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Chapter 1

Introduction

CMU Common Lisp is a public-domain implementation of Common Lisp developed in the Computer Science
Department of Carnegie Mellon University. CMU Common Lisp is currently supported on MIPS-processor
DECstations, Sparc-based workstations from Sun and the IBM RT PC, and other ports are planned. Currently,
it runs under CMU's Mach operating system, OSF/1 or SunOS. This document describes the implementation
based on the Python compiler. Previous versions of CMU Common Lisp ran on the IBM RT PC and (when known
as Spice Lisp) on the Perq workstation. See man cmucl ('man/mani/cmucl. 1') for other general information.

CMU Common Lisp sources and executables are freely available via anonymous FTP; this software is "as is",
and has no warranty of any kind. CMU and the authors assume no responsibility for the consequences of any
use of this software. See 'doc/release-notes.txt' for a description of the state of the release you have.

1.1 Support

The CMU Common Lisp project's goal is to develop a high quality public domain system, so we want your bug
reports, bug fixes and enhancements. However, staff limitations prevent us from providing extensive support
to people outside of CMU. We are looking for university and industrial affiliates to help us with porting and
maintenance for hardware and software that is not widely used at CMU.

This manual contains only implementation-specific information about C*IU Common Lisp. Users will also
need a separate manual describing the Common Lisp standard. Common Lisp was initially defined in Cornnion
Lisp: The Language, by Guy L. Steele Jr. Common Lisp is now undergoing standardization by the X:J13
committee of ANSI. The X3J 13 spec ib not yet completed, but a number of clarificrtions an(l modificat ion Lave
been approved. We intend that CMU Common Lisp will eventually adhere to the X3.J13 spec, and we have
already implemented many of the changes approved by X3J 13.

Until the X3J13 standard is completed, the second edition of Common Lisp: The Language2 is probably the
best available manual for the language and for our implementation of it. This book has no official role in the
standardization process, but it does include many of the changes adopted since the first edition was completed.

In addition to the language itself, this document describes a number of useful library modules that run in
CMU Common Lisp. Hemlock, ý-n Emacs-like text editor, is included as an integral part of the CMU Common
Lisp environment. Two documents describe Hemlock: the Hemlock Users .Alanual, and the Ilemlock (Comnmand
Implementor's Manual.

1.2 Local Distribution of CMTJ Common Lisp

At CMU, you can get Common Lisp by running modmisc:

/usr/cs/etc/modmisc - cs.misc.cmucl

T~is establihshcs /usr/misc/. cmucl a~s a symbolnc hnK to tohe release area. In your . login'. add (NI V (I.
to your path:

setpath -i /usr/misc/.cmucl

m m | mI



CHAPTER 1. INTRODUCTION

Then run 'lisp'. Note that the first time you run Lisp, it will take AFS several minutes to copy the iniage into

its local cache. Subsequent starts will be much faster.
Or, you can run directly out of the AFS release area (which may be necessary on SunOS machines). l)ut this

in your '.login' shell script:

setenv CKUCLLIB "'afscslisclcuucll6syslbeta/lib
setpath -i /afs/cs/lisc/cnucl/lsys/beta

After setting your path, 'man cmucl' will give an introduction to CMU CL and 'man lisp' will describe

command line options. For SunOS installation notes, see the 'README' file in the SunOS release area.

See '/usr/misc/. cmucl/doc' for release notes and documentation. Hardcopy documentation ik available in

the document room. Documentation supplements may be available for recent additions: see the "README* file.

Send bug reports and questions to 'cmucl-bugs~cs. cmu. edu'. If you send a bug report to 'gripe* or help'.
they will just forward it to this mailing list.

1.3 Net Distribution of CMU Common Lisp

Externally, CMU Common Lisp is only available via anonymous FTP. We don't have the manpower to inake

tapes. These are our distribution machines:

lisp-,rtl.slisp.cs.cmu.edu (128.2.217.9)
lisp-rt2.slisp.cs.cmu.edu (128.2.217.10)

Log in with the user 'anonymous' and 'usernamefhost' as p-tsswozd (i.e. your EMAIL address.) W\hen you

log in. tho current directory should be set to the CMU Common Lisp release area. If you have any trouble with

FTP access, please send mail to 'slisp~cs. cmu. edu'.
The release area holds compressed tar files with names of the form:

version-machine os. tar. Z

FTP compressed tar archives in binary mode. To extract, 'cd' to the directory, that is to be t l(i root of th,, t ree,

then type:

uncompress <file.tar.Z I tar xf -

The resulting tree is about 23 megabytes. For installation directions, see the section "'site initialization HI
README file at the root of the tree.

If poor network connections make it difficult to transfer a 10 meg file, the releaze is also availadle split into

five parts, with the suffix '.0' to '.4'. To extract fiom multiple files, use:

cat file.tar.Z.* I uncompress I tar xf - .

The release area also contains source distributions and other binary distributions. A listing, of tihe current
contents of the release area is in 'FILES'. Major release announcements will be made ito comp.lang.lisp until

there is enough volume to warrant a comp. lang. lisp. cmu.

1.4 Source Availability

Lisp and documentation sources are available via anonymous FTP ftp to any CMU CS machine. All ('CM
written code is public domain, but CMU CL also makes use of two imported packages: I'CL and ('LX. .\lthouJI

these packages are copyrighted, they may be freely distributed without any licensing agreenent, or fee. See the

'README' file in the binary distribution for up-to-date source pointers.
The release area contains a source distribution, which is an image of all tht, '.lisp' source tiles jus,'ed 1) biillt

a particular system ,,r-ion:

version-source.tar.Z (3.6 mig)

All of our riles (in-Juding the reiease area) are actuaily in the APl's file system. On thhe relee;Lse niadrn, . Ih,.

FTP server's home is the release directory: '/afs/cs.cmu.edu/project/clisp/release, l'Hi, actual workinu

source areas are in other subdirectcries of 'clisp', and you can directly l 'cd" to those directories if you know i.•

name. Due to the way anonymous FTP access control is done. it. is important to ,-d" to th,, s,,urc, direct )ry
with a single command, and then ho a "get.- opera' ion.
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1.5 Command Line Options

The command line syntax and environment is descri bed in the lisp( 1) roan page Iin the uiian/i/'an I di 1,c 4
the distribution. See also cmucl( 1). Currently Lisp accepts thle following switclies:

-core requires an argument that should he the name of a core tile. Rather than using Ow ie I.fault c~r" filt.
('/usr/misc/. lisp/lib/lisp. core'), the specified core tile Is loaded.

-edit specifies to enter Hemlock. A tile to edit may be specified by placing I t- laie ae of t lie- file, bet w-'.i tie,

program name (usually 'lisp') and the first switch.

-oval accepts one argument which should be a Lisp form to evaluate during the start tip sequience. Thei %ain,-
of the form will not be printed unless It is wrapped in a form that does output.

-hinit accepts an argument that should be the name of thle hemlock mnit rile to load the first [iniie the functionl
ed is invoked. The default is Lo !oad 'hemlock- init. od)ect- tvpc', or if that Ioes niot exist. 'henrlock-
init lisp' from the user's hoine directory. If thle file is niot Iin te lie ser's licite directoryV, the f-ill 1,:it
must be specified.

-init accepts an argument that should be thle tianie of an mnit, file to load dutring th lintormial start ui)ý pin,
The default is to load 'iitobject-tYpe' or, if th-tt does niot exist, miit .lisp' from the use-rs. hýi
directory. If the file is not in thle user's hiotme dire. ory, lie fhill pauth i iiist e, specified.

-noinit accepts no arguments and specifies that an mnit. file should riot, he loaded diiritig Ow niiormiil sta ;ir'
sequence. Also, this switch suppresses the loadingl of a hendlork itiit file 6litihem linlock IS ýt ;irt- Ill ik wIth
the -edit switch.

-load accepts an argument which should be the tiame of a file !o loa into LispI before ýniering [ip ~l.i
print loop.

-slave specifies that Lisp should star' up as a slave Lisp and try to connect t) anl editor .'p 1li
name of the editor to connect to must be specified - to find the editor'.-i na;nie. use 11w kt;
"Accept Slave Connections" comimnand. rihe nameit for the edit or L.isp is of thle foritiv

machine-namie: socket

where machine-narne is the internet host nartie '*o-r th lieniaclinite anld socket is thoi '11ee il~ [i111ik ii 4o fth
socket to connect to.

For more details on the use of the -edit and -slave swit ches, see the H~emlock I set s .banija!.
Arguments to the above switches can be specified Iin one( of two wa~ s: switch value or iilupt>v '

For example, to start up the saved core lilt' iniylsp core uise eitliet (f th. fuii,-i iit, t we,'i 0:1

lisp -core=mylisp. core
lisp -core mylisp.core

1.6 Credits

Since 1981 many people have contribujted to thle developmient of ( NIV ( iiiii I pl I 1w ciir w0 I 1%
members are:

David Axrnark
Miles Bader
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Tim Moore
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Chapter 2

Design Choices and Extensions

Several design choices in Common Lisp are left to the individual implementation, and some essential parts of
the programming environment are left undefined. This chapter discusses the most important design choices and
extensions.

2.1 Data Types

2.1.1 Symbols

As in Common Lisp: The Language, all symbols and package names are printed in lower case, as a user is likely
to type them. Internally, they are normally stored upper case only.

2.1.2 Integers

The fixnum type is equivalent to (signed-byte 30). Integers outside this range are represented as a bignum or
a word integer (see section 5.10.6, page 80.) Almost all integers that appear in programs can he rpr,.senit,,l ;i>
a f ixnum, so integer number consing is rare.

2.1.3 Floats

CMU Common Lisp supports two floating point formats: single-float and double-float. These are Hi-
plemented with IEEE single and double float arithmetic, respectively, short-float is a synotnym for single-
float, and long-float is a syn onymn for double-float. The initial value of *read-default-float-format*
is single-float.

Both single-float and double-float are represente(d with a pointer descriptor. so float inper;itions can Causie
number consing. Number consing is greatly reduced if programs are written to allow the use of non-d.scriptor
representations (see section 5.10. page 76.)

2.1.3.1 IEEE Special Values

CMU Common Lisp supports the IEEE infinity and NaN spocial values. These tio-nu-meric values will only I,,
generated when trapping is d isabled for sotime floating pomint exce'ption (see section 2. 1.3, 1. pug', 6). ,us'r ,4
the default configuration need not concern themselves with sperial vahles.

extensions: short-float-positive-infinity ( '.fi n11

extensions: short-float-negative-infinity "t uui

extensions: single-float-positive-infinity L( ',,fl

extensions: single-float-negative-infinity [( ',,n/

extensions :double-float-positive-infinity [,,"

extensions :double-float-negative-infinity ,

7) L
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extensions: long-float-positive-infirity [Constant]
extensions: lo~ig-float-negative-infinity [Con 7s! S ]

The values of these constants are the IEEE positive and negative infinity objects for each float format.

extensions :float-infinity-p x [Fivieionj.

This function returns true if x is an IEEE float infinity (of either sign.) x must be a float

extensions :float-nan-p x [Ftuncflon]
extensions :float-trapping-nan-p x [Function]

float-nan-p returns true if x is an IEEE NaN (Not A Number) object. float-trapping-nan-p returns
true only if x is a trapping NaN. With either function, x must be a float.

2.1.3.2 Negative Zero

The IEEE float format provides for distinct positive and negative zeros. To test the sign on zero (or -ny other
float), use the Common Lisp f loat-sign function. Negative zero prints as -0.Of 0 or -0.OdO.

2.1.3.3 Denormalized Floats

CMU Common Lisp supports IEEE denormalized floats. Denormalized floats provi(d, a mechanism for grad-
ual underflow. The Common Lisp float-precision function returns the actual precision of a denornalized
float, which will be less than float-digits. Note that in order to generate (or even print) denormalized
floats, trapping must be disabled for the underflow exception (see section 2.1.3.4, page 6.) The Common Lisp
least-positive-format-float constants are denormalized.

extensions: float-normalized-p x r 10n(1o00

This function returns true if x is a denormalized float. x must be a float.

2.1.3.4 Floating Point Exceptions

The IEEE floating point standard defines several exceptions that occur when the reshlt of a floating point
operation is unclear or undesirable. Exceptions can be ignored, in which case some default action is taken, such
as returning a special value. When trapping is enabled for an exception, a error is signalled wheneer rhat
exception occurs. These are the possible floating point exceptions:

:unaeriiow Tills exception occurs when the result of an operation is too small to be represented as a normal-
ized float in its format. If trapping is enabled, the floating-point-underflow condition is signalled.
Otherwise, the operation results in a denormalized float or zero.

:overflow This exception occurs when the result of an operation is too large to be represented as a float in
its format. If trapping is enabled, the floating-point-overflow exception is sigtialled. Ot li,'rwise. thI,'
operation results in the appropriate infinity.

:inexact This exception occurs when the result of a floating point operation is not exact. i.e. tlhe result
was rounded. If trapping is enabled, the extensions:floating-point-inexact ,cotdition is ,ignalltd.
Otherwise, the rounded result is returned.

:invalid This exception occurs when the result of an operation is ill-defined. such as (/ O. 0.0). If trallii.-,
is enabled, the extensions: floating-point-invalid -otlitiott is siInahl,,l. ()th,;rw I ,,. liwiI NN-
returned.

:divide-by-zero This exception occurs when a float is divided by zero. If trappini is ,'cial,,dI. lh, divide-
by-zero condition is signialled. Otherwise, Ilth approp)riate itifitiitv is rtrne,.
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2.1.3.5 Floating Point Rounding Mode

IEEE floating point specifies four possible rounding modes:

:nearest In this mode, the inexact results are rounded to the nearer of the two possible result values. If the
neither possibility is nearer, then the even alternative is chosen. This form of rounding is also called "roundl
to even", and is the form of rounding specified for the Common Lisp round function.

:positive-infinity This mode rounds inexact results to the possible value closer to positive infinity. This is
analogous to the Common Lisp ceiling function.

:negative-infinity This mode rounds inexact results to the possible value closer to negative infinity. This is
analogous to the Common Lisp floor function.

:zero This mode rounds inexact results to the possible value closer to zero. This is analogous to the Common
Lisp truncate function.

Warning: Although the rounding mode can be changed with set-floating-point-modes, use of any value
other than the Jefault (:nearest) can cause unusual behavior, since it will affect rounding done by CoMMon
Lisp system code as well as rounding in user code. In particular, the unary round function will •o)p dloinm.
round-to-nearest on floats, and instead do the selected form of rounding.

2.1.3.6 Accessing the Floating Point Modes

These functions can be used to modify or read the floating point modes:

extensions:set-floating-point-modes &key :traps :rounding-ntode [Jun ctiwi]
:fast-mode :accrued-exceptions

:current-exceptions
extensions :get-floating-point-modes [Fu nc tio!

The keyword arguments to set-floating-point-modes set various modes controlling how Iloating p['iii
arithmetic is done:

:traps A list of the exception conditions that should cause traps. [ossible exceptions are :underflow.
:overflow, :inexact, :invalid and :divide-by-zero. Initially all traps except : inexact ar' -'niahlel
See section 2.1.3.4, page 6.

:rounding-mode The rounding mode to use when the result is not exact. Possible values are :nearest.
:positive-infinity, :negative-infinity and :zero. Initially, the rounding roode is :nearest. see
the warning in section 2.1..3.5 about use of other rounding modes.

current-exceptions, :accrued-exceptions Lists of exception keywords used to set the exception flags. 1lie,
current-exceptions are the exceptions for the previous operation, so setting it is not very Useful. The
accrued-exceptions are a cumulative record of the exceptions that, occurred since the last time thes,'e ll:.
were cleared. Specifying () will clear any accrued exceptions.

fast-mode Set the hardware's "fast mode" flag, if any. When set. IEEE conforniance or ,lbuit ahilily ni: he.
impaired. Some machines may not have this feature, in which cast, thhe valui' is ;aitwava. nil- N, , 111,\lv
supported machines have a fast, mode.

If a keyword argument is not supplied, then the associated state is not changedl.
get-floating-point-modes returns a list, representing the state of the floatiig pii Intis. lu' lisl is ill

the same format as Lhe keyword arguments to set-floating-point-modes, ,o apply could he ist,. wiii set-

floating-point-modes to restore the rnmodes in ,ffect at the time of the call to get-floating-point-modes.



CHAPTER 2. DESIGN CHOICES AND EXTENSIONS

2.1.4 Characters

CMU Common Lisp implements characters according to Common Lisp: the Language II. The main difference
from the first version is that character bits and font have been eliminated, and the names of the types have been
changed. base-character is the new equivalent of the old string-char. In this implementation, all characters
are base characters (there are no extended characters.) Character codes range between 0 and 255, using the

ASCII encoding.

2.1.5 Array Initialization

If no : initial-value is specified, arrays are initialized to zero.

2.2 Default Interrupts for Lisp

CMU Common Lisp has several interrupt handlers defined when it starts up, as follows:

SIGINT (Ic) causes Lisp to enter a break loop. This puts you into the debugger which allows you to look at the
current state of the computation. If you proceed from the break loop, the computation will proceed from
where it was interrupted.

SIGQUIT (f) causes Lisp to do a throw to the top-level. This causes the current computation to be aborted, aIrd
control returned to the top-level read-eval-print loop.

SIGTSTP (Tz) causes Lisp to suspend execution and return to the Unix shell. If control is returned to Lisp. the
computation will proceed from where it was interrupted.

SIGILL, SIGMUS, SIGSEGV, and SIGFPE cause Lisp to signal an error.

For keyboard interrupt signals, the standard interrupt character is in parentheses. Your . login' may set up
different interrupt characters. When a signal is generated, there may be some delay before it is processed since
Lisp cannot be interrupted safely in an arbitrary place. The computation will continue until a safe point is
reached and then the interrupt will be processed. See sPction 6.9.1. page 95 to define your own signal handlers.

2.3 Packages

When CMU Common Lisp is first started up, the default package is the user package. The user package uses
the common-lisp, extensions, and pcl packages. The symbols exported from these three packages can be
referenced without package qualifiers. This section describes packages which have exported interfaces that tuaV
concern users. The numerous internal packages which implement parts of the system are not described here.
Package nicknames are in parenthesis after the full name.

alien, c-call Export the features of the Alien foreign data structure facility (see section 8, page 105I.)

pci This package contains PCL (Portable CommonLoops), which is a portable implementation of (LOS it,
Common Lisp Object System.) This implements most (but not all) of the feattires in tie ('LtOS chapt,,r
of Common Lisp: The Lanuruaqe2.

debug The debug package contains the command-line oriented db'bugger. It. exports wtility various funetions aIlh
switches.

debug-internals The debug-internals package exports the primitiv es use,, to writ,' le, r>, S,,,,
10. page 123.

extensions (ext) The extensions packages exports ,local ,xltnsions to t 'oniion l~isp hthat r,' I',,iti ,,lt,.,I iM
this manual. Examples include the save-lisp functoin and t imne parsing.

hemlock (ed) The hemlock package contains all thi, 'roe to intiplenitit Ieitulok ,oinnains.I' lh,' hemlock
package currently exports no symbols.
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hemlock-int ernals (hi) The hemlock-internals package contains code that implements low level primitives

and exports those symbols used to write Hemlock commands.

keyword The keyword package contains keywords (e.g., :start). All symbols in the keyword package are
exported and evaluate to themselves (i.e., the value of the symbol is the symbol itself).

profile The profile package exports a simple run-time profiling facility (see section 5.13, page 86).

common-lisp (cl lisp) The common-lisp package exports all the symbols defined by Common Lisp: the Lan-
guage and only those symbols. Strictly portable Lisp code will depend only on the symbols exported from
the lisp package.

unix, mach These packages export system call interfaces to generic BSD Unix and Mach (see section 6, page 90).

system (sys) The system package contains functions and information necessary for system interfacing. This
package is used by the lisp package and exports several symbols that are necessary to interface to system
code.

common-lisp-user (user cl-user) The common-lisp-user package is the default package and is where a user's
code and data is placed unless otherwise specified. This package exports no symbols.

xlib The xlib package contains the Common Lisp X interface (CLX) to the X1l protocol. This is mostly lisp
code with a couple of functions that are defined in C to connect to the server.

wire The wire package exports a remote procedure call facility (see section 9, page lII).

2.4 The Editor

The ed function invokes the Hemlock editor which is described in Hemlock User's Manual and Hemlock Commandl
fmplementor's Manual. Most users at CMU prefer to use Hemlock's slave Common Lisp mechanism which
provides an interactive buffer for the read-eval-print loop and editor commands for evaluating and compiling
text from a buffer into the slave Common Lisp. Since the editor runs in the Common Lisp. using slaves kocpl-
users from trashing their editor by developing in the same Common Lisp with Hemlock.

2.5 Garbage Collection

CMU Common Lisp uses a stop-and-copy garbage collector that compacts the items in dynamic space every tiue
it runs. Most users cause the system to garbage collect (GC) frequently, long before space is exhausted. With
16 or 24 megabytes of memory, causing GC's more frequently on less garbage allows the system to (4, without
much (if any) paging.

The following functions invoke the garbage collector or control whether automatic arbage collectionl is iII
effect:

extensions :gc ( FI['h ctoull]

This function runs the garbage collector. If ext :*gc-verbose* is non-nil, then it, invokes ext :*gc-notify-
before* before GC'ing and ext : *gc-notify-after* aflerwards.

extensions: gc-off 7i1 1i o 11

This function inhibits aitoniatic garbage collection. After calling it. thle Sstti will nori (W Iilles's y,,I .-:I1I
ext:gc or ext:gc-on.

extensions :gc-on 11ol)

This function reinstates aitomatic garbage collection. If the system wouhl have (;( "'"d while ;t lit (;('
was inhibited, then this will call ext:gc.

The following variables control lie behavior of tilie garbage collector:



CHAPTER 2. DESIGN CHOICES AND EXTENSIONS 10

extensions: *bytes-consed-between-gcs* [Variable]

CMU Common Lisp automatically GC's whenever the amount of memory allocated to dynamic objects
exceeds the value of an internal variable. After each GC, the system sets this internal variable to the anmount
of dynamic space in use at that point plus the value of the variable ext: *bytes-consed-between-gcs*. Tlt-
default value is 2000000.

extensions: *gc-verbose* [V 'ariable]
This variable controls whether ext:gc invokes the functions in ext:*gc-notify-before* and ext:*gc-

notify-after*. If *gc-verbose* is nil, ext:gc foregoes printing any messages. The default value is T.

extensions: *gc-notity-before* [ Variable]
This variable's value is a function that should notify the user that the system is about to GC. It takes one

argument, the amount of dynamic space in use before the GC measured in bytes. The default value of this
variable is a function that prints a message similar to the following:

[GC threshold exceeded with 2,107,124 bytes in use. Commencing GC.I

extensions: *gc-notify-after* qr['ariak6I
This variable's value is a function that should notify the user when a GC finishes. The function niust take

three arguments, the amount of dynamic spaced retained by the GC, the amount of dynamic space freed, and
the new threshold which is the minimum amount of space in use before the next GC will occur. All values are
byte quantities. The default value of this variable is a function that prints a message similar to the following:

[GC completed with 25,680 bytes retained and 2,096,808 bytes freed.]
[GC will next occur when at least 2,025,680 bytes are in use.]

Note that a garbage collection will not happen at exactly the new threshold printed by the default ext : *gc-
notify-after* function. The system periodically checks whether this threshold has been exceeded, and '1 ly
then does a garbage collection.

extensions: *gc-inhi.bit-hook* [I iruJblK
This variable's value is either a function of one argument or nil. When the system Iias triggered an automat ic

GC, if this variable is a function, then the system calls the function with the amount of dynamic space currently
in use (measured in bytes). If the function returns nil, then the GC occurs: otherwise, the syvsten iiniihits
automatic GC as if you had called ext:gc-off. The writer of this hook is responsible for knowing when
automatic GC has been turned off and for calling or providing a way to call ext:gc-on. The default value of
this variable is nil.

extensions: *before-gc-hooks* [IVarzabSt
extensions: *after-go-hooks* t (rtlablb-

These variables' values are lists of functions to call before or after any GC occurs. The system provide~s tlies,•
purely for side-effect, and the functions take no arguments.

2.6 Describe

In addition to the basic function described below. there are a iumbner of switchi,s and ,'ther t himn"s thhat can ho
Iised to control describe's be.havior.

describe object &optional streamn /,FtcI
The describe function prints useful information about ohject on streaam, which defaults to *standard-

output*. For any object., describe will print out the type. Then it prints other information Pii hbaI ,ni he tI ,
of object. The types which art, prsently handled are:
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hash-table describe prints the ni,tuber of entries currently in the hash table and the number of buckets
currently allocated.

function describe prints a list of the function's name (if any) and its formal parameters. If the name has
function documentation, then it will be printed. If the function is compiled, then the file where it, is defined
will be printed as well.

f ixnum describe prints whether 'he integer is prime or not.

symbol The symbol's value, propl:rties, and documentation are printed. If the symbol has a functiorl definition.
then the function is describ cd.

If there is anything interesting to be said about some component of the object, describe will invoke itself recur-
sively to describe that object. The level of recursion is indicated by indenting output.

extensions: *describe-level* [tVariable]
The maximum level of recursive description allowed. Initially two.

extensions: *describe-indentation* r i b

The number of spaces to indent for each level of recursive description, initially three.

eXxtensions: *describe-print-level* irbh]

extensions: *describe-print-length* [ ari'hb

The values of *print-level* and *print-length* during description. Initially two and five.

2.7 The Inspector

CMU Common Lisp has both a graphical inspector that uses X windows and a simple terminal-based inspector.

inspect &optional object [F•iictionl

Inspect calls the inspector on the optional argument object. If object is unsupplied, inspect immediately
returns nil. Otherwise, the behavior of inspect depends on whether Lisp is running under X. When inspect is
eventually exited, it returns some selected Lisp object.

2.7.1 The Windowing Inspector

If X is available, inspect creates an X window and displays object in the window. While inspect is runniiin
and the cursor is in the inspector's X window, mouse clicks and keyboard input. have the following meaninii:

Left When the left mouse button is clicked over a component object, that object will be inspected in thle currell
inspector window.

Middle When the middle mouse button is clicked over a component object, inspect is exited returniii ii,,
component as the result. All the new inspector windows are deleted.

Shift Middle When the shift key is depressed and the middle mouse button is clicked over a ,'omponent objec•.
inspect exits and returns tile component as the result. All the, inspector windows ;are left lisd•ly'el i

the screen.

Right When the right mouse butt on is clicked over a component object, thal object will be i rspkctte ill a wP

inspector window.

d. D When either d or D is typed, the current window is deleted. If there are no mnore windows, lihen inspect

exits and returns the original object.
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h, H, ? When any of h, H, or ? are typed while in an inspector window, a new window with help information
is displayed.

rin, M When either m or M is typed, a component object may be modified. The cursor changes to an arrow
with an M beside it. Clicking any mouse button while the mouse is over a component will select that
component as the destination for modification. If m was typed, the source object is also selected by the(
mouse which is indicated by an S beside the arrow in the cursor. If M was typed, the source object will be
prompted for on the *query-io* stream. The source object replaces the destination object. While choosing
the destination or source with the mouse, the operation can be aborted by type q or Q.

q, Q Whet, either q or Q is typed, inspect exits and returns the original object. All new inspector windows
are deleted.

p, P When either p or P is typed, inspect exits and returns the original object. All the inspector windows are
left on the screen.

r, R When either r or R is typed, the current inspector display is recomputed. This is necessary to maintain a
consistent display for an object that may have changed since the display was originally computed.

u, U When either u or U is typed, the object of which the current object is a component is displayed. This is
the inverse operation to clicking the left mouse button over a component object. If the window is currcintly
displaying the top level object, nothing changes.

When the cursor is over a component object, the object is highlighted with a surroundting box.

2.7.2 The TTY Inspector

If X is unavailable, a terminal inspector is invoked. The TTY inspector is a crude interface to describe which
allows objects to be traversed and maintains a history. This inspector prints information about and object and a
numbered list of the components of the object. The command-line based interface is a normal read-eval-print
loop, but an integer n descends into the n'th component of the current object, and symbols with these special
names are interpreted as commands:

U Move back to the enclosing object. As you descend into the components of an object. a stack of all thie objec!ýs
previously seen is kept. This command pops you up one level of this stack.

Q, E Return the current object from inspect.

R Recompute object display, and print again. Useful if the object may have changed.

D Display again without recomputing.

H, ? Show htlp message.

2.8 Load

load filename fkey :verbose :print :if-does-not-exist l:uctwu'
:if-source-newer :contents

As in standard Common Lisp, this function loads a file containing source or object code into the running Lisp.

Several CMU extensions have been made to load to conveniently support a variety of program file, organizations.
filename may be a wildcard pathname such as -*. lisp', in which case all matching files are loadd.

If filename has a patlname-type (or extension), then that exact file is loaded. If Ihe tile has no ,xte,,nsicu.
then this tells load to use a heuristic to load the "right" file. The *load-source-types* and *load-object-
types* variables below are used to determine the default source and object file types. If only the source or the
object file exists (but not both), then that file is quietly loaded. Similarly, if both the source and object tile exist,
and the object file is newer than the source file, then the object file is loaded. The value of the if-.ource-tnewr
argument is used to determine what action to take when both the source and object, tiles exist, but the ob)Ject
file is out of date:
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:load-object The object file is loaded even though the source file is newer.

:load-source The source file is loaded instead of the older object file.

:compile The source file is compiled and then the new object file is loaded.

:query The user is asked a yes or no question to determine whether the source or object file is loaded

This argument defaults to the value of ext:*load-if-source-newer* (initially :load-object.)
The contents argument can be used to override the heuristic (based on the file extension) that normally

determines whether to load the file as a source file or an object file. If non-null, this argument must be either
:source or :binary, which forces loading in source and binary mode, respectively. You really shouldn't ever
need to use this argument.

extensions: *load-source-types* Varzablc]

extensions: *load-object-types* [ Vaiabh•]

These variables are lists of possible pathname-type values for source and object files to be passed to load.
These variables are only used when the file passed to load has no type; in this case, the possible source and
object types are used to default the type in order to determine the names of the source and object files.

extensions: *load-if-source-newer* [ V"irtablej

This variable determines the default value of the if-source-newer argument to load. Its initial value is
:load-object.

2.9 The Reader

extensions: *ignore-extra-close-parentheses* [a rta bIc]

If this variable is t (the default), then the reader merely prints a warning when an ,xt ra close parent hesis is
detected (instead of signalling an error.)

2.10 Running Programs from Lisp

It is possible to run programs from Lisp by using the following function.

extensions:run-program program args &key :env :wait :pty :input V Lun(.tor)]
:if-input-does-not-exist
:output ...

Run-program runs program in a child process. Program should be a pathname or string naming the program.
Args should be a list of strings which this passes to program as normal Unix parameters. For no arguntets.
specify args as nil. The value returned is either a process structure or nil. The process interface follows the
description of run-program. If run-program fails to fork the child process, it returns nil.

Except for sharing file descriptors as explained in keyword argument descriptions, run-program closes all file
descriptors in the child process before running the program. When you are done using a process. call process-
close to reclaim system resources. You only need to do this when you supply :stream for one of :input.
:output, or :error, or you supply :pty non-nil. You catn 'all process-clase regardless (4 wh,'ther you must
to reclaim resources without penalty if you feel safer.

run-program accepts the following keyword arguments:

:env This is an a-list mapping keywords and simple-strings. The default is ext:*environment-list*. If :env
is specified, run-program uses the value given and does not combine t lie environntnt pa.'ssed lo Lisp wil h
the one specified.

:wait If non-nil (the default). wait until the child process terminates. If nil, contitin, ruinimtn lisp while, lle
child process runs.
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:pty Th;s should be one of t, nil, or a stream. If specified non-nil, the subprocess executes under a 1Unix

PTY. If specified as a stream, the system collects all output to this pty and writes it to this stream. If
specified as t, the process-pty slot contains a stream from which you can read the program's output and
to which you can write input for the program. The default is ril.

input This specifies how the program gets its input. If specified as a string, it is the name of a file that contains
input for the child process. rum-program opens the file as standard input. If specified as nil (the default),
then standard input is the file '/dev/null'. If specified as t, the program uses the current standard input.

This may cause some confusion if :wait is nil since two processes may use the terminal at the same time.

If specified as : stream, then the process-input slot contains an output stream. Anything written to this
stream goes to the program as input. :Input may also be an input stream that already contains all the

input for the process. In this case run-program reads all the input from this stream before returning, so
this cannot be used to interact with the process.

:if-input-does-not-exist This specifies what to do if the input file does not exist. The following values are
valid: nil (the default) causes run-program to return nil without doing anything; : create creates the
named file; and : error signals an error.

:output This specifies what happens with the program's output. If specified as a pathname, it is the name of
a file that contains output the program writes to its standard output. If specified as nil (the default), all

output goes to '/dev/null'. If specified as t, the program writes to the Lisp process's standard output.
This may cause confusion if :wait is nil since two processes may write to the terminal at the same IluIe.
If specified as : stream, then the process-output slot contains an input stream from which you call read
the program's output.

:if-output-exists This specifies what to do if the output file already exists. The following values are valid:
nil causes run-program to return nil without doing anything; : error (the default) signals an error:
:supersede cverwrites the current file; and :append appends all output to the file.

:error This is similar to :output, except the file becomes the program's standard error. Additionally, :error
can be :output in which case the program's error output is routed to the same place specified for :output.
If specified as : stream, the process-error contains a stream similar to the process-output slot when
specifying the :output argument.

if-error-exists This specifies what to do if the error output file aiready exists. It accepts the same values
as : if-output-exists.

:status-hook This specifies a function to call whenever the process changes status. This is especially useful
when specifying :wait as nil. The function takes the process as a required argument.

:before-execve This specifies a function to run in the child process before it becomes the program to run. This
is useful for actions such as authenticating the child process without modifying the parent Lisp process.

2.10.1 Process Accessors

The following functions interface the process returned uy run-program:

extensions :process-p thing Functoi
This function returns t if thing is a process. Otherwise it returns nil

extensions :process-pid process [/11n, l1,o1)

This function returns the process [D, an integer, for the procss.

extensions:process-status process F1.un I? co,,

This function returns the current status of process. which is one of :running, :stopped. :exited, or
:signaled.



CHAPTER 2. DESIGN CHOICES AND EXTENSIONS 15

extensions: process-exit-code process [Fu nchon]

This function returns either the exit code for process, if it is :exited, or the termination signal process if it
is :signaled. The result is undefined for processes that, are still alive.

extensions :process-core-dumped process [Function]

"This function returns t if someone used a Unix signal to terminate the process and caused it to dump a Vnix
core image.

extensions :process-pty process [Funchon]

This function returns either the two-way stream connected to process's Unix PTY connection or nil if there
is none.

extensions :process-input process [Function]

extensions :process-output process [Functionl

extensions:process-error process [Fu nct0on0

If the corresponding stream was created, these functions return the input, output or error file descriptor, nil
is returned if there is no stream.

extensions :process-status-hook process [Foncoon]

This function returns the current function to call whenever process's status changes. This function takes the
process as a required argument. process-status-hook is setf'able.

extensions :process-plist process [Functionl

This function returns annotations supplied by users, and it is setf'able. This is available solely for users to
associate information with process without having to build a-lists or hash tables of process structures.

extensions:process-wait process &optional check-for-stopped ult:ni

This function waits for process to finish. If check-for-stopped is non-nil, this also returns when process stops.

extensions:process-kill process signal &optional whom [Func1ton1

This function sends the Unix signal to process. Signal should be the number of thei signal or a kevworl with
the Unix name (for example, :sigsegv). Whom should be one of the following:

:pid This is the default, and it indicates sending the signal to process only.

:process-group This indicates sending the signal to process's group.

:pty-process-group This indicates sending the signal to the process group currently in the foreground on the

Unix PTY connected to process. This last option is useful if the running program is a shell, and von wish
to signal the program running under the shell, not the shell itself. If process-pty of process is nil. ,sing
this option is an error.

extensions: process-alive-p process LtuFllnoll

This function returns t if process's status is either :running or :stopped.

extensions: process-close process [Flnll tolI

This function closes all the streams associated with process. When you are dlone usingý a process, call tlls I.,
reclaim system resources.
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2.11 Saving a Core Image

A mechanism has been provided to save a running Lisp core image and to later restore it. This is coiveni,'ent if

you don't want to load several files into a Lisp when you first start it up. The main problem is the large sizt, ,f
each saved Lisp image, typically at least 20 megabytes.

extensions:save-lisp file &key :purify :root-structures :init-function FFuuto"
:load-init-file :print-herald
:process-command-line

The save-lisp function saves the state of the currently running Lisp core image in file. The keyworl
arguments have the following meaning:

:purify If non-NIL (the default), the core image is purified before it is saved. This means moving accessible Lisp
objects from dynamic space into read-only and static space. This reduces the amount of work the garbag,
collector must do when the resulting core image is being run. Also, if more than one Lisp is running on

the same machine, this maximizes the amount of memory that can be shared between the two proct's.

Objects in read-only and static space can never be reclaimed, even if all pointers to them are iroppf'l.

:root-structures This should be a list of the main entry points for the resulting core image. The purification
process tries to localize symbols, functions, etc., in the core image so that paging performance is itinpr,v,tI
The default value is NIL which means that Lisp objects will still be localized but prolbably not as opt m1iv•ly
as they could be. This argument has no meaning if :purify is NIL.

init-function This is a function which is called when the saved core is resumed The default function simply
aborts to the top-level read-eval-print loop. If the function returns, it will be the value of save-lisp.

:load-init-file If non-NIL, then load an init file; either the one specified on the contiiand lint, or
"'init 'fasl-type", or, if "'init.Y'asl-type" does not exist, init.lisp from the user's hoite Iir'ctt'r%
If the init file is found, it is loaded into the resumed core file before the read-eval-print loop is ,wter,"r(

:print-herald If non-NIL, then print out the standard Lisp herald when starting.

:process-command-line If non-NIL, processes the command line switches and performs the appropriat ,' act llns.

To resume a saved file, type:

lisp -core file

2.12 Search Lists

Search lists are an extension to Common Lisp pathnames. Search lists are used for two purpost's:

"* They provide a convenient shorthand for commonly used directory names, and

"* They allow the abstract (directory structure independent) specification of file locations in prouramn path-
name constants (similar to logical pathnames.)

Each search list has an associated list of directories (represented as pathnames with no name or typo compolit'iit
The namestring for any relative pathname may be prefixed with "'slist:", indicating that the pat hlnaiiit is rat nt
to the search list slist (instead of to the current working ,tirectory.) Once qualified with a so'arch list. flit, patt hianl,'
is no longer considered to be relative.

When a search list, qualified pathname is passed to a file-syst,'m operation stich as open. load or truename.
each directory in the search list is successively used as tlit' root of the pat hnanile untit tle tile is lo t'c,,t \h,.
a file is written to a search list directory, the file is always writ ten to the first directory ti t li ist.

extensions: search-list name f['11 oi (,f

This function returns the list of directories associate,] with the search list name. If narne is i•ot a ,t'tiwi,"
'earch list, then an error is signalled. W hen set. with setf, tihe list of directories is (hang;Lled to tlit,' lew value'• I"
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the new value 13 just a namestring or pathnamne, then it is interpreted as a one-elenierit list. Note that (unlike
Unix pathnames), search list names are case- insensitive.

extensions: search-list-defined-p name [Fuin r onl

extensions: clear-search-list name [Function]

search-lis', -defined-p returns t if name is a defined search list name, nil otherwise, clear-search-list
make the search list name undefined.

extensions :enumerate-search-list (var pathname [result] ) {form}* [Alacrol

This macro provides an interface to search list resolution. The body forms are executed with var hound to
each successive possible expansion for name. If name doe-, niot contain a search-list, thenr the bod, is executed
exactly once. Everything is wrapped in a block named nil, so return can he us(:d to terminate early. The result
form (defaulit nil) is evaluated to (determine the result of thle iteration.

2.12.1 Search List Example

The search list code: can he defined as follows:

(setf (ext:search-list "code:") '("/usrllisp/code/"))

It is now possible to use code: as anr ahbreviation for the directory /usr/l isp/ code!' in all ý`le ope~rat ions. Fr

example, you can now specify code: eval. lisp to refer to the file '/usr/l isp/ code/ eval. lisp'.
To obtain the value of a search-list name, use thre function searchi-list as follows:

(ext:search-list name)

Where name is the name of a search list as describedl above. For examlple. calling ext : search-list on code:
;is follows:

(ext:search-list "code:")

returns the list ("/usr/lisp/code/").

2.13 Time Parsing and Forn-atting

Functions are provided to allow parsing strings containing timo informnat ion and printing tine' ii vairiolis 1`oriwits,

are available.

extensions:parse-time tirne-string &key :error-on-mismatch :default-seconds :1), 1tIin
:default-minutes :default-houra
:detault-day ...

parse-time accepts a stilng containing a tinie (e.g.. 'Jan 12, 1952") and returns thle iiniversail tini' if' it is
sýuccessful. If it is unsuccessful and thre keyword argumnent : error-on-misluatch is noni-nil, it ;iLgnals ;an ,rror.
Otherwise it returns nil. The other keo'word arguments have the following meanii,g:

:default-seconds specifies the default, value for the seconds value if one is riot provided by iesri.li
default value is 0.

default -minutes specifies lie default value for thn' iiiiites, value if one, is not prevnl.'l 1,w Hir-ri i,
default value is 0.

dcefault-hours specifies the l.'aiilt value t'or the hours vadun' ifonte is no~t pruvidtlel lv titlie-.ring, lic 10':111
value is 0.

:default-day specifies thre de~faji t value for the laY %;dle'if J'aw is not pr aided ),. lin'-I"ringl-e Hw J); eli
value is the current lay.
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:default-month specifies the default value for the mionth value if one is niot provided by time-string. 'Fhe de~fault
val'ie is the current month.

def ault-year specifies the default value for the year value if one is not provided by tirrie-string Thle default
value is the current year.

:def ault-zone specifies the default value for theý time zone value if one is niot provided by tirnie-.strw:. T I I

default value is the current time zone.

:def ault-ueekday specifies the default value for the day of the week if one is not provided by tinme-string~. 'lw

default value is the current day of the w~ek.

Any of the above keywords can be given the value :current which means ~o use the current value as depterminewd
by a czd to the operating system.

extensions: format-u~niversal-time dest universal-time &key :timezone [Fuiictioivl
:style :date-first
:print-seconds..

ext ens ions :format -decoded-t ins dest seconds nuiriutes hours (lav monith year &- key ... Ful ( /tll

format-universal-time formats the time specified by universal-tiune, format-decoded-time formats Ow
time specified by seconds, nunutt-, hours, day, mionth. and year. Dest Is any destination at-teptod bLv he format
function. The keyword arguments have the following intaning:

:timezone is an integer specifying the hours west of Greenwich. :Timezone defaults to the currei.t tuinie zoie.

:style specifies the style to use in formatting the time. The legal values are:

: short specifies to use a numeric date.

: long specifies to format months and weekdays azi; words instead of numbers.

: abbreviated is similar to long except the words are abbreviated.

: government is similar to abbreviated, except the dlate is of the form "day mionth iiear" instoadt I f "m aw
(lay, year".

:datt,-first if non-nil (default) will place the date first. Otherwise, the time, is plcd Iirst.

:-'rint-seconds if non-nil ktdefault) will format the seconds as part of thle tinni. Otherwise, the, .... .L widllý1

be omitted.

:print-meridian if noni-nil (default) will format "AM" or PM"N" as Part of the tinie. Ut herwi-.'ý. iii' ' \Nl
or "PM" will he omitted.

:print-t imezone if non-nil (default) will format the ltime zone as part of the tlime. Ot herwise. tilt tilH /,i"ia

will be omitted.

:print-c econds if non-nil (,!efaul t) will format the secoiid1' as part of thle tiliie. Ut hervise. tiliet' nI will
be omitted.

:print-weekday if noni-nil (default) wiii format thli weekday as part of date. tilewie.th ,k hav;.
omitted.

2.14 Lisp Library

[hle (-'Nil Common Lisp project maintains a collection of useful or Interesting ogranisim writh iil\ 1Ar t iii`

,ysteinl. Thie library is it) 1 ab/contrib/'. Two files there that users, should rea"d are,

CATALOG.TXT Thisl- tile, rontaiiis a pag~e for each 'utiry inI the, library It -onitaim), inttemr~luit 'll uý till.

author. portability ,rlepetitlictic issuies. how to loead tilte t'lt rv. t(
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READ-ME.TXT This file describes the library's organization and all the possible pieces of information an

entry's catalog description could contain.

Hemlock has a command Library Entry that displays a list of the current library entries in an editor buffer

There are mode specific commands that display catalog descriptions and load entries. This is a simple and
convenient way to browse the library.



Chapter 3

The Debugger

By Robert MacLachlan

3.1 Debugger Introduction

The CMU Common Lisp debugger is unique in its level of support for source-level debugging of compiled Code.
Although some other debuggers allow access of variables by name, this seems to be the first Common Lisp
debugger that:

"* Tells you when a variable doesn't have a value because it hasn't been initialized yet or has already been
deallocated, or

"* Can display the precise source location corresponding to a code location in the debugged program.

These features allow the debugging of compiled code to be made almost indistinguishable from interpreted code
debugging.

The debugger is an interactive command loop that allows a user to examine the function call stack. Th,'
debugger is invoked when:

"* A serious-condition is signalled, and it is not handled, or

"* error is called, and the condition it signals is not handled, or

"* The debugger is explicitly invoked with the Common Lisp break or debug functions.

When you enter the debugger, it looks something like this:

Error in function CAR.
Wrong type argument, 3, should have been of type LIST.

Restarts:
0: Return to Top-Level.

Debug (type H for help)

(CAR 3)
0]

[he first group of lines describe what the error was that put us in the debugger. In this ca.se car was called
on 3. After Restarts: is a list of all tle ways that we can restart execution after this etror. In li,; , tahe'. th
only option is to return to top-lvel. After printing its banner, the debugger priwts tIhe , urreut t'rane and thli
debugger piompt.

29
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3.2 The Command Loop

The debugger is an interactive read-eval-print loop much like the normal top-level, but some symbols are inter-
preted as debugger commands instead of being evaluated. A debugger command starts with the symbol name
of the command, possibly followed by some arguments on the same line. Some commands prompt for additional
input. Debugger commands can be abbreviated by any unambiguous prefix: help can be typed as h, he. etc.
For convenience, some commands have ambiguous one-letter abbreviations: f for frame.

The package is not significant in debugger commands; any symbol with the name of a debugger command
will work. If you want to show the value of a variable that happens also to be the name of a debugger comnmand.
you can use the list-locals command or the debug:var function, or you can wrap the variable in a progn to
hide it from the command loop.

The debugger prompt is "frame]", where frame is the number of the current frame. Frames are numbered
starting from zero at the top (most recent call), increasing down to the bottom. The current frame is the frame
that commands refer to. The current frame also provides the lexical environment for evaluation of non-command
forms.

The debugger evaluates forms in the lexical environment of the functions being debugged. The debugger
can only access variables. You can't go or return-from into a function, and you can't call local functions.
Special variable references are evaluated with their current value (the innermost binding around the debugger
invocation) - you don't get the value that the special had in the current frame. See section 3A, page 21. for
more information on debugger variable access.

3.3 Stack Frames

A stack frame is the run-time representation of a call to a function; the frame stores the state that a function
needs to remember what it is doing. Frames have:

* Variables (see section 3.4, page 24), which are the values being operated on, and

o Arguments to the call (which are really just particularly interesting variables), and

* A current location (see section 3.5, page 25), which is the place in the program where t1w fitict ott was
running when it stopped to call another function, or because of an interrupt or error.

3.3.1 Stack Motion

These commands move to a new stack frame and print the name of the function and ihe( vahles< of its irgutun.tit>
in the style of a Lisp function call:

up Move up to the next higher frame. More recent function calls are considerd to he higher ott the slack.

down Move down to the next lower frame.

top Move to the highest frame.

bottom Move to the lowest frame.

frame (n I Move to the frame with i the specified number. 'roumpts for thle numbter if t•t supplied.

3.3.2 How Arguments are Printed

A frame is printed to look like a function call. but witll the, ;ctual argui ,'ent values ill l,. :irt.tmt'ttt psi iti,,ns
So the frame for this call in thte source:

(myfun (+ 3 4) 'a)

would lonkL i~t-p this:

(MYFUN 7 A)
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All keyword and optional arguments are displayed with their actual values; if the corresponding argument was
not supplied, the value will be the default. So this call:

(subseq "too" 1)

would look like this:

(SUBSEQ "too" 1 3)

And this call:

(string-upcase "test case")

would look like this:

(STRING-UPCASE "test case" :START 0 :END NIL)

The arguments to a function call are displayed by accessing the argument variables. Although those variables
are initialized to the actual argument values, they can be set inside the function; in this case the new value will
be displayed.

&rest arguments are handled somewhat differ,:ntly. The value of the rest argument variable is displayed as
the spread-out arguments to the call, so:

(format t "A is a -A." "This" 'test)

would look like thi'"

(FORMAT T "A is a -A." "This" 'TEST)

Rest arguments cause an exception to the normal display of keyword arguments in functions that have both
&rest and ftey arguments. In this case, the keyword argument variables are not displayed at all; the rest arg
is displayed instead. So for these functions, only the keywords actually supplied will be shown, and the values
displayed will be the argument values, not values of the (possibly modified) variables.

If the variable for an argument is never referenced by the function, it will be deleted. The variable value is
then unavailable, so the debugger prints <unused-arg> instead of the value. Similarly, if for any of a numbner
of reasons (described in more detail in section 3.4) the value of the variable is unavailable or not known to be
available, then <uaavailable-arg> will be printed instead of the argument value.

Printing of argument values is controlled by *debug-print-level* and *debug-print-length* (page 32).

3.3.3 Function Names

If a function is defined by defun, labels, or flet, then the debugger will print, the actual function niamr after
the open parenthesis, like:

(STRIIG-UPCASE "test case" :START 0 :END NIL)
((SETF AREF) # \a "for" 1)

Otherwise, the function name is a string, and will be printed in quotes:

("DEFUJ NYFUM" BAR)
("DEFMACRO DO" (DO ((I 0 (1+ I))) ((= I 13))) NIL)
("SETQ *GC-NOTIFY-BEFORE*")

"rhis string name is derived from the deftunmble form that encloses or expandf,, iuno li,, earl),i. ,u r 1w,
outermost enclosing form if there is no def mtutble.



CHAPTER 3. THE DEBUGGER 23

3.3.4 Funny Frames

Sometimes the evaluator introduces new functions that are used to implemer.t a user function, but are not directly
specified in the source. The main place this is done is for checking argument type and syntax. Usually these
functions do their thing and then go away, and thus are not seen on the stack in the debugger. But when you
get some sort of error during lambda-list processing, you end up in the debugger on one of these funny frames.

These funny frames are flagged by printing "[keyword]" after the parentheses. For example, this call:

(car 'a 'b)

will look like this:

(CAR 2 A) [:EXTERNAL]

And this call:

(string-upcase "test case" :end)

would look like this:

("DEFUN STRING-UPCASE" "test case" 335544424 1) [:OPTIONAL]

As you can see, these frames have only a vague resemblance to the original call. Fortunately, the error
message displayed when you enter the debugger wiiI usually tell you what problem is (in these cases, too many
arguments and odd keyword arguments.) Also, if you go down the stack to the frame for the calling function.
you can display the original source (see section 3.5, page 25.)

With recursive or block compiled functions (see section 5.7, page 69), an :EXTERNAL frame may appear
before the frame representing the first call to the recursive function or entry to the compiled block. This is a
consequence of the way the compiler does block compilation: there is nothing odd with your program. Vou will
also see :CLEANUP frames during the execution of unwind-protect cleanup code. Note that inline expansion anld
open-coding affect what frames are present in the debugger, see sections 3.6 and 4.8.

3.3.5 Debug Tail Recursion

Both the compiler and the interpreter are "properly tail recursive." If a function call is in a tail-recursive
position, the stack frame will be deallocated at the time of the call, rather than after the call returns. ('onsiler
this backtrace:

(BAR ... )
(FO0 ... )

Because of tail recursion, it is not necessarily the case that FOG directly called BAR. It may be that FOO called
some other function FO02 which then called BAR tail-recursively, as in this example:

(defun too ()

(foo2 ... )

(defun foo2 (...)

(bar ... ))

(defun bar (...)

Usually the elimination of tail-recursive frames makes debugging more pleasant. since theses frimes are in ,i 1i
uninformative. If there is any dotibt about how one function called another. it can usually be elirninatel by
finding the source location in the calling frame (section 3.5.)

For a more thorough discussion of tail recursion, see section 5.5, page 6i5.
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3.3.6 Unknown Locations and Interrupts

The debugger operates using special debugging information attached to the compiled code. This debug infor-
mation tells the debugger what it needs to know about the locations in the code where the debugger can be
invoked. If the debugger somehow encounters a location not described in the debug information, then it is said
to be unknown. If the code location for a frame is unknown, then some variables may be inaccessible, and tIie
source location cannot be precisely displayed.

There are three reasons why a code location could be unknown:

"* Ihere is inadequate debug iifufrlxdtioLn due to the valuc of th." debag optiuniza~iuoi qau;_'y. SU, .... iu:i ;.6.

page 27.

"* The debugger was entered because of an interrupt such as -C.

"* A hardware error such as "bus error" occurred in code that was compiled unsafely due to the value of
the saf ety optimization quality. See section 4.7.1, page 46.

In the last two cases, the values of argument variables are accessible, but may be incorrect. See section 3-4.1.
page 25 for more details on when variable values are accessible.

It is possible for an interrupt to happen when a function call or return is in progress. The debugger may
then flame out with some obscure error or insist that the bottom of the stack has been reached, when the real
problem is that the current stack frame can't be located. If this happens, return from the interrupt and trv
again.

When running interpreted code, all locations should be known. However, an interrupt might catch some
subfunction of the interpreter at an unknown location. In this case, you should be able to go up die stack a
frame or two and reach an interpreted frame which can be debugged.

3.4 Variable Access

There are three ways to access the current frame's local variables in the debugger. The simplest is to type the
variable's name into the debugger's read-eval-ptint loop. The debugger will evaluate the variable reference as
though it had appeared inside that frame.

The debugger doesn't really understand lexical scoping; it has just one namespace for ai! the variables in
a function. If a symbol is the name of multiple variables in the same function, then the reference appears
ambiguous, even though lexical scoping specifies which value is visible at any given source location. If the scopes
of the two variables are not nested, then the debugger can resolve the ambiguity by observinig that only one
variable is accessible.

When there are ambiguous variables, the evaluator assigns each one a small integer identifier. The debug: var
function and the list-loczals command use this identifier to distinguish between ambiguous variables:

list-locals [prefix]
This command prints the name and value of all variables in the current frame whose name has the specified
prefix. prefix may be a string or a symbol. If no prefix is given, then all available variables are printed. If
a variable has a potentially ambiguous name, then the name is printed with a "#identiuier" suffix, where
identifier is the small integer used to make the name unique.

debug:var name &optional identifier [ftuctinl

This function returns the value of the variable in the current frame with the specified name. If supplied.
identifier determines which value to return when there are ambiguous variables.

When name is a symbol, it is interpreted as the symbol name of the variable, i.e. the package is sitL.Ificallf.
If name is an uninterned symbol (gensym). then return the value of the uninterned variable with Ithe samie nanme.
If name is a string, debug: var interprets it as the prefix of a variable name. and must uuainbtiimmouslv ,ommi,'t
to the name of a valid variable.

This function is useful mainly for accessing the value of uninterned or ambiguouis variables, since m•ost
variables can be evaluated directly.



CHAPTER 3. THE DEBUGGER 25

3.4.1 Variable Value Availability

The value of a variable may be unavailable to the debugger in portions of the program where Common Lisp says
that the variable is defined. If a variable value is not available, the debugger will not let you read or write that
variable. With one exception, the debugger will never display an incorrect value for a variable. Rather than

displaying incorrect values, the debugger tells you the value is unavailable.
The one exception is this: if you interrupt (e.g., with -C) or if there is an unexpected hardware error such

"as "bus error" (which should only happen in unsafe code), then the values displayed for arguments to the
interrupted frame might be incorrect.' This exception applies only to the interrupted frame: any frame farther
down the stack will be fine.

The value of a variable may be unavailable for these reasons:

" The value of the debug optimization quality may have omitted debug information needed to determine
whether the variable is available. Unless a variable is an argument, its value will only be available when
debug is at least 2.

" The compiler did lifetime analysis and determined that the value was no longer needed, even though its
scope had not been exited. Lifetime analysis is inhibited when the debug optimization quality is 3.

" The variable's name is an uninterned symbol (gensym). To save space, the compiler only dumps debug
information about uninterned variables when the debug optimization quality is 3.

" The frame's location is unknown (see section 3.3.6, page 24) because the debugger was entered due to anu
interrupt or unexpected hardware error. Under these conditions the values of arguments will be available.
but might be incorrect. This is the exception above.

" The variable was optimized out of existence. Variables with no reads are always optimized away, even
in the interpreter. The degree to which the compiler deletes variables will depend on the value of the
compile-speed optimization quality, but most source-level optimizations are done under all compilation
policies.

Since it is especially useful to be able to get the arguments to a function, argument variables are treated
specially when the speed optimization quality is less than 3 and the debug quality is at least 1. With this
compilation policy, the values of argument variables are almost always available everywhere in the function, even
at unknown locations. For non-argument variables, debug must be at least 2 for values to be available, and oven
then, values are only available at known locations.

3.4.2 Note On Lexical Variable Access

When the debugger command loop establishes variable bindings for available variables, these variable bindings
have lexical scope and dynamic extent.- You can close over them, but such closures can't be used as upwar'l
funargs.

You can also set local variables using setq, but if the variable was closed over in the original source and
never set, then setting the variable in the debugger may not change the value in all the functions the variable is
defined in. Another risk of setting variables is that you may assign a value of a type that the comnpiler proved
the variable could never take on. This may result in bad things happening.

3.5 Source Location Printing

One of CM TJ Common Lisp's unique capabilities is source level debugging of compiled code. Tliewe ,o', uan Is
lisplay the source location for tlie current frane:

source [context]
This command displays the file that the current frame's function was definled from (if it was t,'liino, frtm ;I

file), and then the source form responsible for generating the code that the current frame %%s ,x,'cutuill. If
context is specified, then it is an integer specifying the nunmber of enclosing levels of list st ruct ure to print.

'Since the location of an interrupt or hardware error will always be an unknown location (see sectirn 3.3.6, page 2.1), ni--i viiinviv

variable values will never be available in the interruptedl frame.
'The variable bindings are, artiually created uising the Common Lisp symbol-macro-let special fory.
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vsource [context]
This command is identical to source, except that it uses the global values of *print-level* and *print-
length* instead of the debugger printing control variables *debug-print-level* and *debug-print-
length*.

The source form for a location in the code is the innermost list present in the original source that encloses
the form responsible for generating that code. If the actual source form is not a list, then some enclosing list
will be printed! For example, if the source form was a reference to the variable *some-random-special*, then
the innermost enclosing Pvaluiatcd form will be printed. Here are some possible enclosing forms:

(let ((a *some-random-special*))

(+ *some-random-special* ... )

If the code at a location was generated from the expansion of a macro or a source-level compiler opti-
mization, then the form in the original source that expanded into that code will be printed. Suppose the file
'/usr/me/mystuff.lisp' looked like this:

(defmacro mymac ()
' (myfun))

(defun too 0)
(mymac)

If foo has called myfun, and is waiting for it to return, then the source command would print:

; File: /usr/me/mystuff.lisp

(MHYAC)

Note that the macro use was printed, not the actual function call form, (myfun).
If enclosing source is printed by giving an argument to source or vsource, then the actual source form is

marked by wrapping it in a list whose first element is #:***HERE***. In the previous example, source 1 would
print:

; File: /usr/me/mystuff.lisp

(DEFUN FOO ()
(#:***HERE***

(MYMAC))

3.5.1 How the Source is Found

If the code was defined from Common Lisp by compile or eval, then the source can always be reliably located.
If the code was defined from a fasl file created by compile-file, then the debugger gets the source forms it
prints by reading them from the original source file. This is a potential problem. since the source file n1ijit haav,
moved or changed since the time it was compiled.

The source file is opened using the truename of the source file pathname originally given to the conipilr
This is an absolute pathname with all logical names and symbolic links expanded. If the file can'it 1w oi•,trl
using this name, then the debugger gives up and signals an error.

If the source file can he found, but has been modified since the time it was compiled. t lhe ,etb,,,h'r prinlts
this warning:

File has been modified since compilation:
filename

Using form offset instead of character position.
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where filename is the name of the source file. It then proceeds using a robust but not foolproof heuristic for
locating the source. This heuristic works if:

"* No top-level forms before the top-level form containing the source have been added or deleted, and

"* The top-level form containing the source has not been modified much. (More precisely, none of the list
forms beginning before the source form have been added or deleted.)

If the heuristic doesn't work, the displayed source will be wrong, but will probably be near the actual source.
If the "shape" of the top-level form in the source file is too different from the original form, then an error will
be signalled. When the heuristic is used, the the source location commands are noticeably slowed.

Source location printing can also be confused if (after the source was compiled) a read-macro you used in the
code was redefined to expand into something different, or if a read-macro ever returns the same eq list twice. If
you don't define read macros and don't use ## in perverted ways, you don't need to worry about this.

3.5.2 Source Location Availability

Source location information is only available when the debug optimization quality is at least 2. If source locat ion
information is unavailable, the source commands will give an error message.

If source location information is available, but the source location is unknown because of an interrupt or
unexpected hardware error (see section 3.3.6, page 24), then the command will print:

Unknown location: using block start.

and then proceed to print the source location for the start of the basic block enclosing the code location. It's a
bit complicated to explain exactly what a basic block is, but here are some properties of the block start, location:

". The block start location may be the same as the true location.

"* The block start location will never be later in the the program's flow of control than the true location.

"* No conditional control structures (such as if, cond, or) will intervene between the block start and the
true location (but note that some conditionals present in the original source could be optimized away.)
Function calls do not end basic blocks.

"* The head of a loop will be the start of a block.

"* The programming language concept of "block structure" and the Common Lisp block speial form ;Ir,•
totally unrelated to the compiler's basic block.

In other words, the true location lies between the printed location and the next conditional (but watch out
because the compiler may have changed the program on you.)

3.6 Compiler Policy Control

The compilation policy specified by optimize declarations affects the behavior seen in the debugger. Th,"
debug quality directly affects the debugger by controlling the amount of debugger information dumped. Ot her
optimization qualities have indirect but observable effects due to changes in the way compilation is dIone.

Unlike the other optimization qualities (which are compared in relative value to evaluate tradeoffs), tlhe debug
optimization quality is directly translated to a level of debug information. This absolute inlerpretatitul alliws
the user to count on a particular amount of debug information being available even when the values of t li,, t her

qualities are changed during compilation. These are the levels of debug information that corr,'p, tl to the v~il,.s
of the debug quality:

0 Only the function nani', and enough information to allow the stack to be parsed.

> 0 Any level greater than 0 gives level 0 plus all argument variables. Values will only be accssilHe if II,,
argument variable is never set and speed is not 3. (MI1 Common Lisp allows aiiy real vali," for
mization qualities. It may be useful to specify 0.S to let backtrace arguinint ,isplav without :•r•;rc•l
documentation.
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1 Level 1 provides argument documentation (printed arglists) and derived argument/result type information.
This makes describe more informative, and allows the compiler to do compile-time argument count and
type checking for any calls compiled at run-time.

2 Level 1 plus all interned local variables, source location information, and lifetime information that tells the
debugger when arguments are available (even when speed is 3 or the argument is set.) This is the default.

3 Level 2 plus all uninterned variables. In addition, 1' time analysis is disabled (even when speed is 3), ensuring
that all variable values are available at any known location within the scope of the binding. This has a
speed penalty in addition to the obvious space penalty.

As you can see, if the speed quality is 3, debugger performance is degraded. This effect comes from the
elimination of argument variable special-casing (see section 3.4.1, page 25.) Some degree of speed/debuggability
tradeoff is unavoidable, but the effect is not too drastic when debug is at least 2.

In addition to inline and notinline declarations, the relative values of the speed and space qualities also
change whether tunctions are inline expanded (see section 5.8, page 72.) If a function is inline expanded, then
there will be no frame to represent the call, and the arguments will be treated like any other local variable.
Functions may also be "semi-inline", in which case there is a frame to represent the call. but the call is to an
optimized local version of the function, not to the original function.

3.7 Exiting Commands

These commands get you out of the debugger.

quit Throw to top level.

restart [n]
Invokes the nth restart case as displayed by the error command. If n is not specified, the available restart
cases are reported.

go Calls continue on the condition given to debug. If there is no restart case named continue, then an error is
signaled.

abort Calls abort on the condition given to debug. This is useful for popping debug command loop levels or
aborting to top level, as the case may be.

3.8 Information Commands

Most of these commands print information about the current frame or function, but a few show general infor-
mation.

help, ? Displays a synopsis of debugger commands.

describe Calls describe on the current function, displays number of local variables, and indicates whether the,
function is compiled or interpreted.

print Displays the current function call as it would be displayed by moving to this frame.

vprint (or pp) [verbosity]
Displays the current function call using *print-level* and *print-length* instead of *debug-print-
level* and *debug-print-length*. verbosity is a small integer (default 2) that controls ot her ,lininsioii.•
of verbosity.

error Prints the condition given to invoke-debugger and the active proceed cases.

backtrace (n]
Displays all the frames from the current to the bottom. Only shows n frames if specified. Tue, printin, is
controlled by *debug-print-level* and *debug-print-length*.
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3.9 Breakpoint Commands

CMU Common Lisp supports setting of breakpoints inside compiled functions and stepping of compiled code.
Breakpoints can only be set at at known locations (see section 3.3.6, page 24), so these commands are laigely

useless unless the debug optimize quality is at least 2 (see 'ection 3.6, page 27). These commands manipulate,
breakpoints:

breakpoint location {option value})
Set a breakpoint in some function. location may be an integer code location number (as displayed by list-

locations) or a keyword. The keyword can be used to indicate setting a breakpoint at the function start
(:staxt, :s) or function end (:end, :e). The breakpoint command has : condition, :break, :print and

:function options which work similarly to the trace options.

list-locations (or 11) [function]
List all the code locations in the current frame's function, or in function if it is supplied. The display
format is the code location number, a colon and then the source form for that location:

3: (1- N)

If consecutive locations have the same source, then a numeric range like 3-5: will be printed. For example.
a default function call has a known location both immediately before and after the call, which would rtesult
in two code locations with the same source. The listed function becomes the new default function for
breakpoint setting (via the breakpoint) command.

list-breakpoints (or lb)
List all currently active breakpoints with their breakpoint number.

delete-breakpoint (or db) [number]
Delete a breakpoint specified by its breakpoint number. If no number is specified, delete all breakpoints.

step
Step to the next possible breakpoint location in the current function. This always steps over function -:dls.
instead of stepping into them

3.9.1 Breakpoint Example

Consider this definition of the factorial function:

(defun ! (n)
(if (zerop n)

1
(* n (! 1- n)))))

"This debugger session demonstrates the use of breakpoints:

common-lisp-user> (break) ; Invoke debugger

Break

Restarts:
0: [CONTINUE] Return from BREAK.
1: [ABORT ] Return to Top-Level,

Debug (type H for help)

(INTERACTIVE-EVAL (BREAK))
0) 11 *',!
0: #'(LAMBDA (N) (BLOCK ! (IF 9 1 #)))
1: (ZEROP N)
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2: (* N (! (1- N)))
3: (1- N)
4: ! (1- 1))
s: (,N (0 (0- NM)

6: #'(LAMBDA (N) (BLOCK ! (IF # 1 )))
0) br 2
(* N C! 0l- N)))
1: 2 in
Added.
0] q

common-lisp-user> (! 10) ; Call the function

*Breakpoint hit*

Restarts:
0: [CONTINUE] Return from BREAK.
1: [ABORT I Return to Top-Level.

Debug (type H for help)

(0 10) ; We are now in first call (arg 10) before the multiply
Source: (* N (! (1- N)))
3] st

*Step*

(! 10) ; We have finished evaluation of (1- n)
Source: (1- 9)
3) St

*Breakpoint hit*

Restarts:
0: [CONTINUE] Return from BREAK.
1: [ABORT ] Return to Top-Level.

Debug (type H for help)

(0 9) ; We hit the breakpoint in the recursive call
Source: (* N (0 (1- N)))
3]

3.10 Function Tracing

The tracer causes selected functions to print their arguments and their results whenever t hey are ,alled. Opt in01
allow conditional printing of the trace information and conditional breakpoints ,)n function o ,trt o)r exit.

trace (option global-t-'ite}" ({name {option ,altj' } },
trace is a debugging tool that prints information when specified functions are r.flled. lit its 6i1t Ipi , 'll:

(trace name-I name-2 . . )

trace causes a printout on *trace-output* each titne that one of the named functions is entered or retlirns

(the names are not evahlatod.) Trace output is indent.d accordintý to the numbher ,f pe,'himtt traced cals. irl,
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this trace depth is printed at the beginning of each line of output. Printing verbosity of arguments and ret urn
values is controlled by *debug-print--level* and *debug-print-length*.

If no names or options are are given, trace returns the list of all currently traced functions, *traced-
function-list*.

Trace options can cause the normal printout to be suppressed, or cause extra information to be printed.
Each option is a pair of an option keyword and a value form. Options may be interspersed with function loarlu-'>.
Options only affect tracing of the function whose name they appear immediately after. Global option., are
specified before the first name, and affect all functions traced by a given use of trace. If an already trt,.,l
function is traced again, any new options replace the o0( options. The following options are defined:

:condit ion form, : condition-after form. : condition-all form
If :condition is specified, then trace does nothing unless form evaluates to Lrue at the time of the call.
:condition-after is similar, but suppresses the initial printout, and is tested when the functioni rt urnis
:condition-all tries both before and after.

:wherein names
If specified, names is a function name or list of names. trace does nothing unless a call to one of 1hos,'

functions encloses tire call to this function (i.e. it would appear in a backtrace.) Anonymouss fUrn ati,
have string names like "DEFUN FOG".

:break form, :break-after form, :break-all form
If specified, and form evaluates to true, then the debugger is invoked at the start of tlie fniurtitii,. ;t( II,
end of the function, or both, according to the respective option.

:print form, :print-after form, :print-all form
In addition to the usual printout, the result of evaluating form is printed at the start of the function, at
the end of the function, or both, according to the respective option. Multiple print options cause multiple
values to be printed.

:function function-forin
This is a not really an option, but rather another way of specifying what function to trace. The FunctiMIut
form is evaluated immediately, aud the resulting function is traced.

:encapsulate {:default I t I rid}
In CMU Common Lisp, tracing can be done either by temporarily redefining the function namte ('nal,-
sulation), or using br-akpoints. When breakpoints are used, the function object itself is destruttively
modified to cause the tracing action. TIre advantage of using breakpoints is that tracing works oven whenl
the function is anonymously called via f ucall.

When :encapsulate is true, tracing is done via encapsulation. :default is the default, arid ri:r-
to use encapsulation for interpreted functions and funcallable instances, breakpoints otherwise. Wkthtn
encapsulation is used, forms are not evaluated in the function's lexical ,rnvironnwiet. bu' debug:arg cani
still be used.

:condition. :break and :print forms are evaluated in the lexical environment of the called fun,-irit:
debug: var and debug: arg can be used. The -after and -all forms are evalulated in t l ti null ,'Viroruiitrt

untrace &rest function-names F.It,

This macro turns off tracing for the specified functions, and removes their naints froimi *traced-function-
list*. If no function-names are given, theni all currently traced functions art' ulit rae,.

extensions:*traced-function-list* 1 1
A list of function names maintained nlud usend by trace, untrace, and untrace-all. This list :hounl , o it;wti

tire names of all fulnctions 'rirrontly being traced.

extensions: *max-trace-indentation* I u a/,l1'
The maximum ntiumber of spaces which should be uise, to indlent trace p, itttit . Ibis vrrtarbdd, is Hnilat rl,.

to, 10.
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3.10.1 Encapsulation Functions

The encapsulation furctions provide a mechanism for intercepting che arguments and results of a functiour
encapsulate changes the function definition of a symbol, and saves it so that it can be restored later. The new
definition normally calls the original definition. The Conamon Lisp fdefinition function always returns tle,
original definition, stripping off any encapsulation.

The original definition of the symbol can be restored at any time by the u-tencapsulate function.
encapsulate and unencapsulate allow a symbol to be multiply encapsulated in such a way that different
encapsulations can be completely transparent to each other.

Each encapsulation has a type which may be -in arbitrary lisp object. If a symbol has several encapsulatiolls
of different types, then any one of them can be removed without affecting more recent ones. A symbol inay have
more than one encapsulation of the same type, but only the most recent one can be undone.

extensions:en apsulate symbol type body [Fmnctoi,

Saves the current definition of symbol, and replaces it with a function which returns the result of evaluatinig
the form, body. Type is an arbitrary lisp object which is the type of enca,)sulation

When the new function is called, the following variables are hound for the evaluatrin of hodhv:

extensions: argument-list A list of the arguments to the function.

extensions: basic-definition The unencapsulated defieition ot the function.

[he unencapsulated definition may be called with the original arguments by including :,t, form

(apply extensions :basic-definition extensions: argument-list)

encapsulate always returns symbol.

extensions :unencapsulate symbol type [incti,•

Undoes symbol's most recent encapsulation of type type. Type is comparedl wit h eq. VIncapsulat ions of,, h.r
types are left in place.

extensions: encapsulated-p sytbol type ,i I

Returns t if symbol ha-s an encapsulation of lype type. Ret urns nil otherwise. -lvpev is ,oin pared with eq.

3.11 Specials

[Ihese are the special variables that control the debugger action.

extensions: *debug-print-level* r t 'iriblC
1

extensions: *debug-print-length* I

*print-level* and *print-length* are bound to these values during the execution of sonie ,dbug -on0-
mands. When evaluating arbitrary expressions in the debugger. the normal values of *print-level* ;iid *print-
length* are in effect. These variables are initially set to 3 amid 5, respectively.



Chapter 4

The Compiler

4.1 Compiler Introduction

This chapter contains information about the compiler that every CMU Common Lisp user should be familiar
with. Chapter 5 goes into greater depth, describing ways to use more advanced features.

The CMU Common Lisp compiler (also known as Python) has many features that are seldom or never
supported by conventional Common Lisp compilers:

"* Source level debugging of compiled code (see chapter 3.)

"* Type error compiler warnings for type errors detectable at compile time.

"* Compiler error messages that provide a good indication of where the error appeared in the source.

"* Full run-time checking of all potential type errors, with optimization of type checks to minimize the cost.

"* Scheme-like features such as proper tail recursion and extensive source-level optimization.

"* Advanced tuning and optimization features such as comprehensive efficiency notes. flow analysis. and
untagged number representations (see chapter 5.)

4.2 Calling the Compiler

Functions may be compiled using compile, compile-file, or compile-from-stream.

compile name &optional definition [Pl t1t wi.1

This function compiles the function whose name is name. If name is nil, the compiled function object is
returned. If definition is s,,pplied. it should be a lambda expression that is to be compiled and then placed in
the function cell of name. As per the proposed X3J.13 cleanup "compile-argument-problems", definition may

also be an interpreted function.
The return values are as per the proposed X3JI3 cleanup "compiler-diagnostics". The first value is the

function name or function object. The second value is nil if no compiler diagnostics were issued, and t ot erwis.e.
The third value is nil if no compiler diagnostics other than style warnings were issued. N ion-nil vahlu indicates
that there were "serious" compiler diagnostics issued, or that other conditions of type error or warning (but
not style-warning) were signalled during compilation.

compile-file iriput-pathnamte &key :output-file :error-file :trace-file I,,,of
:error-output :verbose :print :progress

:load :block-compile :entry-points

The CM Common Lisp compile-file is extended through the addition of several new keywo rdIs ;m an
additional interpretation of inpat-pathname:

33



CHAPTER 4. TIlE COMPILER 3.1

input-pathname If this argument is a list of input files, rather than a single input pathname, then all the source
files are compiled into a single object file. In this case, the name of the first file is used to determine the

default output file names. This is especially useful in combination with block-compile.

outpuv-file This argument specifies the name of the output file. t gives the cteraul1 ,,ime, nil suppresses Ow,"
output file.

error-file A listing of all the error output is directed to this file. If there are no errors, then no error file is
produced (and any existing error file is deleted.) t gives "name.err" (the default), and nil suppresses
the output file.

error-output If t (the default), then error output is sent to *error-output*. If a stream, then output is sent to
that stream instead. If nil, then error output is suppressed. Note that this error output is in addition to

(but the same as) the output placed in the error-file.

verbose If t (the default), then the compiler prints to error output at the start and end of compilation of each

file. See *compile-verbose* (page 34).

print If t (the default), then the compiler prints to error output when each function is compiled. See *compile-
print* (page 34).

progress If t (default nil), then the compiler prints to error output progress information about the phases of
compilation of each function. This is a CMU extension that is useful mainly in large block compilations.

See *compile-progress* (page 34).

trace-file If true, several of the intermediate representations (including annotated assembly code) are duniped

out to this file. t gives "name.trace". Trace output is off by default. See section 5.11.5, page 83.

load If true, load the resulting output file.

block-compile Controls the compile-time resolution of function calls. By default, only self-recursive calls are
resolved, unless an ext:block-staxt declaration appears in the source 'le. See section 5.7.3, page 71.

entry-points If non-null, then this is a list of the names of all functions in the file that should have global
definitions installed (because they are rtf:renced in other files.) See section 5.7.3, page 71.

The return values are as per the proposed X3J13 cleanup "compiler-diagnostics". The first value from
compile-f ile is the truename of the output file, or nil if the file could not be created. rhe interpretation of
the second and third values is described above for compile.

*compile-verbose* ori rablc

*compile-print* [Vrblhc

*compile-progress* [ 'a u, blc-

These variables determine the default values for the :verbose, :print and :progress arguments to compile-
file.

extensions: compile-from-stream input-stream fkey error-stream [Function]

:trace-stream

:block-compile :entry-points

This function is similar to compile-file. but it takes all its arguments as streams. It rteads Common Lisp
Code from input-stream until end of file is reached, compiling into the current environnmett. This fummction return-s
the same two values as the last, two values of compile. No output files are proluctld.
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4.3 Compilation Units

CMU Common Lisp supports the with-compilation-unit macro added to the language by the proposed X3J 13
"with-compilation-unit" compiler cleanup. This provides a mechanism for eliminating spurious undefined warn-

ings when there are forward references across files, and also provides a standard way to access compiler extensions.

with-compilation-unit ({key value}) ) {form}" [Ma croj

This macro evaluates the forms in an environment that causes warnings for undefined variables, functions

and types to be delayed until all the forms have been evaluated. Each keyword value is an evaluated form. These

keyword options are recognized:

:override If uses of with-compilation-unit are dynamically nested, the outermost use will take precedence,
suppressing printing of undefined warnings by inner uses. However, when the override option is true this

shadowing is inhibited; an inner use will print summary warnings for the compilations within the inner

scope.

:optimize This is a CMU extension that specifies of the "global" compilation policy for the dynamic extent of
the body. The argument should evaluate to an optimize declare form, like:

(optimize (speed 3) (safety 0))

See section 4.7.1, page 46

:optimize-interf ace Similar to :optimize, but specifies the compilation policy for function interfaces (argu-
ment count and type checking) for the dynamic extent of the body. See section -1.7.2, page -16.

context-declarations This is a CMU extension that pattern-matches on function names, automatically splic-
ing in any appropriate declarations at the head of the function definition. See section 4.3.2, page 36.

4.3.1 Undefined Warnings
Warnings about undefined variables, functions and types are delayed until the end cf the current compilation unit.

The compiler entry functions (compile, etc.) implicitly use with-compilation-unit, so undefined warnings will
be printed at the end of the compilation unless there is an enclosing with-compilation-unit. In order the gain
the benefit of this mechanism, you should wrap a single with-compilation-unit around the calls to compile-
file, i.e.:

(with-compilation-unit ()
(compile-file "filel")
(compile-file "file2")

Unlike for functions and types, undefined warnings for variable. are not suppressed when a definition (.•
deftvar) appears r.fter the reference (but in the same compilation unit.) This is because doing special declarat ions
out, of order just doesn't work - although early references will be compiled as special. bindings will he lone

lexically.

Undefined warnings are printed with full source context (see section 4.4, page 37), which treniendously
simplifies the problem of finding undefined references that resulted from macroexpansion. After printing d(teilhed
information about the undefined uses of each name. with-compilation-unit also prints sumnmary lismitrus of

the names of all the undefined functions, types and variables.

*undef ined-warning-limit* 1 6t 1,'l,

This variable controls the number of undefined warnings for each distinct, name that arte printel with f•,fll
source context when the compilation unit, ends. If there art, inore umndefined r;efrvi'ces than this. hen l thle art,

Condensed into a single warning:

Warning: count more uses of undefined function name.

When the value is 0, then the undefined warnings are not. broken down by nanme at all: only ht, e ummnary lisM"in,
,)f undefined names La printe-d.
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4.3.2 Context Declarations

CMU Common Lisp has a context-sensitive declaration mechanism which is useful because it allows flexible
control of the compilation policy in large systems without requiring changes to the source files. The primary
use of this feature is to allow the exported interface- )f a system to be compiled more safely than the system
internals. The context used is the name being defined and the kind of definition (functicn, macro, etc.)

The :context-declarations option to with-compilation-unit (page 35) has dynamic scope, affecting all
compilation done during the evaluation of the body. The argument to this option should evaluate to a list of
lists of the form:

(context-spec {declare-form}+

In the indicated context, the specified declare forms are inserted at the head of each definition. The declare
forms for all contexts that match are appended together, with earlier declarations getting precedence over later
ones. A simple example:

:context-declarations
'((:external (declare (optimize (safety 2)))))

This will cause all functions that are named by external symbols to be compiled with safety 2.
The full syntax of context specs is:

internal, :external True if the symbol is internal (external) in its home package.

:uninterned True if the symbol has no home package.

(:package {package-name}" ) True if the symbol's home package is in any of the named packages (false if
uninterned.)

:anonymous True if the function doesn't have any interesting name (not defmacro, def un, labels or f let).

:macro, :function :macro is a global (defmacro) macro. : function is anything else.

:local, :global :local is a labels or f let. :global is anything else.

(:or {context-spec}I ) True when any supplied context-spec is true.

(:and {context-spec}I ) True only when all supplied context-specs are true.

(:not {context-spec}" ) True when context-spec is false.

(:member {name}) True when the defined name is one of these names (equal test.)

(:match {pattern} ) True when any of the patterns is a substring of the name. The name is wrapped with $'s,
so "0F00" matches names beginning with "FOG", etc.

4.3.3 Context Declaration Example

llere is a more complex example of with-compilation-unit options:

:optimize '(optimize (speed 2) (space 2) (inhibit-warnings 2)
(debug 1) (safety 0))

:optimize-interface '(optimize-inter-ice (safety 1) (debug 1))
:context-declarations
'(((:or :external (:and (:match "%.") (:match "SET")))

(declare (optimize-interface (safety 2))))
((:or (:and :external :macro)

(:match "SPARSE-"))
(declare (optimize (safety 2)))))
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The optimize and extensions:optisize-interface declarations (see section 4.7.1, page 46) set up the global
compilation policy. The bodies of functions are to be compiled completely unsafe (safety 0), but argument
count and weakened argument type checking is to be done when a function is called (speed 2 safety 1).

The first declaration specifies that all functions that are external or whose names contain both "7%" and "SET"
are to be compiled compiled with completely safe interfaces (safety 2). The reason for this particular :match

-, rule is that setf inverse functions in this system tend to hAave both strings in their name somewhere. We want
setf inverses to be safe because they are implicitly called by users even though their name is not exported.

The second declaration makes external macros or functions whose names start with "PARSE-" have safe bodies
(as well as interfaces). This is desirable because a syntax error in a macro may cause a type error inside the body.
The :match rule is used because macros often have auxiliary functions whose names begin with this string.

This particular example is used to build part of the standard CMU Common Lisp system. Note however,
that context declarations must be set up according to the needs and coding conventions of a particular system:
different parts of CMU Common Lisp are compiled with different context declarations, and your system will
probably need its own declarations. In particular, any use of the :match option depends on naming conventio-
used in coding.

4.4 Interpreting Error Messages

One of Python's unique features is the level of source location information it provides in error messages. Tlt,
error messages contain a lot of detail in a terse format, to they may be confusing at first. Error messages will ho
illustrated using this example program:

(defmacro zoq (x)
'(roq (ploq (+ ,x 3))))

(defun foo (y)
(declare (symbol y))
(zoq y))

The main problem with this program is that it is trying to add 3 to a symbol. Note also that the functions roq
and ploq aren't defined anywhere.

4.4.1 The Parts of the Error Message

The compiler will produce this warning:

File: /usr/me/stuff.lisp

In: DEFUN FO0
(ZOQ Y)

-- > ROQ PLOQ +

Y
Warning: Result is a SYMBOL, not a NUMBER.

In this example we see each of the six possible parts of a compiler error message:

File: /usr/me/stuff. lisp This is the file that the compiler read the relevant code from. The file nailie is
displayed because it may not be immediately obvious when there is an error during compilation of a lamre,'
system, especially when with-compilation-unit is used to delay undefined warnings.

In: DEFUN FOG This is the definition or top-level form responsible for the error. It. is obtained by taking the first
two elements of the enclosing form whose first element is a symbol beginning with "DEF". If there is no
enclosing defmumble, then the outermost form is used. If there are multiple det'rnumbhls, then they arh
all printed from the out in. separated by =>'s. In this example, the problem was in the defun for foo.

(ZOQ Y) This is the original source form responsible for the error. Original source means that the form dirctly
appeared in the original input to the compiler. i.e. in the lambda passed to compile or the top-level forni
read from the source file. In this example, the expansion of tlie zoq macro was responsible for the error.
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-- > PROQ PLOQ + This is the processing path that the compiler used to produce the errorful code. The processing
path is a representation of the evaluated forms enclosing the actual source that the compiler encountered
when processing the original source. The path is the first element of each form, or the form itself if the
form is not a list. These forms result from the expansion of macros or source-to-source transformation done
by the compiler. In this example, the enclosing evaluated forms are the calls to roq, ploq and +. These
calls resulted from the expansion of the zoq macro.

=> Y This is the actual source responsible for the error. If the actual source appears in the explanation, then
we print the next enclosing evaluated form, instead of printing the actual source twice. (This is the form
that would otherwise have been the last form of the processing path.) In this example, the problem is with
the evaluation of the reference to the variable y.

Warning: Result is a SYMBOL, not a NUMBER. This is the explanation the problem. In this example, the prob-
lem is that y evaluates to a symbol, but is in a context where a number is required (the argument to

Note that each part of the error message is distinctively marked:

"* File: and In: mark the file and definition, respectively.

"* The original source is an indented form with no prefix.

"• Each line of the processing path is prefixed with -- >.

"* The actual source form is indented like the original source, but is marked by a preceding ==> line. This i.•
like the "macroexpands to" notation used in Common Lisp: The Language.

"* The explanation is prefixed with the error severity (see section 4.4.4, page 40), either Error:, Warning:.
or Note:.

Each part of the error message is more specific than the preceding one. If consecutive error messages are for
nearby locations, then the front part of the error messages would be the same. In this case. the compiler omits
as much of the second message as in common with the first. For example:

File: /usr/me/stuff.lisp

In: DEFUN FOG

(ZOQ Y)
-- > ROQ

(PLOQ (+ Y 3))
Warning: Undefined function: PLOQ

(ROQ (PLOQ (+ Y 3)))
Warning: Undefined function: ROQ

In this example, the file, definition and original source are identical for the two messages, so the compiler omit,
them in the second message. If consecutive messages are entirely identical. then the ,'ompiler prints otfly the

first message, followed by:

[Last message occurs repeats times]

where repeats is the number of times the message was .iven.
If the source was not from a file, then no tile line is printed. If the actual source is ilhe same ;Ls the origilial

source, then the processing path and actual source will be omittetl. If no forms interv,,ne between the ortti;il
source and the actual source, then the processing path will also be omittted.
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4.4.2 The Original and Actual Source

The original source displayed will almost always be a list. If the actual source for an error message is a symbol.
the original source will be the immediately enclosing evaluated list form. So even if the offending symbol does

appear in the original source, the compiler will print the enclosing list and then print the symbol as the actual

source (as though the symbol were introduced by a macro.)
When the actual source is displayed (and is not a symbol), it will always be code that resulted from the

expansion of a macro or a source-to-source compiler optimization. This is code that did not appear in the
original source program; it was introduced by the compiler.

Keep in mind that when the compiler displays a source form in an error message, it always displays the most
specific (innermost) responsible form. For example, compiling this function:

(defun bar Wx)

(let (a)
(declare (fixnum a))
(setq a (too x))
a))

C,ives this error message:

In: DEFUN BAR
(LET (A) (DECLARE (FIXNUM A)) (SETQ A (FOO X)) A)

Warning: The binding of A is not a FIXNUM:
NIL

This error message is not saying "there's a problem somewhere in this let" - it is saying that there is a problem
with the let itself. In this example, the problem is that a's nil initial value is not a f ixnum.

4.4.3 The Processing Path

The processing path is mainly useful for debugging macros, so if you don't write macros, you can ignore the
proc-ssing path. Consider this example:

(defun too (n)
(dotimes (i n *undefined*)))

Compiling results in this error message:

In: DEFUIN FOO
(DOTIMES (I N *UNDEFINED*))

-- > DO BLOCK LET TAGBODY RETURN-FROM

(PROGN *UNDEFINED*)
Warning: Undefined variable: *UNDEFINED*

Note that do appears in the processing path. This is because dotimes expands into:

(do ((i 0 (1+ i)) (#:gl n))
((>= i #:gl) *undefined*)

(declare (type unsigned-byte i))'•

The rest of the processing path results from the efxpansion of do:

(block nil
(let ((i 0) (#:gl n))

(declare (type unsigned-byte i))
(tagbody (go #:g3)
#:g2 (psetq i (1+ i))
#:g3 (unless (>= i #:gl) (go #:g2))

(return-from nil (progn *undefined*)))))
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In this example, the compiler descended into the block, let, tagbody and return-from to reach the progn
printed as the actual source. This is a place where the "actual source appears in explanation" rule was applied.
The innermost actual source form was the symbol *undefined* itself, but that also appeared in the explanation.
so the compiler backed out one level.

4.4.4 Error Severity

There are three levels of compiler error severity:

Error This severity is used when the compiler encounters a problem serious enough to prevent normal processing
of a form. Instead of compiling the form, the compiler compiles a call to error. Errors are used mainly
for signalling syntax errors. If an error happens during macroexpansion, the compiler will handle it. The
compiler also handles and attempts to proceed from read errors.

Warning Warnings are used when the compiler can prove that something bad will happen if a portion of the
program is executed, but the compiler cap proceed by compiling code that signals an error at runtime if
the problem has not been fixed:

"* Violation of type declarations, or

"* Function calls that have the wrong number of arguments or malformed keyword argument lists, or

"* Referencing a variable declared ignore, or unrecognized declaration specifiers.

In the language of the Common Lisp standard, these are situations where the compiler can determine
that a situation with undefined consequences or that would cause an error to be signalled would result at
runtime.

Note Notes are used when there is something that seems a bit odd, but that might reasonably appear in correct
programs.

Note that the compiler does not fully conform to the proposed X3J13 "compiler-diagnostics" cleanup. Errors,
warnings and notes mostly correspond to errors, warnings and style-warnings, but many things that the cleantip
considers to be style-warnings are printed as warnings rather than notes. Also, warnings, style-warnings and
most errors aren't really signalled using the condition system.

4.4.5 Errors During Macroexpansion

The compiler handles errors that happen during macroexpansion, turning them into compiler errors. If you want
to debug the error (to debug a macro), you can set *break-on-signals* to error. For example. this definit lon:

(defun foo (e 1)
(do ((current 1 (cdr current))

((atom current) nil))
(when (eq (car current) e) (return current))))

gives this error:

In: DEFUE FOO
(DO ((CURRENT L #) (# NIL)) (WHEN (EQ 9 E) (RETURN CURRENT))

Error: (during macroexpansion)

Error in function LISP: :DO-DO-BODY.
DO step variable is not a symbol: (ATOM CURRENT)

4.4.6 Read Errors

The compiler also handles errors while reading the source. For example:
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Error: Read error at 2:
"(,/ \foo)"

Error in function LISP: :COMNA-MACRO.
Comma not inside a backquote.

The "at 2" refers to the character position in the source file at which the error was signalled, which is generally
immediately after the erroneous text. The next line, "(,/\foo)", is the line in the source that contains the
error file position. The "/\" indicates the error position within that line (in this example, immediately after the

offending comma.)
When in Hemlock (or any other EMACS-like editor), you can go to a character position with:

X-< C-u position C-f

Note that if the source is from a Hemlock buffer, then the position is relative to the start of the compiled region
or defun, not the file or buffer start.

After printing a read error message, the compiler attempts to recover from the error by backing up to the
start of the enclosing top-level form and reading again with *read-suppress* true. If the compiler can recover
from the error, then it substitutes a call to cerror for the unreadable form and proceeds to compile the rest of
the file normally.

If there is a read error when the file position is at the end of the file (i.e.. an unexpected EOF error). tOn-u
the error message looks like this:

Error: Read error in form starting at 14:
"(defun test 0"

Error in function LISP: :FLUSH-WHITESPACE.
EOF while reading #<Stream for file "/usr/me/test.lisp">

In this case, "starting at 14" indicates the character position at which the compiler started reading, i.e. the
position before the start of the form that was missing the closing delimiter. The line "(defun test ()" is first
line after the starting position that the compiler thinks might contain the unmatched open deliniiter.

4.4.7 Error Message Parameterization

There is some control over the verbosity of error messages. See also *undefined-warning-limit* (page 3.5).
*efficiency-note-limit* and *efficiency-note-cost-threshold* (page 86).

*enclosing-source-cutoff* [tzrozb[,]

This variable specifies the number of enclosing actual source forms that are printed in full. rather than in the
abbreviated processing path format. Increasing the value from its default of 1 allows von to see tiore of t i,' ,uts

of the macroexpanded source, which is useful when debugging macros.

*error-print-length* [1 [(1'ah bI(

*error-print-level* [ h "riltah I

These variables are the print level and print length used in printing error niessages. '[lie d'efault values :Ire S
and 3. If null, the global values of *print-level* and *print-length* are used.

extensions:def-source-context name lambda-list {forrni .ll,,,r','
This macro defines how to txtract an abbreviated soure rontext from the name'd (rxt wh,,n it appeirs ill

tlie compiler input. lambda-list is a def macro style lanubila-list used to parse Ole ;arguinents. 'll ho i ' X, ,
return a list of subforms that (,an be printed on about, one line. There are predefiintd hiiwhods f, r defstruct.
defmethod, etc. If no method is delined. then the first. two subforms are retiurnd Not,' that ibis failitv
implicitly determines the strii•g name associate(d with awmyivuous functions.
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4.5 Types in Python

A big difference between Python and all other Common Lisp compilers is the approach to type checking and
amount of knowledge about types:

"* Python treats type declarations much differently that other Lisp compilers do. Python doesn't blindly
believe type declarations; it considers them assertions about the program that should be checked.

"* Python also has a tremendously greater knowledge of the Common Lisp type system than other cornpilers.
Support is incomplete only for the not, and and satisfies types.

See also sections 5.2 and 5.3.

4.5.1 Compile Time Type Errors

If the compiler can prove at compile time that some portion of the program cannot be executed without a type
error, then it will give a warning at compile time. It is possible that the offending code would never actually bt
executed at run-time due to some higher level consistency constraint unknown to the compiler, so a type warning
doesn't always indicate an incorrect program. For example, consider this code fragment:

(defun raz (too)
(let ((x (case too

(:this 13)
(:that 9)
(:the-other 42))))

(declare (fixnum x))
(too x)))

Compilation produces this warning:

In: DEFUN RAZ
(CASE FO0 (:THIS 13) (:THAT 9) (:THE-OTHER 42))

LET COND IF COND IF COND IF

(COlD)
Warning: This is not a FIXNUM:

NIL

In this case, the warning is telling you that if too isn't any of :this, :that or :the-other. then x will be
initialized to nil, which the fixnum declaration makes illegal. The warning will go away if ecase is used i.ie•tad
of case, or if :the-other is changed to t.

This sort of spurious type warning happens moderately often in the expansion of complex macros and in
inline functions. In such cases, there may be dead code that is impossible to correctly execute. The compiler

can't always prove this code is dead (could never be executed), so it compiles the erroneous code (whic:i will
always signal an error if it is executed) and gives a warning.

extensions: required-argument f Fu nction]
This function can be used as the default value for keyword arguments that must always be supplied. Since it

is known by the compiler to never return, it will avoid any compile-time type warnings that would result from
a default value inconsistent with the declared type. When this function is called, it signals an error indicating
that a required keyword argument was not supplied. This function is also useful for defstruct sit ,efatilt..
,,orresponding to required arguments. See section 5.2.5. page 52.

Although this function is a (i'MU extension, it is relatively harmless to iise it in ot h, rwi..e j,)rtable i-l ',
you can easily define it yourself:

(defun required-argument ()
(error "A required keyword argument was not supplied."))

Type warnings are inhibited when the extensions: inhibit-warnings optimization quality is 3 (set, setl, ion
1.7. page 46.) ThiF can he used in a local declaration to inhibit tvpe warntings iII a 0041le frmti ,''t I ihat h;Ii

spurious warnings.
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4.5.2 Precise Type Checking

With the default compilation policy, all type assertionsi are precisely checked. Precise checking means that the
check is done as though typep had been called with the exact type specifier that appeared in the declaration.
Python uses policy to determine whether to trust type assertions (see section 4.7, page 46). Type assertions
from declarations are indistinguishable from the type assertions on arguments to built-in functions. In Python.
adding type declarations makes code safer.

If a variable is declared to be (integer 3 17), then its value must always always be an integer between 3
and 17. If multiple type declarations apply to a single variable, then all the declarations must be correct; it is
as though all the types were intersected producing a single and type specifier.

Argument type declarations are automatically enforced. If you declare the type of a function argument, a
type check will be done when that function is called. In a furction call, the called function does the argument
type checking, which means that a more restrictive type assertion in the calling function (e.g., from the) may
be lost.

The types of structure slots are also checked. The value of a structure slot must always be of the type indicated
in any :type slot option. 2 Because of precise type checking, the arguments to slot accessors are checked to be
the correct type of structure.

In traditional Common Lisp compilers, not all type assertions are checked, and type checks are not precise.
Traditional compilers blindly trust explicit type declarations, but may check the argument type assertions for
built-in functions. Type checking is not precise, since the argument type checks will be for the most general type
legal for that argument. In many systems, type declarations suppress what little type checking is being done.
so adding type declarations makes code unsafe. This is a Droblem since it discourages writing type declarations
during initial codiiig. In addition to being more error prone, adding type declarations during tuning also loses
all the benefits of debugging with checked type assertions.

To gain maximum benefit from Python's type checking, you should always declare the types of function
arguments and structure slots as precisely as possible. This often involves the use of or, member and other
list-style type specifiers. Paradoxically, even though adding type declarations introduces type checks, it usually
reduces the overall amount of type checking. This is especially true for structure slot type declarations.

Python uses the safety optimization quality (rather than presence or absence of declarations) to choose one
of three levels of run-time type error checking: see section 4.7.1, page 416. See s,.''ioii 5.2, page 50 for nior'
information about types in Python.

4.5.3 Weakened Type Checking

When the value for the speed optimization quality is greater than safety, and safety is not 0. theii type
checking is weakened to reduce the speed and space penalty. In structure-intensive code this can double ilhi
speed, yet still catch most type errors. Weakened type checks provide a level of safly similar to that of "<af.'
code in other Common Lisp compilers.

A type check is weakened by changing the check to be for some convenient supertype of the assertd type,. For
example, (integer 3 17) is changed to f ixnum, (simple-vector 17) to simple-vector, and structure ryp.s
are changed to structure. A complex check like:

(or node hunk (member :foo :bar :baz))

will be omitted entirely (i.e.. the check is weakened to *.) If a precise check can be done for no extra cost. t h1.ii
no weakening is done.

Although weakened type checking is similar to type checking done by other ,ompilers. it is sonietims safer
and sometimes less safe. Weakened checks are done in the same places is precise checks, so all the prce-iiii"
discussion about where checking is done still applies. Weakened checking is sonlet ines sonewhat unsafe, h,,;lls,
;tdthough the check is weakened, the precise type is still input into type in ference. lii som-, oi texts. Iibis will
result in type inferences not justified by the weakened h'e-ck, and hence ,elet ion 4 sm, lyp,, chicks Ihaut w\, lld
be dlone by conventional compilers.

For example, if this code was compiled with weakened checks:

'There are a few circumstances where a type declaration is discarded rather than being used as type asstrii. Itis ,I
affect safety much, since such discarded declarations are also not believed to be true by the cornpitr.

2
The initial value need not be of this type as long as the corresponding argumnent to the constnt, tr is always '1pp,1li,l. 1tlu t1Il

will rause a compile-time type warning unless required-argument is iised.
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(def struct too
(a nil :type simple-string))

(defstruct bar
(a nil :type single-float))

(defun myfurn (x)
(declare (type bar x))
(* (bar-a x) 3.0))

and myfun was passed a foo, then no type error would be signalled, and we would try to multiply a simple-
vector as though it were a float (with unpredictable results.) This is because the check for bar was weakened
to structure, yet when compiling the call to bar-a, the compiler thinks it knows it has a bar.

Note that normally even weakened type checks report the precise type in error messages. For example. if
myfun's bar check is weakened to structure, and the argument is nil, then the error will be:

Type-error in XYFUN:
NIL is not of type BAR

However, there is some speed and space cost for signalling a precise error, so tile weakened type is reportl if
the speed optimization quality is 3 or debug quality is less than 1:

Type-error in XYFUN:
NIL is not of type STRUCTURE

See section 4.7.1, page 46 for further discussion of the optimize declaration.

4.6 Getting Existing Programs to Run
Since Python does much more comprehensive type checking than other Lisp compilers, Python will detect typ"
errors in many programs that have been debugged using other compilers. These errors are mostly incorrect
declarations, although compile-time type errors can find actual bugs if parts of the program have never e•,nt
tested.

Some incorrect declarations can only be detected by run-time type checking. It is very important to initially
compile programs with full type checks and then test this version. After the checking version has been tested.
then you can consider weakening or eliminating type checks. This applies even to previously debugged
programs. Python does much more type inference than other Common Lisp compilers, so believing an incorrect
declaration does much more damage.

The most common problem is with variables whose initial value doesn't match the type declaration. Incorrect
initial values will always be flagged by a compile-time type error, and they are simple to fix once located. Conhsider
this code fragment:

(prog (foo)
(declare (fixnum too))
(setq too ... )

Hlere the variable too is given an initial value of nil, but is declared to be a fixnum. Even if it is never read,
the initial value of a variable must match the declared type. There are two ways to fix this problemt. t h;llt,.
the declaration:

(prog (too)
(declare (type (or fixnum null) too))
(setq foo ...

or change the initial value:
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(prog ((too 0))
(declare (fixnum too))
(setq too ... )

It is generally preferable to chdnge to a legal initial value rather than to weaken the declaration, but somet .'tnn
it is simpler to weaken the declaration than to try to make an initial value of the appropriate type.

Another declaration problem occasionally encountered is incorrect declarations on defmacro arguments. Thliý
probably usually happens when a function is converted into a macro. Consider this macro:

(defmacro my-I+ Cx)
(declare (fixuue x))
'(the fixnum (1+ ,x)))

Although legal and well-defined Common Lisp, this meaning of this definition is almost certainly not what the
writer intended. For example, this call is illegal:

(my-l+ (+ 4 5))

The call is illegal because the argument to the macro is (+ 4 8), which is a list, not a fixnum. Becaoe )t'
macro semantics, it is hardly ever useful to declare the types of macro arguments. If you really want to :as.,vrt
something about the type of the result of evaluating a macro argument, then put a the in the expaiisin,1:

(defmacro my-I+ (x)
'(the fixnum (1+ (the fixnum ,x))))

In this case, it would be stylistically preferable to change this i:;.acro back to a function and declare it infine
Macros have no efficiency advantage over inline functions when using Python. See section 5.8, page 72.

Some more subtle problems are caused by incoicect declarations that can't be detected at compile time.
Consider this code:

(do ((pos 0 (position # \a string :start (1+ pos))))
((null poW))

(declare (fixnum pos))

Although pos is almost always a fixnum, it is nil at the end of the loop. If this example is compiled wit h full
type checks (the default), then running it will signal a type error at the end of the loop. If compiled without
type checks, the program will go into an infinite loop (or perhaps position will complain because (1+ nil) isn't
a sensible start.) Why? Because if you compile without type checks, the compiler just quiet ly believes the lvype
declaration. Since pos is always a fixnum, it is never nil, so (null pos) is never true, and the loop exit test is
optimized away. Such errors are sometimes Ilagged by unreachable code notes (see section 5.1.5. page 62). but
it is still important to initially compile aniy system with full type checks, even if the systeni works fine wholi
,-ompiled using other compilers.

In this case, the fix is to weaken thie type declaration to (or fixnum null).3 Note that there is usually
little performance penalty for weakening a declaration in this way. Any numeric operations in the body can st ill
assume the variable is a fixnum, since nil is uot a legal numeric argument. Another possible fix would he to
say:

(do ((poe 0 (position # \a string :start (1+ pos))))

((null pos))
(let ((pos pos))

(declare (fixnum pos))

This would be preferable in some circumnstanices, sirice it. would allow a non-st andlard rcpr,. .llla 1,1 Ilo 1w ljf,,
for the local pos variable in the loop body (see section 5.10.3.)

In summary, remember that all values that a variable ever ha.s must be f thie delare(I iyj,'. :mi ilt:i ii

should test using safe code initially.

'Artually, this declaration is totally ,inneresnar) in Pyt hI, . .,in(" it already know, position retiurns a wr n-n'geatio,e fixnum ,
uiji.
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4.7 Compiler Policy

The policy is what tells the compiler how 'o compile a program. This is logically (and often textually) distii.-t

from the program itself. Broad control of policy is provided by the optimize declaration; other declarations and

variables control more specific aspects of compilation.

4.7.1 The Optimize Declaration

The optimize declaration recognizes six different qualities. The qualities are conceptually independent aspects

of program performance. In reality, increasing one quality tends to have adverse effects on other quaities. T'l
compiler compares the relative values of qualities when it needs to make a trade-off; i.e., if speed is greater than

safety, then improve speed at the cost of safety.
The default for all qualitics (except debug) is 1. Whenever quplities are equal, ties are broken according to

.road idea of what a good default environment is supposed to be. Generally this downplays speed, compile-

deed and space in favor of safety and debug. Novice and casual users should stick to the default policV.

Advanced users often want to improve speed and memory usage at the cost of safety and debuggability.

If the value for a quality is 0 or 3, then it may have a special interpretation. A value of 0 -leans "totally

unimportant", and a 3 means "ultimately important." These extreme optimization values enablc "heroic" com-

pilation strategies that are not always desirable and sometimes self-defeating. Specifying more than one quality

a;s 3 is not desirable, since 't doesn't tell the compiler which quality is most important.

These are the optimization qualities:

speed How fast the program should is run. speed 3 enables some optimizations that hurt debuggability.

compilation-speed How fast the compiler should run. Note that increasing this above safety weakens type
checking.

space How much space the compiled code should take up. Inline expansion is mostly inhibited when space

is greater than speed. A value of 0 enables promiscuous inline expansion. Wide use of a 0 value is not

recommended, as it irray waste so much space that run time is slowed. See section 5 S. page 72 Cor a

,discussion of inline expansion.

debug Iiow debuggable the program should be. The quality is treated differently from the other qualities: each
value indicates a particular level of debugger information; it is not compared with the other ,lualit es. ee

section 3.6, page 27 for more details.

safety How much error checking should be done. If speed, space or compilation-speed is more ipportut
than safety, then type checking is weakened (see section 4.5.3, page 43). If safety if 0, then no run lir1,'

error checking is done. In addition to suppressing type checks. 0 also suppresses argunient count ,'heckiiia.
unbound-symbol checking and array bounds checks.

extensions: inhibit-warnings This is a CMU extension that determines how little (or how much) diagnostic
output should be printed during compilation. This quality is compared to other qualities to determine
whether to print style notes and warnings concerning those qualities. If speed is greater than inhibit-

warnings, then notes about how to improve speed will be printed, etc. The default value is 1, so raising
the value for any standard quality above its default. enables notes for that quality. If inhibit-warnings

is 3. then all notes and most non-serious warnings are inhibited. This is useful with declare to suppress
warnings about unavoidable problems.

4.7.2 The Optimize-Interface Declaration
Ilih extensions: optimize-interface declaration is identical ii syntax to the optimize ,helaration. hult it

,pecities the policy used luring conmpilation of code tliet compilr automatically generates ;o check the mtmi ,.r

:Uld type of arguments supplih d to a function. It is isefui to specify this policy sep-trately, since ,ven ,hior'inhdi
debugged functions are vulnerable to being passed the wrong argunments. The optimize-interface ,henlarai eil

"Mar specify that arguments should be checked even when the general optimize policy is unsafe.
Note that this argument checking is the checking of user-supplied arguments to an. t'inctions deiuml w1t him

the scope of the declaration, not the , hecking of argiumunt to ')tiituon l~isp primlit vs that appear n thies,
,e liii i t i, ns5
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The idea behind this declaration is that it allows the definition of functions that appear fully safe to other
callers, but that do no internal error checking. Of course, it is possible that arguments may be invalid in ways
other than having incorrect type. Functions compiled unsafely must still protect themselves against things like
user-supplied array indices that are out of bounds and improper lists. See also the :context-declarations
option to with-compilation-unit (page 35).

4.8 Open Coding and Inline Expansion

Since Common Lisp forbids the redefinition of standard functions4 , the compiler can have special knowledge of
these standard functions embedded in it. This special knowledge is used in various ways (open coding. inlin,
expansion, source transformation), bat the implications to the user are basically the same:

"* Attempts to redefine standard functions may be frustrated, since the function may never be called. Al-
though it is technically illegal to redefine standard functions, users sometimes want to implicitly redefine
these functions when they are debugging using the trace macro. Special-casing of standard functions can
be inhibited using the notinline declaration.

"* The compiler can have multiple alternate implementations of standard functions that implement different
trade-offs of speed, space and safety. This selection is based on the compiler policy, see section 4.7, page 46.

When a function call is open coded, inline code whose effect is equivalent to the function call is substituted
for that function call. When a function call is closed coded, it is usually left as is, although it might be turned
into a call to a different function with different arguments. As an example, if nthcdr were to be open coded,
then

(nthcdr 4 foobar)

might turn into

(cdr (cdr (cdr (cdr foobar))))

Or even

(do ((i 0 (1+ i))
(list foobar (cdr foobar)))

((= i 4t) l.ist))

If nth is closed coded, then

(nth x 1)

might stay the same, or turn into something like:

(car (athcdr x 1))

In general, open coding sacrifices space for speed, but some functions (such as car) are so simple that rhoy
are always open-coded. Even when not open-coded, a call to a standard function may he transformed lIlo a
different function call (as in the last example) or compiled as static call. Static function Call ilses a ilnore eficiiii
calling convention that forbids redefinition.

'See th e proposed XJ 13 lkp-syn|,ol-relefinition" cleanup.



Chapter 5

Advanced Compiler Use and Efficiency
Hints

By Robert MacLachlan

5.1 Advanced Compiler Introduction

In CMU Common Lisp, as is any language on any computer, the path to efficient code starts with good algo-
rithms and sensible programming techniques, but to avoid inefficiency pitfalls, you need to know some of this
implementation's quirks and features. This chapter is mostly a fairly long and detailed overview of what opti-
mizations Python does. Although there are the usual negative suggestions of inefficient features to avoid, the
main emphasis is on describing the things that programmers can count on being efficient.

The optimizations described here can have the effect of speeding up existing programs written in conventional
styles, but the potential for new programming styles that are clearer and less error-prone is at least as significant.
For this reason, several sections end with a discussion of the implications of these optimizations for programinItg
style.

5.1.1 Types

Python's support for types is unusual in three major ways:

" Precise type checking encouragcs the specific use of type declarations as a form of run-time consistency
checking. This speeds development by localizing type errors and giving more meaningful error messages.
See section 4.5.2, page 43. Python produces completely safe code; optimized type checking maintains
reasonable efficiency on conventional hardware (see section 5.3.6, page 58.)

"* Comprehensive support for the Common Lisp type system makes complex type specifiers useful. Using type
specifiers such as or and member has both efficiency and robustness advantages. See section 5.2, page 50.

" Type inference eliminates the need for some declarations, and also aids compile-time detection of type
errors. Given detailed type declarations, type inference can often eliminate type checks and etable more,

efficient object representations and code sequences. Checking all types results in ',wr typo checks. St,

.;ections 5.3 and .5.10.2.

5.1.2 Optimization

The main barrier to efficient. Lisp programs is not that there is no efficient way to code the program in Lisp. hut
that it is difficult to arrive at that efficient coding. Common Lisp is a highly complex langtiage, and usually lti>
many semantically equivalent -'reasonable" ways to code a giv-n problent. It is desirable to mttake all f h,,

IS
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equivalent solutions have comparable efficiency so that programmers don't have to waste time discovering the
most efficient solution.

Source level optimization increases the number of efficient ways to solve a problem. This effect is much
larger than the increase in the efficiency of the "best" solution. Source level optimization transforms the orig-
inal program into a more efficient (but equivalent) program. Although the optimizer isn't doing anything the
programmer couldn't have done, this high-level optimization is important because:

9 The programmer can code simply and directly, rather than obfuscating code to please the compiler.

* When presented with a choice of similar coding alternatives, the programmer can chose whichever happens
to be most convenient, instead of worrying about which is most efficient.

Source level optimization eliminates the need for macros to optimize their expansion, and also increases the
effectiveness of inline expansion. See sections 5.4 and 5.8.

Efficient support for a safer programming style is the biggest advantage of source level optimization. Existing
tuned programs typically won't benefit much from source optimization, since their source has already been
optimized by hand. However, even tuned programs tend to run faster under Python because:

"* Low level optimization and register allocation provides modest speedups in any program.

"• Block compilation and inline expansion can reduce function call overhead, but may require some program
restructuring. See sections 5.8, 5.6 and 5.7.

" Efficiency notes will point out important type declarations that are often missed even in highly tuned
programs. See section 5.12, page 84.

" Existing programs can be compiled safely without prohibitive speed penalty, although they would be faster
and safer with added declarations. See section 5.3.6, page 58.

5.1.3 Function Call

The sort of symbolic programs generally written in Common Lisp often favor recursion over iteration, or have
inner loops so complex that they involve multiple function calls. Such programs spend a larger fraction of their
time doing function calls than is the norm in other languages; for this reason Common Lisp implementations
strive to make the general (or full) function call as inexpensive as possible. Python goes beyond this by providimg
two good alternatives to full call:

"* Local call resolves function references at compile time, allowing better calling sequences and optimization
across function calls. See section 5.6, page 67.

"* Inline expansion totally eliminates call overhead and allows many context dependent optimizations. This
provides a safe and efficient implementation of operations with function semantics, eliminating the need
for error-prone macro definitions or manual case analysis. Although most Common Lisp implementations
support inlinp expan-inn, it herormes a mnor powerful tool with Python's source level optimization. See
sections 5.4 and 5.8.

Generally, Python provides simple implementations for simple uses of function call, rather than having only
a single calling convention. These features allow a more natural programming style:

o Proper tail recursion. See section .5.5. page 65

o Relatively efficient closures.

o A funcall that is as efficient as normal named call.

* Calls to local functions such as from labels are optimnized:

- Control transfer is a direct jump.

- The closure environment is passed in registers rather than heap allocated.

- Keyword arguments and multiple values are implemented more efficietntly.

See section 5.6. page 67.
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5.1.4 Representation of Objects

Sometimes traditional Common Lisp implementation techniques compare so poorly to the techniques used in
other languages that Common Lisp can become an impractical language choice. Terrible inefficiencies appear in
number-crunching programs, since Common Lisp numeric operations often involve number-consing and generic
arithmetic. Python supports efficient natural representations for numbers (and some other types), and allows
these efficient representations to be used in more contexts. Python also provides good efficiency notes that warn
when a crucial declaration is missing.

See section 5.10.2 for more about object representations and numeric types. Also see section 5-12, page 84
about efficiency notes.

5.1.5 Writing Efficient Code

Writing efficient code that works is a complex and prolonged process. It is important not to get so involved in
the pursuit of efficiency that you lose sight of what the original problem demands. Remember that:

"* The program should be correct - it doesn't matter how quickly you get the wrong answer.

"* Both the programmer and the user will make errors, so the program must be robust - it must detect
errors in a way that allows easy correction.

"* A small portion of the program will consume most of the resources, with the bulk of the code being
virtually irrelevant to efficiency considerations. Even experienced programmers familiar with the prohleni
area cannot reliably predict where these "hot spots" will be.

The best way to get efficient code that is still worth using, is to separate coding from tuning. During coding.
you should:

"• Use a coding style that aids correctness and robustness without being incompatible with efficiency.

"* Choose appropriate data structures that allow efficient algorithms and object representations (see section
5.9, page 74). Try to make interfaces abstract enough so that you can change to a different representation
if profiling reveals a need.

"* Whenever you make an assumption about a function argument or global data structure, add consi~t,n,'
assertions, either with type declarations or explicit uses of assert, ecase, etc.

During tuning, you should:

"* Identify the hot spots in the program through profiling (section 5.13.)

"* Identify inefficient constructs in the hot spot with efficiency notes, more profiling, or manual inspection ot
the source. See sections 5.11 and a.12.

"* Add declarations and consider the application of optimizations. See sections 5.6, 5.8 and 5.10.2.

"* If all else fails, consider algorithm or data structure changes. If you did a good job coding, changes will he
easy to introduce.

5.2 More About Types in Python

This section goes into more detail describing what types and declarations are recognized by Pythotn. I'lie :r11:
where Python differs most radically from previous Common Lisp compilers is in its support for types:

"* Precise type checking helps to find bugs at run time.

"• Compile-time type checking helps to find bugs at. compile time.

"* Type inference minimizes the need for generic operations, and also increases hie ,tfiienicy of run trMWe 1)"
checking and the effectiveness of compile time type checking.

"• Support for detailed types provides a wealth of opportunity for operation-specific type itif;reni,, and ,,pti-

mization.
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5.2.1 More Types Meaningful

Common Lisp has & very powerful type system, but conventional Common Lisp implementations typically only
recognize the small set of types special in that implementation. In these systems, there is an unfortunate paradox:
a declaration for a relatively general type like fixnum will be recognized by the compiler, but a highly specific
declaration such as (integer 3 17) is totally ignored.

This is obviously a problem, since the user has to know how to specify the type of an object in the way the
compiler wants it. A very minimal (but rarely satisfied) criterion for type system support is that it be no worse
to make a specific declaration than to make a general one. Python goes beyond this by exploiting a number of
advantages obtained from detailed type information.

Using more restrictive types in declarations allows the compiler to do better type inference and more compile-
time type checking. Also, when type declarations are considered to be consistency assertions that should be
verified (conditional on policy), then complex types are useful for making more detailed assertions.

Python "understands" the list-style or, member, functionr, array and number type specifiers. Understanding
means that:

"* If the type contains more information than is used in a particular context, then the extra information is
simply ignored, rather than derailing type inference.

"• In many contexts, the extra information from these type specifier is used to good effect. In particular.
type checking in Python is precise, so these complex types can be used in declarations to make interestiung
assertions about functions and data structures (see section 4.5.2, page 43.) More specific declarations also
aid type inference and reduce the cost for type checking.

For related information, see section 5.10, page 76 for numeric types, and section 5.9.3 for array types.

5.2.2 Canonicalization

When given a type specifier, Python will often rewrite it into a different (but equivalent) type. This is the
mechanism that Python uses for detecting type equivalence. For example, in Python's canonical representation.
these types are equivalent:

(or list (member :end)) = (or cons (member nil :end))

This has two implications for the user:

"• The standard symbol type specifiers for atom, null, fixnum, etc., are in no way magical. The null type
is actually defined to be (member nil), list is (or cons null), and fixnum is (signed-byte 30).

"* When the compiler prints out a type, it may not look like the type specifier that originally appeared in thhe
program. This is generally not a problem, but it must be taken into consideration when reading compi'r
error messages.

5.2.3 Member Types

The member type specifier can be used to represent "symbolic" values, analogous to the enumnwrated types •it'
Pascal. For example. the second value of f ind-syabol has this type:

(member :internal :external :inherited nil)

Member types are very useful for expressing consistency constraints on data ::trtict•rcs. for .xample,:

(defstruct ice-cream
(flavor :vanilla :type (member :vanilla :chocolate :strawberry)))

*%e mber types are also useful in type inference, ;as the numnber of members can sometinims be pared down to ,iw.
in which case the value is a known constant.
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5.2.4 Union Types

The or (union) type specifier is understood, and is meaningfully applied in many contexts. The use of or allows
assertions to be made about types in dynamically typed programs. For example:

(defstruct box
(next nil :type (or box null))
(top :removed :type (or box-top (member :removed))))

The type assertion on the top slot ensures that an error will be signalled when there is an attempt to store an
illegal value (such as :rmoved.) Although somewhat weak, these union type assertions provide a useful input
into type inference, allowing the cost of type checking to be reduced. For example, this loop is safely compiled
with no type checks:

(defun find-box-vith-top (box)
(declare (type (or box null) bo=))
(do ((current box (box-next current)))

((null current))
(unless (eq (box-top current) :removed)

(return current))))

Union types are also useful in type inference for representing types that are partially constrained. For example,
the result of this expression:

(if foo
(logior x y)
(list x y))

can be expressed as (or integer cons).

5.2.5 The Empty Type

The type nil is also called the empty type, since no object is of type nil. The union of no types, (or). is also
empty. Python's interpretation of an expression whose type is nil is that the expression never yields any value.
but rather fails to termi•awe, or is thrown out of. For example, the type of a call to error or a use of return
is nil. When the type of an expression is empty, compile-time type warnings about its value are suppressed.
presumably somebody else is signalling an error. If a function is declared to have return type nil, but does in
fact return, then (in safe compilation policies) a "NIL Function returned" error will be signalled. See also th.
function required-argument (page 42).

5.2.6 Function Types

function types are understood in the restrictive sense, specifying:

"* The argument syntax that the function must be called with. This is information about what argument
counts are acceptable, and which keyword arguments are recognized. In Python, warnings about argunwiul
syntax are a consequence of function type checking.

" The types of the argument values that the caller nmust pass. If the compiler can prove that sonie argument
to a call is of a type disallowed by the called function's type, then it will give a compile-time type wariing.
In addition to being used for com pile-time type checking, these type assertions are also used as output ty-1P"
assertions in code generation. For example, if foo is declared to have a fixnum argunient. then the 1+ itl
(foo (1+ x)) is compiled with knowledge that the result must be a fixnum.

" The types the values that will be bound to argument variables in the function's definition. Declariiig a
function's type with ftype implicitly declares the types of the arguments in the definition. Python ci,-cký
for consistency between the definition and the ftype declaration. Because of precise typt, clhickling, ;Ill
error will be signalled when a function is called with an argument of the wrong type.
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"* The type of return value(s) that the caller can expect. This information is a useful input to type inference.
For example, if a function is declared to return a f ixnum, then when a call to that function appears in an
expression, the expression will be compiled with knowledge that the call will return a f ixnum.

"* The type of return value(s) that the definition must return. The result type in an ftype declaration is
treated like an implicit the wrapped around the body of the definition. If the definition returns a value of
the wrong type, an error will be signalled. If the compiler can prove that the function returns the wrong
type, then it will give a compile-time warning.

This is consistent with the new interpretation of function types and the irype declaration in the proposed
X3J13 "function-type-argument-type-semantics" cleanup. Note also, that if you don't explicitly declare the type
of a function using a global ftype declaration, then Python will compute a function type from the definition.
providing a degree of inter-routine type inference, see section 5.3.3, page 56.

5.2.7 The Values Declaration

CMU Common Lisp supports the values declaration as an extension to Common Lisp. The syntax is
(values typel type2 ... typen). This declaration is semantically equivalent to a the form wrapped around tile
body of the special form in which the values declaration appears. The advantage of values over the is purely
syntactic - it doesn't introduce more indentation. For example:

(defun 1oo Wx)
(declare (values single-float))
(ecase x

(:this ... )

(:that ... )
(:the-other ... )))

is equivalent to:

(defun foo Wx)
(the single-float

(ecase x
(:this ... )
(:that ... )

(:the-other ... ))))

and

(defun floor (number &optional (divisor 1))
(declare (values integer real))

is equivalent to:

(defun floor (number koptional (divisor 1))
(the (values integer real)

In addition to being recognized by lambda (and hence by defun), the values declaration is recognized by all

the other special forms with bodies and declarations: let. let*, labels and flet. Macros with declarations
usually splice the declarations into one of the above forms, so they will accept this declaration too, hut thie xact
effect of a values declaration will depend on the macro.

If you declare the types of all arguments to a function, and also declare the return value types with values.
you have described the type of the function. Python will use this argument and result type information to ,eriv,.
a function type that will then be applied to calls of the function (see section 5.2.6. page 52.) This provides a
way to declare the types of functions that is much less syntactically awkward than using the ftype declaration
with a f unction type specifier.

Although the values declaration is non-standard, it is relatively harmless to use it in otherwise portable cole.
since any warning in non-CMtU implementations can •e suppressed with tile standard declaration pro'lamatinui
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5.2.8 Structure Types

Because of precise type checking, structure types are much better supported by Python than by conventional
compilers:

"* The structure argument to structure accessors is precisely checked - if you call foo-a on a bar, an error
will be signalled.

"* The types of slot values are precisely checked - if you pass the wrong type argument to a constructor or
a slot setter, then an error will be signalled.

This error checking is tremendously useful for detecting bugs in programs that manipulate complex data struc-
tures.

An additional advantage of checking structure types and enforcing slot types is that the compiler can safely
believe slot type declarations. Python effectively moves the type checking from the slot access to the slot setter
or constructor call. This is more efficient since caller of the setter or constructor often knows the type of the
value, entirely eliminating the need to check the value's type. Consider this example:

(defstruct coordinate
(x nil :type single-float)
(y nil :type single-float))

(defun make-it 0)
(make-coordinate :x 1.0 :y 1.0))

(defun use-it (it)
(declare (type coordinate it))
(sqrt (expt (coordinate-x it) 2) (expt (coordinate-y it) 2)))

make-it and use-it are compiled with no checking on the types of the float slots, yet use-it can use single-
float arithmetic with perfect safety. Note that make-coordinate must still check the values of x and y unless
the call is block compiled or inline expanded (see section 5.6, page 67.) But even without this advantage, it is
almost always more efficient to check slot values on s* ucture initialization, since slots are usually writtenl onCe',
and read many times.

5.2.9 The Freeze-Type Declaration

The extensions:freeze-type declaration is a CMU extension that enables more efficict)., compilation of user-
denned types by asserting that tne ti s iut going Lo ,,wige. This declaration ,nav only be used glob-
ally (with declaim or proclaim). Currently freeze-type only affects structure type testing done by typep.
typecase, etc. Here is an example:

(declaim (freeze-type foo bar))

This asserts that the types f oo and bar and their subtypes are not going to change. This allows more efficietii
type testing, since the compiler can open-code a test for all possible subtypes, rather than having to examijini
the type hierarchy at run-time.

5.2.10 Type Restrictions

Avoid use of the and, not and satisfies types in declarations, since type inference has problems with tih,'i.
When these types do appear in a declaration, they are still checked precisely. but the type inforia(imn1ý i,
limited use to the compiler. and types are eff,,ctiye a-s long as the intersection can he, ctiuouicai :iized to a t),,
that doesn't use and. For example:

(and fixnum unsigned-byte)

is tinie, since it is the same as:

(integer 0 most-positive-fixnum)
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but this type:

(and symbol (not (member :end)))

will not be fully understood by type interference since the and can't be removed by canonicalization.

Using any of these type specifiers in a type test with typep or typecase is fine, since as tests, these ty pos
can be translated into the and macro, the not function or a call to the satisfies predicate.

5.2.11 Type Style Recommendations

Python provides good support for some currently unconventional ways of using the Common Lisp type system.
With Python, it is desirable to make declarations as precise as possible, but type inference also makes some

declarations unnecessary. Here are some general guidelines for maximum robustness and efficiency:

"* Declare the types of all function arguments and structure slots as precisely as possible (while avoiding not,
and and satisfies). Put these declarations in during initial coding so that type assertions can find bugs
for you during debugging.

"* Use the member type specifier where there are a small number of possible symbol values, for vxarnple:
(member :red :blue :green).

* Use the or type specifier in situations where the type is not certain, but there are only a few possibilities.
for example: (or list vector).

"• Declare integer types with the tightest bounds that you can, such as (integer 3 7).

"* Define deftype or defstruct types before they are used. Definition after use is legal (producing no
"undefined type" warnings), but type tests and structure operations will be compiled much less efficiently.

"* In addition to declaring the array element type and simpleness, also declare the dimensions if they are

fixed, for example:

(simple-array single-float (1024 1024))

This bounds information allows array indexing for multi-dimensional arrays to be compiled much liore
efficiently, and may also allow array bounds checking to be done at compile time. See section run 3.
page 75.

" Avoid use of the the declaration within expressions. Not only does it clutter the code. but it is also alinobt
worthless under safe policies. If the need for an output type assertion is revealed by efficiency notes during
tuning, then you can consider the, but it is preferable to constrain the argument types more. allowing the
compiler to prove the desired result type.

" Don't bother declaring the type of let or other non-argument variables unless the type is non-obvious. If
you declare function return types and structure slot types, then the type of a variable is often obvious both
to the programmer and to the compiler. An important case where the type isn't obvious, and a declaration
is appropriate, is when the value for a variable is pulled out of untyped structure (e.g.. the result of car),
or comes from some weakly typed function, such as read.

"• Declarations are sometimes necessary for integer loop variables, since the compiler can't always prove thal
the value is of a good integer type. These declarations art best added during tuning, when an efficilNcy
note indicates the need.

5.3 Type Inference

Type inference is the process by which the compiler tries to figure out the types of expressions arid varialde,,
given an inevitable lack of complete type information. Although Python does much riore type infe'r,'uci I hau
most Common Lisp compilers. remember that the more precise and comprehensive type are.lratitis art' Iw
more type inference will be able to do.
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5.3.1 Variable Type Inference

The type of a variable is the union of the types of all the definitions. In the degenerate case of a let, the type of
the variable is the type of the initial value. This inferred type is intersected with any declared type, and is then
propagated to all the variable's references. The types of multiple-value-bind variables are similarly inferred
from the types of the individual values of the values form.

If multiple type declarations apply to a single variable, then all the declarations must be correct: it is as
though all the types were intersected producing a single and type specifier. In this example:

(defmacro my-dotimes ((var count) &body body)
'(do ((,var 0 (1+ ,var)))

((> ,var ,count))
(declare (type (integer 0 *) ,var))
,Qbody))

(my-dotimes Ui ... )
(declare (fixnum i))

the two declarations for i are intersected, so i is known to be a non-negative fixnum.
In practice, this type inference is limited to lets and local functions, since the compiler can't analyze all the

calls to a global function. But type inference works well enough on local variables so that it is often unnecessary
to declare the type of local variables. This is especially likely when function result types and structure slot types
are declared. The main areas where type inference breaks down are:

"* When the initial value of a variable is a untyped expression, such as (car x), and

"* When the type of one of the variable's definitions is a function of the variable's current value, as in: (setq
x (1+ x))

5.3.2 Local Function Type Inference

The types of arguments to local functions are inferred in the same was as any other local variable: the type is
the union of the argument types across all the calls to the function, intersected with the declared type. If th,'re'
are any assignments to the argument variables, the type of the assigned value is unioned in as well.

The result type of a local function is computed in a special way that takes tail recursion (see sectiont 5..5.
page 65) into consideration. The result type is the union of all possible return values that aren't tail-recursiv,(
calls. For example, Python will infer that the result type of this function is integer:

(defun ! (n res)
(declare (integer n res))
(if (zerop n)

res
(! (1- n) (* n res))))

Although this is a rather obvious result, it becomes somewhat less trivial in the presence of mutual tail recursion
of multiple functions. Local function result type inference interacts with the mechanisms for ensuring proper tail
recursion mentioned in section 5.6.5.

5.3.3 Global Function Type Inference

:As described in section .5.2.6, a global function type (ftype) declaration places implicit type ,a.•sertlons ,'n th,
call arguments, and also guarantees the type of the return value. So wherever a -all to a declared funti"1t
appears, there is no doubt as to the types of the arguments and return value. Furthermore. Python will itfor
a function type trom the function's definition if there is no ftype declaration. Akny type declarations on the
argument variables are used as the argument types in the derivd function type, and the compiler's best ,u,ss
for the result type of the function is used as the result type in the derived function type.

"This method of deriving function types from the dtefiuit ion implicitly .vassuimes t hat functions won't he re,1ltdi
:it run-time. Consider this example:
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(defun foo-p (x)
(let (Cres (and (consp x) (eq (car x) 'too))))

(format t "It is : [not ;ifoo." res)))

(defun frob (it)
(if (foo-p it)

(setf (cadr it) 'yow!)
(1+ it)))

Presumably, the programmer really meant to return res from too-p, but he seems to have forgotten. When
he tries to call do (frob (list 'too nil)), frob will flame out when it tries to add to a cons. Realizing his
error, he fixes foo-p and recompiles it. But when he retries his test case, he is baffled because the error is
still there. What happened in this example is that Python proved that the result of foo-p is null, and then
proceeded to optimize away the setf in frob.

Fortunately, in this example, the error is detected at compile time due to notes about unreachable code (see
section 5.4.5, page 62.) Still, some users may not want to worry about this sort of problem during incremental
development, so there is a variable to control deriving function types.

extensions: *derive-function-types* [Varzabh]
If true (the default), argument and result type information derived from compilation of defuns is used when

compiling calls to that function. If false, only information from ftype proclamations will be used.

5.3.4 Operation Specific Type Inference

Many of the standard Common Lisp functions have special type inference procedures that determine the result
type as a function of the argument types. For example, the result type of aref is the array element type. ltere
are some other examples of type inferences:

(logand x #xFF) •' (unsigned-byte 8)

(+ (the (integer 0 12) x) (the (integer 0 1) y)) => (integer 0 13)

(ash (the (unsigned-byte 16) x) -8) = (unsigned-byte 8)

5.3.5 Dynamic Type Inference

Python uses flow analysis to infer types in dynamically typed programs. For example:

(ecase x
(list (length x))

Here, the compiler knows the argument to length is a list, because the call to length is only done when x is a
list. The most significant efficiency effect of inference from assertions is usually in type check optimization.

Dynamic type inference has two inputs: explicit conditionals and implicit or explicit type ýssertions, Flow
analysis propagates these constraints on variable type to any code that can be executed only after pa-ssing thioui'h
the constraint. Explicit type constraints come from its where the test is either a lexical variable or a function
of lexical variables and constants, where the function is either a type predicate. a numeric comparison or eq.

If there is an eq (or eql) test, then the compiler will actually substitute one, aroiiennt for tho other in tht
true branch. For example:

(when (eq x :yow!) (return x))

b 'comes:

(when (eq x :yow!) (return :yow!))
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This substitution is done when one argument is a constant, or one argument has better type information than
the other. This transformation reveals opportunities for constant folding or type-specific optimizations. If the
test is against a constant, then the compiler can prove that the variable is not that constant value in the false
branch, or (not (member :yow! )) in the example above. This can eliminate redundant tests, for example:

(if (eq x nil)

(it x a b))

is transformed to this:

(if (eq x nil)

a)

Variables appearing as if tests are interpreted as (not (eq var nil)) tests. The compiler also converts into
eql where possible. It is difficult to do inference directly on = since it does implicit coercions.

When there is an explicit < or > test on integer variables, the compiler makes inferences about the ranges
the variables can assume in the true and false branches. This is mainly useful when it proves that the values
are small enough in magnitude to allow open-coding of arithmetic operations. For example, in many uses of
dotimes with a fixnum repeat count, the compiler proves that fixnum arithmetic can be used.

Implicit type assertions are quite common, especially if you declare function argument types. Dynamic
inference from implicit type assertions sometimes helps to disambiguate programs to a useful degree. but is mnost
noticeable when it detects a dynamic type error. For example:

(defun foo (x)
(+ (car x) x))

results in this warning:

In: DEFUI FO0
(+ (CAR X) X)

x
Warning: Result is a LIST, not a NUMBER.

Note that Common Lisp's dynamic type checking semantics make dynamic type inference useful ev,-i IiI
programs that aren't really dynamically typed, for example:

(+ (car x) (length x))

Ilere, x presumably always holds a list, but in the absence of a declaration the compiler cannot assume x is a
list simply because list-specific operations are sometimes done on it. The compiler must consider the prograili
to be dynamically typed until it proves otherwise. Dynamic type inference proves that the argument to length
is always a list because the call to length is only done after the list-specific car operation.

5.3.6 Type Check Optimization

Python backs up its support for precise type checking by minimizing the cost of run-timne type checkiný. liT.- i1
done both through type inference and though optimizations of type checking itself.

Type inference often allows the compiler to prove that a valuh is of thie c-orrect type,. and thus no typ,, ,l ,'c k
is necessary. For example:

(defstruct foo a b c)
(defstruct link

(foo (required-argument) :type foo)
(next nil :type (or link null)))

(foo-a (link-foo x))
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Here, there is no need to check that the result of link-foa is a foo, since it always is. Even when some typ'
checks are necessary, type inference can often reduce the number:

(defun test Wx)
(let ((a (foo-a x))

(b (foo-b x))
(c (foo-c x)))

In this example, only one (foo-p x) check is needed. This applies to a lesser degree in list operations. such as;

(if (eql (car x) 3) (cdr x) y)

Here, we only have to check that x is a list once.
Since Python recognizes explicit type tests, code that explicitly protects itself against type errors has little

introduced overhead due to implicit type checking. For example, this loop compiles with no implicit checks
checks for car and cdr:

(defun memq (e 1)
(do ((current 1 (cdr current)))

((atom current) nil)
(when (eq (car current) e) (return current))))

Python reduces the cost of checks that must be done through an optimization called conmplernentinm. A
complemented check for type is simply a check that the value is not of the type (not type). This is only
interesting when something is known about the actual type, in which case we can test for the complement of
(and known-type (not type)), or the difference between the known typt and the assertion An example:

(link-foo (link-next x))

Here, we change the type check for link-foo from a test for foo to a test for:

(not (and (or foo null) (not foo)))

or more simply (not null) This is probably the most important use of complementing, sin,'ce the •ituat io

fairly common, and a null test is much cheaper than a structure type test.
Here is a more complicated example that illustrates the combination of complementing with dvnanirc trvp

inference:

(defun find-a (a x)
(declare (type (or link null) x))
(do ((current x (link-next current)))

((null current) nil)
(let ((foo (link-foo current)))

(when (eq (foo-a foo) a) (return toa)))))

This loop can be compiled with no type checks. The link test for link-fo and link-next is complemenwed r,,
(not null), and then deleted because of the explicit null test. As before. no check is necessary for foo-a.
the link-foo is always a foo. This sort of situation shows how precise type cleck iru conioilbie with prc,',
declarations can actually result in reduced type checking.

5.4 Source Optimization

This section describes source-level transformations that Python does on progranis in an iattempt to inak'" hiin
more efficient. Although source-level optimizations can make existing programs more eficient. the bimg'-m ;atvail-
tage of this sort of optimization is that it makes it easier to write efficient programs. If a d'ean, straiglifforward
implPmentation is can be transformed into an efficient one, then there is no noed for tricky and ,ari•grous haul
,optimization.
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5.4.1 Let Optimization

The primary optimization of let variables is to delete them when they are unnecessary. Whenever the value of
a let variable is a constant, a constant varii ble or a constant (local or non-notinline) function, the variable is
deleted, and references to the variable are replaced with references to the constant expression. This is useful
primarily in the expansion of macros or inline functions, where argument values are often constant in any given
call, but are in general non-constant express: ns that must be bound to preserve order of evaluation. Let variable
optimization eliminates the need for macros to carefully avoid spurious bindings, and also makes inline functions
just as efficient as macros.

A particularly interesting class of constant is a local function. Substituting for lexical variables that ,r-
bound to a function can substantially improve the efficiency of functional programming styies for example:

(let ((a #'(lambda (x) (zow x))))
(fuzicall a 3))

effectively transforms to:

(zow 3)

This transformation is done even when the function is a closure, as in:

(let ((a (let ((y (zug)))
#'(lambda (x) (zow x y)))))

(funcall a 3))

becoming:

(zov 3 (zug))

A constant variable is a lexical variable that is never assignti to, always keeping its initial value. Whenever
possible, avoid setting lexical variables - instead bind a nev varia ble to the new value. Except for loop variables.
it is almost always possible to avoid setting lexical variables. This form:

(let ((x (f x)))

is more efficient than this form:

(setq x (f x))

Setting variables makes the program more difficult to understand, both to the compiler and to the procrain-
iner. Python compiles assignments at least as efficiently as any other Common Lisp compiler. but nio>t let
,-)ptimizations are only done on constant variables.

Constant variables with only a single use are also optimized away, even when the Initial value is not 1 o10 st n.,
For example, this expansion of dncf:

(let ((#:g3 (+ x 1)))
(setq x #:G3))

becomes:

(setq x (+ x 1))

The type semantics of th s transformation are more important than the elimination of the variable itself. Contsider
what happens when x is declared to be a fixnrum after the transformation, the conipiier can compile lie addithion
knoiwing that the result is a fixnum. whereas hbfor, thie transformation the, adtlition wo,,lI liae to all,,w 1,r
tixuiinn overflow.

Another variable optimization leletes any variahet, hat i ne'ver read. This caisc,s th, ýnlial i vi. ;m I noti\
:Lss1,ignd values to he unused, allowing those expressions to be deleted if t hey have no side-elfects.

Note that a let is actually a degenerate case of local call (see section 5.6.2. page 67). and hat let opt inniza loll
ban be lone on calls that weren'lt created by a let .k1•o. local call allows an apl.,icative style o4f1 tration :•

totally aLssignmnent free.

She ýor'rre transformation in this example doesn't repre rnit the preservation of evaluation ,rdir implici
t 

illn thI, i- n,,
int.rnal rppreentation. Where nevessarv, the back endt will r-irntroldm termporarieý t) preserv' Ith, •meanntjtinns.
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5.4.2 Constant Folding

Constant folding is an optimization that replaces a call of constant arguments with t he constant result of that
call. Constant folding is done on all standard functions for which it is legal. Inline expansion allows folding (f

any constant parts of the definition, and can be done even on functions that have side-effects.
It is convenient to rely on constant folding when programming, as in this example:

(defconstant limit 42)

(defun foo ()
( ... (1- limit) ... )

Constant folding is also helpful when writing macros or inline functions, since it usually eliminates the need to
write a macro that special-cases constant arguments.

Constant folding of a user defined function is enabled by the extensions: constant-function proclainat on.

In this example:

(declaim (ext. .stant-function myfun))
(defun myexp (x y)

(declare (single-float x y))
(exp (* (log x) y)))

... (myexp 3.0 1.3) ...

The call to myexp is constant-folded to 4.1711674.

5.4.3 Unused Expression Elimination

If the value of any expression is not used, and the expression has no side-effects, then it is deleted. .As wit h
constant folding, this optimization applies most often when cleaning up after inline expansion and otliher op-
timizations. Any function declared an extensions: constant-function is also subject to unused -,xpre,'si,,n
,elimination.

Note that Python will eliminate parts of unused expressions known to be side-effect free, evn if t hei, ar,"
other unknown parts. For example:

(let ((a (list (foo) (bar,)))
(if t

(zow)
(raz a)))

becomes:

(progn (foo) (bar))
(zog)

5.4.4 Control Optimization

The most important optimization of control is recognizing when an if test is ktinon ;at conlpih' Imi,. thlil
deleting the if, the test expression, and the unreachable branch of the if. This can b--, ,, sid,'rI,, a sp,,c; 'ia ,
,,f constant folding, although the test doesn't have to be truly constant as long is it is ,'ti wily tot nil. ,•t,i
:ilso', that type infer,,nce propagates the result of an if tst to tite true, 1t)d tI'; , } m he . >, .. e'tI - , I

page .57
A\ related if opt imnizat ion is t.hiis transformation.'-

(if (if a b c) x y)

2Nwo that the0 -,e Gr x and y i:n't actially reph 0t

'k rlate 
ifoptiizaion 

s tis 

tansormaion
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(if a
(if b x y)
(if c x y))

The opportunity for this sort of optimization usually results from a conditional macro. For example:

(if (not a) x y)

is actually implemented as this:

(if (if a nil t) x y)

which is transformed to this:

(if a
(if nil X y)
(if t X y))

which is then optimized to this:

(if a y x)

Note that due to Python's internal representations, the if-if situation will be recognized even if other forms
are wrapped around the inner if, like:

(if (let ((g ... )
(loop

(return (not g))

x y)

In Python, all the Common Lisp macros really are macros, written in terms of if. block and tagbody. so
user-defined control macros can be just as efficient as the standard ones. Python emits basic blocks using ;
heuristic that minimizes the number of unconditional branches. The code in a tagbody will not be ,imittol in
the order it appeared in the source, so there is no point in arranging the code to make control drop through 1,,
the target.

5.4.5 Unreachable Code Deletion

Python will delete code whenever it can prove that the code can never be executed. ('ode becomes unreachi1hi,'
when:

"* An if is optimized away, or

". There is an explicit unconditional control transfer such as go or return-from, or

"* The last reference to a local function is deleted (or there never was any reference.)

When code that appeared in the original source is deleted, the compiler prints a not,, to tinica a po:'Si},l,
problem (or at least unnecessary code.) For example:

(defun foe ()
(if t

(write-line "True.")
(write-line "False.")))

will rsult in this note:

In: DEFUN FOO
(WRITE-LINE "False.")

Note: Deleting unreachable code.
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It is important to pay attention to unreachable code notes, since they often indicate a subtle type error. For
example:

(defstruct foo a b)

(defun lose Wx)
(let ((a (foo-a x))

(b (if x (foo-b x) :none)))

results in this note:

In: DEFUN LOSE
(IF X (FOO-B X) :NONE)

:NONE
Note: Deleting unreachable code.

The :none is unreachable, because type inference knows that the argument to foo-a must be a foo. and thus
can't be nil. Presumably the programmer forgot that x could be nil when he wrote the binding for a.

Here is an example with an incorrect declaration:

(defun count-a (string)
(do ((poe 0 (position # \a string :start (1+ pos)))

(count 0 (1+ count)))
((null pos) count)

(declare (fixnum pos))))

This time our note is:

In: DEFUN COUNT-A
(DO ((POS 0 #) (COUNT 0 W))

((NULL POS) COUNT)
(DECLARE (FIXNUM POS)))

-- > BLOCK LET TAGBODY RETURN-FROM PROGN

COUNT
Note: Deleting unreachable code.

"The problem here is that pos can never be null since it is declared a fixnum.
It takes some experience with unreachable code notes to be able to tell what they are trying to say. hI

non-obvious cases, the best thing to do is to call the function in a way that should cause the unreachable cod,
to be executed. Either you will get a type error, or you will find that there truly is no way for the -odo to 1w
executed.

Not all unreachable code results in a note:

* A note is only given when the unreachable code textually appears in the original source. This prevent.s
spurious notes due to the optimization of macros and inline functions, but sometiwes also foregoes ;i,0,'
that would have been useful.

e Since accurate source information is not available for non-list forms, there is .it elenment of hieuristi, in
determining whether or not to give a note about an atom. Spurious notes may be given whiet a ii1acr,

or inline function defines a variable that is also present in thlle calling functio n. Notes about nil :i id t
are never given, since it is too easy to confuse thf,sv constants in expanded odle wit oIioes in III r
source.

* Notes are only given about code unreachable lhw to control flow. There is no n, ,. when all 'xpr,'s-it is
deleted because its value is unused, since this is a ,'onu1non consequvnce of (,)I her ,! iiit iens.

Somewhat spurious u.j.eachable code notes cal also r,,suilt when a macro inserts moltipl, e,,s ,, i s i•rui
unwnts in different contexts. for example:
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(defmacro t-and-f (var form)
'(if ,var ,form ,form))

(defun foo (x)
(t-and-f x (if x "True." "False. "M)

results in these notes:

In: DEFUN FOO
(IF I "True." "False.")

"False."
Note: Deleting unreachable code.

"True."
Note: Deleting unre.chable code.

It seems like it has deleted both branches of the if, but it has really deleted one branch in one copy, and the
other branch in the other copy. Note that these messages are only spurious in not satisfying the intent of th0
rule that notes are only given when the deleted code appears in the original source; there is always some code
being deleted when a unreachable code note is printed.

5.4.6 Multiple Values Optimization

Within a function, Python implements uses of multiple values particularly efficiently. Multiple values can be kept
in arbitrary registers, so using multiple values doesn't imply stack manipulation and representation conversion.
For example, this code:

(let ((a (if x (foo x) u))
(b (if x (bar x) v)))

is actually more efficient written this way:

(multiple-value-bind
(a b)
(if X

(values (foo x) (bar x))
(values u v))

Also, see section 5.6.5, page 69 for information on how local call provides efficient support for muilt iple ifiuc iol
return values.

5.4.7 Source to Source Transformation

fhe compiler implements a number of operation-specific optimizations as source-to-sourct, tran.sforinalios. 'f ii

will often see unfamiliar code in error messages, for example:

(defun my-zerop (0 (zerop x))

gives this warning:

In: DEFUN MY-ZEROP
(ZEROP X)

(X 0)
Warning: Undefined variable: X
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The original zerop has been transformed into a call to =. This transformation is indicated with the same ==>
used to mark macro and function inline expansion. Although it can be confusing, display of the transformed
source is important, since warnings are given with respect to the transformed source. This a more obscure
example:

(defun foo (x) (logand 1 x))

gives this efficiency note:

In: DEFUI FO0
(LOGAND 1 X)

(LOGAND C::Y C::X)
Note: Forced to do static-function Two-arg-and (cost 53).

Unable to do inline fixnum arithmetic (cost 1) because:
The first argument is a INTEGER, not a FIXNUX.
etc.

Here, the compiler commuted the call to logand, introducing temporaries. The note complains that the first
argument is not a fixnum, when in the original call, it was the second argument. To make things more confusing.
the compiler introduced temporaries called c: :x and c: :y that are bound to y and 1. respectively.

You will also notice source-to-source optimizations when efficiency notes are enabled (see section 5.12.
page 84.) When the compiler is unable to do a transformation that might be possible if there was more II-
formation, then an efficiency note is printed. For example, my-zerop above will also give this efficiency not,':

In: DEFUI FO0
(ZEROP X)

(= X 0)
Note: Unable to optimize because:

Operands might not be the same type, so can't open code.

5.4.8 Style Recommendations

Source level optimization makes possible a clearer and more relaxed programming style:

"* Don't use macros purely to avoid function call. If you want an inline function, write it as a function :ml
declare it inline. It's clearer, less error-prone, and works just as well.

" Don't write macros that try to "optimize" their expansion in trivial ways such as avoiding binding variahls
for simple expressions. T. - compiler does these optimizations too, and is less likely to make a uiistak,.

" Make use of local functions (i.e., labels or flet) and tail-recursion in places where it is clearer. Loc:l
function call is faster than full call.

" Avoid setting local variables when possible. Binding a new let variable is at least as efficient as sett iII anI
existing variable, and is easier to understand, both for the compiler and the programmer.

" Instead of writing similar code over and over again so that it, can be haud customized for ,ach use. dI-fii,
a macro or inline function. and let the compiler do the work.

5.5 Ta:l Recursion

.k -all is tail-recursive if nothing has to be done after the the ,all returns. *.,,. %%h n lihe -:all rtiur)ý. ,1),
ret urned value is immediately rtturned frotn the calling function. lII this exatild,. ih. rrsv all tý, myfun i>
tail -recursive:

(defun myfutn (x)
(it (oddp (random x))

(isqrt x)
(myfun (1- x))))
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Tail recursion is interesting because it is form of recursion that can be implemented much more efficiently
than general recursion. In general, a recursive call requires the compiler to allocate storage on the stack at
run-time for every call that has not yet returned. This memory consumption makes recursion unacceptably
inefficient for representing repetitive algorithms having large or unbounded size. Tail recursion is the special catse
of recursion that is semantically equivalent to the iteration constructs normally used to represent repetition ill

programs. Because tail recursion is equivalent to iteration, tail-recursive programs can be compiled as efficiently
as iterative programs.

So why would you want to write a program recursively when you can write it using a loop? Well, the main
answer is that recursion is a more general mechanism, so it can express some solutions simply that are awkward
to write as a loop. Some programmers also feel that recursion is a stylistically preferable way to write loops
because it avoids assigning variables. For example, instead of writing:

(defun funl (W)
something-that-uses-x)

(defun fua2 (y)
something-that-uses-y)

(do ((x something (fun2 (funil x))))
(nil))

tou can write:

(defun funi Wx)

(f=n2 something-that-uses-x))

(defun fun2 (y)
(funl something-that-uses-y))

(funil something)

The tail-recursive definition is actually more efficient, in addition to being (arguably) clearer. As the number of
functions and the complexity of their call graph increases, the simplicity of using recursion becomes comipelli•g.
Consider the advantages of writing a large finite-state machine with separate tail-recursive functions iiista~l of
using a single huge prog.

It helps to understand how to use tail recursion if you think of a tail-recursive call as a psetq that assiins
the argument values to the called function's variables, followed by a go to the start of the called function. This
makes clear an inherent efficiency advantage of tail-recursive call: in addition to not having to allocate a tac:,k
frame, there is no need to prepare for the call to return (e.g., by computing a return PC.)

Is there any disadvantage to tail recursion? Other than an increase in efficiency, the only way you canl toll
that a call has been compiled tail-recursively is if you use the debugger. Since a tail-recursive call has no stack
frame, there is no way the debugger can print out the stack frame representing the call. The effect is that
backtrace will not show some calls that would have been displayed in a non-tail-recursive implenentationi. fIn
practice, this is not as bad as it sounds - in fact it isn't really clearly worse. just different. See soction .:) 3 5.
page 23 for information about the debugger implications of tail recursion.

In order to ensure that tail-recursion is preserved in arbitrarily complex calling patterrns across s,'par:itl,
compiled functions, the compiler must compile any call in a tail-recursive position as a tail-rectursive call. This is
,lone regardless of whether the program actually exhibits any sort of recursive calling pattrrn. In this exanyipl'.
the call to fun2 will always be compiled as a tail-recjrsive, call:

(defun fun1 (x)
(fun2 x))

'o, tail recursion doesn't necessarily have anything to do with recursion as it is , riially Ii ithtl ,,4. s•t i,
i... page 68 for more discussion of using tail recursionu i into iit I,,(+-
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5.5.1 Tail Recursion Exceptions

Although Python is claimed to be "properly" tail-recursive, some might dispute this, since there are situations
where tail recursion is inhibited:

* When the call is enclosed by a special binding, or

* When the call is enclosed by a catch or unwind-protect, or

* When the call is enclosed by a block or tagbody and the block name or go tag has been closed over.

These dynamic extent binding forms inhibit tail recursion because they allocate stack space to represent the

binding. Shallow-binding implementations of dynamic scoping also require cleanup code to be evaluated when

the scope is exited.

5.6 Local Call

Python supports two kinds of function call: full call and local call. Full call is the standard calling convention:

its late binding and generality make Common Lisp what it is, but create unavoidable overheads. Whe-n the

compiler can compile the calling function and the called function simultaneously, it can use local call to avoil

some of the overhead of full call. Local call is really a collection of compilation strategies. If some aspect of call
overhead is not needed in a particular local call, then it can be omitted. In some cases, local call can be t,,tally
free. Local call provides two main advantages to the user:

"• Local call makes the use of the lexical function binding forms f let and labels much more etficient A

local call is always faster than a full call, and in many cases is much faster.

"• Local call is a natural approach to block compilation, a compilation technique that resolves function

references at compile time. Block compilation speeds function call, but increases compilation limes and

prevents function redefinition.

5.6.1 Self-Recursive Calls

Local call is used when a function defined by defun. calls itself. For example:

(defun fact (n)
(if (zerop n)

i
(* a (fact (1- n)))))

This use of local call speeds recursion, but can also complicate debugging, since trace will only show the tirst call
to fact, and not the recursive calls. This is because the recursive calls directly jump to the start of the funct on.
and don't indirect through the symbol-function. Self-recursive local call is inhibited when the :block-compile
argument to compile-file is nil (see section 5.7.3. page 71.)

5.6.2 Let Calls

Because local call avoids unnecessary call overheads, the compiler internally uses local call to implement sotiiw
macros and special forms that are not normally thought of as involving a function call. For example, this let:

(let ((a (foo))
(b (bar)))

is internally represented as though it was ruacro+expandd into:

(funcall #'(lambda (a b)

(foo)
(bar))
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This implementation is acceptable because the simple cases of local call (equivalent to a let) result in good code.
This doesn't make let any more efficient, but does make local calls that are semantically the same as let much
more efficient than full calls. For example, these definitions are all the same as far as the compiler is concerned:

(defun foo ()
... some other stuff...
(let ((a something))

.. some stuff...))

(defun foo 0)
(flet ((localfun (a)

.. some stuff...))
... some other stuff...
(localfun something)))

(defun, foo ()
(let ((funvar #'(lambda (a)

.. some stuff...)))
... some other stuff...
(funcall funvar something)))

Although local call is most efficient when the function is called only once, a call doesn't have to be equivalent
to a let to be more efficient than full call. All local calls avoid the overhead of argument count checking and
keyword argument parsing, and there are a number of other advantages that apply in many common situations.
See section 5.4.1, page 60 for a discussion of the optimizations done on let calls.

5.6.3 Closures

Local call allows for much more efficient use of closures, since the closure environment doesn't need to be allocated
on the heap, or even stored in memory at all. In this example, there is no penalty for localfun referencing a
and b:

(defun foo (a b)
(flet ((localfun Wx)

(1+ (* a b x))))
(if (= a b)

(localfun (- x))
(localfun x))))

In local call, the compiler effectively passes closed-over values as extra arguments. so there is no need for you i
"optimize" local function use by explicitly passing in lexically visible values. Closures may also be subject t:ý I.,
optimization (see section 5.4.1, page 60.)

Note: indirect value cells are currently always allocated on the heap when a variable is both assigned to (with
setq or setf) and closed over, regardless of whether the closure is a local function or not. This is another reason
to avoid setting variables when you don t have to.

5.6.4 Local Tail Recursion

Tail-recursive local calls are particularly efficient, since they are irn effect an assignment plus a control trao.-fer.
Scheme programmers write loops with tail-recursive local calls, instead of using the imiperative go and setq. llia•
lazs tnot caught on in the Common Lisp conmmunity, sinct, conventional ('omnon Lisp conipilers ,n't iini ii

,,cal call. In Python, uisers can clhoose to write loops 11cli as:

(defun ! (n)
(labels ((loop (n total)

(if (zerop n)
total
(loop (1- n) (* n total)))))

(loop n 1)))
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extensions:iterate name ({(var initial-value)}" ) {declaration}' {formn} [Macro]

This macro provides syntactic sugar for using labels to do iteration. It creates a local function name with
the specified vats as its arguments and the declarations and forms as its body. This function is then called with
the initial-values, and the result of the call is return from the macro.

Here is our factorial example rewritten using iterate:

(defun ! (n)
(iterate loop

((n n)
(total 1))

(if (zerop n)
total
(loop (1- n) (* n total)))))

The main advantage of using iterate over do is that iterate naturally allows stepping to be done differently
depending on conditionals in the body of the loop. iterate can also be used to implement algorithms that
aren't really iterative by simply doing a non-tail call. For example, the standard recursive definition of factorial
can be written like this:

(iterate fact
((n n))

(if (zerop n)
1

(* n (fact (1- n)))))

5.6.5 Return Values

One of the more subtle costs of full call comes from allowing arbitrary numbers of return values. This overhead
can be avoided in local calls to functions that always return the same number of values. For efficiency reasons
(as well as stylistic ones), you should write functions so that they always return the same number of values. Thisf.
may require passing extra nil arguments to values in son-e cases, but the result is more efficient, not less so.

When efficiency notes are enabled (see section 5.12, page 84), and the compiler wants to use known values
return, but can't prove that the function always returns the same number of values, then it will print a note like
this:

In: DEFUN GRUE
(DEFUN GRUE (M) (DECLARE (FIXNUM X)) (COND (# #) (# NIL) (T #)))

Note: Return type not fixed values, so can't use known return convention:
(VALUES (OR (INTEGER -536870912 -1) NULL) &REST T)

In order to implement proper tail recursion in the presence of known values return (see section 5.5. page 65).
the compiler sometimes must prove that multiple functions all return the same number of values. When htis
can't be proven, the compiler will print a note like this:

In: DEFUN BLUE
(DEFUN BLUE (X) (DECLARE (FIXNUM X)) (COND (# #) (# #) (U U) (T U)))

Note: Return value count mismatch prevents known return from
these functions:

BLUE
SNO0

See section 5.10.9. page 81 for the interaction bettw,,n local call and the representat in I, mimtric IyBs,

5.7 Block Compilation

13lock compilation allows calls to global functions ,efin,'d by defun to be ronmpilel :'s ],;,l ,alls lhr fuinetmi,
";Ill can be in a different top-level formI than lih, defun, or ,v•n in a ,iffernt fibl.
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In addition, block compilation allows the declaration of the entry points to the block compiled portion. An

entry point is any function that may be called from outside of the block compilation. If a function is not an

entry point, then it can be compiled more efficiently, since all calls are known at compile time. In particular, if

a function is only called in one place, then it will be let converted. This effectively inline expands the function.

but without the code duplication that results from defining the function normally and then declaring it inline.

The main advantage of block compilation is that it it preserves efficiency in programs even when (for read-

ability and syntactic convenience) they are broken up into many small functions. There is absolutely no overhead

for calling a non-entry point function that is defined purely for modularity (i.e. called only in one place.)

Block compilation also allows the use of non-descriptor arguments and return values in non-trivial progratiis

(see section 5.10.9, page 81).

5.7.1 Block Compilation Semantics

The effect of block compilation can be envisioned as the compiler turning all the defuns in the block compilation

into a single labels form:

(declaim (start-block funi fun3))

(defu.n funl 0)

(def!un fun2 ()

(fun1)

(defun fun3 (x)
(if X

(funl)
(fun2)))

(declaim (end-block))

becomes:

(labels ((funi 0)

(fun2 ()

(fun1)

(fun3 (x)
(if x

(funi)
(fun2))))

(setf (fdefinition 'funl) #'funl)

(setf (fdefinition 'fun3) #'fun3))

Cails between the block compiled functions are local calls. so changing lie guh la iti,,n ,f funi will li:i.x,-
"effect on what fun2 does: fun2 will keep calling the old funi.

[he entry points funl and fun3 are still installed,, in IIe, symbol-function ;i.s lh,. 1,bd dti.fiiliti' . ,.f til,

fu nctions, so a full call to an entry point, works just .Ls hfore. However, fun2 is ntl alt oitrý jetoiii .- , it 1> ii('T

globally lefined. In addition, fun2 is only ,a iled in ,ot' place, so it will ,,be lot c(wnvort,,d

5.7.2 Block Compilation Declarations

[he extensions: start-block and extensions: end-block declarations allow fine-grailted control ,f lhk -in

pi ation. These declarations are only legal ;as,; a global le'larations (declaim or proclaim,.
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The start-block declaration has this syntax:

(start-block {entry-point-name}" )

When processed by the compiler, this declaration marks the start of block compilation, and specifies the entry
points to that block. If no entry points are specified, then all functions are made into entry points. If already
block compiling, then the compiler ends the current block and starts a new one.
The end-block declaration has no arguments:

(end-block)

The end-block declaration ends a block compilation unit without starting a new one. This is useful mainly
when only a portion of a file is worth block compiling.

5.7.3 Compiler Arguments

The :block-compile and : entry-points arguments to extensions: compile-from-stream and compile-f ile
(page 33) provide overall control of block compilation, and allow block compilation without requiring modificat ion
of the program source.

There are three possible values of the :block-compile argument:

nil Do no compile-time resolution of global function names, not even for self-recursive calls. This inhibits any
start-block declarations appearing in the file, allowing all functions to be incrementally redefined.

t Start compiling in ulock compilation mode. This is mainly useful for block compiling small files that contain
no start-block declarations. See also the : entry-points argument.

:specified Start compiling in form-at-a-time mode, but exploit start-block declarations and compile self-
recursive calls as local calls. Normally :specified is the default for this argument (see *block-compile-
default* (page 71).)

The : entry-points argument can be used in conjunction with :block-compile t to specify the entry-points
to a block-compiled file. If not specified or nil, all global functions will be compiled as entry points. \V,'hn
:block-compile is not t, this argument is ignored.

*block-compile-default* [t I rtui bit'

This variable determines the default value for the :block-compile argument to compile-file and compile-
from-stream. The initial value of this variable is :specified, but nil is sometinws useful for totally inlihit in-
block compilation.

5.7.4 Practical Difficulties

The main problem with block compilation is that the compiler uses large amounts of meimory when it is block
compiling. This places an upper limit on the amount of code that can be block compiled as a unit. To make lst
use of block compilation, it is necessary to locate the Darts of the program containing many internal calls, anid
then add the appropriate start-block declarations. When writing new code, it is a good idea to put in block
compilation declarations from the very beginning, since writing block declarations correctly reqluires accmiralt
knowledge of the program's function call structure. If you want to initially develop colt," with fall iMcr,,'nInti:l
r,.Iefinition, you can compile with *block-compile-default* (page 71) set to nil.

Note if a defun appears in a non-wull lexical environment, then calls to it cannot he block cmipill.
Unless files are very small, it is probably impractical to block compile nmhmltipl, fils as a mutt1 ) iv -p,*l'yiIId :1

list of files to compile-file. Semi-inline expansion (see section 5.8.2. page 73) provilds ann(,ilr way to, ,,ni
Ilock compilation across file botndaries.
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5.8 Inline Expansion

Python can expand almost any function inline, including functions with keyword arguments. The only restrictions
are that keyword argument keywords in the call must be constant, and that global function definitions (defun)
must be done in a null lexical environment (not nested in a let or other binding form.) Local functions (f let)
can be inline expanded in any environment. Combined with Python's source-level optimization, inline expansion
can be used for things that formerly required macros for efficient implementation. In Python, macros don't have
any efficiency advantage, so they need only be used where a macro's syntactic flexibility is required.

Inline expansion is a compiler optimization technique that reduces the overhead of a function call by sim ply
not doing the call: instead, the compiler effectively rewrites the program to appear as though the definition of the
called function was inserted at each call site. In Common Lisp, this is straightforwardly expressed by inserting
the lambda corresponding to the original definition:

(proclaim '(inline my-I+))
(defun my-I+ Wx) (+ x 1))

(my-I+ someval) => ((lambda (z) (+ x 1)) someval)

When the function expanded inline is large, the program after inline expansion may be substantially larger
than the original program. If the program becomes too large, inline expansion hurts speed rather than hlwpin-u
it, since hardware resources such as physical memory and cache will be exhausted. Inline expansion is called fo)r:

" When profiling has shown that a relatively simple function is called so often that a large amount of tino,
is being wasted in the calling of that function (as opposed to running in that function.) If a function is
complex, it will take a long time to run relative the time spent in call, so the speed advantage of inline
expansion is diminished at the same time the space cost of inline expansion is increased. Of course, if a
function is rarely called, then the overhead of calling it is also insignificant.

" With functions so simple that they take less space to inline expand than would be taken to call the
function (such as my-lI+ above.) It would require intimate knowledge of the compiler to be certain whien
inline expansion would reduce space, but it is generally safe to inline expand functions whose d,1tiniriti1n is

a single function call, or a few calls to simple Common Lisp functions.

In addition to this speed/space tradeoff from inline expansion's avoidance of the call. inline expansion can
also reveal opportunities for optimization. Python's extensive source-level optimization can make use of context
information from the caller to tremendously simplify the code resulting from the inline expansion of a function.

The main form of caller context is local information about the actual argument values: what the argument
types are and whether the arguments are constant. Knowledge about argument types can eliminate ruli-THiIn,
type tests (e.g., for generic arithmetic.) Constant arguments in a call provide opportunities for constant. foldiinw
optimization after inline expansion.

A hidden way that constant arguments are often supplied to functions is through the defaulting of unsippli,-d
optional or keyword arguments. There can be a huge efficiency advantage to inline expanding functions that
have complex keyword-based interfaces, such as this definition of the member function:

(proclaim '(inline member))
(defun member (item list &key

(key #'identity)
(test #'eql testp)
(test-not nil notp))

(do ((list list (cdr list)))
((null list) nil)

(let ((car (car list)))
(if (cond (testp

(funcall test item (funcall key car)))
(notp
(not (funcal, test-not item (funcall key car)))

(t
(funcall test item (funcall key car))))
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(return list)))))

After inline expansion, this call is simplified to the obvious code:

(member a 1 :key #'foo-a :test #'char=)

(do ((list list (cdr list)))
((null list) nil)

(let ((car (car list)))
(if (char= item (foo-a car))

(return list))))

In this example, there could easily be more than an order of magnitude improvement in speed. In addition
to eliminat;ng the original call to member, inline expansion also allows the calls to char= and foo-a to blw
open-coded. We go from a loop with three tests and two calls to a loop with one test and no calls.

See section 5.4, page 59 for more discussion of source level optimization.

5.8.1 Inline Expansion Recording

Inline expansion requires that the source for the inline expanded function to be available when calls to the
function are compiled. The compiler doesn't remember the inline expansion for every function, since that would
take an excessive about of space. Instead, the programmer must tell the compiler to record the inline expansion
before the definition of the inline expanded function is compiled. This is done by globally declaring the function
inline before the function is defined, by using the inline and extensions:maybe-inline (see section 5.8.3,
page 73) declarations.

In addition to recording the inline expansion of inline functions at the time the function is compiled, compile-
file also puts the inline expansion in the output file. When the output file is loaded, the inline expansion is
made available for subsequent compilations; there is no need to compile the definition again to record the inline
expansion.

If a function is declared inline, but no expansion is recorded, then the compiler will give an efficiency noti,
like-

Note: MYFUN is declared inline, but has no expansion.

When you get this note. check that the inline declaration and the definition appear before the calls that are
to be inline expanded. This note will also be given if the inline expansion for a defun could not he recorl,,,
because the defun was in a non-null lexical environment.

5.8.2 Semi-Inline Expansion

Python supports semi-inline functions. Semi-inline expansion shares a single copy of a function across all the calls
in a component by converting the inline expansion into a local function (see section 5.6. page 67.) This takes up
less space when there are multiple calls, but also provides less opportunity for context dependent optimization.
WVhen there is only one call. the result is identical to normal inline expansion. Semi-inline expansion is ,oi,
when the space optimization quality is 0, and the function has been declared extensions:maybe-inline.

This mechanism of inline expansior combined with local call also allows recursive functions to be inline
,'xpanded. If a recursive function is declared inline, calls will actually be comnpilod semi-inline. .hltholoi
recursive functions are often so complex that there is little advantage to serni-inlint, expansion. it .,aII still h,
,.seful in the same sort of cases where normal inline, ,expanIIon is especially ;dvaMtitai,-.,s. j,. ijutius whir,

I li -ailing context can help a lot,

5.8.3 The Maybe-Inline Declaration

Phe extensions:maybe-inline declaration is a ('Nil (Common Lisp extinsion. I1 1, irmilar to inline, kiiu
indicates that inline expansion may sornet inies he desirable, rather than sayin, tlhat inn ulitw x,;xtp,,i ýhiId
il tost. always be done. When used in a global ,,claratu, . extensions: maybe-inlinee;uiiis the ,XP:1 ý,, fi
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the named functions to be recorded, but the functions aren't actually inline expanded unless space Is 0 or thle
function is eventually (perhaps locally) declared inline.

Use of the extensior' :maybe-inline declaration followed by the defun is preferable to the standard idiom
of:

(proclaim '(inline myfun))
(defun mylu~n 0) ... )-__

(proclaim '(notinline myfun))

,.Any calls to myf un here are riot inline expanded.

(dot un somefun ()
(declare (inline myfun))

,;Calls to myfun. here are inline expanded.

The problem with using not inline in this way is that in Common Lisp it does more than just suppress finlinet
expansion, it also iv,ýids the compiler to use any knowledge of myfun until a later inline declaration ove-rrides:
tie not inline. This prevents compiler warn inrgs aibouit incorrect calls to tilie function. anti also prvets1lock

cornpilation.
The extensions: maybe-inline declaration is used Ilke this:

(proclaim '(extensions :maybe-inline myfun))
(defun myfun 0C) .

Any calls to myfun here are not inline ex1.'andled.

(dot un somefun 0)
(declare (inline mylun))

*Calls to myt un here are inline ex pan Jed.s

(defun someothertun (
(declare (optimize (space 0))

*Calls to mytun here are expanded senii-ninhne.

in this example, the use of extensions: maybe-in~line causes the expansion to be( recorded when the defun fýr
:zonefun is compiled, and doesn't waste space through doing inlinle expansion by default. riflike notinirlne.
this derlaration still allows the cornpikf- to assume that thle knowni definition really is the one that wýill be.:ll
when giving compiler warnings, and also allows tie compiler to do semi-infilne OXP"Iiii()on Whien thle p'lic
Ippropriate.

When the goal is merely to control whethe~r li rii... -tansionl I, lonep by defauilt . it is preferab~le io( s

extens ions: maybe- inline rather than rotinlin. Thel( notinline dleclaratioti siorill be reserved [''r I
special occasions when a funictioii may be re~lefined at rrin-t ime, so the compiler must b),,toll imht the, hLi0i>
lofint iou of a functio)n is not necessarily the one thfat will be inl jeff'- at thle tImie of Ilie ~

5.9 Ob-'ect Representation

A onewwhat subtle aspect of writ tig efficient ( ortutnon Liýp proarams is *liositigý Ii- ro ot;i t

that thle underlying objects cant hI)- itplemiettel elitei l.[his is partly I)ec:i~ii~ ')f 11ii 11""' 1r t1Iilt 1.
re,presen tat ions for a giveni %vali'ý (.ee sect imi 5.10,2. JI' 77) hut is ;ilso Iliie to)1 -l >he r riin~ -1 kpo

!* ps t hat. Comml~on Lisp ha~s built iii. The wnitiibr ,t p i ,eprewn tat' 5cinps~ 'e w ie ., ,t ' .i _--i

r-jresentat ion because, e,inrtjttcodly -imdrar b1~j ect ris oi %or' n 1 i b re ificli1,%itc I1. ''nhi1 pri Ii - rt mii
1'rat e' oiil hei
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5.9.1 Think Before You Use a List

Although Lisp's creator seemed to think that it was for LISt Processing, the astute observer niay Lave not iced
that the chapter on list mnanipulation makes up less that three percent of Common Lisp: the Language 11. -1lb,
language has grown since Lisp 1.5 - new data types supersede lists for many puirpos,'s.

5.9.2 Structures

One of the best ways of building complex data structures is to define appropriate structure types using def struct.
In Python, access of structure slots is always at least as fast as list or vector access. and is usually fastcr. Ili
comparison to a list representation of a tuple, structures also have a space advantage.

Even if structures weren't more efficient than other representations. structure use would still be attractive"
because programs that use structures in appropriate ways are much more maintainable and robust than programs
written using only lists. For example:

(rplaca (cadd~r (cadddr x)) (caddr y))

'ould( have been written uising structures in this way.

(sett (beverage-flavor (astronaut-beverage W) (beverage-flavor y))

The second version is more maintainable because it is easier to understand what it is doing. It is more robuý,t

because structures accesses are type checked. Aui astronaut will never be confused with a beverage. and ih
result of beverage-flavor is always a flavor. See sections 5.2.8 and 5.2.9 for miore informat ion about St ruct it',

types. See section 5.3, page 55 for a number of examples that make clear the advantages of structure typin&1.
Note that the structure definition should be compiled before any uses of i~s accessors or type, prf~dli~lt V

that these function calls can be efficiently open-coded.

5.9.3 Arrays

Arrays are often the most efficient representatioii for collections of objects because:

* Array representations are ofteii the mlost conmpjact. Ani array is al ways niore -otiipact th ani a I iýt ci ur a in iii
the same number of elemnents.

* Arrays allow fast constant-timne access.

e Arrays are easily (jest ruct ively modified, whIich canIl reduce consing.

* Array element types c-an be specialized. which reduceos bothi overall sieutil and in s' 'iin

page S0.)

Access of arrays that are not, of type simple- array is less, elicient . so declarat ions, are, aipropriat" : in a
array is of a simple type like simple-string or s impl e-b it -vector. Akrrays are, aliiost alwayýs !iii.I uT
compiler may not be able to prove simpleness at ever'y use. 'Hthe only way, to get aI non-simple alrram>tiisI
:displaced-to. :fill-pointer or adjustable ;Irgii"n-uits to make-array If you don't ii>- Ii's haiiry . i

lien arrays can always he declared to he simuple.
Because of the many specialized array v ýIpes arid t ht. pi ssibi lit (iof iioti-muild1' arraý .~ array 's is a~i

like gen,,ric arithmetic (see sction) 5. 19 -4, pa4g' 754). Iii orier fo)r arrayýý ... c'-',!> ) ,' Ifii'WH I catil'i

.. rirttype- and simpleness of the array tmist b,, kntown It *onll~ipil tti'li 1f thr,' 1, 11;id-laittt,, i

tlw cormpil,-,r is forcel to call a ý,'n,'rir arrayý e<~ ruitit i ' -ii -;uill1 11, 1h ti I ii t :r~ ý, I" ~
fbincvnots, Se,' 't., t 1'l - 12 p'mc' ý I

5.9.4 Vectors

V-irloinf imiiensional atrrays) atrc parti k,1, la ~ i~, fill ~iw , in iddl hi, hr -ii irt v i~ k ij' k, I;

h1 -v areý also well1 smtiit' to rfepr.'sttitill, -- 'ill !1i s I ; n 11:r, -ip t ! s I !,-I F, 1t r. i 1: 1' 11 , I I- > -2i

I t4, 's. ant~ fake ulp let w''n xv ii In ixr , lir r i i til - -' J ' d' , .: d, tI f[ ýI T it ! L

tli t rary arra.>iý,, hli, rtip l n...-' t 'bit ' -rý or il. ii '. -.T I h: - S tti ~ ~
;,tr-ferrirt, to string ''t,
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The only advantage that lists have over vectors for representing sequences is that it is easy to change the
length of a list, add to it and remove items from it. Likely signs of archaic, slow lisp code are nth and nthcdr.
If you are using these functions you should probably be using a vector.

5.9.5 Bit-Vectors

Another thing that lists have been used for is set manipulation. In applications where there is a known, reasonably
small universe of items bit-vectors can be used to improve performance. This is much less convenient than using
lists, because instead of symbols, each element in the universe must be assigned a numeric index into the bit
vector. Using a bit-vector will nearly always be faster, and can be tremendously faster if the number of elenients
in the set is not small. The logical operations on simple-bit-vectors are efficient, since they operate on a word
at a time.

5.9.6 Hashtables

Hashtables are an efficient and general mechanism for maintaining associations such as the association between
an object and its name. Although hashtables are usually the best way to maintain associations, efficiency and
style considerations sometimes f;ivor the use of an association list (a-list).

assoc is fairly fast when the test argument is eq or eql and there are only a few elements, but the iini,'
goes up in proportion with the number of elements. In contrast, the hash-table lookup has a somiewhat higher
overhead, but the speed is largely unaffected by the number of entries in the table. For an equal h;Lsh-tade 'or
alist, hash-tables have an even greater advantage, since the test is more expensive. Whatever you do. bh ,uiro t,,
use the most restrictive test function possible.

The style argument observes that although hash-tables and alists overlap in function, they do not do ;ih
things equally well.

" Alists are good for maintaining scoped environments. They were originally invented to implement scoping
in the Lisp interpruter, and are still used for this in Python. With an alist one can non-destructivoyv dianlu,
an association simply by consing a new eleniieit on the front. This is something that cannot ho doneo, wil
hash-tables.

"*Ifashtables are good for maintaining a global association. The value associated with an eutry ,'an '
be changed with setf. With an alist, one has to go through contortions, either rplacd'ing h, coi its if h
entry exists, or pushing a new one If it doesn't. 'le side-effecting nature of lrah-table oprati,), is ir
advantage here.

Historically, symbol property lists were often used for global name associations. lProperty lists provldo all
:Iwkward and error-prone combination of name association and record structure. If von must so the pr, Jrty
list. please store all the related values in a single structure under a single property. rather th;m usin nman\
properties. This makes access more efficient, and also adds a modicuni of typing and alt rantirmi , il
5 2. page 50 for information on types in CMN' Coiinion Lisp.

5.10 Numbers

Nurnibers are interesting because numbers are one of tlie few ('onnion Lisp, dtra types 1ihat have ,ir,-t hr • p(rt
in -onventional hardware. If a nunin ,,lr can be ropresnlld in the way that th i harwar, , xps it. tht- tih, r, iý

bI ,ig 4friciency advaintag,.e
T'sing hardware represenitations is problematical in (Cm lu mn Lisp wt, to, ,lv nanltc i , p,.r, th,. ti P.

,f a value may be unknown at cornlile tini.) It ir poss•iul, to cr ipiio 1' f(r . it : ally t p",,,! r'i n

i ( ni411111on1 Lisp proerarn with f, nr,-, v ,'irpar:ib. efilriii dratr, thof ,iot 1,tm l .,ttl 1 t.ý:! . I,,, -. ,
huit not all ( Itn llnll n lo1p) 11111-1..llt1 atr1' i'I I rt,r r' r r , lwtirn :rrr , r- i, ,, i

'' l nfian Lisp

"* 'le ',in pilr innst pro , t a I ibi,. wi rwrial ,xIr, i i, t it :ii • .i ;it icallv I iI, I

" * h If loiipil r milust h, ( r',, : ..1-wh ,riricl I ,,In fiiriii, , lmd. I1% irr ll0 1iti:t , 1111illi I
r-r,, .to t ta t i,,n oxw t It Ith , i , r , ,, ýi f. i,p r, I, iI ir,.it•,.- ,I .it kt~ i i I " } I tim ,1t it, , i r , ,, i, ,t rl , , i % t I I( I

" " r a ", -I aItI I I
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Because of its type inference (see section 5.3, page 55) and efficiency nutes (see section 5.12, page 84), Python

is better than conventional Common Lisp compilers at ensuring that numerical expressions are statically typed.

Python also goes somewhat farther than existing compilers in the area of allowing native machine number

representations in the presence of garbage collection

5.10.1 Descriptors

Common Lisp's dynamic typing requires that it be possible to represent any value with a fixed lngth objcrt.

known as a descriptor. This fixed-length requirement is implicit in features such as:

# Data types (like simple-vector) that can contain any type of object, and that can be destructively

modified to contain different objects (of possibly different types.)

* Functions that can be called with any type of argument, and that can be redefined at run time.

In order to save space, a descriptor is invariably represented as a single word. Objects that can be directly
represented in the descriptor itself are said to be immediate. Descriptors for objects larger than one word are in
reality pointers to the memory actually containing the object.

Representing objects using pointers has two major disadvantages:

"* The memory pointed to must be allocated on the heap, so it must eventually be freed by the garbedv

collector. Excessive heap allocation of objects (or "consing") is inefficient in several ways. Se s.cti, m

5.11.2, page 82.

"* Representing an object in memory requires the compiler to emit additional instructions to real the act ial
value in from memory, and then to write the value back after operating on it.

The introduction of garbage collection makes things even worse, since the garbage collector must be able
to determine whether a descriptor is an immediate object or a pointer. This requires that a few hits il e'aclh

descriptor be dedicated to the garbage collector. The loss of a few bits doesn't seem like much, but it has a major
efficiency implication - objects whose natural machine representation is a full word (integers and single-floats)
cannot have an immediate representation. So the compiler is forced to use an unnatural immediate reprsent ati e
(such as fixnum) or a natural pointer representation (with the attendant consing overhead.)

5.10.2 Non-Descriptor Representations

From the discussion above, we can see that the standard descriptor representation has many problems. ih-

worst being number consing. Common Lisp compilers try to avoid these descriptor efliciency problems by ui111
non-descriptor representations. A compiler that uses ion-descriptor representations can compile this funteiim

so that it does no number consing:

(defun multby (vec n)
(declare (type (simple-array single-float (*)) vec)

(single-float n))
(dotimes (i (length vec))

(setf (aref vec i)
(* n (aref vec0)

If a descriptor representation were used, each iteration of the loop might conis two loots andi do thr,' iittt's a>

many memory references.
As its negative definition suggests. the range of possible non-descriptor reprseilt at (olts is :irL',. ll,. ['r-

!',rtiance improvement from non-descriptor represe•litatimi ,t•lpvnds uiponi beth h th nitiltlr f t'l,.s lr;t It\'
i, mn-desriptor representationls ;inl hthe tt i ,,r 4,f ,,tn,,xi iII which the ', tt Ir is tr,, I t•h rd. :t ,i,-scirflf
r'-pre'svl tat ion.

Mlany ( ommon Lisp c'omnpilers support non-descriptor rreset ations for tlat i\ ,,l.s >iwh ;L, single-float
J1ndt double-float (section 5.10.7 ) Python adds suipport for full word tlltt .rs .-,s',.-,tii, , 6. .•',- -1.
.haracters (see section 5.1010. page 'l ) anld systtni-;tr'a pominters Oiitn si ,t ,rattiid .rs. 1,m. -,,t

', 2 ) Many (omnmon Lisp ro'ntpil~rs .support titm-,escriptr rpr'sttat,,n. fr ': rill ,s .,, 7, * i
iltl array elements (sectioin 5.1t s ) Pjlv) lhpj-ll ,, , I ,rt f,,r t,, -., ,rlijt.r ;tr wt', i t. n td r,' rti \:% , -i ;
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5.10.3 Variables

In order to use a non-descriptor representation for a variable or expression intermediate value, the compiler

must be able to prove that the value is always of a particular type having a non-descriptor representation. Type

inference (see section 5.3, page 55) often needs some help from user-supplied declarations. The best kind of type

declaration is a variable type declaration placed at the binding point:

(let ((x (car 1)))
(declare (single-float x))

Use of the, or of variable declarations not at the binding form is insufficient to allow non-descriptor representation
of the variable - with these declarations it is not certain that all values of the variable are of the right type.

It is sometimes useful to introduce a gratuitous binding that allows the compiler to change to a non-descriptor

representation, like:

(etypecase x
((signed-byte 32)
(let ((x x))

(declare (type (signed-byte 32) x))

The declaration on the inner x is necessary here due to a phase ordering problem. Although the compiler will
eventually prove that the outer x is a (signed-byte 32) within that etypecase branch, the inner x would ',ay,-
been optimized away by that time. Declaring the type makes let optimization more cautious.

Note that storing a value into a global (or special) variable always forces a descriptor representation.
Wherever possible, you should operate only on local variables, binding any referenced globals to local variables
at the beginning of the function, and doing any global assignments at the end.

Efficiency notes signal use of inefficient representations, so programmer's needn't continuously worry about
the details of representation selection (see section 5.12.3, page 85.)

5.10.4 Generic Arithmetic

In Common Lisp, arithmetic operations are generic.3 The + function can be passed fixnums. bignumrs. ratios.

and various kinds offloats and complexes, in any combination. In addition to the inherent complexity of bignum
and ratio operations, there is also a lot of overhead in just figuring out which operation to do and whalt contagilo
and canonicalization rules apply. The complexity of generic arithmetic is so great that it is inconceivable to
code it. Instead, the compiler does a function call to a generic arithmetic routine. consuming many inst runl i, ls
before the actual computation even starts.

This is ridiculous, since even Common Lisp programs do a lot of arithmetic, and the hardware is capable of
doing operations on small integers and floats with a single instruction. To get acceptable efficiency. tilte comlielor
special-cases uses of generic arithmetic that are directly implemented in the hardware. In order to opwin d,,

arithmetic, several constraints must be met:

"* All the arguments must be known to be a good type of number.

"• The result must be known to be a good type of number.

"* Any intermediate values such as the ressuJt of (+ a b) in tOwe call (+ a b c) iust hbe knowiin to 1w :,,
type of number.

"* All the above numbers with good types 11u1t bl, ,f til sa ,i , , gn ) , typ. tl'% t" MIX li iii,.&r>

floats or different float formats.

As Steele notes in CLTL HI. this is a generic conceptim ,, if ic, ,, and isr iint to he , inf is-d rit I , I h- L( w ý,, t .- L 1t .,' I t,

ilt', W on.
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The "good types" are (signed-byte 32), (unsigned-byte 32), single-float and double-float. See
sections 5.10.5, 5.10.6 and 5.10.7 for more discussion of good numeric types.

float is not a good type, since it might mean either single-float or double-float, integer is not a good
type, since it might mean bignum. rational is not a good type, since it might mean ratio. Note however that
these types are still useful in declarations, since type inference may be able to strengthen a weak declaration into
a good one, when it would be at a loss if there was no declaration at all (see section 5.3, page 5.5). The integer
and unsigned-byte (or non-negative integer) types are especially useful in this regard, since they can often bh,
strengthened to a good integer type.

Arithmetic with complex numbers is inefficient in comparison to float and integer arithmetic. Complex
numbers are always represented with a pointer descriptor (causing consing overhead), and complex arithmetic is
always closed coded using the general generic arithmetic functions. But arithmetic with complex types such as:

(complex float)
(complex fixnum)

is still faster than bignum or ratio arithmetic, since the implementation is much simpler.
Note: don't use / to divide integers unless you want the overhead of rational arithmetic. Use truncate even

when you know that the arguments divide evenly.
You don't need to remember all the rules for how to get open-coded arithmetic, since efficiency notes will tll

you when and where there is a problem - see section 5.12, page 84.

5.10.5 Fixnums

A fixnum is a "FIXed precision NUMber". In modern Common Lisp implementations, fixnums can be represented
with an immediate descriptor, so operating on fixnums requires no coasing or memory references. Clever choice
of representations also allows some arithmetic operations to be done on fixnums using hardware supported
word-integer instructions, somewhat reducing the speed penalty for using an unnatural integer representation.

It is useful to distinguish the fixnum type from the fixnum representation of integers. In Plython, there
is absolutely nothing magical about the fixnum type in comparison to other finite integer types. fixnum is
equivalent to (is defined with deftype to be) (signed-byte 30). fixnure is simply the largest subset of imt,'ers
that can be represented using an immediate fixnum descriptor.

Unlike in other Common Lisp compilers, it is in no way desirable to use the fixnum type in declarat ios
in preference to more restrictive integer types such aLs bit, (integer -43 7) and (unsigned-byte 8). Sin,'-
Python does understand these integer types, it is preferable to use the more restrictive type, as it allow tl, t•r
type inference (see section 5.3.4, page 57.)

The small, efficient fixnum is contrasted with bignum, or "BIG NUMber". This is another descriptor repr,-
sentation for integers, but this time a pointer representation that allows for arbitrarily large integers. Binu11
operations are less efficient than fixnum operations, both because of the consing and memory reference oAr-
heads of a pointer descriptor, and also because of the inherent complexity of extended precision aritlititic.
While fixnum operations can often be done with a single instruction. bignum operations are so complex that
they are always done using generic arithmetic.

A crucial point is that the compiler will use generic arithmetic if it can't prove that all the argiinieIIt 1.
intermediate values, and results are fixnums. With bounded integer types such is fixnum. the rosult type pr()vl
to be especially problematical, since these types are not closed under common arithniet ic operat ions su,'h a;. +,
-. * and /. For example, (1+ (the fixnum x)) does not necessarily evaluate to a fixnun. Bijiuuiius we, :ill
to Common Lisp to get around this problem, but they really just transform the correctnless problem "itf Ihiý
add overflows, you will get the wrong answer" to the ,lT'ieuicy problem "if this addI aiught oxv'rtllmw tihn v ,itr
program will run slowly (because of generic arithmetic.)"

There is just no getting around the fact that the hardlware only dirctly supports -dirt iiter1,r> Ii ,h,
miost efficient open coding, the compiler must be aid, to prove that the result is a Ijl t,',,,r typ,,. I his i ;III
:riunient in favor of using more restrictive Integer tfy\,,,p (1+ (the fixnum x)) n;i. iwt :tw:uv I,, a fixnuun
Iut (1+ (the (unsigned-byte 8) x)) always is. Of course,. you can al>• :a.',,rt tlIe rsu I,, 1 hy pti[Lý i~i
lots of the dh-daratiotns antd thetn compiling with safety 0
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5.10.6 Word Integers

Python is unique in its efficient implementation of arithmetic on full-word integers through non-descriptor rep-
resentations and open coding. Arithmetic on any subtype of these types:

(signed-byte 32)
(unsigned-byte 32)

is reasonably efficient, although subtypes of fixnum remain somewhat more efficient.
If a word integer must be represented as a descriptor, then the bignum representation is used, with its

associated consing overhead. The support for word integers in no way changes the language semantics, it just
makes arithmetic on small bignums vastly more efficient. It is fine to do arithmetic operations with mixed fixnum
and word integer operands; just declare the most specific integer type you can, and let the compiler decide what
representation to use.

In fact, to most users, the greatest advantage of word integer arithmetic is that it effectively provides a few
guard bits on the fixnum representation. If there are missing assertions on intermediate values in a fixnum
expression, the intermediate results can usually be proved to fit in a word. After the whole expression is
evaluated, there will often be a fixnum assertion on the final result, allowing creation of a fixnum result without
even checking for overflow.

The remarks in section 5.10.5 about fixnum result type also apply to word integers; you must be careful to
give the compiler enough information to prove that the result is still a word integer. This time. though. when
we blow out of word integers we land in into generic bignum arithmetic, which is much worse than sleazing from
fixnums to word integers. Note that mixing (unsigned-byte 32) arguments with arguments of any signed type
(such as fixnum) is a no-no, since the result might not be unsigned.

5.10.7 Floating Point Efficiency

Arithmetic on objects of type single-float and double-float is efficiently implemented using non-descriptor
representations and open coding. As for integer arithmetic, the arguments must be known to be of the sanme
float type. Unlike for integer arithmetic, the results and intermediate values usually take care of themselves dlue,
to the rules of float contagion, i.e. (1+ (the single-float x)) is always a single-float.

Although they are not specially implemented, short-float and long-float are also acceptable in decla-
rations, since they are synonyms for the single-float and double-float types. respectively. It is harmleiss
to use list-style float type specifiers such as (single-float 0.0 1.0), but Python currently makes little is,' of
bounds on float types.

When a float must be represented as a descriptor, a pointer representation is used. creating consing overhead.
For this reason, you should try to avoid situations (such as full call and non-specialized data strtucttires) that
force a descriptor representation. See sections 5.10.8 and 5.10.9.

See section 2.1.3, page 5 for information on the extensions to support IEEE floating point.

5.10.8 Specialized Arrays

Common Lisp supports specialized array element types through the :element-type argument to make-array.
When an array has a specialized element type, only elements of that type call he stor,I, in the array. [rou Owl
restriction comes two major efficiency advantages:

"* A specialized array can save space by packing multiple elements into a single word. For example, a base-
char array can have 4 elements per word, and a bit array can have 32. This spaco-efficient rtert,'ietit:•ifl
is possble because it is not necessary to separately indicate the type of each ,'eleiieit.

" The elements in a specialized array can be givetn the satne tion-uiescriptor repres,',llt t toil ;L.; Ii l, )11 , .11,- 111
registers and on the stack, eliminating thlie need for represent at ion coriversions whii readimt and writlina
array elements. For objects with pointer descripto r representations (such a.s floats and word it'r, fi,,r,

is also a substantial tonsing reduction because It I, not tiecossary to allocate a n•w ,hj'ct ,'v'ry ti' :tti
array element is modified.

These are the specialized lenient types cturre.nt io l , Iip rte,,:
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bit
(unsigned-byte 2)
(unsigned-byte 4)
(unsigned-byte 8)
(unsigned-byte 16)
(unsigned-byte 32)
base-character
single-float
double-float

Although a simple-vector can hold any type of object, t should still be considered a specialized array type.
since arrays with element type t are specialized to hold descriptors.

When using non-descriptor representations, it is particularly important to make sure that array accesses
are open-coded, since in addition to the generic operation overhead, efficiency is lost when the array element
is converted to a descriptor so that it can be passed to (or from) the generic access routine. You can detect
inefficient array accesses by enabling efficiency notes, see section 5.12, page 84. See section 5.9.3, page 75.

5.10.9 Interactions With Local Call

Local call has many advantages (see section 5.6, page 67); one relevant to our discussion here is that local call
extends the usefulness of non-descriptor representations. If the compiler knows from the argument type that
an argunient has a non-descriptor representation, then the argument will be passed in that representation. Tht,
easiest way to ensure that the argument type is known at compile time is to always declare the argurment tpt,
in the called function, like:

(defun 2+f (X)
(declare (single-float x))
(+ x 2.0))

The advantages of passing arguments and return values in a non-descriptor representation are the same as for

non-descriptor representations in general: reduced consing and memory access (see section 5.10.2, page 77.) This
extends the applicative programming styles discussed in section 5.6 to numeric code. Also, if source files are kept
reasonably small, block compilation can be used to reduce number consing to a minimum.

Note that non-descriptor return values can only be used with the known return convention (section 5.63.5.) 1I
the compiler can't prove that a function always returns the same number of values. then it must use tle utikumwit
values return convention, which requires a descriptor representation. Pay attention to the known ret urn eflifi,'llcy
notes to avoid number consing.

5.10.10 Representation of Characters

Python also uses a non-descriptor representation for characters when convenieit. This improves the efficiency ot
string manipulation, but is otherwise pretty invisible; characters have an immediate descriptor representation. so
there is not a great penalty for converting a character to a descriptor. Nonetheless. it, may sometilnes be helpful
to declare character-valued variables as base-character.

5.11 General Efficiency Hints

This section is a summary of various implementation costs and ways to get around them,. Tfhose hints art'
relatively unrelated to the use of the Python compiler, and probably also apply to tmost other ('otmoni, I.isp
Ii plernentat ions. In each section. there are reference.s to related i n-dlepth Itiscussion.

5.11.1 Compile Your Code

:k\t this point, the advantages of compiling code relative to running it interpreted prob•a•bly need not em ,'iupht.tiz,',d
too much. but remember that in CM[U Comniont Lisp. ,'ompiled code typicall i runs htindtrds of itle. ti:e.,.r
than interpreted code. Also. compiled (fasl) files ladI significantly faster than , ýorce tilos. so it is w,,r mI•il,
',)rnpiling files which are loaded iimany times, even if ihl 1w'e 4f tlie, funct ion i, li tilt, is uitinup irt :lit
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Even disregarding the efficiency advantages, compiled code is as good or better than interpreted code. Con-
piled code can be debugged at the source level (see chapter 3), and compiled code does more error checking. For
these reasons, the interpreter should be regarded mainly as an interactive command interpreter, rather than as
a programming language implementation.

Do not be concerned about the performance of your program until you see its speed compiled. Some
techniques that make compiled code run faster make interpreted code run slower.

5.11.2 Avoid Unnecesiary Consing

Consing is another name for allocation of storage, as done by the cons function (hence its name.) cons is by
no means the only function which conses - so does make-array and many other functions. Arithmetic and
function call can also have hidden consing overheads. Consing hurts performance in the following ways:

"* Consing reduces memory access locality, increasing paging activity.

"* Consing takes time just like anything else.

"* Any space allocated eventually needs to be reclaimed, either by garbage collection or by starting a new
lisp process.

Consing is not undiluted evil, since programs do things other than consing, and appropriate consing call
speed up the real work. It would certainly save time to allocate a vector of intermediate results that are resised
hundreds of times. Also, if it is necessary to copy a large data structure many times, it may be more efficient
to update the data structure non-destructively; this somewhat increases update overhead, but makes copying
trivial.

Note that the remarks in section 5.1.5 about the importance of separating tuning from coding also apply to
consing overhead. The majority of consing will be done by a small portion of the program. The consing hot spots
are even less predictable than the CPU hot spots, so don't waste time and create bugs by doing unnecessary
consing optimization. During initial coding, avoid unnecessary side-effects and cons where it is convenient. If
profiling reveals a consing problem, then go back and fix the hot spots.

See section 5.10.2, page 77 for a discussion of how to avoid number consing in Python.

5.11.3 Complex Argument Syntax

Common Lisp has very powerful argument passing inechanisms. Unfortunately, two of the ziost p-werful i, .h-
anisms, rest arguments and keyword arguments, have a significant performance penalty:

"* With keyword arguments, the called function has to parse the supplied keywords by iterating ,wr I ,1nl
and checking them against the desired keywords.

"* With rest arguments, the function must cons a list to hold the arguments. If a function is called iiatiiv
times or with many arguments. large amounts of memory will be allocated.

Although rest argument consing is worse than keyword parsing, neither problem is serious unless thousands
of calls are made to such a function. The use of keyword arguments is strongly encouraged in functions with
many arguments or with interfaces that are likely to he extended, and] rest arguments are often natural iII ulr
interface functions.

Optional arguments have some efficiency advantage over keyword arguments. but their syntactic ullins
and lack of extensibility has caused many (-'omninon Lisp programmers to abandon is,' of optionals -x-c',pt Ill
functions that have obviously simple and immutable interfaces (such as subseq), or ini functions that ar, ',nly
cailed in a few places. When defining an interface fmnction to be used hv other pmro raniiers )r users. u-. -1
, relv required and keyword arguments is recorumendel.

Parsing of defmacro keyword anti rest arguments is d,)ne at cornpile time. so a imar(l can l .etd t,, pr,, 1,1,*
a convenient syntax with an efficient implementation. If t0, l macro-expand,] fern• iintains no kywrd ,r r-i
argluments, then it is perfectly acceptable in Inner loops.

Keyword argument parsing overhead can also he avoidl,, v Its(, of inline , Apai.-iI, ,, ) 'I 'i i,,I m •.
i 1,J block compilation (section 5.7.)

Note: the compiler open-codes most li:hvilv ns,,, Svt,'m finiicti'us whiich ha%', k- w, ri ,,r rt ir,.

that no ru n-tne overhead is involved.
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5.11.4 Mapping and Iteration

One of the traditional Common Lisp programming styles is a highly applicative one, involving the use of mapping
functions and many lists to store intermediate results. To compute the sum of the square-roots of a list of numbers.

one might say:

(apply #'+ (mapcar #'sqrt list-of-numbers))

This programming style is clear and elegant, but unfortunately results in slow code. There are two reasons
why:

* The creation of lists of intermediate results causes much consing (see 5.11.2).

* Each level of application requires another scan down the list. Thus, disregarding other effects, the above
code would probably take twice as long as a straightforward iterative version.

An example of an iterative version of the same code:

(do ((num list-of-numbers (cdr num))
(sum 0 (+ (sqrt (car num)) sum)))

((null num) sum))

See sections 5.3.1 and 5.4.1 for a discussion of the interactions of iteration constructs with type, infereunc. antd
variable optimization. Also, section 5.6.4 discusses an applicative style of iteration.

5.11.5 Trace Files and Disassembly

In order to write efficient code, you need to know the relative costs of different operations. The main reason
why writing efficient Common Lisp code is difficult is that there are so many operations, and the costs of these
operations vary in obscure context-dependent ways. Although efficiency notes point out some problem area--;.
the only way to ensure generation of the best code is to look at the assembly code output.

The disassemble function is a convenient way to get the assembly code for a function, but it can be very
difficult to interpret, since the correspondence with the original source code is weak. A better (but more awkward)
option is to use the :trace-file argument to compile-file to generate a trace file.

A trace file is a dump of the compiler's internal representations, including annotated assembly code. Fath
component in the program gets three pages in the trace file (separated by "-L"):

" The implicit-continuation (or IR1) representation of the optimized source. This is a ,lump of the flow graph
representation used for "source level" optimizations. As you will quickly notice, it is not really wvry cl, ,
to the source. This representation is not very useful to even sophisticated users.

" The Virtual Machine (VM, or 1R2) representation of the program. This dump represents the generat,'l
code as sequences of "Virtual OPerations" (VOPs.) This representation is intermediate between the soure,
and the assembly code - each VOP corresponds fairly directly to some primitive function or const rucl.
but a given VOP also has a fairly predictable instruction sequence. An operation (such aLs +) may lmay,
multiple implementations with different cost and applicability. The choice of a particular VOP such .as
+/fixnum or ÷/single-float represents this choice of implementation. Once you are familiar with it. tlh.

VM representation is probably the most useful for determining what inipiementation has boeon used.

" An assembly listing, annotated with the VOl) responsible for generating the instructions. This list ing
usefil for figuring out what a VOP does and how it is inmplemiente'l inl a particular ,(ontext. but it. lr,'
size makes it more lifficult to read.

Note that trace file generation takes much space and tiie, ýi ice thlie trace tile is tensiif 4times larttr thain th,
-,ource file. To avoid huge confusing trace files and much wa.st ed time, it is best to ,# arp;traft, te cr1u -rif tr'r;uu ii

portion into its own file and then generate the trace lil, Ifrom this snmal file,.
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5.12 Efficiency Notes

Efficiency notes are messages that warn the user that the compiler has chosen a relatively inefficient implemien-
tation for some operation. Usually an efficiency note reflects the compiler's desire for more type information. If
the type of the values concerned is known to the programmer, then additional declarations can be used to get a
more efficient implementation.

Efficiency notes are controlled by the extensions: inhibit-warnings optimization quality (see section 4.7.1.
page 46.) When speed is greater than extensions: inhibit-warnings, efficiency notes are enabled. Note that
this implicitly enables efficiency notes whenever speed is increased from its default of 1.

Consider this program with an obscure missing declaration:

(defun off-note (x y z)
(declare (fixnum x y z))
(the :fixnum (+ x y z)))

If compiled with (speed 3) (safety 0), this note is given:

In: DEFUN EFF-NOTE
(+ I Y Z)

(+ (+ X Y) Z)
Note: Forced to do inline (signed-byte 32) arithmetic (cost 3).

Unable to do inline fixnum arithmetic (cost 2) because:
The first argument is a (INTEGER -1073741824 1073741822),
not a FIXNUN.

This efficiency note tells us that the result of the intermediate computation (+ x y) is not known to be a fixnum.
so the addition of the intermediate sum to z must be done less efficiently. This can be fixed by changing the
definition of eff-note:

(defun off-note (x y z)
(declare (fixnum x y z))
(the fixnum (+ (the fixnum (+ x y)) z)))

5.12.1 Type Uncertainty

The main cause of inefficiency is the compiler's lack of adequate information about the types of function argutije
and result values. Many important operations (such as arithmetic) have an inefficient general (generic) cas,. ))III
have efficient implementations th?.t can usually be used if there is sufficient argument type information.

Type efficiency notes are given when a value's type is uncertain. There is an important distinction betwee•l
values that are not known to be of a good type (uncertain) and values that are known not to be of a good typo

Efficiency notes are given mainly for the first, case (uncertain types.) If it is clear to the compiler that that there,
is not an efficient implementation for a particular function call, then an efficiency note will only be given if thw
extensions: inhibit-warnings optimization quality is 0 (see section 4.7. 1. page 416.)

In other words, the default efficiency notes only suggest that you add declarations, not that von chalngo the
semantics of your program so that an efficient implementation will apply. For example. compilation of this form
will not give an efficiency note:

(elit (the list 1) i)

,* ,,en though a vector access is more efficiett tlhatn I xini ;t list.

5.12.2 Efficiency Notes and Type Checking

It is important that the off-note example above used (safety 0). When type checkin is ,'na hhel'. , I I;0
got apparently spurious efficiency notes. With (safety 1). the note has this extra liwe th, ,ntd

The result is a (INTEGER -1610612736 1610612733), not a FIXNUM.
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This seems strange, since there is a the declaration on the result of that second addition.
In fact, the inefficiency is real, and is a consequence of Python's treating declarations as assertions to be

verified. The compiler can't assume that the result type declaration is true - it must generate the result arnd
then test whether it is of the appropriate type.

In practice, this means that when you are tuning a program to run without type checks, you should work
from the efficiency notes generated by unsafe compilation. If you want code to run efficiently with type checking,
then you should pay attention to all the efficiency notes that you get during safe compilation. Since user supplied
output type assertions (e.g., from the) are disregarded when selecting operation implementations for safe code.
you must somehow give the compiler information that allows it to prove that the result. truly must be of a good
type. In our example, it could be done by constraining the argument types more:

(defun elf-note (x y z)
(declare (type (unsigne.-byte 18) x y z))
(+ X y z))

Of course, this declaration is acceptable only if the arguments to elf-note always are (unsigned-byte 18)
integers.

5.12.3 Representation Efficiency Notes

When operating on values that have non-descriptor representations (see section 5.1).2. page 77). -:inr" III

a substantial time and consing penalty for converting to and from descriptor represenTation,. ["or t•s ,,
the compiler gives an efficiency note whenever it is forced to do a representat ion ,'¢,,'r,-iorn ' ,xw', ItiIII
*efficiency-note-cost-threshold* (page 86).

Inefficient representation coercions may be due to type uncertainty, as in this t'xatniie:

(defun set-flo Wx)
(declare (single-float x))
(prog ((var 0.0))

(setq var (gorp))
(setq var x)

(return var)))

which produces this efficiency note:

In: DEFUN SET-FLO
(SETQ VAR X)

Note: Doing float to pointer coercion (cost 13) from X to VAR.

The variable var is not known to always hold values of type single-float, so a descriptor repr'stit it in
hte used for its value. In sort of situation, and adding a declaration will elininate tlihe inetfici'ncy.

Often inefficient representation conversions are riot due to type uncertainty - instead, f'iey rc'•ci- ir,,
evaluating a non-descriptor expression in a context t hat requires a descriptor result

* Assignment to or initialization of any data structtre other Than a specialized array ('st, sect on.I
page 80), or

* Assignment to a special variable, or

* Passing as an argument or returning aLs a value in any function call that is It Ial c:a1l is,',( ,,
).10.9, page 81.)

If such inefficient coercions appear in a "liot spot" iii the protrar. data s.lrun ir, r,,sr ,,,i

reorganization may be necessary to improve ,lficiency. See sections 5.7. 5. 10) and 5.13,
Because representation selection is done rather late in compilat ion, tI ie source context in these ,llici'iCx nu C.

is somewhat vague, making interpretation mro ,ir" i,-ult. This is a fairly siraiIutf, forw:urt ,'xtimpl,:

(defun cf+ (x y)
(declare (single-float x y))
(cons (+ x y) t))
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which gives this efficiency note:

In: DEFUI CF+
(CONS (+ X Y) T)

Note: Doing float to pointer coercion (cost 13), for:
The first argument of CONS.

The source context form is almost always the form that receives the value being coerced (as it is in the preceding
example), but can also be the source form which generates the coerced value. Compiling this example:

(defun if-cf+ (x y)
(declare (single-float x y))
(cons (if (grue) (+ x y) (snoc)) t))

produces this note:

In: DEFUI IF-CF+
(+ X Y)

Note: Doing float to pointer coercion (cost 13).

In either case, the note's text explanation attempts to include additional information about what locat ioin'
are the source and destination of the coercion. here are sorne example notes:

(IF (GRUE) X (SNOC))
Note: Doing float to pointer coercion (cost 13) from X.

(SETQ VAR X)
Note: Doing float to pointer coercion (cost 13) from X to VAR.

Note that the return value of a function is also a place to which coercions may have to be done:

(DEFUZ F+ (X Y) (DECLARE (SINGLE-FLOAT X Y)) (+ X 1))

Note: Doing float to pointer coercion (cost 13) to "<return value>".

Sometimes the compiler is unable to determine a naine for the source or destination, in which caz.e the sour'
context is the only clue.

5.12.4 Verbosity Control

lhese variables control the verbosity of efficiency notes:

*efficiency-note-cost-threshold*

Before printing some efficiency notes, the compiler compares the value of this variable to the difference in
cost between the chosen implementation and the best potential implementation. If the difference is not greater
than this limit, then no note is printed. The units are implementation dependent: the initial value suppr.sse>
notes about "trivial" inefficiencies. A value of 1 will note any inefficiency.

*efficiency-note-limit* ,

When printing some efficiency notes. the compiler reports possible efficient iiiplin'intriioils. Thie 1111i: ;
.alui of 2 prevents excessively long efficiency noe,,s iII I he -' n onin i cse whrer tI lir, is no typ n ,roiuT I),
6i implenientations are possibl,,

5.13 Profiling

lie first step in improving a program's performanc'e is to profile the activity of the prograin to tind w,,ro it
'ýpends its time. The best way to do this is to use the' profiliig utility found in thle profile piwkan l n,. I1-
package provides a macro profile that encapsulates fii nt ions wit h stat ist ics gat herniig , Id.
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5.13.1 Profile Interface

*t imed-functions* "

This variable holds a list of all functions that are currently being profiled.

profile {name} [Maru
This macro wraps profiling code around the named functions. As in trace, the names are not evaluated. If a

function is already profiled, then the function is unprofiled and reprofiled (useful to notice function redt-finition.)
A warning is printed for each name that is not a defined function.

unprofile {name}" [Macro'o
This macro removes profiling code from the named functions. If no names are supplied, all currently profiled

functions are unprofiled.

report-time (name}
This macro prints a report for each named function of the following information:

"* The total CPU time used in that function for all calls,

"* the total number of bytes consed in that function for all calls.

"* the total number of calls,

"* the average amount of CPU time per call.

Summary totals of the CPU time, consing and calls columns are printed. An estimate of the profiling overhead is
also printed (see below). If no names are supplied, then the times for all currently profiled functions are prin+ted.

reset-time {namre} [.lJ~cr'ul
This macro resets the profiling counters associated with the named functions. If ito names are supplied. Il,ia

all currently profiled functions are reset.

5.13.2 Profiling Techniques

Start by profiling big pieces of a program, then carefully choose which functions close to, but not in. the inner
loop are to be profiled next. Avoid profiling functions that are called by other profiled functions. snc,e this oten
the possibility of profiling overhead being included in the reported times.

If the per-call time reported is less than 1/10 second, then consider the clock resolution and profiling overheld
before you believe the time. It may be that. you will 'eel to run your prograii many timnes [i or ler to ;jvra,

out to a higher resolution.

5.13.3 Nested or Recursive Calls

The profiler attempts to compensate for nested or recursive calls. Time and consing overhead will be chared
to the dynamically innermost (most recent) call to a profiled function. So profiling a subfunctiou of a prefile,
function will cause the reported time for the outer function to decrease. Ilowover if an inner f nct ion hai.s ai laru,.
miniber of calls, some of the profiling overhead may "leak" into the reported tinie for the oiutr fuctfit! Ill
-,'neral, be wary of profiling, short functions that are ,'all,', iiat, tinn's.

5.13.4 Clock resolution

l'less you are very lucky, thw length of 'our iiachine's clock "tick" is prob;.bly much loim,.r Thani Ti, it
takes simple function to run F,,r ,xaniple. on the 11\1 HI. iet -clock resolut|ion is I /l) oa, . I hI ilst ll,, t ti it
if a function is only called a few times, then only tli(, first couple decimal places are, railly iie:iitnugfjill.

Note however, that if a f,,int ion is called litany tilnes, then the statistical averaliu•g across all 'sills 'd-hlml
result in increased resolution. For example, oni th, I lI WlI, if a fnliction 1" called; a tolhltisand 1tnoe. thfji
resolution of tens of tm,-ro .,', oIjs ran ho, expe'l'I
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5.13.5 Profiling overhead

The added profiling code takes time to riin every time that the profiled function is called, which can disrupt the
attempt to collect timing information. in order to avoid serious inflation of the times for functions that take
little time to run, an estimate of thle overhead due to profiling is suhtracted from the timies reported foran
fuinc tion.

Although this correction works fairly well, it is not totally accurate, resulting in times that beconie inicreasiiuvl
meaningless for functions with short runtimes. This is only a concern when the estimated profiling overhieadil
many times larger than reported total CPU time.

The estimated profiling overhead is not represented in the reported total CPU time. The sumn of total CIPU
time and the estimated profiling overhead should be close to the total CPU time for the entire profiling run (az-
determined by the time macro.) Time unaccounted for is probably being used by functions that you forgot to
profile.

5.13.6 Additional Timing Utilities

time form 11(0

This macro evaluates form, prints some timing and nieniory allocation information to *trace-output* :iiilt
returns any values that form returns. The timing information includes real time, user run tuneit. and yien

ruii time. This macro executes a form and reports the timle and consing overhead If the time formis tot10
compiled (e.g. it was typed at top-level), then compile will he called on thle form to give niort' acculrate I ti~ii:::
infcrmation. If you really want to time interpreted speed, you can say:

(time (eval 'form))

Things that execute fairly quickly should be timed mnore than once, since there may he more paging overhead inl

the first timing. To increase the accuracy of very short itimes, you can time multiple evaluations:

(time (dotimes (i 100) form))

extensions: get-bytes-consed I u t /11I

This function returns the number of bytes allocated slince the first time von called it. 'Illt firs.t t nit' it

aldit ret urns zero. The above profiling rout inles uise, tihis to report consing i forinatW1i

extensions: *gc-run.-time* r

F'is variable acciin-iilate-s thle. run-t irne consumied by Lgarbage collect ion, in t(lit, uli tit ret iiriel i gez -

i.nt ernal-run-t ime

int ernal-t ime-units-per-second (f t

Thie value of internal-t ImIe-Urnits-per-second is WO

5.13.7 A Note on Timing

['here. are two general kinds of timing informiat ion provided by. thle time miacro antd otlhtr prfi lit i ii ýi -
timne and run time. Real time is elapsed, wall clock t inie. It will be affected inl a faiirlv liviotis vav ly 1"\il,
o)he~r activity on the machine. The more other processes contending for ( 'I'I and 111r.it 11,ru tn

will increase. This means thlat real t ime ineasuretiilltis are, difficult to re-picate. ti htf t lis I., i >s t, r i
iIhicatFed workstation. The ulvantae of rea Iti is tha iti elI el t ilvtalt"ti r~

runt u1nder the benchiniarking conditions. The~ pruilit is Ithat vuio n't kit wxitl whitt rit. -f 0 . :

Min time is the ainount ,f tinip that the( pra.,ýsur siippotf lv spent rliinititLi- 111' Jrol-IttIl ;lS
wxaitittg for 1/0 or ruainirg )t hr proct'sses ' *,er run tine" atill Ilst ti 71it t1 i r, 1111111h r,, rP ml.[

iThe 'nixi ke-rnel. They ;ire, stiippasti to I), at tii'a.ir- ofI htow nnt-h Ittmw th-' proceý,,(r ýpiw riiiiimmnz, "UP -

program (which will include (;(' wcynical. -Ic 1i'l ti., ;ititilt I Titthat Ill,- ktniilI -petit rltitiltO ý' -i -i :



CHAPTER 5. ADVANCED COMPILFEJR USE ANi) IEFFICIENCY HINTS •S)

Ideally, user time should be totally unaffected by benchmarking conditions; in reality user time does depe-nd
on other system activity, though in rather non-obvious ways.

System time will clearly depend on benchmarking conditions. In Lisp benchmarking, paging activity increases
system run time (but not by as much as it increases real time, since the kernel spends some time waiting for the
disk, and this is not run time, kernel or otherwise.)

In my experience, the biggest trap in interpreting kernel/user run time is to look only at user time. In reality.
it seems that the sum of kernel and user time is more reproducible. The problem is that as system activitv
increases, there is a spurious decrease in user run time. II effect, as paging, etc., increases, user time leaks into
system time.

So, in practice, the only way to get truly reproducible results is to run with the same competing actix :tv on
the system. Try to run on a machine with nobody else logged in, and check with "ps aux" to see if there are
any system processes munching large amounts of CPU or memory. If the ratio between real time and the sum
of user and system time varies much between runs, then you have a problem.

5.13.8 Benchmarking Techniques

Given these imperfect timing tools, how do should you do benchmarking? The answer depends on whether you
are trying to measure improvements in the performance of a single program on the same hardware, or if you are-
trying to compare the performance of different programs and/or different hardware.

For the first use (measuring the effect of program modifications with constant hardware), you should look at
both system+user and real time to understand what elfect the change had on CPU use, and on I/O (including
paging.) If you are working on a CPU intensive program, the change in system+user time will give you a moder-
ately reproducible measure of performance across a fairly wide range of system conditions. For a CPU intensive
program, you can think of system+user as "how long it would have taken to run if I had my own machine." So
in the case of comparing CPU intensive programs, system+user time is relatively real, and reasonable to use.

For programs that spend a substantial amount of their time paging, you really can't predict elapsed tine
under a given operating condition without benchmarking in that condition. User or system+user time may be
fairly reproducible, but it is also relatively meaningless, since in a paging or I/0 intensive program, the program
is spending its time waiting, not running, and system time and user time are both measures of run time. A
change that reduces run time might increase real time by increasing paging.

Another common use for benchmarking is comparing thie performance of the same program on different hard-
ware. You want to know which machine to run your program on. For comparing different machines (operatilla
systems, etc.), the only way to compare that makes sense is to set up the machines in exactly the way that tliy
will normally be run, and then measure real time. If the program will normally be run along with X. then run X.
If the program will normally be run on a dedicated workstation, then be sure nobody else is on the benchinarkin"I
machine. If the program will normally be run on a machine with three other Lisp jobs, then run three other
Lisp jobs. If the program will normally be run on a machine with 8meg of memory, then run with Smog. ll,,re.
"normal" means "normal for that machine". If you the choice of an unloaded RT or a heavily loaded PM\AX.
do your benchmarking on an unloaded RT and a heavily loaded PMAX.

If you have a program you believe to be CPU intensive, then you might be tempted to compare "run" times
across systems, hoping to get a meaningful resi'It even if lie henchmarking i~n't done under the expectf ,1 runningt
condition. Don't to this, for two reasons:

* The operating systems might not compute run ti mne in the same way.

* Under the real running condition, the program might not be CPU intensive after all.

In the end, only real time means anything -- it is the amount of time you have to wait for the result. 1"ho
only vaiid uses for run time are:

* To develop insight into the program. For example. if ruin time is much less than 'lapsed tie., t, lin v ii :ir,
probably spending lots of time paging.

* To evaluate the relative performance of ('lU( intiensive programs in the sante e'ivi runient.



Chapter 6

UNIX Interface

By Robert MacLachlan, Skef Wholey,

Bill Chiiles, and William Lott

CMU Common Lisp attempts to make the full power of the underlying environment available to the Lisp
programmer. This is done using combination of hand-coded interfaces and foreign function calls to C libraries.
Although the techniques differ, the style of interface is similar. This chapter provides an overview of the facilities
available and general rules for using them, as well as describing specific features in detail. It is assumed that the
reader has a working familiarity with Mach, Unix and X, as well as access to the standard system documentation.

6.1 Reading the Command Line

The shell parses the command line with which Lisp is invoked, and passes a data structure containing the parsed
information to Lisp. This information is then extracted from that data structure and put into a set of Lisp data
structures.

extensions: *couuand-line-strings* [ T-rI'zb1f]
extensions: *command-line-utility-name* [Variabhl

extensions: *couuand-line-words* [t•-i rih Itj,

extensions: *command-line-switches* [V'rzabl

The value of *command-line-words* is a list of strings that make up the command line, one word per string
The first word on the command line, i.e. the name of the program invoked (usually lisp) is stored in *cormand-
line-utility-name*. The value of *command-line-switches* is a list of command-line-switch structures.
with a structure for each word on the command line startin; with a hyphen. All the command line words between
the program name and the first switch are stored in *command-line-words*.

The following functions may be used to examine command-line-switch structures.

extensions: cmd-switch-name switch •FIlI, I,'n,

Returns the name of the switch, less the preceding hyphen and trailing equal sign (if any).

extensions: cud-switch-value switch it, tI o11,f

Returns the value designated using an embedded ,',,'lal sign. if any. If the switch has t) no equal 5 h1ii1, thin
is null.

extensions: cmd-suit ch-words switch [f. ,t ,tn]

Returns a list of the words between this switch and the next switch or the end of thle command line.

!)t I
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6.2 Useful Variables

system: *stdin* [Variable]
system: *stdout* [Variable]
system: *stderr* [Variable]

Streams connected to the standard input, output an(d error file descriptors.

system:*tty* [Variable]

A stream connected to '/dev/tty'.

system: *task-self* [Variable]
system: *task-data* [Varzable]
system: *task-notify* [Variable]

The initial ports for the Lisp process (Mach only.)

6.3 Lisp Equivalents for C Routines

The UNIX documentation describes the system interface in terms of C procedure headers. The corresponding
Lisp function will have a somewhat different interface, since Lisp arg,'ment passing conventions and datatypes
are different.

The main difference in the argument passing conventions is that Lisp does not support passing values by
reference. In Lisp, all argument and results are passed by value. Interface functions take some fixed number
of arguments and return some fixed number of values. A given "parameter" in the C specification will appear
as an argument, return value, or both, depending on whether it is an In parameter, Out parameter, or In/Out
parameter. The basic transformation one makes to come up with the Lisp equivalent of a C routine is to remove
the Out parameters from the call, and treat them as extra return values. In/Out parameters appear both as
arguments and return values. Since Out and In/Out. parameters are only conventions in C. you must determine
the usage from the documentation.

Thus, the C routine declared as

kern-return-t lookup(servport, portsname, portsid)
port servport;
char *portsname;
int *portsid; /* out */

*portsid = <expression to compute portsid field>
return(KERINSUCCESS);

has as its Lisp equivalent something like

(defun lookup (ServPort PortsName)

(values
success
<expression to compute portsid field>))

If there are multiple out or in-out arguments. t hen there are multiple additional returns values.
Fortunately, CMU Common Lisp programmers rarely have to worry about the nuauces of this I ranslat ion

process, since the names of the arguments and return values are documented in a way so that tho describe
function (and the Hemlock Describe Function Call couiniand, invoked with C-M-Sliift-A) will list this infor-
mation. Since the ndn,.s of ar,.iients and return values are usually descriptive, the information that describe
prints is usually all one needs to write a call. Most programmers use this on-line documentation nearly all f thle
time, and thereby avoid the need to handle bulky nuammias amd perform the translation from barbarous t ,,,'s
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6.4 Type Translations

Lisp data types have very different representations from those used by conventional languages such as C. Since
the system interfaces are designed for conventional languages, Lisp must translate objects to aiid froma the
Lisp representations. Many simple objects have a direct translation: integers, characters, strings and floating
point numbers are translated to the corresponding Lisp object. A number of types, however, are implemented
differently in Lisp for reasons of clarity and efficiency.

Instances of enumerated types are expressed as keywords in Lisp. Records, arrayf, and pointer types are
implemented with the Alien facility (see page 105.) Access functions are defined for these types which convert
fields of records, elements of arrays, or data referenced by pointers into Lisp objects (possibly another object to
be referenced with another access function).

One should dispose of Alien objects created by constructor functions or returned from remote procedure calls
when they are no longer of any use, freeing the virtual memory associated with that object. Since Aliens contain
pointers to non-Lisp data, the garbage collector cannot do this itself. If the memory was obtained from make-
alien (page 109) or from a foreign function call to a routine that used malloc, then free-alien (page 109)
should be used. If the Alien was created using MAClI memory allocation (e.g. vm allocate), then t1-, storae
Thould 1z i.d using vmodeallocate.

6.5 System Area Pointers

Note that in some cases an address :s represented by a Lisp integer, and in other cases it is represented by a real
pointer. Pointers are usually used when an object in the current address space is being referred to. The .IA\CIl
virtual memory manipulation calls ::rust use integers, since ;- principle the address could be in any process. and
Lisp cannot abide random pointers. Because these types are represented differently in Lisp, one must explicitly
coerce between these representations.

System Area Pointers (SAPs) provide a mechanism that bypasses the Alien type system and accesses virtual
memory directly. A SAP is a raw byte pointer into the lisp process address space. SAPs are represented
with a pointer descriptor, so SAP creation ca, caus:- consing. However, the compiler uses a non-descriptor
representation for SAPs when possible, so the cinsiig overhead is generally minimal. See section 5. 10.2, page 77.

system:sap-int sap 1-u1ci1on0
system:int-sap int

The function sap-int is used to generate an integer corresponding to the system area pointer, suitable for
passing to the kernel interfaces (which want all addresses specified as integers). The function int-sap is used to
,1o the opposite conversion. The integer represental ton of a SAP is the byte offset of the SAP front the start of
the address space.

system:sap+ sap offset [Fun chto nj

This function adds a byte offset to sap, returning a new SAP.

system:sap-ref-8 sap offset [Funcitit]
system:sap-ref-16 sap offset [Function ]

system:sap-ref-32 sap offset [Fu i c/tol?]
These functions return the 8. 16 or 32 bit tinsimned integer at offset from sap. The offer is always a bte

Offset. regardless of the number of bits accessed. setf invay be, used with tli these, fitllntionlis , sit to ,,l ti
into virtual memory.

system: signed-sap-ref-8 sap offset [lu titn]

system:signed-sap-ref-16 sap offset /l JitlOl]

system: signed-sap-ref-32 sap offset [luliicu/oit I
These functions are the same as the above insigtel operations, except that hey sigt-oxtenti, retitrmi a

negative number if the high bit is set.
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6.6 Unix System Calls

You probably won't have much cause to use them, but all the Unix system calls are available. The Unix systeni
call functions are in the Unix package. The name of the interface for a particular system call is the name of
the system call prepended with unix-. The system usually defines the associated constants without any prefix
name. To find out how to use a particular system call, try using describe on it. If that is unhelpful, look at theI
source in 'syscall.lisp' or consult your system maintainer.

The Unix system calls indicate an error by returning nil as the first value and the Unix error number as the
second value. If the call succeeds, then the first value will always be non-nil, often t.

Unix: get-unix-error-mag error [Function]

This function returns a string describing the Unix error number error.

6.7 File Descriptor Streams

Many of the UNIX system calls return file descriptors. Instead of using other UNIX system calls to perform IO
on them, you can create a stream around them. Vor this pirpose, fd-streams exist.

system:make-fd-stream descriptor &key :input :output :element-type fFunc Ii,,,n'
:buffering :name :file :original
:delete-original :auto-close
:timeout

This function creates a file descriptor stream using descriptor. If input is non-nil, input operations are
allowed. If output is non-nil, output operations are allowed. The default is input only. These keywords are
defined:

element-type is the type of the unit of transaction for the stream, which defaults to string-char. See the
Common Lisp description of open for valid values.

buffering is the kind of output buffering desired for the stream. Legal values are :none for no buffering. :line
for buffering up to each newline, and :full for full buffering.

name is a simple-string name to use for descriptive purposes when the system prints an fd-stream. When printinA
fd-streams, the system prepends the streams name with Stream for . If name is unspecified, it defaults t(,
a string containing file or descriptor, in order of preference.

File, original : file specifies the name of the associated file when creating a file stream (must be a simple-
string), original is the simple-string name of a backup file containing the original contents of file while
writing file.

When you abort the stream by passing t to close as the second argument, if you supplied both file and
original, close will rename the original name to the file name. When you close the stream normally.
if you supplied original, and delete-original is non-nil, close deletes original. If auto-,lose is true (the,
default), then descriptor will be closed when the stream is garbage collected.

timeout if non-null, then timeout is an integer number of seconds after which an input wait should time out. 11t
a read does time out, then the system: io-timeout coudit lon is signalled.

system:fd-stream-p object lI"I, n,
This function returns t if object is an fdI-streaut, aid nil if not.

system: fd-stream-fd stream JI'll /1 Own

This returns the file descriptor associated with streami.
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6.8 Making Sense of Mach Return Codes

Whenever a remote procedure call returns a Unix error code (such as kern.return-t), it is usually prudent to
check that code to see if the call was successful. To relieve the programmer of the hassle of testing this valut
himself, and to centralizt the iiformation about the meaning of non-success return codes, CMU Common Lisp
provides a number of macros and functions. See also get-unix-error-msg (page 93).

system:gr-error function gr &optional context [Function]

Signals a Lisp error, printing a message indicating that the call to the specified function failed, with the
return code gr. If supplied, the context string is printed after the function name and before the string associated
with the gr. For example:

* (gr-error 'nukegarbage 3 "lost big")

Error in function GR-ERROR:
NUKEGARBAGE lost big, no space.
Proceed cases:
0: Return to Top-Level.
Debug (type H for help)
(Signal #<Conditions :Simple-Error. 5FDEO>)
0)

system:gr-call function &rest args [Macro]

system:gr-call* function &rest args [Macro]

These macros can be used to call a function and automatically check the GeneralReturn code and signai
an appropriate error in case of non-successful return. gr-call returns nil if no error occurs, while gr-call*
returns the second value of the function called.

* (gr-call mach:port.allocate *task-self*)
NIL

system:gr-bind ({var}* ) (function {arg}* ) {rorn}" [.uro,

This macro can be used much like multiple-value-bind to bind the vars to return values resulting from
calling the function with the given args. The first return value is not bound to a variable, but is checked a; a
GeneralReturn code, as in gr-call.

* (gr-bind (port-list port.list.cat)
(mach:portselect *task-self*)

(format t "The port count is 'S." port-list.cnt)
port-list)

The port count is 0.
#<Alien value>

6.9 Unix Interrupts

('MU Common Lisp allows access to all the Unix signals that can be generated under 1*nix. It slhn im he niii,
that if this capability is abused, it is possible to conipletely destroy the running Lisp. The foIlowintg tiiaro,
and functions allow access to the Unix interrnpt systefm. The signal names as spvcifihe in section 2 of thi Unix
Programmer's Manual are exported from the Unix package.
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6.9.1 Changing Interrupt Handlers

system:with-enabled-interrupts specs &rest body [Macrol

This macro should be called with a list of signal specifications, specs. Each element of specs should be a list
of two elements: the first should be the Unix signal for which a handler should be established, the second should
be a function to be called when the signal is received One or more signal handlers can be established in this way.
with-enabled-interrupts establishes the correct signal handlers and then executes the forms in body. The
forms are executed in an unwind-protect so that the state of the signal handlers will be restored to what it wa'L
"before the with-enabled-interrupts was entered. A signal handler function specified as N!L will set the U nix
signal handler to the default which is normally either to ignore the signal or to cause a core dump depending on
the particular signal.

system:without-interrupts &rest body [Macroj

It is sometimes necessary to execute a piece a code that can not be interrupted. This macro the forms in
rtody with interrupts disabled. Note that the Unix interrupts are not actually disabled, rather they are qimetie,
until after body has finished executing.

system:with-interrupts &,rest body rAzrrn
When executing an interrupt handler, the system disables interrupts, as if the handler was wrapped in iII a

without-interrupts. The macro with-interrupts can be used to enable interrupts while the forms in body
are evaluated. This is useful if bo-y is going to Pnter a break loop or do some long computation that nmight ne.-d
to be interrupted.

systemn:without-hemlock &rest body [Macro]

For some interrupts, such as SIGTSTP (suspend the Lisp process and return to the Unix shell) it is necessary
to leave Hemlock and then return to it. This macro executes the forms in body after exiting Hemlock. \VW1,.1
body has been executed, control is returned to IHemlock.

system: enable-interrupt signal function [/noon]
This function establishes function as tmie handler for signal. Unless you want to establish a global sil-

rnal handler, you should use the macro with-enabled-interrupts to temporarily establish a signal hanlter.
enable-interrupt returns the old function associa(ed with the signal.

system: ignore-interrupt signal [Funet ,en
Ignore-interrupt sets the Unix signal mechanism to ignore signal which means that the Lisp process will never

see the signal. Ignore-interrupt returns the old iinction associated with the signal or nil if none is currently
defined.

system :default-interrupt signal tF.n,,I I o ,,

Default-interrupt can be used to tell the Unix signal mechanism to perform the default action for siignal. For
details on what the default action for a signal is, see section 2 of the Unix Programmer' .\Manual. In ger:il. it
is likely to ignore the signal or to cause a core lump.
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6.9.2 Examples of Signal Handlers

The following code is the signal handler used by the Lisp system for the SIGINT signal.

,defun ih-sigint (signal code scp)
(declare (ignore signal code scp))
(without-hemlock
(with-interrupts
(break "Software Interrupt" t))))

The without-hemlock form is used to make sure that Hlemlock is exited before a break loop is entered. The
with-interrupts form is used to enable interrupts because the user may want to generate an interrupt while
in the break loop. Finally, break is called to enter a break loop, so the user can look at the current state of the
computation. If the user proceeds from the break loop, the computation will be restarted from where it wa~s
interrupted.

The following function is the Lisp signal handler for the SIGTSTP signal which suspends a process and
returns to the Unix shell.

(defun ih-sigtstp (signal code scp)
(declare (ignore signal code scp))
(without-hemlock
(Unix:unix-kill (Unix:unix-getpid) Unix:aigstop)))

Lisp uses this interrupt handler to catch the SIGTS'Fl signal because it is necessary to get out of tlemlock in a
clean way before returning to the shell.

To set up these interrupt handlers, the following is recornmended:

(with-enabled-interrupts ((Unix: SIGINT #' ih-sigint)
(Unix: SIGTSTP 8' ih-sigtstp))

<user code to execute with the above signal handlers enabled.>



Chapter 7

Event Dispatching with
SERVE-EVENT

By Bill Chiles and Robert MacLachlan

It is common to have multiple activities simultaneously operating in the same Lisp process. Furthrnlor,'.

Lisp programmers tend to expect a flexible development environment. It must be possible to load and ,lifv

application programs without requiring modifications to other running programs. CM U Common Lisp adiut'hi-sý

this by having a central scheduling mechanism based oil an event-diiven, object-oriented paradigm.
An event is some interesting happening that should cause the Lisp process to wake up and do something.

These events include X events and activity on Unix file descriptors. The object-oriented mechanism is only
available with the first two, and it is optional with X events as described later in this chapter. In an X event, th'
window ID is the object capability and the X event type is the operation code. The Unix file descriptor input

mechanism simply consists of an association list of a handler to call when input shows upi) on a partictlar tile
descriptor.

7.1 Ohject S--ts

An object set is a collection of objects that have the same implementation for each operation. Externally th',
object is represented by the object capability and the operation is represented by the operation code. \Vithin l.isp.

the object is represented by an arbitrary Lisp object, and the implementation for the operation is represented
hy an arbitrary Lisp function. The object set riechanimi maintains this translation from the external t,) thi,

internal representation.

system:make-object-set name &optional default-handler [Function

This function makes a new object set. Name is a string used only for purposes of identifying the object set
when it is printed. Default-handler is the function used as a handler when an undefined operation occurs on
an object in the set. You can define operations with the serve-operation functions exported the extensions

package for X events (see section 7.4, page 99). Objects are added with system: add-xvindow-object. Initiallv
the object set has no objects and no defined operal ions.

system:object-set-operation object-set operation-ce - Fod, tia

This function returns the handler function that is thle implementation of thle opration corresp,•nIlt1•, t,,
,)peration-code in object-set. When set with setf, Iho setter ftirt ion est ablishes t h,' i %w hardl,r The serve-
Operation functions exported from the extensions package for X events (,se sect i o . pal, ug.•) cu11 thii M,
behalf of the user when announcing a new operati(0) ,,r ;i obiect set.

system:add-xvindow-object window object ohject-set in /ien

These functions add port or window to object-,et. (Pjvct is an arbitrary Lisp ,,bi.c t hat It ass,,iatI wit 11
te port or windoe capability. Window is a ('!.X -..::;i-- ,,,,,.v:nt o$':'urs. system:servý tvent ,
,btect as an argument to the handler flint! ioil

'.17
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7.2 The SERVE-EVENT Function

The systeam: serve-event function is the standard way for an ap plication t o wai t fo r somiI et h Iing t o itap peti 1,T
exam ple, the Lisp system calls sy steam: serve-event w fe n i t wants i npuIt from X or a t ert Iiiinal st roearii I ii. i, ,ýi
behind system: serve-event is that it knows thle appropriate action to take when any interestin g evýent iiappil
If an application calls system: serve-event when it is idle, t hen any other applicatilons withI petiding -:Itr~~i,
run. This allows several applications to run "at thle saine timne" without Interference. ee thlough Ther'el is il%
one thread of control. Note that if an applicationi is waititng for input of any kinl(. thio Other applhcartl-ii a>:!l

get events.

system: serve-event &ocptional timeout
This function waits for an event to happen auid thien dhispatches to the correct haiidler function, If. speo:i~ll

timeout is the number of seconds to wait before timing out. A time out of zero seconds is legal and m,-

system: serve-event to poll for any events immediately available for processing. system: serve-event r,,trnNto
t 'if it serviced at least one event, and nil otherwise. Depending on the aPulication., whetl, system: serve-event
returns t, you might want to call it repeatedly with a timeout of zero until it returns nil.

If input is available on any designated file descriptor. t lien this calls the appropriate hanidler fijint iii-ipk
by system: add-id-handler.

Since events for many different applications miay arrive simultaneously, anl applicat i.)t walrit in fr i.pt-tf
event must loop on system: serve-event until1 thle desired evenit haippens. Since preigrali is such a.111 i
system: serve-event for input, applications usually do not need to call system: serve-event a1 t11l. HIl-wH
allows other application's handlers to run wheit it gi es tnt o) an Iniput watt.

system: serve-all-events &optional timeout 'uIi

Th is function is sim ilIar to s ysteam: s ervea-event, except i t serves allI te lie )IiinI *-v.-n;- rat heIr thla I'jtI III
It returns t if it serviced at least one event, aiid nil ot ht'rwie.

7.3 Using SERVE-EVENT with Unix File Descriptors

Object sets are not available for use with file descriptors, as there are only two pt.-rat ions po~.ihl I-iifl.
descriptors: input and output. Instead, a hand(]ler for ei ther Iin put or outputt can be regist.-rod with system: serve-
event for a specific file descriptor. Whenever any inpnt. shows uip. or out put, is possible on t his il.'ih-tpr
function associatcd with *he handler for that. iescriptor Is ftincalled with[ tipo, detseripti r a., it ~ii t iii- !Ii

system: add-fd-handler fi direction function 7, t1MI'

This function installs and returns a new handler for the file descriptor td. !)irectiol -anl ht, "it hier :inputi
lie sy ,,ucuu should inyoke t'no huanidler wheni in pit is a- l~able cr -c!tp'nt If t he svst en should Iniitvoke t III hand:

when output is possible. This returns a unique object representing thle handler, and t his is a suit all.', ar:i.tini it

for system: remove-f d-handler Function niust, take onev argument. the, file descriptor.

system: remove-fd-handler handier FIjII, fi-tIl
This function removes handler. that add-id-handler mtiust, have previously ret uriel.

system: with-id-handler (direction fi Functin)i f forin I*.1u
This macro executes thle supplied forms withI a lt;mutdlIr itistalled tii 0h. hfr,,(tvmu. andi tliriciI'

system: add-id-handler.

system:vait-u~ntil-id-usable direction Ald t-optioital tinieout/ 1

This function waits for tip to tirn-oat,,seonds for hI_ to) I ,-coit, isaiblo 'for hrecriont i-,it hr :input -r :outputr
If timeout is nil or unspecified. this waits forever.

system: invalidate-descriptor 0 i ito

This function removes all handlers associated wit It 6 Hi Ihs should onily be used in Ira~sttc ca.,f-s t sit-jIt Iu I,
-rrors, but not necessarily EOF ). Normal ly, voni h~l,iild ii remove-fd-handler t, remtw-v. th liewcr hc 1Ii oil,
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7.4 Using SELtVE-EVENT with the CLX Interface to X

Remember frim section 7.1, an object set is a collection of objects, CIA windows in this case. with sri
set of operations, event keywords, with corresponding implementations, the samie hiandler fuinct ions, Sinice X
alVr-.s multiple display connections from a given process, you can avoid using object sets if every windowif;n
apk -cation or display connection behaves the same. If a particular X application on a ,Ingle displaynz-lA
ha~s windows that want to handle certain eventb differeritly, then using object sets is a convenient wayl toI )rgui iiii
this since you need some way to map the window/event comibination to the appropriate functlrinalitv

The following is a disciission of functions exported from thle extensions package fiat. facilit at. iui i
(2LX events through system: serve-event. '[le first two routines are useful regardless of whot hrr -
system: serve-event:

ext open-cix-display &,'optional string Iu lI 1 1
'This function parses string for an X display specification including disp~lay' .ind cr,,n Iiuil), s ~

dI-faults to the following:

(cdr (assoc :display ext:*environment-list* :te~t; #'eq),

if :iv fitl In h ls~a p'iia o smsig I Iii siIl an .rror ext : oPen-clx-dasplay r, i nT 'Ii h, I

*i~silay andr screen.

ext flush-display-events displaY iah

'I'hlis furnction fl ushes allI t he events i n displayvs event ,queiue incIlud In g th litIi rr, it It'iiti. jo n Is tib. >,r:
tins from within an event handler.

7.4.1 Without Object Sets

S'inre most applications that use CLX, can avoid the comiplexity of o1bjei sets. th--s, Oil? iii''s itr.'d-w, I
1 Separate section, The rout ines described linte rluswt - itn otihfat use ilt,(he objt '0 t 111-'li:1iiii :ii 1,r' i

T lirse iuterfaces.

ext :enable-clx-event-ha~ndling dis plaY handler tllil

['ins function causes system: serve-event to niotice when thiereý is input in ttplu 1Itt,d Il I T it,- X 1

-'rver. When this happ.'ns, system: serve-event invi Ikes handler on Jlisplac vi in i unýivm %tkith II
,'rr,)r handler bound that [lushes all events froni displayv and ret urns. B% ret irniiui,. ho, .rror h:nill. r i,'
to handle the error, but it will have cleared all events. thus, iiterinz the d('buigg.r wýill lot) rsiilt illi1il'

''rrors due to streams that wait vii system: serve-event for i upuit (1 Calug I tis ,nri 'Iv itl. i''/- I

"St abl ishes handler as a new hand ler, replac ing~ any prey ins ono. f(r diisplalv

ext :disable-clx-event-handling displaY Iil,11

Thits function undoes the effect of ext : enable-cilx- event -handl ing

ext :with-clx-avent-handling (dlisplaY handle~r) if0Tirlu V M

'This nmacro evaluates each form) in a context wher, system; Serve-event liv'llc n. %k11 h, io ''ilijo II

iwro is tinpuit on cotitict ion to e t NwX-w, I 1w 1i~ I.tr,)% ,u1Mv 1)r,% I~IY II'jj~I"II'l m I ,uIu r r. i;
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7.4.2 With Object Sets

1'his section discusses the use of object sets and system; serve-event to handle CIAX events. This is ii''e-"ar'ý
when a single X application has (list Inct w Indows that want to handle thei same wevents in it ( I'ererii ways. l:'I IN!
vioi need some way of asking for a given window which way you want, to handle somie r'veiit becatise t lnos 'Aif

is handfled differently 'depending on the window. Object Sets provide this feature.
For each CLX event-key symbol-name XXX (for example, key-press), there is a function serve-NXX ,'4i

artgumients, an object set and a function. The serve-.YXX function establishes t he fuict ion ats the ' Iiaii r I" r t

Ithe : XXX event in the object set. Recall from section 7. 1. system: add-xwindow-obj ect 9.-ssociattý soni- L'
o)bjec~t with a CLX window in an object set. When system: serve-event notice-s activity on a window, it

the function given to ext :enabl e-c l- event -handling. If this function is ext : obj ect - set- event -handler,
it calls the function given to serve-XXX, passing the object given to system: add-xwindow-object all,] illi

"vntslots azel as a couple other arguments descwrihped bt-low

TO Ilse Object sets in this way:

"* CIreate an object set.

"* [)efine some operations on it iising the serve-.YNN fuinct ~ins

"* l\ild an object for every window onl which voni rereive, rejiiests. 1'riils~ aiw I.tii ( i~x wýinl~iw i*1 i

si ruct tire miore iiieanimigful io your applicat [oil.

( ('all system: serve-event to ser. ice alti X event

ext obj ect-set-event-handler display .Tl 1?11 11.

Th is funrction is a suitable argument to ext : enabl e-clx-event-handl ing. The actf liil event ha 11,1ers 1 det I -i
h',r particular events within a given object set must take an argument for every slot lin the approprialt %,'v'itIl
mLIdition to the "--it slots, ext :object-set-event-haandler passfs the followving argnimeiits:

"* The object, as e-stablished by system: add-xwindow-obj ect, onl which tliet-en orccirr-l

"* event-key. see xlib: event-case.

* snd-ven-p.see. xib: event-case.

l)escribirig any ext: serve-tevent-kev-narne funzct ion, where even t-kev" -nanie IS Anl ev0ii -key ~ i -imi
"xarN pie, ext :serve-key-press), indicates exact ly what all the argunients ;,re in the-ir co~rrect o)rder.

When creating an object set for use with ext:object-set-event-handler, .inecify ext :default--clx-
event-handler as the default handler for events in t hat object set. If no defauilt hanldler Is, sj rhi'

the system invokes the default default handler. it will catise ani error since t his fuincti iii takes ar,,uiieits siiinti

tor handling port messages.

7.5 A SERVE-EVENT Example

[Hits section contains two examples using system: s.3rve-event. Ilthe first one does llf't uise ohJect oets. Ind0,
I"(.'n 1. slightly more comipl icated one, does

7.5.1 Without Object Sets Example
Iblis examlple definles an Input hatudl r t',r a ('IA display inet'i.It nrilv''cmi : key-press i' i I

1dvl of t he exam ple loops over sys tem: s erv e- event t, ,,11 t1)1

(in-package "SERVER-EXAMPLE")

(defuin my-input-handler (display)
(xlib:event-case (display :timeout 0)

(:key-press (event-window code state)
(format t 'KEY-PRESSED (Window = D) S.'
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(xlib:window-id event-window)
See Hemlock Command Implementor's Manual for convenient
input mapping function.

(ext:translate-character display code state))
;; Make XLIB:EVENT-CASE discard the event.
t)))

(defun server-example ()
"An example of using the SYSTEM:SERVE-EVENT function and object sets to
handle CLX events."

(let* ((display (ext:open-clx-display))
(screen (display-default-screen display))
(black (screen-black-pixel screen))
(white (screen-white-pixel screen))
(window (create-window :parent (screen-root screen)

:x 0 :y 0 :width 200 :height 200
:background white :border black
:border-width 2
:event-mask
(xlib:make-event-mask :key-press))))

Wrap code in UNWIND-PROTECT, so we clean up after ourselves.
(unwind-protect

(progn
;; Enable event handling on the display.
(ext:enable-clx-event-handling display #'my-input-handler)
;; Map the windows to the screen.
(map-window window)
;; Make sure we send all our requests.
(display-force-output display)
;; Call serve-event for 100,000 events or immediate timeouts.
(dotimes (i 100000) (system:serve-event)))

;; Disable event handling on this display.
(ext:disable-clx-event-handling display)
;; Get rid of the window.
(destroy-window window)
;; Pick off any events the X server has already queued for our
;; windows, so we don't choke since SYSTEM:SERVE-EVENT is no longer
;; prepared to handle events for us.
(loop
(unless (dele:ing-window-drop-event *display* window)
(return)))

;; Close the display.
(xlib:close-display display))))

(defun oleting-window-drop-event (display win)
"Check for any events on win. If there is one, remove it from the
event queue and return t; otherwise, return nil."

(xlib:display-finish-output display)
(let ((result nil))

(xlib:process-event
display :timeout 0
:handler #'(lambda (&key event-window &allow-other-keys)

(if (eq event-window win)
(setf result t)
nil)))

result))
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7.5.2 With Object Sets Example

This example involves more work, but you get a little more for your effort. It defines two objects, input-box
and slider, and establishes a :key-press handler for each object, key-pressed and slider-pressed. We hav'e
two object sets because we handle events on the windows manifesting these objects differently, but the events
come over the same display connection.

(in-package "SERVER-EXAMPLE")

(defstruct (input-box (:print-function print-input-box)
(:constructor make-input-box (display window)))

"Our program knows about input-boxes, and it doesn't care how they
are implemented."

display ; The CLX display on which my input-box is displayed.
window) ; The CLX window in which the user types.

(defun print-input-box (object stream n)
(declare (ignore n))
(format stream "#<Input-Box -S>" (input-box-display object)))

(defvar *input-box-windows*
(system:make-object-set "Input Box Windows"

#'ext:default-clx-event-handler))

(defun key-pressed (input-box event-key event-window root child
same-screen-p x y root-x root-y modifiers time
key-code send-event-p)

"This is our :key-press event handler."
(declare (ignore event-key root child same-screen-p x y

root-x root-y time send-event-p))
(format t "KEY-PRESSED (Window = -D) = "S. %"

(xlib:window-id event-window)
;; See Hemlock Command Implementor's Manual for convenient
;; input mapping function.
(ext:translate-character (input-box-display input-box)

key-code modifiers)))

(ext:serve-key-press *input-box-windows* #'key-pressed)

(defstruct (slider (:print-function print-slider)
(:include input-box)
(:constructor %make-slider

(display window window-width max)))
"Our program knows about sliders too, and these provide input values
zero to max."

bits-per-value ; bits per discrete value up to max.
max) ; End value for slider.

(defun print-slider (object stream n)
(declare (ignore n))
(format stream "#<Slider -S O..-D>"

(input-box-display object)
(1- (slider-max object))))

(defun make-slider (display window max)
(dnmake-slider display window

(truncate (xlib:drawable-width window) max)
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max))

(defvar *slider-windows*
(system:make-object-set "Slider Windows"

# 'ext: default-clx-event-handler))

(defun slider-pressed (slider event-key event-window root child
same-screen-p x y root-x root-y modifiers time
key-code send-event-p)

"This is our :key-press event handler for sliders. Probably this is
a mouse thing, but for simplicity here we take a character typed."

(declare (ignore event-key root child same-screen-p x y
root-x root-y time send-event-p))

(format t "KEY-PRESSED (Window = -D) = S -- > SD. "
(xlib:window-id event-window)
;; See Hemlock Command Implementor's Manual for convenient
;; input mapping function.
(ext:translate-character (input-box-display slider)

key-code modifiers)
(truncate x (slider-bits-per-value slider))))

(ext:sirve-key-press *slider-windows* #'slider-pressed)

(defun server-example ()
"An example of using the SYSTEM:SERVE-EVENT function and object sets to
handle CLX events."

(let* ((display (ext:open-clx-display))
(screen (display-default-screen display))
(black (screen-black-pixel screen))
(white (screen-white-pixel screen))
(iwindow (create-window :parent (screen-root screen)

:x 0 :y 0 :width 200 :height 200
:background white :border black
:border-width 2
:event-mask
(xlib:make-event-mask :key-press)))

(swindow (create-window :parent (screen-root screen)
:x 0 :y 300 :width 200 :height 50
:background white :border black
:border-width 2
:event-mask
(xlib:make-event-mask :key-press)))

(input-box (make-input-box display iwindow))
(slider (make-slider display swindow 15)))

;; Wrap code in UNWIND-PROTECT, so we clean up after ourselves.
(unwind-protect

(progn
;; Enable event handling on the display.
(ext:enable-clx-event-handling display

#'ext:object-set-event-handler)
;; Add the windows to the appropriate object sets.
(system:add-xwindow-object iwindow input-box

*input-box-windows*)
(system:add-xwindow-object swindow slider

*slider-windows*)
;; Map the windows to the screen.
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(map-window iwindow)
(map-window swindow)
;; Make sure we send all our requests.
(display-force-output display)
;; Call server for 100,000 events or immediate timeouts.
(dotimes (i 100000) (system:serve-event)))

;; Disable event handling on this display.
(ext:disable-clx-event-handling display)
(delete-window iwindow display)
(delete-window swindow display)
;; Close the display.
(xlib:close-display display))))

(defun delete-window (window display)
;; Remove the windows from the object sets before destroying them.
(system:remove-xwindow-object window)
;; Destroy the window.
(destroy-window window)

Pick off any events the X server has already queued for our
windows, so we don't choke since SYSTEN:SERVE-EVENT is no longer
prepared to handle events for us.

(loop
(unless (deleting-window-drop-event display window)

(return))))

(defun deleting-window-drop-event (display win)
"Check for any events on win. If there is one, remove it from the
event queue and return t; otherwise, return nil."

(xlib:display-finish-output display)
(let ((result nil))

(xlib:process-event
display :timeout 0
:handler #'(lambda (fkey event-window kall:ow-other-keys)

(if (eq event-window win)
(setf result t)
nil)))

result))
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Alien Objects

By Robert MacLaclilan and William Lott

8.1 Introduction to Aliens

Because of Lisp's emphasis on dynamic memory allocation and garbage collection, Lisp implementations use
unconventional memory representations for objects. This representation mismatch creates problems when a Lisp
program must share objects with programs written in another language. There are three different approaches to
establishing communication:

The burden can be placed on the foreign program (and programmer) by requiring the use of Lisp object
representations. The main difficulty with this approach is that either the foreign program must be written
with Lisp interaction in mind, or a substantial amount of foreign "glue" code must be written to prftorm
the translation.

* The Lisp system can automatically convert objects back and forth between the Lisp and foreign represent a-
tions. This is convenient, but translation becomes prohibitively slow when large or complex data struct ure-•
must be shared.

* The Lisp program can directly manipulate foreign objects through the use of extensions to the Lisp lan-
guage. Most Lisp systems make use of this approach, but the language for describing types and expressin..g
accesses is often not powerful enough for complex objects to be easily manipulated.

CMU Common Lisp relies primarily on the automatic conversion and direct manipulation approaches: Alicns ot
simple scalar types are automatically converted, while complex types are directly manipulated in their foreign
representation. Any foreign objects that can't automatically be converted into Lisp values are represented by
objects of type alien-value. Since Lisp is a dynamically typed language, even foreign objects must have a
run-time type; this type information is provided by encapsulating the raw pointer to the foreign data within anI
alien-value object.

The Alien type language and operations are most similar to those of the C language. but Aliens can also bo
nsed when communicating with most other languages that can be linked with C.

8.2 Alien Types

Ali,-n types have a description language based o,, neste.d list struicture. For example:

struct foo {
int a;
struct foo *b[lO0);

10t5
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has the corresponding Alien type:

(struct foo
(a int)
(b (array (* (struct foo)) 100)))

8.2.1 Defining Alien Types

Types may be either named or anonymous. With strtcture and union types, the name is part of the typle,
specifier, allowing recursively defined types such as:

(struct foo (a (* (struct foo))))

An anonymous structure or union type is specified by using the name ail. The with-alien (page 109) macro
defines a local scope which "captures" any named type definitions. Other types are not inherently named. but
can be given named abbreviations using def -alien-type.

alien:def-alien-type name type [(.1acro'
This macro globally defines name as a shorthand for the Alien type type. When introducing global structure

and union type definitions, name may be nil, iii which case the name to define is taken from the type's name.

8.2.2 Alien Types and Lisp Types

The Alien types form a subsystem of the CMU Common Lisp type system. An alien type specifier provides a
way to use any Alien type as a Lisp type specifier. For example

(typep foo '(alien (* int)))

can be used to determine whether foo is a pointer to an int. alien type specifiers can be used in the same ways
as ordinary type specifiers (like string.) Alien type declarations are subject to the same precise type checking
as any other declaration (section See section 4.5.2, page 43.)

Note that the Alien type system overlaps with normal Lisp type specifiers in some cases. For example, the
type specifier (alien single-float) is identical to single-float, since Alien floats are automatically converted
to Lisp floats. When type-of is called on an Alien value that is not automatically converted to a Lisp vahle.
then it will return an alien type specifier.

8.2.3 Alien Type Specifiers

Some Alien type names are Common Lispsymbols, but the names are still exported from the alien package. ,0
it is legal to say alien: single-float. These are the basic Alien type specifiers:

* type Alien ty.)e
A pointer to an object of the specified type. If type is t, then it means a pointer to anything,
similar to "void *" in ANSI C. Currently, the only way to detect a null pointer is:

(zerop (sap-int (alien-sap ptr)))

See section 6.5, page 92

array type {dimension}" Alien type
An array of the specified dimensions, holding elements of type type. Note that (* int) and (array
int) are considered to be different types when tylpe checking is done; pointer antd array tVpes t1111
be explicitly coerced using cast.
Arrays are accessed using deref, passing the indices as additional arguments. Vlements are, stored
in column-major order (as in C), so the first dimension determines only the size of the memory
block, and not the layout of the higher dimensions. An array whose first dimension is variahle
may be specified by using nil as the first dimension. Fixed-size arrays can be allocated as array
elements, structure slots or with-alien variablfos. Dynamic arrays can only be allocated u1sing
make-alien (page 109).
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struct name {(field type [bits])}* Alien type
A structure type with the specified name and fields. Fields are allocated at the same positions used
by the implementation's C compiler. bits is intended for C-like bit field support, but is currently
unused. If name is nil, then the type is anonymous.
If a named Alien struct specifier is passed to def-alien-type (page 106) or with-alien

. -(page 109), then this defines, respectively, a new global or local Alien structure type. If no fields are
specified, then the fields are taken from the current (local or global) Alien structure type definition
of name.

union name {(field type [bits])}) Alien type
Similar to struct, but defines a union type. All fields are allocated at the same offset, and the size
of the union is the size of the largest field. The programmer must determine which field is active
from context.

enum name {spec}* Alien type
An enumeration type that maps between integer values and keywords. If name is nil, then the
type is anonymous. Each spec is either a keyword, or a list (keyword value). If integer is not
supplied, then it defaults to one greater than the value for the preceding spec (or to zero if it is the
first spec.)

signed [bits] Alien type
A signed integer with the specified number of hits precision. The upper limit on integer precision
is determined by the machine's word size. If no size is specified, the maximum size will he .:sed.

integer [bits] Alien type
Identical to signed - the distinction bitween signed and integer is purely stylistic.

unsigned [bits] Alien type
Like signed, but specifies an unsigned integer.

boolean [bits] Alien type
Similar to an enumeration type that maps 0 to nil and all other values to t. bits determines the
amount of storage allocated to hold the truth value.

single-float Alien tye

A floating-point number in IEEE single format.

double-float Alien type
A floating-point number in IEEE double format.

function result-type {arg-type}" Alien y-.e
A Alien function that takes arguments of the specified arg-types and returns a result of type result-
type. Note that the only context where a function type is directly specified is in the argument
to alien-funcall (see section 8.7.1.) In all other contexts, functions are represented by function
pointer types: (* (function ...

system-area-pointer Alien type
A pointer which is represented in Lisp :as a system-area-pointer object (see section 6.5. paet, 92.1

8.2.4 The C-Call Package

The c-call package exports these type-equivalents to the C type of the same name: char, short. int. long.
unsigned-char, unsigned-short, unsigned-int, unsigned-long, float, double. c-call also exports tlhs,,
tyvpes:
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void Alien type
This type is used in function types to declare that no useful value is returned. Evaluation of an
alien-funcall form will return zero values.

c-string Alien type
This type is similar to (* chwar), but is interpreted as a null-terminated string, and is automatically
converted into a Lisp string when accessed. If the pointer is C NULL (or 0), then accessing gives
Lisp nil.
Assigning a Lisp string to a c-string structure field or variable rtores the contents of the string
to the memory already pointed to by that variable. When an Alien of type (* char) is assigned
to a c-string, then the c-string pointer is assigned to. This allows c-string pointers to be
initialized. For example:

(def-alien-type nil (struct too (str c-string)))

(defun make-foo (str)
(let ((my-loo (make-alien (struct aoo))))

(setf (slot my-foo 'str) (make-alien char (length str)))
(setf (slot my-foo 'str) str)
my-foo))

Storing Lisp nil writes C NULL to the c-string pointer.

8.3 Alien Operations

This section describes the basic operations on Alien values.

8.3.1 Alien Access Operations

alien:derel pointer-or-array &rest indices [Functionj
This function returns the value pointed to by an Alien pointer or the value of an Alien array element. If a

pointer, an optional single index can be specified to give the equivalent of C pointer arithmetic: this index is
scaled by the size of the type pointed to. If an array, the number of indices must be the same as the number of
dimensions in the array type. deref can be set with setf to assign a new value.

alien:slot struct-or-union slot-name [Func,/tonl
This function extracts the value of slot slot-name from the an Alien struct or union. If struct-or-union is

a pointer to a structure or union, then it is automatically dereferenced. This can be set with setf to assign a
new value. Note that slot-name is evaluated, andl( need iiot be a compile-time constant (but only constant slol
accesses are efficiently compiled.)

8.3.2 Alien Coercion Operations

alien: addr alien-expr [Ac

This macro returns a pointer to the location specilie'd by alien-expr, which must hte ,ither an Aliln varirble.
a use of deref, a use of slot, or a use of extern-alien (paw,, I 10).

alien:cast alien new-type r

This macro converts alien to a new Alien willi the specified new-type. Both types must he an Alien poinir.
array or function type. Note that the result is not eq to lhe argument, hut does refer to the sant, data bits
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alien:sap-alien sap type [Macro]

alien:alien-sap alien-value [FunctIono]

sap-alien converts sap (a system area pointer see section 6.5, page 92) to an Alien value with the specified

type. type is not evaluated.
alien-sap returns the SAP which points to alien-value's data.

The type to sap-alien and the type of the alien-value to alien-sap must some Alien pointer, array or

record type.

8.3.3 Alien Dynamic Allocation

Dynamic Aliens are allocated using the malloc library, so foreign code can call free on the result of make-alien.

and Lisp cuoe car. call free-alien on objects allocated by foreign code.

alien:make-alien type [size] [Mlacrol

This macro returns a dynamically allocated Alien of the specified type (which is not evaluated.) The allocated

memory is not initialized, and may contain arbilrary junk. If supplied, size is an expression to evaluate to comtlut'

the size of the allocated object. There are Iwo ,,major cases:

"* When type is an array type, an array of that type is allocated and a pointer to it is returned. Note hIhat
you must use deref to change the result to an array before you can use deref to read or write ele•ie'tl,:

(defvar *ftoo* (make-alien (array char 10)))

(type-of *foo*)
=:, (alien (* (array (signed 8) 10)))

(setf (deref (deref foo) 0) 10)

= 10

If supplied, size is used as the first dimension for the array.

"* When type is any other type, then then an object for that type is allocated, and a pointer to it is returewd.

So (make-alien int) returns a (* int). If size is specified. then a block of that many objects is allocatul.
with the result pointing to the first one.

alien:free-alien alien [Ft nhon,

This function frees the storage for alien (which must have been allocated with make-alien or malloc.)

See also with-alien (page 109), which stack-allocals Aliens.

8.4 Alien Variables

Both local (stack allocated) and external (C global) Alien variables are supported.

8.4.1 Local Alien Variables

alien:with-alien {(name type [initial-vahlu] )}I Jform} f!.,

This macro establishes local alien variables with thlie specified A'lien types and natlles for ,vniami,"ic ,XI'III
,f the body. The variable names are established ;as ,y-nibol-kmacros: the bitidings have lexical scope. and :11:11%

De assigned with setq or setf. This forii is ;danalogous to definir:g a local variable in (C: additional ,tior:iL,., i
allocated, and the initial value is copied.

with-alien also establishes a new scope for natied st rictures and unions. Any typo specified f'or a varirable,
may contain name structure or union types with the slots specified. Wit\hin the lexical scope of Ihli, Ihil1iiL,
specifiers and body. a locally defined structure, type fe (IIcan be referenced by Its tamte isin:

(struct foo)
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8.4.2 External Alien Variables

External Alien names are strings, and Lisp names are symbols. When an external Alien is represented using a
Lisp variable, there must be a way to convert from one name syntax into the other. The macros extern-alien.
def-alien-variable and dcef-alien-routine (page 113) use this conversion heuristic:

"* Alien names are converted to Lisp names by uppercasing and replacing underscores with hyphens.

"* Conversely, Lisp names are converted to Alien names by lowercasing and replacing hyphens with under-
scores.

"* Both the Lisp symbol and Alien string names may be separately specified by using a list of the form:

(lisp-symbol alien-string)

alien:def-alien-variable name type [Macro]

This macro defines name as an external Alien variable of the specified Alien type. name and type are not
evaluated. The Lisp name of the variable (see above) becomes a global Alien variable in the Lisp namespac,.
Global Alien variables are effectively "global symbol macros"; a reference to the variable fetches the contreits
of the external variable. Similarly, setting the variable stores new contents - the new contents must he of the'
declared type.

For example, it is often necessary to read the global C variable errno to determine why a particular funct ion
call failed. It is possible to define errno andi make it accessible from Lisp by the following:

(def-alien-variable "errno" int)

;; Now it is possible to get the value of the C variable errno simply by
;; referencing that Lisp variable:

(print errno)

alien:extern-alien name type [A[acrol
This macro returns an Alien with the specified type which points to an externally defi.ied value. name is not

evaluated, and may be specified either as a string or a symbol. type is an unevaluated Alien type specifier.

8.5 Alien Data Structure Example

Now that we have Alien types, operations and variables, we can manipulate foreign data structures TIhis C
declaration can be translated into the following Alien type:

struct foo{
int a;
struct foo *b[lO0];

(def-alien-type nil
(struct foo

(a int)
(b (array (* (struct foo)) 100))))

With this definition, the following C expression can be I ranslated in this way:
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struct too f;
f.b[7) .a

(with-alien ((f (struct too)))
"(slot (deref (slot f 'b) 7) 'a)

;; Do something with f...
)

Or consider this example of an external C variable and some accesses:

struct c-struct {
short x, y;
char a, b;
int z;
c_struct *n;

extern struct cstruct *mystruct;

my-struct->x++;
my-struct->a = 5;
my.struct = my-struct->n;

which can be made be manipulated in Lisp like this:

(def-alien-type nil
(struct c-struct

(x short)
(y short)
(a char)
(b char)
(z int)

(n (* c-struct))))

(def-alien-variable "my.struct" (* c-struct))

(incf (slot my-struct 'x))
(setf (slot my-struct 'a) 5)
(setq my-struct (slot my-struct 'n))

8.6 Loading Unix Object Files

Foreign object files are loaded into the running Lisp process by load-foreign. First, it runs the linker on the files
and libraries, creating an absolute Unix object file. This object file is then loaded into into the currently runiuiln
Lisp. The external symbols defining routines and variables are made available for future external rpferences
by extern-alien.) load-foreign must be run before any of the defined symbols are referenced.

Note that if a Lisp core image is saved (using save-lisp (page 16)), all loaded forein c•te is In)st whenI 1w
Image is restarted.

alien:load-foreign tiles &key libraries tiw,-fil,' env [Funie hoi

files is a simple-string or list of simple-strings specifying the names of the object fils. libraries is a list of
simple-strings specifying libraries in a format that ld. the Unix linker, expects. The default value for lirsrie>
is ("-lc") (i.e., the standard C library), base-file is tlhe file to use for the initial symbol table intformatiet n.
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The default is the Lisp start up code: 'path:lisp'. env should be a list of simplc strings in the format of Vnix
environment variables (i.e., A=B, where A is an environient variable and B is its value). The default valhi for
env is the environment information available at the time Lisp was invoked. Unless you are certain that you want
to change this, you should just use the default.

8.7 Alien Function Calls

The foreign function call interface allows a Lisp program to call functions written in other languages. TFhe, currw
implementation of the foreign function call interface assumes a C calling convention and thus routines writttn
in any language that adheres to this convention may be called from Lisp.

Lisp sets up various interrupt hm'.A.ling routines and other environment information when it first starts up.
and expects these to be in place at all times. The C functions called by Lisp should either not chang,; th,
,:nvironment, especially the interrupt entry points, or should make sure that these entry points are r,,ftord
when the C function returns to Lisp. If a C function makes changes without restoring things to the way tilc
were when the C function was entered, there is no telling what will happen.

8.7.1 The alien-funcall Primitive

alien:alien-funcall alien-function &rest argumen•s /I, IhI

This function is the foreign function call primnitive: alien-function is called with the supplied ar,,ml'nrt.ý 11,
its value is returned. The alien-function is an arbitrary run-time expressionm to call a conttant fiictiI. Ii,

extern-alien (page 110) or def-alien-routine.
The type of alien-function must be (alien (function ... )) or (alien (* (function ... ))). Se setIC,

8.2.3, page 107. The function type is used to determine how to call the function (as through it was declared witlh
a prototype.) The type need not be known at. comipile f iue, but only known-type calls are ,fi'i.utly comnilIL

Limitations:

"* Structure type return values are not ihnpleiienlil.

"o Passing of structures by value is not inipllimentiel.

Here is an example which allocates a (struct foo), calls a foreign function to initialize it. Owni rti•r,, :I
Lisp vector of all the (* (struct foo)) objects filled it by t lie foreign call:

Allocate a foo on the stack.
(with-alien ((f (struct foo)))

Call some C function to fill in foo fields.
(alien-fu.call (extern-alien "mangle.fot" (function void ( fooe)))

(add4, fZ

Find how many foes to use by getting the A field.
(let* ((num (slot f 'a))

(result (make-array num)))

;; Get a pointer to the array so that we don't have to keep extracting it:
(with-alien ((a (* (array (* (struct foo)) 100)) (addr (slot f 'b))

;; Loop over the first N elements and stash them in the result vector.

(dotimes (i num)
(setf (svref result i) (deref (deref a) i)))

result)))
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8.7.2 The def-al ien- routine Macro

alien:def-alien-routine name result-type {(anamie atype [style]))*

This macro is a convenience for automatically generating Lisp interfaces to simple foreign 1tincti ors. 'I Il
primary feature is the parameter style specification, which translates the C pass-by-refvrence idiom Hit) adflji 1
return values.

naeis usually astring external symbol, but ayalso b synibol Lis aioraltofl(,Lpnnlm-
the foreign name. If only one name is specified, the othier is automatically derived, (see section S. 1.2, p;igf- 110

result-type is the Alien type of the return value. E-ach remaining subforin specifies all arguniviu t( ip
foreign function. aflame is the symbol name of the argumient to the constructed function (for docuniwnut t illi
and atype is the Alien type of corresponding foreign argument. The semantics of the actual call are iii. sa ;t.,
for alien-funcall (page 112) style should be one of the following:

:in specifies that the argument is passed by value. This Is thle default. :in arguments hiave no crepiii

return value from the Lisp function.

:otit specifies a pass- by- reference output value. Thie t y' t of the argumient must I), a potinter t I C)a i x- i.-i
object (such as an integer or pointer). :out and :in-out cannot be used withI pointcrs to armavý. r, , r,1 r I
functions. An object of thle correct size is al local eel, and i ts address is pas.slt'l II( tI I reu 1'( ri toL~ i i-i ii Ii\%11
thle function returns, t he contents of t I his local ion ; are rot uriled as onle ofIIc t t li v lce .. fl ti Il, ,1ý)i'l 11oot1 1

:copy is similar to :in, but the argumient is lwopied lo a pre-allocated object anue ;I jeilr t I i-.
passed to the foreign routine.

:in-out is a combination of :copy and :out. The argunient is copied to a pre-allocatel -4bect and aI p-11
to this object is passed to the foreign routine. On return, the contents of thils location is return, I :1,- ;11
additional value.

Any efficiency-criticai foreign interface function shouild be itiline expanded hy precolfiiig def-al zen-rout ine
Wit h:

(declaim (inline lisp-tname))

InI addition to avoiding the Lisp call overhead, this allows point ers. word-integersý ;iii 11i. ~t, ill l~i-
iou-descriptor represen tat ions, avoiding conisi ug (see ectioin 5. 10 2. page 77.ý

8.7.3 def-al ien- routine Example

Consider the C function cfoo with the following callIiing cciiiventwion

cfoo (a. i)
char *str;
char *a; /* update *
mnt *i; /* out *

/* Body of cfoo. *

which can be de-wribed by lb e following ca;ll icdfain-~trc

(def-alien-routine "cfoo' void
(str c-string)
(a char :in-out)

(i mnt :0,1t))

[lie Lisp function cf oo will have two arvuuiienl,. 1r inl ii oIl; two relt iiii %;dliie i~i ml
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8.7.4 Calling Lisp from C

"ihere is currently a mechanism for calling Lisp functions from C, but it is rather restricted, and is schtdul, d ],!I
replacement. If you need to call Lisp functions from ('. contact us and we will let you know what capabilitit ,a,,

available in the system you have.

8.8 Step-by-Step Alien Example

this section presents a complete example of an interface to a somewhat complicated C function. TIhis ,x';tmid.
should give a fairly good idea of how to get the effect you want for almost any kind of C function Supp.,• y,,
have the following C function which you want to be able to call from Lisp in the file -test. c':

struct cs.struct
{

int x;
char *s;

struct c-struct *c-function (i, s, r, a)
int i;
char *s;
struct cstruct *r;
int a[lO];

int j;
struct c-struct *r2;

printf("i = %d\n", i);
printf("s = %s\n", s);
printf("r->x = /d\n", r->x);
printf("r->s = %s\n", r->s);
for (j = 0; j < 10; j++) printf("a[%d] = %d.\n", j, a[j]);
r2 = (struct cstruct *) malloc (sizeof(struct c-struct));
r2->x = i + 5;
r2->s = "A C string";
return(r2);

It is possible to call this function from Lisp using Ih l file 'test. lisp' wb,),e -"vo nt s -.1

;;; -*- Package: test-c-call
(in-package "TEST-C-CALL")
(use-package "ALIEN")
(use-package "C-CALL")

;;; Define the record c-struct in Lisp.
(def-alien-type nil

(struct c-struct
(X int)
(s c-string)))

Define the Lisp function interface to the C routine. It returns a
pointer to a record of type c-struct. It accepts four parameters:
i, an int; s, a pointer to a string; r, a pointer to a c-struct
record; and a, a pointer to the array of 10 ints.

The INLINE declaration eliminates some effliciency notes about heap
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;;; allocation of Alien values.
(declaim inline c-function))
(def-alien-routine c-function

(* (struct c-struct))
(i int)
(s c-string)
(r (* (st;uct c-struct)))
(a (array Ant 10)))

;; A itnction which sets up the parameters to the C function and
;;; actually calls it.
(defun call-dfun 0)

(with-alien ((ar (array int 10))
(c-struct (struct c-struct)))

(dotimes (i 10) Fill array.
(setf (deref ar i) i))

(setf (slot c-struct 'x) 20)
(setf (slot c-struct 's) "A Lisp String")

(with-alien (Cres (* (struct c-struct))
(c-function 5 "Another Lisp String" (addr c-struct) arM)
(format t "Returned from C function.-'")
(multiple-value-progi

(values (slot res 'x)
(slot res 's))

;; Deallocate result after we are done using it.
(free-alien res)))))

To execute the above example, it is necessary to comipile tli C routine as follows:

cc -c test.c

In order to enable incremental loading with some linkers. you may need to say:

cc -G 0 -c test.c

One" the C code has been compiled, you can start tup Lisp and load it in:

%lisp
;;; Lisp should start up with its normal prompt.

;;; Compile the Lisp file. This step can be done separately. You don't have
;;; to recompile every time.
* (compile-file "test.lisp")

;;; Load the foreign object file to define the necessary symbols. This must
;;; be done before loading any code that refers to these symbols. next block
;;; of comments are actually the output of LOAD-FOREIGN. Different linkers
;;; will give different warnings, but some warning about redefining the code

size is typical.
S(load-foreign "test.o")

;;; Running library:load-foreign.csh...
;;; Loading object file...
;; Parsing symbol table...

Warning: "_gp" moved from #xOOC082CO to #xOOC08460.
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Warning: "enQ" moved from #x0OC00340 to #xOOCOO4EO.

;;; o.k. now load the compiled Lisp obyict file.
* (load "test")

Now we can call the routine that sets up the parameters and calls the C
S;; function.
* (test-c-call: :call-cfun)

;;; The C routine prints the following information to standard output.
i=5
s = Another Lisp string
r->x = 20
r->s = A Lisp string
a[O] = 0.
a[1] = 1.
a [2] = 2.
a[3J = 3.
a[4] = 4.
a[S] = S.
a*6] [ 6.
aE*] = 7.
a*8] = 8.
a*[9 = 9.
;;; Lisp prints out the following information.
Returned from C function.
;;; Return values from the call to test-c-call::call-cfun.
10
"A C string"

If any of the foreign functions do output, they should not be called from within Hemlock. Depending on thhe
situation, various strange behavior occurs. Under X, the output goes to the window in which Lisp was started:
on a terminal, the output will overwrite the Ilemlock screen image; in a Hemlock slave, standard output P,
"/dev/null' by default, so any output is discarded.
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Interprocess Communication under
LISP

Written by William Lott and Bill Chiles

CMU Common Lisp offers a facility for interprocess communication (IPC) on top of using Unix system call,
and the complications of that level of IPC. There is a simple remote-procedure-call (RPC) package build on tp,J)
of TCP/IP sockets.

9.1 The REMOTE Package

The remote package provides simple RPC facility including interfaces for creating servers, connecting to already
existing servers, and calling functions in other Lisp processes. The routines for establishing a connection be-
tween two processes, create-request-server an.d connect-to-remote-server, return wire structures. A wire
maintains the current state of a connection, and all the [{PC forms require a wire to indicate where to end11
requests.

9.1.1 Connecting Servers and Clients

Before a client can connect to a server, it must know the network address on which the server accepts connections.
Network addresses consist of a host address or name, and a port number. Host addresses are either a string of
the form VANCOUVER.SLISP.CS.CMU.EDUor a 32 bit unsigned integer. Port numbers are 16 bit unsigned intle,'rs.
Note: port in this context has nothing to do with Mach ports and message passing.

When a process wants to receive connection requests (that is, become a server), it first picks an integer to
use as the port. Only one server (Lisp or otherwise) can use a given port number on a given machine at any
particular time. This can be an iterative process to find a free port: picking an integer and calling create-
request-server. This function signals an error if the chosen port is unusable. You will probably want to write
a loop using handler-case, catching conditions of type error. since this function does not signal more specific
conditions.

wire:create-request-server port &optional on-connect [Fn chti'ni

create-request-server sets up the current Lisp to accept connections on the given port. If port is in1-
available for any reason, this signals an error. When a client connects to this port. the acceptance rircclh:rni.-n

trakes a wire structure and invokes the on-contect fu'rnctiotn. Invoking this function has a couple purl ',S,. :n.!
on-connect may be nil in which case the systemi foregoes invoking any function at connect time.

The on-connect function is both a hook that, allows you access to the wire created by the acceptance ine'lia-
nism. and it confirms the connection. This fuiction takes two arguments, the wire and the host address of thit,
connecting process. See the section on host addresses below. When on-connect is nil, Ihe request server allows
all connections. When it is non-nil, the function returns two values, whether to accept the connection and ;a
function the system should call when the connection terminates. Either value may be, nil, but whien t1w hirt

value is nil, the acceptance mechanism destroys I lie wire.

117
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create-request-server returns an object that desatroy-request-server uses to terminate a connection.

wire:destroy-request-server server [Function]
destroy-request-server takes the result of create-request-server and terminates that server. Any

existing connections remain intact, but all additional connection attempts will fail.

wire:connect-to-remote-server host port &optional on-death [Function]
connect-to-remote-server attempts to connect to a remote server at the given port on host and returns a

wire structure if it is successful. If on-death is non-nil, it is a function the system invokes when this connection
terminates.

9.1.2 Remote Evaluations
After the server and client have connected, they each have a wire allowing function evaluation in the other
process. This RPC mechanism has three flavors: for side-effect only, for a single value, and for multiple values.

Only a limited number of data types can be sent across wires as arguments for remote function calls and
as return values: integers inclusively less than 32 bits in length, symbols, lists, and remote-objects (see section
9.1.3, page 119). The system sends symbols as two strings, the package name and the symbol name. and if the
package doesn't exist remotely, the remote process signals an error. The system ignores other slots of symbols.
Lists may be any tree of the above valid data types. 'lb send other data types you must represent them ill
terms of these supported types. For example, you could ust, prini-to-string locally, send the string, and u.s,
read-from-string remotely.

wire:remote wire {call-specs}* [M.acro]
The remote macro arranges for the process at the other end of wire to invoke each of the functions in

the call-specs. To make sure the system sends the remote evaluation requests over the wire, you must call
wire-force-output.

Each of call-specs looks like a function call textually, but it has some odd constraints and semantics. The
function position of the form must be the symbolic na,,e of a function. remote evaluates each of the argument
subforms for each of the call-specs locally in the current, context, sending these values as the arguments for the,
functions.

Consider the following example:

(defun write-remote-string (str)
(declare (simple-string str))
(wire:remote wire

(write-string str)))

The value of str in the local process is passed over the wire with a request to invoke write-string on the value.
The system does not expect to remotely evaluate str for a value in the remote process.

wire: wire-force-output wire [Function,]
wire-force-output flushes all internal buffers ;Lssociat.ed with wire, sending the remote requests. This is

necessary after a call to remote.

wire : remote-value wire call-spec r.U,,

"rhe remote-value macro is similar to the remote macro, remote-value only takes one call-spec. :ilt it
returns the value returned by the function call in the remote process. The value must be a valid type Ihe, .vSh'il
can send over a wire, and there is no need to call wire-force-output in conjunction with this interface.

If client unwinds past the call to remote-value, t lie server continues running, but the system ignores the
value the server sends back.

If the server unwinds past the remotely requested call, instead of re.urning normally, remote-value retiurns
two values, nil and t. Otherwise this returns t Ihe rsult ,4f lhe rer'ote evaluation and nil.



CHAPTER 9. INTERPROCESS COMM UNIC'ATION UNDER LISP 119

gire:remote-va.lue-bind wire ({variable}°) remote-form {local-forms}" [Macro]

remote-value-bind is similar to multiple-value-bind except the values bound come from remote-form's
evaluation in the remote process. The local-forms execute in an implicit progn.

If the client unwinds past the call to remote-value-bind, the server continues running, but the system
ignores the values the server sends back.

If the server unwinds past the remotely requested call, instead of returning normally, the local-forms never
execute, andremote-value-bind returns nil.

9.1.3 Remote Objects

The wire mechanism only directly supports a limited number of data types for transmission as arguments
for remote function calls and as return values: integers inclusively less than 32 bits in length, symbols, lists.
Sometimes it is useful to allow remote processes to refer to local data structures without allowing the remote
process to operate on the data. We have remote-objects to support this without the need to represent the data
structure in terms of the above data types, to send the representation to the remote process, to decode the
representation, to later encode it again, and to send it back along the wire.

You can convert any Lisp object into a retinote-object. When you send a remote-object along a wire. the
system simply sends a unique token for it. In the. remote process, the system looks up the token and returns a
remote-object for the token. When the remote process needs to refer to the original Lisp object as an argument
to a remote call back or as a return value, it uses the remote-object it has which the system converts to the
unique token, sending that along the wire to the originating process. Upon receipt in the first process, the system
converts the token back to the same (eq) remote-object.

wire :'aake-remote-object object [Fu nctzon]
make-remote-object returns a remote-object that has object as its value. The remote-object can be passed

across wires just like the directly supported wire data types.

wire:remote-object-p object [Fi, cthon]

The function remote-object-p returns t if object is a remote object and nil otherwise.

wire:remote-object-local-p remot, [Function]
The function remote-object-local-p returns t if remote refers to an object in the local process. This is

can only occur if the local process created remote with make-remote-object.

wire:remote-object-eq objl obj2 [Fulncholo]

The function remote-object-eq returns t if ol(bl and ohj2 refer to the same (eq) lisp object. regardless of
which process created the remote-objects.

wire: remote-object-value remote [F ncthon]
This function returns the original object. iised to create the given remote object. It is an error if some other

process originally created the remote-object.

wire: forget-remote-translation object [Function]
This function removes the information and storage necessary to translate remote-objects back into o1/jee'.'

so the next gc can reclaim the memory. You should mise this when you no longer expect to receive references t,)
object. If some remote process does send a referenceI to object. remote-object-value signals an error.
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9.1.4 Host Addresses

The operating system maintains a database of all the valid host addresses. You can use this database to convert
between host names and addresses and vice-verma.

ext :lookup-host-entry host [Function]

* lookup-host-entry searches the database for the given host and returns a host-entry structure for it. If it
fails to find host in the database, it returns nil. Host is either, the address (as an integer) or the name (as a
string) of the desired host.

ext :host-entry-name host-entry [Function]

ext: host-entry-aliases host-entry [Functon]

ext : host-entry-addr-list host-entry [Function]

ext : host-entry-addr host-entry [Function]

host-entry-name, host-entry-aliases, and host-entry-addr-list each return the indicated slot from
the host-entry structure. host-entry-addr ret urns the primary (first) address from the list returned by host-
entry-addr-list.

9.2 The WIRE Pach-ge

The wire package provides for sending data along wires. The remote package sits on top of this package. All
data sent with a given output routine must be read in the remote process with the complementary fetching
routine. For example, if you send so a string with wire-output-string, the remote process must know to use
wire-get-string. To avoid rigid data transfers and complicated code, the interface supports sending tagged
data. With tagged data, the system sends a tag announcing the type of the next data, and the remote system
takes care of fetching the appropriate type.

When using interfaces at the wire level instead of the RPC level, the remote process must read everything
sent by these routines. If the remote process leaves any input on the wire, it will later mistake the data for an
RPC request causing unknown lossage.

9.2.1 Untagged Data

When using these routines both ends of the wire know exactly what types are coming and going and in what
order. This data is restricted to the following types:

* 8 bit unsigned bytes.

* 32 bit unsigned bytes.

* 32 bit integers.

* simple-strings less than 65535 in length.

wire:wire-output-byte wire byte [Functzon]
wire: wire-get-byte wire [Funct ,on]

wire: vire-output-number wire number 'lF11tnohon]

wire:wire-get-number wire &optional signcI r 'Fun,'

wire:wire-output-string wire string [1.un ci

wire: wire-get-string wire [Funct in]

These functions either output or input an object, of thle specified data type. When you use any of these out put

routines to send data across the wire, you riiist, use tie corresponding input routine interpret the data.
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9.2.2 Tagged Data

When using these routines, the system automatically transmits and interprets the tags for you, so both ends can
figure out what kind of data transfers occur. Sending tagged data allows a greater variety of data types: integers
inclusively less than 32 bits in length, symbols, lists, and remote-objects (see section 9.1.3, page 119). The system
sends symbols as two strings, the package name and the symbol name, and if the package doesn't exist remotely,
the remote process signals an error. The system ignores other slots of symbols. Lists may be any tree of the
above valid data types. To send other data types you must represent them in terms of these supported types.
For example, you could use prini-to-string locally, send the string, and use read-from-string remotely.

wire:wire-output-object wire object &optional cache-it (Function]
wire:wire-get-object wire [Function]

The function wire-output-object sends object over wire preceded by a tag indicating its type.
If cache-it is non-nil, this function only sends object the first time it gets object. Each end of the wire

associates a token with object, similar to remote-objects, allowing you to send the object more efficiently on
successive transmissions. Cache-it defaults to t for symbols and nil for other types. Since the RPC level requires
function names, a high-level protocol based on a set of furnction calls saves time in sending the functions' nanies
repeatedly.

The function wire-get-object reads the results of vire-output-object and returns that object.

9.2.3 Making Your Own Wires

You can create wires manually in addition to the remote package's interface creating them for you. To create a
wire, you need a Unix file descriptor. If you are unfamiliar with Unix file descriptors, see section 2 of the Unix
manual pages.

wire:make-wire descriptor [Fun ction]
The function make-wire creates a new wire when supplied with the file descriptor to use for the underlying

I/O operations.

wire:wire-p object [Fun ch oni]

This function returns t if object is indeed a wire, nil otherwise.

wire:wire-fd wire [Funcntioni]
This function returns the file descriptor used by the wire.

9.3 Out-Of-Band Data
The TCP/IP protocol allows users to send data asynchronously, otherwise known as out-of-band data. When
using this feature. the operating system interrupts the receiving process if this process has chosen to be notified
about out-of-band data. The receiver can grab this input without affecting any information currently queued
on the socket. Therefore, you can use this without interfering with any current activity due to other wire and
remote interfaces.

Unfortunately, most implementations of 'T('lP/Il' are broken, so use of out-of-hand data is limited for safety
reasot's. You can only reliably send one character at a time.

This routines in this section provide a ||iechanisii for establishing handlers for otit-of-band clharact ers :n l
for sending them out-of-band. These all take a Vmix filt, descriptor instead of a wire, but you can tftlch a wire>
fi0' descriptor with wire-fd.

wire:add-oob-handler fd char handler [Func7ton]
The function add-oob-handler arranges for hauhller to be called whenever char shows ip ;AS out-,f-bhan,

data on the file descriptor Nd.
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wire:remove-oob-handler fd char [Func ion]

This function removes the handler for the character char on the file descriptor fd.

wire: remove-all-oob-handlers fd [Function]

This function removes all handlers for the lile descriptor fd.

wire: send-character-out-of-band fd char [Function]

This function Sends the character char down the file descriptor fd out-of-band.
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Debugger Programmer's Interface

The debugger programmers interface is exported from from the "DEBUG-INTERNALS" or "DI" pc.kage. This is a
CMU extension that allows debugging tools to be written without detailed knowledge of the compiler or run-time
system.

Some of the interface routines take a code-location as an argument. As described in the section on code-
locations, some code-locations are unknown. When a function calls for a basic-code-location, it takes either
type, but when it specifically names the argument codhe-location, the routine will signal an error if you give it an
unknown code-location.

10.1 DI Exceptional Conditions

Some of these operations fail depending on the availability debugging information. In the most severe case, when
someone saved a Lisp image stripping all debugging data structures, no operations are valid. In this case, even
backtracing and finding frames is impossible. Some interfaces can simply return values ildicating the lack of
information, or their return values are naturally meaningful in light missing data. Other routines, as documented
below, will signal serious-conditions when they discover awkward situations. This interface does not provide
for programs to detect these situations other than by calling a routine that detects them and signals a condition.
These are serious-conditions because the program using the interface must handle them before it can correctly
continue execution. These debugging conditions are not, errors since it is no fault of the programmers that the
conditions occur.

10.1.1 Debug-conditions

The debug internals interface signals conditions when it. can't adhere to its contract. These are serious-conditions
because the program using the interface must handle them before it can correctly continue execution. These
debugging conditions are not errors since it is no fault of the programmers that the conditions occur. The
interface does not provide for programs to detect, these situations other than calling a routine that detects them
and signals a condition.

debug-condition Condition
This condition inherits from serious-condition, and all debug-conditions inherit from this. These
must be handled, but they are not programmnier errors.

no-debug-info Condit ion
This condition indicates there is absolutely iio debugging information available.

no-debug-function-returns (Condit ionl
This condition indicates the system cannot retiri values from a frame since its debug-function
lacks debug information details about, retlurning values.

no-debug-blocks Condition
This condition indicates that a function was not compiled with debug-block information. 1•iit this
information is necessary necessary for some re'•tiei.ed operation.

12:3
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no-debug-variables Conditi ,n
Similar to no-debug-blocks, except that variable information was requested.

lambda- list-unavailabl e Condition
Similar to no-debug-blocks, except that lambda list information was requested.

invalid-value Condition
This condition indicates a debug-variable I' :invalid or :unknown value in a particular frame.

ambiguous-variable-name Condition
This condition indicates a user supplied debug-variable name identifies more than one valid variable
in a particular frame.

10.1.2 Debug-errors

These are programmer errors resulting from misuse of the debugging tools' programmers' interface. You could
have avoided an occurrence of one of these by using some routine to check the use of the routine generating the
error.

debug-error Condit ion
This condition inherits from error, andI all u.ser programming errors inherit from this condition.

unhandl ed-condition Condition
This error results from a signalled debug-condition occurring without anyone handling it.

unknown-code-locat ion Condition
This error indicates the invalid use of an unknown-code-location.

unknown-debug-variable Condition
This error indicates an attempt to use a debug-variable in conjunction with an inappropriate debug-
function; for example, checking the variabl's validity using a code-location in the wrong debug-
function will signal this error.

frame-function-mismatch Condition
This error indicates you called a function returned by preprocess-for-eval on a frame other than
the one for which the function had been prepare'd.

10.2 Debug-variables

Debug-variables represent the constant information about where the system stores argument and local variable
values. The system uniquely identifies with an integer every instance of a variable with a particular name and
package. To access a value, you must supply the frame along with the debug-variable since these are particular
to a function, not every instance of a variable on the slack.

debug-variable-name debug-variable [Puncl(on
This function returns the name of thhe debug- variable. The name is the name of the symbol used as ;IiI

identifier when writing the code.

debug-variable-package debug-variable [In,-ti'

This function returns the package name of lih, ,heu,,.-variable. This is the package name of the syuibol used
-is an identifier when writing the code.
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debug-variable-symbol Ahug-varivbl° [Functi0n]

This function retarns the symbol from interning debug-variable-name in the package named by debug-
variable-package.

debug-variable-id debug-variable [Function]
This function returns the integer that makes debug-variable's name and package name unique with respect

to other debug-variable's in the same function.

debug-variable-validity debug-variable basic-code-location [Function]
This function returns three values reflecting the validity of debug-variable's value at basic-code-location:

:valid The value is known to be available.

: invalid The value is known to be unavailable.

:unknown The value's availability is unknown.

debug-variable-value debug-variable fraite [Function]
This function returns the value stored for debug-variable in frame. The value may be invalid. Thns is

SETF'able.

debug-variable-valid-value debug-variable frame [Functioni
This function returns the value stored for debug-variable ir frame. If the value is not :valid. then this

signals an invalid-value error.

10.3 Frames
Frames describe a particular call on the stack for a particular thread. This is the environment for nanme resolution.
getting arguments and locals, and returning values. The ,stack conceptually grows tip. so the top of the stack is
the most recently called function.

top-frame, frame-down, frame-up, and frame-debug-function can only fail when there is absolutely no
debug information available. This can only hlappen wlii, somleone saved a Lisp image specifying that tie -vs,'n
dump all debugging data.

top-frame [Enntion
This function never returns the frame for itself, always the frame before calling top-frame.

frame-down frame [Fu nthon]
This returns the frame immediately below frat,,i on the stack. When frame is the bottom of the stack, this

returns nil.

frame-up frame [fInn,'to,, 2

This returns the frame immediately above rrari ,i, Ihe stark. When frame is the top of the stack. this
returns nil.

frame-debug-function frame Fl"I 1 t1,, "i
This function returns the debug-function for Ile fuin' ion whose call frame reprse.i s.

frame-code-location frame [hole 1rol,!
This function returns the code-location where frane's debug-function will rotntieu, runninm g when pro,,ril 1

,Xecuition returns to frame. If someone interruptlel Ihis fraime, the result could ho ani unknown r he-I Cat on
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frame-catches frame [Fun ctio071

This function returns an a-list for all active catches in frame mapping catch tags to the code-locations at

which the catch re-enters.

eval-in-fram. frame form [Functi on'

This evaluates form in frame's environment. This can signal several different debug-conditions since its
success relies on a variety of inexact debug information: invalid-value, ambiguous -var iabl e-name, frame-
function-mismatch. See also preprocess-for-oval (page 127).

retu~rn-from-frame frame values [Fun chon0 F

This returns the elements in the list values as multiple values from frame as if the function frame represent-,
returned these values. This signals a no-debug--funct joti-returns condition when frame's debug-function lack-
information on returning values.

Not Yet Implemented

10.4 Debug-functions

Debug-functions represent the static informial iou about a function determined at compile time -argumient and
variable storage, their lifetime information, etc. The deb ug- function also contains all the debug-blocks repre-
senting basic-blocks of code, and these contalins informiatioii about specific codle-locations in a debtig-funci ion.

do-debug-function-blocks (block-var (Ilu~g-fuinctimi [result-form I) {form}' [.1acrol
This executes the forms in a context with block-mvr houind to each debug-block in debug-function successively.

Result-form is an optional form to execute for a returni value, and do-debug-function-blocks returns nilif
there is no result-form. This signals a no-debug-blocks condition when the debug-function lacks debug-block
information.

debug-function-lambda-list debug- fu nct ion [1,111101,m]

This function returns a list representing the lanibda-list for debug-furiction. The list hias the followiing
structure:

(required-vail required-var2

(:optional var3 suppliedp-var4)
(:optional. var5)

(:rest var6) (:rest vai7)

(:keyword keyword-symbol var8 suppliedp-var9)

(:keyword keyword-symbol var1O)

Each vain is a debug-variable; however, Ithe -4vmulml : eleted appears instead whenever the, ar-iFimewii ro'iillnn
iin referenced throughout Flebrig-furicr iOn.

[f there is no lambda-list information. I hIll sl~nals ;t lambda-l ist -unavailable condlition.

do-debug-function-variables (var debug-fuict ion [rcsult] ) {form }
This macro executes each form in a context, with var houind to each debuig-variable in dehlig- fil)icr lot) [hIls

returns the value of executing result (defaults to nil). This m~av iterate over on ly somie of 1e1,ii - Iin ctioni

variables or none depending on debug poilcy for .xam~iple. possibly the comnpilation only. presorved ;lrwim~ni iI

information.
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debug-variable-info-available debug-function [/unctionl

This function returns whether there is any variable information for debug-function. This is useful for di.-tiui-

guishing whether there were no locals in a function or whether there was no variable information. For exampl'.
if do-debug-function-variables executes its forms zero tines, then you can use this function to deterinin. th,

reason.

debug-function-symbol-variables debug-function symbol [Functon!

This function returns a list of debug-variables in debug-function having the same name and package ;i_

symbol. If symbol is uninterned, then this returns a list of debug-variables without package names and with
the same name as symbol. The result of this function is limited to the availability of variable information il
debug-function; for example, possibly debug-function only knows about its arguments.

ambiguous-debug-variables debug-function name- prefix-string [Function

This function returns a list of debug-variables in debug-function whose names contain name-prefix-strinit a..

an initial substring. The result of this function is limited to the availability of variable information in ,telhuj-
function= for example, possibly debug-function Hily knows aboutt its arguments.

preprocess-for-eval form basic-code-locatlioi I1.', nt
This function returns a function of one arguimeit that evaluates form in the lexical context of basic-code-

location. This allows efficient repeated evaluation of form at a certain place in a function which could be use.ful

for conditional breaking. This signals a no-debug-variables condition when the code-location's debug-functi'i,
has no debug-variable information available. The retirned function takes a frame as an argument. Seal-,
eval-in-frame (page 126).

function-debug-function function [Fiunctm hl

This function returns a debug-function that, represents debug information for function.

debug-function-kind debug-function ",F1,",(, I n

This function returns the kind of function ,hhug-firction repr,-Pnt h T? e value is one of thi- followine,

:optional This kind of function is an entry point toI an ordinary function. It handles optional ,tcfa~lltil .
parsing keywords, etc.

:external This kind of function is an entry point, to an ordinary function. It checks argtitnent values itil] ,ut
and calls the defined function.

:top-level This kind of function executes one or more random top-level forms from a file.

:cleanup This kind of function represents the cleaiiup foriis in an unwind-protect.

nil This kind of function is not one of the above: t hat is. it is [tot specially marked in any way.

debug-function-function debug-function [Fuinc ll,

This function returns the Common Lisp ficict ion asLsociated with the debug-Flunctton. rThis returns nilif thc,
function is unavailable or is non-existent. ;.,,s a ser ,alleI' fuiiction obje'ct.

debug-function-name debug-function /i1,, 0",,,'

This function returns the name of the fii •t iot rjurtsenvnvl huy doh, g-fuittn on. I iw , tay 1- :1 -t riiit ,g r :i
"ons: do not assume it, is a symbol.
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10.5 Debug-blocks

Debug-blocks contain information pertinent to a specilic range of code in a debug-function.

do-debug-block-locations (code-var debug-block [result]) (forml} [(I CM'!

This macro executes each form in a context with code-var bound to each code-location in dehoi-hlock. Flh-

returns the value of executing result (defaults to nil).

debug-block-successors debug-block

This function returns the list of possible code-locations where execution may continue when the basic-Ihlok
represented by debug-block completes its execution.

debug-block-elsewhere-p debug-block F ut CI Io

This function returns whether debug-block represents elsewhere code. This is code the compiler has move•
out of a function's code sequence for optimizntion reasons. Code-locations in these blocks are, unsuitable t,,r
stepping tools, and the first code-location ii. nolhing to do with a normal starting location for the block.

10.6 Breakpoints

A breakpoint represents a function the system calls with the current frame when execution pass(,e a c'trtalit
code-location. A break point is active or inactive independent of its existence. They also have an extra slot f'ýr
users to tag the breakpoint with information.

make-breakpoint hook-function what &key :kind :ainto :function-end-cookie h"-uoltt,
This function creates and returns a breakpoint. When program execution encounters the breakpoint. tfi

system calls hook-function. Hook-function takes the current frame for the function in which the programi i'

running and the breakpoint object.
what and kind determine where in a function the system invokes hook-function. what is either a ,,de-t.ce: it i.

or a debug-function. kind is one of :code-location, :function-start, or :function-end. Since the start., ;i,
enrds of functions indy not have code-locations representing them, designate these places by supplyiiii what as, :i
debug-function and kind indicating the :function-staxt or :function-end. When what is a debii•-fint ,,i
and kind is :function-end, then hook-funct ion musi lake two additional arguments, a list of valu.s rt rtnir,
by the function and a function-end-cookie.

info is information supplied by and used by I lie user.
function-end-cookie is a function. To inipleiinelit funct ion-end breakpoints, the system uses starter hrikp,, tit

to establish the function-end breakpoint for emch itvocal ion of the function. Upon each entry. t lie system rt,
a unique cookie to identify the invocation, and wliui the user supplies a function for this argument, the •yWt,•i
invokes it on the cookie. The system later invokes the function-end breakpoint hook on the same icookie. li,
user may save the cookie when passed to the function-end-cookie function for later comparison in th, li hok
function.

This signals an error if what is an unknown code-location.

activate-breakpoint breakpoint Fit. 1,it1,,

This function causes the system to invoke ( lie,,Ihrakluiti's hook-function mtint the ixt cail to deactivate-
breakpoint or delete-breakpoint. The' sysle',, •u•,k,-, lr,';kp',inut hook 'mictwio i i. In ih,, ,r' i .. 11' 1

'iui activate them.

deactivate-breakpoint breakpoint ,, ..

This function stops the system from ivok ing the hrakpoin t' hook-function.
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breakpoint-active-p breakpoint [Function]
This returns whether breakpoint is currently active.

breakpoint-hook-function breakpoint [Function]

This function returns the breakpoint's function the system calls when execution encounters breakpoint. and
it is active. This is SETF'able.

breakpoint-info breakpoint [Fuiction]i
This function returns breakpoint's information supplied by the user. This is SETF'able.

breakpoint-kind breakpoint [Funchon]
This function returns the breakpoint's kind specification.

breakpoint-what breakpoint [Function]
This function returns the breakpoint's what specilication.

delete-breakpoint breakpoint [Function]
This function frees system storage and remtoves computational overhead associated with breakpoint. After

calling this, breakpoint is useless and can never hecoiive active again.

10.7 Code-locations

Code-locations represent places in functions where the system has correct information about the function's
environment and where interesting operations can occur asking for a local variable's value, setting breakpoints.
evaluating forms within the function's environment, etc.

Sometimes the interface returns unknown code-locations. These represent places in functions, but there is
no debug information associated with them. Some operations accept these since they may succeed even with
missing debug data. These operations' argument is named basic-code-location indicating they take known and
unknown code-locations. If.an operation names its argument code-location, and you supply an unknown one.
it will signal an error. For example, frame-code-location may return an unknown code-location if somnone
interrupted Lisp in the given frame. The system knows where execution will continue, but this place in th. -odc
may not be a place for which the compiler llntmp,,d debug information.

code-location-debug-function' basic-code-location [Fuii cti2,te
This function returns the debug-function representing information about the function corresponding to th,

code-location.

code-location-debug-block basic-code-location [Function]
This function returns the debug-block containing codv-location if it is available. Some debug polic;-s inhibit

debug-block information, and if none is available, t1, it I his signals a no-debug-blocks condition.

code-location-top-levdl-form-offset code-local ion [Ft nclio/i
This function returns the number of top-level forms before the one containing cole-hication as seen by the

compiler in some compilation unit. A compilal ioWn uil is not niecessarily a single file, s he lhe slct ion on ,, -
sources.

code-location-form-number code-location [" n c/ion]
This function returns the number of the form corresponding to code-location. The form number is derived

by walking the subforms of a top-level form in depth-first order. While walking the top-level form, count one inI
depth-first order for each subform that is a oions. See form-number-translations (page 131).
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code-location-debug-source code-location [Function]
This function returns code-location's debug-source.

code-location-unknown-p basic-code-location [Function]
This function returns whether basic-code-location is unknown. It returns nilwhen the code-location is known.

code-location= code-location i code- local ion2 [Functzon]
This function returns whether the two code-locations are the same.

10.8 Debug-sources

Debug-sources represent how to get back the source for some code. The source is either a file (compile-file or
load), a lambda-expression (compile, defun, defmacro), or a stream (something particular to CMU Common
Lisp, compile-from-stream).

When compiling a source, the compiler counits each top-level form it processes, but when the compiler handles
multiple files as one block compilation, the top-level forii count continues past file boundaries. Therefore code-
location-top-level-form-offset returns an oifset that does not always start at zero for the code-location's
debug-source. The offset into a particular source is code-location-top-level-form-offset minus debug-
source-root-number.

Inside a top-level form, a code-location's lorni numbuer indicates the subform corresponding to the code-
location.

debug-source-from debug-source [Function]
This function returns an indication of the type of source. The following are the possible values:

:file from a file (obtained by compile-file if compilehd).

:lisp from Lisp (obtained by compile if compiled).

:stream from a non-file stream (CMU Coin,,iou Lisp supports compile-from-stream).

debug-source-name debug-source [Function]
This function returns the actual source in sonic sense represented by debug-source, which is related to debug-

source-from.

:file the pathname of the file.

:lisp a lambta-expression.

: stream some descriptive string th:ý,'s otherwise useless.

debug-source-created debug-source [Function]
This function returns the universal time someone created the source. This may be nilif it is unavailablh.

debug-source-compiled debug-source [l.,',

This function returns the time someone c iiiil,,d I lih sonurce. This is nilif the soujre is unconipiled.

debug-source-rocot-number debug-source [Functien3
This returns the number of top-level forums processed by the compiler before compiling this source. If this

source is uncompiled, this is zero. This may be zero even if the source is compiled since the first form in the first
file compiled in one compilation, for exanipl, mniust have a root number of zero - the compiler saw no other
top-level forms before it.
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10.9 Source 'Translation Utilities

These two functions provide a mechanism for converting the rather obscure (but highly compact) representation
of source locations into an actual source form:

debug-source-start-positions debug-source [Function]
This function returns the file position of each top-level form as an array if debug-source is from a : file. If

debug-source-from is :lisp or :stream, this returns nil.

form-number-translations form tlf-number [Function]
This function returns a table mapping form numbers (see code-location-form-number) to source-paths. A

source-path indicates a descent into the top-level-form form, going directly to the subform corresponding to a
form number. TIf-number is the top-level-for in numiber of form.

source-path-context form path context [Function]
This function returns the subform of form indicated by the source-path. Form is a top-level form, and path

is a source-path into it. Context is the number of enclosing forms to return instead of directly returning the
source-path form. When context is non-zero, the form returned contains a marker, #:****HERE***-*. immediately
before the form indicated by path.
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