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ABSTRACT

Self-localized kink structures have been observed in standing surface

gravity waves in a parametrically driven annular channel of liquid. The kink

regions have substantially greater amplitude and smaller wavelength than the

extended mode region, and can exist indefinitely only for sufficiently large drive

levels such that the structures exhibit violent breaking and jetting motion. For

lower drive levels, the structures exist as transients that spontaneously

participate in the transition from one mode to a mode with either one less or one

more wavelength. In this mode hopping process, the destruction or creation of

the wavelength occurs in the kink region. The kink structures are predicted to

exist according to a theory that simultaneously allows amplitude and wave

number modulations of a finite-amplitude standing wave. This situation is in

fundamental contrast to nonlinear Schrodinger solitons, which correspond to

only amplitude modulations, and to all other known types of solitons.
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I. INTRODUCTION

Far off equilibrium systems can exhibit behavior that is fundamentally

different from that in the near-equilibrium limit. Examples are shock wavcs,

solitons (discussed below), chaos, and turbulence. We have observed new

dramatic behavior in a system driven far from equilibrium. In our experiment,

steady-state standing waves are maintained on the surface of a liquid in a

vertically oscillated annular channel. If the drive frequency is slowly and

monotonically changed, and the drive amplitude is sufficiently large, the

transition to the next mode is accompanied by the spontaneous formation of a

localized kink structure (Fig. 1.1). The kink can appear at any location around

the annulus, and dies out as the transition is completed. It is in the kink

structure that the creation of one wavelength occurs in the case of up-hopping,

or the annihilation of one wavelength in the case of down-hopping. This kink-

assisted mode hopping, which we have investigated both experimentally and

theoretically, is the subject of this thesis.

In systems that are locally (as opposed to globally) driven, there is a

simple transition from one mode to another as the drive frequency is slowly

changed: nodes continuously emerge from or disappear into the drive location.

This occurs, for example, in sound waves driven by a loudspeaker at one end of

a cylinder. For systems that are weakly globally driven, the transitions are even

simpler: between the modes there are frequency gaps in which no excitation

occurs. However, the situation is fundamentally different for systems that are

globally driven far from equilibrium. In this case there is hopping at finite

amplitude from one mode to another, and it is an interesting question how a

wavelength is created or annihilated in the process.
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An important occurrence of mode hopping is in semiconductor diode

lasers. As the temperature or current (analogous to our drive frequency or

amplitude, respectively) is changed, the frequency can hysteretically jump to a

different value. More important in these systems is that mode hopping evidently

plays a role in partition noise, which is a result of the excitation of different

modes whose amplitudes vary in time (Weidel and Petermann, 1981). This

effect is not restricted to multimode lasers, but can also occur in some "single"-

frequency lasers operated at high current levels. An understanding of the

dynamics of mode hopping may thus lead to the manufacture of diode lasers

with reduced noise characteristics.

We believe that the nature of the mode hopping in the surface wave

resonator is a general phenomenon which may occur in a variety of systems,

including diode lasers (although this connection has not yet been established).

Indeed, as explained in Sec. IV.B, we have observed similar behavior in the

mode hopping of computer-simulated waves on a string. The surface wave

resonator could thus be an accessible system with regard to transient behavior

that is difficult or impossible to directly observe in other systems.

The discovery of the kink-assisted mode hopping was a result of ongoing

investigations of solitons, which are exponentially localized waves of constant

shape in dispersive systems. In such a wave there is a stable balance between

nonlinearity, which tends to cause the wave to shock, and dispersion, which

tends to cause the wave to spread (because components of different wavelength

travel at different speeds). Solitons were first observed as surface waves in a

canal in 1834, and are planned to be employed this decade as optical waves in

transoceanic fiber telecommunications (Mollenauer et al., 1991). Solitons may
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also play a role in energy and information transfer in some biological systems

(Davydov, 1985). The fiber optic and Davydov solitons are of the nonlinear

Schrodinger (NLS) type.

An example of a soliton is a standing localized surface wave observed in

a long uniform channel of deep liquid (Wu et al., 1984). Steady-state motion is

achieved by vertically oscillating the channel. In the frame of reference of the

channel, the liquid is motionless except in a relatively small region where it

sloshes transverse to the channel (Fig. 1.2a). The state is referred to as a

breather. The underlying approximate description was found to be an NLS

equation (Larraza and Putterman, 1984), which describes these states as

amplitude modulations of the cutoff mode (in which the liquid sloshes

transversely with uniform amplitude). The breather can be understood as a self-

trapped state which can occur because the oscillations soften, i.e., the

resonance frequency decreases for greater response amplitudes. The

oscillations harden for a sufficiently shallow liquid, and consequently a cutoff

kink soliton can exist (Denardo et al., 1990). In this state, the liquid sloshes at

constant amplitude transverse to the channel in two extended regions, with a

1800 phase difference (Fig. 1.2b). The kink is the localized transition that

connects the motion in the two regions. The observations showed that the

surface wave kink can exist at amplitudes substantially beyond which the

perturbation theory is valid, indicating that the state is a more general

phenomenon than the theory predicts.

Experiments with a mechanical lattice yielded analogous breather and

kink solitons and, more importantly, fundamentally new types of localized states

(Denardo et al., 1992a). These are domain walls, which are localized transition

3



regions that connect two standing wave regions of different wave number, and

noncutoff kinks, which connect two standing wave regions of the same wave

number with a difference in spatial phase (Fig. 1.3). Neither the NLS equation

nor any other known modulational equation describes these new states. An

understanding of the states may thus lead to new solitons. Theoretical progress

has recently been made by considering the states as modulations in both

amplitude and wave number (Denardo et al., 1992b).

The kink-assisted mode hopping was discovered accidentally while we

were attempting to obtain a steady-state noncutoff kink in a surface wave

resonator. A theoretical investigation (Ch. II) had predicted such a solution as a

continuum analog of the lattice noncutoff kink. Although we were eventually

able to obtain a permanent kink, we also observed that the kink participated in

mode hopping.

4



Fig. 1. 1. Frame-grabbed image of the observed vertical displacement of

the surface during mode hopping in an annular channel of liquid.

This image is projected on a conical mirror so that the vertical

displacement of the free surface is represented radially.
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Fig. 1.2. Steady-state solitons on the surface of a liquid in a channel:

(a) breather soliton, in the case of deep liquid, and (b) cutoff kink

soliton, in the case of shallow liquid.
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I1. THEORY

Many of the ideas about dispersive nonlinear waves originate in the

problem of water waves. Our belief that kinks assists mode hopping and its

connection to diode lasers is not an exception. In this chapter we turn explicitly

to the problem of steady state kinks on standing surface waves. This will be

done within the average variational approach (Whitham, 1965), from which we

can obtain qualitative knowledge of the amplitude and wave number

modulations. Quantitative knowledge demands that we relax both slowly varying

and weakly nonlinear assumptions, which are implicitly assumed in the average

Lagrangian technique (shown below).

A. DERIVATION OF THE MODULATION EQUATION

We consider the oscillatory part of the motion ef an incompressible

inviscid fluid in a homogeneous gravitational field. The depth of the fluid is

infinite and the undisturbed fluid surface coincides with the xy plane at z=0,

where z labels the vertical coordinates away from the surface. Potential flow is

assumed and effects due to surface tension are neglected. The potential (P in

the whole fluid satisfies Laplace's equation, as well as the condition

&p/f--+ 0 asz- -oo.

The variational principle (Luke, 1967)

8J6LdF dt = 0, (II.A.1)
R

L-p = {P +2(Vp) 2 ½ Z - g(, (II.A.2)

gives Laplace's equation with the appropriate boundary conditions. Here R is an

arbitrary region in the (F,t) space where F labels the coordinate of a point at the
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surface of a liquid of density p, and V is the two-dimensional gradient in the xy

plane.

For a small change 8p in p,

_8f Ld3~dt = fj- 4 1&P, + V(PV8P + 2!.ýýPi'dzld? dt
R P R &8z & J

= {ip 58pdz+ V.FV~p5pdzldfdt

R 0It

(v9+ a}tp 69dFdt (1L A.3)

+ V(p -VC - (p,)&ii~z=d' dt
R

+fPq( ,._&)d dt
R

the first term vanishes if 8(p is chosen to vanish on the boundaries of R. The

stationary principle for (II.A.3) then implies:

V (P+-•-= =O , -0o<z<C,
az2

C, + Vq•. VC-a = 0, z =C,, (II.A.4)

zz
&P=0,z- -.

For a variation K in (II.A.1 & IL.A.2)

6J~~d =-f[ 1 +() 2  + gý] d~di~dt =0,

R R

it follows Bernoulli's law that at the free surface:

2_ + (L(()A+ gC. = 0 , z = .5)
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Equations (II.A.4) and (II.A.5) are the equations for deep gravity waves in the

surface of a liquid. They follow from the variational principle (II.A.1 & II.A.2).

We now study modulations of a one dimensional standing wave in the x

direction for which

SP coseeib +c.c. , (II.A.6)

where e is defined such that
ex = k ,(II.A.7)

with wave number k and amplitude 4 slowly varying functions of position x. !n

order to simplify the algebra we will consider up to quadratic terms in the

amplitude in the Lagrangian density L and average over one period. This

procedure eliminates the fast variation leaving only the corrections due to slow

modulations of ý and k of an otherwise linear problem.

To proceed further, consider the solution to Laplace's equation

( = ocose+ z.,sine + -- x sine e' kcoscot (l.A.8)

valid up to the leading orders in the derivatives of the slowly varying functions k

and 0. Inserting the solution (II.A.8) into the Lagrangian density (II.A.2) and

averaging over the fast variables e and cot we get

,1 -(L) = -a~o - k -402 _ _ 61o2 k 2_ Ox1 k3 --1ga 2  (II.A.9)
p 4 a Ts 64k 3  x 32k 2 8

where we have set the surface height

C = acosesin(ot. (II.A.10)

A variation of the average Lagrangian (II.A.8) with respect to a yields the

relation

10



a 4,) --, (ll.A. 11)
g

from which we obtain

=k -- -k _4k3 2 k 2 k- 20,k. (1I.A.12)

9 1kx64k 3  x 32k2  
X

A variation in 8 and 0 results in the expressions

2= constant, (II.A. 13)

g k - U2+- • = 0 (11.A.14)

Equation (11.A.12) corresponds to the constancy of the flux of wave action while

Equation (11.A.13) represents modifications in the frequency due to amplitude

modulations of the wave.

The crucial qualitative change of nonlinearity is the dependence of the

frequency o) on the amplitude 4!, which couples (11.A.12) and (11.A.13). For

moderately small uniform amplitude o) may be expressed in Stokes fashion as

2 = gk - k 4o2  (II.A.15)

corresponding to a frequency shift due to nonlinearities. The variational

approach requires very little modifications to study modulations of nonlinear

waves. The main questions to be addressed are the functional form to replace

(II.A.6) or (II.A.8), and the details of the averaging. The major difference is that

the average Lagrangian does not depend quadratically on the amplitude. Higher

order amplitude terms modify the frequency of the uniform state according to

(1l.A. 15).

The effects of nonlinearity in (11.A.15) can be added to the linear result

(11.A.14) if the frequency shift due to amplitude modulations is of the same order
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as the nonlinear frequency shift due to finite amplitude waves. Considering this

situation to prevail we get from (11.A.13) to (II.A.15)

8k 24  2 gk 8 2 =0

Which describes the functional behavior of the k as a function of x for an

amplitude and wave number modulated standing wave.
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B. EQUIVALENT SINGLE OSCILLATOR APPROACH

Equation (II.A.15) can be further simplified by considering the

hodographic transformation v = kx. Thus,

dk dv = d 
(k = xdx •-• 2 dxxv

If we define a(k) = - gk +ý 2 k4 and b(k)= g then Equation (lt.A.15)
8k2 1

becomes:

a+i-b dY2+2 db v 2= o (ll.B.2)2 dk 2 dk

which can be integrated once to yield

v 2 = 16,k 3 gk2 k4 +k3(X (II.B.3)

where a is a constant. We have thus reduced a second order differential

equation to a first order equation. Equation (Io.B.3) is equivalent to the equation

of a particle of unit mass and zero energy in a potential well

g [2 3 j

To evaluate the constant a in (11.1.4) we need to know the value of kx(U(k)) as

x -. oo. For a localized structure this means that the value of k as x -+ 00 must

be a constant ko for which kx=O, that is

a= iPkO ý2 k4 _ J)3(ll.B.5)k~ 3 3 )0

Note that this also corresponds to an extremum of (11.B.4).

13



Equation (ll.B.3) is now properly posed for numerical integration, with the

added advantage that it can be thought of as an initial value problem rather than

a boundary value problem.

14



C. NUMERICAL ANALYSIS OF THE MODULATIONAL EQUATION

Using numerical methods the velocity equation (ll.B.3) can be integrated

and the wave profile determined. As a first step in this process we must define

some dimensionless variables in order to facilitate computing:
kx

X =kox v= k.
kk

qk 02 = ý2 k~o

2= o 2 =3
02= 0) = 1 -.- _-o = 1 - (D

gko g (11.C.1)

using these definitions the right side of equation (Il.B.3) can be rewritten in

dimensionless form as:

v" =z 16. (11. C. 2)

In dimensionless'form the potential well (II.B.4) is-

U(q) = 16q3[__I(1 _ (D2) +:q--(i + 8D2)q3 +D2q"], (I,.C.3)

and is plotted in Figure II.C.1. Note that at the value q=1 the potential energy is

equal to zero; this follows from our assumption that the wave number in the

wings is a constant. Moreover, as noted before the first derivative of the

potential energy is also equal to zero at this point. Our goal in the numerical

integration of Equation (1I.C.3) can be described in terms of a graphical analogy.

Imagine a marble placed at the intersection of the potential energy curve and the

q axis to the right of q=1, we will call this point qmax. If this marble is released

from rest at this point, because the system is conservative it will come to rest,

after an infinite time, at the point q=1. We are interested in the form of the

potential energy curve between these two points. If we can find qmax

15



analytically we can make our programming task easier by making an initial value

problem out of boundary value problem. An initial value problem lends itself to

numerical integration since we can take extremely small steps and trace out the

curve using a simple iterative technique.

To make this simplification however, we must find qmax. From its

definition qmax satisfies the equation U(q)=O which implies:

(1_(2 +8D + D2q4 =

1)2 2 (I.c.4)
(q- 1)2 (oq2 +3q+y) = O.

Where we have used the fact that U has a double zero at q=1. Solving for the

coefficients a, 03, and y we obtain
a =D2

S(II.c.5)

For the solution, qmax must satisfy equation aq2 + Joq + y =0 or,

q 1=-2a-(-0 + •1" -4a:y7) 0.- (1'.C.6)

Since we used perturbation theory in the derivation of this equation we must

observe D < 1. Hence, y < 0 and the desired root is then:

q.=11 (2+V 0D 2D (,,.c.7)
q =12(D':)

Using this equation to find our initial value we can use iterative techniques to

plot the potential energy equation.

Equation (11.C.3) can be integrated by Euler-Cromer method. Because

the marble will take an infinite amount of time to come to rest at the point q=1,

our technique is numerically unstable. Since the computer cannot take infinitely

16



small steps it will inevitably under or over shoot the metastable point at q=1 and

the marble will not come to rest. Figure I1.C.2 is a plot of this integration for

positive values of x. The values of the dimensionless constants were chosen to

closely match those of our experimental system. Note that the dimensionless

wave number increases as we approach the origin. The amount and rate of the

change in q is determined primarily by the value of 1. Note also that in order to

decrease the numerical instability of this system five million time steps were

taken to plot this graph.

The kink we are interested in incorporates both a modulation of wave

number and amplitude. To determine the modulation of the wave surface as

given by Equation (II.A.9) we need to determine the quantities a and 0. To

determine the value of a we look at the adiabatic invariant (II.A.10) and express

it in dimensionless terms:

A = VF2, (11.C.8)

where A is the dimensionless amplitude. Implicit in (II.A.9) is the definition that

OX P k so we can find the value of 0 using an iterative technique at the same time

we are finding q. We will use the definition that for a small dx, 0 = 6 + qdx. We

incorporated the values of ý into our numerical integration algorithm and, for the

same parameters used in the previous figure, produced Figure I1.C.3. The

amplitude does indeed increase with increasing wave number, but while the kink

does posses the general characteristics of the observed wave it does not spread

out over a large number of wavelengths. However, the theory does not take

several possible important effects into account such as drive, dissipation, and

surface tension. The failure to spread over many wavelengths prevents us from

17



effectively comparing these results to those found in the experiment in other than

general terms. This is an area of continued effort.

18



* I

CCi

0CD

CD

Maweu leqluelod

Figure 11. C.I": Plot of the potential energy function for cl> = 0. 35

19



1.931

q4

0 __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

0 x10

Figure 11.0.2. P~ot of the variation of wave number with position from the origin.

20



A/

20 0 0

Figure II.C.3. Free surface profile as predicted by theory. Notice the kink,
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D. THEORETICAL DRIVE PLANE

Figure II.D.1 shows the drive parameter plane regions in which the sixth

and seventh modes exist. The curves are based on treating each mode as a

single oscillator, where the amplitude is at most a function of time. The surface

height as a function of position x and time t is then

C(x,t) = A (t)cos(kx)ekit + c.c. + . , (11..1)

where the amplitude A is in general complex, k is the wave number, (0 is the

frequency, and the ellipsis denotes higher harmonics in space and time. In the

fundamental equations of motion for surface gravity waves on a deep liquid, we

include parametric drive by replacing the acceleration g due to gravity by g +

4fto2cos(2(ot), where d is the displacement amplitude of the drive and 2(0 is the

drive frequency. Linear damping is included phenomenologically such that the

-Ptfree response amplitude decays as A(O)e I By substituting (11.D.1) in these

equations, and assuming that the wave is weakly nonlinear and slowly varying in

time, and that the drive and dissipation are weak, we obtain the evolution

equation

2io0 dA/dt + ((o2 -o' +iotP)A + 20)2kdA* = 2 2kl 21AJ, (11.D.2)

where wo = (gk) 1/2 is the linear frequency of the mode, and r is the

dimensionless nonlinear coefficient which is +1 in our case. Two instabilities are

implied by (II.D 2). The first is obtained from the stable steady-state solution,

which is given by A = Aei8 , where

22



A = W [o_ - O2 + 2c (k2d2 - 0 2 / 4 0 32 )V2 ,V (l.D.3)

and tan(26) = 13(o 2 k2 d2 - 132)"1/2. For co > wo, (lI.D.3) implies that the minimum

drive amplitude to maintain the response is

d 2[_(2)2 + )V2'3']. (11.O.4)d 2co Tk [L ( a "0 + 0

The response amplitude approaches zero as this boundary is approached from

above. For o < %o, the minimum drive amplitude is given by the vanishing of the

inner radical in (II.D.3), or d = J3120ok. Along this boundary, the response

amplitude falls to zero from finite amplitude. This corresponds to the common

point of the stable and unstable branches of the parametric steady-state

response curve. This "closure" point arises because the acceleration amplitude

of the drive decreases as the frequency is decreased and the displacement is

held constant. The combined maintenance curves, for (o < oo and (o _> (oo, are

shown by solid curves in Figure II.D.1.

The second instability implied by (II.D.2) corresponds to excitation from

rest, in which the nonlinear term is negligible. This yields a drive amplitude

threshold that is identical to (II.D.4) but which now applies for 0) < o00 as well as

0o > mo. This is the well known Mathieu curve in the limit of weak drive, and is

represented by dashed curves in Fig. II.D.1.
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III. EXPERIMENT

This chapter details the experimental apparatus and equipment, and the

results. The experiment evolved from searching for a steady-state kink

(described in Ch. II) to exploring the kink's role in mode hopping. We developed

a qualitative description of the mode hopping process from the data, and also

compared the data to theoretical predictions.

A. APPARATUS

The evolution of the experiment dictated the designs of the troughs.

Initial uncertainty as to the number of wavelengths over which the modulations

would occur led to a long straight trough. In this trough we observed the first

occurrence of a kink and established a connection to mode hopping. However,

we suspected that end-effects were preventing the existence of a steady-state

kink. The second design featured an annular design to eliminate end effects,

making the presence of a kink during mode hopping clearly visible. Both troughs

contributed to the success of the experiment, though the quantitative

experimental results are for the annular trough.

The straight trough design called for a one dimensional system with a

length adequate for twenty wavelengths. This requirement arose because we

did not know over how many wavelengths the kink would extend. We drove the

trough parametrically at the center and adopted a rectangular design that would

not allow flexing. The trough (Fig. III.A.I) was constructed from 3/8"

polycarbonate sheet with a series of precision milled spacers. With the spacers

temporarily in place, we affixed the walls of the trough to the base using Weldon.

The trough has inner length of 1.000 m and an inner width of 1.5 cm. This

length allowed for many wavelengths over which the kink could exist but it also

25



made it difficult to tell when a transition to an adjacent mode occurred. Even

with beaches inserted, the ends of the trough attracted kinks and precluded

observation of their profile. In addition, we determined that shaking the trough at

the middle was unstable because an imbalance in the placement of the trough

would cause a shift of water that would increase the imbalance. To eliminate

this we drove the trough with two shakers but end effects and the small

separation between modes prompted the second design.

We constructed the annular trough (Fig. III.A.2) in the hope of finding a

steady-state kink. Using a lathe, we machined a step into the acrylic base a

centimeter in width and a millimeter in height. This step provided a guide for the

placement of the inner and outer walls. The walls were sections of acrylic tubing

attached to the base with Weldon. We constructed a lid to allow the mounting

and placement of a two wire probe. The base and lid had separate attachments

to the shaker table so thlt we could rotate the top relative to the base while in

use.

The choice of a liquid for the troughs proved equally important as the

design of the troughs themselves. As will be discussed below, the kinks as first

observed were violent. In the first trough we used water and a wetting agent

Fotoflow with food coloring for visibility. The Fotoflow decreases the surface

tension of the water much as does common soap. Unfortunately, it also created

bubbles when agitated just as soap does. Worse, the bubbles would serve as

nucleation sites for kinks and hampered transduction. For this reason, alcohol

became the liquid of choice in both troughs with the coloring agent Fluorescein.

This choice was not without its drawbacks however, as the alcohol attacks the
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acrylic and forms stress cracks. The low viscosity and absence of bubbles made

it an acceptable choice for this study.

The driver chosen for the troughs was the American Power Systems

Model 114 shaker and amplifier (Fig. III.A.3). A HP 3325B synthesizer drove the

amplifier. We monitored the amplifier output using a digital multimeter

connected to the current sensor of the amplifier. The current sensor output

provided 250 mV/Amp of drive and a maximum of 1 V. This combination

provided a steady displacement suitable for all but the most extreme drive levels.

A concrete table and leveler supported the trough. The leveler was constructed

from a 1.5" thick and one foot square acrylic sheet. Three holes for 1/2"-32 bolts

were drilled and the heads of the bolts were machined on a lathe so they

contacted the table at a point which prevented them from 'Walking" when turned.

Using a circular bubble level as a guide we could level the trough by turning the

appropriate bolt.
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Figure III.A.3. Schematic showing the driver and its support equipment.
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B. TRANSDUCTION

The measurement of the driv( and steady-state response amplitudes was

essential for comparison to theory. We also required surface height "snapshots"

(at definite times) during the mode hopping transitions.

To determine the drive parameters we needed an accurate measure of

both frequency and amplitude. The synthesizer provided a very precise

measure of the drive frequency. To measure the amplitude of the shaker table,

we employed a Linear Variable Differential Transformer (LVDT) (model number

30055112 Rev. L made by G. L. Collins Corporation) that gives a linearly varying

signal over a large range of displacements. The LVDT consists of two primary

and a secondary concentric solenoid. (The labels "primary" and "secondary" are

arbitrary here). The two primary solenoids have opposite helicity and are

connected in series. Within their core a permeable plunger moves with the

object to be measured. The AC source drives the LVDT's primary solenoids and

the secondary solenoid provides the output signal. If the plunger fills equal

amounts of each of the primary solenoid's cavities the output will be zero; any

movement of the plunger away from this zero point will create a non-zero

response. This response will be linear if the displacement is less than a half-

inch from the zero point. Outside this range end effects are no longer negligible.

We calibrated the LVDT statically. The value of this calibration factor

depends on the drive applied to the primary solenoids and the demodulation of

the signal. The output of the secondary solenoid is a modulated reference

signal where the modulation amplitude is proportional to the displacement of the

plunger. This signal is exactly equivalent to an AM radio signal, and is

demodulated with a lock-in amplifier. A low pass filter then extracts the DC
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signal. The static calibration factor is the change in LVDT output voltage per

unit displacement of the plunger. For this calibration, we placed the LVDT in a

calibration stand and measured displacement of the plunger with a micrometer.

We obtained twenty data points over an inch range, and the slope of the line on

which the points lay defined the calibration factor. The results of the calibration

given in Figure lII.B.1 show the high degree to which the response is linear.

To expedite the gathering of surface wave data, we conducted a second,

dynamic, calibration that related the output of the LVDT to ths synthesizer

output. This dynamic calibration also had a dependence on the reference and

lock-in amplifier settings but the two calibration factors could, in principle,

combine to form a single calibration factor that would relate synthesizer voltage

to displacement and be independent of the other aspects of the system. For

this factor to be independent two conditions must be met: first, the amplitude of

the shaker table must be independent of the mode in the trough - a fact verified

by experiment; second, the amplitude response of the shaker must be linear

and the proportionality constant must be the same over the operating range of

frequencies. To measure this we drove the trough at amplitudes that covered

the entire operating range at a central frequency. We measured the component

of the lock-in amplifier's signal at that frequency with a dynamic signal analyzer.

Figure 1II.B.2 shows a deviation from linearity of up to ten percent. Thus a single

calibration factor, independent of the settings of the reference signal and lock-in

amplifier, is only a rough estimate; we found this number to be

1.38 mml Synthesizer V. The experimental data presented in the experimental

results section have a nonlinear correction factor to compensate for this

deviation.
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Because we could not eliminate the lock-in amplifier settings from the

calibration, they require some examination. The lock-in provided the reference

signal of 5 kHz and 1 V to the LVDT; this frequency was chosen such that it was

much greater than the drive frequency. We employed the EG&G model 5210

Lock-In Amplifier but the general components discussed are applicable to any

lock-in amplifier. For our purposes, the lock-in amplifier's controls fall into five

functional groups: signal input, pre-amplifier, phase control, DC offset, and post-

amplifier. We set input sensitivity to 30 mV, the most sensitive possible. The

pre-amplifier allows for the filtering of the input signal but any such filtering

diminishes the signal available and thus none was used. Phase control can set

the relative phase of the input and reference signals; the auto-phase function

finds the point at which the in-phase component is a maximum. This phase is

not exactly zero as the wiring of the LVDT has a finite impedance but it was at

most a few degrees. The DC offset zeroed the signal if the LVDT was not

operated about its zero-point. The post-amplifier provides both amplification and

filtering to the output signal. Again because any filtering would diminish our

signal and the dynamic signal analyzer could eliminate all unwanted

components, this option was set to the minimum time-constant and roll-off. By

recording the settings of the lock-in the values of the dynamic and static

calibrations we reproduced measurements accurately.

We measured steady-state response amplitudes using a two-wire probe.

This technique uses a small probe constructed of two parallel wires placed in the

liquid. The resistance between the two-wires will vary proportionally with the

height of the liquid as long as the liquid level does not approach the ends. We

constructed a simple voltage divider circuit where the voltage of the output was
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proportional to the liquid height. The output of a voltage divider circuit is given

by:

VI= V=R , (lll.a.1)

Rprow + R%

where Ro is the output resistor and Rprobe is the resistance of the probe. The

output will be proportional to the liquid height if the resistance of the probe is

much larger than that of the output resistor. Then we can drop R0 from the

denominator in (111.B.1) and the two voltages will be proportional. In choosing an

appropriate value of Ro we found the largest value that would give a one part in

one thousand error. We measured the mean resistance of the alcohol to be

10 Mf. and chose an output resistance of 10 k.Q. The two-wire probe was driven

by another EG&G Model 5210 lock-in amplifier and its signal, identical in form to

the output of the LVDT, was demodulated by the same lock-in amplifier.

Video techniques provided images of the kink in transition. We chose

video data since it is non-intrusive and it provides the spatial density of samples

needed for imaging a continuum. The video equipment used was a Sony 3CCD

DXC-3000A camera and Sony U-Matic VCR model number VO-5800. We

selected this system over one based on VHS or Super-VHS formats because

they give only 30 frames a second of interlaced signal. The U-Matic system we

chose produces 60 frames a second of non-interlaced images in an NTSC

format acceptable to our frame grabber. This higher frame rate meant that with

the approximately 16 frames taken during each period of the response we could

forgo the tedious process of interpolating the amplitudes at the turning points.

Because the wave spends a longer time at the turning points we calculated that

our images yield amplitudes within two percent of the true values. We analyzed
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the data taken in the lab using the slow motion and frame advance capabilities

of the VCR. For the figures presented in this thesis and wave snapshots, we

used "frame grabbing" techniques. Frame grabbing is the process in which

video data is converted into digital computer data. We used a Macintosh II with

the Perspectives Pixel Pipeline frame grabber board anJ Image v1.32 (Freeware

from the NIH) for control. We used Image to acquire the data, encode it in a

TIFF format file, and record the pixel coordinates of the liquid suiface.

The most challenging aspect of transduction was the imaging of the entire

trough through a transition. Because the trough was annular we could not film

through the walls of the trough without a substantial portion being obscured. To

allow the simultaneous imaging of the entire trough we used a conical mirror

(Fig. III.B.3). This mirror was constructed from a single piece of acrylic turned to

a cone on a lathe. The surface was polished to a high buff and coated with

aluminum in a vacuum evaporator. This mirror fit inside the annular trough and

from above provided a 360 degree perspective. The sides of the cone were

oriented at 45 degree angles to the vertical such that vertical displacement of

the liquid equaled the radial displacement of the image. The Angular resolution

however, varied with displacement since the circumference of the cone was a

function of height. This had the effect of "sharpening" the crests and "softening"

the troughs of the projected image. To remove this effect and present the

images in a form more readily understood we applied non-linear corrections to

the images to make them appear they were taken from a rectangular trough. In

the first step in this process we transferred the video images of the transition to

digital computer images using a frame-grabber and extracted data points along

the free surface from this digital data. These data points consisted of the pixel
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coordinates of approximately three hundred samples to the free surface. The

pixel coordinates were converted to a polar coordinate system. These data

points were then "unwrapped" from the conical projection to a rectangular

projection using an algorithm we developed using MathCad. A sample MathCad

worksheet is provided in Appendix A.
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C. DRIVE PLANE

The results of the experiments carried out can be classified as follows.

First, there is drive plane data which includes Mathieu Curves and kink-assisted

mode hopping boundaries. Second, the hysteresis data provides another

perspective on the mode hopping data. Finally, there is the actual images of the

wave profiles in transition and an interpretation of the mechanisms of mode

hopping.

We concentrated on two particular modes in out study of this system.

Since the annular trough is constrained to periodic boundary conditions there

can exist only an integer number of wavelengths for any steady-state mode. We

chose the mode which contained six and seven wavelengths for study for the

following reasons. At higher modes it was harder to distinguish between

adjacent modes and eventually the wavelengths would become short enough

that the transverse modes would be excited. Because this is a softening system

lower modes required larger drive amplitudes which would have exceeded the

capabilities of our driver. Once the modes were selected, we sought to find the

drive parameters in which these modes existed. These areas were delineated

by excitation from rest and maintenance curves. The excitation from rest curves

represented the lowest possible drive levels at which a given mode would be

excited at a given frequency. The growth rate of the curves at this drive level is

infinitesimal so each data point would take an infinite amount of time to collect.

Pinning and friction would not allow the theoretical values to be attained and

thus an arbitrary time limit was set for a mode to be excited. The maintenance

curves also represented minimum drive levels but these were the levels required
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to maintain an existing mode at a given frequency. These curves were

developed theoretically in Section I1.D.

In order to present the theoretical curves and experimental points on the

same plot we needed to input representative values for the needed constants.

Three quantities were required: the dissipation parameter 13; the wave number

ko, and the resonant frequency o)o. The dissipation parameter was determined

using the two-wire probe to measure amplitude as a function of time for a free

decay. A straight line was then fit to the log of the amplitudes and 03 was taken

to be twice the slope the line (Fig. II1.C.1). The values of 13 found using this

method were 1.61 s-1 for mode seven and 1.51 s"' for mode six. The wave

number was based on a wavelength found by dividing the mean circumference

of the trough by the number of the mode. The wave numbers used were

61.96 m-1 for mode six and 72.31 m-1 for mode seven. The resonant frequency

was found using the dispersion relation (o = ýg•-o. The values found were

24.09 rad/sec for mode six and 26.03 rad/sec for mode seven. Using these

values we could plot the theoretical curves with the experimental data points and

expect fair agreement.

To create a consistent and accurate plot of the experimental drive plane

we employed a series of rules. These rules set time lifnits for certain actions to

occur and defined the procedures in which we handled and recorded the results.

For the excitation from rest data the rules were as follows: first, we let the trough

stand at rest for 30 seconds if a mode had not been excited and one minute if

one had; second, we dr:)ve trough for two minutes or less at a drive level; third,

if we observed the appearance of the mode we would stop the trough, record the

drive level, increment the frequency 0.1 Hz, and begin again; if the time expired
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without the mode appearing we would stop the trough and increment the drive

level 10 mV. We obtained the maintenance data using similar rules except the

mode died out instead of appeared and we recorded previous drive level. This

data is shown in Figure II1.C.2.

Evaluation of this data requires a reexamination of the theoretical drive

plane. As discussed in Section II.D at the resonant frequency the maintenance

and excitation from rest curves are coincident. This implies that the two data

sets should be equal at the resonant frequencies. Instead, the excitation from

rest curves are much higher than the corresponding maintenance curves. To

explain this discrepancy we offer the following suggestions: first, at the true

excitation from rest drive amplitudes the growth rate of the mode is infinitely

small and may not be apparent after the two minute period; second, frictional

effects such as scrubbing on the walls could damp out small amplitude motion;

finally, the theory does not take the surface tension of the alcohol into effect.

These effects, though present in both sets of data, can be imagined to have a

lesser effect on a system with a mode already established. Because of this

discrepancy the maintenance data alone appears in subsequent figures.

Figure II1.C.3 shows, for mode seven, the disparity between the

theoretical curve and the experimental poirits. To ensure correspondence we fit

the theoretical Mathieu curves to the low amplitude experimental data points by

changing the values of rl and wo. The values of the dissipation parameter .8 and

the linear frequency o0 in (2) were determined by fitting the theoretical curves to

the low amplitude experimental data in the figure. This was necessary because

the dissipation parameter determined by free decay experiments yielded values

too large (by 12%), perhaps as a result of energy lost into the driver after it was
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shut off. The theoretical frequency wo = (gk)1 /2 yielded values also too large

(by 3%), which we discovered was a result of the spilling over of liquid within the

viscous penetration distance from the walls. These fitted theoretical curves

better represent the properties of the trough and are presented in Figure II1.C.4.

The theoretical drive plane showed areas in which we could expect to

excite particular modes but we were also interested in the transitions between

modes. To show all actual transition boundaries we used the drive plane as a

guide and attempted to find all combinations of drive frequency and amplitude at

which the given modes could exist. To that end we followed the following rules:

first, the drive parameters proper for a pure mode were established; second, we

set the amplitude to the desired level; third, we changed the frequency to a value

close to the transition region then began varying it in 0.01 Hz increments; finally,

each frequency would run for two minutes during which time the transition would

occur and the previous frequency was recorded and the next amplitude explored

or not and the frequency was varied. With this information plotted in Figure

II1.C.5 the drive plane could be divided into three areas: one in which no mode

could be excited; one in which one of the pure modes of interest could be

excited; and one in which both modes could be excited. We called this plot the

drive plane and it serves to orient us our explorations.

The experimental data in Figure III.C.5 show agreement with the single-

oscillator theory at low drive amplitudes and at frequencies near the linear

eigenvalues, but dramatic deviations occur outside these regimes. For low drive

amplitucl - and for frequencies greater than the linear resonance frequencies,

the response amplitude approaches zero uniformly in space, as predicted by the

theory. For frequencies less than the linear resonance frequencies but not
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inside the Mathieu curve for the lower mode, the response falls to zero uniformly

in space from a finite amplitude, also as predicted by the theory. The upward

deviations of the experimental data here indicate that some mechanism is

closing the tuning curve at response amplitudes smaller than those predicted by

the theory. At points inside the Mathieu curve for the lower mode, the upper

mode hops to the lower mode by forming a slight kink structure that smoothly

evolves as described above.

For drive amplitudes greater than approximately 0.75 mm in Figure III.C.5,

there occur two substantial deviations between the theory and experiment. The

down-hopping, which occurs along the left set of points, corresponds to kink

formation and subsequent self-focusing into the violent state. Along this

boundary, greater drive amplitudes cause the average lifetime of the violent

state to increase. At high drive levels, the violent state can exist indefinitely.

Up-hopping occurs along the right set of points. Between the left and right sets

of points, either mode can exist; this is part of the observed hysteresis region for

these two parametrically driven modes. As the frequency of the lower mode is

slowly increased, note that the up-hopping occurs before the Mathieu curve is

reached, where the response is predicted to approach zero. The exception

occurs at the bottom of the set of up-hopping points, where the two coincide with

the Mathieu curve of the upper mode. This intersection indicates that the

counter-traveling wave instability, which leads to up-hopping, is somehow

intimately connected with the excitation of the upper mode from rest.

The drive plane plot developed above uses drive parameters to specify a

point. In the area where both modes can be excited the response amplitude can

be used to differentiate the modes in the trough. To provide a picture of the
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response amplitude a plot was made using the two wire probe. This data was

taken at a fixed drive amplitude as the frequency was varied from one transition

frequency to the next and back. Examination of this plot in Figure II1.C.6 shows

hysteresis. Deep gravity waves are a softening system and, as the plot shows,

the response for the higher mode is greater because it is being driven at a

frequency below its resonance frequency. The transitions are shown as

discontinuities on the plot because the amplitudes measured are steady state

and the transitions occur over a short time.
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D. MODE HOPPING

Figure III.D.1 shows a sequence of snapshots of a typical down-hop

transition in which the highly focused kink structure persists for only several

cycles. The drive frequency and amplitude are constant. Each snapshot was

chosen near a turning point of the motion in either the extended mode region or

the kink region. The down-hopping transition begins with the formation of a

smooth localized kink modulation. This structure is in-phase with extended

mode region, but has greater amplitude and smaller wavelength. In the next

stage of the transition, the amplitude of the central peak of the kink increases,

the wavelength decreases, and the kink occupies a smaller length along the

resonator. For intermediate and high drive levels (as quantified below), the

central peak ultimately breaks or jets, which causes the amplitude of the peak to

drop momentarily to nearly zero. The amplitude then grows with a phase 900

ahead of the extended mode region. For lower drive levels, there is no jetting or

breaking; the phase smoothly attains the 900 advance. At this time in the

transition, the phase evolves in one of two ways. For high drive levels, the

phase can decrease to zero, which leads to a repetition of the breaking or

jetting. This is the violent kink structure described above. Depending upon the

drive parameters, and also upon chance, the breaking and jetting has been

observed to occur for any number of repetitions (from one to at least 104). For

low to intermediate drive levels, or at the conclusion of the violent kink state, the

phase increases rapidly from 900 to 1800. As this occurs, one wavelength

disappears in the kink region, causing this region to have smaller amplitude and

greater wavelength than the extended mode region. The response then relaxes

to the uniform state corresponding to this mode.
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In summary, the transformation from one mode to the mode with one less

wavelength is achieved by the initial formation of a smooth bright kink structure,

and then a 1800 advance in phase of the central peak which causes the loss of

one wavelength. The observations of the down-hop transition suggest that the

analytical solution of the surface gravity wave kink corresponds to the smooth

kink in the first stage of the transition, and that this structure is subject to a self-

focusing instability. It is remarkable that it is possible to maintain the resultant

violent kink indefinitely, and it is doubtful whether any analytical treatment can

successfully describe this behavior.

Figure III.D.2 shows a sequence of snapshots of a typical up-hop

transition. The drive amplitude and frequency are constant, and each snapshot

was chosen near a turning point of the motion in the extended mode region. The

transition begins with the development of traveling waves in one region. These

are superimposed on the standing wave motion, and are counter-traveling

toward a central focal point. The amplitude in the region is smaller than the

amplitude in the extended mode region, and the phase at the focal point lags the

phase in the extended mode region. The traveling wave components slowly

become stronger, the lag increases to 900, and the amplitude decreases in this

region. The amount of traveling wave motion then relatively quickly decreases

and the phase passes from 900 to nearly 1800. As this occurs, an additional

wavelength appears in the region, and the amplitude grows such that a smooth

bright kink forms. The motion then becomes in-phase with the extended mode

region, and the response quickly relaxes to the final uniform state of the new

mode.
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In summary, the up-hop transition is initialized by counter-traveling wave

components that cause the phase at the focal point to lag the phase in the

extended mode region. The lag eventually reaches 1800, causing the creation

of one wavelength. Our interpretation of the observations is that, whereas a

smooth bright kink is responsible for initializing the down-hop transitions, this

kink is responsible for finalizing the up-hop transitions. Although this suggests

that one transition is simply the time-reversed motion of the other (i.e., that the

transitions have an underlying hamiltonian description), some of the behavior

appears to violate this picture. Indeed, the counter-traveling wave stage which

initiates the up-hopping is not apparent in the finalization of the down-hopping.

Furthermore, the kink structure that finalizes the up-hopping only persists for

several cycles, and does not exhibit any tendency to self-focus into the violent

kink state. This suggests that the up-hop motion approaches but does not attain

the unstable kink solution.
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Figure III.D.1. Down hopping sequence for a displacement amplitude of 1.0mm.
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IV. CONCLUSIONS AND FUTURE WORK

A. CONCLUSIONS

We have made the first observations of kinks in a non-cutoff standing

wave mode in a continuous system. Our particular system involved surface

gravity waves in a parametrically driven annular channel of deep liquid, but

similar kinks are expected to occur in a variety of systems. We confirmed the

theoretical prediction that small amplitude steady state kinks cannot exist.

Indeed for a kink to exist many cycles or indefinitely, we found that it must have

such a large amplitude that breaking and jetting occur.

Lower amplitude kinks were observed as transients that participate in the

transitions from one mode to a mode with one more wavelength ("up-hopping")

or one less wavelength ("down-hopping") as the drive frequency is slowly

changed. The creation or destruction of the wavelength occurs in the kink

region. The up-hopping and down-hopping processes do not appear to be

essentially the same process time-reversed. This supports the claim that the

mode hopping is a far off equilibrium phenomenon.

At lowe, drive !evels, we found that the transitions from one mode to

another behaved in accordance with a simple theory. In this case there is no

hopping; the modes are separated by frequency intervals in which there is no

response.
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B. FUTURE WORK

As predicted by theory, the surface wave kink (Fig. 1.3) is bright, i.e., it

has positive energy relative to the background wave. In contrast, a kink in a

wave on a string is predicted to be dark. To simulate this situation on a

computer, we considered the following model equation of a damped

parametrically driven string:

y1 + fy,- c2 [1 + rlcos(2o)t)]y. = cy 3, (IV.B.1)

where y is the displacement from equilibrium, ,3 is the damping parameter, c is

the linear wave speed, 11 is the drive amplitude, 2wt is the drive frequency, and

where the nonlinear coefficient a must be negative for the system to be stable.

The subscripts denote partial differentiation with respect to time t or position x.

In our simulations of this equation, we have indeed observed a dark kink during

the mode hopping (Fig. IV.B. 1).

One area of possible future work is to continue these numerical

investigations of mode hopping. The ability to readily obtain clean information on

a variety of systems can be very helpful in an overall understanding of the

phenomenon.

Our theoretical pursuits have employed the approach of amplitude and

wave number modulation of standing waves. Although this theory predicts the

existence of surface wave kinks roughly similar to what we observed, the theory

suffers from inconsistencies in the perturbation analysis. We are currently

developing a nonlinear theory based on waves that propagate in opposite

directions. This theory appears to be simpler and more transparent than the

previous one. This investigation should be continued with two immediate goals:
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a linear stability analysis of finite-amplitude modes in an annular channel, and

determining the possibility of a solution corresponding to a kink in a mode. Both

of these theoretical directions aim at uncovering the basic mechanism for the

hopping instability. Armed with an understanding of this, one can then consider

mode hopping and its possible suppression in diode lasers.
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Figure IV. B. 1. "Snapshot" of the displacement of a simulated string during the

hopping from mode 40 to mode 39. The boundary conditions are

periodic. The values of the parameters in (IV.B.1) are j3 = 0.05,

c2 = 1.0, a = -1.0, co = 0.31, and il = 0.39.
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APPENDIX A. MATHCAD WORKSHEET
Read data file with raw pixel coordinates:

1:= READPRN(n67v9s5) n := rows(l) - 2 j 0.. 1

Read the center point, the first element in the data set, and correct for Daaralax error:

10.0= 326 I01 = 232 Io,0 :315 I0.1 := 233

Assign the points to cartesian vectors with the center defined as the origin:

I := 0..n

X1 := +,.o- 10,0 Y, := 11+,., - 1o,

Convert to Polar Coordinates: 200

Il:= O..n r, :.= (l) 2+ -(Y') 0, := angle (xi , y)

Plot in polar coordinates: Y_ j - >

x, : rl-cos(01) y, = ri.sin(Oi)
-200:

-200 -100 0 100 200

R is assigned from a frame grabbed image of the equilibrium free surface.

R := 151.753

Plot in true coordinates:

x, R- 1  Yi :R-r, 0 0

100

50-

0

0 ...........

-S ,Ic I I I I I I
0 100 200 300 400 500 600 700 8oo 900 1000

Output the data to a file for importation into our presentation graphics package, Origin 2.0:'

OUTPUT,., x1  OUTPUTi,1 - Yi WRITEPRN(N67V9S5R) = OUTPUT
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