
AD-A256 209

NAVAL POSTGRADUATE SCHOOL
Monterey, California

7'CR A IWO
r'

d-

DISSERTATION ___,__

RADAR DATA PROCESSING USING
A

DISTRIBUTED COMPUTATIONAL SYSTEM

by

Gilberto Ferreira Mota

June, 1992

Dissertation Co-Supervisor: U. R. Kodres
Dissertation Co-Supervisor: M. L. Nelson

Approved for public release; distribution is unlimited.

92-27476

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
1 a. REPORT SECURITY CLASSIFICATION 1 b. RESTRICTIVE MARKINGS
UNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution is unlimited.
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Naval Postgraduate School (f#appiicable) Naval Postgraduate School

CS

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c. ADDRESS (City, State, andZIP Code) 10. SOURCE OF FUNDING NUMBERS

Program Element No. Project No. Task No. Work Unit ACcewsio

Number

11. TITLE (Include Security Classification)

RADAR DATA PROCESSING USING A DISTRIBUTED COMPUTATIONAL SYSTEM

12. PERSONAL AUTHOR(S) Gilberto Ferreira Mote

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (year, month, day) 15. PAGE COUNT
Doctoral Dissertation FromJuly 1990 To June 1992 June 1992 228

16- SUPPLEMENTARY NOTATION
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S.
Government.
17. COSATI CODES 18. SUBJECT TERMS (continue on reverse if necessary and identify by block number)

FIELD GROUP SUBGROUP Radar Date Processing, Multiple-Target Tracking, Distributed-Memory Systems, Static
Scheduling, Dynamic Load Balancing, Object-Oriented Decomposition, Program and System
Partitioning

19. ABSTRACT (continue on reverse if necessary and identify by block number)

This research specifies and validates a new concurrent decomposition scheme, called Confined Space Search Decomposition (CSSD), to exploit
parallelism of Radar Data Processing algorithms using a Distributed Computational System. To formalize the specification we propose and apply
an object-oriented methodology called Decomposition Cost Evaluation Model (DCEM). To reduce the penalties of load imbalance we propose a
distributed dynamic load balance heuristic called Object Reincarnation (OR). To validate the research we first compare our decomposition with an
identified alternative using the proposed DCEM model and then develop a theoretical prediction of selected parameters. We also develop a
simulation to check the Object Reincarnation Concept.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIEO/UNIMITED 3SAME AS REPORT Q TIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area code) 22c OFFICE SYMBOL
Advisor's Name U. R. Kodres and M. L. Nelson (408)646-2197 CSkr

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete UNCLASSIFIED

Approved for public release; distribution is unlimited.

Radar Data Processing Using
a

Distributed Computational System

by

Gilberto Ferreira Mota
Commander, Brazilian Navy

B.S.,University of Sao Paulo,1979

Submitted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1992 /

Author: C) L-,L,
S~ Gilberto Ferreira Mota -

Approved by:

Arthur L. Schoenstadt Shridhar Shukla

Professor of Mathematics Assistant Professor of

Electrical and Computer Engineering

Thoma. Wu Mchael L. Nelson

Associate Professor of Assistant Professor of Computer Science

Computer Science Dissertation Co-Supervisor

Uno R. Kodres

Professor of Computer Science

Dissertation Co-Supervisor

Approved by: -i.

Robert McGhee, Chairman, Deprtment of Computer Science

Approved by: 'Al C('

Richard S. Elster, Dean of Instruction

ii

ABSTRACT

This research specifies and validates a new concurrent

decomposition scheme, called Confined Space Search

Decomposition (CSSD), to exploit parallelism of Radar Data

Processing algorithms using a Distributed Computational

System. To formalize the specification we propose and apply an

object-oriented methodology called Decomposition Cost

Evaluation Model (DCEM) . To reduce the penalties of load

imbalance we propose a distributed dynamic load balance

heuristic called Object Reincarnation (OR). To validate the

research we first compare our decomposition with an identified

alternative using the proposed DCEM model and then develop a

theoretical prediction of selected parameters. We also develop

a simulation to check the Object Reincarnation concept.

Accesion For

NTIS "-A&"

-, --------

D~ l ib' i,

ryr
D vi.sJity C r s

SAv.•, a:d or

Dist Szpecial

'. Ii£

TABLE OF CONTENTS

I. INTRODUCTION . 1

A. HISTORICAL OVERVIEW 1

B. MOTIVATION 2

C. PREVIOUS RESEARCH 3

D. RESEARCH DESCRIPTION 5

1. The Application 5

2. Object-Oriented Decomposition 6

3. The Decomposition Cost Evaluation Model

(DCEM) 6

4. The Confined Space Search Decomposition

(CSSD) 6

5. The Object Reincarnation Proposal 8

6. Research Validation 8

E. ORGANIZATION OF CHAPTERS 8

II. TRACKING ALGORITHMS 10

A. a AND a-P FILTERS 10

B. THE KALMAN FILTER 15

1. The Filter Gain 16

2. Estimated- Position and Velocity 16

iv

3. Uncertainty in the Estimated Position and

Velocity 16

4. Predicted Position and Velocity 17

5. Uncertainty in the Predicted Position and

Velocity 17

6. Filter Initiation 18

7. Maneuver Detection 19

8. Tracking in the X-Y Plane 20

C. FILTER RESPONSE ANALYSIS 21

1. Methodology 21

2. Assumptions 25

3. Target Motion Model 25

4. Conclusions 26

D. MULTIFILTER ALGORITHMS 26

III. CORRELATION ALGORITHMS 28

A. INTRODUCTION 28

B. THE PLOT TO TARGET CORRELATION PROBLEM 29

C. TARGET CONFIRMATION, INITIATION, AND

TERMINATION 36

1. Target Confirmation 36

2. Target Initiation 38

3. Target Termination 40

D. THE MERGE PROBLEM 41

E. GATES SPECIFICATIONS ANALYSIS 42

1. Methodology 42

v

2. Correlation Gates: Dimensions and Shape . 42

3. Assumptions 43

4. Target Motion Model 45

5. Results 45

6. Conclusions 47

F. TARGET SPLITTING ALGORITHMS 47

G. COMPUTATION COST OF GATING OPERATIONS 49

IV. OBJECT-ORIENTED DECOMPOSITION 51

A. INTRODUCTION 51

B. OBJECT IDENTIFICATION 54

1. The Servers 55

2. The Client 57

C. CONTRACT SPECIFICATION 57

1. Responsibility of the Sensor Object 58

2. Responsibilities of Firm Objects 58

3. Responsibilities of Tentative Objects 63

4. Responsibilities of the Scheduler Object 66

D. OBJECT STRUCTURE 72

1. Object Structure of the Sensor Object 72

2. Object Structure of Firm Objects 72

3. Object Structure of Tentative Objects 73

4. Object Structure of the Scheduler Object 74

E. CLASS HIERARCHY 74

1. Component Classes 74

2. Abstract Classes 76

vi

3. Concrete Classes 76

4. Single Processor Class Hierarchy (SPCH) . . 77

V. ARCHITECTURE SPECIFICATION 80

A. INTRODUCTION 80

1. The Problem 80

2. Organization of Sections 84

B. THE DECOMPOSITION COST EVALUATION MODEL 85

1. Identification of Concrete Classes 86

2. Identification of Interface Functions . . 86

3. Identification of High Cost Functions . . 87

4. Divide and Conquer 87

5. Identification of Options 88

6. Conceptual Comparisons Among Options 89

7. Evaluation of the Communication Cost 89

8. Evaluation of the Computation Cost 92

9. Analytical Comparisons Among Options 94

C. APPLYING THE DECOMPOSITION COST EVALUATION MODEL 95

D. THE CONFINED SPACE SEARCH DECOMPOSITION 97

1. Section Specification 99

2. Mapping Space Regions to Processors . . 102

3. Results Summary 102

E. OBJECT REINCARNATION 103

1. Global Load Balance Algorithm 105

2. Local Load Balance Algorithm 107

3. Results Summary 109

vii

F. FAULT RECOVERY 110

1. Fault Recovery Algorithm: Isolated CP . 110

2. Fault Recovery Algorithm: Isolated TP . 111

3. Results Summary 111

VI. ARCHITECTURE VALIDATION 113

A. INTRODUCTION 113

B. PERFORMANCE EVALUATION 115

1. Identifying Sources of Inefficiency . . . 115

2. Upper Limit Efficiency 117

3. Lower Limit Efficiency 122

4. Efficiency with Load Imbalance 124

5. Verifying the Inefficiency Assumption 128

C. TRACKING CAPACITY 130

1. Upper Limit Capacity 132

2. Lower Limit Capacity 133

3. Capacity with Load Imbalance 134

D. SYSTEM REACTION TIME 135

1. Best Reaction Time 136

2. Worst Reaction Time 137

3. Reaction Time with Load Imbalance 139

4. Results Summary 140

E. CONFINED SPACE SEARCH VALIDATION 141

1. Methodology 142

2. Target Motion Model 142

3. Implementation Language 142

viii

4. Conclusions 143

VII. CONCLUSIONS 145

A. SUMMARY OF SIGNIFICANT RESULTS 145

B. STRENGTHS AND WEAKNESSES 146

1. Strengths 146

2. Weaknesses 147

C. SUGGESTED FUTURE DIRECTIONS 148

D. CONCLUDING REMARKS 149

APPENDIX A 150

APPENDIX B 157

LIST OF REFERENCES 204

INITIAL DISTRIBUTION LIST 208

ix

LIST OF TABLES

TABLE 1 FILTER RESPONSE EVALUATION 27

TABLE 2 RUN TIME (SECONDS) (100 ITERATIONS) 27

TABLE 3 CORRELATION GATES: DIMENSIONS AND SHAPE 43

TABLE 4 GATES INTEGRATION TESTS 46

TABLE 5 UPPER LIMIT EFFICIENCY 122

TABLE 6 LOWER LIMIT EFFICIENCY 125

TABLE 7 CORRELATION AND TRACKING COSTS (MS) 128

TABLE 8 EFFICIENCY WITH LOAD IMBALANCE 129

TABLE 9 ADDITIONAL CONTROL OVERHEAD (Nt=500) (MS) . . 131

TABLE 10 UPPER LIMIT CAPACITY (1-9-9)-TREE 133

TABLE 11 LOWER LIMIT CAPACITY (1-9-9)-TREE 134

TABLE 12 CAPACITY WITH LOAD IMBALANCE (1-9-9)-TREE . 135

TABLE 13 SYSTEM REACTION TIME (MS) (T,=100 MS) (1-9-9)-

TREE 141

TABLE 14 CONFINED SPACE SEARCH VALIDATION 144

TABLE 15 TOPOLQGY DATA D-CUBE 178

TABLE 16 TOPOLOGY DATA (1-Cp-T,)-TREE 178

TABLE 17 TOPOLOGY DATA (CO!-PARATIVE ANALYSIS) 179

TABLE 18 COMPUTATIONAL POWER DISTRIBUTION 181

TABLE 19 FAULT CONSFQUENCES D-CUBE 182

TABLE 20 FAULT CONSEQUENCES (1-C,-Tp)-TREE 182

TABLE 21 FAULT RECOVERY D-CUBE 183

x

TABLE 22 FAULT RECOVERY (1-Cp-Tp) -TREE 183

TABLE 23 PACKET SIZES D-CUBE 186

TABLE 24 PACKET SIZES (1-Cp-T.)-TREE 191

TABLE 25 COMPARATIVE ANALYSIS OF COMMUNICATION COSTS

(MS) 198

xi

LIST OF FIGURzS

Figure 1 Allowed Values of a and 14

Figure 2 Damping Limits 14

Figure 3 Normal Region of Operation 14

Figure 4 Filter Response Analysis 22

Figure 5 Plot to Target Correlation 31

Figure 6 All Targets Correlated 33

Figure 7 All Plots Correlated 34

Figure 8 All Residual Targets With Empty Buffer 35

Figure 9 Initiation Decision Algorithm 37

Figure 10 Termination Decision Algorithm 37

Figure 11 Language-Independent Class Definition . . 55

Figure 12 Single Processor Class Hierarchy (SPCH) . . 78

Figure 13 Client-Server Relationship (SPCH) 79

Figure 14 Efficiency (Comparative Analysis) 97

Figure 15 Conceptual Architecture 97

Figure 16 Target Crossing the Overlap Space Between

CP's 99

Figure 17 The AUDN Division of the Search Space . . 100

Figure 18 Interface Hierarchy (IH) 162

Figure 19 Client-Server Relationship (IH) 162

Figure 20 Application Hierarchy (AH) 166

Figure 21 Client-Server Relationship (AH) 166

xii

Figure 22 Tracking Hierarchy (TH) 172

Figure 23 Client-Server Relationship (TH) 172

Figure 24 Correlation Hierarchy (CH) 175

Figure 25 Client-Server Relationship (CH) 175

xiii

TABLE OF SYMBOLS AND/OR ABBREVIATIONS

AFAP: All Functions to all Processors

ANDU: Angular Nonuniform Distribution and Distance
Uniform Distribution

AUDN: Angular Uniform Distribution and Distance
Nonuniform Distribution

AH: Application Hierarchy

BM/C 3 : Ballistic Missile / Command, Control, and
Communications

Cp: Number of Correlation Processors

Cra: Retransmit Cost

C1 : Average Correlation Time per Target

CCC: Class Computation Cost

CH: Correlation Hierarchy

CP: Correlation Processor

CSSD: Confined Space Search Decomposition

CXC: Class Communication Cost

DCEM: Decomposition Cost Evaluation Model

EMSE: Estimation Mean Square Error

FG: First Gate

FI: Filter Improvement

GLAd: Global Average Load

GLI: Global Load Imbalance Factor

HCC: Hierarchy Computation Cost

xiv

HXC: Hierarchy Communication Cost

IG: Initiation Gate

IH: Interface Hierarchy

IMM: Interacting Multiple Model

IP: Interface Processor

LLAvG: Local Average Load

LLI: Local Load Imbalance Factor

MCC: Method Computation Cost

MG: Merge Gate

MMSE: Measure Mean Square Error

MS: Milliseconds

Nt: Maximum Number of Expected Targets

OCC: Object Computation Cost

00: Object-Oriented

OOD: Object-Oriented Design

OOP: Object-Oriented Programming

OOPL: Object-Oriented Programming Language

OR: Object Reincarnation

OXC: Object Communication Cost

PCC: Processor Computation Cost

PXC: Processor Communication Cost

RC: Result Cost

RDPP: Radar Data Processing Processor

RID: Receiver Initiated Diffusion

SFSP: Some Functions to Some Processors

SG: Second Gate

xv

SPCH: Single Processor Class Hierarchy

SRC: Service Request Cost

T.... (N) : Time to Compute on N nodes

TP: Number of Tracking Processors

T.,k: Time to Compute on One Node

Tj: Average Tracking Time per Target

TH: Tracking Hierarchy

TP: Tracking Processor

VA: Viterbi Algorithm

xvi

ACKNOWIEDGMENTS

I would like to thank my wife Tania for her encouragement

and love.

I would like to express my sincere gratitude to Mario J.

F. Braga, Director of the Brazilian Navy Research Institute,

for his unfaltering support.

I would like to thank my dissertation Co-Supervisors for

their guidance in the conception and preparation of this

dissertation.

xvii

I. INTRODUCTION

A. HISTORICAL OVERVIEW

In the early days, Radar Data Processing (RDP) aboard

surface ships was maintained by operators transcribing

information reported by radar operators onto plexiglass status

boards. This method requires a continuous high level of

accuracy and vigilance from the people doing the tracking and,

moreover, it has been recognized that this manpower-intensive

process is too slow to support modern day requirements.

(Ref. 1]

With the introduction of digital computers in Combat

Systems, a man/machine partnership operation was created where

the extraction of radar data was confined to small areas

surrounding the predicted position of targets. The operator

working on a plan position display had the responsibility of

target initiation through an analysis of the radar picture.

During operation, the man in control indicates the position of

an intended target via rolling a ball marker. The computer

evaluates an extraction area around the target, and from this

point on the tracking is done under computer control. (Ref. 1]

In recent years, modern surveillance systems use automatic

extraction of radar data. Target initiation, target

correlation, target estimation, target prediction, and target

1

termination may automatically be done under computer control

reducing, to a minimum, the human participation portion of

the man/machine partnership. [Ref. 2,3]

B. MOTIVATION

In military applications, the lower is the processing

time, the higher is the time available for human decisions,

the lower is the system reaction time to existing threats, and

the higher is the system capability to shield an entire task

force against an increasing number of threats.

Combat Systems Architectures are evolving from a single

computer processing data from several sensors to several

computers processing data from a single sensor.

In the US Navy, studies have been developed which set

forth computer systems architecture concepts for the combat

systems of the 2010-2030 timeframe that satisfy the needs of

the next generation of surface combatants [Ref. 4]. Some of

these concepts serve as motivation for this research:

Based on current capabilities, and anticipated future
developments, the microprocessors used will be five times
to one thousand times more powerful than the AN/UYK-43 of
today. [Ref. 4:p.50]

Microprocessors should be chosen from among those widely
used in the commercial world. These microprocessors should
be militarized, but should continue to use commercial
Instruction Set Architecture (ISA). One advantage to this
is that commercially developed executive programs and run
time systems will exist. [Ref.4:p.501

2

The proposed concept is to spread computers throughout the
ship; Individual computers are located in or near the
function they support. Concentrating computers in one
place creates a geographical single point of failure
susceptible to a single missile, torpedo, or shell.
[Ref. 4 :p.51]

Projected requirements for future combat systems show a
substantial need for increased computing capacity.
Improvements in microprocessors are fueled by commercial
demands, whereas development costs for AN/UYK-43
improvements are borne directly and entirely by the Navy.
[Ref. 4:p.52]

C. PREVIOUS RESEARCH

The California Institute of Technology Concurrent

Computation Project, as part of a larger investigation of

concurrent BM/C 3 computations requested by the U.S. Air Force

Electronic Systems Division, has developed a multiple target

tracker [Ref. 5,6]. Targets of interest are thrusting rockets

being launched at regular time intervals from multiple sites.

The sensor is geostationary with a fixed time interval between

successive scans of data. Target initiation, target

termination, target extension to a predicted position, target

to measure association, and target filtering are automatically

executed using a hypercube architecture. [Ref. 6]

The tracking algorithm is a Kalman filter adding system

noise to allow the filter to respond to the actual

accelerations of the target, and the correlation is executed

using a single correlation gate [Ref. 6]. All sensor reports

lying within the correlation gate are paired with the extended

target (Ref. 6], which means that no ambiguity resolution is

3

supported. Also, it appears that in the designed proposal

every rocket is always detected after launch. That is, no

probability of detection is being considered as well as its

reflections in the size of association gates, target

initiation, and target termination algorithms. Any target

which has no association in its correlation gate is deleted

from the target file (Ref. 6], which means that the target

termination is decided in a single step. Two targets are

merged if they are paired to the same sensor report during the

last four scans of data [Ref. 6]. As we can see, in this

proposed decomposition the merge requirement is a consequence

of the absence of an ambiguity resolution algorithm to prevent

the same measure being paired to more than one target.:

The target file is distributed among the nodes of the

hypercube, with each node having access to the full set of

sensor reports at each scan, correlation and tracking

algorithms are executed in the same node, and load balance is

obtained by a redistribution of the target file. To avoid time

consuming cube wide searches to apply the merge criterion, the

assignment of targets to nodes must be such that all targets

paired to the same measure must be assigned to the same node

of the hypercube. To the extent possible, an algorithm was

proposed to minimize the actual transfers of targets between

nodes. [Ref. 6]

4

D. RESEARCH DESCRIPTION

This research specifies and validates a new concurrent

decomposition scheme, called Confined Space Search

Decomposition (CSSD), to exploit parallelism of radar data

processing algorithms (correlation and tracking) using a

distributed computational system.

1. The Application

The tracking algorithm is a Kalman filter, adding

system noise to avoid filter divergence during target

maneuver. The correlation algorithm uses two correlation gates

to reduce the ambiguity resolution overhead, and the

computation cost to evaluate probabilities of association. All

sensor reports lying within the first correlation gate are

paired with the extended target, and all residual measures are

paired with all residual targets using a second correlation

gate, applying an ambiguity resolution algorithm to avoid the

same measure being paired to more than one target. After the

two correlation stages, residual measures are classified as

tentative targets, and residual targets are classified as

terminating targets. Tentative targets must be submitted to a

validation test to be confirmed as firm, and terminating

targets must be submitted to a deletion test to be considered

as lost.

Targets of interest are located within a circle in the

X-Y plane centered at the radar site. All targets are detected

5

with a fixed time interval between successive radar scans and

have an associated probability of detection. Target

initiation, tam-get termination, target extension to a

predicted position, target to measure association, and target

filtering are automatically executed.

2. Object-Oriented Decomposition

An object-oriented decomposition of correlation and

tracking algorithms is proposed. Client and server objects are

identified, and a contract is specified which details the

responsibilities of all identified objects.

3. The Decomposition Cost Evaluation Model (DCEM)

To formalize the specification we propose and apply an

object-oriented methodology called Decomposition Cost

Evaluation Model (DCEM). This methodology can be viewed as an

extension to the object-oriented design process and produces

as output a hint of the 'best' class hierarchy decomposition

and topology for use in some application. This hint is

obtained through conceptual and analytical comparisons among

user identified options.

4. The Confined Space Search Decomposition (CSSD)

The Confined Space Search Decomposition proposal

exploits parallelism of Radar Data Processing algorithms by:

1. Reducing the communication cost to transfer data

among processors;

6

2. Overlapping correlation and tracking algorithms to

avoid the traditional approach of all functions to all

processors; and

3. Decomposing the total correlation problem into

independent correlation problems of smaller size.

It uses a tree topology ((l-CP-TP)-tree) with an

interface processor at the root node, CP correlation

processors at level 1, and TP processors (for each correlation

processor) at level 2.

To reduce the communication cost, the search space is

divided into fixed size sections and each correlation

processor is executing the target to measure association,

working with all measures detected within some assigned number

of successive sections in the tactical scene. Global load

balance is obtained by adjusting the number of correlation

sections assigned to correlation processors, and local load

balance is obtained by a redistribution of the targets

detected within the search space of some correlation processor

among child tracking processors.

To support a smooth transition of a target when it

crosses the correlation processor visibility space boundary an

overlap space is defined. When the target is located within

the overlap space of correlation processors, its estimation is

reported by more than one correlation processor. This means

that a merge algorithm is needed to support the compression of

equivalent targets.

7

5. The Object Reincarnation Proposal

To reduce the penalties of load imbalance we propose

a distributed dynamic load balance heuristic called Object

Reincarnation (OR). In this proposal, objects viewed as

computation sinks die in some processor site reducing its load

and are reincarnated in another site increasing its load.

6. Research Validation

To validate the research we first compare the CSSD

proposal with an identified alternative using the proposed

DCEM model and then develop a theoretical prediction of

selected parameters.

E. ORGANIZATION OF CHAPTERS

This dissertation is organized as follows:

Chapters II and III are dedicated to the analysis of

tracking and correlation algorithms. The Kalman filter

response and the size and shape of initiation, correlation,

and merge gates are evaluated to support their use in the

research.

In Chapter IV an object-oriented design, categorized as

responsibility-driven, is applied to the software

decomposition of correlation and tracking algorithms. Client

and server objects are identified and specified, and a

contract is specified which details the responsibilities of

servers, clients, and required resources needed to execute the

8

contract services. The single processor class hierarchy is

also specified.

In Chapter V we specify the Confined Space Search

Decomposition proposal. To formalize the specification we

propose and apply an object-oriented methodology called

Decomposition Cost Evaluation Model (DCEM). To reduce the

penalties of load imbalance we propose a distributed dynamic

load balance heuristic called Object Reincarnation (OR). The

Confined Space Search Decomposition is compared with an

identified alternative using the proposed DCEM model.

In Chapter VI we develop a theoretical prediction of

performance, tracking capacity, and system reaction time of

the Confined Space Search Decomposition. 7 .I and worst cases

are analyzed. To verify that tlie application supports a

division of the search spa,7e in correlation sections and the

object reincarnation in another processor site, we develop a

simulation to check the tracking filter capability to reduce

the measurement errors when targets cross the space search

boundary of CPs.

Finally, Chapter VII concludes the research with a summary

of significant results, strengths, weaknesses detected, and

suggests future research directions.

9

II. TRACKING ALGORITHMS

This chapter provides an introduction to the Kalman filter

and evaluates the filter response when system noise is added.

We begin with a brief overview of x and a-P filters which

provide a basis for the Kalman filter.

A. a AND a-1 FILTERS

Radar measurements are represented by a discrete sequence

of bearing and ranges. Those measurements carry, in addition

to their inaccuracy, an associated uncertainty which is

usually represented by additive noise. [Ref. 7]

Tracking algorithms process radar measurements to

accomplish the following purposes [Ref. 2]:

1. Reduce the measurement errors by means of time

averaging;

2. Estimate the position and velocity of the target; and

3. Predict future target position.

These algorithms can be implemented as Digital Filters. A

digital filter can be defined as a linear combination of an

input and previous output sequence of values. As a particular

case, the input sequence xn=x(t=n) represents measurements

equally spaced in time and the output sequence k=k(t=n) can

be represented as:

10

+x0 +o0, (2.1)

k=l k=-oo

The filter coefficients are ak and bk.

If the input coefficients bk are defined for k in the

interval [0,o) the filter is said to be Causal since the

output does not depend on future input measures.

If all the previous output coefficients ak=O, the filter

is said to be Nonrecursive which means that there is no

feedback from the output to the input. A Causal Recursive

Filter, used for position estimation can be represented as:

00 00

S ak .k + bk x. _k (2.2)
k=l k=O

Of special interest is the filter represented as:

= (I - a)-._1 ax.

Or alternatively as:

it. = ._ 1 + a(xX. - R._. 1)

If Ci1 then xk=x,,, if a=O then - and if a is between

0 and 1 then the filter output is a weighted average of x, and

_-. That is, c reflects the confidence that we have in our

measurement. With a=l we strongly believe in the measured

value x, and with a=O we will completely disregard the measure

x,, and use the previous estimation k-,.

11

This is called the a filter, where the coefficient a is

the Position Filter Gain and (x, - -ik) is the Filter Residue.

This filter would be useful if applied to stationary targets

for which measures of one coordinate are being taken.

When a target is stationary, its prediction is equal to

its estimation in the previous iteration, thus:

In this case, the position estimation is:

=, =xP + O X P

Consider now a target moving with constant velocity. Along

with the position equation to estimate the target velocity, we

have:

Since most radars do not measure the velocity, we have to

obtain this information from the position measurements assumed

to be available every At, therefore:

1
V T- (X A

v=- 1 (x-' -5 A, -x)

12

In summary, for targets moving with constant velocity we

have:

1. Estimation Equations

(2.3)

Q -P + j3 (x,.-xP)

2. Prediction Equations

xP= A + _ At

(2.4)

V =P

If the measure is ahead of the prediction (i.e., x. > xP)

then the velocity receives a positive correction. If the

measure is behind the prediction (i.e., x, < xp) then the

velocity receives a negative correction. If the measure is

equal to the prediction then the velocity receives no

correction (see Equations 2.3, 2.4).

This is called the a-P filter, where the new coefficient

Sis the Velocity Filter Gain. The values of a and P must be

selected to properly assess the attributes of:

1. Filter instability;

2. Noise reduction; and

3. Transient performance.

Figures (1,2, and 3) show the operational limits of (x,•).

13

stability line

4 0 ~ -0i-

12

Figure 1 Allowed Values of a and [[Ref.2:p.182]

4mderdmped filters

critical duving

overdatiped filterz

1 2

Figure 2 Damping Limits [Ref.2:p.183]

4L

S=--____ noz..l2 regio of

operation

Figure 3 Normal Region of Operation [Ref.2:p.183]

14

But what is the meaning of 'properly assess' the

attributes? Can we calculate some 'best' gain pair (a,B) to

weigh the pair (measure,prediction) at each measurement? To

answer these questions we need to introduce the Kalman filter.

B. THE KALMAN FILTER

The criteria used in the Kalman filter to select the best

(a4,) pair are:

1. Minimum Average Error; and

2. Minimum Square Error.

Additionally, the errors in the observations of the

targets are normally distributed. The filter equations may be

summarized as follows:

1. Evaluate the filter gains (a,P) using the uncertainty

of the prediction and measurement;

2. Find the estimated position and velocity of the target;

3. Compute the uncertainty of the estimated position and

velocity of the target;

4. Find the predicted position and velocity of the target

to be used in the next iteration; and

5. Compute the uncertainty of the predicted position and

velocity of the target to allow the computation of the filter

gains in the next iteration.

The actual equations can be derived as [Ref. 8, and 9]:

15

1. The Filter Gain

The best gain (cc, at the iteration n, can be

expressed as:

(a',
)2

a., = ft
2((Y"p 2 + ((yn n

(2.5)

2At* (CF XVXP n

((T XP) nz + ((Y" n2

where:

((T.p)2. is the variance of position after prediction;

(43,,,P)2. is the variance of velocity after prediction;

(cr,.P)'. is the covariance between position and velocity

after prediction; and

(Cy.)
2
. is the variance of the measure assumed to be 1%

of the measure value.

2. Zati-ted Position and Velocity

As in the (X-P filter:

A,, XP + Ot (X" - XP)
(2.6)

Qý. XP (X" - XP)

3. Uncertainty in the Estimated Position and Velocity

The uncertainty in the estimated position and velocity

can be computed as:

16

W 't (a) ((YXV2(0 n V)n "F• X n

where:

(ny)2 is the variance of position after estimation;

(YO) 2 is the variance of velocity after estimation; and

(a, 1)z is the covariance between position and velocity

after estimation.

4. Predicted Position and Velocity

In a first order system (i.e., constant velocity):

XpI. 1) + ,

(2.8)

VX

5. Uncertainty in the Predicted Position and Velocity

The uncertainty in the predicted position and velocity

can be expressed as:

17

(X P =(~) + 2 *Ata~) +t(,,).

(2.9)

6. Filter Initiation

When a new target starts the tracking phase, the

filter needs to be initiated with the following initial

values:

1. Predicted position and velocity of the target; and

2. Uncertainty in the predicted position and velocity

of the target.

The predicted position and velocity (xp, v) are

transferred by the initiation algorithm (which is described in

the next chapter).

The uncertainty in the predicted position can be

computed as:

18

S= (0.01*x,)2

) 2 (2 *vp) x2 2 12p 1P(2.10)

2 (2*v,) 2
(-1P 1 12 xp < 12

(a~ 02(.0

7. Maneuver Detection

The Kalman filter, as introduced in this section,

works for targets with constant course and speed. If the

target maneuver r the filter has settled with an optimal

gain, the meast.es will not affect the gain and the filter

will not f:llow the maneuver. To prevent this 'disconnection

from re3ality,' we can assume that targets undergo random

accelerations and simulate this behavior by adding system

noise. The effect of the system noise is to increase the

prediction uncertainty; the position filter gain (a) is driven

towards unity, thus improving the maneuver response.

It is important not to confuse the system noise with

the measurement noise. The measurement noise appears due to

the inaccuracy and uncertainty in the measurement and is

simulated by a random number generator. The system noise is

placed in the model to simulate targets undergoing random

accelerations.

19

This new model is expressed as [Ref. 8]:

a. Random Acceleration Coefficient

a Xn - XP

(2 x) 1 (2.11)

b. Predicted Position and Velocity

A,= +. Oý *At + 0.5*a.÷ *At1

(2.12)

v . = + a.., *At

c. Uncertainty in the Prediction

(a) (a,1) 2) + 2At((Y)(. + At 2 (a;)A + 0.25*a2. 1 *At'

2 2 2 (2.13)
(OYV). 1 =((Y) n + a. 1 *At2

((Y:7X n2 1 = ") n + At ((Y) n + 0. 5 *a,.. *At3

8. Tracking in the X-Y Plane

As introduced in Chapter I, our targets of interest

are located within a circle in the X-Y plane centered at the

radar site. Radar measurements are represented by a discrete

sequence of bearing and ranges, and targets are detected with

a fixed time interval.

The equations that relate range and bearing with the

X-Y coordinates are:

20

X = R sin (0)
(2.14)

Y = R cos (0)

If we assume as a reasonable hypothesis that the

errors in polar coordinates are small compared with the true

target coordinates, then the filtering process is independent

for the coordinates X and Y. Thus, the computation can be done

with two filters one for each coordinate. [Ref. 2,8]

C. FILTER RESPONSE ANALYSIS

In this section we evaluate the Kalman filter response to

validate its use in this research.

1. Methodology

To analyze the filter response, a program was

developed to filter simulated radar plots. Radar plots

represent a time evolution of noisy measurements. Radar

measurements carry an associated uncertainty which is usually

represented by additive noise. The errors in the observations

of the targets are normally distributed. Figure 4 depicts a

schematic diagram of the structure used.

A pair of independent Gaussian variables gl, 2 = N(0,a1 , 2)

can be obtained from two independent uniformly distributed

variables u,, 2 using the Box-Muller algorithm [Ref. 2]:

21

SENSOR
---...

Noise

True Path N (0,o)
(x Yc)"

Plot
(x,y)I

X~y FILTER

Track

Estimation Prediction
(k,x9) (Xp, yp)

Figure 4 Filter Response Analysis

22

g 01"/- 2 In (G - uz) cos 2itu 2

(2.15)

92 = 02*V" 2 In (l - u1) sin 27Iu 2

The sensor detection can be simulated as:

x = xc + 01 g,

y = Y, + (2 *g2

(2.16)

01 = 0. 01 * X,

02 = 0.01 * Y,

The evaluation program was organized into two loops.

The inner loop refers to the time progression of the target

motion along its path. The outer loop performs a set of

statistically independent trials. The output obtained in each

trial is not by itself representative of the system behavior.

For each trial, average square errors along the path are

computea. The mean value of the errors over N trials are

computed by averaging the errors over the trials.

The following square errors were considered in the

evaluation:

23

=-- (9- xc) 2

(2.17)

e2 (x xC)2

4Ex

2y= (-v -)

where:

C 2, C are the estimation square errors;

; gy are the measurement square errors;

x,, yo are the true target coordinates;

x , y are the detection coordinates; and

x, ý are the estimation coordinates.

The Measure Mean Square Error (MMSE) and the

Estimation Mean Square Error (EMSE) can be computed as:

(MMSE) x N =1 1 iS
J=l 1=1

(2.18)

j =N i =s

(EMSE) Xy z I =

J=__ 1=

where:

N is the number of trials;

S is the number of radar detections in each trial;

i is the inner loop index; and

24

j is the outer loop index.

To measure the efficacy of the filter we defined

filter improvement as:

(F) (MMSE)XY) - 1) *100 % (2.19)
I(EMSE) ' Y

2. Assumptions

During the analysis the following assumptions were

used:

1. A single target is being tracked;

2. For each trial, the target is detected with 100%

certainty at all iterations of the loop along the path; and

3. The single target path is detected with a fixed

time interval and the number of observations in each trial is

S=112.

It was observed that after N = 100 trials there was no

significant difference in the mean value of the errors being

computed for each path, which means that an increase in the

external loop size would only affect the validation processing

time. However, we used N = 200 trials to achieve accurate

evaluation with safety.

3. Target Motion Model

The analysis of the filter response was implemented

using the following motion models:

1. Outbound helicopter with constant course and speed;

25

2. Outbound helicopter with constant course and

acceleration; and

3. Aircraft in circular flight with constant angular

speed.

4. Conclusions

Table 1 depicts the results of the evaluation and the

main conclusion can be expressed as:

The Kalman filter is decreasing the measurement errors in

the motion models used in the analysis.

D. MULTIFILTER ALGORITHMS

The Kalman filter as introduced in this chapter is a

simplified algorithm. Multifilter algorithms can also be used

to solve the maneuvering target problem; However, these

algorithms are too computation intensive to be used with

SISD architectures [Ref. 10]. Table 2 depicts the serial

execution time of the Interacting Multiple Model (IMM) and

Viterbi Algorithms (VA) running in the National Semiconductors

DB32332 boards [Ref. 10].

26

TABLE 1 FILTER. RESPONSE EVALUATION

Path X-MMSE X-EMSE X-FI Y-MMSE Y-EMSE Y-FI

Outbound

C=1350 737 153 119% 744 155 119%

Vr=60 m/s

Outbound

C=3150

Vr=20 m/s 1034 229 112% 1047 234 112%

Ak=0. 5m/s 2

Circular

(0,15000) 7174 2354 75% 15059 6851 48%

V9=0. 01r/s 2

TABLE 2 RUN TIME (SECONDS) (100 ITERATIONS) [REF.10:P.251]

Algorithm Serial Time

IMM 66.54

VA 57.71

27

III. CORRELATION ALGORITHMS

This chapter is included in the dissertation to help

readers not familiar with correlation algorithms. It also

analyzes the size and shape of initiation, correlation, and

merge gates.

A. INTRODUCTION

Radar measurements (plots) may be represented by a

discrete sequence of X-Y coordinates assumed to be detected

within a fixed time interval and with an associated

probability of detection. Target predictions are computed

using the Kalman filter as discussed in Chapter II.

Correlation algorithms associate a set of plots with a set of

target predictions to accomplish the following objectives

[Ref. 2]:

1. Decide on the optimal assignment pair (plot,target);

2. Decide on the initiation of residual plots; and

3. Decide on the termination of existing targets.

When an optimal pair (plot,target) is made, the plot is

used as a new input to the tracking filter to produce refined

eitimates of the target position and velocity, and to predict

the target position in the next detection.

When a residual plot is found, a Tentative Target is

created. Tentative targets are either confirmed as Firm

28

Targets or destroyed as False Targets depending on the results

of a confirmation algorithm.

When a residual target is found, a Terminating Target is

created. Terminating targets are either reconfirmed as Firm

Targets or destroyed as Lost Targets depending on the results

of a confirmation algorithm.

B. THE PLOT TO TARGET CORRELATION PROBLEM

The simplest selection of plot-target pairing uses the

smallest distance criterion in the association [Ref. 2]. The

algorithm uses two correlation gates. The first gate makes no

allowance for maneuver, which means that its size is 'small

enough' to avoid Ambiguity Resolution. Plots which are still

left without association are tested against any remaining

targets using a second gate, this time allowing target

maneuvering. Because of the large size of this second

correlation gate, ambiguity resolution might be required.

However, this would normally only happen with maneuvering

targets near each other.

The correlation gate is a region in the space centered on

the predicted target position. The shape and size of the gate

are determined so as to provide a high probability that the

actual measurement, if detected, will lie within the gate. The

detailed formulae involved in the calculations are quite

complex and are as such unattractive for use in a Real-Time

29

System. One technique for computation load reduction is to use

an approximate rectangular gate (XY-Plane) [Ref. 2].

Figure 5 depicts a schematic view of the plot to target

correlation problem. The ambiguity resolution problem arises

when more than one plot lies within the gate of one or more

targets. The correlation gate of several targets can be

overlapped. This means that the same plot can be the closest

association of different targets. Those ambiguous situations

occur when a target passes through a cluttered area or when

several targets are in the same neighborhood, as in the

tracking of a formation of aircraft. Plots falling within each

target correlation gate are stored in ascending order of

distance from the target predicted position.

One proposed solution to solve the ambiguity problem is

the n-step closest association algorithm [Ref. 2]. In each

step, a correlation table is constructed to mark the closest

plot association of each residual target. All correlated plots

and targets are identified to prevent wrong associations in

future steps. When the same plot correlates with more than one

target the closest association is chosen. This algorithm may

be improved by adding a tag to each association with the

probability of pairing correctness (Ref. 2]. This algorithm

ends when [Ref. 2]:

1. All targets are correlated; or

2. All plots are correlated; or

30

PLOT TARGET

MEASURES PREDICTIONS

FIRST GATE

FILTER

RESIDUAL RESIDUAL
PLOTS TARGETS

"SECOND GATEJ
I M:1I

RESIDUAL M 00:N RESIDUAL
PLOTS TARGETSI1:1

INITIATION FILTER TERMINATION

Figure 5 Plot to Target Correlation

31

3. All residual targets are with the correlation buffer

empty.

To help the visualization of the termination conditions,

we will simulate all the steps of the algorithm execution

using three distinct examples, one for each condition.

Example A - All Targets Correlated (Figure 6):

Step 1 - The pairs (T,,Pj), (T3,P 2) and (T.,P 3) are made

because (d1<d 2) , (d 3<d4) , and (d 5<d 6) ;

Step 2 - The pairs (T2,P 4) and (T41 P5) are made because

(d2<d6) and P, correlates only with T4;

Step 3 - The pair (T6 ,P5) is made; and

Step 4 - Correlation ends because all targets are

correlated.

Example B - All Plots Correlated (Figure 7):

Step 1 - The pairs (T1 ,PI) , (T4,P 2) and (TE,P 3) are made

because (d 1<d 2<d 3) , (ds<ds) , and P 2 correlates only with T4 ;

Step 2 - The pair (T.,P 4) is made because P4 correlates

only with T5. P 3 does not correlate with T2 neither with T3

because it was correlated with T. in step 1; and

Step 3 - Correlation ends because all plots are already

correlated.

Example C - All Residual Targets with Empty Buffer

(Figure 8):

Step 1 - The pairs (Tj,PI), (T3,P 2), (T4,P 3), (Ts, PO), and

(T,,P 4) are made because (d1<d2) and P2,P 3,P 4,P 6 correlate only

with T3 , T4, T., and T4 , respectively;

32

-7--P3- P54 P6, P2 ---

-P-4- P3 P5 PH P4P1 P2 -P2-] P P

T1 T2 T3 T4 T5 T6

STEP 1

Target Plot Dist. 'arget Mark Plot Mark
* T1~ P7 dl W-1 1 I1

T2 P1 d2 T2 P /
1 3 P~2 a3 _ r3-7
T4 P2 d4* 1 P3 -:-U 55 -/ P5 5
T6 P3 d6 T6 P6

P7
STEP 2

Target Plot Dist. Target Mark Plot Mark

T1 _T_ ,Z P

P5 IC1P4 /
T5__ ___ P5 /

T6 P4 d6 __IT6 P6

STEP 3 !_ 1 _1

Target Plot Dist. iarget Mark Plot Mark

1T _1 / Pi Vt
T2z I T2 / P2

1FT4 P4-T55 , P5 ,
* T6 P6 d6 T6 7 IRS

Figure 6 All Targets Correlated

33

P1 P1 P P4 P4

T1 T2 T3 T4 T5 T6

STEP 1

Target Plot Dist. Target Mark Plot Mark
* T1 -P dl 1T 7 P1 ,V

T2 P1- d2 T2 P2 /
T3 P1 d3 T

* T4 P2 d4I J P41T45' P3 d5 I
* T6 P3 d6 T6 _

STEP 2
Target Plot Dist. Target Mark Plot Mark

__ 11 P1
T2 P3 d2 T2 P2 "

3• P3 W3 3 P31 Z-' a, ~T4 I, P

* 1_ 4 P4 d5 T5 17
T6 T6 _"

Figure 7 All Plots Correlated

34

P4 P4 P6 P7 P5 PI7
PP1 P2 P3 P4
T1 T2 T3 T4 T5 T6
STEP 1

Target Plot Dist. Target Mark Plot Mark
* T1 PF1 dl TT1 P1

T2 P1 d2 T2 P2
* T3 P2 ZR3
T4 PdP4 ,

_5 P4 P5* T6 P6 d6 T6 P6 /
P7

STEP 2

Target Plot Dist. Target Mark Plot Mark
11 _1 z1 L7

T2 P4 d2 T2 P2/
TA T34 VP4

_ _ T5 _ P5
T6 1"T6/ P6/

P7

Figure 8 All Residual Targets With Empty Buffer

35

Step 2 - No pair is made because P4 was correlated with T5

in step 1; and

Step 3 - Correlation ends because all residual targets

(T 2) are with the correlation buffer empty.

In Chapter IV an object-oriented implementation of the

n-step closest association algorithm is proposed.

C. TARGET CONFIRMATION, INITIATION, AND TERMINATION

1. Target Confirmation

Target confirmation is the procedure used to verify if

a tentative target should be confirmed as a firm target or

destroyed as a false target, and to verify if a terminating

target should be reconfirmed as a firm target or destroyed as

a lost target. The confirmation algorithm is based on the

Sequential Test [Ref. 11]. In the sequential test the decision

is based on the target observation of the ratio of actually

correlated echoes to demanded echoes.

Figures 9 and 10 depict the initiation and termination

decision algorithms, where:

A - decision threshold for target acceptance;

B - decision threshold for target rejection;

M - demanded echoes;

b" - maximum allowed number of samples;

k - good echoes returned; and

u - sample function.

36

M < M Lim M M Lim

uzA u•-B B<u<A k/m Ž0.5 k/m<0.5

Firm False Uncertainty Firm False

Target Target Wait Next Target Target

Sample

Figure 9 Initiation Decision Algorithm

M < M Lim M M Lim

uŽA u•-B B<u<A k/m , 0.5 k/m<0.5

Firm Lost Uncertainty Firm Lost

Target Target Wait Next Target Target

Sample

Figure 10 Termination Decision Algorithm

37

The sample function can be computed as:

u= (PdI)k Pdl k

PdO 1 Pdo (3.1)

where:

pd is the lower limit of the probability of detection

of a real target; and

Pdo is the upper limit of the rate of false returns.

Both pu, and Pdo are imposed by environmental

conditions. Typical values are [Ref. 11]: pd = 0.9, Pdo =

0.06, A = 239.2, and B = 0.01131.

To avoid the uncertainty condition during a large

number of samples, we will use MD• = 5.

2. Target Initiation

Target initiation is the procedure by which a new

target entering the radar coverage is acquired by the tracking

system of the sensor. During target initiation, tentative

targets are created and submitted to the sequential test to

decide upon true or false targets. The main objective of any

automatic initiation procedure is to initiate targets'shortly

after detection. On the other hand, the procedure should

prevent initiation of false targets to avoid an overload of

the tracking filter in environments with low probability of

detection.

38

The association of residual plots with tentative

targets uses an Initiation Gate. The initiation gate is a

square gate centered on the tentative target's predicted

position. The initiation algorithm may be outlined as follow:

a. New Tentative Target

The prediction and estimation can be computed as:

(x') -x

(3.2)

(k) =x

b. Tentative Target with Correlated Measure

During the initiation phase the measure is

considered more reliable than the prediction, therefore:

(1) Target Confirmed as Firm. Transfer to the

tracking filter x, and (vP), to allow the computation of (xp).+l

and ('). Also, destroy the tentative target.

(2) Uncertainty. The prediction and estimation

can be expressed as:

(xP) n -1 -xn (xn - n

(3.3)

At

39

c. Tentative Target without Correlated Measure

In this situation the prediction is the best

information available, therefore:

(1) Target Confirmed as False. The required

action is to destroy the tentative target.

(2) Uncertainty. The prediction and estimation

can be expressed as:

(xP) n. + = (x,) + [(xv) n - X _

(v) n - n t(3.4)

,= (x'P) -,-
(v,) .÷ IAt

3. Target Termination

Target termination is the procedure used to determine

if the target was lost owing to lack of subsequent plots.

During target termination, all terminating targets are

submitted to the sequential test to decide upon reconfirmation

as firm or target lost. Terminating targets are transferred to

the tracking filter and when no correlation measure is found

the prediction replaces the measure in the tracking algorithm.

The termination algorithm may be outlined as follow:

40

a. New Terminating Target

The required actions are:

1. Modify the target status from firm to

terminating; and

2. Transfer the target prediction as a replacement

to the measure in the tracking algorithm.

b. Terminating Target with Correlated Measure

(1) Target Reconfirmed as Firm. Modify the

target status from terminating to firm and transfer the target

correlated measure to the tracking algorithm.

(2) Uncertainty. Transfer the correlated measure

to the tracking algorithm.

c. Terminating Target without Correlated Measure

(1) Target Lost. The required action is to

destroy the target.

(2) Uncertainty. Transfer the target prediction

as a replacement to the measure in the tracking algorithm.

D. THE MERGE PROBLEM

Target estimation reports may be represented by a discrete

sequence of X-Y coordinates assumed to be available every

radar scanning.

Parallel processing architectures splits the radar data

processing functions among several processors. When any target

estimation is reported by more than one processor a Merge Gate

is used to support the identification of equivalent targets.

41

The merge gate is a square gate centered on target estimation

reports.

Z. GATES SPECIFICATIONS ANALYSIS

In this section we analyze the size and shape of

initiation, correlation and merge gates to validate theirs use

in the research.

1. Methodology

The methodology used in the analysis is equivalent to

the one used in the analysis of the Kalman filter in Chapter

II, with the following differences:

1. Analysis of initiation and correlation gates: For

each trial, the number of hits within the gate is computed,

averaged over the trials, and compared with the maximum number

of possible hits; and

2. Analysis of the merge gate: All target estimations

reported during a fixed time interval are compared with each

other to see if they lie within the merge gate. For each

trial, the number of hits inside of the gate is computed,

averaged over the trials, and compared with the maximum number

of possible hits.

2. Correlation Gates: Dimensions and Shape

The gates dimensions and shape are specified as a

function of the prediction standard deviation, which is

assumed to be 1% of the prediction value. Therefore:

42

o• = O.l*xp (3.5)

Table 3 depicts the dimensions and shape of

initiation, correlation and merge gates used during the

validation tests.

TABLE 3 CORRELATION GATES: DIMENSIONS AND SHAPE

Gate Size Size,. Shape

Initiation g = 2*12a 3000 m Square

First g = 2*3a 40 m Rectangular

Second g = 2"*12 2000 m Rectangular

Merge g = 2*4a 40 m Square

3. Assumptions

During the analysis the following assumptions were

used:

1. A single target is being tracked by two processors;

2. Number of trials: N = 200 trials;

3. Number of samples/trial: S = 112 samples/trial;

4. Processor 1, samples/trial: S, = 56 samples/trial;

5. Processor 2, samples/trial: S2 = 66 samples/trial;

6. Overlap between processors: 0 = 10 samples;

7. Minimum number of samples to allow initiation:

(S..),=4 samples; and

43

8. Probability of detection: variable (Pd=l.0, Pd=0 . 9 5 ,

and Pd=O. 9).

From the assumptions used, we would like to highlight

the following topics:

1. Minimum number of hits in the initiation gate of

each processor: Min(hits initiation) = 200 trials * 4

hits/trial = 800 hits;

2. When the number of hits in the initiation gate of

each processor is greater than 800, this means that more than

4 hits were necessary in the initiation algorithm and/or a

firm target had the contact lost and a new tentative target

was created;

3. Maximum number of hits (Processor 1): Max(hits

initiation+first+second) = 56 hits/trial * 200 trials = 11200

hits;

4. Maximum number of hits (Processor 2): Max(hits

initiation+first+second) = 66 hits/trial * 200 trials = 13200

hits;

5. When the number of hits within the initiation gate

plus the number of hits within the first gate plus the number

of hits within the second gate is less than the maximum number

of hits for each processor, this means that a tentative targe-

missed a hit in the initiation gate during the confirmation

phase and/or a firm target missed a hit in the first and

second gates (modifying its status to terminating);

44

6. Maximum number of hits in the merge gate: Max(hits

merge) = 200 trials * 10 hits/trial = 2000 hits; and

7. When the number of hits in the merge gate is less

than 2000 , this means that the merge gate was not able to

identify the dual report of the single target as equivalent in

some trials.

4. Target Motion Model

The single target motion model can be expressed as:

1. Initial position: (x,y) = (1500,0);

2. Course: C = 0000;

3. Motion t £ (0,50s]: Vy = 350 m/s, Ay = 0; and

4. Motion t E (51s,llls]: V0 y = 350 m/s, Ay = 70m/s 2

(7g).

5. Results

Table 4 depicts the results obtained during the gate

integration tests. The hits within the merge(MG),

initiation(IG), first(FG) and second gates(SG) of the

processors 1(P1) and 2(P2) are evaluated as a function of the

probability of detection pd.

From these results, we can conclude that when the

probability of detection decreases:

1. The number of hits in the initiation gate is

greater than 800. That is, the number of hits needed to modify

the status of a tentative target to firm target is increasing

and/or firm targets had the contact lost and a new tentative

45

target was created due to the arrival of new noncorrelated

measures;

2. The number of hits in the first gate is decreasing

and the number of hits in the second gate is increasing. That

is, the computed predictions are getting worse, bringing, as

a consequence, an increase in the ambiguity resolution

overhead;

TABLE 4 GATES INTEGRATION TESTS

Pd Hit Hit Hit Hit Hit Hit Hit

MG IG FG SG IG FG SG

P1 P1 P1 P2 P2 P2

1.0 1998 800 9563 837 800 11477 923

.95 1970 864 9477 859 816 11390 994

.90 1938 993 9246 961 897 11256 1047

3. The number of hits in the merge gate is decreasing.

That is, the computed estimations are getting worse and the

capability of the merge gate to identify equivalent targets is

decreasing. However, the hit rate is always greater than 95%,

which we consider to be a good compromise between the

requirement of small gates to avoid different targets being

reported by different processors to be considered as a single

one and the requirement of large gates to avoid the same

46

target being reported by different processors to be considered

as different ones.

In general, we can also say that:

1. The sum of hits within the initiation, first, and

second gates is equal to the maximum number of hits for each

processor. That is, for all detected measures we always have

a hit in one of the gates; and

2. The number of hits in the first gate is greater

than 90% of the hits in the first and second gates, which we

consider to be a good balance between the requirement to

reduce the ambiguity resolution overhead and the requirement

to avoid different plots to be paired to the same target.

6. Conclusions

The results obtained endorses the following

conclusions:

1. The initiation, correlation and merge gates as

specified in Table 3 are well balanced to be used in this

research.

2. A hit ratio greater than 900 is achieved within the

first correlation gate for the target motion model used in the

analysis.

F. TARGZT SPLITTING ALGORITHMS

An alternative proposal to correlation algorithms is known

as target splitting. Under this scheme, the tracking system

does not have to commit itself immediately or irrevocably to

47

a single assignment of each report. If a plot is highly

correlated with more than one target, hypothesis targets can

be created. Subsequent reports can be used to determine which

assignment is correct. [Ref. 12]

One worrisome consequence of the target splitting

algorithm is known as target explosion (i.e, a proliferation

in the number of hypothesis targets that a program must keep

tabs on). The proliferation can be controlled with the same

target-deletion mechanism used in the nearest-neighbor

algorithm, which scans through all the targets from time to

time and eliminates those that have a low probability of

association with recent plots. However, since two hypothesis

targets may lock onto the trajectory of a single target the

standard target-deletion mechanism has to be modified to

detect redundant targets. [Ref. 12]

Two-phase gating algorithms may also be used. However, in

the target splitting algorithm the correlation gate is a

region in the space centered on plots (the number of

hypothesis targets is expected to be greater than the number

of plots). All candidates located within the first correlation

gate are committed as hypothesis targets. Plots which are

still left without association are tested against any

remaining targets using a second larger gate. Because of the

large size of this second correlation gate, pruning might be

required to reduce the penalties imposed by the target

explosion problem. A simple pruning strategy is to select the

48

n hypothesis candidates with the highest probability of

association, where n is the maximum number of hypotheses that

computational resource constraints will allow [Ref. 12].

G. COMPUTATION COST OF GATING OPERATIONS

The most obvious proposals for multiple-target correlation

makes the difficulty of an n-target problem proportional to

n 2 . Experiments developed at the Naval Research Laboratory

with thousands of targets produced encouraging results. In

these experiments target predictions are stored as points in

a multidimensional tree data structure. Then for each plot a

gating range is defined, and the tree is searched for all

target predictions falling within the range. Each such search

requires at most n 213+k operations, and in many instances the

actual performance is appreciably better. [Ref. 12]

The execution time of tree-based association algorithms on

a personal workstation for 128,000 targets is a little more

than 10 minutes (Ref.12:p.141]. That is, the average cost per

target is about 5 ms.

The computation cost of gating operations can be reduced

by:

1. The use of two association gates. This avoids the

calculation of probabilities of association for pairs obtained

during the first gate correlation phase;

2. The use of tree-based association algorithms; and

49

3. The decomposition of the total correlation problem of

size N-target into CP independent correlation problems of size

N/Cp, which can be processed in parallel.

Our resear,.h exploits parallelism of Radar Data Processing

algorithms (correlation and tracking) by:

1. Reducing the communication cost to transfer data among

processors;

2. Overlapping correlation and tracking algorithms; and

3. Decomposing the total gating problem into independent

gating problems of smaller size.

50

IV. OBJECT-ORIENTED DECOMPOSITION

In this chapter an object-oriented design is applied to

the decomposition of correlation and tracking algorithms.

Client and server objects are identified, a contract is

specified which details the responsibilities of all identified

objects, the object structures are specified, and the initial

class hierarchy is defined. However, the initial design is

conceived without regard for the hardware architecture. Later,

in Chapter V, the decomposition of objects to processors is

proposed and the design is then adjusted to fit the proposed

architecture.

A. INTRODUCTION

It is assumed that the reader is at least somewhat

familiar with object-oriented (00) terminology. However, a

brief introduction is included as the terminology often varies

greatly from one system to another. For a more complete

introduction, the reader should refer to [Ref. 13,14, and 15].

An object can be defined as an entity with a

self-contained set of variables (representing the object's

state) which can only be manipulated by a set of methods

(procedures) defined exclusively for that purpose. A message

is sent to an object to tell it to execute one of its methods.

A class can then be defined as a description of similar

51

objects. It can be likened to a template or a cookie cutter

(Ref. 15]. An object is sometimes referred as an instance of

a class.

The variables making up an object can be either class

variables or instance variables. A class variable is one which

is shared both in name and value by all instances of a class

(i.e., changing the value of a class variable for an object

causes the value to be changed for all instances of that

class). A instance variable is shared in name only by all

instances of a class (i.e., changing the value of an instance

variable for an object has no affect on any other instance of

that class).

Methods can also be categorized as either class methods or

instance methods. A class method is executed when a message is

sent to a class, while an instance method is executed when a

message is sent to an instance of a class (note that this is

quite different from the concept of class and instance

variables).

Inheritance can be defined simply as a code sharing

mechanism. It allows a new class to be defined based upon the

definition of an existing class without having to manually

copy all of the existing code. A subclass inherits all of the

variables and methods defined for its superclass.

A class hierarchy can be represented as a tree structure

which indicates the inheritance relationship between the

various classes. If a class is allowed to have multiple

52

superclasses, then the system is said to support multiple

inheritance (MI); the inheritance relationship diagram

developed in a MI environment is technically a lattice, but is

commonly referred to more simply as a hierarchy.

Objects can also be composed of other objects, in which

case they are called composite objects (or aggregate objects).

That is, some of the variables making up the object are

themselves objects, called dependent objects. Composition and

inheritance are the primary building blocks used in

constructing object-oriented systems.

Object-oriented programming (OOP) is becoming widely

accepted as a viable approach to nearly any programming

project. In a concurrent OOP system, many forms of concurrency

are possible [Ref. 16]. We may send messages to different

objects, causing several objects doing things concurrently. We

may send several messages to the same object, causing it to

perform several methods concurrently. We may also be able to

have a single method for an object do several things

concurrently.

Object-oriented design (OOD) has been categorized as being

either data-driven or responsibility-driven [Ref. 17]. With a

data-driven approach, it is the structure of the 'data which

drives the design. It is claimed that this approach violates

encapsulation in that it makes the structure of the object a

part of its definition, and that this leads to operations

which reflect the given structure [Ref. 17].

53

The responsibility-dri von approach is based upon the

client/server model where the interaction between the client

and the server is described in a contract specifying what the

server does for the client rather than how the server does it

(Ref. 17].

However, it has also been argued that these two approaches

are essentially one and the same, as long as the designer

strives for a high degree of encapsulation. That is, the

structure does not have to drive the design, it simply

indicates that the object is responsible for providing that

information on demand. [Ref. 18]

To date, there is no design methodology that is

universally accepted by the object-oriented community. In this

research we apply the responsibility-driven approach to the

decomposition of correlation and tracking algorithms. Object

specification and the class hierarchy definition will use the

language-independent syntax as presented in [Ref. 18]. Class

names are written in CAPITALS, variable and method names are

written in SMALL CAPITALS, variable types are written in normal

type, and variable values are written in italics. Figure 11

depicts an example of the used syntax notation.

B. OBJECT IDENTIFICATION

An object is both an encapsulation and an abstraction: an

encapsulation of attributes and exclusive services on those

attributes; and an abstraction of the problem space,

54

CLASS: CLASS NAME
Superclasses: SUPERCLASS 1, SUPERCLASS 2, ...
Class Variables: CLASS VARIABLE 1: type (default value]

CLASS VARIABLE 2: type (default value]

Instance Variables: INSTANCE VARIABLE 1: type (default value]
INSTANCE VARIABLE 2: type (default value]

ethods: METHOD 1
METHOD 2

Figure 11 Language-Independent Class Definition
[Ref.18:p.3]

representing an occurrence of something in the problem space.

Identification of objects requires a considerable knowledge

of the problem space. Chapters II and III introduced the

dissertation application area, and they are used as the basis

for the object identification problem.

1. The Servers

Servers provide a set of services upon request. The

services to be supported are classified into the following

phases:

a. Detection Phase

During the detection phase, radar measurements must

be simulated. This means that a sensor object must provide the

service Report Radar Detections (see Equation 2.16).

b. Correlation Phase

During the correlation phase, the n-step closest

association algorithm, the initiation algorithm, and the

termination algorithm must be executed. Each firm,

terminating, or tentative target must provide the service

55

Report your best Correlation Proposal (see Figures 6,7, and

8). Firm and terminating targets must support the same

services and herein will be considered as objects of the same

class.

c. Tracking Phase

Firm and tentative targets must support the service

Execute Tracking. Firm targets execute the request using the

Kalman filter (see Equations 2.6, 2.10, and 2.12) and

tentative targets using the initiation algorithm (see

Equations 3.2, 3.3, and 3.4).

d. Compression Phase

During the compression phase equivalent targets

must be identified. In this application, equivalence is a user

interface filter which prevents a single target from being

presented to the user as multiple targets when its estimation

is reported by more than one processor in a distributed

computational system. Firm and tentative targets provide the

service Are you Equivalent to the Object Passed as Parameter?.

This question may be rephrased as: Is the Object Passed as

Parameter Lying Within your Merge Gate?.

e. Presentation Phase

Targets not recognized as equivalents must support

the service Store yourself in Secondary Memory.

56

f. Server Object Summary

In summary, we identified sensor, firm, and

tentative targets as the server objects of our problem space.

2. The Client

Again, looking at the problem space we identify the

requirement to create and destroy objects dynamically. During

each data scanning, something needs to ask the sensor object

to report data detections. These detections need to be visible

by firm and tentative objects during correlation report

requests. Firm objects renewed with the best correlation

report &re asked to execute tracking using the Kalman filter.

Tentative objects renewed with the best correlation report are

asked to execute tracking using the initiation algorithm.

Firm ar I tentative objects updated with estimations are paired

to ch tck equivalence. Firm and tentative objects not

considered as equivalents are stored in secondary memory to

support data analysis.

The controller of those operations will be our client,

herein named the scheduler object.

C. COUTRACT SPECIFICATION

A contract specifies the responsibilities of the

identified objects (sensor, firm, tentative, and scheduler)

and the required resources to execute the services. During the

specification of responsibilities we will also specify the

input/output interface. If desired, the reader may refer to

57

Sections D and E to foresee the details (such as the data

types) involved associated with the class definitions.

1. Responsibility of the Sensor Object

A single responsibility was identified:

a. Simulate Radar Detections

Targets of interest are located within a circle

(radius=200 NM) in the X-Y plane centered at the radar site.

All targets are detected with a fixed time interval between

successive detections (AT=3s) and with an associated

probability of detection (0. 9 :5Pdl.0). The motion models of

interest are inbound/outbound targets with constant radial

velocity (v.,,5700 m/s) or acceleration (a 1,,570 m/s 2), and

targets in circular movement with constant angular speed.

(1) Interface Specification.

Method: SIMRADET.

Input: None.

Output: DETECTIONS: buffer of DETECTION.

2. Responsibilities of Firm Objects

With the problem space in mind, we identify the

following responsibilities of firm objects:

a. Sort Correlation Buffer

Measures to be paired with firm objects must be

grouped in ascending order of distance from the object itself

(see Figures 6, 7, and 8) . Correlation proposals are presented

in order of distances, beginning with the closest.

58

(1) Interface Specification

Method: SOCOBU.

Input: COBU: buffer of PAIRING.

Output: SOBU: buffer of PAIRING.

b. Report Correlation Proposal: First Gate

During the first gate correlation phase a single

request is made by the scheduler because all detections lying

within the first gate are considered equivalent. If no

proposal is available, an invalid measure is reported to

advise the scheduler.

(1) Interface Specification.

Method: RECOPRFG.

Input: None.

Output: PROPFG: PAIRING.

c. Report Correlation Proposal: Second Gate

Firm objects that are not correlated during the

first gate correlation phase are asked by the scheduler to

propose the best correlation obtained with a larger gate.

Proposals presented during the second gate correlation phase

(M-Flag) may need several request iterations (i.e., additional

request for proposals may be needed) due to the possibility of

ambiguity. If no propc'sal is available the present prediction

is used as a replacement to the best correlated measure report

(P-Flag).

59

(1) Interface Specification.

Method: RECOPRSG.

Input: None.

Output: PROPSG: PAIRING;

PROPFLAG: (M, P)

d. Report Current Status

The status of firm objects is one of the following:

Firm (FI), Terminating (TE), or Dead (DE) (see Chapter III).

(1) Interface Specification.

Method: RECUST.

Input: None.

Output: HYST: {FI, TE, DE}.

A. Set Status

New firm objects are created with status firm.

Objects with status firm are asked to set status as

terminating when no correlation proposal is confirmed. Firm

objects with status terminating are asked to modify their

status depending on the results of the sequential test (see

Figure 9).

(1) Interface Specification.

Method: SEST.

Input: NEWST: { FI, TE, DE) .

Output: None.

60

f. Execute Sequential Test

When a correlation proposal is confirmed (CC), a

firm object (status terminating) must be asked by the

scheduler to execute the sequential test to decide whether to

remain terminating (U) or modify the status to firm (F). When

no correlation is confirmed (CN), firm objects must be asked

by the scheduler to execute the sequential test to decide

whether to remain firm with status terminating (U) or dead due

to contact lost (L). It is up to the scheduler object to

destroy dead objects dynamically.

(1) Interface Specification.

Method: EXSEQTE.

Input: CORST: {CC,CN).

Output: RESEQTE: {F, L, U}.

g. Execute Tracking

Firm objects must support the request to execute

tracking using the Kalman filter. The internal state is

updated with new predictions (see Equation 2.12) and current

estimations (see Equation 2.16).

(1) Interface Specification.

Method: EXTR.

Input: COME: PAIRING.

Output: None.

61

h. Check Equivalence

Firm and tentative objects updated with estimations

must be paired with each other to check equivalence. Objects

are considered equivalent if they lie within the same merge

gate. Equivalence is determined via a user interface filter

which is used to prevent a single target from being presented

to the user as multiple targets when its estimation is

reported by more than one processor. Objects to be checked for

equivalence must be paired by the scheduler. The pairing

sequence is irrelevant and implementation dependent. It is

important to emphasize that the object identified as

equivalent is not to be destroyed because this would mean the

destruction of a firm or tentative object and not just its

external representation. Thus, the equivalence designation

ensures that equivalent objects are displayed only one time.

(1) Interface Specification.

Method: CHKEQ.

Input: CHKOBJ: {FIRM, TENTATIVE).

Output: ANSWER: {Y,N).

i. Store Yourself

Firm objects not considered as equivalents must be

stored in secondary memory to support data analysis.

62

(1) Interface Specification.

Method: STYOU.

Input: DRIVERID: integer.

Output: None.

3. Responsibilities of Tentative Objects

In the application description (see Chapters II and

III), the following responsibilities were identified:

a. Sort Correlation Buffer

Measures to be paired with a tentative object must

be grouped in ascending order of distance from the object

itself (see Figures 6, 7, and 8) . Correlation proposals are

presented in order of distances, beginning with the closest.

(1) Interface Specification

Method: SOCOBU.

Input: COBU: buffer of PAIRING.

Output: SOBU: buffer of PAIRING.

b. Report Correlation Proposal: Initiation Gate

Tentative objects are asked by the scheduler to

propose the best correlation obtained using the initiation

gate. Proposals presented during the initiation gate

correlation phase (M-Flag) may need several request iterations

(i.e., additional request for proposals may be needed) due to

the possibility of ambiguity. If no proposal is available, the

present prediction is used as a replacement of the best

correlated measure report (P-Flag).

63

(1) Interface Specification.

Method: RECOPRIG.

Input: None.

Output: PROPIG: PAIRING;

PROPFLAG: {M, P) .

C. Report Current Status

The status of tentative objects is one of the

following: Confirming (CI), Confirmed as Firm (CF) , or Dead

(DE) (see Chapter III).

(1) Interface Specification.

Method: RECUST.

Input: None.

Output: MYST: {CI,CF,DE).

d. Set Status

New tentative objects are created with status

confirming (CI) . They are then asked to modify their status

depending on the results of the sequential test (see Figure

Ao)

(1) Interface Specification.

Method: SEST.

Input: NEWST: (CI,CF,DE).

Output: None.

e. Execute Sequential Test

When a co-relation proposal is confirmed (GC), a

tentative object must be asked by the scheduler to execute the

64

sequential test to determine whether to keep the status as

confirming (U) or modify the status to confirmed (F) . When no

correlation is confirmed (CN), a tentative object must be

asked by the scheduler to execute the sequential test to

decide whether to keep the status as confirming (U) or modify

the status to dead (L). It is up to the scheduler object to

dynamically create firm objects when tentative objects are

confirmed as firm (F), and to destroy tentative objects either

when they are confirmed as firm (F) or dead (L).

(1) Interface Specification.

Method: EXSEQTE.

Input: CORST: (CC,CN}

Output: RESEQTE: (F, L, U}.

f. Execute Tracking

Tentative objects must support the request to

execute tracking using the initiation algorithm. The internal

state is updated with new predictions and current estimations

(see Equation.t 3.3 and 3.4).

(1) Interface Specification.

Method: EXTR.

Input: COME: PAIRING.

Output: None.

65

g. Check Equivalence

This service was described during the

identification of the responsibilities of firm objects (see

Section C2h).

(1) Interface Specification.

Method: CHKEQ.

Input: CHKOBJ: {FIRM, TENTATIVE).

Output: ANSWER: {Y,N).

h. Store Yourself

Tentative objects not considered as equivalents

must be stored in secondary memory to support data analysis.

(1) Interface Specification.

Method: STYOU.

Input: DRIVERID: integer.

Output: None.

4. Responsibilities of the Scheduler Object

As previously discussed (see Section B2), the

scheduler controls the operations of sensor, firm and

tentative objects. Its responsibilities are implemented using

a single method, RUN, started at the beginning of the

execution phase.

a. Create the Sensor Object

At the beginning of execution the scheduler object

is running alone. To start the simulation of radar detections,

the sensor object is created.

66

b. Ask Report of Radar Detections

During each data scanning the scheduler object must

ask the sensor object to report radar detection. These

reported detections are tagged with a measure identification

number.

c. Set Correlation Buffer: First Gate

During the first gate correlation phase, radar

detections reported by the sensor object are set to be visible

by firm objects. To execute this service the scheduler object

must keep track of the Object Id of all firm objects.

d. Ask Correlation Proposal: First Gate

Correlation proposals coming from firm objects

during the first gate correlation phase must be accepted. It

is responsibility of the scheduler object to update the set of

measures still available for correlation and the list of

Object Ids that did not submit any correlation proposal (wrong

measure flag).

e. Set Correlation Buffer: Second Gate

Measures not correlated during the first gate

correlation phase are set to be visible by firm objects not

yet correlated.

C. Ask Correlation Proposal: Second Gate

Correlation proposals coming from firm objects

during the second gate correlation phase are tagged with the

correlation distance. When the same measure is reported to be

67

the correlation proposal of more than one firm object it is

the responsibility of the scheduler object to request another

proposal. This cycle of request iterations will end when all

firm objects have had one proposal accepted or when no

additional proposals are available (in this situation, the

present prediction is used as a replacement for the best

correlated measure report). It is the responsibility of the

scheduler object to update the set of measures still available

for correlation and the list of Object Ids with no accepted

correlation proposal.

g. Ask Status Report: Firm Objects

Firm objects with status dead must be destroyed,

firm objects with status firm must execute the sequential test

when no correlation proposal is accepted, and firm objects

with status terminating must always execute the sequential

test to decide whether to keep the status as terminating or

modify it to dead or firm.

h. Destroy Firm Objects

Firm objects reporting the status dead must be

destroyed. The Object Id is removed from the list of valid

firm objects, the unused space is returned to the heap, and

the Object Id may be reused.

i. Ask Sequential Test: Firm Objects

Request -execution of the sequential test of firm

objects with status terminating when a correlation proposal is

68

confirmed. Request execution of the sequential test of firm

objects when no correlation proposal is confirmed.

j. Ask Set Status: Firm Objects

Modify the status of firm objects either due to the

result of the sequential test, or when the status of a firm

object needs to be changed to terminating.

k. Ask Tracking Execution: Firm Objects

Firm objects renewed with the best correlation

report are asked to update their internal state with new

predictions and current estimations using the Kalman filter

algorithm.

1. Set Correlation Buffer: Initiation Gate

Measures that could not be correlated with firm

objects are set to visible for tentative objects. To execute

this service, the scheduler must keep track of the Object Id

of all tentative objects.

m. Ask Correlation Proposal: Initiation Gate

Correlation proposals coming from tentative objects

during the initiation gate correlation phase are tagged with

the correlation distance. When the same measure is reported to

be the correlation proposal of more than one tentative object,

it is the responsibility of the scheduler object to ask

another proposal of the proposing object with the denied

proposal. This cycle of request iterations will end when all

tentative objects have had one proposal accepted, or when no

69

additional proposals are available (in this situation, the

present prediction is used as a replacement to the best

correlated measure report). It is the responsibility of the

scheduler object to update the set of measures still available

for correlation and the list of Object Ids with no accepted

correlation proposal.

n. Ask Status Report: Tentative Objects

Tentative objects with status dead or confirmed

must be destroyed and tentative objects with status confirming

must always execute the sequential test to decide wheter to

keep the status as confirming or modify it to dead or

confirmed.

o. Create Firm Objects

Firm objects are created when tentative objects

report their status as confirmed. The Object Id is then

inserted into the list of valid firm objects.

p. Destroy Tentative Objects

Tentative objects are destroyed when reporting

their status as dead or confirmed. The Object Id is removed

from the list of valid tentative objects and the unused space

is returned to the heap.

q. Ask Sequential Test: Tentative Objects

Request execution of the sequential test of

tentative objects with status confirming when a correlation

proposal is confirmed to decide wheter to keep the status as

70

confirming or modify it to confirmed or when no correlation

proposal is accepted to decide wheter to keep the status as

confirming or modify it to dead.

r. Ask Set Status: Tentative Objects

Modify the status of tentative objects due to the

result of the sequential test. New tentative objects are

created with status confirming.

s. Ask Tracking Execution: Tentative Objects

Tentative objects renewed with the best correlation

report are asked to update their internal state with new

predictions and current estimations executing the initiation

algorithm.

t. Create Nfew Tentative Objects

Residual measures not correlated in any of the

previous requests become tentative objects. The Object Id of

each newly created object is inserted into the list of valid

tentative objects. New tentative Objects are initiated with

status confirming.

u. Ask Equivalence Check

Firm and tentative objects renewed with estimations

are paired with each other to check for equivalence. The

request receiver and the object being checked are selected

arbitrarily. This request needs several iterations and will

end when all firm and tentative objects are paired.

71

v. Storage Request

Firm and tentative objects not considered as

equivalents must be stored in secondary memory to support data

analysis.

D. OBJECT STRUCTURE

Since the Object Behavior has been specified, we can now

specify the Object Structure.

1. Object Structure of the Sensor Object

The object structure of the sensor object includes

instance variables to encapsulate the state of a simulated

radar and its detections.

sp: (3.0..5.0) [3.0]. /* Sample Period */

PD: (0.9..1.0) [1.0]. /* Probability of Detection */

DETECTIONS: buffer of DETECTION. /* Detections */

2. Object Structure of Firm Objects

The object structure of firm objects includes all

instance variables needed during the correlation, tracking

compression, and presentation phases of this application. The

correlation buffer will be declared as an inherited class

variable since it must be visible by all firm objects.

72

TN: integer. /* Target Number */

COBU: buffer of PAIRING. /* Pairing Buffer */

SOBU: buffer of PAIRING. /* Sorted Pairing Buffer */

MYPROP: PAIRING. /* Correlation Proposal */

MYPR: PREDICTION. /* Position after Prediction */

MYES: ESTIMATION. /* Position after Estimation */

MYST: {FI,TE,DE} [FI]. /* Status */

FGSZ: SIZE. /* First gate dimensions *1

SGSZ: SIZE. /* Second gate dimensions */

MGSZ: SIZE. /* Merge gate dimensions */

3. Object Structure of Tentative Objects

The object structure of tentative objects includes all

instance variables needed during the correlation, tracking

compression, and presentation phases of this application. The

correlation buffer will be declared as an inherited class

variable since it must be visible by all tentative objects.

TN: integer. /* Target Number */

COBU: buffer of PAIRING. /* Pairing Buffer */

SOBU: buffer of PAIRING. /* Sorted Pairing Buffer */

MYPROP: PAIRING. /* Correlation Proposal */

MYPR: PREDICTION. /* Position after Prediction */

MYES: ESTIMATION. /* Position after Estimation */

MYST: {CI,CF,DE} [CI]. /* Status */

IGSZ: SIZE. /* Initiation gate dimensions */

MGSZ: SIZE. /* Merge gate dimensions */

73

4. Object Structure of the Scheduler Object

The object structure of the scheduler object includes

all instance variables needed to control existing firm and

tentative objects. The correlation buffer will be declared as

an inherited class variable since it must be set with radar

detections needed by firm and tentative objects during the

correlation phase.

COBU: buffer of PAIRING. /* Pairing Buffer */

COFI: buffer of CONTROL. /* Control Firm Alive */

COTE: buffer of CONTROL. /* Control Tent. Alive */

E. CLASS HIERARCHY

The result of an object-oriented design is a hierarchy of

classes (Ref. 19]. Since the Object Structure& have been

specified we can now specify the Class Eierarchy. Definitions

for the classes discussed in this section are contained in

Appendix A.

1. Component Claxses

A composite object is an object which consists of

other objects called component objects. Instances of component

classes may be implemented as dependent objects or subobjects.

A dependent object is completely dependent upon its aggregate.

Subobjects, on the other hand, may exist as stand-alone

objects in their own right [Ref. 13]. Since the four main

classes of objects (sensor, firm, tentative, and scheduler)

74

are all composite objects, their various components will be

discussed first.

a. Class Prediction

Instances of the class prediction are dependent

objects encapsulating the predicted position and velocity of

firm or tentative objects.

b. Class Estimation

Instances of the class estimation are dependent

objects encapsulating the estimated position and velocity of

firm or tentative objects.

c. Class Detection

Instances of the class detection are dependent

objects encapsulating simulated radar measurements of the

sensor object.

d. Class Size

Instances of the class size are dependent objects

encapsulating the dimensions of correlation gates of firm or

tentative objects.

e. Class Pairing

Instances of the class pairing are subobjects

visible to firm, tentative, and scheduler objects used during

the association of firm and tentative objects with detections

reported by the sensor object to the scheduler object.

75

f. Class Control

Instances of the class control are dependent

objects of the scheduler object being used to control which

firm and tentative objects are alive or dead.

2. Abstract Classes

An abstract class is a class which does not have any

instances. It generally exists to be used only as an ancestor

to other classes which may have instances [Ref. 13].

a. Class Target

In this application, the correlation buffer (COBU)

is set by the scheduler and must be visible for read

operations by firm and tentative objects during the execution

of the sort method (socoBu). The class TARGET will be defined

as a superclass of the concrete classes FIRM, TENTATIVE, and

SCHEDULER.

3. Concrete Classes

A concrete class is one which does have instances,

although it may also be used as an ancestor to other classes

[Ref. 13]. Each concrete class is associated with one of the

identified objects of our application (see Section B).

a. Class Sensor

The class sensor has a single instance (sensor

object) responsible to simulate radar detections.

76

b. Class Firm

The class firm will have as many instances (firm

objects) as the number of firm targets being tracked.

c. Class Tentative

The class tentative will have as many instances

(tentative objects) as the number of tentative targets

awaiting confirmation.

d. Class Scheduler

The class scheduler has a single instance

(scheduler object) responsible to control the operations of

sensor, firm and tentative objects.

4. Single Processor Class Hierarchy (SPCH)

Figure 12 depicts the single processor class

hierarchy, and figure 13 depicts the client-server

relationship. TARGET is an abstract class; SENSOR, FIRM, and

TENTATIVE are concrete classes used to instantiate server

objects; and SCHEDULER is a concrete class used to instantiate

the client object (i.e., the controller).

77

TARGET

FIRM TENTATIVE SCHEDULER

SENSOR

- -ABSTRACT CLASSES

_ CONCRETE CLASSES

Figure 12 Single Processor Class Hierarchy (SPCH)

78

FIRM TENTATIVE SENSOR
Nt

N -
N I i

I -

N ~ I
N!

N% I -

N I

SCHEDULER

Figure 13 Client-Server Relationship (SPCH)

79

V. ARCHITECTURE SPECIFICATION

In this chapter we specify the Confined Space Search

Decomposition (CSSD) proposal. To formalize the specification

process we propose and apply to our case study an

object-oriented methodology called Decomposition Cost

Evaluation Model (DCEM). To reduce the penalties of load

imbalance we propose a distributed dynamic load balancing

heuristic called Object Reincarnation (OR).

A. INTRODUCTION

1. The Problem

a. Scheduling

An optimal solution to the task scheduling problem

has been proven to be computationally hard (i.e., NP-complete)

[Ref. 20,21, and 22]. Thus, obtaining optimal schedules is not

practical [Ref. 23]. As a result, many of the research efforts

in this area have focused on heuristic methods [Ref. 24,25].

Task distribution is important not only for the execution of

application programs on distributed computational systems, but

also for the design stage to determine a computer architecture

specification which will perform better for a type of

application (Ref. 26]. In general, when the number of

computational sinks (tasks and concurrent objects) is greater

80

than the number of processors, then some contraction steps are

needed during the mapping specification [Ref. 27].

b. Specification

To formalize the specification we propose and apply

to our case study an object-oriented methodology, called

Decomposition Cost Evaluation Model (DCEM). In the

Decomposition Cost Evaluation Model, the mapping problem is

brought to a higher level of abstraction where the question is

which classes should be loaded on which processors, and not

which tasks (sometimes not well related) should be loaded on

which processors. To support this decision we define

communication and computation cost functions of class

hierarchies.

c. Analysis of Options

The output of the Decomposition Cost Evaluation

Model is a hint of the 'best' mapping proposal and of the

'best' interconnection among processors (topology) for use in

the application being analyzed. This hint is obtained through

conceptual and analytical comparisons among user identified

options. Analytical comparisons are made considering that the

efficiency (E) of a Distributed Computational System can be

expressed as [Ref. 28]:

E - Tseq
7onc (N)* N

81

where:

T.*q is the time to compute on one node; and

T....(N) is the time to compute on N nodes.

That is, when we keep N and T,, with the same value

we can compare two proposals doing an evaluation of Too. 0 (N)

for each proposal.

d. Confined Space Search Decomposition

The Confined Space Search Decomposition (CSSD)

proposal intends to exploit parallelism of radar data

processing algorithms by:

1. Reducing the communication cost to transfer data

among processors;

2. Overlapping correlation and tracking algorithms

to avoid the traditional approach of all functions to all

processors; and

3. Decomposing the total gating problem into

independent gating problems of smaller size.

e. Load Imbalance

Distributed computational systems have been shown

to be very efficient in solving problems that can be

partitioned into tasks with uniform computation and

communication patterns [Ref. 28,29]. Dynamic load balancing

schemes are needed to efficiently solve non-uniform problems

on distributed computational systems [Ref. 30]. Many load

82

balancing techniques have been proposed and reviewed in the

literature [Ref. 31, and 32].

(1) Receiver Initiated Diffusion (RID). A

distributed load balancing strategy for improving the

performance of a highly parallel multicomputer system, called

The Receiver Initiated Diffusion (RID) method, was proposed in

[Ref. 31]. In this approach, underloaded processors request

proportionate amounts of load from overloaded neighbors which

then dispatch a portion of their load to the requesting

processor [Ref. 31]. Task migration is necessary in this

approach, however. The eligibility of tasks for transfer is

restricted to those tasks which have not yet begun execution.

This procedure is intended to reduce the communication cost

because the transfer of a task which has begun execution is

expensive since it requires the storing of the processor's

state [Ref. 31].

(2) Object Reincarnation (OR). Ideally, during

the execution of any load balancing strategy, no communication

costs should be incurred at all. In Radar Data Processing

(RDP) applications, firm and tentative targets are objects

which need to see correlated detections to remain alive. To

reduce the penalties of load imbalance, a distributed dynamic

load balancing heuristic, called Object Reincarnation (OR), is

proposed herein. In this strategy we adjust the visibility

space of correlation processors. Objects viewed as computation

83

sinks die in one processor site (reducing its load) and are

reincarnated in another site (increasing its load). Our

proposal also supports fault recovery as an extension to the

load balance problem. It should be remembered, however, that

all realistic decomposition methods are approximate as the

load-balancing problem has not been proven to be solvable

[Ref. 28].

2. Organization of Sections

In section B, we introduce the Decomposition Cost

Evaluation Model to formalize the architecture specification.

In Section C, we summarize the results obtained when

we apply the Decomposition Cost Evaluation Model to our

application. The analysis developed to support the results is

detailed in Appendix B.

In Section D, we detail the Confined Space Search

Decomposition. The division of the search space into sections

and space regions (triple of sections) as well as the mapping

of space regions to processors is specified.

In Section E, we introduce the Object Reincarnation

proposal to reduce the penalties of load imbalance. Global and

local load imbalance algorithms are proposed.

In section F, we propose an algorithm for fault

recovery using the Object Reincarnation approach.

84

B. THE DECOMPOSITION COST EVALUATION MODEL

In this section we propose a model founded upon four basic

principles and nine guidelines to help determine what is the

'best' approach for use in the decomposition of objects to

processors. Any decision made during the application of the

guidelines must respect the basic principles.

The specification as a whole is an iterative process. Each

decision taken may need to be reviewed several times before

the class hierarchy is considered satisfactory. During each

review we must:

1. Refine contract responsibilities;

2. Refine objects structures; and

3. Refine class hierarchies.

The four basic principles are:

1. Specialization Decomposition: Concrete classes and

their ancestors must be loaded on the same processor. This

means that inheritance requires neither communication nor

synchronization among processors.

2. Locality: A single object cannot be loaded on more than

one processor.

3. Load Balancing: The decomposition of objects to

processors must ensure that, as far as possible, each node is

performing the same amount of work [Ref. 28].

4. Communication Cost: The decomposition of objects to

processors must reduce Toc(N) (i.e., the time to compute on

85

N nodes) [Ref. 28]. Time spent communicating can represent a

degradation of performance compared to a sequential node.

The nine guidelines are:

1. Identification of concrete classes;

2. Identification of interface functions;

3. Identification of high cost functions;

4. Divide and conquer;

5. Identification of options;

6. Conceptual comparisons among optio'nW

7. Evaluation of the communication cost;

8. Evaluation of the computation cost; and

9. Analytical comparisons among options.

1. Identification of Concrete Classes

Concrete classes can be viewed as a sink of

computation time. We will shortly see that this is relevant

information in the decomposition of objects to processors.

2. Identification of Interface Functions

Interface functions are natural candidates to be

loaded on interface processors. Interface processors are

responsible for delivering external data as well as for

collecting results. In this step, the single processor

hierarchy is divided into two hierarchies: the Interface

Hierarchy which encapsulates interface functions in classes

.assigned to interface processors; and the Application

86

Hierarchy which encapsulates application functions in classes

assigned to application processors.

3. Identification of High Cost Functions

High cost functions are natural candidates to be

executed in several processors. When a class definition

includes computation intensive methods, a review of the

application hierarchy may be advised. New classes are defined

to encapsulate those methods in different processors; in this

alternative the application hierarchy is partitioned into

Function Hierarchies.

4. Divide and Conquer

The decomposition of objects to processors must ensure

that, as far as possible, each node is performing the same

amount of work. The workload division may be implemented in

either of two ways:

a. All Functions to All Processors (AFAP)

In this option the Application Hierarchy is

replicated throughout the network. Classes loaded on different

processors are considered different classes despite having the

same properties. Work division is obtained by balancing the

number of objects among processors. The main issue in this

approach is how to support communicating objects while keeping

a low communication overhead.

87

b. Some Functions to Some Procesaors (SFSP)

In this option Function Hierarchies are assigned to

different processors of the network. Classes being used for

inheritance should be replicated. Work division is designed to

reduce the communication overhead. Communicating objects are

assigned, whenever possible, to neighboring processors. The

main issue in this approach is how to overlap the execution of

methods to improve performance.

5. Identification of Options

So far, we have identified application and function

hierarchies. The application hierarchy is a natural candidate

for the AFAP division of work since the application hierarchy

encapsulates all identified application functions in classes

replicated throughout the network, while function hierarchies

are natural candidates for the SFSP division of work since

function hierarchies are partitions of the application

hierarchy encapsulating some application functions in classes

assigned to partitions of the network of processors. The

decomposition of objects to processors is a domain

decomposition problem from the interconnection network of

objects to the interconnection network of processors.

A topology is usually characterized by its diameter,

degree of each node, connectivity, and average distance. The

diameter is the maximum distance that a message must travel

from one node to another. The degree of a node is the number

88

of ports provided for a processor to connect with other

processors. The connectivity provides a measure of the number

of 'independent' paths connecting a pair of nodes. The average

distance is the distance that messages must travel, on

average, in the network. An ideal interconnection network of

processors is thus a network with a short diameter, small

degree, high connectivity, and a short average distance.

In this step we try to identify options to map the

interconnection network of objects to the interconnection

network of processors.

6. Conceptual Comparisons Among Options

For each identified option a qualitative approach is

used to list the expected strengths and weaknesses of the

proposed solutions. Any 'well accepted' concept of the

architecture community may be used in this analysis.

7. Evaluation of the Communication Cost

When any two communicating objects are loaded on

different processors, the communication cost can be divided

into three components:

1. The service request cost (SRC): Computed as the

communication cost needed to send T bytes in the sender object

or to receive T bytes in the receiver object;

2. The result cost (RC) : Computed as the communication

cost needed to send R bytes in the receiver object or to

receive R bytes in the sender object; and

89

3. The retransmit cost (CRT): Computed as the

communication cost needed to retransmit T bytes or to

retransmit R bytes.

Components (1) and (2) represent communication

overhead in the processors where the communicating objects are

loaded, while component (3) represents communication overhead

in processors used to route the request and return results. In

general, communication cost includes queuing tiqe, reception

and/or transmission time, and propagation time.

For each identified option the processor communication

cost may be evaluated using the following sequence:

a. The Object Communication Cost (OXC)

The communication cbst function of object j (either

sender or receiver) loaded on processor P can be evaluated by:

Nc,

OxcJ Cik (5.1)

where:

N, is the number of communicating objects not

loaded on the processor P; and

ci, is the communication cost of object j with

object k, which are loaded on different processors (note: this

communication cost includes both the service request and

result costs).

90

The object cost function is defined during some

application dependent time interval. The cost function of

objects that do not exist during the entire interval are

evaluated during the intersection of their existence with the

selected interval.

b. The Class Communication Cost (CXC)

The communication cost function of a class i can be

evaluated by:

N.1
CXCIt Z OXCJ (5.2)

where:

N, is the number of instances of class i;

OXCJ is the communication cost function of object

j.
The cost function of abstract classes is assumed to

be zero as these classes have no instances.

c. The Hierarchy Communication Coat (HXC)

The communication cost function of some hierarchy

h can be evaluated by:

N,
HXCh 7: CXCI (5.3)

i~2l

where:

N. is the number of classes in hierarchy h; and

91

CXC, is the communication cost function of class i.

d. The Processor Communication Cost (PXC)

The processor communication cost function can be

evaluated by:

Nh
PXC=(HXCh) + CR (5.4)

where:

N1 is the number of hierarchies to be loaded on

processor P;

EXCh is the communication cost function of

hierarchy h; and

C. is the retransmit cost of processor P.

8. Evaluation of the Computation Cost

For each identified option, the processor computation

cost may be evaluated using the following sequence:

a. The Method Computation Cost (MCC)

The method cost function (MCC,,A) is defined as the

computation time of some method k in processor P. It can be

manually estimated using the processor instruction performance

information or by counting the number of processor ticks

needed to execute the method.

b. The Object Computation Cost (OCC)

The computation cost function of any object j of

some class i can be evaluated by:

92

N,
OccCj = k Nk *MCCPk (5.5)

where:

K is the method number index;

j is the object number index;

i is the class number index;

N, is the number of visible methods for.object j;

NCCrk is the cost function of the method k when

executed in processor P; and

N1 is the number of messages sent to object j to

execute the method k.

The object cost function is defined during some

application dependent time interval. The cost function of

objects that do not exist during the entire interval are

evaluated during the intersection of their existence with the

selected interval.

c. The Class Couutation Coat (CCC)

The computation cost function of a class i can be

evaluated by:

Ni
cccI : ocC, (5. 6)

where:

N, is the number of instances of class i; and

93

OCCj.,2 is the computation cost function of the

object j of the class i.

Once again, the cost function of abstract classes

is assumed to be zero as these classes have no instances.

d. The Hizrarchy Computation Cost (HCC)

The computation cost function of some hierarchy h

can be evaluated by:

HCCh = CCC1 (5.7)

where:

h is the hierarchy number index;

N. is the number of classes in hierarchy h; and

CCCI is the computation cost function of class i.

o. The Proceaaor Computation Cost (PCC)

The processor computation cost function can be

evaluated by:

Nh
PCC = h HCCh (5.8)

where:

Nb is the number of hierarchies to be loaded on

processor P; and

HCC, is the computation cost function of the

hierarchy h.

94

9. Analytical Comparisons Among Options

The expected efficiency of the identified options is

compared after an evaluation of Tn., (N) for each proposal.

C. APPLYING TRE DECOMPOSITION COST EVALUATION MODEL

In this section we summarize the results obtained when we

apply the Decomposition Cost Evaluation Model to our

application. The analysis developed to support the results is

detailed in Appendix B.

Two options are identified: the hypercube topology

(d-cube) to implement the all functions to all processors

design, and the tree topology (l-C.-Tp)-tree to implement the

some functions to some processors design.

The tree topology is built with an interface processor as

the root node, C. correlation processors at level 1, and Tp

tracking processors (for each correlation processor) at level

2.

The single processor class hierarchy designed in Chapter

IV is decomposed into an interface hierarchy, and an

application hierarchy. The application hierarchy is decomposed

into two function hierarchies: the correlation hierarchy and

the tracking hierarchy.

In the hypercube option we load the interface hierarchy on

the interface processor (IP), and replicate the application

hierarchy on the remaining processors.

95

in the tree option we load the interface hierarchy on the

interface processor (IP), the correlation hierarchy on

correlation processors (CPs), and the tracking hierarchy on

tracking processors (TPs).

Figure 14 depicts a comparative analysis of the expected

efficiency of the identified options. r is the ratio between

the average correlation time per target and the average

tracking time per target, and A, is the hypercube

communication cost minus the tree communication cost.

Table 25 (Appendix B) depicts the communication cost of

the identified options. To support a continuous flow of

(plot,target) pairs from correlation to tracking processors,

and to avoid idle time on tracking processors we must have r

less than i/T.. The main conclusion can be expressed as:

The tree proposal ahould be more efficient than the

hypezcube proposal when we overlap correlation and tracking

algorithms, and reduce the communication cost by avoiding the

broadcast of all measures to all processors.

Figure 15 depicts a conceptual view of the selected

option. Plots coming from the radar subsystem are routed to

correlation processors, assignment pairs (plot,target) are

routed to tracking processors, predictions are routed back to

correlation processors, and estimations are routed to the

display subsystem.

96

NTl-100
6E>E CTr 9

E 'E"b0 cub*:

E '

1/Tpr

Figuze 14 Efficiency (Comparative Analysis)II

II
Ft

Diurin thoneptapliAcaition ofthre dcmoiin cs

evaluation model we concluded that the division of the search

space into sections reduces the communication cost of the

97

tree option. In our proposal, called Conf ined Space Search

Decomposition (CSSD), the search space is divided into fixed

size sections and each CP is executing the target to plot

correlation with all plots detected within some assigned

number of successive sections in the tactical scene. An

overlap space between CPs is defined to support a smooth

target transition when the target crosses the visibility space

boundary of some CP. At the interface processor we split the

set of all detected plots and route plots subsets knowing

which sections are assigned to which CPs. When the target is

located within the overlap space of CPs, its estimation is

computed by more than one tracking processor. In this case,

equivalent targets are merged.

Figure 16 depicts the transition of a generic target

through the overlap space between CPs. During its course the

target starts being tracked by processor I (point A), crosses

the overlap space being tracked by processors I and II (point

B), and ends its path being tracked by processor II (point C).

Targets crossing the overlap space are terminated in the

old processor and initiated in the new processor. This happens

because in the old CP no reported plot will be associated with

an existing firm target and in the new CP a new reported plot

without association with existing targets will become a

tentative target. When the target modifies its status to

terminating in the old processor it has already been confirmed

as firm in the new processor.

98

L

* II

, w Il a i, I,

pefrac' diiso of|h erc pc inofxdsz

setins Idaly th nubro iil agt o n

* I

corurelationarocesso shouldn tbe thersam ae t etee avigoalla

imbalnceowwevfaer rhadprobletaprcssoinge with ah nonunior

setos Iely th nube of visil agesf

problem so, the 'best perfor ce, division of the search

space is a fnction of the expected distribution of targets

within the surveillance enviroerent (Environment Model).

During our discdssions, we will assbe an envirotent model

with unifoe anorlar distribution in [0,2g] and non-uniform

distance distribution in (0,2001 NM (AUDN). This assumption

99

leads to a division of the search space into angular sections

(see Figure 17). Targets detected within the inner circle,

viewed as a danger area, are broadcast to all correlation

processors. That is, redundancy is used as a safety procedure

for targets detected in close range of the radar site.

Outer Circe
/1 • Redu - 200 NM

Inner Cirde
Radiu3-20NM

Figure 17 The AUDN Division of the Search Space

When the real target distribution does not match the

expected target distribution, load imbalance can occur. In the

next section, we propose a distributed dynamic load balancing

heuristic, called Object Reincarnation (OR), to be used in RDP

applications. In the worst case, when all detected targets are

located within a single section then a single branch of the

(1-C.-T.) -tree will be responsible to execute the RDP functions

for all detected targets. In this situation, a degradation in

the system reaction time is exected. That is, for a

particular application, the computational power of any branch

must be specified to support the worst acceptable system

reaction time for the maximum number of expected targets.

100

However, this does not mean that the architecture design

should be conceived to favor the infrequent case [Ref. 33].

Sections are used as the overlap unit between CPs,

thus its size must be compatible with:

1. The worst time required to terminate an old target

and to initiate a new one; and

2. The velocity of the fastest target (assumed as 700

m/s).

The initiation and termination algorithms requires at

most five samples to initiate a new target or to terminate an

old target (see Figures 9 and 10), therefore:

TI. C 3s/sample*5samples = 15s

Aae VC* T1.t - 700*15*180 = 16' .2

R 20*1852*3.141516

where:

R is the radius of the inner circle;

Vt is the tangential velocity of the fastest target;

and

T,,t is the worst time required during the initiation

and termination algorithms.

As a consequence of the previous analysis, we decided

to divide the search space into 18 fixed size sections of 20

degrees .in each section. In general, sections can be specified

as:

101

Sk = K ((k - 1) *20", <*20") , k = 1...18 (59)

2. Mapping Space Regions to Processors

During the execution of correlation algorithms all CPs

must receive the report of plots detected within some assigned

number of successive sections and an overlap section should be

defined between the visibility space of some pair of CPs. To

support those requirements, we defined the Space Region as a

triple of space sections, therefore given:

R1 / 2 = (S 1 - i1 ,S S(I 1 18)

Rj/z = (-. ,*Sj, S(j . 1))

we have:

R,/1 2 R,/ 2 = Sj - I if U (+ + 2) MOD* 18

R,/ 2 nfR.,2 = S1 - if i (j + 2) MOD* 18 (5.10)

R1 /2 n R,/ 2 = , otherwise

where:

i,j - 2,4,6,8,10,12,14,16,and 18; and

N mod* N = N.

The initial distribution of regions among processors

is defined as:

102

1. #R is the number of regions; and

2. #P is the number of processors.

where #R > #P.

If:

1. #R DIV #P - M; and

2. #R MOD #P = N.

then:

1. When N=0, P, ... P,0, receive M sequential regions;

2. Otherwise, P1 ... Pa receive (M+I) sequential

regions and P3,1 ... P#, receive M sequential regions.

3. Results Summary

The 'best performance' division of the search space is

a function of the environment model. The AODWN assumption leads

to a division of the search space into angular sections. If

we had assumed non-uniform angular distribution in [0,2x] and

uniform distance distribution in [0,200] NM (ANDU), then we

would divide the search space into ring sections. In this

situation, we would have 20 fixed size sections of 10 NM in

each section; however, the definition of space regions and

their mapping to processors would follow an equivalent

procedure.

Z. OBJECT REINCARNATION

Dynamic load balancing schemes are needed to efficiently

solve non-uniform problems on distributed computational

systems. Ideally, during the execution of any load balancing

103

strategy no communication costs should be incurred to transfer

load among processors. In the (1-CP-Tp)-tree (SFSP) option,

load balance may be needed either because detections are not

evenly distributed among CPs (Global Load Balance) or because

existing tracks are not evenly distributed among TPs (Local

Load Balance).

In our proposal, called Object Reincarnation, we see

objects as computation sinks. Load nalance is obtained when

objects die in one processor site (reducing its load) and are

reincarnated in another site (increasing its load) . The

correlation hierarchy is replicated throughout CPs and the

tracking hierarchy is replicated throughout TPs. Therefore,

object migration is not needed as the internal state of dying

objects is re-created in another site. The issue is: Does the

application support the re-creation of objects in another site

with 'acceptable' tracking penalty? The procedures used to

motivate the reincarnation can be described as:

1. Global Load Balance: The IP adjusts the visibility

space of CPs. Firm and tentative objects must see correlated

detections to remain alive (see Chapter III). When the IP

reduces the visibility space of an overloaded CP some existing

firm objects can start to loose association with reported

detections and as a consequence will die reducing the load of

the overloaded CP. On the other hand, when the IP increases

the visibility space of an underloaded CP some new tentative

objects will reincarnate dying objects increasing the load of

104

the underloaded CP. Since the number of samples needed in the

initiation and termination algorithms is the same then the

reincarnation will happen without loss of tracking.

2. Local Load Balance: CPs cancel some input tracking

reports of overloaded TPs and route those reports to

underloaded TPs. Existing tracks loosing tracking reports will

die, reducing the load of overloaded TPs. Similarly, new

tracking reports will reincarnate dying objects, increasing

the load of underloaded TPs.

1. Global Load Balance Algorithm

The algorithm consists of the following steps to be

executed by the IP during each data sample.

a. Evaluate the Global Average Load (GLAv)

The global average load is the average number of

targets controlled by CPs.

C'
E GLi (5.11)

GLAVU - Cp

where:

GLi is the number of estimations reported by

correlation processor i with distance from the radar site

greater than the radius of the inner circle (10 NM); and

CP is the number of CPs.

105

b. Compute the Global Load Imbalance Factor (GLI 1)

The global load imbalance factor of correlation

processor i is used as a heuristic measure of the extra work

being executed in each branch of the (1-Cp-Tp)-tree.

GLI. - GL1 - GLAV
GLAV (5.12)

c. Adjust the Visibility Space of CPs

The visibility space of CPs is adjusted to motivate

object reincarnation as follows:

IF [(GLIj Ž 0.75) AND ((GLi - GLAhI) > (O.1Nt/Cp))],

then the IP removes at most one region from the CPi and

transfers this region to the CPi,1 ;

otherwise, no region is removed from the CPi;

where:

Nt is the maximum number of expected targets in the

search space.

d. Algorithm Remarks

The following remarks apply to the algorithm

execution:

1. Correlation processors are numbered as specified

in the initial distribution of regions among processors (see

Section D2);

2. Each CP must control at least one region;

106

3. Regions are numbered (see Equations 5.9 and

5.10);

4. Regions to be removed from any CP are the ones

with higher indices (i.e., if the CP, controls regions

R1 ,R 2,R 3 , and due to load imbalance two regions are going to be

removed from the CP1 by the IP, then the selected regions to

be removed are the regions R2 and R3); and

5. The proposed heuristic to support the decision:

'Should we adjust the visibility space?' is a logical AND

operation between an absolute and a relative criterion. The

absolute criterion intends to avoid execution of load balance

when the load deviation from the average (GL±-GLpvO) is small

(less than 10%) compared with the expected load in each

branch. The relative criterion is a tradeoff between

performance and filtering degradation (we will return to this

point in Chapter VI). Since each branch must be specified to

support the worst acceptable system reaction time for the

maximum number of expected targets we decided to favor the

filter improvement using a high index value (0.75).

2. Local Load Balance Algoritbm

The algorithm consists of the following steps to be

executed by each CP during each data sample.

a. Evaluate the Local Average Load (LLAv)

The local average load is the average number of

targets controlled by TPs.

107

TPSLLI (5.13)

LLA. = 3= T

where:

LLJ is the number of estimations reported by the

tracking processor j; and

TP is the number of TPs.

b. Compute the Local Load Imbalance Factor (LLI 2)

The local load imbalance factor of the tracking

processor j is used as a heuristic measure of its extra work.

LLIJ- LLAVG

LLAVU (5.14)

c. Adjust Tracking Reports

Tracking reports sent to TPs are canceled to

motivate object reincarnation when:

IF [(LLI1 > 0.25) AND ((LL 1 -LLyv) > (0.1Nt/(CpTp)

then the CP cancels L(LLIJ*LLak)J (i.e., the surplus load)

tracking reports from the TPj and redistributes these reports

uniformly among the tracking processor siblings;

otherwise, no tracking report of the TPJ is

canceled.

108

d. Algorithm Remarks

The following remarks apply to the algorithm

execution:

1. In each branch of the (l-S-T.)-tree, tracking

processors are numbered from left to right;

2. Tracking reports to be canceled from overloaded

TPs are selected arbitrarily by the CP;

3. CPs use a circular allocation policy when new

firm targets are assigned to TPs; and

4. The proposed heuristic to support the decision:

'Should we cancel tracking reports?' is a logical AND

operation between an absolute and a relative criterion. The

absolute criterion intends to avoid execution of load balance

when the load deviation from the average (LLi-LLxvO) is small

(less than 10%) compared with the expected load in each TP.

The relative cr.1cerion is a tradeoff between performance and

filtering degradation (we will return to this point in Chapter

VI). Since TPs represent a large percentage of the

computational power we decided to favor performance using a

small index value (0.25). Using a circular allocation policy

for each new firm target then local load imbalance is expected

only as a consequence of arbitrary contact losses.

3. Results Summary

The object reincarnation proposal is a distributed

load balancing strategy without any additional communication

109

cost either because as a natural consequence of its functions

the IP must know how many estimations are being reported by

each CP or because as a natural consequence of its function

CPs must know how many output tracking updates are being

reported by each TP.

F. FAULT RECOVZRY

During the last five years, the problem of routing

messages on hypercubes with faulty components has motivated an

intense research effort, resulting in several proposals [Ref.

34,35, and 36] being presented.

During the conceptual comparisons between the d-cube

(AFAP) and (l-C_-Tj)-tree (SFSP) options (see Appendix B), we

discussed the expected consequences for the application when

the (l-S-TP)-tree operates with faulty components (nodes or

links). The (1-Cp-T,)-tree offers low connectivity. That is,

failure of any of its links creates two subsets of processors

that cannot communicate with each other. Any link failure

isolates one parent node (IP or CP) from its child node (CP or

Tr), so link or processor failures requires load transfer from

some child node to its siblings.

110

1. Fault Recovery Algorithm: Isolated CP

This algorithm is executed by the IP during each data

sample and consists of the following steps:

1. Send a check message to all existing CPs;

2. Mark CP& unable to answer as dead; and

3. Transfer load of any CF marked as dead to the next

alive CF.

All detections lying within regions previously

assigned to some dead CP will be transferred to the next CP

(remember, CPs are numbered) recognized as alive.

2. Fault Recovery Algorithm: Isolated TP

This algorithm is executed by each CP during each data

sample and consists of the following steps:

1. Send a check message to all existing child TPs;

2. •ark MPs unable to answer as dead; and

3. Redistribute load of any TP marked as dead

uniformly among live siblings.

All tracking reports previously assigned to some dead

TP will be uniformly distributed among alive siblings.

3. Results Summary

The fault recovery procedures in (1-Cp-Tp)-trees can be

viewed as an extension to the distributed load balancing

strategy presented in the previous section (Section D) . Object

reincarnation is used either to transfer load from dead CPs to

their siblings (Global Load Balance) or to transfer load from

111

dead TPs to their siblings (Local Load Balance). Dynamic

adjustment of the routing software is not required and each

node needs to know only the status (dead or alive) of its own

links.

112

VI. ARCHITZCTURX VALIDATION

In this chapter we validate the architecture specified in

Chapter V. To keep our validation independent of a particular

processor we develop mathematical expressions to evaluate

performance, to compute the expected tracking capacity, to

estimate the system reaction time, and to check the tracking

filter capability to reduce the measurement errors when

targets cross the space search boundary of CPs. The developed

expressions are used in the computation of upper and lower

limit values, and the results are analyzed.

A. INTRODUCTION

During our reasoning about how we should validate our

proposal we asked ourselves:

1. Which parameters should we select to validate our

specified architecture?

2. Are the selected parameters sufficient?

The. answers to these questions should be based on the

primary motivation for our work, that is:

In military applications, the lower is the processing

time, the higher is the time available for human decisions,

the lower is the system reaction time to existing threats, the

higher is the system capability to shield a task force against

an increasing number of threats.

113

The main goal of any distributed computational system is

to improve performance. Performance is a standard metric

accepted by the architecture community to check how well a

network of processors is being used to accomplish a job when

compared with a single processor. However, we found that

performance alone is not enough to answer all desirable

questions. Looking to the motivation of our research the

following topics can be emphasized:

1. Tracking Capacity: maximum number of targets that our

system is able to track with real-time response; and

2. Syst.m Reaction Time: average time lag between target

detection and target estimation report of all targets being

tracked.

These two points suggest that we should define metrics to

evaluate the expected tracking capacity and system reaction

time.

In Chapter IV, we introduced the following questions:

1. Does the application support a division of the search

space in correlation sections?

2. Does the application support the re-creation of objects

in another site with 'acceptable' tracking penalty?

To answer these questions we must implement a simulation

to check the tracking filter capability to reduce the

measurement errors when targets cross the space search

boundary of CPs.

114

B. PZEFORMANCE EVALUATION

An important measure of the performance of a concurrent

computer is the speedup factor S associated with a particular

calculation. The speedup is defined as the ratio of the time

required to complete a given calculation on a single-node

processor to the equivalent calculation performed on a

concurrent processor with N nodes [Ref. 28]. It follows that

the speedup S depends upon N (the number of nodes), and is

given by:

S (N) Tse
Ton, (N) (6.1)

where:

Tn is the time to compute on one node; and

T.,*(N) is the time to compute on N nodes.

As we will find, it is sometimes useful to introduce the

concurrent efficiency factor E, defined by:

N .(6.2)

Inefficiency in the system is introduced by:

1. Additional control and communication involved in

distributing the problem over the N processing nodes; and

2. Load Balancing: the speedup is generally limited by the

speed of the slowest node.

115

1. Identifying Sources of Inefficiency

a. Additional Control

In Chapter IV we introduced our single processor

design. The controller of all identified functions was called

the scheduler object. During the contract specification we

identified the responsibilities of the scheduler object (see

Section C4).

In Chapter V we introduced our (l-CP-TP)-tree

proposal where interface functions are loaded on interface

processors, correlation functions are loaded on correlation

processors, and tracking functions are loaded on tracking

processors. In Appendix B new controllers are identified

(interfacescheduler, correlationscheduler, and

trackingscheduler). The existence of new controllers requires

reallocation of responsibilities and definition of new

responsibilities. Reallocation of responsibilities is not

expected to add to the overhead. However, definition of new

responsibilities is a source of inefficiency.

b. Additional Comunication

In Appendix B we evaluate the communication cost of

the IP(IPXC), CPs(CPXC), and TPs(TPXC). Any time spent in

communication constitutes a penalty on the overall performance

as compared with the sequential case. In some processors,

communication can be overlapped with computation to decrease

its influence as a factor of inefficiency.

116

c. Load Balancing

In a distributed computational system we must

ensure that, as far as possible, each node is performing the

same amount of work.

In Chapter V we introduced the object reincarnation

proposal to improve load balance using a distributed strategy

without any additional communication cost. This proposal

covers load imbalance among CPs and load imbalance among TPs.

It does not however, improve load balance between the CP and

TPs of each branch. To attack this problem we overlap the

execution of correlation and tracking algorithms.

2. Upper Limit Efficiency

In the (l-C.-T.)-tree proposal the upper limit

efficiency is achieved when global and local load balance

operations are not required. This is because the workload in

each branch is the same, and firm targets are evenly

distributed among TPs.

Applying Equations 6.1 and 6.2, we have:

a. Tim. to Compute on One Node (T7,)

Tg.q = Ti~f + Tcor +Ter

where:

Tif is the time expended in interface functions;

T.,, is the time expended in correlation functions;

and

117

T,, is the time expended in tracking fur tions.

Assuming:

1. (T.oo+Tt.) >> Tif (i.e., correlation and tracking

are the dominating costs); and

2. T,, and Tt, are proportional to the number of

targets (Nt) (i.e., in steady state correlation and tracking

is executed for each firm target).

then:

TCr = TANe (6.3)

=~ (C1 +T1)Nt

where:

C1 is the average correlation time per target; and

T, is the average tracking time per target.

b. Time to Compute on N Nodes (7..(N))

As introduced in this section, we identified

additional control, additional communication and load

balancing as our sources of inefficiency. In the absence of

global and local load imbalance we will assume that the load

imbalance between the CP and TPs of each branch is our

118

dominating factor of inefficiency (later we will verify this

assumption), therefore T.,6 ,(N) can be evaluated as:

Tn c(N) = f C 1T.+MAX(T, (Wtp-1) , CiWcP-fCiTp) +T

where:

W is the workload of correlation processors (i.e.,

the number of targets loaded on each CP);

WtP is the workload of tracking processors (i.e.,

the number of targets loaded on each TP); and

f is a fraction of the average correlation time per

target expended during the first gate correlation phase (i.e.,

fC, is the average first gate correlation time per target).

When r < (1/TP) the expression to evaluate T....(N)

can be rewritten as:

n (N) = fC 1TV+T1W CP (6.4)

The correlation operation (C1W,-fC1 Tp) is executed

in CPs in parallel with the tracking operation (T,(Wtp-1)) in

TPs.

Using the assumption of global and local load

imbalance we have:

119

NC

W- Ne

If (T•Wp >> fC1 T,) and (TWtp > CWv), that is:

Wr.P 31 frTP; (f< 1)

(6.5)

TC1p

then T... (N) can be evaluated by (see Equation

6.4):

Tlotc(N) = fCTT+TW,,W - Nc (6.6)

C. Efficiency Evaluation

The number of nodes (N) in the (1-CP-Tp)-tree

proposal can be evaluated by:

120

Assuming (CPTP+Cp) >> 1, then:

N CP (rp+l) (6.7)

Using equations 6.2 - 6.7, we have:

E (C1 +TO) Ne(C, TP÷ +TwCP) Cp (P~l 6

Load imbalance between the CP and TPs of each

branch is removed when:

1. WqC, - WtPTI (i.e., C, - T,/TP)

2. f-0 (i.e., the cost of the first gate

correlation phase is null).

In this situation, we have:

TP

E= -=1

This is an expected result because our analysis is

being done considering the load imbalance (CP,TP) as the

single source of inefficiency. That is, when we remove all

sources of inefficiency, then E=l.

Assuming:

1. Tracking as the dominating cost between tracking

and correlation operations (i.e., Cl=rT,, r < (1/TP)); and

121

2. WtPTI >> fC1 TP (i.e, the tracking cost of all

targets loaded on TPs is very high when compared with the

first gate correlation cost of Tp targets).

then we can rewrite Equation 6.8 as:

E=(1+z) T, (1+r) Tp

T, (Tl) (6.9)

Table 5 depicts the upper limit efficiency of the

(1-Cp-TP) -tree proposal (r= (0.9/Tp)).

TABLE 5 UPPER LIMIT EFFICIENCY

Topology Efficiency

(1-3-3) -tree 97%

(1-9-9) -tree 99%

3. Lower Limit Efficiency

In the (1-C.-Tp) -tree proposal the lower limit

efficiency is obtained when:

1. All detected targets are located within the

visibility space of a single tree branch; and

2. Local load balance operation is required in the

overloaded branch

Again, applying Equations 6.1 and 6.2 we have:

122

a. Time to Compute on One Node (Tm)

The time to compute on one node was evaluated in

Equation 6.3.

b. Time to Compute on N Nodes (T.(N))

With all detections lying within a single branch we

have:

1. Wq = Nt; and

2. WtP = 1. 25 (Nt/Tv). That is, to start the

execution of the local load imbalance algorithm specified in

Chapter V, Section D we accept a maximum local load imbalance

factor (LLI-0.25).

When T,Wt. > C1W,, that is:

1.25TLLc > CjNr

(6.10)

TP 1.25

then Tao. (N) can be evaluated by (see Equation

6.4):

Lonc (N) = fC, T + l.25NC

123

Again, assuming TWt~p >> fC1 Tp we have:

Ti
(6.11)

a. Efficiency E-valuation

Using Equations 6.2,6.3,6.7, and 6.11 we have:

(1+r) T,
1.• 25Cp (r +1)

(6.12)

1

1. 25Cp

where:

Eý, is the upper limit efficiency (see Equation

6.9).

Relative criterions must be taken with care, since

for instance Equation 6.12 indicates that when we increase C.

we decrease the lower limit efficiency. However, it does not

show that when we increase C. the probability to detect all

targets within the visibility space of a single tree branch is

expected to decrease because increasing C. decreases the

number of space regions being controlled by each CP (see

Chapter V).

124

Table 6 depicts the lower limit efficiency of the

(l-Cp-Tp) -tree proposal.

TABLE 6 LOWER LIMIT EFFICIENCY

Topology Efficiency

(1-3-3) -tree 25%

(1-9-9) -tree 9%

4. Efficiency with Load Imbalance

After the evaluation of the best and worst case

conditions we need to predict the expected efficiency with

load imbalance operation. This prediction is made with the

following assumptions:

1. To start the execution of the local load imbalance

algorithm as specified in Chapter V, Section D we accept a

maximum local load imbalance factor (LLIO0.25);

2. To start the execution of the global load imbalance

algorithm as specified in Chapter V, Section D we accept a

maximum global load imbalance factor (GLI=0.75); and

3. Maximum global and local load imbalance are present

in the same branch of the (1-Cp-TP)-tree.

Again, applying Equations 6.1 and 6.2 we have:

125

a. Time to Compute on One Node (T,,q)

Equation 6.3 can be rewritten as:

T30 = (1+r) TiNt (r<1) (6.13)

In this equation C,-rT,. That is,r is the ratio

between the average correlation time per target (Cl) and the

average tracking time per target (TI).

b. Time to compute on N Nodes (Tm,(N))

With global and local load imbalance we have:

N•Wc = (1. 75)--e;
,co

W(. = (1.75) (1 N25) -

(1. 7 5) (1. 2 5)T cp > (1.75) C

(6.14)

-a > 0.8,q

Then T,,. 0 (N) can be evaluated by (see Equation

6.4):

126

Tlon) (N = -fC- T +(1.75) (1.25)T T---e

(6.15)

Too. (N) -- (frTp=(1.75) (1. 25) :)T

c. Efficiency Evaluation

Using Equations 6.2,6.7,6.13, and 6.15, we have:

(1 +Z) TpNeE=

TN) (6.16)

The strongest tracking dominating condition (see

Equations 6.5, 6.10, and 6.14) can be expressed as:

p

If (T,<9) then r < 0.11.

Table 7 depicts the relationship among the average

tracking time per target (T1), average correlation time per

target(Cl), and the average first gate correlation time per

target (fC,) considering an average tracking time per target of

127

hundreds of milliseconds (see Table 2), and the average first

gate correlation time per target a tenth part of the average

correlation time per target (fC1=0.1C1) .

TABLE 7 CORRZLATION AND TRACKING COSTS (NS)

T, (C,) • fC

100 11 1.1

250 27 2.7

500 55 5.5

Again, assuming T1Wtp >> fC1 Tp we have:

(1.r) TE=P
(1.75) (1.25) (T +1)

(6.17)

E1 E
(1.75) (1.25) Fm

Where:

E.. is the upper limit efficiency (see Equation

6.9).

Load imbalance is a major source of inefficiency in

a distributed computational system [Ref. 281. In our proposal,

global load imbalance happens when the real target

distribution does not match with the environment model (AUDN)

(see Chapter V), and local load imbalance is expected only as

128

a consequence of arbitrary contact losses (see Chapter V) . The

object reincarnation proposal reduces the effects of load

imbalance with no additional communication cost.

Table 8 depicts the expected values of the

efficiency with load imbalance in the (1-Cp-Tp)-tree proposal.

TABLZ 8 UNTICIENCY WITH LOAD IMIALANCZ

Topology Efficiency

(1-3-3) -tree 44%

(1-9-9) -tree 45%

5. Verifying the Inefficiency Assumption

During the evaluation of the upper limit efficiency we

assumed that the load imbalance between the CP and TPs of each

branch was our dominating factor of inefficiency in the

absence of global and local load imbalance. We then analyzed

the consequences of global and local load imbalance. All of

these surveys were based on the assumption that the

inefficiency introduced by additional control and additional

communication are small when compared with the inefficiency

introduced by load imbalance. We now verify this assumption.

In the worst case, the inefficiency introduced by

additional control and additional communication is not

overlapped with the execution of correlation and tracking

algorithms. In this hypothesis, To,,0 (N) can be rewritten as:

129

Tzn(N) = lXfT+W

where:

R, is the average additional control time per target;

and

X, is the average additional communication time per

target.

To keep the previous efficiency evaluation with an

error less than 10% we must have:

(R 1 +X1) N0 0 . 1 [fCT T + TW1 W] mi.

This Expression can be rewritten as (see Equations

6.6, 6.11, and 6.15):

(R,.X 1) NtO . 1 TiNe
TPCP (6.18)

In Appendix B we evaluate X1 Nt as:

X1 N= IPXC+CPXC+TPXC = lins (N,=500)

then X1-0.02 ms.

Equation 6.18 can be rewritten as (TPM9,CP=9):

R1 '- -0.02

Table 9 depicts upper limit values for the additional

control overhead to keep the previous efficiency evaluation

wi-th an error less than 10%.

130

TABLE 9 ADDITIONAL CONTROL OVERHEAD (Nt=500) (MS)

T, (Rd)• RjNt

100 0.1 50

250 0.28 140

500 0.59 295

C. TRACKING CAPACITY

In the introduction of this chapter we defined tracking

capacity as the maximum number of targets that our system is

able to track with real-time response. In this research we are

assuming that the real-time response is constrained by a fixed

time interval between successive radar scans (AT=3s). That is,

the real time constraint can be expressed as:

Tcon c (N) i A T 6 . 9

In Chapter V we introduced the confined space search

proposal. This proposal defines an overlap space between CPs

to support a target smooth transition when the target crosses

the visibility space boundary of some CP. The overlap space

introduces redqndant work (i.e., some targets may be reported

by more than one correlation processor).

131

The fraction of the tactical scene used as overlap space

among all CPs (F.ai) can be computed as F.*,=0.1. This is

because the inner radius is 20NM and the outer radius is

20ONM.

The fraction of the tactical scene used as overlap space

between two successive CPs (F 2) can be computed as:

20C
F 2 = (l-Fail) 30360

This is because we divided the search space into 18 fixed

size sections of 20 degrees in each section (see Appendix B).

When a target is lf ated within the inner circle it is

reported by C. processors. When a target is located within the

overlap section (but outside of the inner circle) it is

reported by two CPs. Otherwise, it is reported by a single CP

(see Figure 17).

1. Upper Limit Capacity

During the computation of the upper limit efficiency

Tao,(N) was evaluated by Equation 6.6 therefore, the real-time

constraint (see Equation 6.19) can be expressed as:

NC '(R--Pf)AT
T, (6.20)

Also, if all targets are evenly distributed within the

tactical scene then the number of distinct target reports (N,)

can be computed as:

132

Nd -- Ne(l-F.i-F2) +lNc(F2) +-±Nt(Fa(1)2C (6.21)

where:

N(I-F,ýU-F2) is the number of targets reported by a

single CP;

Nt(F 2) is the number of targets reported by two CPs;

and

Nt(F~n) is the number of targets reported by Cp CPs.

Table 10 depicts the expected upper limit capacity of

the (1-9-9)-tree.

TABLE 10 UPPER LIMIT CAPACITY (1-9-9)-TREM

T, Nt Nd

100 2,430 1,667

250 972 666

500 486 333

In the best case, targets are not located within

overlap sections. This assumption leads to Nd=Nt..

2. Lower Limit Capacity

During the computation of the lower limit efficiency

T6 Of.l(N) was evaluated by Equation 6..11 thus, the real time

constraint (see Equation 6.19) can be expressed as:

133

T
1.25T, (6.22)

When all detected targets are located within the

visibility space of a single tree branch the number of

distinct target reports (Nd) can be computed as:

Nd = Ne (6.23)

Table 11 depicts the expected lower limit capacity of

the (1-9-9)-tree.

TABLE 11 LOWER LIMIT CAPACITY (1-9-9)-TREE

T, Nt Nd

100 216 216

250 86 86

500 43 43

3. Capacity with Load Imbalance

During the computation of the efficiency with load

imbalance T....(N) was evaluated by Equation 6.15 thus, the

real time constraint (see Equation 6.19) can be expressed as:

(1.25) (1.75) T, (6.24)

134

The number of distinct target reports (Nd) is computed

as in Equation 6.21.

Table 12 depicts the expected capacity with load

imbalance of the (1-9-9)-tree.

TABLE 12 CAPACITY WITH LOAD IMBALANCE (1-9-9)-TREE

T, Nt Nd

100 1110 761

250 444 304

500 222 152

Again, in the best case targets are not located within

overlap sections (i.e., Nd=Nt).

D. SYSTEM REACTION TIME

In the introduction of this chapter we defined system

reaction time (SRT) as the average time lag between target

detection and target estimation report of all targets being

tracked. In this analysis we assume that:

1. Communication can take place simultaneously on all of

the incident links of a node and in both directions; and

2. Communication resources are sufficiently plentiful so

that there is never a need for queuing communication packets.

135

1. Beat Reaction Time

The best system reaction time ((SRT)b,) is expected to

happen when all branches of the (1-CP-TP)-tree are working with

the same load and each branch works without local load

imbalance.

The time lag (TL) between target detection and target

estimation report of the first target being tracked by any

branch can be expressed as:

TL1 = R1 +X1 +fC÷+T1 (6.25)

However, T, >> (R1+Xl+fC 1). For instance, with T1=100ms

we have:

1. R - 0. lms (see Table 9);

2. X, - 0.02ms (see Section B5); and

3. fC - 1. Oms (see Table 7).

then, Equation 6.25 can be rewritten as:

Li = T, (6.26)

The time lag between target detection and target

estimation report of the n-th target being tracked by the same

tracking processor of any branch can be expressed as:

TL n - T- (6.27)

136

Using the assumption that the IP receives CP reports

in parallel, we have:

(SRT)b, = Ti E (6.28)Swln

where:

'CT

wep

E = n 2(Wtp+l)
n=l

Equation 6.28 can be rewritten as:

(SRT) b- =T, (-r+1)
2 Cp'TV (6.29)

When we increase (T,,Nt) we increase SRT because we are

increasing the computation demand, and when we increase (Cp, TP)

we decrease SRT because we are increasing the number of

computational resources available.

2. Worst Reaction Time

The worst system reaction time ((SRT).o) is expected to

happen when all detected targets are located within the

visibility space of a single tree branch and local load

balance is required in the overloaded branch.

137

In this case, we have:

1. (T,-1) tracking processors working with the average

workload Wt.; and

2. One single tracking processor working with a

workload of (1.25) Wtv.

then, Equation 6.28 can be rewritten as:

(SRT) V () (W-') En +

Tp n=1
(6.30)

T~ 11. 25 5WWtp
Tp H 125 E

where:

N.

1. 25W tp 1.25W tPF o 2 Cz.5wPz.
n=1

Equation 6.30 can be rewritten as:

(SRT)C -(N(N+
2• -p ([(-16.31)

138

3. Reaction Time with Load Imbalance

The system reaction time with load imbalance ((SRT)li)

is expected to happen when maximum global and local load

imbalance are present in the same branch of the (1-CP-Tp)-tree

and the remaining branches are working neither with global nor

with local load imbalance.

In this case, we have:

1. (C,-l)Tp tracking processors working with the

average workload WtP;

2. (T,-l) tracking processors working with a workload

of (1.75)Wt,; and

3. One single tracking processor working with a

workload of (1.75) (1.25)Wp.

then, Equation 6.28 can be rewritten as:

T -1 Ti 1. 7 5 W(SRT) =j TPr)15Wn

CPTv 1.75W
Sn1=l

1 (1.25) (1.75) wt n
CT (25) (1.) (6.32)() ((.5 7)n=1

C -1 T t() () n
Cp WPn=1

139

where:

Nt

C TP

= CW~(CWt,+1).

n=l

Equation 6.32 can be rewritten as:

(SRT) I T 1 (TP-1) +
2CpTp CPT-

(r) M(.25) (1.75)N i+
2CTP C T (6.33)

cp -1 -) (Ne, +1)
C, 2

4. Results Sumary

Table 13 depicts a comparative analysis of the system

reaction time as a function of the number of targets using the

(1-9-9)-tree and a tracking algorithm with T1=100ms (see

Equations 6.29, 6.31, and 6.33)

140

TABLE 13 SYSTEM REACTION TIME (MS) (TI=100MS) (1-9-9)-TREE

Nt (SRT) b (SRT). (SRT)1

50 81 335 84

100 112 621 117

150 143 906 151

9. CONFINED SPACE SEARCH VALIDATION

In Chapter V, we introduced the following questions:

1. Does the application support a division of the search

space in correlation sections?

2. Does the application support the re-creation of objects

in another site with 'acceptable' tracking penalty?

To answer these questions we must implement a simulation

to check the tracking filter capability to reduce the

measurement errors when targets cross the space search

boundary of CPs. The worst case condition happens when we need

re-create targets located within the visibility space of a

single tree branch. In this case the target termination in one

site will happen in parallel with the target initiation in

another site (see Figure 16) . However, targets without

correlated detection (status terminating) are still tracked

with the prediction replacing the detection as an input to the

tracking algorithm.

141

1. Methodology

The methodology used in the analysis is equivalent to

the one used in the analysis of the Kalman filter in

Chapter II, with the following differences:

1. The filter improvement of a target tracked by a

single processor is compared with the filter improvement when

the same target is tracked by two processors; and

2. No overlap section is defined between tree

branches.

2. Target Motion Model

In this analysis we used the following motion models:

1. Path A: crossing target with constant velocity

(v-560 m/s) (foreseeable behavior); and

2. Path B: crossing target with variable acceleration

(a-7g when crossing) (unforeseeable behavior).

3. ImplImentation Language

Object-oriented design (OOD) can be used regardless of

whether or not the implementation language is object-oriented

(00). Although it may be claimed that implementing an OOD in

an object-oriented programming language (OOPL) is the natural

way to proceed there are several 'problem areas' that must be

resolved before the full potential of concurrent and

distributed object-oriented programming (OOP) systems can be

realized. (Ref. 37]

142

Unfortunately, the only OOPL that was available that

would execute on a Transputer (Ref. 38] when this research

started was Classic-Ada (Ref. 39]. The use of Classic-Ada as

an OOPL was examined in [Ref. 40]. Also, its use as a

concurrent OOPL was surveyed in [Ref. 41]. However, there were

two problems with choosing this language:

1. Running Classic-Ada on our transputers is rather

awkward in that the Classic-Ada processor runs only on our

Unix-based systems, which means running the Classic-Ada

programs through the Classic-Ada processor on the Unix system

to produce Ada code which is then ported to the Transputer for

compilation; and

2'. We only had one Transputer system upon which we

could run Ada programs. That is, failure of that system would

be catastrophic for this research schedule.

We also investigated the use of C++ [Ref. 42], but it

took us so long to locate, order, and receive a version of C++

that ran on the Transputer that we decided to go ahead and

work with Logical-C (Ref. 43]. However, we made extensive use

of OOD, and all C programs were written as much as possible in

an '00 manner'.

4. Conclusions

Table 14 depicts the simulation results. The results

obtained support the following conclusions:

143

1. Tracking degradation does happen when targets cross

the border without overlap sections with foreseeable behavior;

and

2. Tracking improvement may happen when the target

modify its behavior close of the crossing border.

TABLE 14 CONFINED SPACE SEARCH VALIDATION

Path FI-1P FI-2P FI-2P/FI-1P

A 130.3% 110.2% 0.85

B 123.3% 124.1% 1.01

Conclusion 2 can be better understood if we remember

that the output of recursive filters is a function of the

input and previous output. The previous output acts as the

filter memory and when the target modify its assumed behavior

we may have tracking improvement because the filter memory is

playing against a good estimation report.

No tracking degradation is expected when targets are

located within the space defined as danger area (see Figure

17).

144

VII. CONCLUSIONS

A. SUHWIXAY OF SIGNIFICANT RESULTS

The primary goal of this research was to specify and

validate a new concurrent decomposition scheme to exploit

parallelism of Radar Data Processing algorithms in distributed

systems using a tree topology. We avoided the traditional

approach of all functions to all processors assigning the

execution of correlation algorithms to correlation processors

and tracking algorithms to tracking processors. To improve

efficiency by reducing the communication cost, and to decrease

the gating complexity, we divided the search space into fixed

size sections, and distributed the surveillance within the

tactical scene among processors located on different branches

of the tree. The overlap of correlation and tracking

computation, and a reduction of the computation load to

evaluate probabilities of association were ensured by using

two correlation gates.

During the specification of our proposal we introduced the

Decomposition Cost Evaluation Model (DCEM) to support the

following decision: Given a single processor class hierarchy

design, how should we efficiently decompose this hierarchy

into interface and function(s) hierarchies to load on

distributed systems? To make possible analytical comparisons

145

among user identified options we defined communication and

computation cost functions of objects, classes, hierarchies,

and processors. We applied this model to compare our proposal

with the hypercube alternative when the application hierarchy

is replicated throughout the network.

Load imbalance is a major source of performance

degradation in distributed systems. Ideally, during the

execution of any load bplance strategy no communication costs

should be incurred at all. In our research, objects are viewed

as computation sinks. That is, load balance can be obtained by

transferring objects from one processor site to another. In

the Object Reincarnation (OR) proposal we replicate visible

methods and rebuild the object state with minor application

penalty and without additional communication costs rather than

physically transfer objects from one site to another moving

visible methods and the object state. That is, with Object

Reincarnation, objects die in one processor site (reducing its

load) and are reincarnated in another site (increasing its

load). This also supports fault recovery as an extension to

the load balance problem.

B. STRENGTRS AND WEAKNESSES

1. Strengths

The Confined Space Search Decomposition (CSSD)

enhances parallel operations by reducing the communication

cost of transferring data among processors and by overlapping

146

the execution of correlation and tracking algorithms. Also,

the complexity of multiple-target gating is reduced from O(ND)

to O((Nt/CP) 2) when targets are evenly distributed within the

tactical scene.

We have taken an object-oriented approach to the

problem of decomposition in distributed systems. In the

Decomposition Cost Evaluation Model, the mapping problem is

brought to a higher level of abstraction where the question is

ohich classes should be loaded on which processors, not which

tasks should be loaded on which processors.

The Object Reincarnation approach supports load

balance without extra communication among processors, and with

minor application penalty.

2. Weaknesses

The tree topology offers low connectivity. That is,

failure of any of its links creates two subsets of processors

that cannot communicate with each other. The solution to this

weakness was the proposal of a fault recovery algorithm as an

extension to the load balance problem using the Object

Reincarnation approach.

The performance of the Confined Space Search

Decomposition is sensitive to the environment model. Here the

question is: What is the frequent case? If the real target

distribution matches the expected target distribution then we

get the benefits of the Confined Space Search Decomposition.

147

Otherwise, load imbalance can occur. In the worst case a

single branch may be responsible for executing radar data

processing functions for all detected targets. That is, for a

particular application, the computational power of any branch

must be specified to support the worst acceptable system

reaction time for the maximum number of expected targets.

However, as discussed in Appendix B it is our view that the

architecture design should not be conceived to favor the

infrequent case.

C. SUGGESTED FUTURZ DIRECTIONS

We have taken a theoretical path in the validation of our

research. Thus, we recommend the implementation of the

Confined Space Search Decomposition to evaluate performance,

tracking capacity, and system reaction time of our proposal

using a particular processor (such as the Inmos T9000

Transputer, as discussed in Appendix B).

Extensions to the Ada language such as Classic-Ada brings

the power of concurrent object-oriented programming to the Ada

developer. C++ is now available as a preprocessor to produce

INMOS ANSI C or 3LC code to run on networks of Transputers. We

identify these options as good language candidates to use in

the implementation.

W4 used the Decomposition Cost Evaluation Model to compare

the hypercube alternative with the tree alternative. We ý'.so

recommend the application of the model to compare our proposal

148

with other distributed systems using different topologies

and/or code allocation policies.

D. CONCLUDING REMARKS

In this research we reviewed possible implementations of

radar data processing algorithms, developed a single processor

object-oriented design for this application, decomposed this

design into a distributed computer system using two user

identified alternatives, compared these alternatives, and then

developed a theoretical prediction of selected parameters for

the selected architecture. To accomplish this, we faced two

main problems: The decomposition of a single processor

software design into a distributed computer system, and the

load balance issue. As a solution to the decomposition of the

software design we introduced the Decomposition Cost

Evaluation Model from which we derived the Confined Space

Search Decomposition, and to reduce the penalties of load

imbalance we proposed the Object Reincarnation Heuristic.

Thus, we have proposed and validated a distributed

computational system that will increase the computing capacity

of future combat systems.

149

APPENDIX A

1. Component Classes

CLASS: PREDICTION

Superclasses: None.

Class Variables: None.

Instance Variables: xP: real.

vxp: real.

YP: real.

vYP: real.

Methods: GET & SET XP.

GET G SET VXP.

GET & SET YP.

GET & SET VYP.

150

CLASS: ESTIMATION

Superclasses: None.

Class Variables: None.

Instance Variables: XE: real.

vxE: real.

Yz: real.

vyE: real.

Methods: GET & SET XE.

GET & SET VXE.

GET & SET YE.

GET A SET VYE.

CLA•S: DETECTION

Superclass.s: None.

Class Variables: None.

Instance Variables: xD: real.

YD: real.

Methods: GET & SET XD.

GET & SET YD.

151

CLASS: SIZE

Superclasses: None.

Class Variables: None.

Instance Variables: xs: real.

YS: real.

Methods: GET & SET XS.

GET & SET YS.

CLASS: PAIRING

Superclasses: None.

Class Variables: None.

Instance Variables: MID: integer.

MEASURE: DETECTION.

DISTANCE: real [0.0].

TN: integer.

Methods: GET & SET MID.

GET A SET MEASURE.

GET & SET DISTANCE.

GET & SET TN.

152

CLASS: CONTROL

Superclasses: None.

Class Variables: None.

Instance Variables: TN: integer.

STATUS: {AL,DE) [DE].

Methods: GET & SET TN.

GET & SET STATUS.

2. Abstract Classes

CLASS: TARGET

Superclases : None.

Class Variables: cowu: buffer of PAIRING.

Instance Variables: None.

Methods: None.

3. Concrete Classes

CLASS: SENSOR

Superclasses: None.

Class Variables: None.

Instance Variables: sp: (3.0..5.0) (3.0].

PD: (0.9..1.0) (1.0).

DETECTIONS: buffer of DETECTION.

Methods: S IMRADET

153

CLASS: FIRM

Superclasses: TARGET.

Class Variables: None.

Instance Variables: TN: integer.

SOEU: buffer of PAIRING.

MYPRP : PAIRING.

MYPR: PREDICTION.

MYES: ESTIMATION.

MYST: {FI,TE,DE) [FI].

FGSZ: SIZE.

SGSZ: SIZE.

mGSZ: SIZE.

Methods: SOCOBU

RECOPRFG

RECOPRSG

RECUST

SEST

EXSEQTE

EXTR

CHKEQ

STYOU

154

CLASS: TENTATIVE

Superclasses: TARGET.

Class Variables: None.

Instance Variables: TN: integer.

SOwU: buffer of PAIRING.

MYPROP: PAIRING.

MYPR: PREDICTION.

mYES: ESTIMATION.

MYST: "CI,CF,DE} [CI].

IGSZ: SIZE.

MGSz: SIZE.

Methods: socoBu

RECOPRIG

RECUST

SEST

EXSEQTE

KXTR

CHKEQ

STYOU

155

CLASS: SCHEDULER

Superclasses : TARGET.

Class Variables: None.

instance Variables: corz: buffer of CONTROL.

COTE: buffer of CONTROL.

Methods: RUN

156

APPENDIX B

APPLYING THE DECOMPOSITION COST EVALUATION MODEL

1. Identification of Concrete Classes

In Chapter IV we identified SENSOR, FIRM, TENTATIVE, and

SCHEDULER as the concrete classes of our application. Thus,

these are the preliminary classes to consider during the

evaluation of communication and computation costs.

2. Identification of Interface Functions

During the initial design in Chapter IV, we assigned

interface and application functions to a single processor.

Here we want to build an Interface Hierarchy to encapsulate

interface functions in classes assigned to Interface

Processors (IPs), and an Application Hierarchy to encapsulate

application functions in classes -assigned- to Radar Data

Processing Processors (RDPPs). The following interface

functions were identified:

1. The method SIMRADET in class SENSOR is responsible to

simulate radar detections. This suggests that the class SENSOR

should be assigned to the interface hierarchy.

2. Methods CHKEQ and STYOU in classes FIRM and TENTATIVE are

responsible for executing the check equivalence and store

157

yourself services. This suggests that a new class INTERFACE

should be created in the interface hierarchy to encapsulate

those services.

3. A new client called INTERFACE SCHEDULER must be created

in the interface hierarchy. This new client will be the

communication interface with the old SCHEDULER renamed as

RDP SCHEDULER.

a. Interface Hierarchy (IN)

(1) Refining Contract Responsibilities. The existence

of a new client requires refinement of responsibilities. The

following reallocation *of responsibilities from the

rdp_scheduler (single instance of the class RDPSCHEDULER in

the application hierarchy) to the interface scheduler (single

instance of the class INTERFACESCHEDULER in the interface

hierarchy) are identified:

1. Create the sensor object;

2. Ask report of radar detections;

3. Ask equivalence check; and

4. Storage request.

Also, the following new responsibilities were

allocated to the interface scheduler:

1. Transmit correlation buffer: During each data

scanning the interface scheduler object must transmit radar

detections to rdp_schedulers using some communication server;

158

2. Ask report of estimations: During each data

scanning the interfacescheduler must request the delivery of

positions after estimation from rdp_schedulers;

3. Create interface objects: Each estimation

received becomes an interface object;

4. Destroy interface objects: During each data

scanning all created interface objects are destroyed.

(2) Refining Objects Structures. The objects

structures are defined as:

1. Sensor object (Chapter IV);

2. Interface object:

ESRE: ESTREPORT. /* Estimation Report */

zSBu: buffer of ESTREPORT.

MGSZ: SIZE.

3. Interface scheduler:

DEBU: buffer of DETECTION.

ESBu: buffer of ESTREPORT.

COIN: buffer of CONTROL.

(3) Refining Class Hierarchies. The classes in the

hierarchy are defined as:

159

1. Class ESTREPORT (Component):

CLASS: ESTREPORT

Superclasses: None.

Class Variables: None.

Instance Variables: TN: integer.

MYES: ESTIMATION.

Methods: GET & SET TN.

GET & SET MYES.

2. Class ESTIMATION (see Appendix A):

3. Class DETECTION (see Appendix A);

4. Class CONTROL (see Appendix A);

5. Class SIZE (see Appendix A);

6. Class ESTBUFFER (Abstract):

CLASS: ESTBUFFER

Superclasses: None.

Class Variables: ESBU: buffer of ESTREPORT.

Instance Variables: None.

Methods: None.

The estimation buffer (ESBU) is set by the

interface scheduler and must be visible for read operations by

interface objects during the execution of the CHiKEQ method. The

class ESTBUFFER is defined as " superclass of the concrete

classes INTERFACE and INTrRFACE SCHEDULER;

7. Class SENSOR (see Appendix A);

160

8. Class INTERFACE (Concrete):

CLASS: INTERFACE

Superclasses: ESTBUFFER.

Class Variables: None.

Instance Variables: ESRE: ESTREPORT.

MGSZ: SIZE.

Methods: CHKEQ.

STYOU.

9. Class INTERFACESCHEDULER (Concrete):

CLASS: INTERFACESCHEDULER

Superclasses: ESTBUFFER.

Class Variables: None.

Instance Variables: COIN: buffer of CONTROL.

DEBU: buffer of DETECTION.

Methods: RUN.

Figure 18 depicts the interface hierarchy, and

Figure 19 depicts the client-server relationship. ESTBUFFER is

an abstract class, SENSOR and INTERFACE are concrete classes

used to instantiate server objects, and INTERFACE SCHEDULER is

a concrete class used to instantiate the client object (i.e.,

the controller).

161

ESTBUFFER

INTERFACE INTERFACE SENSOR
SCHEDULER

Figure 18 Interface Hierarchy (IH)

INTERFACE SENSOR

S -

S -

INTERFACE

SCHEDULER

Figure 19. Client-Server Relationship (IH)

b. Application Hierarchy (AH)

(1) Refining Contract Responsibilities. New

responsibilities are allocated to the rdpscheduler:

162

1. Ask estimation to firm objects;

2. Ask estimation to tentative objects;

3. Report estimations to the

Interface Scheduler.

(2) Refining Objects Structures. The objects

structures are redefined as:

1. Firm object: (Remove MGSz, Chapter IV);

2. Tentative object: (Remove MGSZ, Chapter IV);

3. Rdp_scheduler:

ESBU: buffer of ESTREPORT. /* New */

(3) Refining Class Hierarchies. The classes in the

hierarchy are defined as:

1. Class PREDICTION (see Appendix A);

2. Class ESTIMATION (see Appendix A);

3. Class PAIRING (see Appendix A);

4. Class CONTROL (see Appendix A);

5. Class SIZE (see Appendix A);

6. Class TARGET (see Appendix A);

7. Class ESTREPORT (Interface Hierarchy);

163

8. Class FIRM (Concrete):

CLASS: FIRM

Superclasses: TARGET.

Class Variables: None.

Instance Variables: /* Remove MGSZ */

Methods: SOCOBU

RECOPRFG

RECOPRSG

RECUST

SEST

EXSEQTE

EXTR

GETTN /* New */

GETMYES /* New */

Methods GETN and GETMYS are created to support the

responsibility report estimations of the rdp_scheduler.

164

9. Class TENTATIVE (Concrete):

CLASS: TENTATIVE

Superclasses: TARGET.

Class Variables: None.

Instance Variables: /* Remove MGSZ */

Methods: SOCOBU

RECOPRIG

RECUST

SEST

EXSEQTE

EXTR

GETTN /* New */

GETMYES /* New */

10. Class RDPSCHEDULER (Concrete):

CLASS: RDP SCHEDULER

Superclasse.: TARGET.

Class Variables: None.

Instance Variables: coFi: buffer of CONTROL.

coTE: buffer of CONTROL.

ESBU: buffer of ESTREPORT.

Methods: RUN

Figure 20 depicts the application hierarchy, and

Figure 21 depicts the client-server relationship. TARGET is an

abstract class, FIRM and TENTATIVE are concrete classes used

to instantiate server objects, and RDP SCHEDULER is a concrete

165

class used to instantiate the client object (i.e., the

controller).

-- --------.----

TARGET

FIRM RDP TENTATIVESCHEDULER

Figure 20 Application Hierarchy (AH)

FIRM TENTATIVE

* -

*5 -

RDP

SCHEDULER

Figure 21 Client-Server Relationship (AH)

3. Identification of High Cost Functions

As introduced in Chapter II, tracking functions using

multifilter algorithms such as the Interacting Multiple Model

166

(IMM) and Viterbi Algorithm (VA) are too computation intensive

(=600 ms) to be used in real applications with SISD

architectures.

In the application hierarchy, we identify the method EXTR

(Execute Tracking) in the classes FIRM and TENTATIVE. The

initiation algorithm used to implement this method in the

class TENTATIVE (Equations 3.2, 3.3, and 3.4) is very simple

and does not deserve any special attention; however, improved

implementations of tracking algorithms are high cost

functions, and high cost functions are natural candidates to

be executed in several processors. This suggests:

1. Partition of the application hierarchy into two

function hierarchies: a Tracking Hierarchy to encapsulate

tracking functions in classes assigned to Tracking Processors

(TPS) and a Correlation Hierarchy to encapsulate correlation

functions in classes assigned to Correlation Processors (CPs);

2. Migration of the method EXTR from the class FIRM in the

application hierarchy to the class TRACKING in the tracking

hierarchy;

3. Creation of two new clients: TRACKING SCHEDULER

(controller in tracking processors); and CORRELATIONSCHEDULER

(controller in correlation processors).

167

a. Tracking Hierarchy (TH)

(1) Refining Contract Responsibilities. The existence

of a new client requires refinement of responsibilities. The

function ask tracking execution to firm objects is transferred

from the old rdp_scheduler renamed as correlationscheduler

(single instance of the class CORRELATIONSCHEDULER in the

correlation hierarchy) to the trackingscheduler (single

instance of the class TRACKINGSCHEDULER in the tracking

hierarchy).

New responsibilities are allocated to the

tracking scheduler:

1. Ask tracking report: For each track (instance of

the class TRACKING), during each data scanning, the

correlationscheduler must deliver to the tracking_scheduler

a tracking report including the target number, correlated

detection, and initial prediction (needed only when a new

track is going to be created);

2. Transmit tracking update: For each track, during

each data scanning, tracking processors must deliver to

correlation processors a tracking update including the target

number new prediction and current estimation;

3. Create tracking objects: New firm targets are

"reported with an encoded target number to signal the

requirement of a new track; and

168

4. Destroy tracking objects: For each track, during

each data scanning, a tracking report must be received. The

absence of this report is used as a signal to destroy the

track.

(2) Refining Objects Structures. The objects

structures are defined as:

1. Tracking object:

TN: integer.

MYDE: DETECTION.

MYPR: PREDICTION.

MYES: ESTIMATION.

2. Tracking_scheduler:

COTR: buffer of CONTROL.

169

(3) Refining Class Hierarchies. The classes in the

hierarchy are defined as:

1. Class TRREP (Component):

CLASS: TRREP

Superclasses: None.

Class Variables: None.

Instance Variables: TN: integer.

HYDE: DETECTION.

MYPR: PREDICTION.

Methods: GET & SET TN.

GET & SET HYDE.

GET & SET MYPR.

2. Class TRUPD (Component):

CLASS : TRUPD

Superclasses: None.

Class Variables: None.

Instance Variables: TN: integer.

MYES: ESTIMATION.

MYPR: PREDICTION.

Methods: GET & SET TN.

GET & SET MYES.

GET & SET HYPR.

3. Class DETECTION (see Appendix A);

4. Class PREDICTION (sse Appendix A);

5. Class ESTIMATION (see Appendix A);

6. Class CONTROL (see Appendix A);

170

7. Class TRACKING (Concrete):

CLASS: TRACKING

Superciasses: None.

Class Variables: None.

Instance Variables: TN: integer.

HYDE: DETECTION.

myEs: ESTIMATION.

MYPR: PREDICTION.

Methods: EXTR.

GET & SET TN.

GET & SET HYDE.

GET & SET MYES.

GET A SET MYPR.

8. Class TRACKINGSCHEDULER (Concrete):

CLASS: TRACKING SCHEDULER

Superciasses: None.

Class Variables: None.

Instance Variables: com: buffer of CONTROL;

Methods: RUN.

Figure 22 depicts the tracking hierarchy, and

Figure 23 depicts the client-server relationship. TRACKING is

a concrete class used to instantiate server objects, and

TRACKINGSCHEDULER, is a concrete class used to instantiate the

client object (i.e., the controller).

171

TRACKING TRACKING

SCHEDULER

Figure 22 Tracking Hierarchy (TH)

TRACKING

TRACKING
SCHEDULER

Figure 23 Client-Server Relationship (TH)

a. Correlation Hierarchy (CH)

(1) Refining Contract Responsibilities. New

responsibilities are created and some canceled in the

rdp-scheduler renamed as correlation scheduler:

172

1. Ask estimation to firm objects

(canceled);

2. Transmit tracking report (New);

3. Ask tracking update (New).

(2) Refining Objects Structures. The objects

structures are redefined as:

1. Firm object: (Remove MYES, Application

Hierarchy);

2. Tentative object: (Application

Hierarchy);

3. Correlation scheduler: (Application

Hierarchy).

(3) Refining Class Hierarchies. The classes in the

hierarchy are defined as:

1. Class PREDICTION (see Appendix A);

2. Class ESTIMATION (see Appendix A);

3. Class PAIRING (see Appendix A);

4. Class CONTROL (see Appendix A);

5. Class SIZE (see Appendix A);

6. Class TARGET (see Appendix A);

7. Class ESTREPORT (Interface Hierarchy);

173

8. Class FIRM (Concrete):

CLASS: FIRM

Suporclasses: TARGET.

Class Variables: None.

Instance Variables /* Remove MYES *1

Methods: SOCOBU

RECOPRFG

RECOPRLbG

RECUST

SEST

EXSEQTE

GETTN

9. Class TENTATIVE (Application

Hierarchy);

10. Class CORRELATIONSCHEDULER

(Application Hierarchy).

Figure 24 depicts the correlation hierarchy, and

Figure 25 de.--cts the client-server relationship. TARGET is an

abstract class, FIRM and TENTATIVE are concrete classes used

to instantiate server objects, and CORRELATIONSCHEDULER is a

concrete class used to instantiate the client object (i.e.,

the controller).

174

TARGET

FIRM CORRELATION TENTATIVE
SCHEDULER

Figure 24 Correlation Hierarchy (CH)

FIRM TENTATIVE

S -

CORRELATION

SCHEDULER

Figure 25 Client-Server Relationship (CH)

4. Divide and Cotiquer

a. All Functions to All Processors (AFAP)

During the identification of interface functions the

single processor was replaced by an interface processor (IP)

175

and radar data processing processors (RDPPs). In this option

the application hierarchy, assigned to RDPPs, is replicated

throughout the network. The buffer of detection (DEBU) is

transmitted to RDPPs by the IP. The buffer of estimation

reports (ESBu) is transmitted to the IP by RDPPs. The main

issue is to select an architecture topology to support

communicating objects with low communication overhead.

b. Some Functions to Some Processors (SFSP)

During the identification of high cost functions the

RDPPs were replaced by correlation processors (CPs) and

tracking processors (TPs). In this option, correlation

hierarchies are assigned to CPs and tracking hierarchies are

assigned to TPs. The buffer of detection (DEBU) is transmitted

to CPs by the IP. Input tracking reports (TRINP) are

transmitted from CPs to TPs. Output tracking updates (TROUT)

are transmitted from TPs to CPs and the buffer of estimation

reports (ESBU) is transmitted from CPs to the IP. The

communication pattern: IP => CPs => TPs => CPs => IP suggests

that (IP,CPs) and (CPs,TPs) should be neighbors. Also, to

reduce the communication cost of the buffer of detections not

all detections should be transmitted to all correlation

processors. This means that the 'search space' should be

divided in correlation sections.

176

5. Identification of Options

The hypercube topology offers high connectivity and short

diameter; it was identified as OPTION I to implement the

Application Hierarchy Design. We will use the notation d-cube

to represent a cube with diameter d.

The tree topology offers low connectivity because the

failure of any one of its links creates two subsets of

processors that cannot communicate with one another. However,

the interconnection network of objects is also a tree with the

IP as a root at level 0, CPs at level 1, and TPs at level 2.

This optimize the communication cost, so the tree topology was

identified as OPTION II to implement the Function

Hierarchies Design. We will use the notation (1-Cp-TJ)-tree

to represent a tree with the interface processor as the root

node, C. correlation processors at level 1, and Tp processors

(for each correlation processor) at level 2.

6. Conceptual Comparisons Among Options

Since the options have been identified (d-cube (AFAP) and

(1-Cp-T,)-tree (SFSP)) we can now start the conceptual

comparisons.

a. Topology Comparisons

Tables 15 and 16 depict topology data associated with

the two selected options. Table 17 depicts some typical

values.

177

TABLE 15 TOPOLOGY DATA D-CUBE

Characteristic Value

Diameter d

Connectivity d

Node Degree d

Average Distance [2dd]/ [2 (2 dl)]

TABLE 16 TOPOLOGY DATA (1-4-T,) -TREZ

Characteristic Value

Diameter of Communicating 2

Objects

Connectivity 1

Node Degree IP - Cp

CPs - Tp+l

TPs - 1

Average Distance of (Cp+2TpCp) / (CpTp+Cp+l)

Communicating Objects

178

TABLE 17 TOPOLOGY DATA (COMPARATIVE ANALYSIS)

Topology Diameter Connectivity Average Average

Degree Distance

6-Cube 6 6 6 3.05

7-Cube 7 7 7 3.53

(1-8-8)-Tree 2 1 1.97 1.86

(1-9-9)-Tree 2 1 1.98 1.88

The average degree of the (1-S-Tp) -tree can be

evaluated as:

(Degree)AV7 = CP + (TP +l)Cp + Tp) (P
cp T + CP 1 (B. .1)

When Cp = T., we have:

(Degree) A,,,2=2Cp + 2CP -2 when C, 3 (3.2)
C2+ C + 1

In Tables 15,16, and 17 we would like to emphasize the

following:

1. The (1-CP-Tp)-tree offers low connectivity. Failure

of any of its links creates two subsets of processors that

cannot communicate with one another. Any link failure isolates

one parent node (IP or CP) from its child node (CP or TP), so

link failures requires load transfer from some child node to

179

its siblings; we will return to this point later. The

connectivity of the d-cube increases with the cube dimension.

2. When CP=Tp and CP Ž 3, the average degree of the

(1-CP-TP)-tree is not sensitive to the number of processors

(-2, Equation B.2). however, the degree of the IP is CP and

the degree of CPs is (T,+l). The degree of the d-cube

increases with the cube dimension. Nodes with high degree

require hardware support (in each node) to increase the

parallelism between computation and communication. During the

Transputing'91 Conference, Inmos introduced the T9000

Transputer with a dedicated communication processor which

operates concurrently with the main processor and a packet

routing switch connecting 32 links to each other via a 32 by

32 way, non-blocking crossbar switch with sub-microsecond

latency. The goal is to remain with maximum degree four in

each node of a distributed computational system. To avoid

network hot spots the routing switch can optionally implement

a two phase routing algorithm (Universal Routing).

3. When the cube dimension is greater then or equal to

four, the average distance (e.g., for d-4, (Distance),.,° =

2.13) of the d-cube is greater than the maximum distance that

a message must travel in the (1-Cp-Tp)-tree (diameter=2). This

increases the communication cost of the d-cube when

compared with the (1-Cp-TP)-tree.

180

b. Principles of Computer Design

Perhaps the most important and pervasive principle of

computer design is to handle the common case fast. In making

a design tradeoff, favor the frequent case over the infrequent

case. This principle also applies when determining how to

spend resources. We have identified tracking as the high cost

function of our application. In the (1-Cp-Tp) -tree architecture

the computational power is mainly concentrated in TPs (Table

18).

TABLE 18 COMPUTATIONAL POWUR DISTRIBUTION

Topology % TPs

(1-3-3) -tree 69%

(1-9-9) -tree 89%

(1-9-2) -tree 64%

To avoid the penalty of the Amdahl's Law (i.e., the

performance improvement to be gained from using some faster

mode of execution is limited by the fraction of the time the

faster mode can be used), we need to overlap tracking with

correlation and enhance correlation. The correlation algorithm

is implemented in phases: first gate, second gate with

ambiguity resolution, and initiation/ termination (see Chapter

III). For each target, tracking can start as soon as a pair

(plot,target) is obtained. To enhance correlation we need to

181

divide the 'search space' into correlation sections. This

means that we have different CPs working in different space

sections; therefore, not all detections need to be transmitted

to all correlation processors. Again, the issue is: Does the

application support a division of the search space in

correlation sections?.

c. Fault Tolerance Comparisons

Tables 19 i.nd 20 depict the expected consequences for

the application when a selected option operates with faulty

components (nodes or links). Tables 21 and 22 depicts possible

actions needed during the recovery of a faulty condition.

TABLE 19 FAULT CONSEQUENCES D-CUDE

Component Consequence

Node Root - Lose all processing power;

Otherwise - Lose one processor.

Link Processing power remains the same.

TABLE 20 FAULT CONSEQUENCES (1-C,-T,) -TREE

Component Consequence

Node/Link IP - Lose all processing power;

CPs - Lose 1 CP and TP TPs;

TPs - Lose one processor.

182

TABLE 21 FAULT RECOVERY D-CUBEZ

Component Recovery

Node Root - Radar switch;

Otherwise - Dynamic adjust of the

routing software.

Link Dynamic adjust of the routing

software.

TABLE 22 FAULT RECOVERY (1-C,-T,) -TREE

Component Recovery

Node/Link Root - Radar switch;

CPs - Transfer of load to siblings;

TPs - Transfer of load to siblings.

During the last five years, the problem of routing

messages on hypercubes with faulty components has motivated an

intense research effort, resulting in several proposals being

presented. Algorithms were proposed which require only

knowledge of the status of a processor's immediate neighbors

or which requires each node to know only the information of

its own links.

In this research we study the fault tolerance

problem (Chapter V) in (1-CP-TP) -trees as an extension to the

183

load balance problem where: the IP needs to know the status of

IP-CPs links to decide if load transfer from the isolated CP

to its siblings is required (Global Load Balance); and each CP

needs to know the status of CP-TPs links to decide if load

transfer from the isolated TP to its siblings is required

(Local Load Balance).

7. Evaluation of the Communication Cost

During the evaluation of the communication cost components

we will assume:

1. Communication can take place simultaneously on all of

the incident links of a node and in both directions;

2. Communication resources are sufficiently plentiful so

that there is never a need for queuing communication packets;

3. The physical distance between transmitter and receiver

is so small that propagation delay is negligible;

4. Link speed: b bits/second;

5. Three bits of overhead for each byte of any

communication packet; and

6. Absence of load imbalance (i.e., there is a uniform

distribution of targets among nodes);

In the previous assumptions we would like to emphasize the

following:

1. Assumptions 1 and 2 are expected to benefit the d-

cube option due to the retransmit cost (see Section B7) . No

retransmission overhead is needed in the (1-CP-TP) -tree option;

184

2. Assumptions 3, 4, and 5 are expected to equally affect

both selected options; and

3. Assumption 6 concerns both options. In the AFAP

(d-cube) option the IP controls the load balance (centralized

policy), while in the SFSP ((l-CP-Tp)-tree) option the IP

controls the global load balance and CPs control the local

load balance (distributed policy).

a. Communication Cost: d-Cube (AFAP)

In this option the application hierarchy (assigned to

RDPPs) is replicated throughout the network. The buffer of

detection (DEBU) is transmitted to RDPPs by the IP. The buffer

of estimation reports (ESsU) is transmitted to the IP by RDPPs.

The following communication objects were identified:

1. Interface scheduler running in the IP; and

2. Rdp_scheduler running in RDPPs.

The communication cost components were identified as:

1. Service request cost (SRC): Overhead in the IP to

transmit and in RDPPs to receive the buffer of detections;

2. Result cost (RC): Overhead in RDPPs to transmit

and in the IP to receive the buffer of estimation reports;

3. Retransmit cost (Cr): Overhead in RDPPs used to

route buffer of detections and return buffer of estimation

reports.

Table 23 depicts the required packet sizes (detection

and estimation reports).

185

TABLE 23 PACKET SIZES D-CUBE

Class Bytes (Info) Bytes (Overhead) Bytes (Total)

DETECTION 16 6 22

ESTREPORT 36 13.5 49.5

Applying the proposed methodology (Chapter V, Section

Blh), we have:

(1) IP Communication Cost. The communication cost of

the IP may be evaluated using the following sequence:

1. Object communication cost (OXC)

(2 d - 1)

OXCl terface-scheduler = 1 C entorface-scheduler, k

where:

k-objects are rdpschedulers running in RDPPs.

Assuming single node broadcast (same detection

buffer from the IP to every RDPP) with parallel transmission

in d-links of N, jetections and single node accumulation (send

to IP estimation reports from every RDPP) with parallel

reception in each link of N,/d distinct estimation reports, we

have:

186

OXClncarface.scheduler = SRC + RC

SRC = Ne (targets) *22 (bytes/target) * (8/b) (s/byte)

RC = (Nt/d) (targets) *49.5 (bytes/target) * (8/b) (s/byte)

l7•6N• 2.25
OXCancerface-schedu"ioz - 176 (1 + 2.25

b d

2. Class communication cost (CXC)

The interface-scheduler is the single instance of

the class INTERFACESCHEDULER, thus:

CXCIMMRAmCF•sCHMMER = OX C ntorJJce_,odulFr

3. Hierarchy communication cost (MXC)

The INTERFACESCHEDULER is the single class of the

interface hierarchy loaded on the interface processor where a

single communication object (interface scheduler) is created,

thus:

HXqC. n.TMACE = CXC .TERFAC..scHEDULER

4. Processor communication cost (PXC)

The interface hierarchy is the single hierarchy

loaded on the interface processor, thus:

187

IPXC - 176N, (, + 2.25)

b d (B. 3)

The retransmit cost (C.) of the IP is zero.

(2) RDPP Communication cost. The communication cost of

RDPPs may be evaluated using the following sequence:

1. Object Communication Cost (OXC)

1
OXCrd.sca•dull- = !-- CrrE p .. chodul or, k

The single k-object is the interface-scheduler

running in the IP.

Each RDPP receives Nt detections and transmits

(Nt/(2d-1)) estimation reports (absence of load imbalance),

thus:

OXCrdk..achiduI, = SRC * RC

SRC = N.(targets) *22 (bytes/target) *(8/b) (s/byte)

RC=(Ntl/(2d - 1)) (targets) *49.5(bytes/target) *(8/b) (s/byte)

176N(2.25
OXCrd•LshduJr- b 2 d - 1

188

2. Class communication cost (CXC)

The rdp_scheduler is the single instance of the

class RDPSCHEDULER, therefore:

CXCJDPSCMnJjj = OXCrdp-schduLer

3. Hierarchy communication cost (HXC)

The RDPSCHEDULER is the single class of the

application hierarchy loaded on RDPPs where a single

communication object (rdp_scheduler) is created, thus:

HXCApPLICATom =CXCJoP-cMMVn•

4. Processor communication cost (PXC)

The application hierarchy is the single hierarchy

loaded on RDPPs, thus:

RDPPXC= 176 (I + 2.25 +
b 2 d- 1

d2d 396Nt + 176N

2 (2d-1) bb(2d-1) b

where:

((d2d/) - 1) is the average number of

retransmission nodes evaluated as the average distance minus

one;

(176N,/b) is the cost to route the buffer of

detections; and

189

(396N,/ (b (2d-1))) is the cost to return the buffer

of estimation reports.

Assuming 2d _ (2 d- 1), RDPPXC can be rewritten as:

RDPPXC -88dlVe (1+ 2.25)b 2 d (B.4)

b. Communication Cost: (l-S-TY) -Tree (SFSP)

In this option, correlation hierarchies are assigned

to CPs and tracking hierarchies are assigned to TPs. The

buffer of detection (DEWU) is transmitted to CPs by the IP.

Input tracking reports (TRINP) are transmitted from CPs to TPs.

Output tracking updates (TRouT) are transmitted from TPs to CPs

and the buffer of estimation reports (ESBU) is transmitted from

CPs to the IP. The following communication objects were

identified:

1. Interfacescheduler running in the IP;

2. Correlation scheduler running in CPs; and

3. Tracking_scheduler running in TPs.

The communication cost components were identified as:

1. Service request cost (SRC): Overhead in the IP to

transmit and in CPs to receive the buffer of detections; and

Overhead in CPs to transmit and in TPs to receive tracking

reports;

2. Result cost (RC): Overhead in TPs to transmit and

in CPs to receive tracking updates; and Overhead in CPs to

190

transmit and in the IP to receive the buffer of estimation

reports;

3. Retzansmit cost (Ctr) : No retransmission overhead is

needed.

Table 24 depicts the required packet sizes

(detection, tracking reports, tracking updates, and estimation

reports).

TABLE 24 PACKET SIZES (I-Cv-T,) -TREM

Class Bytes (Info) Bytes (Overhead) Bytes (Total)

DETECTION 16 6 22

TRREP 52 19.5 71.5

TRUPD 68 25.5 93.5

ESTREPORT 36 13.5 49.5

Applying the proposed methodology (Chapter V, Section

Blh), we have:

(1) IP Coumunication Cost. The communication cost of

the IP may be evaluated using the following sequence:

1. Object comunication cost (OXC)

CP
OXCinterfacescheduler E3 Cinterface-scheduler, k

k=1

191

where:

k-objects are correlation-schedulers running in

CPs.

Assuming parallel transmission in CP-links of Nt/CP

detections in each link and parallel reception in CP-

links of Nt/C. estimation reports, we have:

OXCicorfcschoulex ý= SRC + RC

SRC = (NA/Cp) (targets) *22 (bytes/target) * (8/b) (s/byte)

RC = (Ne/CP) (targets) *49.5 (bytes/target) * (8/b) (s/byte)

- 57 2Nt
O c-i bC9

2. Class cowmunication cost (CXC)

The interface scheduler is the single instance of

the class INTERFACESCHEDULER, thus:

CXC.NAcTcRHEDuLR - XClnter fac..schedule.

3. Hierarchy communication cost (HXC)

The INTERFACESCHEDULER is the single class of the

interface hierarchy loaded on the interface processor where a

192

single communication object (interface scheduler) is created,

thus:

HXC xYnmFAcs = CXCITrZwFACF-SCHMUL5R

4. Pzocessor coinunication cost (PXC)

The interface hierarchy is the single hierarchy

loaded on the interface processor, thus:

IPXC = 572NbCp B.5

The retransmit cost (C.) of the IP is zero.

(2) TP Communication Cost. The communication cost of

TPs may be evaluated using the following sequence:

1. Object communication cost (OXC)

1

OXCerackIngschoduler = Ce•acking.scheduler. k

The single k-object is the correlation-scheduler

running in the CP of the same tree branch (parent of TP).

Each TP receives (Nt/(C Tp)) tracking reports and

transmits (N,/(CPTP)) tracking updates (absence of load

imbalance), therefore:

193

OXCtracking-schaduler = SRC + RC

SRC = Ne/ (C TP) (targets) *71.5 (bytes/target) * (8/b) (s/byte)

RC = No/ (CpTp) (targets) *93.5 (bytes/target) * (8/b) (s/byte)

1320Nt
OXCtracking-schoduler - bC T

2. Class communication cost (CXC)

The tracking_scheduler is the single instance of

the class TRACKINGSCHEDULER, thus:

CXCTRACKIfG-SCmzWLER ' OXCcIacking-schAdul er

3. ieorarchy couunication cost (HXC)

The TRACKINGSCHEDULER is the single class of the

tracking hierarchy loaded on TPs where a single communication

object (trackingscheduler) is created, thus:

HXCmcxm =m CXCmcgcw sciv1 m

194

4. Processor communication cost (PXC)

The tracking hierarchy is the single hierarchy

loaded on TPs, therefore:

TPXC= 1320Ne
bCpTp (2.6)

The retransmit cost (C.) of the TP is zero.

(3) CP Communication cost. The communication cost of

CPs may be evaluated using the following sequence:

1. Object communication cost (OXC)

(T + 1)
Oxccorroldelon-scheduler = Ccorrelation-schoduler, k

Where:

k-objects are trackingschedulers (Tp) and the

interface scheduler.

Each CP receives (Nt/Cp) detections and (Nt/(CPTp))

tracking updates and transmits (Nt/Cp) estimation reports and

(Nt/(CPTp)) tracking reports (absence of load imbalance), thus:

195

0Ycorrelaclon-scheduler = SRC + RC

SRC -17N + 57 2N~
bcp ~bC Tp

RC = 36C+ 748NC
bCp .bC,,T

OX~corz.1aclon-chAjMIer :- 572NC (1 + 2.31)bCp T

2. Class counmz cation cost (0CC)

The correlation-scheduler is the single instance of

the class CORRELATIONSCHEDULER, thus:

CXCORRFI.ATrO)W-SCHEMXMER = Xcorzela clon-schoduler

3. Nie4raxrchy communication cost (RXC)

The CORRELATIONSCHEDULER is the single class of

the correlation hierarchy loaded on CPs where a single

communication object (correlation -scheduler) is created, thus:

HXYCcvmwLATXom =' Cxcmz~o~cwr

196

4. Processor communication cost (PXC)

The correlation hierarchy is the single hierarchy

loaded on CPs, thus:

CPXC- 572N(1+ 2.31)
bCp (B.7)

The retransmit cost (C.) of the CP is zero.

c. Comparative Analysis

Table 25 depicts a comparative analysis of

communication costs (Nt-500, b=10Mbits/s) (see Equations B.3 -

B.7) . As expected, in this application the communication cost

of the d-cube architecture is greater than the cost of the (1-

CP-Tp)-tree architecture. This is mainly because:

1. The interconnection network of objects is also a

tree with communicating objects assigned to neighboring

processors; and

2. The search space was divided into correlation

sections reducing the cost to transmit the buffer of

detections.

197

PF

TABLE 25 COMPARATIVE ANALYSIS o0 COMMUNICATION COSTS (MS)

Topology YPXC RDPPXC CPXC TPXC

6-cube 12.1 31.3 - -

7-cube 11.6 27.3 - -

(1-8-8)-tree 3.6 - 4.6 1.0

(1-9-9)-tree 3.2 - 4.0 0.8

8. Evaluation of the Computation Cost

A strict analysis of the computation cost requires the

definition of the processor being used. However, to keep our

evaluation independent of any particular processor we will use

the following assumptions:

1. Absence of load imbalance (i.e., there is a uniform

distribution of targets among nodes);

2. Tracking (method ExTR) and correlation (first gate:

method RECOPRFG; second gate: RECOPRSG) are the main computation

costs. That is, in steady state initiation and termination

algorithms are not executed.

3. The computation cost is proportional to the number of

firm targets. That is, tracking and correlation are algorithms

executed for each firm target;

4. The average correlation time per target (C1) can be

expressed as a fraction of the average tracking time per

198

target (Tj). That is, C1 = rT, (r < 1) (tracking was identified

as our high cost function); and

5. The average first gate correlation time per target

(FG,) can be expressed as a fraction of the average

correlation time per target (Cl). FG, = fC1 (f < 1) (the first

gate correlation phase does not require ambiguity resolution).

a. Computation Cost: d-Cube (AFAP)

In this option the application hierarchy is assigned

to RDPPs. The RDPP computation cost (RDPPCC) can be evaluated

by:

RDPPCC = Wr (CI+÷T) = (l+) Wr*PTr (B.8)

W2ft is the workload of RDPPs (i.e., the number of

targets loaded on each RDPP) and can be evaluated by:

Wrctp - N2

When all functions are loaded on all processors we

have no overlap between correlation and tracking operations.

b. Computation Cost: (1-CP-T,)-Tres (SFSP)

In this option the correlation hierarchy is assigned

to CPs and the tracking hierarchy is assigned to TPs. The CP

and TP computation costs (CPCC, and TPCC) can be evaluated by:

199

CPCC = W'Cj = Wcr T

(B. 9)

TPCC = WC J

where:

W is the worklcad of CPs; and

WtP is the workload of TP8 .

When correlation algorithms are loaded on CPs and

tracking algorithms are loaded on TPs we may overlap

correlation and tracking operations. The overlapped (CP:TP)

computation cost (CPTPCC) can be evaluated by:

CPTPCC = fCi Tp+WepTi (B. 10)

Tracking can start after the correlation phase. Also,

WtpT» >> fCITP (i.e., the tracking cost of all targets loaded on

TPs is very high when compared with the first gate correlation

cost of T. targets) . Therefore, we can rewrite Equation B.10

as:

CPTPCC - WtPT(

The workload of TPs can be evaluated by:

WV NC

CP2T

200

9. Analytical Comparisons Among Options

As introduced in Chapter V (Section A), the expected

efficiency of two proposals can be compared by evaluating the

time to compute on N nodes (T....(N)) when:

1. The time to compute on one node is the same. That is,

we must develop the application using the same software design

and the same resources; and

2. The number of nodes N is the same. That is, to compare

the efficiency of the d-cube (AFAP) proposal with the

efficiency of the (l-CP-TP)-tree proposal we must have:

(2d-l) = CP(T+l) (.2

In the d-cube (AFAP) proposal the time to compute on N

nodes ((T...(N))•,) can be evaluated by.

(Tconc(N))cube =RDPPXC+RDPPCCB.13)

where:

RDPPXC is the communication cost of RDPPs (see Equation

B.4); and

RDPPCC is the computation cost of RDPPs (see Equation

B.8).

In the (1-C,-T,)-tree proposal the time to compute on N

nodes ((Tco..(N))tr..) can be evaluated by:

201

(Tconc (N)) tr,, = TPXC+CPXC+CPTPCC (B.14)

where:

TPXC is the communication cost of TPs (see Equation B.6);

CPXC is the communication cost of CPs (see Equation B.7);

and

CPTPCC is the overlapped CP:TP computation cost (see

Equation B.11) .

In Equation B.14 we assumed no communication overlap

between CPs and TPs (worst case condition).

The efficiency of the (1-Cp-Tp)-tree proposal is expected

to be greater than the efficiency of the d-cube when

(T•.a(N))tj. < (Ta 0.. (N))•.. That is:

TPXC+CPXC÷CPTPCC < RDPPXC+RDPPCC (B.15)

When r < (1/TP) Equation B.15 can be rewritten as:

A 1-rTP NtT1 (r>O)T r(rP + 1) CP (B.16S)

COZ 1 Nt:T, (r=0)
corn r(T+1) C5P (B.17)

RDPPCC was rewritten using the condition imposed by

Equation B.12, A,. is the communication cost of the d-cube

202

option minus the communication cost of the (1-C.-TP)-tree

option.

203

LIST OF R!EF1RENCZS

[1] Langston M. "Computers in Combat Systems", EASCON '82, pp
415-418, 1982.

[2] Farina A., Studer F.A. "Radar Data Processing, Vol. I -
Introduction and Tracking", RSP Press ISBN 0-86380-026-2,
1985.

[3] Farina A., Studer F.A. "Radar Data Processing, Vol. II -

Advanced Topic and Applications", RSP Press ISBN 0-86380-038-
6, 1985.

[4] Zitzman, Lewis H., Falatko, Stephen M. "Computer System
Architecture Concept for Future Combat Systems", Naval
Engineers Journal, pp 43-62, May 1990.

(5] Baillie C.F., Gottschalk T.D. and Kolawa A. "Comparisons
of Concurrent Tracking on various Hypercubes", The third
conference on hypercube concurrent computers and applications,
ACM Press ISBN 0-89791-278-0, Vol. I, pp 155-166,
January/1988.

[6] Gottschalk T.D. "Concurrent Multiple Target Tracking", The
third conference on hypercube concurrent computers and
applications, ACM Press ISBN 0-89791-278-0, Vol. II, pp 1247-
1268, January/1988.

[7] Bar-Shalom Y. and Fortmann T.E. "Tracking and Data
Association", Academic Press, 1988.

[8] Vilhena R. "Comparaq&o de Filtros para Processamento de
Medigtes Sonar", COPPE,M.Sc., Engenharia de Sistemas e
Computaq&o, s/ data.

[9] Vilhena R. "IntroduqAo aos Algoritmos para Processamento
de Marcaq6es e DistAncias", Escola Naval - Notas de Aula -

Automaq&o de Sistemas Navais, s/ data.

(101 Averbuch A., Itzikcwitz S., and Kapon T. "Parallel
Implementation of Multiple Model Tracking Algorithms", IEEE
Transactions on Parallel and Distributed Systems, pp 242-251,
April 1991.

204

[11] Guenter B. "Automatic Track Initiation with Phased Array
Radar", IEEE International Radar Conference, pp 423-428, April
1975.

[12] Uhlmann, Jeffrey k. "Algorithms for Multiple-Target
Tracking", American Scientist, Vol 80, pp 128-141, March-April
1992.

[13] Nelson M. L. "An Introduction to Object-Oriented
Programming", NPS Report No. NPS52-90-024, Apr 1990.

[14] Stefik M. and Bobrow D. G. "Object-Oriented Programming:
Themes and Variations", The AI Magazine, Vol 6, No 4, pp 40-
62, winter 1986.

[15] Wegner P. "Dimensions of Object-Based Language Design",
OOPSLA'87 Proceedings, October 1987; special issue of of
SIGPLAN Notices, Vol 22, No 12, pp 168-182, December 1987.

(16] Nelson M. L. "Concurrency & Object-Oriented Programming",
SIGPLAN Notices, Vol 26, No 10, pp 63-72, October 1991.

[17] Wirfs B. R. and Wilkerson B. "Object-Oriented Design: A
Responsibility-Driven Approach", OOPSLA '89 Proceedings, pp
71-75, October 1989.

[18] de Paula E. G. and Nelson M. L. "An Object-Oriented
Design Methodology", NPS, Report No. NPSCS-91-007, January
1991.

(19] Winblad A. L., Edwards S. D. and King D. R. "Object-
Oriented Software", Addison-Wesley Publishing Co, Reading,
Mass, 1990.

[20] Coffman E. &. et al. "Computer and Job-Shop Scheduling
Theory", Wiley-Interscience, New York, 1976.

(21] Garey M. R. and Johnson D. S. "Computers and
Intractability: a Guide to the Theory of NP-completeness",
Bell Laboratories Tech. Rep., Murray Hill, NJ.

(22] Miklosko J. and Kotov V. E. "Algorithms, Software and
Hardware of Parallel Computers", VEDA, Publishing House of the
Slovak Academy of Sciences, Bratislava, 1984.

(23] Shirazi B., Wang M. and Pathak G. "Analysis and
Evaluation of Heuristic Methods for Static Task Scheduling",
Journal of Parallel and Distributed Computing, Academic Press,
Vol 10, No 3, pp 222-232, November 1990.

205

[24] Chen W. K. and Gehringer E. F. "A Graph-Oriented Mapping
Strategy for a Hypercube", The 3rd Conference on Hypercube
Concurrent Computers and Applications, ACM Press ISBN 0-89791-
278-0, Vol I, pp 200-209, January 1988.

[25] Ercal F., Ramanujam J. and Sadayappan P. "Task Allocation
onto a Hypercube by Recursive Mincut Bipartitioning", The 3rd
Conference on Hypercube Concurrent Computers and Applications,
ACM Press ISBN 0-89791-278-0, Vol I, pp 210-221, January 1988.

(26] Covington R. C. et al. "The Rice Parallel Processing
Testbed", Proc. 1988 Sigmetrics Conf. on Measurement and
Modeling Computer Systems, Santa Fe, NM, p. 4, May 1988.

(27] Berman F. "Experience with an automatic solution to the
mapping problem" in The Characteristics of Parallel
Algorithms, MIT Press 1987.

(28] Fox G. et al. "Solving Problems on Concurrent
Processors", Prentice Hall, N.J., ISBN 0-13-823022-6, Vol I,
1988.

[29] Bertsekas D. P., Tsitsiklis J. N. "Parallel and
Distributed Computation", Prentice Hall, N.J., ISBN 0-13-
648700-9, 1989.

(30] Willebeek-LeMair M. and Reeves P. A., "Region Growing on
a Hypercube Multiprocessor", The 3rd Conference on Hypercube
Concurrent Computers and Applications, ACM Press ISBN 0-89791-
278-0, Vol II, pp 1033-1042, January 1988.

[31] Willebeek-LeMair M. and Reeves P. A., "A Distributed
Dynamic Load Balancing Strategy for Highly Parallel
Multicomputer Systems", Proceedings of the Fourth Siam
Conference, Siam Proceedings Series List, ISBN 0-89871-262-9,
pp 351-356, December'1989.

[32] Salmon J. "A Mathematical Analysis of the Scattered
Decomposition", The 3rd Conference on Hypercube Concurrent
Computers and Applications, ACM Press ISBN 0-89791-218-0, Vol
I, pp 239-240, January 1988.

(33] Hennessy J. L. and Patterson D. A. "Computer Architecture
a Quantitative Approach", Morgan Publishers, ISBN 1-55860-069-
8, 1990.

[341 Gordon J. M. and Stout Q. F. "Hypercube Message Routing
in the Presence of Faults", The 3rd Conference on Hypercube
Concurrent Computers and Applications, ACM Press ISBN 0-89791-
278-0, Vol I, pp 318-327, January 1988.

206

(35] Chen M. S. and Shin K. G. "Message Routing in an Injured
Hypercube", The 3rd Conference on Hypercube Concurrent
Computers and Applications, ACM Press ISBN 0-89791-278-0, Vol
I, pp 312-317, January 1988.

[36] Kandlur D. D. and Shin K. G. "Hypercube Management in the
Presence of Node Failures", The 3rd Conference on Hypercube
Concurrent Computers and Applications, ACM Press ISBN 0-89791-
278-0, Vol I, pp 328-336, January 1988.

[37] Nelson M. L. "Concurrent and Distributed Object-Oriented
Languages: Promises and Pitfalls", NATO Workshop on
Object-Oriented Modelling of Distributed Systems, May 1992.

[38] "The T9000 Transputer", Inmos Databook Series, 1st
Edition, 1991.

(39] "Classic-Ada Users Manual", Software Productivity
Solutions, Inc., Indiatlantic, FL, 1989.

[40] Nelson M. L. and Mota G. F. "Object-Oriented Programming
in Classic-Ada", Ada Letters, Vol XII, No 2, pp 102-110,
Mar/Apr 1992.

[41] Nelson M. L., Mota G. F. and Theologitis V. " Concurrent
Object-Oriented Programming in Classic-Ada", Draft, Apr 1992.

[42] Stroustrup B. "The C++ Programming Language", Addison-
Wesley, Reading, MA, 1986.

[43] "Logical Systems C Users Manual", Logical Systems,
Corvallis, OR, 1989.

207

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Chairman, Code CS 1
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5101

4. Professor Uno R. Kodres, Code CSKr 1
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

5. Professor Michael L. Nelson, Code CSNe 1
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

6. Professor Thomas C. Wu, Code CSWq
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

7. Professor Shridhar Shukla, Code EC 1
Electrical and Computer Engineering Department
Naval Postgraduate School
Monterey, CA 93943

8. Professor Arthur L. Schoenstadt, Code MA 1
Mathematics Department
Naval Postgraduate School
Monterey, CA 93943

9. Mr. Grosche Jurgen 1
Research Institute for Mathematics
and Electronics (FFM)
Neuenahrer St. 20
D-5307 Wachtberg
Germany

208

10. Instituto de Pesquisas da Marinha
Brazilian Naval Commission
4706 Wisconsin Ave.,N.W.
Washington, D.C. 20016

11. Centro de Analise de Sistemas Navais
Brazilian Naval Commission
4706 Wisconsin Ave.,N.W.
Washington, D.C. 20016

12. Centro de Apoio aos Sistemas Operativos
Brazilian Naval Commission
4706 Wisconsin Ave.,N.W.
Washington, D.C. 20016

13. CDR Gilberto F. Mota
Brazilian Naval Commission
4706 Wisconsin Ave.,N.W.
Washington, D.C. 20016

209

