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EXECUTIVE SUMMARY

This report, which is an initial study of sensors in series, is directed at improving the performance
of discrimination sensors with limited traffic capacity. The concept of a series network is discussed in
detail in Section 3.1; limited traffic capacity is precisely defined in Section 2.2. Briefly, a sensor has

limited traffic capacity if, because of energy or time constraints, the sensor is unable to measure all of the

objects of interest and therefore must restrict its attention to a subcollection. If the subcollection to be
scrutinized is determined beforehand based on measurements by another sensor, the two sensors are in

series. If several sensors are arranged in this hierarchical pattern, they form a series network.

Another related arrangement of sensors is the parallel network, also described in Section 3. . An
arbitrary sensor network has an architecture that can always be defined in terms of smaller subnetworks,
each of which is in a series or parallel arrangement. This report is a first step toward a quantitative

description of how an arbitrary network performs. In designing any network, and in particular in this
report for series networks, the following four issues are addressed.

1. Global Performance: How does the entire network perform, given the performance of each
individual sensor?

2. Sensitivity: Given a fixed architecture, what is the effect of improving or degrading a single
sensor?

3. Performance Trade-offs: How can the change in performance by the degradation of one
parameter be offset by the enhancement of another?

4. System Synthesis: How does one construct a network to achieve a specified goal?

To fully address these issues for the two-sensor series network, an outline of the approach in
Sections 2 through 4 is given as follows. The performance of a single sensor is modeled in a general

setting independent of engineering constructs. Then the sensor is restricted to limit traffic capacity and

to determine quantitatively the degradation in its performance. Next, the two basic types of network
architectures, series and parallel, are defined and their primary attributes are delineated. Focusing then

on the series arrangement, the basic measurement strategies are examined and their relative performances
are evaluated. A theoretical basis for this approach is included in the appendices. Having chosen a
measurement strategy, the performance trade-offs are studied between the key parameters defining the
network for a two-sensor series arrangement. The quantitative results apply to a bulk filter and a
precision sensor in series.

A general summary of the report includes the following points.

1. A new methodology is being developed that analyzes the performance of multiple sensor
networks and calculates quantitatively the effects of perturbing key parameters in a network

architecture.
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2. The methodology is specialized to sensors with limited traffic capacity and series networks in
this report but is currently being expanded to multiple sensors in arbitrary arrangements.

3. Traffic capacity is an important parameter that has significant effects on network performance.
Lacking theoretical models, its effects have been only partly understood in the past. Traffic-
limited sensors cannot be described by a single measure of quality such as a k-factor, rather,
the entire leakage performance curve is required. This constraint also applies to sensors in
series.

Some specific points of interest are detailed.

1. Low-quality sensors degrade slowly with traffic and are best used as bulk filters. High-
quality sensors tend to degrade faster and are therefore more suited for traffic-limited preci-
sion sensors.

2. When combining two classes of sensors, either bulk or traffic-limited precision, or both, one
of each in series performs best for small interceptor inventories.

3. When traffic capacity is limited, bulk filters are required. Hard lower limits on bulk filter
quality (k,) are necessary to achieve low leakage; also, a hard lower limit on interceptor
inventory is required.

4. In a series arrangement, the precision sensor has required minimal values for both sensor
quality (k2) and traffic capacity. Both of these parameters have hard lower bounds.
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1. INTRODUCTION AND MOTIVATION

The problem of a sensor suffering a degradation of performance because of limited traffic capacity

is as old as mankind itself - in fact, older. Nature has found numerous ways of dealing with this

problem; many sensors perform their tasks so efficiently and smoothly that their details often go unno-
ticed. Yet all of them fall into two general categories: (1) two or more sensors measuring physically

different modalities and operating in parallel or (2) two or more sensors in a series hierarchy with one
member restricting the flow of information to the others. The human eye is an example of a series

network of sensors.

The layer of receptor cells making up the human retina consists of two types: rods and cones.

Almost all of the cones (90 percent) populate the central part of the retinal focal plane, which is called

the fovea; see Figure 1. The cones form a high-quality discriminator, a precision sensor, that sees color,
shape, and texture. To classify an object - that is, to know exactly what it is - the image must be

brought to the very center of the visual fie!d of the fovea. At this point the eye quickly scans the object

using thousands of saccadic swings in azimuth and elevation on the order of seconds of arc. Once

classified, the image can be shifted off the fovea, where the remaining 10 percent of the cones keep the
image under surveillance. This is a time-consuming job, and while it goes on, the remaining field of
view is watched by the system of rods. Rods cannot discriminate very well, but they are excellent

detectors of motion and changes in light intensity; they form an efficient bulk filter. Without their
parallel surveillance of the periphery of the visual field, our eyes would constantly be swinging around

like a spotlight in the sky, darting from place to place without a directing mechanism. The system of

rods not only tells us what to look at but also what not to bother looking at. It manages the flow of

traffic to the fovea. The rod and cone systems of the retina are the preeminent example of a bulk filter

and a traffic-limited precision sensor in series.

In problems related to discrimination architecture, the main concern in this report, the reasons for

constructing sensor networks can be quantified in terms of the particular sources of error of the sensors.

The first source is measurement error: the sensor may inherently operate with a high level of noise/
signal. If the same object is measured repeatedly by the same sensor, a large amount of variation is seen

in the measurement values. The second source is physics error: the sensor can only measure a single

physical attribute. If two distinct objects are measured by the same sensor, their difference will be

smaller than if measured by several sensors using different modes of measurement. (This is not unlike

Plato's allegory of the blind men and the elephant.) The third source is traffic error: a sensor's

performance can be degraded by the sheer number of objects that it must measure. If the sensor has only

limited time or energy to measure all objects, then the amount that it can devote to each object is

reduced.

Physics error and measurement error are generally remedied by having two or more sensors mea-

sure every object. Such an arrangement is called a parallel network. Traffic error, on the other hand, is
remedied by having a set of early sensors act as a bulk filter to restrict the number of objects passed on to

be measured by a set of precision sensors. In effect, the bulk filter directs the attention of the precision
sensor to only a small subset of the total traffic. This arrangement is called a series network, and this

particular class of network is the focus of this report.
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2. SINGLE SENSOR WITH LIMITED TRAFFIC CAPACITY

In this section the serious degradation of a sensor's performance by limited traffic capacity is

detailed. By concentrating on a single sensor we not only motivate the need for construction of sensor

networks but also establish a few important relationships between traffic capacity and system leakage

that will be used throughout the remainder of the report. As a point of reference we begin by looking at

a sensor without traffic limits.

2.1 SINGLE SENSOR PERFORMANCE

In this section, the performance characteristics of a typical sensor will be discussed, rather than the

details of how it is constructed or how it carries out its measurement processes. Accordingly, a sensor
will be defined by the probability densities of its measurements along some discriminant axis x, as shown

in Figure 2. Two response densities, pR(. j and pD(x), that correspond to whether the object being mea-

sured is an RV or a decoy are shown. Alternatively, the assumption could be made that if a large
V )ulation of objects was measured, they would distribute themselves according to some probability law,

based on measurement uncertainty, as shown in the figure. We will often take this latter point of view.

Given a threat consisting of a certain number of RVs and decoys and an interceptor inventory of

size I, what is the best rule for choosing the objects to fire at based only on the discriminant x? The

optimal rule yielding the min~mum expected leakage is obtained by choosing a threshold 77 and firing at
only those objects whose discriminant lies above qi. This rule is derived under more general circum-

stances in Appendix C. The most important characteristic of the optimal rule is that the threshold

depends only on the degree of belief that an object is an RV or a decoy and that that degree of belief is

captured by a single quantity known as the likelihood ratio

A(x) = pR(x) / pD(x)

or, equivalently, the log-likelihood ratio (LLR)

L(x) = log [PR(X) / PD(X)I

One of the principal advantages of the log-likelihood ratio as a decision criterion is that it extends in a
straightforward way to multiple sensors [I] (see Section 2.2).

The quality of the sensor is measured by the degree of separation of the response densities on the

discriminant axis or, equivalently, by the leakage/false alarm rates. The leakage PL is the fraction of RVs
classified as decoys and hence leak through the system because they are not fired at. The probability of

false alarm PF is the fraction of decoys classified as RVs and hence have valuable interceptors fired at

them. Referring to Figure 2 and the threshold q, PL and PF are given by

P.(rl)= pR(x)dx and

PF(17) =,fPD(X)dx

3
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Figure 2. Single sensor function.

Another equivalent way of measuring sensor quality is by the leakage/inventory performance. For a
given threshold 17, the number of interceptors fired !0 is equal to the number of objects classified as RVs,
that is, the number of objects whose discriminant x is greater than the threshold q:

1O=[I-PL(y1)]RVo +PF(i7)DY0 ,

where RVo and DY0 are the number of RVs and decoys in the initial threat. For any given number of

interceptors fired, sensor A is better than sensor B if P4 < P/B-

For sensors whose response dLisities are given by Gaussian distributions (with equal variances a),
the density functions yield a numerical measure of quality known as the sensor's k-factor. Such sensors

are known as classical Gaussian sensors. The k-factor is given by

k=(,.R-AD)/c

where PR and PD are the means of the RV and decoy densities, respectively.
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This numerical measure translates directly into a leakage/inventory (PL vs I) performance measure,
which is seen in Figure 3(a). As an example an initial normalized threat To= (RVo, 1O RVo) is assumed,
which consists of ten decoys per RV. As the number of (hypothetically perfect) interceptors in the
inventory increases from zero to T0, the system leakage drops from PL = 1.0 to PL = 0.0 for all of the curves.
For any intermediate point on the I axis, the higher the k-factor, the lower the value of PL. For k = 0 the
performance curve is a straight line, referred to as the "chance line." This line corresponds to the case
where no discrimination is possible and, consequently, objects are chosen at random to be fired at.
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Figure 3. Single sensor quality.
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The sensor performance curve, whether PL vs I or PL vs PP as shown in Figure 3(b), is a more
fundamental measure of sensor quality than the k-factor because it applies to all sensors, Gaussian or not.
As traffic-limited sensors are considered, the PL vs I curves used to compare the quality of various sen-
sors and sensor networks are more complex. The advantage of classical Gaussian sensors, whenever
they are used, is that their quality can be summarized by a single number: the k-factor.

2.2 SINGLE TRAFFIC-LIM'TED SENSOR

Traffic, as used in this report, is the total number of objects that a sensor must measure in order to
perform discrimination. Traffic in the context of degrading the performance of the sensor is of particular
interest. If the size of the threat To is not large enough to affect the sensor's performance, then the sensor
has, in effect, an infinite traffic capacity. If the amount of traffic can degrade performance, then the
sensor has limited traffic capacity.

The presence of high traffic can cause a sensor's performance to degrade in one of two ways. First,
the sensor measures all of the objects but must ration its energy (number of pulses or signal duration) in
doing so. Its measurement accuracy will then go down uniformly across all objects in a manner consis-
tent with the results of statistical sampling theory. This form of performance degradation is referred to as
continuous degradation; it is presented in Appendix A but will not be discussed in detail in this report.

In contradistinction to uniform degradation is a strictly limited sensor - one that does not or
cannot measure more than a limited number of objects T,. The traffic capacity of the sensor is denoted
by TV. If the threat size TO exceeds Tp, then T, objects can be measured by the sensor; from the remain-
ing To - T, objects, interceptor allocation must be made by random selection alone, which is denoted as
random discrimination. Figure 4 shows a single PL vs I performance curve and a schematic diagram
demonstrating how the curve is obtained. In Figure 5 a family of such curves, parameterized by traffic
capacity, is displayed.

First, a subpopulation of T, objects is flagged at random to be measured by the sensor S. Notice
that the prior probabilities (PR, PD), the fraction that are RVs and the fraction that are decoys, are the
same within the two subpopulations T, and T0 - T,, as in the original threat. This similarity exists be-
cause of the random selection of T,. The RV and decoy density functions, pR(x) and PD(X), are also the
same for populations T1, To - T,, and T0. To generate the performance curve of Figure 4, we begin in the
upper left comer with the inventory at zero and the leakage at one. As the inventory increases from zero,
the most RV-like of the objects in population T, are designated by a threshold q that moves in from the
right. All objects with measurements larger than q are classified as RVs, with 17 chosen such that the total
number of such objects, true RVs and false alarms, matches the total inventory. When the inventory
increases to T. and r reaches the critical value ra, discrimination now takes place by choosing, at ran-
dom, objects from the T0- T, subpopulation of unmeasured objects. The critical value 'r. is located so
that the marginal rate of RVs chosen correctly from population T, per unit increase in inventory is equal
to the marginal rate achieved by randomly choosing objects from T0 - T,. This value occurs when the
marginal rate from T, equals the marginal rate from (To - T,), that is, when

RV I.P (ra)IDI. (ra) =PRI/.PD
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Thus, the Critical threshold is located where the RV and decoy density curves cross each other. RV, and
DY1 are the number of RVs and decoys in population TV. However, because of the random partitioning
of To into the two subpopulations, RVI/DY1 = RVl'0 DY0 = PID

To summarize thus far, sensor Shas classified objects whose discriminant lies above 'r fo h
RV-rich portion of TV. What is left from T, is now an RV-poor, decoy-rich subpopulation. In fact, T,
has been so depleted of RVs that the interceptors can be used more efficiently if we now abandon,
temporarily, population T, and start firing at population To - Tat random. Thus, for higher values of
inventory I > Ta, excess interceptors are now directed at objects in To - T1.

The rate of decrease in PL now follows parallel to the chance line, which is consistent with RVs
being selected at random. Note that the initial portion of the performance curve has the same slope as the
chance line when the switch to the random subpopulation takes place which indicates their equal mar-
ginal rates of decrease in P.As inventory increases, objects are chosen from the subpopulation To - T
until exhaustion. At that point, when the inventory increases above To - T,+ T., discrimination switches

8



back to the remainder of population TV. Objects whose discriminant lies to the left of r, are chosen by
moving the threshold q7 downward from Ta, again picking the most RV-like. On the performance curve
the marginal rate of decrease of PL is now less than the chance line, reflecting that the remaining RV
population has been thinned out relative to the whole.

Figure 5 contains an array of performance curves as T, takes the values 0, 3, 6, and I I (I I is the
size of our normalized threat). T, = 0 coincides with the chance line corresponding to random selection
over the entire threat T0. T, = I I implies no traffic limitations are in effect for this threat, which corre-
sponds to the standard performance curve for a sensor with a k-factor of k = 2.0. Notice the dramatic
degradation of performance in the form of an increase in PL as traffic capacity drops. What is more im-
portant here is that this degradation shows up at relatively low values for inventory I = RVo; limited
traffic capacity hurts the defense most for small inventories. An antidote to this problematic situation is
to precede a traffic-limited sensor with a bulk filter (i.e., to form an elementary series network).

9



3. SENSORS IN SERIES

3.1 SERIES AND PARALLEL ARRANGEMENTS

The equal spacing of the performance curves for the single traffic-limited sensor shows in a
striking fashion that the price paid in increasing leakage is proportional to the traffic capacity. This
spacing motivates us to ask how much can be gained by preceding a precision sensor S2 (e.g., k > 2.0),
whose traffic capacity is limited, by a modest bulk filter S, (e.g., k = 1.0)? Figure 6(a) illustrates this series
arrangement of two sensors. Each sensor takes a measurement of an object and generally makes a ternary
decision of the form RV/DY/UN, where UN stands for "uncertain." A UN classification means that the
full measurement is retained by the sensor to be used later in a decision process. If S, precedes S2 (or,
equivalently, S2 follows S,) in a series arrangement, then two characteristics emerge: (1) any classifica-
tion into either RV or DY by sensor S, is final and cannot be overridden by S2 and (2) only the mea-
surements of objects classified as uncertain by sensor S, are handed over to sensor S2 for further
measurement. This process defines a natural order of sensors in a series of any length.

No such order exists in a parallel arrangement, as shown in Figure 6(b), where full measurement
information is available to every sensor on every object. Only after all measurements on all objects are
made is this information collected in a data-fusion center where a classification process is carried out.
Further discussion of parallel networks can be found in Holmes and Rocklin's research [1,2].

In the series chain illustrated in Figure 6(a), each object labeled either RV, or DYi has been culled
from a population previously classified as uncertain by sensor S,_, and passed on to sensor Si. The de-
cision to classify an object as either RV or DY by sensor Si must therefore be based on a feature vector
(xi, x2,..., xi) consisting of measurements by only the earlier sensors in the chain. The total number of
objects classified as uncertain by sensor Si. is generally constrained to be equal to the traffic capacity of
sensor Si and is therefore denoted Ti.

3.2 TRAFFIC THRESHOLDS

The convention discussed in Section 3.1 is denoted by the double threshold model because each
sensor separates its individual feature space by a pair of traffic thresholds into the three decisions: RV/
DY/UN. There are two special cases: the single threshold model that divides feature space into DY/UN
and the full measurements case in which all objects are measured and classified UN until the final sensor.
These three models are contrasted schematically in Figures 7, 8, and 9.

The full measurements or "no traffic threshold" case corresponds to all sensors in parallel with no
traffic limitations. For m such sensors, the full measurement model decides on an RV or a decoy based
on the full feature vector (x,, x2,..., xm). The actual decision is based on the likelihood ratio (LLR) for
multiple sensors:

RV

J DY
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Figure 6. Two basic networks.

Thus, if the LLR exceeds a certain threshold q/, classify the object as an RV; otherwise, classify it as a
decoy. See Appendix C for a derivation. The factor q1 is a preset threshold that will depend on a given
interceptor inventory level. For two Gaussian sensors this threshold corresponds to the familiar hyper-
plane threshold that lies perpendicular to the line connecting the peaks of the RV and decoy density
functions, which is illustrated in Figure 7. This material is well studied, appears in a variety of reports,
and will not be discussed further except to add that the combined or joint k-factor for m Gaussian sensors
in parallel is the root-sum-square of the individual k-factors:

k = (k2+ 2+... + k2,1/
The dual threshold model is shown in detail in Figure 8. Let x, represent the discriminant for

sensor S, and x2 represent the discriminant for sensor S2. The classification scheme for two sensors and
how the results extend to several sensors in series will be discussed. In the figure the equiprobable
contour curves (circles) are shown for a pair of independent classical Gaussian sensors. A generalization
to non-Gaussian sensors is under current investigation.
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Consider sensor S, alone. Its RV and decoy density functions are shown along the x, axis. Be-

cause S2 is traffic limited, a pair of traffic thresholds (Tail 'h1) is chosen on the x, axis in such a way that

the expected total population of objects, RVs and decoys, whose discriminant lies between Ti and %h is

precisely equal to T2, the traffic capacity of sensor S2. S, classifies these objects as uncertain UN,.
Objects whose discriminant lies below 'as or above %,b are classified by S, as decoys or RVs, respec-

tively. They are denoted by DY, and RVi. Only the objects classified UNI will be measured again by

sensor S21 and for these objects a final classification into RVs and decoys, RV2 and DY2, will be made based

on the joint discriminant (x,, x2). The final threshold is based on the joint LLR and therefore is a trun-

cated version of the full measurements threshold of Figure 7. After the final classification, the entire

feature space is partitioned into RVs (RV, + RV2) and decoys (DY, + DY2).
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parallelogram-shaped region in the lower figure of Figure 8. As this process continues sequentially for

all of the sensors in the chain, successively higher and higher dimensional paralleloprisms are formed,
each being fed by objects within a similar prism of one lower dimension. The final classification will
take place on some m-dimensional prism. To compute leakages and false alarms, the joint distribution of
all objects classified as uncertain by sensors (S , S2'.... Sm) for any m must be determined. The joint

density is developed in Appendix B.

There is one major difficulty with the dual threshold model - the traffic thresholds Ta and rh are not

uniquely determined. That is, there are many pairs of thresholds (Ta, Tb) for sensor S, (or any sensor Si
in the chain for that matter) such that the number of objects lying between the two thresholds equal T2. In
other words, the traffic capacity T2 determines the width of the traffic window but not its location. The

optimal window location (as measured by its right-hand endpoint T., for instance) depends on many
parameters in the system, but in particular it is inventory dependent. As such, it must be numerically

optimized for each point on the PL vs I performance curve. The dependence of the optimal window on
interceptor inventory falls into the general research area of optimal measurement strategies, which is
under current investigation.

A special case of the dual threshold model is the single threshold model, as shown in Figure 9.
The single threshold T corresponds to T0,, the left-hand endpoint of the dual threshold measurement win-

dow with the right-hand endpoint at infinity, and serves to classify objects as either decoy or uncertain
with the uncertain objects going on to sensor S2 for further measurement. The traffic constraint (UN, =

T2) must be satisfied; that is, the total number of objects whose discriminant lies to the right of r must be

equal to the traffic capacity of sensor S2. Because the right-hand endpoint of the measurement window
lies at infinity and the left endpoint is fixed by the traffic constraint, no inventory-dependent optimization
is performed in this case.

The objects classified as uncertain UN, are passed to sensor S2, measured again, and are finally
classified as RVs or decoys based on the joint LLR. So, for two sensors in series, the entire feature
space is partitioned into RVs (RV2) and decoys (DY, + DY2). If instead these two sensors precede a third

sensor in the chain, then the objects measured by sensor S2 are classified as either DY2 or UN2 ai:d must
satisfy the traffic limit of sensor S3, UN2 = T3 . This situation is shown in the lower figure. The density
function for objects classified as uncertain, derived in Appendix B, remains valid for the single threshold
model. The limits of integration must be modified to take into account that the appropriate regions are

now semi-infinite wedges rather than paralleloprisms.

The fact that the traffic window is uniquely determined in the single threshold model is very

important. For multiple sensors in series, this determination yields a tremendous amount of computa-
tional savings. In a series chain of n sensors, the dual threshold model requires n - I coupled numerical

optimizations to find the traffic windows taking place concurrently with an LLR test to determine the
appropriate firing threshold. For the single threshold model, the traffic thresholds can be solved for
uniquely at the beginning before the firing thresholds are determined.
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Figure 10 shows the amount of lost performance in switching from a dual threshold to a single
threshold model for two sensors in series. A threat of ten decoys per RV is considered with sensor k-

factors of k, = I and k2 = 2. Each curve represents the performance of a dual threshold measurement rule

for some fixed traffic capacity of sensor S2. Rather than optimize the location of the traffic window, it is
used as a variable along the abscissa. RV1/! = 0 means no objects are classified as RVs by the first sen-

sor; the traffic window is as far to the right as possible along the x, discriminant axis. This point corre-
sponds to the single threshold rule. RVll = I means that the traffic window is as far to the left on the x,
axis as possible; the number of objects classified as RVs by SI just matches the inventory level. Because
all of these objects must be fired at, using up the entire inventory, the traffic passing on to sensor S2 has
no effect on the network performance - the performance is that of a single sensor with a k-factor of

k=k| = 1.

These two endpoints represent the extremes in the location of the traffic window. The optimal
location, as the curves indicate, is an internal minimum, running from RV/II - 0.70 for T2 = I to very close

to RV 1I! = 0.0 for higher values of T2 . The difference in performance is about 4 percent for the worst
case T 2 = I and becomes negligible for values of traffic capacity T2 > 3. Because of the great savings in
computation and the small cost in performance, the single threshold model will be used in the rest of this

report.
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Figure 10. Comparison of dual and single threshold models.
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4. NUMERICAL RESULTS

In this section the ramifications of placing a modest bulk filter in series with a precision sensor of
limited traffic capacity are examined. The key parameters and attributes that are the focus of attention
are listed in Table .. The results presented here pertain to a pair of classical Gaussian sensors. Exten-

sion to more general sensors and to series chains containing an arbitrary number of sensors is under
investigation.

TABLE 1

Key Parameters

"* Sensor 1: Quality k

"* Sensor 2: Quality k12
Traffic Capacity T2

"* Interceptors: Inventory I

"* Performance: Leakage vs I

"• Trade-offs: Quality: k, vs k2 Fixed PL!ixdT 2

Sensor 2: k2 vs T2

Quantity: I vs T2

Sensors: k1 vs T2

In addition to the usual parameters - sensor quality as measured by the individual k-factors and
size of in',rceptor inventory - the key parameter in these results is the traffic capacity of the precision

sensor T2 . We assume that the bulk filter has infinite traffic capacity as far as the threat is considered.
Our interests are: (I) What is gained by putting a bulk filter in series with a precision sensor as
compared to a bulk filter or a precision sensor acting alone? (2) More important, given that a bulk filter

and precision sensor are already in series, how much of an upgrade must be made to one key parameter
to compensate for a decrement in another? What do the key trade-off curves look like?

The curvcs presented in this section were generated by using the synchronized firing threshold
technique described in Appendix D. This technique is simply the firing rule based on the likelihood ratio
(LLR) test that was shown to be optimal in Appendix C. The reader is referred to the appendices for

further details.

4.1 PERFORMANCE ANALYSIS

Consider a modest bulk filter k, = I and a precision sensor k2 = 3 with a relatively small traffic
capacity T2 -. 3 RVO. The threat consisting of ten decoys per RV is given in normalized form by
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To = (RV0 , 10 RVo). Throughout the remainder of the report the threat will remain the same, and so for

simplicity the scale factor RV0 will be excluded, and a threat consisting of one RV and ten decoys will be

considered.

Figure I 1 shows leakage PL as a function of inventory I for the bulk filter alone, the precision sensor

alone, and the two in series. The curve for the precision sensor is similar to the one analyzed in Figure 4.

Because its traffic capacity is so small here, the sensor is reallj only working at very low and very high

values of 1; otherwise, discrimination is almost random. The bulk filter operating alone yields fair results

provided the inventory is sufficiently high - 50 percent of the threat or greater. This percentage will

generally be an unrealistically high inventory, namely, one interceptor for every two decoys.
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DY RV

Figure /1. Performance of two sensors in series.

It is at inventories nominally sized to the non-uffloaded payload I RVo < I < 2 RVo that the true
effectiveness of the series arrangement shows itself. This region is where the two sensors optimally

enhance one another. For an inventory of I = 1, which is less than 10 percent of the threat size, it is

possible (with perfect interceptors) to kill 50 percent of the RVs.

Figure 12 shows sensor substitution performance. Given a bulk filter and a precision sensor in

series, what happens if one of them is exchanged so that either two bulk filters or two precision sensors
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are now both parallel? When two precision sensors are operating together, we assume that they are
measuring disjoint sets of objects, so that, in effect, they operate as a single sensor with a traffic capacity
of T2 = 6. The two bulk filters, each with infinite traffic capacity, take independent measurements and
achieve a joint k-factor of k = 4J2; see Figure 7. In reality these two bulk filter measurements would
probably be positively correlated thus degrading the overall quality [I].
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Figure 12. Sensor substitution performance.

Figure 12 shows that at inventories nominally sized to the non-offloaded payload, the bulk filter
and precision sensor in series clearly dominate the other two candidate systems. However, at high
inventories the two bulk filters are as good as the series network, and the two precision sensors are better
than either of the others. These substitution problems are quite complex and clearly merit further study.

In fact, the complexity of this problem will become more apparent when Figure 17, which trades off bulk
filters for precision sensors, is examined.

4.2 TRADE-OFF ANALYSIS

Trade-off analysis quantitatively demonstrates how much one key parameter must be upgraded to
compensate for the decrement of another in order to keep system performance constant. The next five
figures illustrate the trade-offs for the bulk filter and precision sensor in series.

Figures 13 and 14 illustrate the sensor quality trade-offs (k, vs k2 ) for two separate cases: leakage held
fixed and traffic capacity held fixed. In the first of these examples, Figure 13 shows k, vs k2 with PL fixed at
0.20 for three different levels of traffic capacity. For example, the curve corresponding to T2 = I I shows all
possible values that (kI, k2) can take on such that the system leakage stays at PL = 0.20 when the traffic ca-
pacity of sensor S2 is T2 = II. Because the total threat is To = 1I, this special case is where sensor S2 can
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measure all of the objects - the full measurements' case. The locus of admissible (k,, k2) values is a circular
arc satisfying (k2 + k2)12 = 2.85, which corresponds to Equation (1). When the traffic capacity is reduced,
each curve develops a vertical asymptote. This asymptote is the minimum quality bulk filter required to
achieve a leakage of PL = 020. For a traffic capacity ofT2 = 6, a bulk filter with a k-factor of = 0.75 or greater
is needed. If the capacity of S2 is reduced to T2 = 3, k, must be increased to k, = 1.5 or greater. For suffi-
ciently high values of traffic capacity, around T2 = 8.8, PL = 0.20 can be achieved with a perfect (k2 = -a)
precision sensor alone (i.e., k, = 0); however, for smaller (in the sense of T2) precision sensors, a bulk filter is
always necessary. All of the curves coalesce into one as k2 goes to zero, which occurs at the point where the
bulk filter is just good enough to carry out all of the necessary discrimination.
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Figure 13. Sensor quality trade-off. leakage fixed.
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Figure 14 shows a sensor quality trade-off (kn vs k2) for T2 = 3 fixed, for three possible leakages. That
is, given a fixed traffic capacity for sensor S2, what are the admissible (k,, k2 ) values required to achieve

different leakages? For leakages less than about P. = 0.66, the figure shows that a bulk filter is needed
because the curves asymptote vertically as k, decreases. As on the previous figure, these vertical as-
ymptotes correspond to a perfect precision sensor, which means that all leakage is due to the bulk filter

alone. The asymptotic values of k, represent the minimum quality required.
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Figure 14. Sensor quality trade-off." traffic fixed.
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Figure 15 shows a sensor S2 trade-off (T2 vs k2) for curves of constant leakage. Here, the quality of the

bulk filter is fixed at k, = 1, and the trade-off between size T2 and accuracy k2 of the precision sensor is ex-

amined. What is most striking about this set of curves is the very narrow operating region delineated by the

pair of dashed lines. The dashed lines enclose what is known as the knee of the curve for the family shown

here. This region is where a change in one of the parameters (e.g., Ak2) yields a concomitant change in the

other - a quid pro quo. The remainder of the trade-off curves are so steep or so flat that a change in the

sensitive parameter requires a disproportionately large change in the other to maintain the fixed leakage. A

system design is most stable when parameters are chosen inside the operating region whenever possible.
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Figure 15. Precision sensor trade-off.
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It should not be surprising that the curves asymptote so flatly or steeply. For k, = 1, to achieve the
relatively small leakages shown here, a minimum k2 is required even if the second sensor has infinite

traffic capacity. In fact, for a given leakage (e.g., PL = 0.20) one can look at Figure 3(a) to see that for

I = 1, an overall k-factor of almost 3.0 is required. This situation would imply that sensor S2 requires a

k-factor given by k2 = (k 2 - kl)112 = 4/8, which is approximately the value at the intersection at the top of

the graph along the T2 = 1 1 line.

What is more interesting is that no matter how good the sensor is, a certain minimum traffic

capacity is required. The flattening out of these curves shows that there is a hard lower limit to the size

of the precision sensor in a series. Referring to Figure 9, the traffic capacity T2 determines the location

of the traffic threshold r. If the number of RVs, with an x, discriminant less than t, exceeds the leakage

requirement, then achieving the required overall leakage will be difficult. It may still be possible if there

are enough interceptors because of the synchronized threshold firing rule. But in general - and cer-

tainly for the inventory level of I = I in this example - the leakage due to a traffic threshold that is set

too high cannot be overcome.

The next set of curves illustrates the inventory/traffic capacity trade-off (I vs T2 ). Figure 16 shows

curves of constant leakage (T2, 1) are varied with the sensor quality of both sensors fixed at k, = I and k2 = 3.

As the curves show, one can always compensate for lack of traffic capacity with more interceptors.

(Because we are using hypothetically perfect interceptors here to demonstrate discrimination leakage,

zero leakage can be achieved with I = I I interceptors, even when no sensors are present.) Also, the

vertical asymptotes again yield hard lower limits on the minimum number of interceptors required to

achieve these leakages. The other very important quality here is the operating region of each of these

curves, which is large and aln,v., linear.

The operating regions consist of those portions of the curves below the dashed line. The size and

linearity have two ramifications. One pertains to performance alone: a large amount of discretion is left

to the discrimination architect in trading guns for sensors. Also, over this large regime there is an almost

constant marginal rate of exchange (the slope of the curve). Linearity is a double-edged sword. The

other ramification shows up if linear cost curves are overlaid on top of the trade-off curves (i.e., cost

curves of the form a! + lT 2 = constant, where a and P represent unit cost of an interceptor or a precision

sensor). This sort of analysis will not be developed here because it lies outside the scope of this report,

but we must mention that the linearity of the trade-off curves leads to instabilities with discontinuous

jumps in optimal apportionment if minimum cost becomes the sole design criterion.

Figure 17 shows bulk filter/precision sensor trade-offs. As discussed in Section 4.1, adding bulk

filters is equivalent to increasing k, according to the root-sum-square rule; the k! axis is a measure of the

number of bulk filters forming sensor SV. Adding precision sensors is equivalent to increasing T2 (up to

T2 = II, provided each sensor measures different subsets of objects with little or no overlap). So the T2

axis is a measure of the number of precision sensors forming sensor S2.
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Figure 16. Trafficlinventory trade-off.

Trade-off curves for three values of leakage are shown with fixed parameters k2 =3 and ! = 1. There
are no clear messages here. For sufficiently high values of k, no precision sensor is needed because the
bulk filter approaches it in quality. For very low leakages (e.g., PL = 0.10), a minimum k, is required
because k2 = 3 is inadequate even with no traffic limit, otherwise sufficient traffic capacity can achieve
the required performance. Two of the curves have sharp knees; one is almost linear. In fact, the middle
curve can best be described as having a trick knee and a sway back. When the inventory level is
increased, other more complex interactions are unleashed; they are not shown here. The basic message
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here is that the trade-off between the amount of resources that one should put into bulk filters and take

out of precision sensors (or vice versa), based on a leakage performance criteria alone, is very complex.

Adding cost as a criterion permits selection of an operating point, but this point is very sensitive to the
various cost ratios. The reader is invited to draw some families of linear cost lines on the figure using

different slopes and observe how the various optima change. As mentioned at the end of Section 4. 1, this
is an area that requires further work.
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Figure 17. Bulk filter/precision sensor trade-off.
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5. SUMMARY

The problem of improving the performance of a sensor with limited traffic capacity by forming a

series network has been addressed. In the process, groundwork has been laid down for the analysis of

arbitrary sensor networks to be completed in future reports. The performance of a single sensor was

modeled in a general context independent of engineering constructs. Such a sensor's performance has

been compared with that of one with a fixed traffic limit. After quantifying the loss of performance with

the loss in traffic capacity, a proposal to remedy the situation was made that linked together a bulk filter

with the traffic-limited sensor - now denoted as a precision sensor. Finally, the performance and trade-

off characteristics of the two sensors in series were studied.

Some general summary points follow.

I. This report introduces a new methodology to analyze the performance of multiple sensor

networks. Along with related results in the references given on parallel networks and forth-

coming results on series networks of arbitrary length, the tools to analyze sensor arrangements

of any network topology will become available.

2. For series models, traffic capacity is an important sensor parameter with significant effects on

network performance. In the past, its effects were poorly understood because of a lack of

theoretical models. This problem has now been remedied for the two-sensor arrangement.

3. For traffic-limited sensors or two sensors in series, there is no single measure of quality such

as the k-factor. The entire leakage performance curve must be retained.

Some specific points of interest follow.

I. Low-quality sensors degrade slowly with traffic and are best used as bulk filters. High-quality

sensors tend to degrade faster and are therefore more suited for traffic-limited precision

sensors.

2. When combining two classes of sensors, either bulk and/or traffic-limited precision, ' ae bulk

and precision in series perform best for moderate interceptor inventories.

3. When traffic capacity is limited and inventories are nominal, a bulk filter is always required to

achieve small leakages. There are hard lower limits on the quality k, of the bulk filter that is

required. There are always hard lower limits on the inventory required. (Hard lower limits

show up on trade-off curves as vertical or horizontal asymptotes.)

4. The precision sensor in the series arrangement has hard lower limits on both sensor quality k2

and traffic capacity T2. The precision sensor trade-off curves have what is known as sharp

knees that indicate a narrow operating region in a well-designed architecture.
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APPENDIX A

A COMPARISON OF TRAFFIC-LIMITED AND
CONTINUOUSLY DEGRADED SENSORS

In this appendix a brief but pertinent discussion is presented of alternative models for a single sensor
with traffic degradation. The traffic-limited sensor is a limiting case of the more general situation presented

here.

The most common alternative to the traffic-limited sensor is a sensor with continuous degradation
where the performance of the sensor, as measured by an "effective" k-factor k,, is given by

k = k(T, T)= k/[l +k2 max (o,T - T)/T]12 (A.J)

and is plotted in Figure A-I. The figure shows that if the actual traffic T presented to the sensor exceeds
a critical value Tp, then the nominal k-factor k will decrease according to the factor in the brackets in
Equation (A. I). For traffic levels below T, no degradation is seen in the k-factor. Note that the k. in
Figure A-I applies to all I I targets and not just those beyond the critical value T,.
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Figure A-i. Continuous degradation traffic model.
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Equation (A. I) can be derived based on various uniform measurement strategies where the mea-
surement uncertainty depends on the numbe- of pulses (or length of time) that a sensor can devote to
each target object. Such strategies are dir issed elsewhere [I]. Equivalently, one could consider that
Equation (A. I) is simply a reasonable ad hoc rule for sensor degradation. If so, then it is also reasonable
to compare such a rule to the traffic-limited model. In the traffic-limited model, T, is the maximum amount
of traffic that the sensor can handle (its limit); traffic above this limit is subject to random discrimination.
The two models are compared by looking at sensor performance plotted as leakage vs interceptor inven-
tory using the usual threat, To= I RV + 10 DY. The critical traffic value T, in the continuous case or
limit in the traffic-limited case is the adjusted parameter in each of these figures. (From now on, we
shall call T, the traffic capacity of the sensor, regardless of whether it is traffic limited or of the continu-
ous degradation type. the context, if necessary, will always be clear.) Figure A-2 contains two sets of
working curves for a nominal k-factor of k = 2 and traffic capacities T, = 11.... I1. Clearly, for either case
T1 = I I represents no degradation whatsoever and is the usual performance curvc for k = 2. The curves
for the traffic-limited sensor are obtained precisely in the manner discussed in Section 2. The curves for
the continuous case are ordinary performance curves for a reduced effective k-factor k (TI, 1) given by
Equation (A. 1) with T fixed at To = 11, the actual threat.

Using similar working curves for nominal k = 1, 2, and 3, a comparison can be made of the two kinds
of sensors to see which one gives a better performance. These comparisons are shown in Figure A-3. The
two capacities T, = 2 and 5 were selected because they are very close to the crossover values indicated on the
lower right part of the figure. For k = I the continuous model dominates the traffic-limited model in the sense
that its leakage curve is lower along almost the entire inventory axis. As k increases, the traffic-limited model
begins to dominate at increasingly lower traffic capacities. The implications are (1) bulk filters (with low
nominal k) perform better by measuring every object and accepting the decreased effective k and (2) precision
sensors (with high nominal k) give better performance with fixed traffic limits.

A point should be stressed here. Traffic-limited sensors have not been investigated in this report
simply because of the result above. Rather, some sensors, because they require a minimum measurement

time per object, must necessarily act as traffic-limited sensors. The result above confirms that they are
behaving efficiently if their k-factor is sufficiently high, based on the model for k-factor degradation
given by Equation (A.I). Finally, and most important, for low inventory/threat ratios, the traffic-limited

sensor is clearly superior to the continuous degradation model. The improvement is substantial for all
values of k > I.

Two extreme cases of traffic degradation have been explored: (1) continuous degradation where
the entire threat To is presented to the sensor and k, = k (TI, T0 ) and (2) the traffic-limited case where the

sensor looks at nothing beyond its traffic capacity T, and ke = k (TI, TI) = k. However, Equation (A. I) is
a reasonable model for traffic degradation for any effective level of traffic T, presented to the sensor, where
T1 <! Te < To. In this case, the sensor looks at Te objects with an effective k-factor given by ke = k (TI, Te)
from Equation (A. 1), and the remaining To - Te objects are discriminated randomly. If Te = T,, the
traffic-limited case applies, and if Te = To, the continuous case applies. Figure A-4 shows a nomogram
constructed from Equation (A.I) using values of traffic capacity T, = I-..., I for our usual threat
To= I RV+ IO DY.
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Figure A-3. Comparison of fixed limit and continuous models.

The nomogram may be used in various ways. The first is simply the straightforward application of

Equation (A. I). The bottom of Figure A-4 shows the case of a sensor with capacity T, = 2 observing the
portion Te = 8 of the threat. The box indicates that all Te of these objects are discriminated with an ef-

fective k-factor of ke = 0.50 k, where k is the unstressed nominal k. The remaining To - T, objects are
discriminated randomly.

Another application concerns sensor coverage. Suppose that M sensors, each with traffic capacity
normalized to T, = 1, have a nominal k-factor equal to k. Suppose it is desired to measure a threat of size

Te = 10 T,, for example, and maintain a discrimination quality of ke = 0.7 k. Then, locating the appro-
priate point, indicated by a large dot on the bottom figure, we see that approximately 5M sensors are
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required for coverage (or equivalently, M sensors with capacity T, = 5). This number, 5M, is the abso-
lute minimum that the defense requires. To achieve this requirement, nearly perfect coordination of
measurement is necessary; that is, there must be virtually no overlap between the subsets of objects that
each sensor measures. Clearly, most of the important issues concerning sensor coverage have been left
out here; this example serves only to give a quick ballpark estimate in a highly idealized homogeneous
battle space.

In Figure A-3 the two limiting cases, continuous degradption or traffic limited, were examined io
determine which one yielded the lower leakage, and it was found that it depends upon the nominal k-
factor and traffic capacity of the sensor and upon the interceptor inventory. Here, we examine briefly
whether some intermediate value of effective traffic T, 5 Te _ To is the optimal level to direct to the sen-
sor; the remaining traffic To- T, will be discriminated randomly. Figure A-5 shows the result of a nu-
merical investigation. Here, the traffic capacity is fixed at T, = 2. and effective traffic varies continuously
on the interval [TI, To]. Ten different levels of inventory parameterize these leakage curves. For each
curve the global minimum is indicated by a black dot as a visual aid. To help orient the reader (1) the set
of all left-hand endpoints represent the traffic-limited case Te = T, and form a discretized version of curve
(a) in Fig- ure A-3(b), while (2) the set of all right-hand endpoints represent the continuous degradation
case T, = To and form curve (b) in Figure A-3(b).

A precise analytical location of the global minima is beyond the scope of this report at present.
Generally, one of the two limited cases yields the minimum. For the cases where an interlal minimum
occurs (e.g., I = 2, 8, or 9), it appears that not much accuracy (in leakage) is lost by choosing the best
limiting case. We feel that the optimal level of effective traffic Te can best be understood by looking at
optimal measurement strategies as discussed in Holmes and Rocklin [I].
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APPENDIX B

DERIVATION OF THE BASIC DENSITY FUNCTION FOR A
CHAIN OF SENSORS IN SERIES

In this appendix a density function is presented for the classification of an object by all n sensors in
a series arrangement. We will derive the density function for three sensors in series - the extension to n
sensors will then be straightforward. The advantages of having a density function are many. For
example, we might desire certain conditional probabilities. What is the probability that an object will be
classified as an RV given that earlier sensors in the chain yielded a particular vector of measurements?
Another use is computational. For example, numerical routines exist for evaluating multiple integrals
over rectangular regions. For judiciously chosen limits of integration, such a routine, coupled with the
density function derived here, will yield the probability that an object remains unclassified by all sensors
in the chain.

Consider three sensors in series. We shall be interested in such probabilities as

Pr I all three sensors declare object uncertain I

If these three sensors were the first three sensors in a chain, this arrangement would represent the fraction
of all the objects that continue on for more measurements. The particular probability is given by

Pr I all three sensors declare object uncertain)

=Pr{a 3 <Y +Y 2 +Y 3 <b3 a2 <Y +Y 2 <b2 a1 <Y1 <b,} , (B. 1)

where Y,, Y21 and Y3 are the log-likelihood functions of the measurements of sensors S,, S2, and S3 ,

respectively. The pairs (ai, bi) represent the values of the decision thresholds for each sensor Si. In what

follows, ai and bi need not have such an interpretation; they are simply arbitrary values. Figure B-I

shows the region defined by Equation (B.I) for two sensors. For three or more sensors, the region is a

paralleloprism in higher dimensions. For convenience, the random variables Y,, Y2 , and Y3 are called the

measurement variables. The individual probability distribution and density functions of the measurement
variables are denoted by

Y I F (y,), f(y 1 )

Y2 :G(y2),g(y 2 ) , and

Y 3: H (y3), h (y3)

Because classifications are based on linear sums of the measurement variables, the following decision

variables are defined by

ZI =y

Z 2 =Y1 +Y2  ,and

Z =Y +y +y
3 I 2 3
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Figure B-1. Region of feature space passed on to sensor S3.

Thus, the probability that all three sensors declare an object uncertain is given in terms of the
decision variables as

Pr{a3 <Z 3 <b3 ,a 2 <Z 2 <b 2 ,a, <ZI <b,}

Of particular interest is the joint distribution function and density function of the decision variables

P (bl, b2 , b3 )=Pr{JZ 3 <b3 , Z2 <b2 , ZI< b1  b, =Z1I

and at b2 = z2

I d,2 , 3)ap bl, b2 , b3 )/1.b, ab2 db3  Nb= z3

The joint density function p(z1, z2, z3) will be derived using conditional densities and the relation

P(zlz 2 ,z3 )=P(Z3Iz 2,z1 )P(z 2lz1 )P(z1 )
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The conditional distribution of Z3 given values for the other decision variables is given by

P (Z3 "-bNI Z2 -=z2 -Z,-= z,)

= P (Y + Y2 + Y3 <b31YI + Y2 = Y1 + Y2"Y -= YI)

=P[Y3 <b3 -(Y + 2)]

=H[b3-(Y- + 2)]
= H(h 3 - z2 )

Consequently,

p (Z3 1z2 ,z,) = dH(b3 - z 2 )fa b3 atb13 = Z3

=h(Z3 - z2 ) (B.2)

Similarly,

--P(Y2<b-y,)

-G(b 2 -Y)

and

P(z 2 1zl)=g(z 2 -zl) (B.3)

Using Equations (B.2) and (B.3) and the equality of densities p(z,) =.Az,), the additional conditional and
joint density functions are obtained.

p ( 2' z31 Iz)=h (z3 -z 2 )g(z 2 -Zi)

p(Z1 ,z 2 )=g(Z2 -z 1 I'f(z1 )

and finally,

(, 9 z293)-- =h (Z3 - z2)g(z- ,)f(z) •(B.4)
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Equation (B.4) is our required joint density function. The probability that all three sensors classify an
object as uncertain can now be calculated.

Pria3 <Y +Y 2 +Y 3 <b3 a2 <Y +Y 2 <b2 ,a, <Y, <b}
2I 323b3

-" f r2 v 3 P(lv, w) dw dv] du

-- [a[J fl b3.(w- v) g (v-u) f(u) dwj dv du"aIL,2 L-3

This is a multiple integral over a rectangular region. Useful conditional probabilities can also be calcu-
lated. For example, what is the conditional probability that sensor S3 will classify an object as a DY for
a threshold set at 17 given that the previous two sensors declared the object uncertain?

Pr{Y +Y2 +Y3 <7Ia2 <Y.+Y 2 <b2 ,a<Y

='JbI"bH(17 -v) g (v -u) f(u) dv du /Jb Jb "g (v -u) f(u) dv du
fa1 a 2  1a 2

Finally, the generalization to n sensors in series is straightforward. If Yi represents the ith mea-

surement variable with density and distribution functions fi(yi) and Fi(yi) and the decision variables Zi are

defined by

z! =yI
Z I,

Z2=Y1 + Y2

z =yi+y2+'"+Yj

then the joint density function for all n decision variables is given by

,(=,. =•....9 =) =f(Zn-z-_)fo_,(=_,- 2 •)..... f4(z2- =)f,(z,)
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APPENDIX C

LOG-LIKELIHOOD RATIO AS A DECISION FUNCTION

Let pR(x) and PD(x) be the RV and DY dencity functions defined on the Euclidean space RN. They

may be discontinuous. Let OR and Qo = RN _Q be subsets of RN such that xdlR means classify an

object as an RV, and xEDo means classify an object as a decoy. Consider the following leakage/inven-

tory cost function:

J=PL +IJI

1% dx+i.L[RVf LpR(x)tlr+DY~flP(d]

= PL +guRV(l- PL) +pDY P,

= ApRV + PL(I -.pRV) + ADY PF

The cost is now in the form of a constant pRV and the two error ii.,tegrals

L=f PR(x)dx ,and

PF = f,1 PD (X) dx

We will now show that the boundary of the decision region KR, clfR is such that the likelihood ratio

A(x) is a constant on ih2R. Thus, a constant A. exists such that

Q R =[x:^ (x)->A .]

This relation will be shown to be true regardless of the location and nature of the discontinuity of the

surfaces of the two densities (as long as there are no 8-functions, i.e., no probability masses). The argu-

ment below is independent of any discontinuity surfaces because they form a set of measure zero with

respect to the various integrals.

The proof is straightforward. Let J* be the cost using the decision region Q*R defined above
(1*R = Ix: A(x) Ž- )t*}) for some appropriate A,*. Let J be cost associated with any other decision region

1R defined by some other decision rule. Figure C-I shows a schematic representation of these regions
and their complements. The difference in cost using these two sets of decision rules is given by
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Figure C-1. Optimal and nonoptimal decision regions.

J-J*=PRV +(1-/ARV)f D PR(X)dx + AlDY fl RPD(X)dx

- PRV + (I,- ,•RV) ji..D pR(x) + ,DY J.. PD (x) dx]

=(I - LRV)[fQDP x dx - fa pR,(x) dr] + 1Y[JLI PD(X d - fa. PD X) dx]

= (I- RV)[Jfo Q. pR(x)d -dx (.DMR p,(x) dx]

+ DY[t R nII' PD(x) dx -f,,Rr D PD(X) dx]

where in the first bracket

LID " D r -O Q',• R +- C"AD r') Q*D

G*D = .D n QR + D'D n 1D 'and

the latter two regions cancel each other out. A similar argument applies to the second bracket. Collect-
ing integrals over the same region yields
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+ (I- yRV) fJ ODP [* PD(X).PR(x)] dx

where = DY OrI- AV

But in the first integral

1*R QD Q *R

AW)= pR) >A* or
PD(x)

PR (x)-;* PD(X)>-O

by definition of region IIR. And in the second integral

Q"*D r'I" R Q D *D '
PR(X) 4

A(x) = ,R < or
PD(x)

" PD (X)- PR(X)O0

by definition of Q*D"

Thus, J - P > 0, or equivalently, J* is a minimum provided I - pRV > 0. The Lagrange multiplier
must be sufficiently small so that the interceptor cost does not outweigh the leakage cost in our aug-
mented cost function.

Finally, note that the optimal Q*R is chosen so that Q*R = {x: A(x) Z! A* 1, which then is equivalent
to Q*g = Ix: L(x) 2 log A* }, where L(x) is the LLR function.

Notice that fl*R may consist of many disjoint regions and may also cross discontinuities of PR(x)

and pD(x). The decision threshold a "*R consists of all those points x that have the same value of A(x),
namely, ;1*. This is true regardless of which component region of the domain of PR(X) or PD(x) that the

observation falls into. This result gives the theoretical basis for the so-called synchronized thresholds for
sensors in series.
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APPENDIX D

THE SYNCHRONIZED FIRING THRESHOLD

In this appendix the method used to obtain the leakage/interceptor (PL vs I) performance curves of
Section 4.1 for two sensors in series is outlined. The method detailed here can be readily extended, in
principle, to a series chain of three or more sensors using the density function derived in Appendix B.
We add the qualifier "in principle" because although the technique is straightforward, the numerical
integrations taking place over regions of higher and higher dimensionality become prohibitive. However,
a dimension reduction technique is under investigation that will reduce analyses of sensor chains to
vector spaces of one or two dimensions.

The PL vs I performance curves are obtained by employing a single moving firing threshold or a

pair of synchronized thresholds based on the value of the log-likelihood ratio (LLR), as derived in
Appendix C. In Appendix C it was shown that, regardless of the form of the RV and decoy density
functions (provided that they indeed are density functions), the boundary AIR of the decision region of
whether to call an object an RV or a decoy is given by L(x) = constant, where the constant depends on

the inventory level. L(x) is the LLR function defined by

L(x) = log [PR (x)PD (X)I (D. l)

where x is the discriminant vector in the joint feature space. The boundary ailR is precisely the firing
threshold.

This firing rule is true independently of whatever rule is used to determine the traffic threshold of
sensor S,. In other words, given any particular traffic rule, Equation (D.i) yields the optimal firing
thresholds. This condition is so because we allowed the RV and decoy densities to be arbitrary, possibly
discontinuous, probability density functions in the derivation of the optimal allR. A traffic threshold will
induce discontinuities in pR(x) and PD(X) in the joint feature space, as is shown below.

The optimal firing rule is now applied to the single threshold traffic model discussed in Section 3.
The figures and discussion here are tailored to classical Gaussian sensors. In joint feature space (xV, x2),
equiprobable contours for the RV and decoy densities are shown in Figure D-I. Given some traffic
capacity for sensor S2, we assume the appropriate threshold "r is chosen. The threshold corresponds to
some LLR value L(x,) defined on the x, axis; call it L(x,) = a. Because objects whose x, discriminant lies
to the left of r are not measured by sensor S2, they have no x2 measurement associated with them. Thus,
the RV and decoy probability density functions in the (x1, x2) plane are Gaussian functions of x, only if
x, :r. Accordingly, their equiprobable contour lines must be straight lines parallel to the x2 axis. To the
right of the threshold they are joint Gaussian densities of both x, and x2. (To the left of the threshold, the
circular contours have been retained as dashed curves to give a sense of scale to the spacing of the
vertical equiprobable lines.)

The RV and decoy densities in the joint feature space are discontinuous along the line x, = r. The
LLR value for any measured object can be based on only the available information; therefore, for any
feature vector x = (x,, x2)
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Figure D-1. Discontinuous density functions induced by a traffic threshold.
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L(x)=L (XI)= log[pR (x,)/pD(xI)]x15~r ,and

L(x)=L(x1 'x 2 )= log [PR(xPx 2)/pD (xjx 2)J xi> (D.2)

Thus, L(x) is used in the dual context of Equation (D.2) and will always be based on the maximum

available feature information.

The sequence of firing thresholds shown in Figure D-2 illustrates how thresholds move across the

feature space as the inventory is increased on the P. vs I curve. The curve from Figure I I that represents

the bulk filter and precision sensor in series has been reproduced. In the sequence of diagrams, the two-

dimensional contours are drawn for visual purposes only; too many vertical lines would tend to clutter
the figures.

Figure D-2(a) shows the location of the firing threshold 17 for a very low inventory. Threshold 17 is
the locus of points satisfying L(x,, x2 ) = a, for some constant a- The constant a, is chosen so that the

total number of objects, RVs and decoys, whose discriminant vectors lie in the infinite wedge bounded

by T [L(xn) = a] and q7, will be equal to the inventory 1n. Once a, is determined, if the RV density is

integrated over th~s same region, the corresponding leakage is obtained; actually, I -PL is obtained.

As the inventory is increased to !2, the firing threshold 17 moves down to L(x,, x2) = %2, as shown in Figure

D-2(b). By continuing to increase 1, 13 is finally reached, as shown in Figure D-2(c), where L(x,, x2) = %3 = a

(a is the value of the traffic threshold). This is a critical value for the firing threshold. From this point on, as

a is decreased (by increasing 1), a second firing threshold i' will begin to move across the left half of the

feature space starting at the traffic threshold [see Figure D-2(d)]. Notice that the value of L(x,) = a 4 on 77' is

the same as L(x1,x 2) = a 4 on 17. All of the points lying in the infinite strip bounded by i?' and Tand in the infinite

wedge bounded by 17 and T have an LLR value greater than a4, where the LLR value depends upon all the

known information: xn only in the strip and (x,, x2) in the wedge. This collection of points forms the region

I2R for the inventory 14. Finally, as the inventory is increased, the two thresholds i7' and r; move in a syn-

chronized manner to the left/downward, satisfying L(x,) = ai =L(x,,x2), as indicated in Figure D-2(e). By

the time the inventory reaches the size of the threat, the synchronized thresholds have moved across the entire

feature space.

As an example, to obtain the leakage for Figure D-2(d) we let

f(XI)= PR (xI) and g (x2 ) =pR (x2 )

be the RV density functions for sensors S, and S2, respectively. We want to compute the following
probabilities:

Pr(a 4 <x, <a)and Pr(x, +x 2 >a 4 ,x 1 >a)

The sum of these two probabilities is I - PL. The first is the fraction of RVs whose discriminant lies in

the infinite strip; the second is the fraction of RVs whose discriminant lies in the infinite wedge. Using
the notation of Appendix B, they are given by

J f(x,)dx. and f[f g(x2-x )f(Xi)d 2 ]dxi
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Figure D-2. Synchronized firing thresholds.
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