), we can take min a(k) = 0. Assume the
1<k<n

diagonal spread is w, then max a(k) = w. In other words we restrict all the diagonal
" k<_<

a(i)'s to lie in the interval [0,w] and in no smaller interval.
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w1w[0, 0.1] [0.2, 0.5] [0.6, 1.5] [1.6, 4]1 1 [4.1, 0]l

a W5  W4  W3 W2  W

Table 1.2: Minimizers for g(J(a)) with n = 15.

n fixed The dimension n of the matrix can not be free either. The eigenvalues of UJn(0)

are the roots of the n-th order Chebyshev polynomial of second kind, i.e. cos•- k for

k=1,2,...,n. Hence

7r2:r 3i r 3,r 2

g(J,(O)) = 2 cos 2 cos - = 4 sin sin

n +1 n + 1 2(n + 1) 2(n+ 1) (n + 1)2

when n is large.

Now we can formulate a well defined minimization problem. For n > 3 and w > 0

given, we seek

rmin g(J(a)) subject to 0 <a(i) < w for i =1,2,...,n. (1.4)

Parlett [10] conjectures that J(wl) minimizes (1.4) for W > 4. But in fact the

minimizing matrix depends on the size of the diagonal spread w. Let

w j ( W) :- .. .. .. 0 W. ..

for j = 1, 2,..., [n]. Table 1.2 shows the extremal wj(w) for different size ofw when n = 15.

wS has smallest gap initially, and w4 beats W5 after a while, then w 3 takes over and loses

to w2 later. In the end wl wins the crown when w is large enough.

For the general n, w[I] is the starting minimizer for tiny L, and then wIlll ...,

etc. For large w, wl is the ultimate winner, and this will be proved in Chapter 4. Therefore

(1.4) is not a simple algebraic problem.

Corollary 1.5(iii) shows that J(wj) and J(wj*) have the same gap, where

is the dual of wj. Hence wj" is also a minimizer if wj is. Thus (1.4) has at least two

minimizers.
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Our final remark is that J 2 m+i(Wl(m)) has smaller gap than W 2m+i. Indeed
2

g(J 2M+1(Wl(m))) - m 2 .-.' and g(W 2m,+) : (M!)-2.

For example, g(J 2 1(w 1 (10))) = 2 x 10-19 while g(W 21 ) = 7 x 10-14.

1.5 Gradient of gi

In this section we fix all the subdiagonal entries 3k's, and consider Ai and gi as a

function of the diagonal a. It is surprising that Vgi = V•g, has a simple form. Recall that

si is the normalized eigenvector of A,, i.e.

T(a)si , ,s1  (1.5)

and

1SI11i = T S= 1 (1.6)

Definition 3 The Schur product of vectors u and v is an element-by-element multiplication

u 0 v := (u(1)v(1), u(2)v(2), ... , u(n)v(n)).

For example consider 6 = (1, -1, 1,-,. .. ), then in Section 1.3 Iv = i o v.

Lemma 1.6 i. VAi(T(a)) = si o si for i = 1,2,...,n,

ii. Vgi(T(a)) = si+1 o si+1 - si o si for i = 1 2 .... , n - 1.

Proof. Take partial derivatives of (1.5) with respect to a(j)

49~ T0) s T a A i + A i 9

,aj 9j) -.a(j) ' aa~)

Premultiply by si and use (1.6), then

siTdiag(.... 0,JO,)s. + sTT(a) a.Si = 2 a(J''' s| + AsT a

i-th 0•j) 0, X 7, , 0,Sis,

sj(J)' + [Ai,,]T a i = O• + oAsT• -
sj~)2  [As 1]O~j)S 9 a(j) ' a(j) s

a• - si(j)2  for i,j= 1,2,...,n.
aa(j)
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Figure 1.1: g, and g2 for J 3((4,0, z)).

Thus for i 1, 2_ .,n

VA, = si o0si and Vgi = VAi+, - VAi = l+ o s+ 1 - si os .

By Definition 1 of gap, or by (1.3), we expect that g(T(a)) fails to be differentiable

at certain values of a. But restricted to each open domain where g = gi for some i, Vg is

just Vgi. For example, in Figure 1.1 we plot gI and 92 for J 3((4,0,x)) with respect to z

in [0,3]. It is clear that g = g, when z < 1.3, and g = 92 when x > 1.3. Indeed g is not

differentiable at the intersection x = 1.3.

Before we carry on, we need to clear up our notation. Consider a smooth function

h : R" -.- R", V, gi(T(h(a))) represents the gradient of the composite function of T(h(a))

and gi with respect to a, while Vgi(T(h(a))) means the evaluation of Vgi at T(h(a)). Note

that

V. gi(T(a)) = Vgi(T(a)).

We can get more information on Vgi by Corollary 1.5 and Lemma 1.6. The

following Corollary says Vgi(T(a)) is invariant under shift, always perpendicular to e, and

equal to the negative of Vg,_i(T(aO)). Furthermore if Oj's are symmetric, then Vg9 (T(aR))

is the reverse order of Vgi(T(a)).

Corollary 1.7 Assume e,a,aR,a° are the same as in Theorem 1.4, Definition 2 respec-

tively. Then for scalars a, w and i = 1,2,. n



15

i. Vg,(T(a + ee)) = Vg,(T(a));

ii. Vg,(T(a)) ± e;

iii. Vgi(T(a*)) = -Vq.-j(T~a));

iv. assume in addition /# = #.-j for j = 1, 2,..., n - 1, then

Vgi(T(aR)) = [Vg 8(T(a))]R.

Proof. Note that Vgi is a row vector, and matrix Dah(a) is the total derivative of h with

respect to a.

i. V. gi(T(a)) = V. gj(T(a + ae)) = [Vgi(T(a + ae))] Da(a + ae) = Vg,(T(a + ae)).

ii. Vgj(T(a)) e = [Vgi(T(a + ae))] e = dg.(T(a + ce)) = dg,(T(a)) = 0.

Here is another proof using the normalization of si's,

n

Vgi(T(a)) e = s,+1 (k) 2 - si(k)2 = IIs,+11I2- IIs,112 = 0.
k= 1

iii. V. gn- i (T(a)) = V. gi(T(we - a)) = [Vg,(T(we - a))] D0(we - a) = -Vgi(T(a')).

iv. Consider f in Theorem 1.4 and Oj = /On-j for j = 1,2,..., n - 1, then

V. gi(T(a)) = V. g,(T(Ia)) = [Vg,(T(Ia))] D.(Ia) = [Vgi(T(aR))] 1 = [Vgi(T(OR))]R.

1.6 Normalized Eigenvectors

Another surprising fact about tridiagonal matrices is that we have explicit formulae

for their normalized eigenvectors in terms of eigenvalues. The following theorem was given

by Paige in [8], as a corollary of Thompson and McEnteggert's result on adjugates [13]. We

refer the readers to [9, Section 7.9] for more detail.

Before stating the result, we need the following notation

T,.k(a) := tridia( a~j) .. a(k) for j S k,
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{ det[AX - Tik], if j < k;
1, ifj > k.

X;,k(A) denotes the derivative of Xi,k(A) with respect to A and v(k) is the k-th entry of

vector v.

Theorem 1.8 Let {Ai} and {si} be eigenvalues and normalized eigenvectors of Tl,.. Then

i. for 1 < i < n and 1 <j < k < n

XI n(A,)sjdi)s1 (k) = XijiA) 3j ~ - k+,lA)

ii. when A, is a simple eigenvalue (or T1 ,n unreduced),

si(j)2 = Xl-l(Ai) Xj + l ,n(Ai)/X',n(A,).

Corollary 1.9 For i = 1,2,..., n

sj()s~n~'1n (j)= 010/2 On3- 1;

ii. si(1)'Xn(A) = X2,.(Ai);

iii. si(n)2 X',.(A,) = Xl,n-,(A,);

iv. Xl.. 1-(Aj)X2,(A,) = j2,32 .32= 1 •2 "" I_ '

Proof.

i. Take j = 1 and k = n in Theorem 1.8 (i).

ii. Take j = k = 1 in Theorem 1.8 (ii).

iii. Take j = k = n in Theorem 1.8 (ii).

iv. By (i-iii)
n--1

X,n-j(Ai)X2,n(Aj) "= [sj(1)sj(n)x.,n(A,)]
2 = 3J82.

k=l1

A matrix A is called centrosymmetric if it is symmetric with respect to both long

diagonals, i.e.

AT = A and IAI=A
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where I is defined in Theorem 1.4. Another way to characterize such a matrix A = (a j,) is

ai,j = aj,j = an+I-j,n+I-i = an+I-i,,+I-j for i,j = 1,2,..., n.

A centrosymmetric matrix can be split into two matrices of half the size such that

each owns half of the original spectrum. Half of its eigenvectors are symmetric, i.e. v R = v,

and the other half are skew symmetric, i.e. vR = -v. Here vR is the reverse order of v

defined in Definition 2 (i). We refer the readers to Cantoni and Butler's complete survey

on centrosymmetric matrices [3].

Centrosymmetric tridiagonal matrices have the form

T, = tridiag a(l) a(2) ..... .. a(2) a(1)

Let {A,} be the eigenvalues of T,, in ascending order and {si} be the corresponding normal-

ized eigenvectors with si(1) > 0. Then si's are alternately symmetric and skew symmetric

provided Ai's are distinct. A complete picture of their behavior is stated below.

Even Case Suppose n = 2m. Define two matrices( .. ""3m-2 /3m-i

T* = tridiag a(1) 3 .. . .. a(m-1) a(m)-3)
2 m.. ,-2 ~ 3 m-,

Let {fp} be the eigenvalues of T, in increasing order and {uiý} be the normalized

eigenvectors with u:(1) > 0. If A,'s are distinct and 3m > 0, then

A2k.- = , 2k- I = = •[ k,-)R],

AS} -- • S~k-- -[Uk, (U+)R]

A~k ' = k 2k= rk k

for k = 1, 2,..., m. The situation is reversed if 3,,, < 0.

Odd Case Suppose n = 2m + 1. Define

= tridiag a(1) . a(m)

,31 "" 3m,-l
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and

T1`3+1 = tridiag Vma(l) a(m) a(m + 1)

Similarly define {i4)}, {j4}, {u°}, and {u!} as above. If Ai's are distinct, then
S10

1\2k = Ak, S2k = k[uk,O,-(u°)R], for k= 1,2....m,

and A2k-1 = Ak,

S2k I= -L(uk(1) ... u tu(m),v'itu(m + 1),ut(m),.u(1))

fork = 1,2,...,m+1.

Notice that V2r,,+I is centrosymmetric and the eigenvalues of WO interlace those

of W1+ 1. Hence
g(VVM+1)= g(0,,,, 11 r+j),

which can be estimated by Theorem 1.3.

Corollary 1.10 For a centrosymmetric tridiagonal matriz T with positive subdiagonals,

i. si(k) = (-1)n-is(n + 1 - k);

Zi. si(j)2  = Xj.j_ (A,)2 /3j... O3n- / !X'1,,(Ai)1;

n--I n-2

F"1 ', (A, ,a(l))2 f' ,
n - and s,(2)2 = n
. 1 I Ai-A.1 I ,Ai-A.I

for i,k= 1,2,...,n and 1 2,

Proof.

i. It follows from previous results on (skew) symmetry of eigenvectors. It can be proved

by Theorem 1.8 as well. By centrosymmetry of T,

X~-�.l(Ai) = X,+2-k,n(Ai) and x\+),.(A/) =

- I • l ( i) = X I I l • I I I
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Hence Is,(k)l - Isi(n+ 1-k)l by Theorem 1.8 (ii). Take k = n+1-j in Theorem 1.8

(i),

X1 n(A;)s 1(j)si(n + 1 -j) -1 x~~(1\0 O3. iOn-. Xn+2- 3,n (Ai)

= > 0. (1.7)

Then

n

sign•s,(j)s,(n + 1 - j)] = sign[x'i,(Ax)] = sign[ll(A, - =

ii. Take absolute value of (1.7) and use (i).

iii. Take j = 1 and j = 2 in (ii).

C
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Chapter 2

Extremal Matrix

In this chapter we devote ourselves to the extremal matrix

1 1 1. 1

J,(wl) = tridiag w 0 0 1O

We will discuss its eigenvalues, eigenvectors, and gap in full detail. It deserves our attention

because g.-I (Jn(Wi)) minimizes our objective (1.4) for large enough W. But more important

is that we use this gap to eliminate the other separations and solve (1.4).

2.1 Eigenvalues and Eigenvectors

Suppose

J(wI)v((A) = AV(A)

with v(A) = (v 1 (A), V2(A), .. V,a(A)), then

(W - A)VI(A) + V2 (A) = 0,

vk_2(A) - AVk(A) + Vk+l(A) =0, k n - 1,

v._=(A) + (w- A)v,(A) = 0. (2.1)

If we set vo(A) = w and vl(A) = 1, then we can extend the three-term recurrence

Vk+ l (A) = AVk(A) - Vk-l(A). (2.2)

to k =1,2,...,n - 1.



21

Recall that the Chebyshev polynomials of second kind satisfy the same recurrence

relation. To be more precise, let

sin(k cos1 z).i.(co.-• ) 1Ix _< 1;
,n~h(kcosh-x I ) 1I: > 1;

for k = 0, 1, 2 .... Then

Uk+1(x) = 2xUk(x) - Uk-1(x), (2.3)

for k = 0,1,2,..., with U I (x) = 0, Uo(z) 1 1, U1(zx = 2x, etc. Observe that

A A A A
U0 ( )= 1, U1 ( -) = ,U2( ), U(;),

2 22

and
A A A A

u•(7= 0 UO(-) = 1, U(-), U2(-), .
2 ' 2 2 2

axe two linearly independent solutions of (2.2), so the sequence {vi(A) i = 0, 1,..., n} can

be expressed as their linear combination. Indeed

t =k+I(A) =Uk( 2-wUk..(.) for k = 0,... n- 1. (2.4)

Notice that the Chebyshev polynomials of first kind Tk(x) obey (2.3) too, but have

different initial conditions

To(x) = 1, TI(x) = x, T2 (z) = 2x 2 
- 1. etc.

Therefore we can have different expressions for vk, for example

2• A -2w)U1\•
vk+l(A) = -'Tk( + (I -

A\ A -A= Tk ( i) + (i - W)Uk-l(7)

= 4w - 2A A 4 - 2Aw A

4-ý •-A 42-A Tk-.1(-)

for k = 0, 1,.. ., n - 1. As a matter of fact, we can solve the difference equation(2.2) directly.

A+/2-)k and (A- ,-4)2 are two linearly independent solutions if A 0 ±2. Thus

1 2- Aw )(A+ VA-4)k +1 2-Aw A-V'-)k
2 2 2 2

for k = 0,1,...,n- 1.
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Clearly (2.4) is the simplest form. Notice that we have not used (2.1) yet, which

gives us the eigenvalue equation. Hence we can solve for all the eigenvalues, and then find

all the eigenvectors by (2.4). For centrosymmetric J,(wl), however, the spectrum can be

split by the technique in Section 1.6. Instead of original matrix, we then deal with two

matrices of half the size.

We first locate the eigenvalue {Ai} of Jn(wl) by Gershgorin's Disk Theorem, which

says Ai E [-2,2] U [w - 1,w + 1] for all i's. For an irreducible matrix, a boundary point

of the Gershgorin disks can be an eigenvalue only if every Gershgorin circle lies on it [5,

Theorem 6.2.261. Thus when w > 3,

- 2< A, < ... < A,-2 < 2<w- < A,,-, < A, < +. (2.5)

We assume this case in the sequel.

Even Case Suppose n = 2m and( 1 1 .. 1 1

J! := tridiag ( 1 0 0 ±1

1 . . 1 1

then {A2k-1}k. 1 constitutes the spectrum of J; and {A2k}-,l constitutes that of J+ while

u(Aj) = (V(A 1 ), V2( 1),, . m(A))

is the corresponding eigenvector.

Using the last equation in system J*,u(A) = Au(A), we have

/mi-(A) + (±1 - A)vm(A) = 0,

±V/n(A) = A\V,(A) - Lm.i(A) = Vm+i(A),

±[u-_,(ý)- WU,_2(A)] = u-(ý) - Wv•_,(A),
2z~..i~ 2 2

+ U._i(ý) - UW(±) = w+U.- 2 (ý) - Um._(.)] (2.6)

by (2.2) and (2.4). As expected, the eigenvalue A is a zero of a polynomial of degree m. In

fact (2.6) is nothing but the characteristic equation det[AI - J*] = 0.

Suppose A is A._ 1 or An, then A > 1 by (2.5). So we can change variable A -

cosh 0, where 0 # 0, in (2.6) to get

±U.,-I(cosh 4,) - Um(cosh 4) = W[+U,- 2 (cosh 4') - U,,,_(cosh 4)],
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+ sinh m• - sinh(m + 1)4 = w[± sinh(m - 1)0 - sinh mO],

S(+) -2 sinh cosh(m + V)0= -2wsinh 0 cosh(m- DO,
(-): -2sinh(m + 1)0 cosh = -2ws inh(m - 1)0 cosh "'

(+) : cosh(m + ½ = w cosh(m - I)0 (2.7)

(-): sinh(m±+ D)O=,w sih(m -')0.

Again consider t = eO, then t > 0, t 5 1,

cosh = + = (e"+'= +(t +

and

sinh1,0 = l(et'O- e-t1 ) = l(tt - 1)

Hence (2.7) can be further simplified to

tm+i + t-(M+i) t 2
m+l + 1 t

2
m - t

2 mr- +. t + 1
() = 1- + I - = 2m+-t j 2m-l - t2m-2 + . t. -

2 + t (2.8)

tm+ -- t-(m+J) t 2m+l - 1 t 2m + t2rm- + -+ t + 1

(--) = m- m-y) = t 2m -t - t 2m-I + t 2 m- 2 +...+ t 2 + t (2.9)

When A is one of Al,.. .,An- 2 , 4 E (-1,1) by (2.5). We can change variable

A = 2coss V= z+ ,where z = e'ý* and W E (0,r). Notice that sin v 0 0for aU p in (0, r),

thus z is not a real number. The same computation shows that z satisfies (2.8) or (2.9) as

well.

Both (2.8) and (2.9) have 2m roots. Replacing t by •. in (2.8) and (2.9), we get

the same equations. Therefore their roots come in pairs, i.e. t and I. However we recover

the same eigenvalue A from both t and 1 *

Hence (2.8) has a pair of positive roots corresponding to An, and the other zeros

on unit circle corresponding to A2 , A4 ,.. ., An. 2 Similarly two positive zeros of (2.9) give

An-I and the other complex roots give AI, A3 ,..., An-3.

Odd Case Suppose n = 2m + 1. The
S1 1 ... 1

Jo := tridiag 1 0 ... 0

has eigenvalues {A2k•}k=., which satisfy

Vm.I(A) - Avtm(A) = 0.
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Thus by (2.2) and (2.4)

U - = 1m+i(A) = 0.

2 2

Change variable

A=2cosh -=eO+e-=-t+., ifA> 1;

A = 2cosw = ei'P+ e-iw = t+ I, if(A(<1;

then
U A(4) t 2 m+ 2 - 1 t 2m + t 2m-2 + ... + t 2 + 1

-= •) 72--t+l_ t =t2m-I + t2m-3 +... + t3 + t (2.11)

(2.11) has 2m zeros which are in pairs. An-I comes from the only pair of positive

roots, and A2 , A4 ,. . ., An- 3 come from the other m - 1 pairs of complex roots.

In the other hand

1 1 .-- 1

J11+1 := tri(1ia ( w 1 o .. 1 0 V2 )

has eigenvalues {A2k-i }= 1 l and eigenvectors

The eigenvalue equation is

Vf2vm (A) - A-12.m+I(A) = 0.

Thus by (2.2) and (2.4)

i/M(A) \ ALm+](,\) - Vrn(A) = m2\,A A AA

U..-i() - wU-, 2() = Um+I() - WUm(4),
2 2 2 2

W[Urn(2-) %U_2 (2)] = Um+i() - WU
2 2 22

Using (2.10), we have

SUM+12)- Um_,(4) _n tM+l + t-(m+i) t2m+2 + 1
Um(4) - U_ 2(A) tin + t- m  t2m+l + t

(2.12) has 2m + 2 zeros and they comes in pairs as well. The only positive pair gives An,

and the other m complex pairs give A2 , A3 ,.. .., A,_ 2.
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We summarize as follows. Let r and r' be the smallest positive roots of p(t) = w

and q(t) = w respectively, where
tn+1 + 1

p(t) .= (2.13)

and
"+-- 1

q(t) : - (2.14)

Then

A\ = r +- and A.-i =r' +T (2.15)
7- T

Since p(t) and q(t) are negative in (-oo, 0), decrease from +oo to 1 in (0, 1), and increase

from 1 to +oo in [1, +oo), each function hits w (> 3) exactly twice. In fact r and • are the

only real roots of p(t) = w, and so are r' and -, of q(t) = w.

2.2 Asymptotic Expansions

In this section we compute the asympt,.--: expansions of An and A,-.. The tool

is the Hensel iteration in the power series domain R[[x]]. Let f(y) be a polynomial with

coefficients in R[[x]) and yo in R be an O(x) approximation to a root of f(y), i.e. y = yo

is a solution to f(y) = 0 when z = 0. Suppose f'(yo) :=- (Yo) 6 0 when x = 0, then the

sequence of iterations defined by

A =1k-I - f(Yk-1) (mod xk+l) k= 1,2,... (2.16)yk :=yk-1 f'(y0)

has the property that Yk is an O(xk+i) approximation to y. This is the Hensel iteration,

which converges linearly.

Under the same hypotheses we have the well known Newton iteration

A k - ff(3c-1) (mod X2#) k = 1,2,..

which has the property that Iyk is an O(X2h) approximation to y. The quadratically conver-

gent Newton iteration is superior to the Hensel iteration in general. However each step in

Hensel iteration is less expensive since no recomputation of f' is required. Therefore Hensel

iteration seems cheaper if only a few terms in power series are needed. This is the reason

why we use (2.16) in the following computation.
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We are ready to find the asymptotic expansion of A,,(w). First we convert A\, to a

power series in e near e = 0 by setting e - . Recall A, comes from p(t) - w 0 0, which

now becomes
tn+ 1 + 1 1

---- 0.
tn +t

Therefore we consider

f(t) = (tn+I + 1) - (+ + t).

and its smallest positive root r. We apply the Hensel iteration on f to expand r as a power

series of e.

To obtain the initial value to, consider e = 0. Then f(t) = -t(tn-I + 1) = 0, and

to = 0 will be the appropriate guess for the smallest positive root of f. By (2.16)

f'(to) (mod e2) = e.

Since

f(t 1 ) = e(ef+W + 1) - (en + e) = fn+2 fn,

t1 is an O(en) approximation to r, which is far more promising than to. Hence it is better

to start the Hensel iteration from tj so that each iteration improves n - 1 terms. More

precisely let t2 , t3 ,... be the successive approximations by (2.16), then

6tk (ti) (mod e±+(n-1)(k+1)) (2.17)

for k > 1, where 6 is the forward difference.

Observe that

'(t.) =e(n + 1)tI - ntn- - 1 = -[1 + ne"- 1 - (n + 1)e"+',

and

= 1-[e - (n + 1),+'] + [ne"n- - (n + 1)e-+112 +.= 1 + O(n-1).
f(tI)

Thus

At, = f(tl)((1 + O(en)) - (n+2 - E)(1 + O(en-1)) = -,n + n+2 (mod E2 n-1),

t2= t1+At e _-n+ n+2,

M(12) = £(tn÷' + 1) - (t + t12) = (IE[(t + & 1 )nl)+ 1 - [(ti + 6t,)n + (ti + At)I
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-[tn +(n +-1)t 1 + (2t t -2+1n + 1>n 4- 3) + -4n- 2 ) + i]

-['+ (n~ 1 i + + Q( ~ 3 + ) 1 1  + Oi 1 ]

= e(tn'+ + 1) - (t + t1 ) + tn-2At[(, + 1)eO t - ,+I n-2 1

2 1 1[(n + 1)eti - (n- 1)] - At + O(f 4 -3)

= f(t) - Ati + n-l(-_, + n"+2 )[(n + 1)e2 - n]

+!I.n-2(-,e + en• 2 )2 [(n + 1)e 2 - (n - 1)] + o(e 4n- 3 )2
= ne2n-I - (2n + l),n+1 + (n + ), 2 n+ 3  n(n - 1)e.-2

2
+ n(3n - 1).3n n(3n + 1),3n+2 + n(n + 1),3n+4 + Q(e4n 3),

2 2 2
Axt2 = f(t 2 ) = (ne2n• (2n + 1)"n+l + (n + 1)e"+3 + o(e 3 -2 )] [1 + O(e•• 1 )]

f'(t1 )
= ne2n-I - (2n + 1)2n+1 + (n + i)e 2 n÷ 3  (Mod e3 n- 2 ),

t3 = t 2 + &t 2 = e -_ C + en+ 2 + ne2 n-I - (2n + 1),2n+l + (n + 1)e2n+ 3 ,

f(t3) = e(t3+1 + 1)- (t3 + t 3 )- e[(t 2 + +t2 )n+ 1]-- [(t 2 + &t 2) + (t 2 + tAt 2 )]

= e (tn+1 + 1) - (tn + t2 ) + tn'-It 2[(n + 1)et 2 - - At2 + O(e5 -"4 )

= f(t 2 ) - A~t 2 + (e - ,n + en+ 2)n-l[ne2 "-1 - (2n + 1)E2n+l + (n + 1)e2n+ 3]

.[-n + (n + 1)(e2 - ••l + ,n+ 3 )] + o(,E-S 4 )

n(n -- 1) f3n-2 + n(3n - 1) 3n _ n(3n + 1) . 3n+2 + n(n + 1)f3n+4
2 2 2 2

-n 2e 3f- 2 + n(3n + 2)e 3" - (n + 1)(3n + 1)e3n+ 2 + (n + )23"n+4 + o( 4n- 3 )
n(3n - 1) ,- 2 3n(3n + 1).3, _ (3n + 1)(3n + 2)f 3n + 2

2 2 2
S(n + 1)(3n + 2) 3n+4 +( 4"--3),

2
At3 -- f(t 3 )

At3  = - = f(t3) [1 + O(en-I)I
f,(ti)

- n(3n - 1) nU 2 3n(3n + 1),3n (3n + 1)(3n + 2) 3n+2

2 2 2
+ (n + 1)(3n + 2) e3 n+4  (mod e4 n- 3 ),

2

t4 e-n + n+2 + ne2n-I - (2n + 1)e2n+l + (n + 1),2n+3 n(3n - 1),3n-2
2

+ 3n(3n + 1)e3,, _ (3n + 1)(3n + 2).3n+2 + (n + 1)(3n + 2) f3n+4.
2 2 2
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Since t4 is an O(e 4 "- 3 ) approximation to the root r,

r = t4 + O(e4 "-3 ).

Recall that A, = r + so the power series of 1 is needed as well. Notice that I is

in fact the largest root of f. Hence we can repeat Hensel iteration with appropriate initial

guess to expand •. However it is easier to invert it directly

N = [t4 + O(e 4n 3 )]1-
1"

= 1[1 - - + en+l + nE2n- 2 - (2n + 1)e 2n + (n + ), 2 n+ 2

e
n(3n - 1),3n + o(en-1)]_1

2

= + [e,-n -1 (+1 -nl ,2n- 2 + (2n + 1)e2 n - (n + 1), 2n+ 2 + n(3n - 1) 3s,_s

e 2
+[n.-Ie _ f n+ e 2_-2] 2 + .3n- 3 + O(e 3.- )}

1
1+ n-1 n+- (n - 1)e2n-2 + ( 2 n -- 1)e 2n -- n 2 n+ 2

+ (n - 1)(3n - 2) f3U- + o(e 3 nl)}

2
= 1 + e- 2 _ _ (n - 1), 2 - 3 + (2n - 1)e2n- - ne 2n+l

+ (n - 1)(3n - 2) e U-4 + O(e3n_2 (2.18)

2

by the formula of geometric series r - 1 + r + r2 +. Finally by (2.15) we have

1
A. r+

T

1-- + e + e- 2 - 2c" + en+ 2 
- (n - 1)e 2n- 3 + (3n - 1)c 2n-I

-(3n + 1)e 2n+1 + (n + 1)e2n+ 3 + (n - 1)(3n - 2)e3n-4 + O(e 3n-2)
2

+ (4 _-) 2  n- -1 3n--1 3n+1 n+1
W Wn w2n-3 W2 .- 1  W2.+I + 2.+3

S(n - 1)(3n - 2) + (1 )
+ 20n4-+OW-2 (2.19)

Similarly we can get the asymptotic expansion for A,-I(w). This time we consider

the smallest root r' of function

h(t) - e (t-+' - 1) - t" + t.
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The initial guess t' = 0 and t' = e are the same. Then

tAt, = n _ n+2,

At' = ne2 -- 1 - (2n + 1), 2n+ + (n + 1),n+3 ,

At-3 = n(3n - 1)3.3n-2 _ 3n(3n + 1).3 + (3n + 1)(3n + 2) e3+2 _ (n + 1)(3n + 2),3n+4
2 2 2 2

by Hensel iteration. It follows that
n(3n -1)e~_ + ([.

n= _+ n-- ++2 +n 2 n- -(2n+ 1), 2n2+ +(n+ 1), 2n+3 + 2 f 3 2 +o(e 3 ) (2.20)

and

1 = ._n-2+ _n_ 2n-3+( n )2_n - 2+1 (n - 1)(3n -2) U-4+ U-2).
e ~ (n E -rf 1) +f2n-1 e 2 f +O(EC2)

(2.21)

Therefore by (2.15)

1A+

= C + _ n-2 + 20 _ n+2 - (n - 1), 2 n-3 + (3n - 1), 2n-1

-(3n + 1)e 2 n+ 1 + (n + 1),2n+3 _ (n - 1)(3n - 2).3n-4 + 0(, 3 n- 2 )
2

+ (W- ) 2  n-i 3n- 1 3n + 1 n + 1
W -n W

2
n-

3 + .
2 n-1 ,-2n+l W

2
n+

3

(n -1)(3n - 2) 12Wr- - + o(W .n-_2 ) .. - ,,

WVe used the modulo fI+(n-l)(k+1) representation in the iteration (2.17). It seems

that we implicitly assume n + 2 < 2n - 1 in At, and 2n + 3 < 3n - 2 in Ait 2 , etc. However

these assumptions are not required for a legitimate iteration. The reason is that the extra

error terms won't affect the order of approximation. Similarly for (2.18) to (2.22), several

terms overlap to each other when 2n+3 > 3n-4, but the validity of the expansions remains.

We conclude that (2.19) and (2.22) hold for n > 2 and

Theorem 2.1 For n > 2, the matrix Jn(wl) has two dominant eigenvalues that satisfy

=2( - 6i)2 (n - 1)(3n - 2)

> 2(w - -) 2 /w" as w --. oo.
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Let's look at two cases when n is small. We can compute the eigenvalues directly

from the characteristic polynomial. Indeed

J2(W1 )=(w 1

has eigenvalues w ± 1 and

2(w~-L)2 4
\ 2 - 1\=2= 2( +4+0(1).

J 3 (wl) has eigenvalues
1 -1

(W = !( I- + 8), A2 =W, and A3 = (W + C + 8)
2 2

with A3-A 2 = 8-w) (2.23)

= ( 1+A.-)

-w 4 8 32 )1

2 4 16 1

2(w - )2 14+ 1- W.3 +W-+ ( )

2.3 Bounds for A, -A,-,

Although (2.19), (2.22) and Theorem 2.1 are asymptotic, there are precise bounds

for A,, A,-, and A, - A,.-,. We need the following lemma, whose assertions are suggested

by the expansions of (2.18) and (2.21).

Lemma 2.2 i. Suoe n > 3 a w > 3, te w + - < < W +

ii. Suppose n > 4 and w > 3, then , -the-n < 1 < w - .

Proof.

i. Recall that • is the largest zero of f(t) or p(t) - w, where p is defined by (2.13). For

w > 1, equation p(t) = w has only two real roots, i.e. r E (0, 1) and I E (1, o0).

Hence it suffices to show

2 1
P(W+ -1-) < W < p(W+ -)



31

then by Intermediate Value Theorem

2 1 1W +--;;=1 < - < W +-_.

Take 17 = W + W for short, then

14=* (77- w)7"n< w7-1
2,7n 2

€= -'•]' i< W(w + w"'T

4t=* 2. "n < W + 2;- 14
1 2

4 2(1+-)" < + - (2.24)

Since w"/n increases with n and for w > 2, and 33/3 9 > 8,

wn > 8n if n, w > 3.

Also notice that the sequence (1 + J)k is strictly increasing with limit e. Hence

(1+ )k<e fork>0.

The inequality (2.24) is always true since

2 2__)2 . 1 1 22( "2) < 2(l1+ _)n < 24!ý< 3- i < W- -- +w--••

Similarly for the other inequality, substitute ý = w + W-]---, then

rW)>• W = (-W)r- )>w4-1

tn > w(w + W2 -n 1

S-)" > 1+W 1-n W-2

The last inequaiity is always true since

(1 + ,I-n)n > 1 + nwl-" + .. > 1 + nwi-n > 1 + .1-n - W-2.

ii. Recall that q is defined by (2.14) and for w > 1 equation q(t) = w has only two real

roots, i.e. r' E (0, 1) and • E (1,oo). Let w' = W- •;-:y, then

('< w €= •)+_<(,)_ ,
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~<
2= • - o 3 - n -1 < ( V '). _ •

Wn-2

(2.25)

We need following inequalities, which can be proved by calculus or by induction,

(1I_6)n">1- nb for n> 1landO0< 6< 1,

W n-3 + 1 > n ifn > 4 and w > 3.

Indeed (2.25) holds since

(1 - wl-n)n > 1 - nw'-n > 1 - (w,- 3 + 1)Wt-n = 1 - Wl- -2.

For the other inequality, consider 17' = - then

q(i7') > w w?/ -i > (w - 77"(77')"2= >ao 2( ')n

1 2 (
W 7= >2 .

Obviously the last inequality is true since

1 2 1 2 2 n
- > 3 - - y3- > 2 > 2(1 -

W wn-1 3 33n

We remark that Lemma 2.2 (ii) fails when n = 3, since

- -= 011 < W- -

W 73- w 3  'Wn-2

by (2.21). Now the following theorem can be derived from Lemma 2.2.

Theorem 2.3 Let An and An-l be the dominant eigenvalues of Jn(wl).

Assume w > 3, then

i. for n >2, w .•. s•. 2,_ W+wz+---= + •-,j_' < n. < Wa + 4a+, _+ + __

ii. for 4, n+ -_,,--T-< r-1 < + -- 2-"

iii. forn_> 3, 2-u < <.---•- =,-.) <An-A\,--l < '- o+ 1(_-4-) < -
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Proof.

i. Assume n > 3, then by Lemma 2.2 (i)

1 1
7 + -W2 - < r < W + 2WIn

and
1 2 1 1 12++ <'-w •_ + .W +-2-W + " < + T-2

The desired inequality follows from (2.15). It is trivial for the case n = 2 since

1 2 1W + + <A n +<++i
W+1 W

ii. Similarly by Lemma 2.2 (ii)

1 1
U _ 2w1--n Wj _ W2--n

and
1 1 1 1 2

W l-n Wn-2 W, - W2-n Wn1

iii. According to (i) and (ii)

4 1 1
A\n-An_1 > : + :-- ++W2-n w-w 2 -n

4 2
:;7-I 7 U(l- ;2-2n)

4 2w 2

won-1 .n 1

if n > 4, since
1 1

-- W2-2n < < W.

Similarly

2 1 1 2 4 2
A.-, < +2 w+ 2WI- 7 - 2WI-" ="-- 2  W-+I(1 - 4r-2n) < -:-2

The case n = 3 comes from straight computation. In view of (2.23), we want

4 2 1(. . <- 2 4< - <•Iw" + 8 - U;) <--
- W3 (1 w- 4 ) 2 U W4 (1 - 4W- 6 )

8 4 4 8W= •+ < VW•2 + 8 < W +
72 :;3 _W €-I W W4 _ 4w-2

64 16 16 8& 64
74 4 ( _3 - u1) 2  W 3 -W W2 (L03 

- W -8

16 64 16w 64
<0< 2 + (W4 _ 4-2)2 W4 - 4W-2 W(W4 - 4W-2) (2.26)
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The first inequality in (2.26) holds since

8 2 2 8 2 274 +( 3 Y--W)2 +-W < 4-+ (3 + ) < 1'

and the second one holds since

w 4 1 = 1 1 4 1 1( 4 < 1

W4 -4W- 2  W(W, -- 4w- 2 ) 'w - 4-s'W3-4w-3 < L'2 (wý2+F 6  7 2'

2.4 Dual matrix Jn(wi*)

The dual matrix

J,,(wl°) = tridiag 0 w 0
J1w7=rda( 1 ... i 1

shares the same gap with J,(wl). Therefore J,(wl') is also an extremal matrix. However

all of its eigenvalues can be recovered from those of J,(wi). Indeed by Theorem 1.4 (iii)

Aj(J.(wj')) = w - A._,(J.(w1 )) for i = 1,2, ... , n. (2.27)

In view of (2.19), (2.22) and (2.27), Jn(w 1 ") has

1 (w_) 2  n - 1 3n - 1 3n + 1 n + 1 (n -- 1)(3n - 2)+0( 1
W~ W~n + 2 n---3 7~2 n--I + -:; 2 n+ I , - 2 n + 3 2~ 0 ,n2

and

1 ( ) + n - 1 3n-1 3n + 1 n + 1 + (n - 1)(3n - 2) +O( 1
A2 ~ ~ : -2 -.•-3 'W.- 2n+1 2 -

asymptotically. Similarly we have counter parts of Theorem 2.1 and 2.3.

Corollary 2.4 Let A1 and A2 be two smallest eigenvalues of J,,(wl1 ), then

i. forn>2, A 2 -Ai 2(W"+i) + .- o +--

ii. forn>2 and w>3, < X- << -T----)_ -;

iii. forn>4 and w>3, W-62 -n + •--•_ < A < - ,..bf _n + -,-Lr;

iv. for n > 3 and w >3,

2 4 2 2 4 27-7--- < :;----- - n"(l - W2-2n ) < A2 - AI < w._---- - w-+l(l - 4L.-2n) < Uw----2
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Chapter 3

Ratios of Eigenvectors

Important to our minimization problem are the results on ratios of entries of

eigenvectors, the subject of this chapter. We consider unreduced symmetric tridiagonal

matrices

T,(a) = tridiag a(1) a(n)

with the diagonal a = (a(1),a(2),...,a(n)), and all the /0i's positive.

Assurne T(a) has eigenvalues A1 < A2 < ... < A, . Let vi = (vi(1), vi(2),..., v,(n))

be an eigenvector corresponding to Ai, and si = (s,(1), s,(2),. . ., s,(n)) be the normalized

eigenvector. Notice that v1 (i), v,(i), v,(1) and v,(n) axe nonzero for all i's [9, 7-9-5]. Hence

we assume all v,(1)'s are positive in the whole chapter, though the theorems apply to g'neral

vi,(1)'s.

For i = 1, 2,..., n, we can write T(a)vi = A,vi as a system of linear equations

Ok-_v,(k - 1) + (a(k) - A;)v,(.!) + O3kvi(k + 1) = 0, (3.1)

where vi(O) = vi(n + 1) = 0. From (3.1) there cannot be two consecutive zeros in an

eigenvector. If v,(k) $ 0, then

(k- 1) +Av(k+ 1)

T r e t s k v(k) vt(k) the theore3s.

This ratio equation is the key tool that leads to all the theorems.
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3.1 Ratio of v.- 1 and v.

(3.2) governs the ratios of consecutive entries of an eigenvector. It's not surprising

that our first lemma uncovers the relation between the ratios of adjacent entries of vi and

those of vj.

Lemma 3.1 Assume j > i and vi(k)v,(k) > 0 for k = 1, 2,..., 1, then

vj(k) v,(k)

vj(k- 1) v,(k - 1)(

for k = 2,3,..., ,t+ 1.

Proof. Recall that Aj > A•. For k = 2,

v,(2) A\ - a(1) A, - a(1) v,(2)
vj(i) 01 01 Vi(i)

by (3.2). Suppose (3.3) holds for some k < t, then

vj(k - 1) vi(k - 1)
v,(k) v,(k) '

since both ratios in (3.3) are positive by assumption. In view of (3.2),

v(k- 1) vj(k + 1))i(k-) (k+ 1)
_k-1 vv(k) v )-,(v>(k) -(k)v= ,-Vvi-(k) + ,kv,(k) (3.)

Multiply (3.4) by /k-I and add it to (3.5), then

vj(k + 1) vi(k + 1)

vi(k) v,(k)

as desired. By induction (3.3) holds whenever v,(k)vi(k) > 0. 0

If we have vi(k)vj(k) < 0 in Lemma 3.1, then the inequality (3.3) reverses. Also it

is possible to replace k = 1,2,.-.,I by k = 1', '+ 1,...,n in Lemma 3.1. Here comes our

main theorem, which states that the element-by-element ratio of v3 .1 and vn is strictly

mo..otonic.

Theorem 3.2 Under the normalization v._- 1(1)v.(1) > 0, then is a strictly de-

creasing sequence in k.
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Proof. Without loss of generality, we may assume v.(1) and v._l-(1) are positive. Then

v.(k) > 0 for all k's since vu has no sign change. Because v._.L has exactly one sign

reversal, there is an integer I < n - 1 such that

,,. _1 (1 ) > o0 , . . .-, -., . _d - 1 ) > 0 , ,. _•( t > 0 , V n _• t + 1 ) < 0 , . ..- , V . _d n ) < 0 .

Take i = n - 1 and j = n in Lemma 3.1 to find

v.(k) > ______(k)
vn(k - 1) V._I(k - 1)'

or Vn.I(k - 1) vn-I(k)v, (k - 1) V.(k)

for k = 2, 3- ... , t. Hence

V n_ 1 ( 1 ) > V , n_ 1 ( 2 ) >,. . , V - I M( >0 > V _ • ( t + 1)( 3 )
vn(1) vn(2) vn(V) - vn(+) 1)(3.6)

The rest of inequalities can be proved by the symmetry of the eigenvectors. Recall

1 from Theorem 1.4, then T := IT(a)I just reverses the diagonals. By Theorem 1.4, T has

the same eigenvalues {Ai}, but eigenvectors {viR} in reverse order, i.e.

vR(k) = vi(n + 1 - k) for i,k = 1,2,...,n. (3.7)

Notice that vRf(k) > 0 for all k, and vfn..(k) < 0 for k = 1, 2,..., n - £. Apply (3.6) to
eigenvectors vR and -vR then

vn 1 (1) v.._1(2) v__ _(_ - >) vn 1_(n - +)
v() v(2) > > v(n>) >°- v +(n-•+1)

Therefore by (3.7)

VnI(n) <vn-_dn - 1) < <vn_•(t < 0) <.(
v(n) -Vn(n1) v(t + 1) - M

which concludes the proof. 0

We remark that v is strictly increasing in k when v,_ I (1)v,(1) < 0. Needless

to say, the normalized eigenvectors si's obey Lemma 3.1 and Theorem 3.2. However we

obtain more by using the normalization of si's.

Corollary 3.3 For n > 3, either Is,_,(1)I > Is,(1)I or Is.-I(n)J > Is.(n)I.
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Proof. Suppose s,(1), a..- 1 (1) > 0 and the assertion is false, i.e.

Sn(1) > a.-1(1) and - s..-.(n) < .(n).

Thus by Theorem 3.2

1 > ,,_(_ ) .._ > ,(2) > > s,-I.(n) >1
1 .S(l) Sn(2) s.(n)

Hence for all k's

1 _ n.(k) or Isn(k)l >2 Is.-I(k)l

with at least one strict inequality. Then we have a contradiction
n n

1 = •sn(k) 2 > Esn._I(k)
2 -1

k=1 k=l
0

By Corollary 3.3 and 11snl 2 
- Ils n-.II2 = 1, there exists an integer k such that

I49(k)I > Isn-.-1(k)1. More precisely we have

Corollary 3.4 Suppose n > 3 and Sn-W)Sn-i(V + 1) < 0 for some integer 1, then either

18n(I)1 > I•n-I(M) or I•n( + 1)1 > I.lt+11

Proof. Again assume s,(1), S,_1(1) > 0, s,.-.() > sn,(l) and s(t + 1) <_ -sn-I(t + 1).

Then by Theorem 3.2

s.-_(1) > > sn.-I(t) > 1 > -1 > $n-1( + 1) > > S,._(n)

Sn(1) Sn(t) - S.(t-+ 1) sn(n)

i.e. Is._l(k)I _> Isn(k)l for k = 1,2, .. n

with at least one strict inequality. Therefore

n n

1 = ESn,,-.(k)2 > E s,0 (k) 2 -1

k=1 k=1

which is a contradiction. Hence sn-.(k) >2 sn(k) for k = t or £ + 1. 0

We remark that Corollary 3.3 and Corollary 3.4 may fail for the case n = 2. For

example J 2 (O) has eigenvalues ±1 and corresponding eigenvectors (72, ) and (7' : 4)"
This is a counterexample.

To illustrate Theorem 3.2 and Corollary 3.3-4, consider Jio((2, 0,... ,0,2)), which

has ratio vector s9 (k)/sjo(k)

(1.0098, 1.0010,0.9579,0.7953,0.3416, -0.3416, -0.7953, -0.9579, -1.0010, -1.0098),

Figure 3.1 gives another example.



'339

0.S

0.4

0.1@

-0.1

+.0.

-I.'

Fi. u

-l O I I I 0 7 I I I

Figure 3.1: M of J10((0,0,3,0,0,3,0,0,0,3)).

3.2 Sign Pattern of Vg,..-

Recall that the sepaxation g9._.(T(a)) := A\(T(a)) - A\._i(T(a)) is a real valued

multi-variable function. Its gradient is given by Lemma 1.6

Vg._lCT(a)) = (s.(1) 2 - - s._-1(2)2,. •., 3,(n) - s._i(n)2 ). (3.8)

As a consequence of Corollary 3.3 or 3.4, Vgn-1 6 0 for n >_ 3 and all a's. This certainly

is not true for n = 2, J2 (0) in the previous section is an example.

Assume n > 3 and s.(1), - > 0 in the sequel. According to Corollary 3.3,

there are three cases

I. S.-1(1) > S.(1) and -S.-1(n) _< S.(n);

ni Sn_1(1) < Sn(i) and -Snl(n) > Sn(n);

MI. S.-1(1) > S.(1) and -3,._(n) > s,.(.).

Combined with Theorem 3.2, each case gives

II. 1 > ... > S ,,-) _ 1 > >>

> -. > D > 1 >: *,_1(•+) > ... > ,S-1)j= > _1 > S.Ij >-...
""7-7 -- (8+l) In m. IT - a-Uj

for some integers i and j. Therefore the gradient (3.8) has corresponding sign patterns
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I. (,-,..,,=.; 0, ,... +,+0);

i-th
U. (+ 0, + ,...,-,+ , + o,.Z, , - -,. - );

j-th

m . ( , . . , • ; + 0 , + , -. . ., + , + 0 • . . - ) .

i-th j-th

Here "+0" means the entry can be positive or zero.

Recall from the end of last section, the ratio vector s9 (k)/slo(k) of

J 1 0((2,0,...,0,2)) is skew symmetric. This is true for all centrosymmetric tridiagonal

T(a) since its eigenvectors are either symmetric or skew symmetric by Corollary 1.10 (i).

Therefore we can replace "or" by "and" in Corollary 3.3 and 3.4.

Corollary 3.5 Assume T(a) is centrosymmetric and n > 3, then

i. Is.-1(1)I > 1s.(1)1 and Isn-i(n)l > Isn(n)I;

i. Is,,(k)j > Is,_I(k)I for k = [],. [ ].

Only case (III) above is possible for centrosymmetric T. The gradient Vg,,-, is

also symmetric about the center and has the sign pattern

g_ =(,.,.,+0,+,..+,+, .,) (3.9)

i-th ((+1-i)-th

Now we are ready to prove Ashbaugh and Benguria's Comparison Theorem [1,

Theorem 5.1]. They only prove it for J(a), but in fact it is true for all centrosymmetric

T(a).

Definition 4 A vector u = (u(1), u(2),..., u(n)) is symmetric increasing (from the center)

if

u(i) = u(n) _ u(2) = u(n - 1) >...> u(In +- ]) = u([n] + 1).

Theorem 3.6 (Ashbaugh and Benguria) Assume T(a) is centrosymmetric and u is

symmetric increasing, then

g,q-u (T(a + u)) ar g.-1(T(a)). (3.10)

Equality holds if and only if all the entries of u are the same.
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Proof. The case n = 2 is nothing but a shift (or translation) of T, so equality always

holds. Assume n _> 3. By the Mean Value Theorem, there exits 77 E (0, 1) such that

gn-I(T(a + u)) - g.-.(T(a)) = Vgn._(T(a + 77u)) • u. (3.11)

By assumption a and u are centrally symmetric, then so is a + 77u. Thus T(a + 7Tu)) is also

centrosymmetric and we can assume Vgn_.(T(a + iiu)) has sign pattern (3.9) for some i.

Now we translate u to

u' :=u - u(i + 1)e,

where e = (1,1,...,1). Since u'(k) = u(k) - u(i+ 1) for k = 1,2,...,n, u' has the sign

pattern

u= (+o,...,+0 0o,-0,...,-0,0, +0 ,...'+o). (3.12)

i-th (n+l-i)-th

by the symmetric increase of u. Again "+0" means the entry > 0 and "-0" means < 0.

Match the patterns of (3.9) and (3.12) to get

Vgn._ I(T(a + 77u)) • u' < 0, (3.13)

Hence

Vg,,_.(T(a + 77u)) • u = Vg-,-(T(a + ipu)) - u' + u(i + 1)Vg,_-.(T(a + 77u)). e < 0

since the last term vanishes by Corollary 1.7 (ii). Then (3.10) follows by (3.11).

If u = ae for some scalar a. then (3.10) becomes equality by Corollary 1.5 (i). For

another direction, suppose we have equality in (3.10), then so is (3.13)

E G u'(k) = 0 (3.14)
k=1

where Vg,_ 1(T(a + Yju)) = (E1,•2,...,4). Since (3.14) has no positive term, &u'(k)

vanishes for all k's. Notice that ýj < 0 and f[+] > 0 by (3.8) and Corollary 3.5. Therefore

u(1) = u'([n-- ]) = 0 or u(1) = ,,(i + 1) = ,,(-+-1]).
2 2

By symmetric increase of u, all the entries of u are equal. 03
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3.3 Unbalanced Diagonals

In this section we consider T(a) with unbalanced diagonals. We assume the right

side is heavier than the left for the main diagonal and two subdiagonals, though the reverse

case can be treated similarly. The ratios of two consecutive entries of an eigenvector obey

a certain rule, which will be explored here. We start with the following lemma.

Lemma 3.T Let vi be the i-th eigenvector of T(a). Assume

vi (1), vi(2),... , vi(t) have the same signs,

and so do vi(n + 1 - 1), vi(n + 2 - t),. .. , vi(n);

a(k) < a(n + 1 - k) for k = 1,2,...,1; (3.16)

k <5 3.-k for k = 1, 2,..., ,1; (3.17)

for some ( < [S), and j is the first index k that gives strict inequality in (3.16) or (3.17).

Then

i. k = v,(n-k) for k = 1, 2,.. .,min{j - 1 1}"Vi(k) jt(n+i-ý) '- ..

ii. +1 > ,(n-k) for k = j,j +1,.

We give two remarks before the proof. In the case j = 1, (i) is not necessary in Lemma 3.7.

If equality holds everywhere in (3.16) and (3.17). then we can take j = i + 1 and part (ii)

is redundant.

Proof. Since neither vi(1) nor vi(n) vanishes,

vi(k) 60 forall k= 1..... and n+ -I t,.... n

by (3.15). Hence it is legitimate to take ratios

vi(k + 1) and vi(n - k)

vi(k) vi(n + 1 - k) (3.18)

for k = 1,2,... ,. Moreover both ratios in (3.18) are positive for k = 1,2,. .. I - 1 by

(3.15).

i. Suppose j > 1, then by assumption

a(k) = a(n + 1 - k) and 3 k ,-n-k for k =1,2,...,j - 1. (3.19)
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Our induction argument begins with

vi(2) \, - a(1) A, - a(i) vi(n - 1)

v,(1) 31 O.-I v,(n)

by (3.2) and (3.19). Now assume

v,(k) _,(n - k + 1)

v,(k - 1) vi(n - k + 2)

for some k < j, then by (3.19)

ok-ý vi(k - 1) k v(n - k + 2) (3.20)
v,(k) = 3n+1-kv,(n - k + 1)

Use (3.2) and (3.19) again to get

v,(k - 1) vi (k + 1)
13 kk1 + Wk-;- -\j, - a(k)

v,(k-1) v(k)
vi(n - k) v,(n + 2 - k)

= As-a(n + 1- k) =I3n.-vi(n + 1 - k) + +1- vi(n + 1 - k)(

Subtracting (3.20) from (3.21), we have
v,(k + 1) v.(n - k)

vi(k) vi(n - k + 1)

by (3.19). Part (i) follows by induction until k = j or there is a sign change.

ii. Suppose j < t. From (i)

vi(j) vi(n + 1 - j)

vi(j - 1) vi(n + 2- j)'

-I vi(j - 1) = vi(n + 2 - j) (3.22)Vi(U) - .+ - v(n + 1 -j)"

According to (3.2) and (3.16)

jVi(j- 1) + _0 v_(-+,1) = _ , - a(j)
Vi~j) 4(j)>- aG) + 1-j 0,,, j in-j-+ nl v (+2-j) 3.)

v-(n + 1 - j) + 1-v,(n + 1 - j) (

Subtract (3.22) from (3.23), then

vi(j + 1) > . 'j vi(n-j)( .-ý, (j) -> ~ +"- 1, •.-- j " 3.4

By (3.17)
1 1

(3.25)• 3• ý - .-1
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Since

a(j) < a(n + 1 -j) or 8j <

inequalities (3.23) and (3.24) are strict, or (3.25) is strict. Multiplying (3.24) and

(3.25), we have
v(j) v,(n + 1 - j)

Assume

vi(k) v,(n + 1 - k)

vi(k - 1) vi(n + 2 - k)

for some k < 1, then by (3.17)

-A3-1 vidk - 1) > ).Ikvin + 2 - k) (.6
>__ _ -v,+ (- + - )(3.26)

v,(k) v,(n + 1 - k)

Similarly by (3.2) and (3.16)

/k1 v,(k - 1) +0 v,(k + 1) = A, - a(k)
vi(k) v5(k)

vi(n -k) vi(n + 2 - k)
= A,-a(n+1-k)>.kv(n-k) + v(n+-k)" (3.27)

Add both (3.26) and (3.27), then multiply it with 1 >_ 1 to get

v(k + 1) v,(n - k)
vi(k) v,(n-k+1)"

Below we consider

a(k) < a(n + 1- k) for k = 1,2,...,[ ], (3.28)
2

1 5 < n-k fork = 1,2,..., [], (3.29)
2

and apply Lemma 3.7 to vn and vn.-1. If at least one of the inequalities in (3.28) or (3.29)

is strict, then positive vu is heavier in the right side and the broken line graph of v.-I

crosses zero after the midpoint !2+1.

Theorem 3.8 Assume (3.28) and (3.29) hold, and j is the first k that gives strict inequality

in (3.28) or (3.29). Then

i. v v,(n-k) for k = 1,2, j - 1;
ii.== =, k vý(n-kl fo"'"j~
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iii. if vn is positive, then for k = 1, 2,..., [1]

v.(k) < vn(n + 1 - k). (3.30)

Proof. Since vn has no sign change, (3.15) is true for t = [2]. Now (i) and (ii) are

exactly Lemma 3.7.

Consider (iii). From (ii) with k = [•]

v,([a] + 1) vn(n - [•])2 >2

v411•]) .vn(n + 1 - [!])

Thus for odd n
S•,(••) r.n-i n,+3,Vn( ) > V.n_ • V" T )n < V n~ n + 3 ,

Vn('2j1  Vn(2~ 2 2

and for even n V.(l + 1) > V.(31) n n < n ( )V.R) >' .(+i1) 2 2": v":+)
2 2

Hence (3.30) holds for k = [a]. Now we can prove this part by induction backward on k.

Assume

vn(k + 1) < Vn(n - k) (3.31)

for some k > 1. In view of (i-ii), we have
Vn~k) Vn(n -k + 1)

v <(k) < k(3.32)

vn(k + 1) - vn(n - k)

Multiply (3.31) and (3.32), then (3.30) follows.

In Theorem 3.8 we assumed at least one strict inequality in (3.28) or (3.29). Sup-

pose they are all equalities, then Theorem 3.8 (i) holds for all k = 1,2,..., [.] and (ii) is

redundant. As in the proof of Theorem 3.8 (iii), we can show

v.,(k) = v.(n + 1 - k) for k = 1, 2,. .. ,[n].

This gives the symmetry of Vn for centrosymmetric T, which is not new of course.

The next theorem considers vn_1. Notice that Lemma 3.7 is valid until it encoun-

ters the sign change of v.-.. The broken line graph of vector v is a piecewise linear curve

that goes through all the nodes (k, v(k)).

Theorem 3.9 Assume (3.28) and (3.29) with at least one strict inequality. Then
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i. the zero -y of the broken line graph of vn-.L satisfies - > 2 ;

ii. if v,_ 1 (1) is positive, then

vn-I (fl"-) > 0 for odd n, and vn-11(-) + Vn-l(( + 1) > 0 for even n;

• .. v._,(k+l) > vn_,(.-k) for k = 1,2,.. ,n- []vs. .- I(k) -- v._L(n-k+I) "

Proof. Without loss of generality, we can assume v,,-1(1) > 0.

Suppose-/ y ! ! Define

= { 1, if 1, is an integer;
7, otherwise.

Then

v,_I(1) > 0,.... ,v,_ 1(t) > 0,v,,-(t+ 1) < 0,vn._(t+ 2) < 0,...,vn._(n) < 0.

Hence by Lemma 3.7
0o>_Vn-I(t +1)> Vnl(n > )>0,

vn- I( M V-Iv_(n - + 1)

which is impossible.

Suppose !! < -y _ "'*. When n is odd, we have

n-1n n+1+3V.-I (---2-) > 0, Vn-l(-2-• 0_, and Vn-l(n---3) < 0.
2 2 2

Since there is at least one strict inequality in (3.28) or (3.29), by Lemma 3.7

0o> >n ! .I(- >o0.- V. I._ V ,(-_ )
which is a contradiction. When n is even, we have

Vnl(2n) > O,v._I(Tn + 1) < 0, and v,_- (n) + vn-.( n + 1) _5 0.
2

Again we have a contradiction by Lemma 3.7

-1 > v.-l(-2( + 1) vn._(-n)
> >-1.n- M Vn_(-I R21( + 1)-

Therefore 7 must be larger than -U1. Since the broken line graph of v 1.- is

positive at the midpoint "1, (ii) follows. Part (iii) is exactly Lemma 3.7. 0

Consider Jjo((2, 2, 0,0,0, 0, 0, 0, 2.1,2)) as an example. its eigenvectors

s80 = (0.0089,0.0111,0.0049,0.0049,0.0110,0.0308,0.0891,0.2584, 0.7498,0.6014),

s9 = (0.6177,0.7359,0.2592,0.0912,0.0320,0.0108,0.0024, -0.0031, -0.0123, -0.0103)

illustrate well Theorem 3.8 and Theorem 3.9. Notice that j = 2 and 7 < -y < 8.
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3.4 Convexity

In this section we consider T(a) with partially symmetric diagonals. We have

following convexity property for the entries of an eigenvector.

Theorem 3.10 Assume

a(k) = a(n+l-k) and / 30=0_,k>0 fork =j+l,j+2,...,[ ], (3.33)

a(k) + 2,3k :_A\ for k = j + 1,j + 2,..., [-- -], (3.34)
2

for some i < n and j <_ [.21.]. Under the normalization

{ v,(-•2l) Ž0, when n is odd;
vi(!) + vi(2 + 1) __ 0, when n is even;

we have

13j[vi(j) + vi(n + l - j)] 3 3j+l[vi(j + l) + vi(n - j)] >_."

> /32I[vi( -1)+ vi(1Th + 1)] > 0. (3.36)
2 2

Proof. First assume n is odd, then [n2-'] = n+I = [2] + 1. By (3.1), (3.33), (3.34) and

(3.35)
n- n+3 ,n-1 n+3.

O n I[v ,( n - ) + vi( -T --)]A = 0 - i( n- 1-n + 3v( - •
-- 2 2 T 2 2 2

S(,\i - a(-2'--))vi('-- ) 2/3•_ v[-(-n ) = 1 3[np1][vi([--1]) + vi([n] + 1)] > 0.

'' 2 2 T22 2 2

The counter part of even n can be proved by a similar fashion:

,3f_,[v,( _ -1) + i( n+ 2)] = 3_Ivi(n - 1) + _3+,,v(n + 2)

[(-,- a(-)),,(-) - 2~ 2,(2 + 1)]+ a(, + 1)),,(n + 1) _Ov,)]
2 2 P-2 2 JLIa1,v~1 l~Jvl)

[A-a()-I~lv(~ v( 2 11 2 2 +1]

We now use induction backward to prove (3.36). Assume

13&[vi(k) + vi(n + 1 - k)] > 3k+l[vi(k + 1) + vi(n - k)]



48

for some k > j, then by (3.1), (3.33) and (3.34)

Ok-_[vi(k - 1) + v,(n + 2 - k)] = /k-lv,(k - 1) + i3+l.kv,(n + 2 - k)]

= [(,X - a(k))vi(k) - Okt,(k + 1)1 + [(A, - a(n + 1 - k))v,(n + 1 - k) - ..-k.i,(n - k)]

= (A, - a(k))v,(k) + (A, - a(n + -I - k))v,(n + 1 - k) - Pk[v,(k + 1) + v,(n - k)]

= [A, - a(k)][vi,(k) + vj,(n + 1 - k)] - ,3kvjv(k) + v,(n + 1 - k))

= [A, - a(k) - •3k][v,(k) + vj(n + 1 - k)] >_ 1k+l[vi,(k + 1) + vi(n - k)] >_ 0.

as desired. 0

Let's apply Theorem 3.10 to the previous example J1o((2,2,0,0,0,0.0,0,2.1,2)).

We have j = 2 and eigenvalues

An = 3.2467 > A4-I = 3.1915 > 2.

Under the normalization (3.35), Theorem 3.10 says that

s,(2) + si(9) > si(3) + si(8) > si(4) + si(7) > si(5) + si(6)

for i=n and n-1. The numerical values given above satisfy these inequalities.
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Chapter 4

The Minimal Gap

In this chapter we settle our minimization problem; to find the minimal gap among

the class of matrices

C" :={J(a)l a E [O,w]"}

when w is large enough. Formally we seek

minfg(J(a))I 0 < a(k) • w for k =1, 2,...,n},

or min{g,(J(a))I aE [0,w]n and i= 1,2,...,n- 1}. (4.1)

The answer to this problem is stated precisely in Theorem 4.8. Section 4.5 gives the outline

of our proof.

4.1 Ericsson's Lower Bound

Consider the tridiagoLwl matrix T of the form

tridiag (a(1) ...... a(n) (4.2)

with all /•,'s positive. Let the eigenvalues of T be labeled as A1 < A2 < ... < A\, and

d = An - A1 be the eigenvalue spread of T. Assume si = (s.(1),,9(2),...,s 1 (n)) is the i-th

normalized eigenvector of T.

Theorem 4.1 (Ericsson [4]) g(T) >_ 2,313 2 ... On-, /d"- 2  where d = A, -

=El
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Proof. Let
n

X(A) =: det[AI - T] = \(A- A4)
k=1

and X(A) be the derivative of X(A) with respect to A. Then

n-1

j,(1)s,(n)X'(A,) = 1I 3k, for i= 1,2,...,n. (4.3)
k=i

by Corollary 1.9 (i). Since the arithmetic mean exceeds the geometric mean,

1 = IISdI1 ; s(k) 2 > s,(1) 2 + s,(n) 2 > 2 ls(1)s,(,)I,

k=1

and (4.3) gives
i-I n n-i

l(A, - 4k) fi (Ak - Ai,)= Ix'(A,) 1 2 ]i A . (4.4)
k=1 k=i+l k=1

Pull out the A,+j - \j term and bound the others by d in the left hand side of (4.4), then

n-I

(ii- Aj) jn-2 > 2 11 13k,
k=1

n-I

i.e. \Ai+ - A, _ 2 I'k)/dn-2

k=1

for i = 1,2,..., n - 1. Hence we have the desired inequality by (1.3). 0

Although the eigenvalues of T can be surprisingly dose to each other as in 11V21,

according to Theorem 4.1 they cannot be arbitrarily close when the entries a(i)'s and 3,'s

are bounded. We remark that Theorem 4.1 can also be derived by Theorem 1.2, but Sun's

method is different from ours. In addition we need the following refinement.

Theorem 4.2 Given 1 < i < n - 1. Let m = min{i, n - i} and d be the spread of T, then

gi(T) 2! 2 2--131,32 ... #._, /dn-2.

Prc-f. Assume i < 2, then

( -j) 11 (k- A,)
j=l k--i+l

i-I n-i+l n

= fl(A,-A (I)A,+1 -A,1) (A- A,\) II Ak- A,)
k=i+2 k=n-4+2
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-i-- n-i+i

= LI(A,- A.,)(A,+-i~ - A,) (Ai+ - 1,). kI (+ - A,)
=ik=i+2

< A•(,- A, + An-,+I - A)I _, -2,

- 1 2

, )2(Ii-) (A,+, - 1 dn- 2 i 0 2-2 (, 1 -A)2 d-2

Therefore n--1
9i >- 2 2i-I( II Ok) /dn-2

k=1

by (4.4). The argument for i > n is similar. 02

This refined theorem says that the middle eigenvalue separations have bigger lower

bounds than the end ones. Thus the middle separations cannot be too close compared to

the end ones.

Now we can get a lower bound for the gaps in our class £C. The spectrum of J(a)

is contained in
n--1

[a(l) - 1, a(l) + 1] U U [a(k) - 2, a(k) + 2] U [a(n) - 1,a(n) + 1]
k=2

by Gershgorin's Disk Theorem. Since a(k) E [0,w], all the eigenvalues are in the interval

[-2, w + 2] and the spread

d_<w+4.

Therefore by Theorem 4.1
g( ) 2! -2 > 2

) -2 (w+ 4)n-2

for J E Cn . Moreover by Theorem 4.2

8
gi(J) _ ( 8+4)n_2 (4.5)

for n > 4, i = 2,3,...,n- 2 and J E ,.

Recall that
2g.-I(J(wl)) < n.-2-

by Theorem 2.3 (iii). Hence the minimum in (4.1) must be smaller than 2 Thus all the

middle gj's in (4.5) are too large to consider provided that

8 2 4 4
(1+ (4.6)

(+ 4)n-2 4
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The right hand side of (4.6) seems mysterious. Consider 6 = n'-2, then

46 = en4 =1 + 61n4 + 1(bhn4)2 + > 1 +61n4

and
4 4 24- < 4 = 2-(n- 2).

4T- 1 bn4 =1n 2

The constant - 2.885390082 < 2.8854. Therefore (4.6) holds if

w > 2.8854(n - 2). (4.7)

By more detailed analysis of the spread this constant can be reduced, but some constraint

like (4.7) is necessary because of the counterexample in Table 1.2.

We conclude that the minimum of (4.1) comes from g1 or g,-I if w is large enough.

This is certainly trivial when n = 3. Recall that

gl(J(a)) = gn-I(J(a'))

by Corollary 1.5 (iii), where

a* = we - a = (w - a(i), w - a(2),. .. , w - a(n))

is the dual of a with respect to w. Note that a* E [0, w]" if and only if a E [0, ]"n. Therefore

under the condition of (4.7), (4.1) is equivalent to

min { g._,(.J(a))l a E [o,w]n}. (4.8)

After the reduction, it suffices to solve (4.8).

4.2 Refinement Sun's Theorem

In this section we also consider the tridiagonal matrices T(a) of the form (4.2)

with positive 3k's. Sun's Theorem 1.2 is refined below. These inequalities say that \,+1 -,A,

cannot be too small when i _> ! and the trace of T is large, or when i < 2 and the trace of

T is small.

Theorem 4.3 Let AX be an upper bound for >, and 1 be a lower bound for \ 1 . Define

1 -I 1
[-1_ [ (k) - (n - )= [(n- 1)\. - a(k)],n - n - 2

k~i k=i

2 a(k) - (n - 1)-] • = [n - 1)I•n - a(/k)],
-2k=2 k=2-
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1 a(l)+ a(n) n:= - ,(I) + E a(k) - (n, - i)AII,
k=2

1 a(l)+a(n) .-I
n := K n - 11-X. 2 E (kl],
n-2 2

k=2

= max{4,0}, f = max{f,-}, i= maxji, i}.

Then
(n-i n-I-

i. gi(T(a)) >_ 2( fl •k)/(=r)1-, gi(T(a)) > 2( lI 3k)lIt- 2  for i = 1,2,. .. ,[n];
k~i k=1

k---1 k---i

n-1 

-n-ii. 9i(T(a)) 2_ 2( 1"[ gt/q)T i(T(a)) >_ 2( HI A)/jn-2 fo,-i [n+'],..., n- 1;
k=l k=1l

nt-1 -

iii. g(T(a)) 2! 2( f" /3k)/(qr)2 1  and g(T(a)) 2! 2("- I
k=1 k=I

Proof. According to Corollary 1.9 (iv)

it-1

XI,n.-(Ai)X2,l,.(A) = JI iki,
k=1

where X3,k(X) := detjI - T,,k) and

S•i "'" k- I

Tj,k(a) := tridiag (a(j) ... A a(k) for j < k,

Let {Ok}k1 and {(k}n__ be the eigenvalues of T1,.- 1 and T2,n respectively, in increasing

order. Thus
n-I n-I

H(Ai Ok) Ai k) = 1 02 for i = 1, 2, ... , n. (4.9)

k=1 k=1

Replace i by i + 1 in (4.9) and multiply it by (4.9), then

n-I n-I

jI(•, - e1k)(Ai+l - Ok)(,i - Uk)(;\,+l - Ak) = kI - (4.10)
k=1 k=1

Recall that ,Ak < ek < Ak+l and Ak < Ak < Ak+I for k = 1,2,...,n - 1 by Cauchy's

Interlacing Theorem [9, 10-1-2]. Since the arithmetic mean is no less than the geometric

mean, we have

i-1 n-1
Pif(• - 9k) I"I (ok - A•,1] -

k--1 k=i+l
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i-1 n-1-

k=i k =41
i-1 n-1=)\ -E O + E 9k
k =1 k =-i+1

i-1 n-1
-{_[(2i - 1, - O( - 2 F,)A + , ok], if i <n2k=l k=1l

"n-- n-I
n-'_[(2i -n)\i +Oi + 2 E 19k- , 19k, if i >

2k---41 k-=1

n 21 -•[tr(T•,,,_) - (n - 1),\, <_ 4, if i <
- n--_ [(n - 1ll\n - fr(Tl..,)] _< , if i ->!2

n--1 n--1

since F, O = tr(Tl,..._) = E a(k). Thus for i < -, (4.10) gives
k=1 k=f

It = (9, - A,1(A,+1 - B,)(., - A,)(A+• - .
k=1

i-1

fJ (A, - �k)(si+l - 0k)(\, - Ak)(1+i+ - Ilk)
k=1

n--1

II(ok - \)(Ok - \,i+)(pk - \,)(pk - \i+l)

'\i + 'i+l -- i]2[Ei - '\i + '\i+l Ui]2.n--2 2n-2-2 in-2

-[ 2 2

L' ()442n-4i2n-4
2

n-i n-I
i.e. g, _2( 2 03N)/(4 )2i for i = 1,2,...,

k=1

It is exactly the same when i > 2. Clearly gap

n--I
g(T) > 2(M k)(0•l

k=l

Again use the inequality of arithmetic and geometric means

(40 1 <-!(4 +,90

and

Tetehfflsit + hsa wy..

The other half follows in the same way. 0
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Theorem 4.3 is slightly better than Theorem 1.2 since

1 1
p2 - (nn -- ak) and P3 =-- ( ak1 - nal)i _

k=1 
k=1

by

l< m=i.2n f{a(k)} and A. _> max {a(k)}.

For Wilkinson's matrix W 2 +1, X,, = m + 1 and

m 2 + 2m
2m - 1

Hence by Theorem 4.3
gn-(W2+,)2(2m - 1 )2m-1,

which yields 1.24 x 10-15 for W21 as in Table 1.1.

Now we can apply Theorem 4.3 to the class of matrices £C.

Corollary 4.4 Suppose J E £C with tr(J) > 3w. If w > 2n, then gi(J) > W& for

Proof. For J E CW", A). < w + 2. So we choose ),. = w + 2. Recall that

An 2! An > max {a(k)} > max{a(1),a(n)}> a(l) +a(n)
.- 2

then

1 a(1)+ a(n) .- I
= -- 2 [( n- i)) E a(k)]

k=2

__ " I [n(w + 2) - 3",]-< l.- 21[n•n-a(k)] -<'•-[nw2 )-
k=1 -

< 1 1
S 2-[(n - 3)w + 2n] <:-n [(n- 3)w + w] =w.- 2- -n-2

Thus by Theorem 4.3 (ii)

g. > 2/i- 2 >_ 2/w-2.

for i= [n-,..., -1. 0

As a consequence of Corollary 4.4 and Theorem 2.3 (iii),

2

if tr(J) > 3w and

w > 2n. (4.11)

Hence under the condition (4.11), the minimizer of (4.8) must have trace less than 3w.



56

4.3 Unsymmetric Diagonal

From Section 3.2, Vg-,_(J(a)) has only three types of sign pattern

I. -,-...,-,+0,+,...,+,+0);

n . ( + 0 , + , . . . ,1 + , + 0 , - - . . , )

M. .-....,-, +0, +,...,+,+0,-,...,-)

Here "+0" means the entry can be positive or zero.

Since Vg,,-. never vanishes, the global minimum point a of (4.8) must be a bound-

ary point of [0, w]n which satisfies the Kuhn-Tucker condition. Since all the possible sign

patterns of gradients are known, the corresponding minimizers can be only

I. (w:,w,. . .,w, *,0 ... , O, );

n. ( ,0,..., 0, ,' ,w, ., )

Here " *" means the entry can be anything in [0,wl.

To be a minimizer, it is impossible to have too many w's in the diagonal. Courtesy

of the result in the end of last section, at most two w's are allowed in the diagonal if w >_ 2n.

The possible minimizers are thus r•duced to five cases

i. a = (x,0,..., 0, y,w,w) with Vg,_,-= (+0, +,.. ,+,+0,-,-);

ii. a = (z,0,0,...,0, y, w) with Vg,- 1 =(+0,+,+,. .., +,+0,-);

iii. a = (•,z,0,...,0,y,&) with Vg,_-1 = (-,+,+. +,+0,

iv. a = (w, w,p,0,...,0,z) with Vg,_..- (-,-,+0,+,. .. ,+,+0);

v. a = (w, ,0,...,0,0,z) with Vg,-..0 =+,...,+,+,+0);

We want to show that none of the unbalanced diagonal a can be the minimizer.

The following lemma is crucial.

Lemma 4.5 Assume s.(1)s._1(1) > 0, A.- > 2,

a(k) <_ a(n + 1- k) fork=l,2,...,j,
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uith at least one strict inequality, and

a(k) = 0 fork = j+ l,j+2,...,n-j,

for some integer j < [ n-], Then

sZ_(j) sn(n+1-j)

Proof. By assumption, we have at least one strict inequality in (3.28). Without loss of

generality, choose both sn(l) and an-I(1) positive, then

sn(k) < snC, + 1 - k) for k = 1,2,...,[] (4.12)
2

by Theorem 3.8, and

n + > nn
Sn-I( >) 0 for odd n, and sn-I(n) + Sn.I( + 1) > 0 for even n

2 i'

by Theorem 3.9. Hence according to Theorem 3.10

Sn-1(j) + S..-(n + 1 - j) > 0. (4.13)

Notice that Sn-.(j) must be positive, otherwise

sn-1(1)>0, s,.-,(j)< 0 and sn_,(n+1-j)> 0,

by (4.13), which violates that Sn.I. has only one sign change. Therefore, using (4.12) and

(4.13),
sn-_(j) > s._•(j) > s._l(n+l-j)

s3(j) s,(n + 1 - j) s.(n+ i-j)

In all the cases above, An > max f{a(k)} 2 w. Suppose w > 3 and n > 3. If

An-I < w - 1, then
2An - An_-;> > :;ý > g.-i(A~wl)),

which is dearly not competitive. Hence in the sequel we assvme An,-I > w - 1 > 2 Also

we take sn(1), Sn- 1 (1) > 0.

Obviously case (i) satisfies Lemma 4.5. Assume the (n - 2)-th entry of Vgn-I is

zero, i.e.

sn(n - 2)
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Then by Lemma 4.5
1 S-I (3) > .- (n - 2)

s5(3) s.(n - 2)

which is impossible. Therefore the (n - 2)-th entry of Vg.-I must be positive and y must

vanish. Case (i) thus reduces to

a = (z,0,...,0,0,w,w) with Vg,_. = (+0,+,...,+,+,-,-).

Notice that

s-(n- 1)

By Lemma 4.5 again, we have

s._,(2) s,(n - 1)

a contradiction. We conclude that there is no diagonal a in case (i) such that Vgn..(J(a))

satisfies the desired sign pattern.

To exclude w, from case (ii), either z <w or y > 0. Assume the (n - 1)-th entry

of Vg,-I is zero, i.e.
Sn - 1)
s.(n- 1)

Then by Lemma 4.5
1 -> -sn. 1(2) s>._',(n - 1)

s.(2) s.(n - 1)

which is impossible. Thus the (n - 2)-th entry of VgnI must be positive and y must vanish.

Case (ii) then reduces to

a = (X,O, ... 0,w) with Vg,-I = (+0,+,..

Notice that
-- <--1.

$,(n)

Again Lemma 4.5 forces a contradiction

>Sn-1(1)> s.-I(n)>1> -- 1

s.'1) s. (n)

In summary there is no a in case (ii), except wl, with the desired sign pattern of Vg..-1 .

Similarly we assume z < y in case (iii). Then y > 0 and the (n - 2)-th entry of

Vgn.- must vanish. In other words

s _,-(n)
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By Lemma 4.5 again we reaches a contradiction

1 > t,- 1 ( 1 s n - i (n._ . . ) _ I
s"(1) s>(n)

The counter part x > y can be eliminated similarly.

Notice that (iv) and (v) are symmetric to (i) and (ii), hence they can be dealt in

the same fashion and the only possibility is wL.

Therefore only the symmetric diagonal a = (w,z,0,... ,0, ,w) in case (iii) sur-

vived our test. Since we have ruled out the situation when trace > 3w by (4.11), we only

need to consider z < -J. This will be discussed in the next section.

4.4 Isolated Minimum

In this section we consider (4.8) with a near w1 . Assume n > 4, 0 < z < -• and

diagonal vector

u(X) = (w,x,0,...,o, ,W).

We want to show Vg-,,_(J(u)) has sign pattern

(-, +, +,...-, +, +, -) (4.14)

if w is sufficiently large. Hence J(wl) satisfies the Kuhn-Tucker condition on the boundary

of [0, w]n. Restricted to the class of admissible matrices £Cn, gn- 1 attains a relative minimum

at J(wl). Moreover J(u(x)) can not be the minimizer for any x E (0,-1].

Lemma 4.6 Assume n > 4 and 0 < z < 6, then
2'

i. W < A,_. 1(J(u(z))) < An(J(u(z))) < w + 4

ii. g. •a( ( ))< 6 '

Proof. The Weyl's Monotonicity Theorem [5, Corollary 4.3.3] says that all the eigenv-al-

ues of a symmetric matrix increase if a positive semidefinite matrix is added to it. Therefore,

by Theorem 2.3 (ii),

A,._i(J(u(z))) > \,n._(J(wO)) > W + 1 1 w.
:- -2w1 "n :W= 2 >

Consider

u'(x)=(w-z,O,...,O,w-z) and e=(1,1,...,1).
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Then by Theorem 2.3 (i)

1 1 2 4A.(J~ u'(=))) < W - x + < W - X + - < W - X + - .
w -x w -x w

By Monotonicity Theorem and Theorem 1.4 (i)

,,(J(w 1 )) < A,,(J(u'(x) + xe)) = \.(J(u'(x))) + x < w + 4

Obviously (ii) ibllows from (1). 0

Theorem 4.7 Assume n > 4 and w >v9- 14F+2. Then

i. w 1 locally minimizes gn- i (J(a)) over all a E [0, win;

ii. for all x E (0,-W], (w,X,...,X,W) i.• not the minimum point of gn-_ (J(a)).

Proof. Since J(u) is centrosymmetric, sj is either symmetric or skew symmetric by

Corollary 1.10 (i). Hence Vgn..(J(u)) is symmetric and it suffices to prove that the first

half of

Vg._ 1(J(u)) = (sn(1)2 -_s._i(1)2, sn(2)2 - s._i(2)2,..., s.(n)2 - sn i(n)2 ). (4.15)

has the desired sign pattern (4.14). Recall that

,11 and s,(2)2 U;-

1 I 4 - \i I1I P4 - \,iI
h. I -

for i - 1, 2 ... , n by Corollary 1.10 (iii).

Since \n > Ani > Aj for k =1,2,...,n - 2,

_ 1 1 -sn._.(1)2"

- n---Sn 1)2= -AI < fn
k=1 .

Hence the first component of (4.15) is negative.

For the second entries of (4.15), we need sn(2) 2 > s.-1(2)2, so

(A\ - W)2  > ____ _ - W)2

n-I n

11 I1\n - AkI H1 I'.n-I - AkI
h•-l -1
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(A--flw)- 2 >ll ..... k

so- )2fll ][1-

-- -- k=l n1 A k'

n--2

so (1+ A,-- - 2 k=1 - ) (4.16)

By Lemma 4.6 (i)
4

An- -W < A\n-- W <

so the left hand side of (4.16)

(l+ gn-I )2 > ( 1 W+)- = 1+ W _l + WgW2 . (4.17)
(+n-i - W

Gershgorin's Disk Theorem gives the location of A,, which is contained in

[-2,2]U[x- 2, + 2]U[w- 1,w+ 1]

Since x < -g, the interval [w - 1,w + 1] is well separated from the others if w > 6. In this

case
,\I <"'<An-2 <5 x+ 2 < + 22

and by Lemma 4.6 (i)

.- , -Ak > +( +2)= -2

for k= 1, 2,...., n - 2. The right hand side of (4.16)
n-2 n--2

-I gl-i < +gn-+ (12 2g--Iw)n-2[(1 + 7._- • )7 < -(+7-)=l -
k=1 k=1

< ( e x P 2 9 - I - 2 x l 2 n -2 n 1
w -4 w- 4

2(n-2) ei [2(n-2)]2 2+ , g"-I + •- I I-_; gn P.1 (4.18)
w1+4 2n- 2

The last equality uses Taylor series expansion with the remainder term where
17 E (0, ,•ý9-l g-1)

To have inequality (4.16), it suffices to compare the quadratic polynomials of gn-I

in (4.17) and (4.18). Assume
n-2 1n-)< 1 (4.19)w(w - 4) 9

The coefficients of gn-i in (4.17) and (4.18) satisfy

2(n - 2) 2ww-4 T- 2"



62

Since
2g._I(n -2) 8(n-2) 8

w - 4 w(; - 4) 9

by Lemma 4.6 (ii) and (4.10), the coefficients of g.2-, in (4.17) and (4.18) obey

e" 2(n- 2)]2 es/9 2W 2 2e8 /92 2 "72
I(-9) W8 < 0061w2 < -2w-4 2 9 8 16'

We conclude that (4.16), or equivalently Sn(2)2 - Sn.I (2) 2 > 0, holds under (4. 19).

Rewrite (4.19)

W 2 _4W > 9(n - 2) •}(u; - 2)2 > 9n - 14

W= > V9- n-14 + 2. (4.20)

Notice that when n > 4

w> V99.4- 14+2 = V'2+ 2 6.69 > 6.

Recall that the ratio of sn.-I(k) and s,(k) satisfies

Sn..1(1)1 > 19n-(2)1 > _.. ________-1 1
3,(1)I S(2) S>([n"-•)

by Theorem 3.2. Thus

(4.20) = s,(2)2 > s._1(2)2

Sn1.) 1 I s,.. 1(3) > _.. ________'I~

S.(2) SO(3) I S([nQn1)

: sn(k) 2 > s,._1 (k) 2  for 2,3,...,[--+1].
2

Hence (4.15) has the desired sign pattern by symmetry. C

4.5 Global Minimum

We have solved, as promised, the minimization problem

min{g(J(a))I a E [0,w]"} (4.21)

for w large enough: g9. 1-(J(wl)) is the minimum. We now outline the whole argument.

One key idea is to use our candidate g9._(J(wl)) as an eliminator. Since

g.-I(J(wl)) < •2
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by Theorem 2.3 (iii), the minimum in (4.21) must be smaller than Hence we can

throw away all the J(a) with eigenvalue separations not less than 2

For the class of matrices 4" of interest, their spectra are contained in [-2,W + 2]

by Gershgorin's Disk Theorem. Thus the spread d of each J E L., is less than w + 4. By

Theorem 4.2
8 2g (J) _> ,+ -4),-2 >!:-1

for i = 2,3,...,n - 2 if

n > 4 and w > 2.8854(n - 2). (4.22)

Hence under the assumption (4.22), the minimum of (4.21) comes from g9 or gn-,. The

constant 2.8854 is not the best possible, however, some condition on W/n is necessary.

Duality, introduced in Section 1.3, shows that there cannot be a unique minimizer

since

gi(J(a)) = gn-I(J(a*))

by Corollary 1.5 (iii), where

a* = we - a = (w - a(1),w - a(2),. .. ,w - a(n))

is the dual of a with respect to w. Note that a' E [0, ]n if and only *f a E [0, w]n. Therefore

under the condition of (4.22), (4.21) is reduced to

min { g.-.(J(a))l a E [O,w]rl. (4.23)

Now we have a smooth functional to minimize.

Another key idea is to use the trace to eliminate rivals to J(wl). As a consequence

of Corollary 4.4, for J E £C with tr(., ) > 3w,

2g.-1(J) >_ ý > gn-I(MWI)),

provided that

w > 2n. (4.24)

Again some condition on ration w/n is necessary and (4.24) probably can be improved.

Anyhow the minimizer of (4.23) must have trace less than 3w if we assume (4.24).

The global minimum of (4.23) must be a relative minimum subject to the constraint

and obeys the Kuhn-Tucker condition: the diagonal a needs to match the sign pattern of
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Vg,_. 1(J(a)). Since all the possible sign patterns of gradients are known from Section 3.2,

we can obtain all the possible minimizers.

Under (4.24), the possible minimizers finally reduced to five cases

i. a = (x,0 ... ,,1 yw,w) with Vg,,- - (+0,+,. .. ,+,+0,-,-);

ii. a= (z,0,0,...,O,y,w) with Vg,.- (+0,+,+,...,+,+0,

iii. a= (w,z,0,...,0, y,w) with Vg,----, +0,+,..++0,-

iv. a= (w,w,y,O,...,O,z) with Vg,,_ = (-,-,+0,+,. .. ,+,+0);

v. a = (w,y,0,...,0,0,X) with Vg,- 1 - +0, +,..., +,++0).

All the cases with unsymmmetric diagonal a axe impossible. This is courtesy of

Lemma 4.5. Therefore only the symmetric diagonal u(x) = (w, z, 0,..., 0, xIW) in case (iii)

survives. By the requirement of trace > 3w, we only need to consider x < 6-

In Theorem 4.7 we show Vg,-.(J(u)) has sign pattern (-,+,+,...,+,+,-) if

n > 4 and w > v9-T14i+2. (4.25)

Hence among all u(x)'s, only w, satisfies the Kuhn-Tucker condition on the boundary of

[0, ,,]n, and is the unique minimizer for (4.8).

Under the assumptions of w > 3, (4.24) and (4.25), J(w 1 ) uniquely minimizes

(4.23). Notice that

2n > vr- 14+2 4 (2n-m2) 2 > 9n--4

4 4n 2 - 17n + 18 > 0 #==: (4n - 9)(n - 2) > 0

is true if n > 4. Since w > 2n > 8 > 3, only the conditions n > 4 and (4.24) axe needed.

For (4.21), we have two minimizers J(wl) and J(Wl") if (4.22) and (4.24) hold.

Compare the right hand sides of (4.22) and (4.24)

2.8854(n - 2) _> 2n • .8854n > 5.7708 n > 6.518.
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Figure 4.1: Graph of w(n) in [6, 50].

Theorem 4.8 i. Assume n > 4 and w 2 2n, then wl uniquely minimizes gn-.(J(a))

over all a E [0, w].

ii. Assume n > 4 andL > 2n, then w,* uniquely minimizes gl(J(a)) over all a E [0,w]n.

iii. Assume n > 7 and w > 2.8854(n - 2), then w1 and wl" are the only minimizers of

g(J(a)) over all a E [0, ]n. For n = 4,5,6, we needw > 2n.

This result shows that J(wl) and J(wl*) are the extremal matrices of the class

£V for w large enough. More precisely, Theorem 4.8 requires

w > 2n or w _> 2.8854(n - 2). (4.26)

However as mentioned, neither inequality is sharp. For each n, there is a value W = =(n)

such that

g.-I(A~wO) = -- 1((2)

for which J(wl) and J(w 2 ) are both minimizers. Theorem 4.8 holds for w > m(n), and

this inequality is then the best possible.
We have not been able to determine the functional form of e(n), but by using

Mathematica with up to 70 decimal digit precision, we computed W(n) for n = 6,7,..., 50
to two digits of accuracy. The graph is displayed in Figure 4.1 and appears to grow a little

less than linearly. In fact,

0.21n + 0.87 > r(n) > 0.21n - 0.1 for 6 < n < 50.
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So the conditions (4.26) are of the right order of magnitute.

From Figure 4.1, we expect

w(n) -. o as n -p .

When the size of diagonal spread w is fixed, Theorem 4.8 holds for only a finite number of

n's.
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