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Abstract

Many texture-segmentation schemes use an elaborate bank of filters to decom-
pose a textured image into a joint space/spatial-frequency representation. While these
schemes show promise and some analytical work has been done, the relationship between
texture differences and the filter configurations required to discriminate them remains
largely unknown. This thesis examines the issue of designing individual filters. Analysis
based on mathematically defined texture models shows that applying a properly con-
figured bandpass filter to a textured image produces distinct output discontinuities at
texture boundaries. Depending on the type of texture difference and the filter parame-
ters, these discontinuities form one of four characteristic signatures: a step, valley, ridge,
or a step change in average local output variation. Accompanying experimental evidence
indicates that these signatures are useful for segmenting an image. Initially, a simple
1-D texture model is used to derive the step and valley signatures. This model leads to
a simple analytical development providing helpful insight. The 1-D model, however, has
certain limitations. For example, the existence of the ridge signature cannot be shown
using this model. Consequently, a more general 2-D model is also presented, leading
to a more complex but informative analysis. In particular, the 2-D analysis indicates
those texture characteristics that are responsible for each signature type and leads to
detailed filter design criteria. Even the 2-D analysis, though, makes certain simplifying
assumptions that lead to inaccuracies in designing filters for nonhomogeneous textures.

To overcome this difficulty, an algorithm was developed that determines the “best” filter




iv
parameters for an arbitrary texture pair. The algorithm effectively performs an exhaus-
tive (but efficient) search of the filter parameter space to determine the filter producing
the highest quality signature. Signal detection theory is used to provide a measure of
signature quality. Although the analyses presented in this study are based on filters
derived from Gabor elementary functions, it is the bandpass nature of the filter that is

essential; thus, the results apply to bandpass filters in general.
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Chapter 1

Thesis Overview

Texture segmentation, which is the partitioning of an image into homogeneous
textured regions, continues to be a challenging problem in computer vision. Classic sta-
tistical and structural approachs, while applicable to many computer vision problems,
typically focus on particular image attributes that characterize the textures of interest.
Hence, the variety of textures that can be successfully segmented is limited. The hu-
man visual system, on the other hand, can segment textures robustly. This realization
has motivated researchers in the fields of computer vision, psychophysics, and neuro-
physiology to study how humans perceive textures and has resulted in a promising new
approach to texture analysis.

This new approach is based on the concept of local spatial frequency. Unlike
classical Fourier analysis, where frequency refers to sinusoids of infinite extent, the new
approach views frequency as a local phenomena (a local frequency) that can vary with
position throughout an image. Textures are characterized by their local spatial frequency
content. Two *>xtures, then, can be segmented based on local-frequency differences.

One popular method for extracting these local frequencies is to apply a bank of
bandpass filters to an image. This results in a collection of subimages, where each subim-
age contains a limited range of local spatial frequencies. Motivation for this approach
comes partly from psychophysical and neurophysiological evidence suggesting that the

human visual system might be performing this function. Although several filter-bank
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algorithms have shown promising results and some analysis has been done previously, the
relationship between texture differences and the filter configurations required to discrim-
inate those differences remains unknown. Specifying an appropriate filter configuration
involves two parts: (1) designing individual filters and (2) specifying filter interactions.
This thesis addresses the design of individual filters {portions of this work also appear
in [1, 2, 3, 4, 5}).

The goal is to design filters that map textural differences to a difference in average
filter output so that simple discontinuity detectors (e.g., an edge detector) can be used
to segment a textured image. By analyzing filter output characteristics as a function of
filter parameters and textural differences, suitable mappings have been found for a wide
range of textures. Details of the filter used in this study can be found in Chapter 3.

Analysis based on a 1-D texture model shows that applying properly configured
bandpass filters to textured images produces distinct discontinuities at texture bound-
aries (Chapter 4). Depending on the nature of the texture difference, these discontinuities
exhibit one of two characteristic signatures: a step (Fig. 1.1a) or a valley (Fig. 1.1b).
Experimental evidence indicates that these signatures are useful for texture segmenta-
tion.

Additional insight is provided in Chapter 5 by extending the analysis to 2-D. In
2-D, texture is modeled as collection of primitive geometric objects called tezels. A homo-
geneous textured region consists of similar texels, and texture differences are induced by
varying the type and/or organization of the texels. For convenience two levels of textural
complexity are recognized: uniform and nonuniform. Uniformly textured regions consist

of identical texels arranged in a regular lattice. For nonuniformly textured regions, the




Ka[[ea
(q) pue dajs (e) :sadAy aanjeudis d1ISIIdDBIRYD OM} JO sajdwrexy "1°1 ‘g

(q) (e)




Fig. 1.2. Example of the ridge signature.

texels may vary in orientation and their shape and positions may be perturbed.

In addition to the step and vallev signatures predicted by the 1-D model, the
2-D model shows that a ridge signature can also occur (Fig. 1.2). Analysis based on
uniform textures shows that the step signature occurs when two textured regions differ
in constituent texels (Fig. 1.3a). On the other hand. the valley and ridge signatures
occur when two regions exhibit a texture-phase difference (Fig. 1.3b), resulting from
spatial shifts between regions. The analysis also provides specific guidelines for selecting
filter parameters to produce quality signatures ( Chapter 6). In particular, the conditions
favoring asymmetric filters are revealed-an issue not previously addressed.

For nonuniform textures, a detailed analysis is impractical due to their complexity.

Experimental results suggest, however. that the signatures found for uniform textures
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occur for textures in general. Due to the texel variation in nonuniform textures, though,
these signatures can exhibit local output variations, which can hinder segmentation. By
judicious selection of filter parameters coupled with post-filter smoothing, distinct sig-
natures can often be achieved, and the image can be easily segmented. Unfortunately,
the guidelines for selecting filter parameters, which were developed analytically ior uni-
form textures, are only approximately correct for nonuniform textures. To overcome
this problem, an algorithm is developed in Chapter 7 to find the “best” filter parameters
for any given texture pair. The algorithm has been applied successfully to a variety of
textures including synthetic, natural, uniform, and nonuniform.

In addition to the three signature types mentioned earlier, texel variation in
nonuniform textures can produce a fourth signature type, which is a step change in
average local output variation (Fig. 1.4). Although this signature does not conform to
the design goal mentioned previously, simple post-filtering operations can transform this
signature into a step signature.

Chapter 8 presents experimental evidence supporting the analyses. Examples are
provided demonstrating the signatures mentioned above and the texture/filter combina-

tions that produced them. Chapter 9 provides concluding remarks.
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Chapter 2

Introduction

This thesis concerns computational methods for analyzing texture. But, what
exactly is texture? The dictionary describes texture as “the visual and especially tac-
tile quality of a surface” [6]. Some examples that come to mind are a grass lawn, a
sandy beach, and a woven fabric. The dictionary goes on to characterize texture as the
“...physical structure given to an object by the size, shape, arrangement, and propor-
tions of its parts” [6]. Referring to the previous examples, this structure is formed by
the blades of grass, the particles of sand, and the weave in the fabric. Although textured
surfaces are inherently three dimensional, the emphasis of my research is on monocular
vision. Thus, subsequent discussion and analyses are limited to the planar projections of
textures called textural images. Also, the structural properties of texture are of primary
interest; so, color and average intensity differences between textures are ignored.

The analysis of textured images can be divided into four categories: discrimina-
tion, segmentation, classification, and shape from texture. In texture discrimination, the
goal is to determine whether or not a texture difference exists between two regions of
an image. Referring to Fig. 2.1, for example, the task might be to determine if region I
differs from region II. Texture segmentation involves partitioning an image into regions
of homogeneous texture. Three such partitions are shown in Fig. 2.1. The difference be-
tween segmentation and discrimination is that segmentation determines the boundaries

between textured regions, whereas in discrimination, the regions are known a priori;




Fig. 2.1. Schematic representation of three differently textured regions.
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thus, segmentation is more difficult. Once an image is properly segmented into regions,
texture classification can be used to identify each region by type; e.g., as grass, sand, or
fabric. Texture analysis can also provide clues to the shape of objects. A simple example
of shape from texture is the use of texture gradients for determining surface orientation
[7]). For example, a surface that is oblique to the viewing plane produces image structure
that changes scale with image coordinates (see Fig. 2.2). Measuring this change in scale
can provide an estimate of surface orientation. As with classification, an image must
first Le segmented before texture gradients can be computed. My research is primarily
concerned with techniques for texture discrimination and segmentation. And, though
the methods developed in this thesis can be extended to solve classification problems,
the study of texture classification and shape from texture is beyond the scope of this
work.

A major problem in developing robust methods for texture analysis is the lack of
a precise definition for texture. Although an intuitive description of texture was given
earlier, it is far from a comprehensive definition. Texture, it seems, is one of those terms
that defies mathematical definition.

To illustrate the difficulty in defining texture, consider how humans segment
the following textures. (These examples, which are commonly referred to as synthetic
textures, typify those developed by researchers to exhibit specific textural properties
(8,9, 10, 11].) Fig. 2.3a consists of a region of Rs and another of mirror-image Rs. Note
that, although it is easy to distinguish between a single R and its mirror image, consid-
erable effort is required to determine the region boundary in this figure. Evidently, the

random orientations mask the differences between texels. This is not always the case, as
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Fig. 2.2. Surface orientation perceived due to a texture gradient (from
Blostein and Ahuja [7]).
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Fig. 2.3. Textures with randomly oriented texels:

(a) Pair of textures consisting of Rs on the left and mirror-image Rs on the
right. Texture pai: not easily distinguishable.

(b) Pair of textures consisting of Rs on the left and Ts on the right. Texture
pair easily distinguishable.
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demonstrated in Fig. 2.3b. Here, the Rs are easily distinguished from the Ts in isolation
or when randomly oriented in a texture. In many cases. differences in orientation can
cause segmentation. For example. the center region in Fig. 2.4 is easily distinguishable
from the background even though the lines in the two regions differ only slightly in aver-
age orientation [8]. Finally, consider Fig. 2.3. The bottom region consists of alternating
columns of Us and inverted Us, whereas the top consists of alternating rows. For most
observers, however, it is the 5 horizontal black bars (so called “emergent™ features) that
seem to attract attention [9]. Note that the actual boundary between regions goes un-
noticed. Thus, in this case, the difference in texture is not even the dominant feature. It
is important to point out that using human performance as an indicator of textural dif-
ferences is not the only alternative. For instance. a particular application might require
distinguishing Rs from mirror-image Rs. Thus. what constitutes a textural difference
can depend on the application. As these examples demonstrate. textural differences can
be difficult to characterize.

In the absence of a precise definition for texture. researchers have resorted to
more qualitative descriptions. Rao has proposed that textures can be grouped into four
classes: strongly ordered, weakly ordered. disordered. and compositional {12]. Fig. 2.6
shows examples of naturally occurring textures (from Brodatz [13]) illustrating Rao’s
taxonomy. Fig. 2.6a is “cotton canvas™-an example of a strongly ordered texture. This
class is characterized by an arrangement of primitive geometric shapes called texels.
Fig. 2.6b is “straw”™. In this example. the characteristic feature is a globally oriented
structure. Textures with this property are called weakly ordered. The third example

(Fig. 2.6¢c) is “grass lawn™-a disordered texture. This class exhibits no obvious pattern
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Segmentation due to a difference in the average orientation of line
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Fig. 2.6. Natural textures demonstrating Rao’s taxonomy (from Brodatz
[13]):

(a) “cotton canvas”~strongly ordered;

(b) “straw”-weakly ordered;

{c) “grass lawn”-disordered;

(d) “lace”-compositional.
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of texels nor a dominant orientation. rather the texture seems to be described best by
the statistical distribution of image pixels. Compositional textures, such as the example
in Fig. 2.6d, are just combinations of the other three classes.

Classic texture-analysis techniques tend to be divided along these class bound-
aries. For example, statistical methods [14. 15. 16, 17], random field models [10, 14,
18, 19, 20|, and fractals [21, 22] have been used to model disordered textures, while
collections of geometric primitives [23. 24. 23] and mosaic models [26] have been used
for strongly-ordered textures. Rao recommends modeling weakly-ordered textures using
orientation fields [12]. Little has been done with compositional textures.

While these methods can be effective for textures within a particular class, perfor-
mance is typically poor outside the class. The human visual system, on the other hand,
can analyze textures robustly. This realization has motivated researchers in the fields
of computer vision, psychophysics. and neurophysiologyv to study how humans perceive
textures in an effort to develop more robust machine-vision texture-analysis schemes.

Early insights into human texture-perception mechanisms were provided by psy-
chophysical experiments [10]. These experiments test human response to carefully con-
trolled stimuli. By controlling stimulus properties. researchers attempt to deprive the
visual system of familiar cues and to force it to rely on primitive mechanisms. Experi-
ments such as these have shown that texture segmentation is a spontaneous process not
involving conscious comparisons, suggesting that texture perception differs from form
perception [27, 28]. To illustrate this point. consider the examples in Figs. 2.7 and 2.8.
In Fig. 2.7, it is easy to recognize the two different regions: however, in Fig. 2.8, consid-

erable effort is required to discover that the three columns on the left are words, and the
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three columns on the right are nonsense words [29]. These dramatic differences in vi-
sual performance prompted Neisser to propose that the human visual system consists of
two operating modes, a preattentive mode and an attentive mode [30]. The preattentive
mode processes a large portion of the visual field quickly (presumably in parallel) but
imprecisely. In contrast, the attentive mode operates within a much smaller aperture
and at a much slower rate but can perform more detailed image analysis. The rapid
discrimination and segmentation of textures is attributed to the preattentive mode and
is often termed preattentive texture discrimination {(or segmentation). The perception of
form, on the other hand, requires scrutiny. suggesting that the attentive mode is needed
for this task.

The notion of a fast, parallel, imprecise system is the foundation of many modern
texture-analysis models. Section 2.1 describes early efforts to model human preattentive
texture discrimination. These methods attempt to characterize texture differences by
the statistical properties of image i)ixels or by differences in geometric features such as
edges, lines, and blobs. Section 2.2 introduces a more recent approach that involves
detecting local spatial-frequency differences between textured regions. It also describes
the application of the local spatial-frequency approach to texture analysis and discusses

open questions leading to this thesis.

2.1 Early Texture Perception Models

The first attempts to model human texture perception were made by Julesz in the
early 1960’s [10]. He set out to determine if texture discrimination could be described

by the statistical properties of textures alone. or whether it was necessary to consider




Fig. 2.7.

(from Julesz et al. [29]).
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nonsense words (from Julesz et al. [29]).

YLKCIUQ DEWCNUP
YFICEPS ESICERP
SDROCER EZIDIXO
HMSILONE NIATREC
DENCNUP SNREVOQ
YLKCIUQ YFICEPS
ESICERP ELPNAXE
YRUCREM DENHCWUP
SKREVOG EZIDIXN
TCETBUS ESICERP
SDROCER ELPPAXT
ESICERF DENCNUP
YLRCTUQ FCWEICS
ELPPAXE HSTLONE
YRICREM SNREVO?D
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A preattentively segmentable image. Regions differ in dot density

An image not preattentively segmentable. Columns of words and
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the internal operation of the visual system. He proceeded to generate binary (black

and white) texture pairs whose pixels had predetermined nth

-order joint probability
distributions.! Each textured region consisted of a collection of micropatterns, called
texture elements (texels), either regularly spaced or thrown at random (Fig. 2.9). Julesz
observed that most textures that have different first or second-order distributions are
easily discriminated, whereas textures that differ only in higher order distributions are
not discriminable. Counterexamples. however. were found [18, 29], which lead Gagalow-
icz to propose an alternative explanation. He observed that due to inhomogeneities in
constructing stochastic textures, local statistics differed greatly from the global statis-
tics [18]. He proposed that humans discriminate textures based on local computations,
and that humans cannot discriminate textures that have the same local second-order
statistics.

At about the same time, Julesz proposed a more localized model with his texton
theory [23, 24]. He found tha! many textures that have different first or second-order
distributions also differ in some iocal features. which Julesz called teztons. He proposed
that preattentive texture discrimination is due either to differences in texton type or
to differences in the number of textons. Features considered to be textons included
color, elongated blobs (with some orientation. width. and length), terminations, and
crossings (i.e., points where lines intersect) [31]. Note that under this theory, the relative

positions of textons is unimportant for texture discrimination - only the number or type

is significant. Therefore, configurational differences are explicitly ignored. Fig. 2.10 is

1A first-order probability distribution refers to a probability distribution with one random variable, a
second-order joint distribution refers to a probability distribution involving two random variables (pairs
of pixels), etc.
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Fig. 2.9. Texture pair consisting of randomly “thrown” micropatterns. Re-
gions preattentively discriminable (from Julesz [24]).
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a texture considered to be discriminable due to a difference in the number of textons
(terminations) [31]. Discrimination fails, though, in Fig. 2.11 due to a lack of any texton
difference [31).

Texton theory, however, has certain limitations. First, textons are defined only
verbally (e.g., elongated blob), and thus their characteristics must be inferred from ex-
amples [11, 32]. Since textons are only vaguely defined, it seems one must solve the
pattern-recognition problem to recognize a texton. Second, there is some doubt that
terminators and crossings are textons [11, 28, 33]. Third, the rejection of possible con-
figurational effects seems inconsistent with the results of others [9, 34].

An alternative to texton theory was proposed by Beck et al. [9]. They observed
that texture discrimination occurs easily when textured regions differ in the slopes, sizes,
colors, and brightness of the texels or their component parts. They also observed that
differences in texel configuration can affect discrimination (Fig. 2.12). Based on these
observations, they proposed (similar to Julesz’s texton theory) that texture discrimina-
tion is based on first-order differences (i.e., differences in distribution) in image features.
However, unlike Julesz, they suggested that these features are not computed directly
from the retinal array. Instead, only a few simple features are detected directly. These
features are then “linked” into higher order texels based on the Gestalt heuristics of
proximity, similarity, and good continuation [35]. Texture discrimination is the result
of feature differences between texels. Beck et al. do not define their primitive features
explicitly. Rather, they describe them as those objects that best stimulate the simple

cells in the visual cortex (e.g., the edges and bars proposed by Hubel and Wiesel [36]).
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Fig. 2.10. Texture pair whose texels differ in the number of textons (termi-

nations). Regions preattentively discriminable (from Julesz [31]).

Fig. 2.11.
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Texture pair whose texels have the same number of textons.
Regions not preattentively discriminable (from Julesz [31]).
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Fig. 2.12. Region discrimination due to conflgurational differences. Center
region consists of colinear line segments (from Beck et al. [9]).
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Similar to t. : linking idea of Beck et al.. Marr and Hildreth suggested that com-
plex objects are formed by hierarchical grouping, starting with primitive features [37].
Marr and Hildreth, however, proposed a different set of primitive features. They sug-
gested that the function of simple cells is to locate intensity gradients rather than edges or
bars. They introduced the Laplacian-of-Gaussian operator (72G), which approximates
the receptive field profiles of simple cells, and when ccavolved with an image, indicates
the location of intensity gradients over a selected range of scales [25, 37]. The effect of the
Gaussian is to lowpass filter the image. thus. eliminating fine-grain intensity changes.
Applying the Laplacian to this filtered image results in zero values at the location of
maximum intensity gradients. The positions where these zero values occur (called zero
crossings) are used to form the primitive features in the Marr-Hildreth model. These
zero crossings are then grouped into abstract objects called place tokens. Place tokens
represent edges, bars, blobs, and terminators with properties such as orientation, con-
trast, length, width, and position. These tokens are computed over a range of scales and
can themselves be grouped to form larger and larger tokens. Differences in the properties
or configurations of tokens becomes the basis for texture discrimination.

Both Beck et al. and Marr and Hildreth attribute texture discrimination to dif-
ferences in the collective properties of higher order objects (texels or place tokens). The
idea of comparing collections of properties (a kind of feature vector correlation), how-
ever, is inconsistent with certain psychophysical findings. For example, Treisman found
that certain combinations of otherwise discriminable features do not produce texture
discrimination [28]. By way of illustration. consider the images in Fig. 2.13. The the-

ories of Beck et al. or Marr and Hildreth would form three regions in each frame. In
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Fig. 2.13. Images consisting of three regions (from Treisman [28]). Region

differences:

(c) Conjunction of features.

(a) Texel shape.
(b) Shading.
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Fig. 2.13a discrimination would be based on differences in texel shape. In Fig. 2.13b,
the difference is due to shading, and in Fig. 2.13c. the dark circles would form one
region, the open circles another, and the open triangles a third; however, if Fig. 2.13c
is viewed quickly, only two regions are perceived. From this and other psychophysical
experiments, Treisman concluded that the conjunction of features (e.g., a red, vertical,
blob at position {(z,y)) is not available to the preattentive system. Rather each feature
has its own separate representation in space (a feature map). In this way, the position of
something red can be detected. and the position of a blob can be detected, but the cor-
respondence between red and blob is not represented directly. Only by attentive search
can this correspondence be resolved. See Fig. 2.14 for a diagram of this model.

Iwama and Maida, using edge segments and terminations as primitive features,
have developed a texture-segmentation architec-ure that combines the token idea of Marr
and the concept of feature integration [38]. Their niodel peifcrius well over a range of
textures, and in particular, has the unusual property of being able to represent overlap-
ping textures (Fig. 2.15). A careful examination of the implementation details, however,
reveals the following limitations. First, selecting geometric objects as the primitive fea-
ture set makes it difficult to develop robust feature detectors (primarily because the
features are not defined mathematically). Second. the criteria for grouping is largely
unspecified. This requires the specification of many empirical parameters, making it
difficult to predict performance on untested images. These problems are not unique to

Iwama and Maida, but are inherent to models based on semantic descriptions.
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Fig. 2.14. Treisman’s feature integration model (from Treisman [28]).
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2.2 The Local Spatial-Frequency Approach

With the exception of Marr, the texture-perception theories mentioned thus far
consider the primitive features to be geometric objects such as edges and bars. This idea
was motivated largely by the findings of Hubel and Wiesel, who found that simple cells
in the visual cortex responded better to these objects than to diffuse light [36]. More
recently, however, an alternate interpretation of cortical cell function was proposed - that
of a spatial-frequency analyzer [39, 40, 41, 42, 43, 44, 45, 46].

While measuring human contrast sensitivity to simple functions (sine waves,
square waves, etc.), Campbell and Robson discovered that the response to these func-
tions could be predicted from the frequency components of the waveform under test
(39]. They proposed that the visual systern behaves as a number of independent detec-
tor mechanisms each preceded by a narrow-band filter tuned to a different frequency.
They suggested that each filter/detector pair constituted a separate channel, and each
channel would have its own contrast sensitivity function (i.e., bandpass characteristics).
Subsequently, neurophysiological evidence appeared suggesting that simple cells respond
better to the frequency components of a stimulus than to its geometric features [40, 41).
The initial tendency was to propose that the visual system was computing the Fourier
transform of the image. This idea was dispelled by Julesz and Caelli who pointed out
that the Fourier transform is a global operation, and thus is not capable of representing
local intensity variations explicitly [47].

The abundance of apparently conflicting evidence prompted a debate as to the

functionality of simple cells: Are they feature detectors or spatial-f~equency analyzers
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[48)? Viewing simple cells as feature detectors implies that the representation of an
image in the visual cortex is in the spatial domain, whereas viewing them as frequency
analyzers suggests a spatial-frequency domain representation. Experimental work by
Maffei et al., however, suggests that the two views are not necessarily contradictory
[45). Their results indicate that both interpretations of simple cell function can be
phenomenologically correct. This apparent paradox can be explained using the concept
of local frequency.

The concept of local frequency was developed by Gabor [49] for 1-D signals and
extended to images by Daugman [50]. Their work shows that the spatial representation
and the spatial-frequency representation are just opposite extremes of a continuum of
possible joint space/spatial-frequency representations. In a joint space/spatial-frequency
representation, frequency can be viewed as a local phenomena (i.e., a local frequency)
that can vary with position throughout the image. These local frequencies arise due to
local interactions among groups of sinusoids. These sinusoids, which differ in frequency
and phase, constructively interfere with each other to produce spatially localized con-
centrations of signal energy. It is this localized sigral energy that forms the intensity
patterns in an image.

Marcelja demonstrated the plausibility of a joint space/spatial-frequency repre-
sentation in the human visual system by showing that the functions described by Gabor
closely approximate the receptive field profiles of simple cells. Subsequently, additional

neurophysiological support appeared [42, 44, 51, 52].
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The evidence suggesting that early visual mechanisms are performing local spatial-
frequency analysis spawned a number of texture-discrimination (and segmentation) mod-
els [53, 54, 55, 56, 57, 58, 59, 60]. One characteristic that distinguishes these models from
feature-based models is that textural differences are not viewed as resulting from geomet-
ric feature differences. Rather, local spatial-frequency models assume that perceptually
significant textural differences correspond to differences in local spatial-frequency con-
tent. By decomposing an image into a joint space/spatial-frequency representation, the
distribution of local spatial frequencies within the image can be determined. This dis-
tribution of frequencies, then, becomes the basis for texture analysis.

The representation of an image in either the spatial domain or the spatial-frequency
domain is unique. For any image there is only one pixel array or one Fourier transform.
In the joint space/spatial-frequency domain. however, an infinite number of representa-
tions are pcssible, and several techniques are available for performing the decompaosition.
One method for decomposing an image into a joint space/spatial-frequency representa-
tion is the windowed Fourier transform. To compute the continuous windowed Fourier

transform, the following equation is evaluated (shown in 1-D for simplicity).
=9 . .
Ma )= [ glam(c - o)t oo (2.1)
-

Here w* is the complex conjugate of the window function w. g is the function to be
transformed, and h(z, f) is the joint-domain representation of the (1-D) “image.” The
special case when the window function is a Gaussian is called the Gabor transform

(49, 61}. Note that the windowed Fourier transform is similar to the classic Fourier
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transform except that the input is multiplied by a window function, whose position is
parameterized. In effect, (2.1) computes the Fourier transform of a subset of the original
image - hence the term local frequency.

Although (2.1) can be viewed as computing a local Fourier transform, there is

another useful interpretation. Note that

w*(z - z)e"z”f’

in (2.1) is a modulated window function and therefore has bandpass characteristics.
Thus, (2.1) can be interpreted as filtering the image ¢ with a bandpass filter, where
the center frequency of the filter is f and its bandwidth is determined by the window
function.

The application of bandpass filters to images is an integral part of many texture-
analysis schemes, including those based on Gabor elementary functions {53, 55], wavelet
transforms (62, 63], derivatives of Gaussians (Hermite polynomials) [64], and differences
of offset Gaussians [56, 64]. Although methods differ in the bandpass characteristics of
the individual filters and how the filters are distributed over the frequency domain, they
can be collectively referred to as filter-bank models. A schematic of a typical filter-bank
architecture is shown in Fig. 2.16. While the filter-bank paradigm has shown potential
and some analytical work has been done to demonstrate the efficacy of certain types of
filters, the relationship between tezture differences and the filter configurations required
to discriminate them remains largely unknown. Two major issues arise: (1) the design of

individual filters, and (2) the configuration of the filter bank. An adequate understanding
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of how to design an individual filter seems essential for understanding how to build a
suitable filter bank. Therefore my thesis addresses the issue of filter design.

The following chapters provide a detailed analysis of filter design. The analysis
assumes that the filter is based on a Gabor elementary function, which is a Gaussian
modulated by a complex sinusoid (i.e., it assumes a Gaussian window function in (2.1)).
The analysis shows, however, that it is the bandpass characteristic of a filter function

that is essential. Thus, other filter functions could conceivably be used.




Chapter 3

Defining the Filter

Subsequent analyses of textured images assumes the following filter structure:

m(z,y) = G4(i(z,¥)) 2 li(z,y) * h(z, )| (3.1)

where * denotes convolution, ¢ is an image, h is a Gabor elementary function (GEF),
and m is the filter output. The filtering operator G in (3.1) will be called a Gabor filter.

The form of the Gabor filter is justified below.

GEF's possess three desirable properties for texture analysis:

e The GEFs are the only functions that achieve the lower bound of the space-
bandwidth product as specified by the uncertaiity principle [65]. This means
that they can simultaneously be optimally localized in both the spatial and spatial-
frequency domains. Thus, GEFs can be designed to be highly selective in frequency,

while displaying good spatial localization.

e The shapes of GEF's resemble the receptive field profiles of the simple cells in the

visual pathway [44, 46).

o They are bandpass filters. Thus, GEFs can be configured to extract a specific band

of frequency components from an image.
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CEFs were first defined by Gabor [49] and later extended to 2-D by Daugman
[50]. (A few researchers have referred to GEFs as Gabor wavelets 62, 63).) A GEF is a

Gaussian modulated by a complex sinusoid [49, 50, 53]
h(z,y) = g(z'y') exp[j(Uz + Vy)] (3.2)

where (z/,y') = (z cos @+ ysin, —z sin @ + y cos 8) are rotated spatial-domain rectilinear
coordinates, (u, v) are frequency-domain rectilinear coordinates, and (U, V') give the par-
ticular 2-D frequency of the complex sinusoid. ¢ S tan—}(V/U) specifies the orientation

of the sinusoid, g(z,y) is the 2-D Gaussian

_ 1 1 z\? y 2
g(z,y) = Iroro, exp {—§ [(;:) + (U_y) }} (3.3)

and (o0;,0,) characterize the spatial extent and bandwidth of h. The aspect ratio of

g(z,y) is given by A & oy /0: and gives a measure of the filter’s asymmetry. An example

of the real part of a GEF is shown in Fig. 3.1. The Fourier transform of A is

H(u,0) = exp { -3[(0zlu = UN? + (oyfo - V11 (3.4)

where [(u=U),(v=-V)] =[(u-U)cos8+(v—V)sind, —(u—U)sind+(v—V)cosf] are
shifted and rotated frequency coordinates. H(u,v) is a Gaussian that is shifted (U, V)
frequency units along the frequency axes (u,v) and rotated by an angle 8 relative to the
positive u axis. Thus, H acts as a bandpass filter with center frequency (U, V) [relative

to (u,v)] and a bandwidth controlled by o, and o,. Note that when the aspect ratio




Fig. 3.1.

Example of the real part of a GEF.
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H(u.v)

Fig. 3.2. Schematic of the frequency domain representation of a GEF.

A of g(z,y) differs from unity, the Gaussian is asymmetric with an orientation 8 that
generally differs from the orientation ¢ of the complex sinusoid. A schematic of the
frequency domain representation of a GEF is shown in Fig. 3.2. When the Gaussian
is circularly symmetric (i.e., 0; = o, = 0), (U,V) in (3.2) can be expressed in polar
coordinates. Then,

h(z,y) = g9(z,y)e’ (3.5)

where

Q=\VUI+ V2 (3.6)
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and z’ = z cos ¢ + ysin¢. The corresponding Fourier transform of h(z, y) is

H(u,v) = exp{-0?/2((v' - 2)* + (v')’]}

where (u/,v') = (ucos¢ + vsin @, —usin + vcos @) are rotated frequency coordinates.
H(u,v) is a Gaussian that is shifted radially © frequency units at an angle ¢ relative
to the positive u axis. Thus, H acts as a bandpass filter with center frequency (Q,0)
[relative to (¢, v’)] and a bandwidth controlled by o.

The analysis in Chapter 5 will show that it is the bandpass nature of the GEF that
is most essential for discriminating textural differences. Hence, since the aforementioned
possibilities for filter functions - wavelet bases [62, 63], the difference of offset Gaussians
[56, 64], and Gaussian derivatives [64] - also share this property, the choice of the GEF
is not restrictive. Within the context of modeling human texture perception, Malik and
Perona mentioned that the exact choice of a filter function was unimportant, and they
chose the difference of offset Gaussians for computational simplicity and physiological
plausibility [56]. Also, Bovik et al. have discussed the efficacy of bandpass filters for
texture segmentation [53, 66).

The magnitude operation used in the Gabor filter (3.1) will now be discussed.
Julesz has shown that purely linear mechanisms are inadequate to explain how humans
perceive texture [67]. This point was further asserted by Malik and Perona [56] and can
be illustrated with Fig. 3.3. Fig. 3.3a shows a uniformly textured image that is easily

segmented by humans. If the homogeneous texture in Fig. 3.3b is added to Fig. 3.3a,
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()

Fig. 3.3. Texture sequence demonstrating the need for a nonlinearity (from
Malik and Perona [56]):

(a) Uniform texture pair-easily segmented.

(b) Homogeneous texture.

(¢) Adding (a) to (b) produces a uniform texture pair that is difficult for a
human to preattentively segment.




42
however, the resulting image (Fig. 3.3c) is difficult to segment. If purely linear mecha-
nisms were involved in texture segmentation. one would expect Figs. 3.3a and 3.3c to be
equally discriminable. Since they are obviously not. some form of nonlinearity must be
present. Therefore, to simulate human texture perception, a nonlinearity is desirable.
The magnitude operator introduces the desirable nonlinearity into the filter.

The convolution of an image with a GEF results in a complex-valued subimage.
Bovik et al. have shown that the amplitude envelope of this subimage can be recovered
by computing its magnitude and that the resulting amplitude envelope is useful for
texture segmentation [53]. The magnitude operation has been frequently suggested in
the literature [53, 55, 60, 68, 69, 70].

Note that the magnitude operation is not without fiaw. Aside from being implau-
sible neurophysiologically, Malik and Perona have shown that computing the magnitude
makes it impossible to discriminate certain texture pairs [56]. Appendix A analytically
verifies this assertion but then goes on to show that if mimicking human perception is not
essential, then a wide range of textures can be segmented without using a nonlinearity.
In spite of shortcomings, the magnitude computation provides a convenient analysis tool

and serves as a benchmark for comparing alternatives.




Chapter 4

1-D Analysis

Using a mathematically defined 1-D texture model, this chapter analytically shows
that applying properly configured GEF-based filters to textured images produces output
discontinuities in the neighborhood of texture boundaries - this can be used to segment
the image. Depending on the nature of the texture difference, this output discontinuity
exhibits certain characteristic signatures. If two adjacent textures differ in local spatial-
frequency content, this signature exhibits a step change at the location of the texture
boundary. If the two adjacent textures differ only in a phase shift, the signature exhibits
a valley at the location of the texture boundary. The following sections develop this
theory in detail. First, the texture model is defined. Then, analysis shows under what
conditions the various types of signatures occur.

Although the 1-D model has significant limitations, its leads to a simple analyt-
ical development providing useful insight. In Chapter 5, a more realistic 2-D model is

presented, leading to more informative results at the expense of more complex analyses.

4.1 The 1-D Texture Model

Although researchers have not agreed on a precise definition for texture, several
descriptions have been proposed (12, 14, 71, 72]. Many textures can be described as
a collection of similar but not necessarily identical primitive objects arranged in some

repeating pattern. Based on this notion, texture will be modeled as a collectior. of simple
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objects called terels. Groups of similar texels form regions of homogeneous texture.
A textured image consists of two or more reg’ /here texture differences between
regions are induced by varying the type and/or organization of the texels. Using Rao’s
terminology, this approach can represent a variety of texture types, including strongly-
ordered, weakly-ordered, and compositional textures [12]. This analysis does not address
disordered textures, which due to their lack of structure, cannot be accurately modeled
as a collection of texels. Experimental results in Chapter 8 indicate, however, that
even disordered textures can be effectively discriminated /segmented with the filter-based
approach.

For convenience, textured images are divided into two levels of complexity: uni-
form and nonuniform. For uniform textures, all texels within a region are identical in
shape and orientation and are spaced uniformly (e.g., Fig. 4.1a). For nonuniform tex-
tures, the texels within a region may vary randomly in orientation, and the position and
shape of the texels may be perturbed (e.g., Fig. 4.1b).

To develop a simple mathematical model based on this description, an image ¢ is
constructed consisting of two textured regions 1 and 2 with the texels uniformly spaced.
For simplicity, assume that the image is uniform in the y direction (i.e., Vy, i(z,y) =
i(z)). This reduces the analysis to one dimension. In 1-D, a simple texel can be modeled

as

t(:t) = f(z)IIA,(x)
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nonuniform.

Fig. 4.1.
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where II is a gate function with width Az

1, |zl < %
HA,_-(.‘L‘) =
0, |z|>4F

and f is some real-valued function of z. Consider two simple texels represented as

amplitude-modulated gate functions

t1(z) = cos(w1z + ¢1)az(7) (4.1)

t2(z) = cos(waz + ¢2)laz(z) (4.2)

A 1-D textured region ik, k = 1,2, can be formed from a collection of N equally spaced

texels tx as follows:!

N
ik(z) = te(z) + D_ 8(z — 1AR)
I=1

Each texel within i, is a truncated sinusoid with frequency wx and phase angle ¢.
Thus, wi can be viewed as a local spatial frequency (i.e., local to a texel), which occurs
at regular intervals throughout the region. ix can therefore be characterized by this local
frequency, and so wy is referred to as the tezture frequency of textured region ij.

A 1-D “image” i consisting of two nonoverlapping textured regions can be con-

structed as follows:

i(z) = ir(z) + ia2(z — NAR) (4.3)

Assume for simplicity that the texel spacing is the same in both regions, and that each

1To avoid technical difficulties in the analysis, iy is allowed to take on positive or negative values.
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region contains N texels. Note that when w; # wy, ¢ consists of two regions that differ in
local spatial-frequency content. Texels t; and t; also contain phase components ¢; and
¢2. When ¢, # ¢, the texels will differ in phase. When ¢ consists of two regions that have
identical local spatial-frequency content but their texels differ in phase, a discontinuity in
image phase occurs at the region boundary. This condition will be called a tezture-phase
difference. Subsequent analysis will show that a difference in local spatial-frequency
content between textured regions causes a step change in Gabor-filter output, whereas

a texture-phase difference produces a valley in the filter output.

4.2 Step Signature

The step signature is characterized by a step change in the Gabor-filter output m
at the boundary between two textured regions. It occurs whenever there is a difference
in average local spatial-frequency content between two regions. The occurrence of a step
can be demonstrated by analyzing the Gabor filter response to an image consisting of
regions with different texels.

Consider two simple texels with identical phase components (i.e., ¢; = ¢2 =0 in

(4.1) and (4.2)).

t1(z) = cos(wr1z)az(z) (4.4)

ta(z) = cos(wez)laz(z) (4.5)
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The Fourier transforms of t; and ¢, are given by

Ti(w) = —AEI- [sinc ((—‘i%m) + si;lc ((wi;ﬁ)

Ty (w) = %E [sinc (L“"_%m) + sinc (@;:ﬁ_A;E)

where sinc(z) = sin(z)/z. The Fourier transform of the image 7 in (4.3) is
I(w) = h(w) + Ix(w) (4.6)
where

N
Lh(w) = Tiw)) e ivlah
=1
2N _
L(w) = Tyw) )Y eiwish
I=N+1

A Gabor filter (3.1) is now applied to i. Assume that the center frequency of a 1-D GEF
equals wy, the texture frequency for region i;. The Fourier transform for this 1-D GEF
is

le(w) = e.z;'(“"“"l)2 (4-7)

Thus, the GEF is a bandpass filter with center frequency w; and bandwidth controlled

by 0. Assume also that 1/¢ is approximately equal to the main lobe width of T} and T3

1

(i.e., 5

~ 4Z). This ensures that the bandwidth of the filter includes most of the energy
of Ty around w;. Let us also assume that w; 3 0 so that the sinc functions making up

Ty (centered at wy and —w,) do not significantly overlap. Finally, assume that w; and
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wq are sufficiently separated (e.g., assume |wy —wy| > g). Then, applying H,, (w) to the

image (4.6) yields

N
i(w) = H,, (w)I(w) = H,, (u)%sinc ((w—_‘;_l)éf) Z e~ JwlAh
=1

Since H,, is a function of w — w;, we can define

F(w—uwy) & H,, (w)%sinc ((—‘J——;)IE-{) (4.8)

Hence, the spatial-domain form of the filtered image is given by

i(z) = F Y [(w) = F! [F(w —w) f: e-fW'Ah] (4.9)

=1

Now,

F(w —wy)e™ 7% o f(z — zg)el«1(z=%0) (4.10)

is a Fourier transform pair. Therefore,

N
(z) = Y f(z — 1AR)e(==18N) (4.11)
=1

where f(z) = F-[F(w)).

The complex exponential in (4.11) will cause oscillations in i if it is not eliminated.
Now suppose wyAh = n2x for some integer n (the implications of this assumption
will be discussed shortly). Then, VI, the complex exponential reduces to e’“1% and

i(z) = efrr T, f(z - LAR),
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Let us now examine f. The function f is awkward to deal with analytically,
but we can get an intuitive feel for its shape. Referring to (4.8), we see that F is the
product of a Gaussian and a sinc function. Since the inverse Fourier transform of a
Gaussian is a Gaussian and the inverse Fourier transform of a sinc is a gate function,
their multiplication in the frequency domain is equivalent to the convolution of a gate
with a Gaussian in the spatial domain. For o large relative to the texel spacing Ah, f is
a greatly blurred gate function (i.e., a gate function with tapered shoulders). Then the
sum of offset f’s approaches a constant, say C (actually a DC value with some ripple),
over the range 0 < z < NAh. Thus,

Cei'* if0<z< NAh
iz) =

0 otherwise

To complete application of the Gabor filter, we compute the magnitude of i:

. C if0<z< NAh
m(z) = G4(i(z)) = |i(z)] =
0 otherwise

This implies that the output of the Gabor filter is approximately a constant value over
region 1, where the texture frequency matches the filter center frequency, and zero over
region 2. Thus, the Gabor filter output will be in the form of a step, with the transition
occurring in the vicinity of the texture boundary.

We now return to the issue of assuming that wy Ah = n2r for some integer n. If

we substitute 2x f; for wy, this equation reduces to f; = n/Ah. Since Ah is the texel

spacing, this is equivalent to saying that the filter’s center frequency is a multiple of
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the frequency of occurrence of the texels. Thus, for a Gabor filter to produce a step
signature with a small amount of ripple, f; should be a multiple of the reciprocal of the
texel spacing.

The previous analyses show that f; is subject to two constraints: (1) f; should
equal one of the texture frequencies, and (2) f; should be a multiple of the reciprocal of
the texel spacing. For the cosine texture used in this discussion, satisfying both of these
constraints is not always possible, since the texel spacing is not necessarily related to
either texture frequency. For inore complex textures, however, the local spatial-frequency
content of the texels is typically broadband. In that case, the goal is to select a local 2-D
frequency component (both radial frequency and orientation) that differs significantly in
energy between the texels of different regions. This choice of frequencies makes it easier
to satisfy both constraints.

One additional comment should be made regarding 0. We have assumed it to
be large to reduce output ripple. However, it must not be made too large or we will
lose accuracy in locating the region boundary. If ¢ is too large, then the tail of the last
gate function will excessively extend into the adjacent region. This will cause error in
estimating the region boundary. Thus, the choice of ¢ is a tradeoff between the amount

of output ripple and texture-boundary resolution.

4.3 Valley Signature

The magnitude operation in the Gabor filter (3.1) discards the phase of the GEF-
filtered image, resulting in a loss of information. (Appendix A discusses the issue of

phase and alternatives to magnitude computation.) This section shows that certain
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phase differences can be detected without using the phase component. This is in contrast
to the approach of Bovik et al. [53], where phase information is extracted explicitly by
demodulation of the channel phase component (cf. [53, 66, 68]). The approach is to
design a suitable Gabor filter that detects discontinuities in the filter output m caused
by abrupt changes in texture phase.

Consider the textured image of Fig. 1.3b. The two uniform regions are identical
but offset vertically (the offset can also be horizontal). Thus the Fourier-transform
magnitudes of the two regions are identical, but their respective phase characteristics
differ. This type of texture difference will be referred to as a tezture-phase difference.
(This phenomena could equivalently be viewed as a collection of different texels near the
texture boundary, but analysis suggests that a difference-in-phase interpretation is more
appropriate.) Whereas a difference in local spatial-frequency content between textured
regions causes a step change in the filter output, a texture-phase difference produces a
valley in the output m.

To show how the valley signature can arise, again define two simple texels, ¢; and
t; as in (4.1) and (4.2), and let wy = wq, and ¢ = 0. Then, t; and t; are amplitude-

modulated gate functions having the same frequency w; but differing in phase:

ti(z) cos(w1z)az(z) (4.12)

cos(wz + ¢)a(2) (4.13)

t2(z)
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where ¢ = ¢. Thus, the Fourier transforms of ¢, and ¢, are given by

T(w) = % [sinc (___“(w — ;I)A‘t) + sinc ((U +;’1)Az)]
hw) = %— [ (("’ “")A’) e~ 4 sinc ((w+¢2u;)Aa:) ef¢]

Let i again be a 1-D image consisting of two nonoverlapping equally spaced collections
of t; and t2, as in (4.3). The Gabor-filter output for ¢ will be derived next. The Fourier

transform of ¢ is

N 2N
I(w) = T)(w) Z e—iwldh o Tz (w) Z e~ Iwldh
=1 I=N+1

Again assume that the GEF is narrowband, centered at w;, and that w; > 0. Then
applying the filter H,, , as defined in (4.7), to the image approximately retains only

terms containing w — wy. That is, after filtering

N 2N
I(w) = Hy, (w)(w) = F(w —w;) | e7iwldh 4 ¢=i¢ Y~ emiwith (4.14)
=1 I=N+41

where F is given by (4.8). From (4.10),

N 2N
i(z) = Z f(z - lAh)ejul(z—lAh) + e~ Z flz - lAh)ejwl(z-lAh)
=1 I=N+1

Again assume that f; = w;/(27) = n/Ah for some integer n; i.e., the GEF’s center

frequency is a multiple of the reciprocal of the texel spacing. Then, VI the complex
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exponentials within (4.14) reduce to e/“1%. Thus,

N 2N
i(z) = 7Y f(z — 1AR) + 1779 N~ f(z ~1Ah) (4.15)
=1 I=N+1

By the definition of the image i in (4.3), we know that the texture discontinuity occurs
in the vicinity of z = zg = NAh + 95’1. Let us compare the value of i(z4) to values of
i(z) at points far removed from z4. First, recall from before that F(w—w;) is a Gaussian
multiplied by a sinc and resembles a gate function with tapered shoulders. Now, at z4,
the sum of f’s from the left sum becomes

())& e

and the corresponding terms from the right sum are

1(582) 05 (22) o (322) o

Observe that f is symmetric about Ah/2 and that the dominant contribution to the

sums are f(Ah/2) and f(—-Ah/2), which are equal. Thus,

i(td) X (f(Ah,/2) +€) [ejwlzd + ej((lllzd—'¢)]
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where ¢ represents the sum of the less significant terms. Computing the complex mag-

nitude completes the application of the Gabor filter. Dropping terms involving € gives

m(zqa) = Gy(i(zq)) = |i(za)l = | f(AR/2)] - |S]|

where

§ = \/(cos(wrza) + cos(wiza — $))? + (sin(w124) + sin(wizq — $))?
Note that |S| < 2, V¢ such that |¢| > 0. Hence,
m(z4) = Gy(i(z4)) < 2|f(AR/2)]

Consider now a position z € z4. Contributions to i will then be predominantly

from the left sum in (4.15), which is expanded in (4.16). In this case, we have
i(z) = (2f(AR/2) + €)e?1*
After computing the magnitude and dropping € terms
m(z) = G4(i(z)) = |i(z)| = |12f(Ak/2)| (4.17)

Similarly, for z » 24

i(z) = (2f(Ah/2) + €)e!17-9)
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m(z) is the same as in (4.17). Thus, we see that, for a filter tuned to the texture
frequency, the value of the filter output m at the discontinuity is less than it is at other
poir.;s. Changes in texture phase can thus be detected by locating valleys in the filter
output m. In certain cases the discontinuity in filter output is a ridge rather than a
valley. The 1-D texture model, however, is insufficient to derive the ridje signature.
In the next chapter, a 2-D texture model is presented that allows for a more detailed

analysis of the step and valley signatures and explains the origin of the ridge signature.




Chapter 5

2-D Analysis

The previous 1-D analysis showed that the application of a properly tuned Gabor
filter to a textured image produces either a step or valley signature at texture boundaries.
Using a 2-D texture model, similar to one proposed by Clark and Bovik [68], this chapter
provides a more detailed development of the step and valley signatures and explains how
the ridge signature can occur at a texture-phase discontinuity. The analysis also demon-
strates the existence of certain signature anomalies called overshoot and undershcot and
shows how they originate. The more general 2-D model also allows for evaluation of
asymmetric filters (i.e., o; # o, in (3.3)) and provides concrete guidelines for selecting
Gabor-filter parameters. These issues are discussed in detail in Section 6.1. Although
quantitative analysis is still limited to uniform textures. the 2-D model provides for a
qualitative understanding of nonuniform textures. Section 5.2.3 discusses nonuniform
textures and describes a fourth signature tvpe resulting from the texel variation inherent

in these textures.

5.1 2-D Texture Model

Section 4.1 developed a 1-D texture model based on collections of texels. This
section presents a more robust 2-D version of that model. As in Section 4.1, an image
i is formed from two uniform textures i, and /;. For the time being, assume that the
two textures i; and i; consist of texels t; and t; that differ. Later. as necessary, these

conditions will be varied.
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Define a texel t;(z,y) as any real deterministic function that has a Fourier trans-
form T)(u,v) that exists (singularity functions. such as impulses, are allowed to appear
in Ty(u,v)). A uniform texture i; made up of an array of texels ¢; can be represented
by

i1(z,y) = ti(z,y) * )_ 8(z — kAz,y — lAy)
kd

where Az is the texel period in z, Ay is the texel period in y, and the Fourier transform
of iy is

11(11.,1.’) =

(u.v) z (u - EI—I‘- U - 2—ﬂ> (5.1)

I, consists of a collection of weighted impulses whose signal energy are concentrated at
the discrete set of frequencies (27k/Az.27!/Ay). These frequencies will be referred to
as the harmonics of I;. A uniform textured region with limited spatial extent i; can be
formed from 2, by

il(x-y)—_‘ Hr.s(l'~y)il(l"y) (52)

where

1L f2l< 3.0yl < 3
H,-',(I,y)-‘—‘
0. otherwise

is the 2-D gate function. Region i; has support r x s and is centered at (0,0). The

Fourier transform I; of i} is

. 1
Li(u,v) = Fliylz.y)] = _27{5( w.v)* Ii(u,v)] (5.3)
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where

S(u,v) = F[I, ,(z,y)] = srsinc(ur/2)sinc(vs/2) (5.4)

and sinc(z) = sin(z)/z. Consider a second uniform texture ¢; made up of texels ¢, where
t2(z,y) is again any real deterministic function that has a Fourier transform T(u, v) that

exists (singularity functions again will be allowed in T5(u,v)). Then,

iz(2,y) = talz,9) * 3 _ é(z — kAz,y - 1Ay) (5.5)
k!l

A uniform textured region #; of support r X s and centered at (r,0) is given by

i?(za y) = Hr,s(x -7 y)i2(zy y) (56)

Then,

F(u,0) = Fliala, )] = 5-15(u,0)e ] + Io(u,0) (57)

where I, is similar to I in (5.1), except that T} is replaced by T,. The regions #; and i,

can be combined to form a finite-extent textured image

i(z,y) = i1(z,y) + (2, v) (5.8)

Thus, i consists of two adjacent nonoverlapping textured regions #, and i;. See Fig. 5.1.
The image i is spatially limited as a rectangular function to make analysis tractable
(e.g., well-defined sinc functions, such as (5.4), occur frequently during the subsequent

analysis). Also, a spatially limited i conforms to a real-world image setting. Clark and
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32 X

Texture Boundary
(x=1/2)

Fig. 5.1. Bipartite textured image model. Image i(z,y) has support 2r x s and
is centered about (r/2,0). Texture i;(z,y) is made up of texels t;(z,y) and i;(z,y)
is made up of texels ty(z,y).
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Bovik employed a similar model. but their analysis used general indicator functions [68].
The analysis presented here leads to somewhat more tractable results and also more
easily leads to an understanding of specific filter-output behavior.

Now,

Fli(z.y)) = I(u.v) = L{(u.v) + I(u,v) (5.9)

where (evaluating (5.3) and (5.7)),

- 27k 2wl
L(u,v) = Asz Z kT ( _\y) (5.10)
— - —ir(u-3), (27K 2_”_’)
I(u,v) A:::A z Si.1€ T, (AJ: ' Ay (5.11)
Sky = S(u-2rk/Ax.v-27l/Ay) (5.12)
and S(u,v)is given by (5.4). Or
2r 2rk 2wl ; 2zk 2rk 2nl
= —J1(ll——1) e
I(w,v) = 5o ( [A | et ghn [ ) (5.13)

Observe that I; consists of a collection of scaled 2-D sinc functions centered at the har-
monics (2rk/Az,2xl/Ay). The amplitude of the sinc S;; at harmonic (2rk/Az, 271/ Ay)
is proportional to the value of the Fourier transform of the texel T evaluated at that
harmonic. I, also consists of a collection of scaled 2-D sinc functions centered at the
harmonics. The amplitudes of the sincs for /. however. are proportional to T; rather
than T, and their phase components are influenced by a complex phase factor. Thus,

by (5.13), I is a sum of scaled sincs S;;. Each sinc consists of a component from each




62

texture region. Or, more colloquially, each (k,!) component of I consists of a pair of
sincs, one for each texture.

Thus, the tezture segmentation problem is to find the boundary separating regions
#; and i; in image i. Per the model’s construction. the boundary separating these two
textures is the line segment given by z = r/2 and |y| < s/2. The goal is to understand

how the Gabor filter (3.1) will help in locating this boundary.

5.2 Characterizing Gabor-Filter Outputs

This section shows analytically that the application of Gabor filters to textured
images produces outputs that exhibit discontinuities in the neighborhood of texture
boundaries. This is shown within the context of the texture model defined in the Sec-
tion 5.1. The analysis begins with those texture configurations that produce a step
signature and is followed by an analysis of texture types that produce a valley or ridge

signature.

5.2.1 Textures Consisting of Different Texels: Step Signature

This section derives conditions when the application of Gabor filter (3.1) to a
uniformly textured image produces a step signature. The step signature is characterized
by a step change in the Gabor-filter output m at the boundary between two textured
regions. This signature type occurs when a properly tuned Gabor filter is applied to a
uniformly textured image that contains two textures whose constituent texels ¢; and ¢,
differ.

To derive this result. consider the outcome of applving a Gabor filter (3.1) to the
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textured-image model [ in (5.9) (or equivalently i in (5.8)). The goal is to design a filter
that enables “easy” localization of the texture boundary. Analytically, the approach
is to design a Gabor filter that passes the image energy centered about one harmonic
(l;:,i). This is equivalent to passing one and only one scaled sinc Sijin (5.1.3), where
the sinc draws contributions from each texture: i.e.. design a filter that passes one sinc
pair occurring at some harmonic ( k.i). Each sinc in the pair represents a gate function
in the spatial domain. Each gate coincides with one of the two region boundaries, and
the difference in gate amplitude is proportional to the amplitude difference between the
two sincs (i.e., [Ty — T3|). By filtering out a sinc pair whose sincs differ significantly in
amplitude, a filter output is produced that is approximately constant within a region,
but differs between regions, thus forming a step signature.

Designing a Gabor filter involves specifving the five parameters (U,V,0,,0,,0)
of the GEF H in (3.4). To pass the single sinc-pair at harmonic indices (k, i), the
center frequency (U, V) of H is specified as U = 2rk/Az. V = 2ni/Ay. The bandwidth
of H, determined by (o.,0y), is then selected so that H passes most of the image
energy centered about harmonic (k.1), while also largely rejecting the image energy at
adjacent harmonics. Since harmonic spacing is proportional to texel spacing (Az, Ay),
the ratios (o;/Az,0,/Ay) determine this filter characteristic. Clearly, the choice of
(0:/Az,0,/Ay)is a tradeoff between attenuation of the desired harmonic and a rejection
of adjacent harmonics. The consequences of this tradeoff are discussed in Section 6.1.

Applying H to I gives

Ip(uov) = H(w o) (u.v)
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Since H has been designed to pass only those frequency components in the neighborhood

of (U,V), we can write

If(u,v) =~

2r .
—Uv— —jr(u=U)
AszH(u,v)S(u Uv—-V) {T, + The™ } (5.14)

where T, and T are abbreviations for Ty (U, V) and T3(U, V). Observing that H in (3.4)

is a function of u — U and v — V, the function Sy is defined as
Sy(u-U,v-V)E H(u,v)S(u~U,v-V) (5.15)

where

f‘l[Sf(u -U,v=-V)]= s!(z,y)ej(U""V”)

and

sy(z,y) = FSs(u,v)] (5.16)
By substituting S; into (5.14), the inverse Fourier transform of Iy can be expressed as

2r

J(Uz+Vy) - 17
AzAp [T1s4(z,y) + Tass(z — 7, 9)] (5.17)

if(z,y) =
Computing the magnitude of i; completes the application of the Gabor filter and gives

. 27
m(z~y)=|1f(xvy)|=m A+B+C (518)
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where

>
]

‘T1|23?f(z’ y)

t
i

IT2|23§($ -7, y)

C = (I1T:+ ThT3)sp(z,y)ss(z — 7,9)

(It can be seen from (3.4), (5.4), (5.15), and (5.16) that sy is real.)
To understand the behavior of m, we first need to determine s;. Sy equals a
sinc multiplied by a Gaussian. Thus, in the spatial domain, sy can be expressed as the

convolution of a Gaussian with a gate function:

s/2 gpr]2
sy = [ /_ (= @y~ Bdads (5.19)
s/2  r3r/2
sp(z-r,y) = - 9(z — o,y — B)dadf (5.20)

where g is the Gaussian (3.3). The quantity m can now be evaluated by examining
its behavior at the texture boundary and at points far removed from the boundary (or
equivalently points within the interiors of each texture). Assume that the region width
r in the z direction is large relative to 0., and the region height s in the y direction is
large relative to o,. Then, for points away from the textured image’s outer boundary
and left of the texture boundary (i.e., |y| € s/2 and |z| « r/2 for poiuts in region 1),
sf(z,y) =~ 1 and sy(z — r,y) = 0 per (5.19) and (5.20). Then m = A—i’&—leﬂ. Similarly,

for points to the right of the texture boundary in region 2, m =~ -A-—i—’{‘—;ngl.
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Now, at the texture boundary (z = r/2), the filter output m is

2n
m(r/2,y) = AIAy\/lTlIZ/4 +1T212/4 + (T T2 + Th T3 ) /4
T T -
~ Xaap VT + )T+ Ty = 2o T+ Tl (5.21)

since sy(z,y) and sy(z — r,y) both = 1/2 at z = r/2. Now suppose that T and T, are
both real and positive. Then m(r/2,y) becomes the average of values far to the right

and left of the texture boundary, and (5.18) can be rewritten as

27
m(z,y) = m(ﬁs?(z,y) + T2s%(z ~ v, y) + 2ThTasg(z, y)ss(z — r,y))'/?

27
AzAy

(Thsg(z,y) + Tosg(z — 1,9))

Observing that sy(z — r,y) = 1 — s¢(z,y), we see that m is a linear function of s;. Since
sy is the integral of a Gaussian, its shape is similar to a sigmoid function. Thus m is
also shaped like a sigmoid in the neighborhood of the texture boundary. Assuming that
ITy| # |T3|, m is given by a constant value

_ 2r
T AzAy

Ay T3 (5.22)

over region 1 and a constant value

_ 2r
T ArAy

2 T (5.23)
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over region 2 with a sigmoid transition between regions; i.e.,

Ay, T<1/2
sigmoidal transition
m(z,-) ~ ¢
from A, to A, z near r/2 (texture boundary)
Az, z>r/2

Thus m resembles a step function with the transition occurring near the tezture boundary.

Suppose now that T} and T, are negative or complex. Then m can take on
values < min(A;, A2) or > max(A;, A;) near the texture boundary. These possibilities
are referred to as undershoot and overshoot respectively. To see how undershoot can
occur, (5.21) shows that near the texture boundary m is proportional to (T} + T3).
Thus, if Ty and T, are negative or complex, the magnitude of their sum can be less
than the magnitude of either component. Overshoot can occur if the Gabor-filter center
frequency (U, V) is not equal to one of the harmonics of . The phenomena of undershoot
and overshoot need not overly complicate the detection of the texture boundary. They

are illustrated in Chapter 8 and discussed analytically in Appendix B.

5.2.2 Textures Consisting of Identical Texels, but Exhibiting a Texture-

Phase Difference: Valley and Ridge Signatures

This section shows that the application of a Gabor filter to a textured image
exhibiting a texture-phase difference (as defined in Section 4.3) produces a valley in the
Gabor-filter output m when the GEF is properly tuned: if an improperly tuned GEF is

used, a ridge occurs in m at the texture boundary.
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5.2.2.1 Valley Signature

Again, the goal is to design a filter that enables easy localization of the texture
boundary. Analytically, the procedure is to design a Gabor filter that passes the image
energy centered about one harmonic (2rk/Az,2xi/Ay). This is equivalent to passing
one and only one sinc pair centered about some harmonic (2rk/Az,2xi/Ay). In this
case, the amplitudes of the sincs are identical. The offset regions, however, produce a
phase shift ¢ (given in (5.26)) between the sincs, resulting in a drop in filter output given
by (5.29) near the texture boundary.

First, the texture model of Section 5.1 is modified to fit the texture-phase-
difference scenario. Define a texel t;, as before and construct a uniform textured region
i) as in (5.2). Define a second texel t; equal to ¢t; but shifted 6z in the z direction and

6y in the y direction, where 0 < éz < Az and 0 < §y < Ay. Then

ta(z,y) = ti(z - bz,y - éy)

A uniform texture i, whose texels are periodic in z and y can be constructed from this
texel as shown in (5.5), and a uniform textured region i, of support r X s and centered at
(r,0) can be formed from i; as in (5.6). Thus a uniform textured image i that exhibits

a texture-phase difference at z = r/2 can be formed similar to (5.8):

i(z,y) = h(z,y) + ia(z,y)
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Fli(z,y)] is then similar to (5.9):
I(u,v) = Li(u,v) + L(u,v)
I1(u,v) is given by (5.10), but f,(u,v) differs from (5.11), since
Ty(u,v) = Ty(u, v)e 7 (467 +v5)
Thus

2x 2rk 2wl : :
I(u,v) = ST, [ 222 222 1 —jr(u~2rk/Az) —j2n(kéz/Az+16y/Ay
(u, v) —A:cAy%: k,ll(AzyAy){ +e e )}

(5.24)
Let the GEF H have center frequency (U,V), where U = 2rk/Az and V =

2ri/ Ay for some (lE,i), and select (0./Az,0,/Ay) as in Section 5.2.1. Applying H to I

approximately passes only the sinc-pair centered at (U, V):

Is(u,v) = H(u,v)I(u,v)

2

_ -V ~jr(u=U) —jen(kéz/Az+iby/Ay
Koy iU VIH(,0)S(u = Uy {1+e e )}

Defining Sy as in (5.15), the inverse Fourier transform of Iy is

. 2r : —izn(i .
i(z,9) = Foa (U, V)e 0ry [s1(2,9) + s5(z = r, y)ei2mRos/az+lbuiov)|

(5.25)




Let

¥ = 2n(kéz/Az + i6y/Ay) (5.26)

¥ represents the total relative phase shift between regions 1 and 2. Computing the

magnitude of i; completes the application of the Gabor filter and gives

m(z,y) = Clss(z,9)+s5(z - r,y)e™ |

\/ (z.9) +8%(z - r,¥) + 25;(2,y)s4(z — 7,y)cosy  (5.27)

where

(5.28)

L
AzA

Consider the behavior of m. Assume that a phase shift occurs; i.e., ¥(k,[), ¥ #
multiple of 27 or, equivalently, choose some (I::, i) such that cos¥ # 1. (This holds,
because of the restrictions placed earlier on 6z and §y.) The image does not exhibit a
phase discontinuity in the y direction; so in subsequent analyses, it will be assumed that
y is far removed from the image’s outer boundaries (i.e., |y| € $/2). Consider m over
three regions. The first region consists of those values of z such that |z|] € r/2 (i.e.,
points in region 1 far from both the texture boundary and the image’s outer boundary
- see Fig. 5.1). In this case, (5.19) and (5.20) indicate that, for r large relative to o,
sf(z,y)= 1, and sg(z ~r,y) = 0. Thus, from (5.27), m = C. The second region consists
of those values of z for r/2 €« r € 3r/2 (points in region 2). In this case, sy(z—r,y) = 1,

s7(z,y) = 0,and m = C. The last region is in the neighborhood of the texture boundary




(z=r1/2). At z = r/2, for large 7, sy(z,y) = sy(z — r,y) = 1/2, and from (5.27),

m(r/2,y) = Cy/0.5(1 + cos ¥) (5.29)

Summarizing,
C, z<rf2
m(z,) = 4 C+/0.5(1 + cos¥), z near /2 (texture boundary)
C, z>r/2

\

Note that near the t- :ture boundary (z = r/2), m(z,-) < C is required, because of the
weighting factor \/0.5(1 + cos ). Thus, for this situation, a valley signature occurs near
the terture boundary.

When no phase shift exists between the two regions, the transition takes on its
maximum value C, which is the same value as for points far removed from the transition.
This is expected, since without a texture-phase shift, the two regions are indistinguish-
able. If ¥ = v (maximum texture-phase difference between two regions), the value of m
at the texture boundary is 0 and a minimum valley results. Note from (5.26) that the
depth of the valley depends on the ratios §z/Az and éy/Ay. These ratios represent the
amount of texture-phase shift in z and y relative to the texel periods. Thus, the greater

the texture-phase shift, the deeper the valley.
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5.2.2.2 Ridge Signature

With the Gabor filter designed as indicated above, a ridge signature cannot occur
near the texture boundary. It can be shown, however, that if the Gabor filter is tuned to
a frequency other than an harmonic, a ridge is produced.

To see this, consider the frequency domain representation of the GEF-filtered
image

It(u,v) = H(u,v)I(u,v)

In this case, let U = 2nk/Az + 86U, V = 2xl/Ay + §V, where U and éV are chosen so
that 2rk/Az < U + 6U < 2n(k + 1)/Az and 2xi/Ay < V + 6V < 2n(i + 1)/ Ay. Now,
the inverse Fourier transform i; has the same form as in (5.25), but now s; represents
a gate function convolved with a GEF having center frequency (U, 6V') rather than a
gate function convolved with a simple Gaussian. Convolving a gate function with a GEF
produces a complex quantity. So, s; becomes complex. Thus, computing the magnitude

of 15 as in (5.27) produces

m(z,y) = C\/ P, P + PoF§ + P.Pje~iV + PoPreiv (5.30)

where P, = sy(z — t,y). It can be shown that if U # 0 or éV # 0, then the complex
terms P, and P, constructively interfere with each other to produce an increase in filter
output near the texture boundary, thus forming a ridge signature. The height of the
ridge depends on the texture phase shift 1. The details leading to this result follow.

Since s; is now the result of convolving a gate function with a GEF, we have (cf.




(5.19), (5.20))

s/2 rr/2
sj(z,y) = / h(z — o,y — B)dadB (5.31)
-sf2J=r/2
sf2 r3r/2
sf(z—r,y) = nl h(z — a,y — B)dadf (5.32)
-3/2Jr[2

h is the GEF in (3.2) and can be represented by the sum of its real and imaginary parts:

h(z,y) = h(z,y) + hi(z,y) (5.33)

where
he(z,y) = g(2,y')cos[2n(6Uz + 6Vy)] (5.34)
hi(z,y) = -jg(z’,y")sin[2r(8Uz + §V'y)] (5.35)

Again consider m over three image regions. The first region is defined by |z| < r/2

(points well inside region 1). From (5.31) and (5.33),

s/2 rr/2
s;(2,y) = /_’/2 /.r/2 [ho(z - ayy = B) + hi(z — ayy — B)|dadB  (5.36)

For large r, the integral of h, approaches some constant v;, and the integral of A; (since
it is an odd function) approaches zero. Also for large 7, sy(z — r,y) approaches zero.
Thus sy(r,y) = 11, sg(z — r,y) = 0, and by (5.30) m(z,y) = v1C. A similar argument
holds for points in region 2 (r/2 K z).

The third region is the transition near z = r/2. At z = r/2, (5.36) can be




rewritten as

s/ r
sr/29)= [ ,,22 [ e,y = 5) + hifa,y - B)] dads

Again assume r to be large. In this case, the imaginary component does not go to zero.

Since the integral of the real component equals v;, we can write
/2 pr
n= [ [ hlay-Hdads (5.37)
-3/2J0

For the imaginary component, let

s/2

g = / "hi(e,y - B)dadp (5.38)
—~s/2J0

Similarly for s¢(z - r),

s/2 0O

s;(=r/2,y) = / [ theta,y = 8) + hi(ay - )] dads

-3

Therefore, at z = r/2,

se(z,y) =N +im2

sp(z—ry)=71—-J7

and (5.30) reduces to

m(r/2,y) = C\292+ 293+ (v} — 7} + i2nm2)e¥ + (12 — 73 = j2yim2)e ¥
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= C\/2712 + 272 + 2(72 — ¥3)cos Y — 49172 sin Y (5.39)

Note that when ¥ = 0 or a multiple of 2r (i.e., no texture phase shift), m = v;C as it
does at points far removed from the transition. For a ridge to occur, m at the transition

z = r/2 must be greater than v,C:

710 < m(r/2, y)

< C\/2‘yl2 + 2a29? + 2(77 - a?y}) cos ¢ — day?siny

< M1Cz(a,¢) (5.40)

where we let v, be represented as

Y2 = avy (541)

for some constant «, and

2(a, ) = \/2 +2a? +2(1 — a?)cosyp — 4asiny (5.42)

where it can be shown that z > 0. Thus, summarizing:

4

7C, z<rf2

m(z,-) = 4 711Cz2(a,®), z near r/2 (texture boundary)

{ 71C, z>r/2

and a ridge occurs when z > 1. Note that (5.42) is not restricted to determining the

ridge height. For z < 1, a valley occurs, and (5.42) can be used to approximate its depth.




Table 5.1. 2 as a function of a with ¢n., (in degrees) chosen to maximize :z.

o | Ymax z
0.1 -11 1.005
0.2 -23 1.020
0.3 -33 1.044
04 -44 1.077
15| -113 | 1.803
28| -141 | 2.973

Setting 8z/3y = 0 gives the value of 9 that maximizes z:

-2a
=1 -1
Ymax = tan [1 — oﬂ]

Table 5.1 gives z versus a for ¥max (in degrees).

Observe that as a — 0, z — 1 from above, and ¥max — 0. Thus, as long as
72 > 0, a ridge can occur if ¥ is sufficiently close to ¥max. From (5.38), it is clear that
72 > 0 whenever the center frequency (6U, 6V) of h; is nonzero and finite; i.e., when the
Gabor-filter center frequency is not an harmonic of i.

As we have just seen, if an improperly tuned Gabor filter is applied to an image
exhibiting a texture-phase difference, a ridge signature can occur at the texture bound-
ary. While generating a ridge is not the ideal result, it can still be useful for texture
segmentation. To be able to perform texture segmentation, though, the ridge must be
reasonably strong. The ridge’s strength depends upon its height, which depends on ¥,
the texture-phase shift, and on v; in (5.38). Appendix C gives a method for computing

ridge height.
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5.2.3 Nonuniform Textures

Unlike uniform textures, nonuniform textures consist of texels that can undergo
perturbations in position, orientation, and shape. These perturbations make analysis
more difficult. Although Clark and Bovik have investigated the effect of texel-position
variability [68], they did not consider perturbations in texel orientation and shape. An-
alyzing the effects of texel orientation and shape perturbations is much more difficult,
especially in the general case, because the results depend strongly on individual texel
characteristics. Thus, this thesis does not provide a quantitative analysis for nonuniform
textures, but instead presents qualitative arguments and experimental results (Chap-
ter 8). Chapter 7 gives more discussion on nonuniformly textured images.

The experimental results indicate that the signatures obtained for uniformly tex-
tured images also can occur for nonuniformly textured images. In contrast to uniform
textures, though, a nonuniformly textured image cannot be represented in the frequency
domain simply as a 2-D impulse train. The perturbations possible in the texels intro-
duces more frequency components beyond just simple harmonics. The net result is that
the Gabor-filter output signatures obtained for nonuniformly textured images typically
exhibit many local output variations. (See, for example, Fig. 5.2.) In spite of these out-
put variations, the results of Chapter 8 demonstrate that Gabor-filter outputs derived
from nonuniformly textured images can be useful for texture segmentation.

In addition to the three signature types derived for uniform textures, nonuniformly
textured images can exhibit a fourth signature type. Consider, for example, two regions

that have the same average spatial-frequency content, but the spatial-frequency variation




Fig. 5.2.
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Example Gabor-filter output from a nonuniformly textured image.
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is different between regions. In this case, the local variation in the Gabor-filter output
m will differ in the two regions. This fourth form of discontinuity will be referred to as a
step change in the average local output variation of m. Fig. 1.4 gives an example of this
type of signature.

With a step, valley, or ridge discontinuity, standard image-segmentation tech-
niques co'd be used to locate the discontinuity. This is not the case, however, with a
change in average local output variation without some further filtering. One possible
solution is to transform this quantity into a change in mean value. Turner [60] encoun-
tered this problem and suggested using a bandpass filter for detecting such local changes.
For our situation, this would involve applying a second Gabor filter to the output m of
the first. If the variations within two regions have similar frequency content, then the
second filter output would be proportional to the magnitude of the variation. Thus, a
difference in average output variation would translate into a difference in mean for the
second filter’s output.

Another simple method for transforming a difference in average local output vari-

ation into a difference in mean is to perform the following operation on m:

LPF{|m(z,y) - uml|} (5.43)

Here p,, is the mean value of m (DC component) and LPF is a low pass filter. This
method does not make any assumptions on the frequency content of the input. Other
methods are possible.

Chapter 7 examines nonuniformly textured images in depth and gives a numerical
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technique for measuring the discriminability of arbitrary pairs of textures. This mea-
sure of discriminability, then, leads to a method for selecting appropriate Gabor-filter

parameters for discriminating any given texture pair.




Chapter 6

Gabor-Filter Parameter Guidelines

Section 5.2 showed that when a properly tuned Gabor filter is applied to a textured
image, distinct output signatures arise at the texture boundaries. This chapter describes
how to select filter parameters for a properly tuned Gabor filter. Section 6.1 provides
parameter guidelines based on previous analvses. Then Section 6.2 discusses parameter
constraints that arise when a bank of filters is to be designed. For nonuniform and
natural textures, however, the guidelines provided by analyses are only approximately
correct; so in Chapter 7, an algorithm is presented for numerically determining filter

parameters for an arbitrary texture pair.

6.1 Guidelines for Selecting Filter Parameters

Based on the analyses of Chapters 4 and 5. this section provides guidelines for
selecting the parameters for a properly tuned Gabor filter. Chapter 8 provides design
examples and image-segmentation results. This section assumes that the given image
contains two uniformly textured regions. whose constituent texels are t; and t; (as defined
in Section 5.1) and whose texel spacings are (Ay. Ay ) and (Az,, Ay,). For convenience,

Table 6.1 summarizes the parameter selection criteria.
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Table 6.1. Gabor-filter design criteria for processing a textured image con-
taining two textured regions, R;(t1,Az;,Ay;) and Ry(t2, Azy, Ays).

A) Uniform Textures, constituent texels t; and t; differ and/or texel spacings (Az), Ay;)
and (Az,, Ay:) differ — Gabor-filter output: Step Signature.

02,0 S Spatial extent of GEF’s Gaussian envelope.
y

a) Recommendation: oy = Az, 0y = Ay, where
Az = max{Az;, Azy); Ay = max({Ay;, Ayz).

b) If Azy # Az, or Ay, # Ay,, then GEF cannot be tuned to both hamonics
and undershoot/overshoot can occur in Step Signature.

¢) (o5, 0y) large relative to (Az, Ay) — output signatures cleaner.

d) (o,,0,) small relative to (Az, Ay) — texture boundary better localized.

A . .
A = 0y,/0. = aspect ratio of Gaussian envelope.

(U, V) £ GEF center frequency.

a) Recommendation: U = 2xk/Az, V = 2xi/Ay, where
k= arg {ma.x,-‘_,- IT(U, V) - To(U, V)I}, k integers.
b) Depends on texel spacing (Az, Ay) and differences between harmonics

%’-’f,%’-’é} of t; and ts.
¢) Tune center frequency to harmonic exhibiting maximum difference.
d) If not tuned precisely to an harmonic, undershoot/overshoot could result

in output signature.

8 £ Orientation of Gaussian Envelope.

a) Recommendation: Select orientation along direction of texel-spacing lattice.
b) Independent of (¢0:,0,,U, V).

B) Uniform Textures, Texture-Phase Difference (texels identical in two regions (t; = t3)),
texel spacing same in two regions Az; = Ara, Ay, = Ay, and regions shifted relative
to each other — Gabor-filter output: Valley or Ridge Signature.

(0z,0y) Design criteria as in Part A.
A=o,f0;
U, v) a) Recommendation: Select (U, V') equal to an harmonic

(27k/Az,2xi/Ay) as in Part A — produces valley signature.
b) If (U, V) # an harmonic — nonideal, but still discriminating,
ridge signature results.

0 Design criteria as in Part A.

C) Nonuniform Textures: Texels (2, tz) differ and texels perturbed in position, orientation,
and shape — Gabor-filter output: Step, Valley, or Ridge Signature with output variation or
Difference in Local Output Varwation Signature.

All filter parameters - Use guidelines in part A.
- Use techniques of Chapter 7 for parameter selection.
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6.1.1 Texels in Two Textured Regions Differ

Assume that the texels t; and t; differ. Thus, the discussion focuses on the design
of a Gabor filter tuned for producing a step-signature output. Also, assume for the time
being that the texel spacings for the two textures are identical; i.e., Az = Azy = Az,
Ay, = Ay, = Ay. This condition will later be relaxed.

The parameters to select for the Gabor filter are (0;,0y), A, (U,V), and 6. Fig. 6.1
illustrates the relationship between filter size and texel spacing. The ellipse represents
the one-standard-deviation contour of the Gaussian envelope of a Gabor filter; i.e., {z, y},
such that (z/0;)% + (y/oy)? = 1. The positioning of the ellipse at point (z,y) represents
the position of the GEF when the Gabor-filter output m is comi)uted at point (z,y).

The choice of 0, and oy is a tradeoff between Gabor-filter output variation and
accurate boundary localization. When 0. > Az and o, > Ay, the filter envelope encom-
passes multiple texels, regardless of its position in the image. Although the positions of
the texels vary within the envelope as the filter progresses across the image, the Gabor-
filter output m remains approximately constant over a region. If 0, € Az or oy, € Ay,
the filter output depends on whether or not a texel occurs within the GEF envelope.
This results in periodic Gabor-filter output variations throughout a region. To avoid
significant output variation, 0;/Az and ¢,/Ay should both be large; i.e., the GEF’s
spatial extent should cover a number of texels. If (0,,0,) are large, though, near the
texture boundary, the filter envelope will extend into both regions. This region overlap is
what produces the sigmoid output transition described in Section 5.2.1. As (0:,0y) be-

come larger, the transition becomes more gradual, making it more difficult to locate the
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texture boundary. Experimental evidence suggests that filter performance is relatively
insensitive to these ratios. A good compromise is to set them to unity; i.e., 0, = Az,
o, = Ay.

If the texel spacings in the z and y directions differ (Az # Ay) [but the two
textures still use the same spacing!], then using the aforementioned design criteria, o, #
oy. Thus the filter’s aspect ratio A = oy/0; # 1, resulting in an asymmetric filter. For
asymmetric filters, the orientation 8 of the Gaussian in the GEF (3.2) becomes an issue.
Based on the discussion above, the Gaussian should be oriented to encompass on the
average as many texels as possible. If the texels are spaced over a rectangular lattice, the
Gaussian should be oriented along the z and y axes (i.e., § = 0 or 7/2). If the texels are
not spaced over such a lattice but are situated relative to some rotated coordinate system
(z',y'), then the Gaussian should be oriented along the rotated axes. The orientation of
the complex sinusoid ¢ is determined by the Gabor-filter center frequency (U, V), and
thus by the analysis in Section 5.2, depends on the spectral differences between texels.
Therefore, the choice of 4 is in general independent of ¢.

The choice of center frequency (U, V') depends on ihe texel spacing (which deter-
mines the harmonics) and on the spectral differences between texels at the harmonics.
As discussed in Section 5.2.1, (U, V) should be set to the harmonic that differs most in
power between the texels in the two regions. Although two texels might differ more at
some nonharmonic frequency, using this frequency as a filter center frequency in general
produces an output signature that exhibits overshoot and/or undershoot - such signa-
tures have lower values within the textures than the values produced by a properly tuned

filter. This is shown in Appendix B (compare (4, 4;) to (/il, Ap)).
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6.1.2 Texel Spacings Differ between Textured Regions

When texel spacing is the same in both regions, each texture has spectral energy
centered about the same harmonics (cf. (5.13)), and a Gabor filter can be designed
to produce step-signature outputs. if the texel spacings of the two regions differ, the
harmonics from the different textures do not coincide. Since a Gabor-filter can be tuned
to only one harmonic, signature distortion will result. In analyzing this distortion, note
that the Gabor-filter operation (prior to computing the magnitude) is linear, allowing
the study of each region independently. Assume that the Gabor-filter center frequency
(U,V) equals an harmonic of region 1. Then, the analysis proceeds as for the step
signature. The frequency coordinates for the nearest corresponding harmonic of region
2 can be written as (U + 6U,V + 6V'), where (6U,8V) is the frequency offset between
the harmonics of the two regions. Thus, the analysis of region 2 becomes analogous to
that for the ridge signature. Combining the results for the two regions and computing

the magnitude results in

m(z,y) = lis(z,y)| = 27\/P.P: + PoP; + P,P5 + PoP; (6.1)

— 3 — 6 3 V -— —
where Py = {%%%s;(z,y), P, = BUIUV+iV) U:zfA‘;:s sg(z—-r,y),and sy(z,y)and sg(z—r,y)
are given by (5.19) and (5.32). For points far removed from the texture boundary, an
analysis similar to that in Section 5.2.1 reveals that (6.1) produces a step signature.

The analysis near the texture boundary, however, suffers from the same complications

encountered in evaluating overshoot and undershoot (Appendix B). Although a detailed
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analysis is impractical, the presence of the GEF integral in (6.1) suggests that over-
shoot and/or undershoot can be expected. An example in Chapter 8 corroborates this

observation.

6.2 Parameter Constraints for Filter Banks

Section 6.1 provided guidelines for selecting filter parameters for individual filters.
These guidelines, however, are based upon specific image characteristics. In general,
though, these characteristics are not known a priori (assuming that ultimately we are
striving for a truly autonomous texture-segmentation system), and thus it is difficult to
choose appropriate Gabor-filter parameters. Instead, a collection of such filters must be
specified (i.e., a filter bank), where each filter is tuned to a different frequency band, and
collectively they span the range of frequencies expected in the input. These filters are
then applied to the image (conceptually in parallel [56]), and their outputs are combined
in a meaningful way, so as to partition the image into regions of homogeneous texture.
Defining a filter bank involves specifying the number of filters within the filter bank and
the parameters for each of these filters. The need to combine filter outputs imposes

certain restrictions on these filters. These restrictions are discussed below.

6.2.1 A Constraint on o

Assume for the moment that all textured images to be encountered have the same
texel spacing and that only symmetric Gabor filters are to be used (i.e., 0, = 0y = 7).
This section shows that if Gabor-filter outputs are to be compared, the corresponding

Gabor filters must have equal values of o.
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Let us assume that the input image is periodic with period T in both directions.
(This simplifies the frequency analysis without affecting the grayscale distribution in the

regions of interest.) The image, then, can be represented by its complex Fourier series

[o ] o .
i(z,y) = Z Z cm'ner(na:-f-my)

nN==—00 M=-=00

where w = 27 /T, and ¢, are the Fourier-series coefficients. Consider the GEF h
of (3.5). For simplicity, assume that h is oriented along the z axis. Then z’' = =z.

Convolution of 7 with h after separating the integrals yields

. . 1 ®© e e iwn(z—
izr,y)=1Hz,y)*h(z,y) = 5o Zﬂ:;cm,nh /_oo e~ 257 pifagiwn(z—a) 4,
where J; = [0, e'%ej“""(y“mdﬂ. The integral J; equals

2
- !wma!
oV2TelY™VeT 2

and after rearranging terms

. wma)? [0 2 .
z,y) = 1 z > em ,,e""(’"”*"’)e"(_)'"; / e~ 27 eia(A-wn) gy
2r0 L ' -00
. . e?(—wn)? .
The remaining integral reduces to Iroe~ 7" and the final result is

. 02 Y
i(z,y) = E Z cm'neaw(mwnr)e--r[(wm)’+(0-wn;’] (6.2)
m n

Equation (6.2) shows that the resulting subimage i is composed of the original
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input with each term of the input being reduced by the factor e‘#[(“"")z"’(n“"")?]. Two
features of this equation should be emphasized. First, the only term in the input that
is left unattenuated is the complex sinusoid oriented in the r direction (i.e., m = 0),
with a frequency equal to the center frequency of the filter (i.e., nw = Q). Second,
the parameter o, combined with the frequency of the harmonic, controls the degree of
attenuation of the harmonic. This suggests that it is not feasible to make comparisons
between filter outputs, if & is not the same for both filters.

For example, consider two filters with the same center frequency, but different
o’s. If these filters are applied to the same input, the filter with the smaller o will
usually produce a larger output. Unless the frequency distribution of the input is known,
however, the amount of difference cannot be determined. That is, filter outputs cannot
be normalized without knowing the frequency distribution of the input. Thus all filters
within a given filter bank must have the same value of 0.

The choice of ¢ depends on the texel spacing; so images with different texel
spacings (e.g., images at different scales), require filters with different values of o. Since
the output of filters with different ¢’s cannot be reliably compared, multiple filter banks
must be used, with each bank consisting of a collection of filters with the same o. The

idea is to partition the range of texel spacings into k intervals, specify the o4’s, and

define a filter bank for each oy.

6.2.2 Other Parameter Constraints

Because the filters within a filter bank should span the expected 2-D frequency

range of the input images, large texel spacings can present a problem. As the texel
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spacing becomes larger, o becomes larger, and thus, the bandwidth of the filters becomes
narrower. This means that more filters are required to cover the same frequency band.
Although there is an upper bound on the number of frequencies in the band (dictated by
the number of image pixels sampled), the number could become very large. This problem
can be circumvented by recalling that as an image increases in scale, its frequency content
is compressed; i.e., g(az) «~ ﬁG(w/a). Images tend to have most of their energy around
DC, with energy diminishing rapidly at the higher frequencies. This means that there
exists a cutoff frequency f. above which their energy is insignificant. Since increasing
the size of an image results in a proportional compression of frequency, the net effect
is a similar reduction in cutoff frequency. Even though the frequency spacing between
filters decreases with increasing o, the cutoff frequency decreases proportionally. Thus,
the number of filters remains constant. Therefore, a fixed number of frequencies can be
assigned to each bank of filters, without incurring a significant loss in energy.

Once o has been specified (thus defining a filter bank for a particular interval of
texel spacings), the freqﬁency parameters (€2, ¢) must be specified for each filter within
the bank. Since the frequency content of an image is not typically known a priori, the
filters must cover the entire range of expected frequencies; however, becanse the image
is sampled, the entire range of frequency harmonics (in both the u and v directions)
is known. Given a pair of frequencies U and V, it is easy to compute  and ¢: Q =
VU?T+ V7 and ¢ £ tan~1(V/U). With this information, all possible values of {2 and ¢
can be determined. If the number of samples is large, however, it would be impractical
to have a filter at every possible frequency. It might be sufficient to have significant

overlap between adjacent filters to cover the desired frequency range and 360 degrees
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of orientation. The amount of frequency and orientation overlap is determined by the
center frequency spacing and the bandwidth of the filter, which is controlled by o. One
possible choice for filter spacing is to make the difference between center frequencies ~f
adjacent filters equal to the half-peak bandwidth of one of the filters. A similar choice
can be made for orientation overlap, and thus the number of required orientations can be
determined. Bovik et al. [53] derived a half-peak orientation bandwidth for the GEFs.
The radian bandwidth Z is defined as Z = 2 tan~'[2a/(Q2¢)] where a = \/{In2)/2. Thus,
for each center frequency Q, we define a set of filters, each with a different orientation
parameter ¢, and each ¢ spaced Z radians apart.

One popular filter configuration that is consistent with these constraints is the
“rosette” pattern [63, 70, 73]. In the 2-D frequency plane, the rosette consists of overlap-
ping filters whose center frequencies lie on concentric circles centered at the origin. This
configuration spans 360 degrees of orientation and spans frequencies from DC upward
to any desired resolution. One formulation that directly leads to this pattern are Gabor
wavelets (62, 63]. An example of such a pattern is shown in Fig. 6.2. One limitation of
the rosette pattern is that it does not allow independent selection of (o, 0y) and (U, V);
however, in practice this is not a problem. Recall that (o:,0y) are related to the texel
spacing. Since texel spacing changes with image scale and frequency content is propor-
tional to scale, (0;,0,) and (U,V) are related. Thus independent selection of center
frequency and filter size might not be necessary. Section 6.1.1 showed that asymmetric
filters can be beneficial when the texel spacings differ in z and y. The rosette pattern,
however, does not allow for varying filter asymmetry. Often in practice, though, smooth

signatures can still be attained at some cost in boundary localization if the texel-spacing
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Fig. 6.2. Example of a “rosette” pattern of bandpass filters (from Porat and
Zeevi [73]).
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difference is disregarded. Thus, it appears that the rosette pattern is a plausible filter-
bank configuration. Determining the number of filter banks, the number of filters in each

filter bank, and the filter spacing in the 2-D frequency plane are topics for future work.




Chapter 7

Determining Filter Parameters for Nonuniform Textures

The parameter guidelines developed in Section 6.1, are only approximately correct
for nonuniform and natural textures. Since o, 0y, and 8, depend primarily on texel
organization, the guidelines for these parameters are still applicable. The frequency
parameters (U, V), however, are no longer simply related to the difference in the texel
Fourier transforms. Thus, the methods of Section 6.1 are inadequate for determining
(U, V). Previous efforts in determining Gabor-filter frequency parameters have involved:
(1) computing the Fourier transforms of the textures of interest and determining the most
discriminating frequency (53], (2) using heuristics gleaned from studies of the human
visual system [56, 60, 74], (3) performing a spectral decomposition on prototype texture
elements for each texture of interest and noting where large differences occur (15, 55],
and (4) ad hoc selection [62, 69]. As Section 7.3 later points out, these methods all have
limitations.

This section develops an algorithm for determining the Gabor-filter frequency
parameters for any given texture pair. For convenience, the algorithm will be referred
to as GFFS (for Gabor-Filter Frequency Selection). Given instances of a texture pair
of interest, GFFS searches the space of Gabor-filter center frequencies to determine
the Gabor filter that provides the “greatest” discrimination between the two textures.
Note that this is a supervised approach to frequency selection. The method provides an

analytical tool for evaluating the segmentability of texture pairs using a single filter. The
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remainder of the section elaborates on GFFS and compares it to previously proposed
techniques for determining Gabor filter center frequencies. Chapter 8 shows experimental

results demonstrating the efficacy of the new technique.

7.1 Overview of the GFFS Algorithm

As mentioned previously, the application of a Gabor filter to a textured image
i(z,y) can produce an output imnage m(z,y) exhibiting some type of discontinuity at
the texture boundaries (called signatures). This output then can be used to segment
the image. The problem is to find Gabor-filter parameters that will produce one of these
discontinuities at the texture boundary.

Depending on the texture pair and the filter parameters, different signature types
can occur. The most common of these is the step signature (i.e., a step change in
filter output m(z,y)). For the next several sections, it will be assumed that we wish
to design a Gabor filter that produces the “best” step signature at a texture boundary.
Section 7.4 elaborates on how the method can be extended to other signature types. The
method for determining Gabor-filter parameters for producing a step signature will now
be described.

The problem statement is the following. Given a tertured image consisting of
known tertured regions A and B, find the Gabor filter giving the largest step change at
the terture boundary. This Gabor filter is determined by the parameters 0., 0,, U, V,
and 6 per (3.4), and must be found from among the space of all possible Gabor filters.

Chapter 6 provided guidelines for selecting o, o, and . Experience indicates

that these guidelines are also effective for nonuniform and natural textures. This allows
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us to use heuristic methods for determining these parameters (more on this in Sec-
tion 7.2.3). Thus, the method reduces to determining the Gabor filter center frequencies
(U, V). This is accomplished by essentially performing an exhaustive search over all
possible frequencies.

In principle, the quality of a step signature is determined by the amplitude of the
step. Previous analyses (Section 5.2) and experimental results (Chapter 8), however,
show that the Gabor-filter output m(z,y) resembles an ideal step only in special cases.
More often, due to the inherent random structure within texture, the step is accompanied
by considerable local variation. Thus, directly measuring the step amplitude is infeasible.
Instead, stochastic decision theory is used to develop an alternative measure of step-
signature quality.

Developing a measure of step-signature quality begins by modeling the Gabor-
filter outputs from textured regions A and B as independent random variables, having
pdf's ps and pg (Section 7.2.1). Then, for each o, oy, and @ considered, the “best”

Gabor-filter center frequencies (U, V') are determined as follows:

1. Apply a windowed Fourier transform (WFT) to a random set of points within each
textured region A and B - this effectively gives information on the application of
a family of Gabor filters to each of the random points (Section 7.2.2). Each filter
in the family has a different center frequency (U,V). Collectively these center
frequencies effectively span the frequency domain of the textured region. Using
the computed WFT information, estimate parameters for the pdf's p4 and pp

(Section 7.2.1).
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2. Using the estimated pdf’s for textures A and B, apply a likelihood-ratio test to
compute the probability of correctly determining from which region (either A or
B) a Gabor-filter output value arose. This probability indicates the statistical
difference between the Gabor-filter outputs in the two regions, and is used as a

measure of step-signature quality.

3. The center frequency (U, V') producing the highest quality step signature is deter-

mined the “best” and used to design h in (3.2).

The complete algorithm is summarized below. For each o, 0y, and 8 of interest,

do the following:
1. For each textured region A and B,

a. Form a randomly selected set s of points within the region.

b. For each point (X,Y) € s, compute

Fxy(U, V)= 110; /_: i(z,y)9(z — X,y - Y)exp[-j(Uz + Vy)|dzdy
(7.1)
where g is the Gaussian (3.3) and ¢ is the image. F is the windowed Fourier
transform of ¢ centered at (X,Y) and ¢ is the window function. The com-
putation of F, which is implemented as an N x N DFT, effectively applies
a family of Gabor filters to the point (X,Y), where the center frequencies
(U, V) of the filters correspond to the N x N set of 2-D frequencies given by

the DFT.




98

c. For each (U,V), compute

— 23 FX.Y(UvV) ~
AV card(s) (7.2)
" L,(Fxy(U,V) -a(U,V))? -
F(U,V) = ard(3) (7.3)

where (U, V) and %(U, V) are the sample mean and sample variance for the

values of F averaged over all points (X,Y’) considered in step b above.

2. For each (U, V), compute Pg(U, V), the total probability of incorrectly classifying
textures A and B, per (7.10). Pg(U,V) gives a measure of step-signature quality
for a textured image (containing textured regions A and B) filtered by a Gabor

filter having parameters (o, 0,,U,V,0).

3. The values of (U, V) corresponding to the minimum value of Pg(U, V) is the “best”

Gabor-filter center frequency.

After applying the procedure above, one “best” center frequency (U, V) is obtained for
each set (0;,0,,0) considered. Two options are now available: either pick the “best”
center frequency for large values of (0,0,) (as describe in Section 7.2.3) and apply the
Gabor filter in (3.1), or pick the “best” center frequency for small values of (0., 0,) and
apply the modified Gabor filter ((3.1) followed by (7.15)) as discussed in Section 7.2.4.
Section 7.2 provides justification and comments on the various aspects of the
GFFS algorithm. In particular, it (1) derives a measure of step-signature quality based
on stochastic signal detection theory, (2) shows how the simuitaneous application of

a family of Gabor filters can be implemented efficiently using the windowed Fourier
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transform, and (3) discusses the selection of o, and o,.

7.2 Algorithm Implementation Issues

7.2.1 Maeasuring Step-Signature Quality

Before Gabor-filter parameters can be evaluated, some measure of step-signature
quality needs to be established. Since the location of the step transition presumably
corresponds to the texture boundary, basing signature quality on accurate step-edge
detection and localization is attractive. In Canny’s development of an ideal step-edge
detector, he shows that both the detection and localization of the step improves directly
as A/ng increases, where A is the step amplitude and ng is the average noise amplitude
[75]. For the GFF'S algorithm, A is the mean difference in Gabor-filter output between
regions, and ng corresponds to the local fluctuations in filter output within a region. If
A/ng is defined as the signal-to-noise ratio (S/N) of the Gabor-filter output m, then the
S/N seems to be a reasonable basis for signature quality.

A measure of step-signature quality based on the S/N can be derived by viewing
step detection as a stochastic signal detection problem, where the goal is to minimize
the error in erroneously classifying one signal (textured region) as another. Within this
framework, the Gabor-filter output within a given textured region is considered to be
a random variable. Although the distribution of this random variable is, in general,
unknown, it will be assumed that its distribution can be approximated by a Gaussian
over the range of probabilities of interest. (Clearly it is not strictly Gaussian, since the
Gabor-filter output is never negative. Possibly, the Rayleigh-Rice distribution would be

more appropriate, but then the analysis becomes more complex with little impact.)
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Given two textured regions A and B and a Gabor filter G4 (3.1), let the output
of G; be represented by the probability density function ps when Gy is applied to A
and by pg when Gy is applied to B. Consider the following experiment: apply G; to
a textured region (either A or B) and record the output m, at some random position
(z,y), in the random variable z. The problem is to decide whether the random sample
was taken from region A (hypothesis Hg) or from region B (hypothesis Hy). Define a
decision point d, such that if z < d, then the sample is presumed to be from region A
(accept hypothesis Hg). Otherwise, it is presumed to be from B (accept hypothesis H,).
For this experiment there are two possible errors; accepting H; when Hp is true (Type
I error), or accepting Ho when H, is true (Type II error). The goal is to minimize the
sum of these two error probabilities.

The solution to this problem is well known (e.g., see [76]), and reduces to finding

the decision point d such that the likelihood ratio A(z) & pB(2)/pa(z) satisfies

AMd) = R/(1 - R) (7.4)

where Py is the prior probability that the region is A. If we assume that the two regions
have the same area and are equally likely to occur, then Py = 1 - Py = 1/2,and A(d) = 1.
Thus the problem reduces tc finding d such that p4(d) = pg(d).

Let the normal distribution functions p4 and pg have parameters (u4,04) and

(uB.oB) respectively, and without loss in generality, assume u4 < pp. Then, equating
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Pa(d) to pg(d) gives

1 ~(d - pa)? 1 —(d - pp)? .
ex = ex 7.5
oAV2r P [ 20% opV2rn P 20} (7.5)
Solving for d produces
d= (aok — ppoi) 04082 (7.6)
o} - o3 '
where
Z = \[/(up - pa)? + 20} - 0%)In(op/04) (7.7)
and d is chosen such that u4 < d < ug.
The error probabilities can then be computed as
1 ®© —-(d - pa)? -
P = / exp | ————— .8
[ oA ’_27l' A P 20‘24 (I )
1 d —(d - up)?
P = A [ |t 1o
¥4 UB\/E; oo p [ 20% ( )

where P; and Pj; are the Type I and Type II error probabilities. Then the total error
probébility Pg becomes P = P; + Pr;. As Pg becomes small, the probability of
mistaking one region for the other becomes small. Thus Pg is a reasonable indicator
of step-signature quality. Per step 2 of the GFFS algorithm, Pg is computed for each

Gabor-filter center frequency (U, V) of interest. Thus Pg depends on (U, V); i.e.,

Pe(U,V) = P(U,V) + Pi(U, V) (7.10)

If the parameters of p4 and pg are known, it is a simple matter to compute Pg.
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In practice, however, only estimates of these parameters are available. Estimates of
(44,uB) can be obtained from the sample means (Z4,%g), and estimates of (0%, 0%)
can be obtained from the sample variances (74,7%). The sample mean and the sample
variance are both unbiased maximum likelihood estimators. Thus, as the number of
available samples approaches infinity, the error in estimating Pg using the sample means

and variances approaches zero.

7.2.2 Gabor-Filter Application via Windowed Fourier Transforms

Step 1.b of the GFFS algorithm requires the application of multiple Gabor filters
(one filter for each 2-D frequency to be tested) to the randomly selected points within
each of the two textured regions. An efficient method for performing this operation is
based on the windowed Fourier transform [77].

The windowed Fourier transform is similar to the classic Fourier transform except
that the input is premultiplied by a window function. To compute the windowed Fourier

transform F', the following equation is evaluated:

Fex(U,V) = [ [i(z,p)uta - X,y - Vexpl=i(Us + Vy)ldady (7.11)

(all integrals range from —o0o to oo unless otherwise stated). Here, w is the window
function, ¢ is the image to be transformed, and F is a function of frequency (U, V), and
window position (X,Y).

The parallel application of a family of Gabor filters to an image at a point is a

special case of applying a windowed Fourier transform at the point in the image [78, 79)].
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To show this, let p be the result of convolving an image ¢ with a GEF h. Then

p(z,y) = h(z,y)*i(z,y)

= [ [ia )iz~ oy - )dads
Consider one specific point in the convolution (X,Y). Then

xY) = [ [i(a,mh(X ~a,Y - pdads

[ [i(@B)a((X = @)\ (¥ - 8Y)expli(U(X = ) + V(Y - $))]dads

where {(z—a)’, (y—B)'] refer to rotated spatial coordinates as defined in Chapter 3. After
rearranging terms and factoring out the constant complex exponential K = exp[j(UX +

VY)], we have
X Y) =K [ [iaBol(X - a),(¥ - B))expl-j(Ua+ VB)ldads  (112)
Defining the window function w in (7.11) as w(z, y) = g(—z', —y') gives
WX.V) =K [ [ilaByoa=X,0-V)expl-j(Ua + VB)ldads  (1.13)

Observe that, except for the constant K, equations (7.11) and (7.13) are equivalent.

Computing the complex magnitude of (7.13) eliminates K (which represents a constant
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phase shift), resulting in
PV = |[ [ i@ yuta - X, 8- Viexpl-i(Ua+ VB)dads|  (.14)

This justifies (7.1).

The previous development was based on continuous functions. Thus, X,Y, U,V
represent continuous variables. These arguments can be easily extended to the discrete
case, where X,Y, U,V take on discrete values. In the discrete case, the windowed Fourier
transform is implemented using the DFT. Then, (X,Y) refer to image pixels, and (U, V)
refer to the DFT frequencies. Thus, if an image is multiplied by a truncated Gaussian
centered at image point (X,Y), and the DFT magnitude is computed, this approximates
the application of a family of Gabor filters to the image at the point (X,Y’), where each
filter’s center frequency corresponds to one of the DFT frequencies. Thus, computing
a single DFT is equivalent to determining the output from a family of Gabor filters at
a single point, where the center frequencies of the filters span the frequency domain
of the image. It should be noted that a Gabor filter could be designed with a center
frequency other than one of the DFT frequencies. Thus, GFF'S does not apply all pbssible
Gabor filters to an image. Later in this section (under “other issues”), arguments will

be presented suggesting that these omissions are not significant.

7.2.3 Specifying o, and o,

This section examines some heuristics for specifying o, and o,. It is assumed

that, in most cases, o, = 0, = o; thus, the parameter 6 is immaterial. Consider the
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formation of a step signature. As o increases, the S/N increases due to a reduction
in the noise component (per (7.6) and (7.10)). This occurs for two reasons. First, as
window size increases, the computed value of the windowed Fourier transform (WFT)
at a point is determined by a larger neighborhood of image pixels. This causes the
WFT output to be less sensitive to window position perturbations, thus reducing output
variation (i.e., noise). Secondly, for accurate sampling, the possible window positions are
restricted to those that approximately keep the window within the region boundaries (the
term approximately is used since the window is a Gaussian with infinite extent and will
always extend beyond the region bounds). As window size increases, however, the extent
of possible window positions decreases. Since the WFT output now varies slowly with
position, reducing the size of the sampling area further reduces the output variation. In
the limit as the window size approaches the size of the region, the variation in WFT
output goes to zero. This causes the S/N to approach infinity, which suggests that o
should be made as large as possible.

The fallacy in this line of thinking is that if o is made arbitrarily large, any measure
of region variability is lost. It must be remembered that in a real texture-segmentation
problem, the region size and boundaries are unknown. In that case, if o is too large,
the window can significantly overlap regions, thus reducing discriminability. Therefore,
the choice of & must be guided by practical considerations. Section 6.1 showed that the
choice of o is a tradeoff between discriminability and boundary localization, and that
for many strongly-ordered textures, a good compromise is to choose o approximately
equal to the texel spacing. As we will soon see, however, certain textures require a filter

configuration that employs a much smaller ¢. In practice the GFFS algorithm described
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in Section 7.1 produces similar results over a wide range of o’s. Thus, it suffices to run

the algorithm several times using a few widely spaced values of o, and compare results.

7.2.4 Modified Version of Gabor Filter

Fig. 7.1a is an example of a synthetic texture consisting of arrows and trian-
gles. Fig. 7.1c shows the output of a Gabor-filter with ¢; = o, = 0, and o equal to
the texel spacing. As can be seen in Fig. 7.1c. the step signature is accompanied by
considerable variation. This effect is typical of strongly-ordered textures whose texels
exhibit pose and/or shape perturbations. The problem is that when o is large, the
bandwidth of the Gabor filter is very narrow, and thus very selective in frequency. In
this case, it is too selective in frequency. It not only discriminates between the two dif-
ferently textured regions, but it also detects local frequency variations within a region
(caused by the random orientations and perturbations of the texels). One possibility
is to reduce the size of o so that the Gabor filter will adequately discriminate between
textures without responding to within-texture variations. There is, however, an unde-
sirable side effect of reducing ¢. As o becomes smaller, the spatial resolution of the
Gabor filter increases. This increase in spatial resolution causes the Gabor filter to re-
spond to local spatial variations within a texture (e.g.. the periodic placement of the
texels). This effect is illustrated in Fig. 7.1d. where ¢ was chosen to be one half of that
in Fig. 7.1c. It will be argued (under “other issues™) that this texture is wide-sense pe-
riodic [80]. If this is true and the period corresponds to the texel spacing, then the first

two moments of the texture’s graylevel distribution are periodic (i.e., y(r) = u(r + T)
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and K(ry,r3) = K(ry + T,r2) = K(r1.72+ T). where p is the mean, K is the autoco-
variance matrix, and the r’'s are 2-D position vectors. T is any of three constant 2-D
vectors (:z:o,O)T, (O,yo)T, {zo, yo)T, where g and yo represent the texel periods in z and
y). Thus it is not unreasonable to expect that the local spatial-frequency composition
and, hence, the Gabor-filter output will also be approximately periodic (in a stochastic
sense). Thus the local spatial average of the Gabor-filter output within a textured region
should be approximately constant. This spatial average can be computed by applying a

Gaussian to the Gabor-filter output as shown below.

m/(z.y) = m(x.g)«g'(r.y) (7.15)

where g’(z.y) is a Gaussian similar to (3.3). The result of applying this Gaussian is
shown in Fig. 7.1e. Note the improvement in signature quality.

Although the GFFS algorithm cannot directly predict the quality of the step sig-
nature in Fig. 7.1e due to the two-stage process. GFFS can still be employed successfully.
By using small values of o, we can still determine the best step signature for the first
stage. Since the second stage is simply a smoothing operation. the resulting output
should still represent the highest quality step signature (for that particular value of o).
The application of a single Gabor filter will be referred to as a C1I configuration and the
two-stage configuration (Gabor-filter (3.1) followed by a Gaussian smoothing (7.15)) will
be called a C2 configuration.

In most cases o, = 0y, = 0 is a reasonable choice. Chapter 5 showed, however,

that for strongly-ordered textures. when the texel lattice is not square, an asymmetric
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filter is preferable. In that case, the ratio of o, to o, should be adjusted to match the
aspect ratio of the texel-spacing lattice, and é should be chosen to match the orientation

of the lattice.

7.2.5 Other Issues

This section presents other implementational issues for the GFFS algorithm. Al-
though theoretically the Gaussian window used to compute the windowed Fourier trans-
form has infinite spatial extent, in practice it is truncated to some finite window size
W (typically 60). The number of frequency terms computed by the windowed Fourier
transform is determined by the window size V. For consistency it is desirable to com-
pute the same number of frequency components for all window sizes. To achieve this,
the windowed data are zero padded to extend it to the size of the full image. Although
zero padding does not improve frequency resolution (resolution depends on the size of
the window), it does increase the number of frequency components generated. The effect
is tu provide interpolated frequency terms [77]. A positive side effect of this increase is
that the number of Gabor-filter center frequencies (U, V') that are tested is increased.

As mentioned earlier, the GFFS algorithm does not compare all possible center
frequencies (a formidable task). There are two reasons why this is not necessary. First,
Appendix B shows that for strongly-ordered textures, the greatest difference in step
height occurs when the Gabor filter is tuned to a multiple of the reciprocal of the texel
spacing (i.e., the frequency of occurrence of the texels). These frequencies, among others,
are examined by this method. Secondly, experience has shown that Pg(U, V) (and thus

signature quality) degrades gracefully with changes in Gabor-filter center frequency. By
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comparing Pg(U,V) at frequencies adjacent to the “best™ frequency, it can be verified
that that Pg(U, V) degrades gracefully in each case.

The random selection of sample points. required in step 1 of the GFFS algorithm,
will now be discussed. In many cases, texture can be modeled as a random process.
When we are given a sample of a textured region. we are sampling only one instance of
this process. In general, this is insufficient for estimating the statistics of the process.
In effect, we are finding the “best™ filter for one particular instance of tha texture. The
same filter might be totally ineffective for some other instance. Often, the underlying
process is wide-sense periodic [80]. Then the process statistics are unique only within
a fixed pericd (e.g., between two adjacent texels). Since a given texture instance will
typically contain many periods. sampling a single instance can provide a representative
sample. Although not all textures can be considered wide-sense periodic, it is probably a
reasonable assumption for strongly-ordered (e.g.. Fig. 2.6a and 7.1a) and many disordered
textures (e.g., Fig. 2.6c).

The number of points required for a representative sample depends on the vari-
ability within a texture. For all examples used in this study. stable results were achieved
by taking 200 samples from each region. In general. ‘he number of required samples
will be proportional to the region .ize (in this case. = 0.1% of the region size). Since
the region size is U{N?) and the time complexity of the DFT in O(N log N), the total
time complexity of the algorithm is O(.V3log .V') (where .V is the row or column dimen-
sion of the region). In practice. run times are in the neighborhood of 2 hours on a Sun

SPARCstation 1.
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7.3 Previously Proposed Methods for Designing Gaber Filters

Several other techniques for determining Gabor-filter parameters have previously
been suggested. One popular technique is to use heuristics based on neurophysiological
and psychophysical studies of the human visual system (HVS) to design a set of filters
(56, 60, 74]. (Note that Malik and Perona [56] did not use Gabor filters. They did,
however, use functions that are similar.) While this techniq:..- has been used effectively
to test prototype texture-segmentation schemes. it is a brute force approach providing
little insight into the relationship between algorithm output and the filter characteristics
that produced the output. Thus, it is difficult to predict how these schemes will perform
over a wide range of textures.

A method suggested by the works of Krose [15] and Fogel and Sagi [55) involves
comparing the spectral composition of prototype texels from the regions to be segmented.
For uniform textures, Chapter 5 showed that the formation of a step signature is directly
related to the difference in frequency content between texels. This method, however, has
two limitations. First, it is restricted to scronglv-ordered textures. Second, as texel
spacing decreases, the texels begin to interact and lose their individual identity. When
this occurs, the method becomes ineffective.

Before the GFFS algorithm, the most effective technique for determining Gabor-
filter parameters was based on computing the DFT of each textured region [53, 68].
The 2-D frequency component that differs most between regions is then selected. This
method will be referred to as the DFT method. The DFT method is equivalent to

applying a windowed Fourier transform to a region. where the window is rectangular
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and equal to the size of the region. Experimental results indicate that the best choice
of center frequency is typically insensitive to window size. Since a rectangular window
can be sized to approximate the spatial extent of a Gaussian, the results of the DFT
method sometimes predict the same “best™ center frequency as GFFS. Although the
DFT method is somewhat faster then GFFS. it does not always predict useful center
frequencies. Chapter 8 compares the GFFS algorithm with the DFT method for finding

filter frequency parameters and describes other limitations of the DFT method.

7.4 Determining Filter Parameters for Other Signature Types

The GFFS algorithm presented in Section 7.1 assumes that to distinguish between
two textured regions, a step signature is desired. The algorithm can be easily modified
to find Gabor filters that generate valley/ridge and difference-in-variance signatures. For
the valley/ridge, samples are pooled from both textured regions 4 and B (for this type
of signature, regions A and B are typically identical) this forms sample set A. Samples
are then collected along the texture boundary to give sample set B. The rest of the
algorithm does not change. With this modification. the algorithm will find the center
frequency that produces the highest ridge or deepest valley.

To determine Gabor filters that will produce the largest difference in output vari-
ance, simply compare the differences in sample variances and choose the DFT frequency
that generates the largest difference. It is also necessary to check that the means are
similar, as this is an important consideration for subsequently transforming the differ-
ence in variance to a difference in mean (Section 5.2.3). The question of which type of

signature is most appropriate for distinguishing a given texture pair remains open.




Chapter 8

Results

This chapter presents 1-D and 2-D experimental results corroborating the analysis

done in previous chapters.

8.1 1-D Results

Fig. 8.1 gives examples of the 1-D textures used in the analytical work of Chap-
ter 4, and Fig. 8.2 gives a plot of four filter outputs produced by applying a Gabor filter
to 1-D textured images.

Each image consists of two regions 1 and 2, consisting of six texels. Region 1 is
to the left of zero and region 2 is to the right. The texels in region 1 are defined by (4.1)
and the texels in region 2 are defined by (4.2). All texels are spaced 24 units apart and
are 16 units wide (i.e., Az = 16). The texture frequencies for regions 1 and 2 are w; and
wo respectively, and the phase difference (¢, — ¢2) between regions is ¢. By adjusting
these parameters, discontinuities in frequency, phase, or both can be induced between
regions.

Curve A is the result of a difference in texture frequency between regions. The
Gabor filter used to produce this curve has a center frequency that matches the texture
frequency of region 1. Thus, the Gabor-filter output is greater for region 1 than for region
2. As the figure shows, the filter output approximates a step. Note that the position of

the texture boundary (z = 0) is located approximately at the middle of the step. Curve
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Fig. 8.1. Examples of 1-D textures complying to the 1-D texture model of
Section 4.1.
(a) 1-D texture constructed from the model (4.3), where the texture frequencies
differ between regions (the frequency differences have been exaggerated for
clarity).
(b) 1-D texture constructed from the model (4.3), where the texture elements
differ in phase between regions (the frequency has been reduced for clarity).
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Fig. 8.2. 1-D Gabor-filter outputs m derived from 1-D textures (define in (4.1)
and (4.2)). w; and w; are the texture frequencies in radians per unit distance
for regions 1 and 2 respectively, and ¢ is the phase difference between regions
in radians. w, is the filter center frequency in radians per unit distance. The
location z = 0 represents the texture boundary.

Curve A: w; = 10.47, wy = 9.43, w. = 10.47, ¢ = 0 (differing texture frequency).
Curve B: w; = 10.47, w; = 10.47, w. = 10.47, ¢ = 7 (textures of same texture
frequency, but out of phase).

Curve C: w; = 5.03, w; = 5.03, w. = 5.03, ¢ = 1.57 (texures of same texture
frequency, but out of phase).

Curve D: w; = 10.24, w; = 1047, w. = 1047, ¢ = 1.5 (differences in texture
frequency and phase).
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B is the result of a difference in phase. Note that the texture frequency is the same for
both textures, but there is a v radian phase difference between them. Also, note that the
texture frequencies equal the center frequency of the filter. Observe that the curve forms
a valley as expected from the analytical work. In this case, the position of the boundary
occurs at the global minimum of the Gabor-filter output. Curve C also represents a
difference in phase, but a ridge is formed in the output rather than a valley. The 1-D
analysis, however, does not reveal how a ridge can occur at a phase discontinuity. Note
that the texture boundary occurs at the global maximum (minimum) of the Gabor filter
output for curve C (B). Curve D is produced by a combination of frequency and phase
changes. In this case the output is in-between a step and a valley. Depending on the
frequency and phase values, either the step or the ridge/valley will dominate for such
cases. For curve D, the texture boundary is neither at the minimum nor at the middle of
the step. Thus, there exists an inherent degree of boundary uncertainty with this profile,
as is the case with certain perceived texture boundaries. For all filters used in Fig. 8.2,

o equals the texel spacing.

8.2 2-D Results

All images used in the examples to follow consist of two regions. Except for
the examples of natural textures, each region is composed of a collection of synthesized
texels. Each texel is formed from line segments 20 pixels long by 2 pixels wide. The
average intensity difference between regions is minimized by using approximately the

same number of pixels in each texel. The size of the images is 512 x 512 pixels.
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Except where noted, the Gabor-filter parameters were determined as follows. Sec-
tion 6.1 recommended that o, = Az and o, = Ay. For most of the examples, Az = Ay.
Hence, 0, = oy Lo=24 pixels. The aspect ratio A = 1. The GFFS algorithm devel-
oped in Chapter 7 was used to determine the center frequency (U, V). This algorithm
finds the harmonic (U = 27k/Az,V = 2xi/Ay) that produces the largest step (or the
deepest valley, or the highest ridge for texture-phase differences). In the figure captions,
the Gabor-filter center frequencies (U, V) are reported in polar coordinates ( F, ¢) so that
the orientation of the filter’s sinusoid is explicit (F' = Q/2x in (3.6)).

The input images are defined digitally. Thus, aliasing in the images is not a issue.
Aliasing is an issue, however, for the GEF, since it must be sampled before applying it to
the image. Since the GEFs are not bandlimited, some aliasing will occur regardless of the
sample rate. Bovik et al. derived the required sample rate for various percentages of alias
energy [53]. In the examples, the GEFs are sampled so that the energy due to aliasing is,
in most cases, < 1%.! Exceptions occur for the filter outputs shown in Figs. 8.11c and
8.12d, where the aliasing energy is 7.4% and 12% respectively. The increase in aliasing is
due to the high center frequencies used in these filters, but this does not pose a problem.
The GFFS algorithm still finds the most discriminating digitized filter, even though it
might be somewhat distorted.

Since the GEFs are not spatially limited, truncation is necessary. The GEFs
are truncated to a width of 60, which represents an error of about 0.2%. Except in

Fig. 8.13, all points within 1/2 the filter width from the boundary are discarded in the

'Bovik et al.’s calculation is conservative due to using In2 instead of Vvin2 in their equation for yg
(53].
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final output to eliminate the wraparound error that arises in discrete convolution. For
this reason some of the output figures appear truncated. Some examples show the results
of applying a Canny edge detector to a filtered image. This gives possible subsequent
segmentations. No effort was made, however, to optimize this detector or to optimize
the segmentation algorithm applied to the filtered image. Appendix D discusses the

implementation details of filter application and edge detection.

8.2.1 Difference in Texel Type

Fig. 8.3a illustrates a uniformly textured image consisting of +s and Ls. Fig. 8.3b
gives a plot of a Gabor-filter output m(z,y) versus z and y. The vertical axis gives
m(z,y) (the maximum and minimum filter outputs are indicated on the axis), and the
two axes approximately horizontal and into the page represent z and y. All Gabor-filter
outputs are depicted this way.

The shape of the profile is predominantly a step function with some undershoot
present. The output of a Canny edge detector [75] applied to the Gabor-filtered image
is shown superimposed on the original image - see Fig. 8.3c. As Figs. 8.3b and 8.3c
indicate, the boundary between the two textured regions is well localized.

An estimate of step height in Fig. 8.3b can be found by using the equations for 4,
(5.22) and A; (5.23). These equations imply that the ratio {T;|/|T>| is a relative measure
of the step height. Letting T; correspond to a “+” and T; correspond to an “L” for the
image in Fig. 8.3a, gives T} = 22.38 and T; = —1. Thus, the predicted step height is
|T11/|T2| = |22.38]/] - 1] = 22.38. For Fig. 8.3b, the ratio of left-region and right-region

heights is 22.70, which is in good agreement with the predicted value.
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Table 8.1. Comparison of actual and predicted Gabor-filter output values for
the step signature in Fig. 8.3b.

location actual | predicted
+ region 20.0 224

max. undershoot | 0.010 0.024
L region 0.88 1.00

In this example, undershoot occurs in the Gabor-filter output, because T3 is neg-
ative. This phenomena is discussed in Section 5.2.1 and in Appendix B. Al*hough (5.21)
demonstrates the possibility of undershoot, (5.18) must be evaluated to determine the
position and extent of undershoot. Letting 73 = 22.38 and 7 = -1 in (5.18), an
estimate of the signature in Fig. 8.3b was computed. Table 8.1 compares actual and
predicted signature values at selected positions. (The actual values have be=n scaled by
a constant factor for comparison.) This example illustrates that even if the Gabor-filter
center frequency equals an harmonic, undershoot can occur: however, overshoot cannot
occur for this situation, as discussed in Appendix B.

Both overshoot and undershoot can occur if the Gabor filter is not tuned to an
harmonic. Fig. 8.3d gives an example. This figure represents the output of a Gabor
filter having center frequency (U = 0.0283,V = -0.0283) (input is Fig. 8.3a). The
texel spacing is 24 pixels. Thus, the closest harmonic to the filter center frequency is
k/Az = [/Ay = 1/24 = 0.0417. The center frequency then is displaced §U = 6V =
0.0134 cycles/pixel away from the nearest harmonic. Using these parameters in (B.1)

to compute predicted values of Gabor-filter output m(z,-) at selected z reveals good
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Table 8.2. Comparison of actual and predicted Gabor-filter output values for
the step signature in Fig. 8.3d.

location actual | predicted

+ region 33.5 38.2
max. overshoot 88.7 85.1
max. undershoot | 0.11 0.80

L region 1.35 1.71

agreement with the actual values of Fig. 8.3d (see Table 8.2).

8.2.2 Difference in Texel Orientation

Fig. 8.4a shows a uniformly textured image consisting of texels that differ in
orientation. Figs. 8.4b and 8.4c show the outputs of two Gabor filters that use the same
center frequency but use different values for . In Fig. 8.4b, o equals the texel spacing,
and a smooth step signature is achieved. The region on the right produces the greatest
Gabor-filter output m, because the orientation of the Gabor-filter sinusoid matches the
texel orientations on the right. In Fig. 8.4c, 0 = 8, which is 1/3 of the texel spacing. For
this small o, the GEF doesn’t cover multiple texels as it moves across the image, resulting
in ripple in the filter output. The resulting signature, though, exhibits a sharper step

transition than Fig. 8.4b.

8.2.3 Differences in Horizontal and Vertical Texel Spacing

Fig. 8.5a is equivalent to Fig. 8.3a, with the exception that Ay = 2Azr for the

two textures. Fig. 8.5b shows a corresponding Gabor filter output when its GEF uses
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a symmetrical Gaussian (i.e., o = 0, or A = 1). Note the occurrence of significant
ripple in the y direction. Fig. 8.5c gives the Gabor-filter output for a filter with A = 2
(oy = 20;). For this case, the output is “smooth” in both z and y and resembles the

smooth step of Fig. 8.3b.

8.2.4 Texture-Phase Differences

Fig. 8.6a consists of two identically textured regions, but the regions are shifted
relative to each other in both the z and y directions (Fig. 1.3b gives a simpler example).
The texel spacing is 24 pixels in both z and y, and the region on the right is shifted -8
pixels in the y direction and -4 pixels in the z direction relative to the region on the left.
Fig. 8.6b shows the output of a Gabor filter that is tuned to a frequency that is close to
an harmonic. Note that a valley signature results.

The harmonics are located at (0.042k, 0.042/) and the center frequency of the filter
is (U = 0.0039, V = -0.0410); so the indices of the nearest corresponding harmonic are
k =0and i = —1. The filter’s specified center frequency (U, V) differs from one of the
harmonics by an amount (6U = 0.039, §V = 0.001). From the analysis of Section 5.2.2,
a ridge-signature output is expected. Using the method developed in Appendix C for
computing z, however, reveals that z = 0.068. Thus, even though éU is nonzero, a valley

is predicted rather than a ridge. This occurs because

¥ = 2r[kéz/Az + i6y/Ay] = 2x(—1)(—8/24) radians = 120°

which is significantly different from ¥max in Table 5.1. The predicted depth of the valley
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then is 0.068 times the Gabor-filter output at points far removed from the transition.
The maximum and minimum outputs of Fig. 8.6b imply that the valley is in fact 0.124
times the value at remote points. This error can be explained in part by the sensitivity of
(5.42) to ¥. Recall that 1 depends on the texture-phase shift in the image. Reducing the
phase shift in the y direction by just 1/2 pixel changes the predicted value to z = 0.141.

Again using Fig. 8.6a, a Gabor filter was applied whose center frequency exactly
matched the first harmonic in u (output not shown but similar to Fig. 8.6b). For this
case, the expression for the relative depth of the valley is derived from (5.29), which is
much less sensitive to 1. Using (5.29) results in z = 0.5, which differs by only 7% from
the actual valley depth.

Fig. 8.6c shows the result of processing Fig. 8.6a using a Gabor filter that is tuned
to a frequency significantly displaced from an harmonic. A ridge signature results. The
harmonics are located at (0.042 - £,0.042 - [) and the center frequency of the filter is

(U =0.012,V = —0.0410),s0 k=0 and { = 1. ¢, and oy again equal 24. From (5.26)

¥ = 2n[kéz/Az + I6y/Ay] = 27(1)(~8/24) radians = —120°

and the method developed in Appendix C predicts a ridge height >z = 2.973. The actual
ridge height in Fig. 8.6¢ is 3.24, a 9% error.
8.2.5 Texel-Spacing Difference between Regions

Fig. 8.7a shows a uniformly textured image similar to Fig. 8.3a, except that the

texel spacing differs between the two regions. Fig. 8.7b shows a corresponding Gabor-
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filter output, where the filter is tuned to an harmonic corresponding to the region of
+s. Although the signature is predominantly a step, some undershoot is present near
the texture boundary. Fig. 8.7c shows a similar filter output, but now the filter is tuned
to an harmonic for the region of Ls. In this case, both overshoot and undershoot are
present. Observe how in each case (Figs. 8.7b and 8.7c) that the region producing the
greatest filter response corresponds to the one whose harmonic matches the filter center

frequency. The analysis of Appendix B verifies this empirical result.

8.2.6 Nonuniform Textures

Fig. 8.8a depicts a nonuniformly textured image produced by introducing ran-
dom orientations and positional perturbations into the texels (+s and Ls) of Fig. 8.3a.
Fig. 8.8b shows a filter output. The random effects cause large fluctuations in the output.
Fig. 8.8¢c shows the result of applying a Canny edge detector to Fig. 8.8b. Because of
the fluctuations, the detected boundary does not perfectly match the “actual” boundary.
The predicted boundary is, for the most part, correct to within £1/2 texel. For typi-
cal nonuniform textures (where the actual texture boundary is not well defined), such
fluctuation in the computed texture boundary is expected.

Section 7.2 presented a synthetic texture pair consisting of triangles and arrows,
and a corresponding Gabor-filter output signature exhibiting a step signature (Fig. 7.1).
This image can also produce a signature exhibiting a step change in average local output
variation. Fig. 8.9a shows a Gabor filter output exhibiting such a signature (the input
image is Fig. 7.1a). After applying (5.43), the change in average local output variation

was transformed to the step signature shown in Fig. 8.9b.
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As previous examples illustrate, a single stage filter (C1 configuration - Sec-
tion 7.2) often produces adequate results; however. this is not always the case. The
following examples illustrate that signature quality can sometimes be improved by using
a C2 configuration filter (see Section 7.2). Frequency parameters were determined by the
GFFS algorithm, and results are compared to filters with frequencies determined by the
DFT method. Both natural and synthetic textures are examined. All natural textures
were digitized (512 x 512 pixels, 256 graylevels) from Brodatz {13]. and all texture pairs
were adjusted for equal average intensity. For simplicity, only symmetrical Gabor filters
were used; i.e., 0 = gy = 0. These examples match up textures from various classes
(per Rao’s classification [12]). This gives a broad. strong test for the validity of the
analyses in Chapter 5 and the efficacy of the GFFS algorithm developed in Chapter 6.

Let us begin by examining the triangles-and-arrows image in Fig. 7.1 in more
detail. Fig. 7.1c is the output of a Gabor-filter (C1 configuration) with the frequency
parameters determined by GFFS and ¢ equal to the texel spacing. For this example,
GFFS predicts similar frequency parameters for ¢’s ranging from 12 to 36 pixels. So, in
this case, the results are insensitive to . Figs. 7.1d and 7.1e show the two stages of a C2
configuration filter applied to Fig. 7.1a. Fig. 7.1b shows the result of applying a Canny
edge detector to Fig. 7.1e. The DFT method was also applied to Fig. 7.1a. DFT predicts
a similar radial frequency, but the orientation angle o has the opposite sign (—45° as
opposed to 45°). The GFFS algorithm ranks the DFT prediction 20th (o = 24), with
a corresponding Pr value of 0.066. The output signature for the DFT-predicted value
(not shown) was examined and found to be similar to Fig. 7.1c.

Fig. 8.10a shows a pair of natural textures. The left region is Brodatz’s “grass
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lawn” (D9) and the right region is “cotton canvas” (D77). D9 is an example of a disor-
dered texture, while D77 is strongly-ordered [12]. GFFS again predicts the same center
frequency for o ranging from 12 through 36; however. in this case, it agrees with the
DFT predicted values. Fig. 8.10c shows the result of applying a C1 configuration filter
to Fig. 8.10a. In this case Pg <« 0.00001, which is consistent with the improved signa-
ture quality compared to Fig. 7.1c. Figs. 8.10d and 8.10e show the two stages of a C2
configuration filter applied to Fig. 8.10a. For this example. high quality signatures are
obtained for both C1 and C2 configurations. Fig. %.10b shows the result of applying a
Canny edge detector to Fig. 8.10e.

Fig. 8.11a consists of “straw matting”™ (D55) and “raffia” (D84). Both of these
textures are strongly-ordered [12]. Notice that although the texels in the two regions
are perceptually different, they are similar in size, orientation, and aspect ratio. In
this case, for both ¢ = 36 and ¢ = 24, GFFS predfcts two very different frequencies
(F = 0.491,¢ = 59.4° and F = 0.046,¢ = 87.4%) with similar error probabilities. The
center frequency corresponding to the smaller value of F agrees with the DFT predicted
value. At ¢ = 12, however, GFFS predicts Fs that are all much greater than the DFT
value. In general, it can be expected that for large os, DFT and GFFS will predict
similar values. This is because as the effective window size approaches the size of the
region, the windowed Fourier transform approaches the discrete Fourier transform of the
entire region. Fig. S.11c shows the result of applving a C1 configuration filter to Fig.
8.11a. Figs. 8.11d and 8.11e show the two stages in applying a C2 filter to the same
texture pair. Here we can begin to see a difference in signature quality between the C1

and C2 configurations. Fig. &.11b shows the result of applying a Canny edge detector
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to Fig. 8.11c. (In this case, edge localization is slightly better for the C1 output.)

Fig. 8.12a consists of “pressed cork™ (D4) and “beach sand™ (D29). Rao classifies
D4 as disordered and D29 as strongly-ordered [12]. In spite of this difference in type, the
large variation in grain size of the sand makes these textures perceptually very similar.
In this case, the values predicted by DFT and GFFS differ greatly even for o = 36.
Fig. 8.12b shows the result of applying a C1 filter to Fig. 8.12a with the DFT predicted
frequency values. Note that although several peaks occur, there seems to be no indication
of the texture-boundary location. A C2 filter was also applied to this texture pair with
the same frequency value as in Fig. 8.12b, but with ¢ = 12. The result (not shown)
shows little, if any, improvement. In this case. the DFT method fails to predict a useful
center frequency. Also tested were the next two best frequency values predicted by the
DFT method with similarly poor results (not shown). Fig. 8.12c shows the result of
applving a C1 filter to Fig. 8.12a using the center frequency predicted by GFFS. Here,
using a large value of o produces too much discrimination within the D29 region. By
reducing o and applying a C2 configuration filter to this texture pair, the sequence shown
in Figs. 8.12d and 8.12e was obtained. Note the high quality of the step after the <econd
stage.

As the previous examples indicate. the DFT method can predict suitable filter

parameters. It is also faster than GFFS. It is. however, deficient in the following ways:

e The DFT method does not always predict the same center frequency as GFFS.

When this occurs, GFFS produces a better signature.
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e GFFS, with its quantitative measure of signature quality, provides a way of e.-
timating the relative discriminability among different texture pairs. The DFT

provides no such indication.

e In some cases, the best choice of center frequency depends on o, and o,. With
GFFS, the best center frequency can be determined for any value of o, and oy.
The DFT method, on the other hand, can produce only one value based on the

size of the entire region.

e Section 7.2.5 described how zero padding can increase the number of center fre-
quencies tested. In this way, it is possible to check that signature quality degrades
gracefully as frequency varies. In practice, GFFS predicts similar signature quality
over a wide range of adjacent frequency components. For the DFT method, the
best choices often occur at very different frequency values. Thus it is uncertain

how sensitive the “best” frequency is to slight frequency perturbations.

e The DFT method cannot predict center frequencies for the valley/ridge or difference-

in-variance signatures.

8.2.7 Miscellaneous Texture Examples

The examples above are meant to typify Gabor-filter outputs, but there are ex-
ceptional cases. For example, if a filter is tuned to a frequency component that has
similar magnitude in both textured regions, the output can be non-discriminating; i.e.,

the filter is not appropriate for discriminating between these two regions. If the regions
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are uniform, then the filter output will be flat. If they are nonuniform, then the filter out-
puts may exhibit many fluctuations and show no distinguishing characteristics between
regions. In the extreme case, when the frequency composition of the regions are similar,
the image cannot be segmented. An example of such an image is the nonuniform texture
pair consisting of Rs and mirror-image Rs presented in Fig. 2.3. Although many C1 and
C2 configuration filters were applied to this image (results not shown), no distinct output
signatures were found. It appears that the filter configurations developed here are inef-
fective in segmenting this texture. While this might be considered a limitation, at least
it agrees with perception. It should be noted that because of the inherent variability
within textures, no one algorithm can successfully segment all textures. For without a
mathematical definition of texture, who is to say when a difference in input corresponds
to a difference in texture or simply an acceptable variation within the texture? Thus,
using human perception as a benchmark does not seem unreasonable.

Another exceptional case is when a filter is tuned to a frequency band not in-
volved in determining a difference in texture. In this case, a discontinuity might occur
at a location other than the texture boundary. This “problem™ also exists for the human
visual system in the form of optical illusions and the perception of structures within
structures. Fig. 8.13 is an example demonstrating this phenomenon. Fig. 8.13a is an
example of structure within texture (a similar example was mentioned in Chapter 2),
first presented by Beck [9]. The left region consists of alternating rows of right-facing-Us
and left-facing-Us, while the right region consists of alternating columns. The interesting
feature here is that the texture boundary is not readily perceived. Rather, one tends

to see three vertical black bars on the right. Beck refers to these bars as “emergent”
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Fig. 8.13. Beck’s emergent features:

(a) Input image.

(b) Gabor-filter output using a C1 filter, ¢ = 1 pixel, F = 0.083 cycles/pixel,
¢ = 0.0°.
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features. Fig. 8.13b shows the Gabor-filter output for a C1 configuration filter (param-
eters determined by experiment). Note that the black bars are readily distinguished
by the three vertical ridges in Fig. 8.13b, whereas the texture boundary produces no
distinct output feature. This suggests that these simple filters are capable of detecting
features previously thought to involve more complex processing (e.g., edge detection,

feature linking, inhibitory interactions) [9, 56, 62].




Chapter 9

Conclusion

This thesis studies the design of filters for texture segmentation. It provides
mathematical and experimental evidence suggesting that the application of Gabor filters
to a textured image produces certain characteristic output signatures, that are useful
for segmenting the image. Although the quantitative analysis is limited to a simplified
texture subset, qualitative arguments and experimental results are provided indicating
that the results apply in general.

Signature characteristics can best be described by dividing textures into two
classes: uniform and nonuniform. For the class of uniform textures, output signatures
occur in one of three forms, either a step. vallev. or ridge. Analysis shows that the
step signature occurs when two textured regions differ in texel-frequency composition.
On the other hand, the valley and ridge signatures occur when two regions exhibit a
texture-phase discontinuity. The regular nature of uniform textures produces smooth,
well behaved signatures that are easy to segment using edge-detection methods. For the
step signature, region-based techniques would also be effective. For nonuniform textures,
the step, valley, and ridge signatures still occur: however, the presence of texel variation
induces local fluctuations in the signatures. This makes subsequent segmentation less
precise. For nonuniform textures. a fourth signature type can occur. This signature

takes the form of a step change in average local outpu* variation.
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Although the characteristic signatures mentioned above are useful for texture seg-
mentation, qualily signatures occur only when the five filter parameters (o:,0,,U,V,0)
are “tuned” to the texture being processed. Analysis shows that the choice of (o,,0,)
depends on the texel spacing within the texture. This choice is a tradeoff between sig-
nature smoothness and accurate texture-boundary localization. It is further shown that
when texel spacing differs in z and y, asymmetric filters (i.e., filters consisting of a non-
circularly symmetric Gaussian) can be beneficial. For asymmetric filters, 8 should be
chosen to match the texel-spacing lattice. The choice of filter center frequency (U, V),
on the other hand, is determincd both by the texel spacing and by the difference in
frequency content between texels in different regions. The texel spacing determines cer-
tain frequency harmonics in the texel Fourier transform. It is shown that, in order to
avoid signature anomalies called overshoot and undershoot, (U, V) should equal one of
these harmonics. It is further shown that the harmonic that differs most between texels
in different regions produces the “best” signature (i.e., greatest amplitude difference).
These frequency guidelines, however, were developed for vaifor  textures and are only
approximately correct for nonuniform and natural textures. So, to provide effective fre-
quency parameters for textures in general, an algorithm was developed that finds the
“best” center frequencies for any given texture pair.

The filters used in this thesis are based on Gabor elementary functions. They were
chosen because they have certain desirable properties for texture analysis. They are also
suggested frequently in the literature. Results show, however, that it is the bandpass
characteristic of these functions that is responsible for producing signatures; therefore,

any class of functions that exhibit bandpass characteristics and are well localized in both
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the space and spatial-frequency domains would suffice.

This thesis provides a detailed analysis of individual filters. There are, however,
two questions that remain unresolved: Should an alternate nonlinearity be used after
applying a bandpass filter? How should filters be configured to form a filter bank? The
question of choosing a nonlinearity is discussed in Appendix A. The issue of filter bank
con; guration is briefly discussed below.

It is clear that in an autonomous texture-segmentation architecture, filters cannot
be customized to individual textures. In principle, a bank of filters is required that span
the expected orientation and frequency domain of the textures of interest. Although
certain constraints on filter-bank design were presented in Chapter 6, two major issues

remain:

1. What characteristics of the filter output should be used for segmentaticn - discon-

tinuities at texture boundaries or texture-region information?

2. How should the response from multiple filters be integrated into a meaningful
output - should one, possibly dominant, output be selected as representative (filter-
output selection), or should many filter outputs be combined into a kind of feature

vector (filter-output combination)?

This thesis shows that discontinuities in a single filter-output can be effective for texture
segmentation; thus discontinuity detection and filter selection seem appropriate. In fact,
for textures exhibiting only a texture-phase discontinuity as in Fig. 1.3, discontinuity
detection is required, since the textured regions are identical. For texture classification,

however, discontinuities alone cannot provide sufficient information. It seems that, for
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this task, region data from multiple filters is required. In some cases, it seems that
multiple filter outputs are also required for texture segmentation, especially if simulating
human performance is desired. Consider the unifor:m texture pair in Fig. 3.3c. The
human visual system has difficulty in segmenting this image; yet, many Gabor filters
produce distinct filter-output discontinuities at the texture boundary. This is true, in
fact, for any uniform texture pair whose regions have different constituent texels. This
occurs because regions with different texels (and thus different texel Fourier transforms)
produce different filter outputs. And, due to the lack of “noise” in uniform textures,
even small filter-output differences are detectable. So why is Fig. 3.3c so difficult to
segment for humans? Examining the Fourier transform magnitudes of the texels in
Fig. 3.3c reveals that although occasional differences exist between the two transforms,
on the average they are quite similar (much more so than for the texels of Fig. 3.3a).
This suggests that the human visual system might be pooling information from multiple
filters and basing segmentation on some form of average (possibly with thresholding).
This procedure would also provide noise immuvnity. Clearly, both of these issues require

additional study.




Appendix A

Choosing the Nonlinearity

This appendix further discusses the choice of nonlinearity for the Gabor filter
(3.1). As shown below, computing the magnitude after filtering results in a loss of
information. In particular, the phase component of the filter output is discarded. In
fact, some experiments have shown that the image-phase component is more important in
preserving image quality than is the amplitude component [81]. To avoid this information
loss, some researchers have proposed methods for extracting phase information directly
53, 82).

The primary motivation for ignoring phase comes from psychophysical stud-
ies of the human visual system. Although neurophysiological evidence suggests that
quadrature-pair filters might exist in the visual cortex [83] (thus enabling phase detec-
tion), certain psychophysical results suggest that humans do not encode phase informa-
tion directly [84], at least not for texture segmentation. Consequently, some researchers
have explicitly eliminated phase information from their texture-segmentation aigorithms
[38, 56]. Although, admittedly, information is lost by ignoring phase, some phase-related
phenomena can be recovered directly from the amplitude envelope (see Bovik [66] for a
discussion of the effect of phase on the amplitude envelope). This is because the phase
and amplitude components are not independent: a change in one will produce a change

in the other.
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To further explore these points, suppose that instead of computing the magni-
tude of the GEF-filtered image, one simply demodulates this image and applies a lowpass
filter. Demodulating the GEF-filtered image (5.17), essentially eliminates the complex
exponential leaving a pair of offset gates with complez coefficients T} and T;. Contrast
this with (5.18), where the magnitude operation has been applied, and only the magni-
tudes of T} and T, determine the gate amplitudes. If T} and T3 differ only in sign, the
Gabor-filter output m in (5.18) is nondiscriminating. This implies that if textures differ
only in the sign of contrast, the textures cannot be discriminated. This is precisely the
argument used by Malik and Perona in criticizing the magnitude computation [56]. By
using the demodulation approach, though, the coefficients T and T, after demodulation
are complex. Hence the filter output will reflect not only differences in sign, but also
differences in phase. Although this approach is more discriminating, the sensitivity to
phase will lead to segmentations that are not consistent with human performance.
There is a method for retaining sign differences between T} and T3 while ignoring
phase information. The method involves convolving the image with only the real portion
of a GEF. More precisely, define a new filter h, as a Gaussian modulated sinusoid (cf.
(3.2))

h.(z,y) = g(z'y') cos[(Uz + Vy) + ¢} (A.1)

where ¢ is some arbitrary constant phase angle. Let H, be the Fourier transform of A,.

H.(u,v)=1/2(Hoe 7% + H_e'%) (A.2)
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where

Hy = exp {—%[(ax[u +UI')? + (oy[v + V]')2]}

H_. = exp {-—%[(a,[u - U]I)2 + (ay[v - V]I)2]}

Note that H, is similar to (3.4) except that it is symmetric about the frequency origin.

Applying H, to I in (5.9) gives (cf. (5.14-5.15))

L(u,v)=

T

where

Hye™*S(u+ U0+ V) {T1(U, V) + To(U, V)e " (+0]

=~
i
|

H_eS(u—U,v = V) {Ty(<U,=V) + Tp(~U, -V)e""(-)}

Note that [, is equivalent to the sum of Iy in (5.14) and the mirror image of I;.
We now demodulate and lowpass filter I,. This is equivaient to shifting both I

and the mirror image of I; to the origin and summing them. This results in

I(u,v) = K {Tx(U, V) + Tp(U, V)e“i'“} + K {T,(—U, -V)+ Ty(-U, _V)e—jru}
(A.4)

where

K = g2 exp { =5l(0aw + (0,001} S(u.c)
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For real images T (U, V) and T(-U, —V') are complex conjugates, as are To(U, V") and

T2(-U, =V). Therefore, (A.4) reduces to
Is(u,v) ~ 2K {Re[Ty] + Re[Tple™i"*} (A.5)

By arguments similar to those used for deriving the step signature in Section 5.2.1,
the final output of the alternate filter i4(z,y), which is given by the inverse Fourier
transform of (A.5), approximates two offset gate functions coincident with the region
boundaries. The amplitudes of the gates are proportional to the real parts of T} and
T, rather than their magnitude. Thus the sign is preserved without retaining phase
information. This approach then can discriminate textures whose texels differ only in
the sign of contrast.

It is important to point out that all of the operations used here are linear, and
as mentioned in Chapter 3, some form of nonlinearity is essential in simulating human
performance (assuming this is desirable). If a suitable nonlinearity could be found and
imposed after demodulation, this method could provide an alternative to the more elab-
orate architecture proposed by Malik and Perona [56].

Farrokhnia and Jain used h, in their texture-segmentation work, but still em-
ployed the magnitude computation [69, 70]; however, it was just shown that the sign
information is still lost with this approach. The contribution here is analytically show-
ing the potential of demodulating the filter output and contrasting this approach with
other methods. It is important to realize that simply using h, as a filter does not guar-

antee that sign information will be preserved.




Appendix B

Overshoot and Undershoot

Section 5.2.1 considered what happens when a Gabor filter is applied to a uni-
formly textured image that contains two textures whose respective texels differ. As was
shown, if the Gabor filter is not tuned to an harmonic, the step signature can exhibit
overshoot and/or undershoot near the texture boundary. Also, if the Gabor filter is
tuned to an harmonic, overshoot cannot occur in the step signature. This appendix
discusses the issues of overshoot and undershoot.

First, consider the case when the Gabor filter is not tuned to an harmonic. Con-
sider the expression for iy in (5.17). This represents the output of a GEF-filtered image.
If the GEF is not tuned to an harmonic, then by the ridge-signature arguments of Sec-
tion 5.2.2, sy(z,y) and sy(xr — r,y) are complex and defined as in (5.31) and (5.32).

Computing the complex magnitude of (5.17) for this case gives

2r

ey \/P,P; + PoP; + PP} + PoPr (B.1)

m(z,y) = lig(z,y)| =

where Pp = T1(U,V)sg(z,y) and P, = To(U,V)sy(z — r,y). By an analysis similar to

that for the ridge, it can be shown that

2

Az:Ay‘Tlhl

m(zvy) = /il =
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far to the left of the texture boundary, and

2
AzAy

m(z,y) = Az = T2l

far to the right of the texture boundary, where 7; is defined in (5.37). Per (5.34), A,
in (5.37) is a cosine-modulated Gaussian. Then, for large r, v; < 1. Thus A, and A,
are less than when the filter is tuned to an harmonic (cf. A, and A; at the end of
Section 5.2.1). Because the imaginary component of s; does not go to zero near the
texture boundary, however, constructive and destructive interference can occur between
terms in (B.1) to produce values of m < min(A;, A;) (undershoot) or > max(A4;, Az)
(overshoot).

An analytical demonstration of overshoot or undershoot using (B.1) is difficult.
The problem is that the location of the overshoot/undershoot is not in general at the
texture boundary, and analyzing (B.1) away from the boundary is complicated by the
interactions of several complex variables. As an alternative, Chapter 8 presents examples
of Gabor-filtered texture pairs that exhibit overshoot and undershoot and compares the
corresponding outputs to the signatures predicted by (B.1).

We now show for the scenario of Section 5.2.1 that if a Gabor filter is tuned to
an harmonic, overshoot cannot occur in a step signature. The absence of overshoot
can be demonstrated by showing that (5.18) cannot achieve a value |if| > (—A:—_"ﬁ) .
max(|T1|.|T2}); i.e., |if| cannot exceed its maximum asymptotic value.

Squaring (5.18), eliminating the constants Az and Ay, and realizing that ss(z —
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r,y) = 1 - sg(z,y), the problem reduces to showing that k¥ < max(|T)|?,|T3|?), where

k=TNT;s} 4+ TT5(1 - s5)? + (TyT2 + ThT5)sg(1 - s5).

Since k is quadratic in sy, it has one maximum or minimum. The quantity

d*k

I = N7 + Tot; - TW/T; - T7 Ty = (Ty - To)(Th - To)"

is always non-negative. Thus, k£ has a single minimum, and its maximum values must
occur at the end points; i.e., at sy = 0or sy = 1. If sy = 1, then k = |Th}%. If sy = 0,

then k = |T3|%, which implies that k < max(|T1|?,|T2|?).




Appendix C

Estimating Ridge Height

As Section 5.2.2 showed, if an improperly tuned Gabor filter is applied to an
image exhibiting a texture-phase difference between two regions, a ridge signature can
arise at the region (texture) boundary. To segment such an image, the location of the
ridge must be detected. The ease of detecting a ridge signature is related to its height.
This appendix develops a method for computing this height.

Ridge height at a texture-phase discontinuity is given by v,Cz(a, ) in (5.40),
where v, C represents the Gabor-filtered output far removed from the discontinuity and
z > 1 represents the relative ridge height. To determine 2, a is computed by resolving
(5.37), (5.38), and (5.41). Assume that the spatial extent of the GEF h is effectively

contained within the image boundaries. Thus, (5.37) and (5.38) become

Q

1

2/:0 /0°° ho(a, B)dad

o0 00
2 / / g(z',y') cos[§Uz + 6§V y|dzdy
-o00 Y0

Q

2 % 2/:/0°°h.-(a,ﬂ)dadﬁ

Q

o0 (> <]
2/ / g(2’,y')sin[6Uz + 6Vy|dzdy
-00 J0
After expanding the trigonometric functions and separating the integrals, we find that

¢ = 4dcsycsy




c2 = 4dcsvssu

where

1 / -1/2(x/0z)?
¢ = e )" cos(6U

1

[ =
oV V2ro,
1

S =
it VvVaror

/oo e~ 1/20/93)? ¢o5(§V y)
0

/oo e~1/2z/o:) sin(6Uz)
()}
Thus, a becomes

a=czf/c1 = ssufcsu.

Evaluation of (C.1-C.3) gives

o =\/2/76U - 05 Fia (% g; %(w -a,)2)
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(C.1)

(C.2)

(C.3)

(C.4)

where Fj ) represents the Kummer’s confluent hypergeometric series. Thus, a depends

only on 86U - a,. Table C.1 shows values of a as a function of éU - o,

Given a Gabor filter with parameters (0:, oy, U, V, 8), we can determine §U

by finding the harmonic indices (k,{) such that |U — 2rk/Az| and |V ~ 2xi/Ay| are

minimized. Then, 6U = U - 27rI}/A:r, and a can be determined from Table C.1 or

(C.4). Given a and using (k,I) to compute ¥ in (5.26), the relative ridge height can be

determined from (5.42).




Table C.1. Numerical evaluation of the integral ratio a = ssy/csv as a function
of the product of parameters 6U and o;.

&U - o, a
0.05 0.255

0.0937 | 0.499
0.10 0.536
0.20 1.343
0.288 | 2.834
0.30 3.166
0.50 40,96




Appendix D

Implementation Details

This appendix discusses the implementation details of filter application and edge
detection. Applying a Gabor filter to an image involves convolving the image with a GEF
and then computing the magnitude of the convolution result. Convolution is performed
in the frequency domain by using the Discrete Fourier Transform (DFT). The steps in

this procedure are summarized below:

1. Input the filter parameters A, f, ¢, and o, where ) defines the aspect ratio of the
filter, f and ¢ determine the filter center frequency, and o corresponds to o, in

(3.3).
2. Input the textured image I as a square array (n X n).

3. Define the dimensions of the filter in z and y as z = 60+ 1 and y = 6d0c + 1

respectively.

4. Append zeros to the input array I to form a square array Iy of dimension d =

n + max(z,y).
5. Compute the DFT of the expanded input array /4.

6. Construct an z X y filter array F by sampling the equation for a GEF determined

by the filter parameters input at step (1).
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. Append zeros to the filter array F to form a square array Fy equal in size to the

-1

expanded input array Ij.
8. Compute the DFT of the expanded filter array Fjy.

9. Multiply the DFT of I; by the DFT of Fy, and compute the inverse DFT of the
result. Call the resulting output array Ry. At this point the GEF has been applied
to *he input image. If a lowpass filter is to be used to smooth the output (as for a

C2 configuration filter), the following additional steps are performed:

e Discard all puints within max(z,y) from the boundaries of R; to eliminate
boundary anomalies. Call the new array R,,, where m = d — 2max(z,y) is

its dimension.
e Input the size parameter o; for the lowpass filter.
o Define both the z and y dimensions of the lowpass filte: equal to s = 60+ 1

e Construct an s X s lowpass filter array G by sampling the equation for a

circularly symmetric Gaussian with parameter o;.
e Append zeros to R, to form a square array R, of dimension p = m + s.
e Append zeros to G to form a square array G, equal in size to R,.
o Compute the DF" of R, and the DFT of G,.

e Multiply the DFT of R, by the DFT of Gy, and compute the inverse DFT
of the result. Call the result S,. At this point the lowpass filter has been

anplied to GEF output.

10. Compute the magnitude of the output array (either Rq or S,).
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11. Discard appropriate boundary points.

12. Scale the result to the range [0 — 255).

Note that the DFT algorithm used in this implementation omits the normal 1/N? scaling
factor associated with the DFT. This results in abnormally large output values when
DFTs are multiplied and is the reason why the reported filter output values are so large.

The detection of edges is implemented as describe by Canny [75]. Given the filter
output as computed above, the directional derivatives in both the z and y directions are
computed at each point (7, 7) in tiic output. The nearest 2 neighbors in each direction
are used to estimate these directional derivatives. Next, the gradient is estimated from
the directional derivatives at each point (¢,j). These gradients are then nonmaximally
suppressed. That is, at each point (7,7}, the gradient is compared to gradients in a
eight-point neighborhood. If the gradient at point (7, 7) in not the local maximum, it
is discarded. Finally, thresholding is used to eliminate small, spurious gradients. The

remaining nonzero points correspond to the edges in the filter output.
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