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PREFACE

The 1991 U.S. Army Chemical Research, Development and
Engineering Center Scientific Conference on Obscuration and Aerosol
Research was held 24 - 28 June 1991 at the Edgewood Area Conference
Center of Aberdeen Proving Ground, MD. The Conference is held annually,
the last full week in June, under the direction of Dr. Edward Steubing,
Research Area Coordinator, Aerosol Science. This report was authorized
under project number 10161102A71A, Research in CW/CB Defense.

The Conference is an informal forum for scientific exchange and
stimulation among investigators in the wide variety of disciplines required for
aerosol research, including a description of an obscuring aerosol and its
effects. The participants develop some familiarity with the U.S, Army
aerosol and obscuration science research programs and also become
personally acquainted with the other investigators and their research
interests and capabilities., Each attendee is invited to present any aspect of
a topic of interest and may make last minute changes or alterations in his
presentation as the flow of ideas in the Conference develops.

While all participants in the Conference are invited to submit papers
for the proceedings of the Conference, each investigator, who is funded by
the U.S. Army Research Program, is requested to provide one or more
written papers that document specifically the progress made in his funded
effort in the previous year and indicating future directions. Also, the papers
for the proceedings are collected in the Fall to allow time for the fresh ideas
that arise at the Conference to be incorporated. Therefore, while the papers
in these proceedings tend to closely correspond to what was presented at
the Conference, there is not an exact correspondence.

The reader will find the items relating to the Conference itself,
photographs, the list of attendees, and the agenda in the appendixes
following the papers and in the indexes pertaining to them.

The use of trade names or manufacturers’ names in this report does
not constitute an official endorsement of any commercial products. This
report may not be cited for purposes of advertisement.

Reproduction of this document in whole or in part is prohibited
except with permission of the Commander, U.S. Army Chemical Research,
Development and Engineering Center, ATTN: SMCCR-SPS-T, Aberdeen
Proving Ground, MD 21010-5423. However, the Defense Technical
Information Center and the National Technical information Service are
authorized to reproduce this document for U.53. Guvernment purposes,

This report has been approved for release to the public.
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PROCEEDINGS OF THE 1991 SCIENTIFIC CONFERENCE ON
OBSCURATION AND AEROSOL RESEARCH

I. AEROSOL DYNAMICS
A. VAPOR - PARTICLE INTERACTIONS

CONDENSATION OF ORGANIC VAPORS BY EVAPORATING WATER DROPS

Mark Seaver and J. R. Peele
Naval Research Lab
Code 6540
Washington, DC. 2037%

RECENT PUBLICATIONS, SUBMITTALS FOR PUBLICATION, AND PRESENTATIONS:

A) M. Seaver, A. Galloway and T. J. Manuccia, "Water Condensation onto an
Evaporating Drop of l-butanol", Aerosol Science and Technology 12, 741
(19%0) .

B) M. Seaver, J. R. Peele and G. O. Rubel, "Gas Scavenging of Insoluble
Vapors: Condensation of Methyl Salicylate Vapor onto Evaporating Drops of
Water", Atmos. Environ. (accepted for publication).

C) M. Seaver and J.R., Peele, “"Condensation of Miscible and Immiscible
vapors by Evaporating Drops of Water", in Precipitation Scavenging and
Atmosphere Surface Exchange Processes, S.E. Schwartz, ed. (American
Meteorological Society, Boston, 1992).

D) M. Seaver and J. R. Peele, "Scavenging of Miscible and Immiscible Vapors
by Evaporating Drops of Water", 5th International Conference on Precipitation
Scavenging and Atmosphere~-Surface Exchange Processes, July 15-19, 1991,
Richland, WA.

Abstract:
Experiments in which a levitated a drop of water evaporates into a

flowing airstream which is nearly saturated with methyl salicylate vapor show
that the amount of methyl salicylate collected exceeds its solubility by a
factor of 50. A simple model, which treats the metl,1l salicylate as an
insoluble substance, accurately accounts for the amount of methyl salicylate
collected. When the air stream contains the completely soluble substance,
dimethyl methyl phosphonate, an extension of the model to nonideal solutions
only accounts for 80V of the amount of vapor scavenged by the evaporating
drop. Future work will focus on resolving this descrepancy between the
experiment and the model prediction (which should be an upper 'imit).

Introduction:
The ai./water distribution plays a central role in determining the fate

and mobility of chemicals in our environment. Aqurous solution models predict

that, aL equilibrium, the air/water di-tribution can be found by applying
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ilenry's law. However, recent field mrasurements ol pesticides in fog water
have shown that the pesticide concentrations can exceed their solubility as
predicted from Henry’s law and the measured vapor concentrations by as much as
three orders of magnitude (Glotfelty et. al., 1987, 1990)., The chemical
similarity between pesticides and chemical agents suggests that these findings
should also apply to chemical agents.

In an attempt to delineate mechanisms whereby Henry's law may be
violated and therefore define the conditions under which models applying
Henry's law are valid, we nave bequn a series of laboratory experiments where
we evaporate single drops of water into a moving gas stream which contains one
organic chemical vapor and varying amounts of water vapor. In this paper we
report the results obtained when the organic vapors methyl salicylate (MS) ocr
dimethyl methyl phosphonate (DMMP) are added to the gas sticam., The MS
gimulates the pesticlde paraoxon in terms of in's water solubility, 0.07% by
vol. The DMMP represents a low vapor pressure species which 1s completely
soluble in water

Experimental:

The apparatus has been described in detail (Seaver et. al.,, 1989),.
Howevar, a brief description is in order. The experiments are carried out by
levitating single dreps of liquid with an acoustic standing wave in the center
of the jet of a small horizontal wind tunnel. Vapors are added to the dry
nit .yen carrier gas by flowing (in parallel) the nitrogen over a heated pool
of acih liquid. Subsequent passage through a condenser held at constant
temperature then establishes the partial pressure of that vapor in the gas
stream, When both water and an organic vapor are praeasent, the separate
nitrogen streams are mixed prior to entering a heat exchanger, The heat
evrhanger sets the amblent temperature of the gas mixture in the wind tunnel
at a value somewhat higher than the saturation temperature of the organic
vapor. Insulation of the wind tunnel and gas delivery apparatus allows us to

run at gas temperatures above room temperature without condensation on the
walls,

Mcdel:

The model is a steady-state continuum model for condensation and
evaporation that takes into account the relative motiun between the drop and
the gas stream and tracks the drop temperature. For a two component system
the total mass of the drop is given by:

(dqu = |dmy Eww +(§Eﬁ Emo.
dr dt Iy dt ho

The drop temperature 1s given by:

10




To.o“Td

Rka Too Td —f‘h'w Rka Teo 14 Eh,o

v, wMulw (Pw,w_ pw,d) (fv,w . D+, 0MoLc (Po,w_ Po,d\ [fv,0
A description c¢f the parameters in these equations are given in Pruppacher and
Klett (1978) eih. 13 or Seaverxr e%. al.(1989).

For an insoluble species we assume that the substance deposits as a
uniform layer on the surface of the water drop. We also assume that the
presence of tils layer does not effect the evaporation rate of the inner water
drop (infinite diffusivity). (This assumption should be adequete for all but
the thickest layers of organic liquid.) The mass of each species is
czlculated independently and convertad to a volume. The surface area, for
comparison with experiment, is then obtained by adding the volumes of the two
liquids and assuming a spherital drop.

For a nonideal sclution the partial pressure of a given component above

the liquid is given by: py = gixipg. This is substituted for p,, and p,,as
neaded. Again, for simplicity, we assume infinite diffusivity in the liquid
phase. (Thus, our model establishes an upper limit on the gas-->liquid
transport.) Drop volume ls converted to surface area through the molar volume
of the solution (V). V_ is cbtained from the mole fractions (x;) and the
partial molar volumes (V, ) of the two components: Vm = XuVu,m + XoVo,n.

Results:
20 — A T T \J T
16 [ -
15 [ h
[\:] 3 ﬁ
g
] [ 4
§ 8 - 1 P o NS A L, o
 ~ | 800 800 1000 1200 1400 1
5 [ o
at
3 L} Expl.
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0 400 800 1200 1600 2000
time (8)

FIGURE 1. MS SCAVENGING AND MODEL COMPARISON
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Fig. 1 displays the results when a drop of water evaporates in a gas
gtream which is nearly saturated with MS vapor (p.=0.15torr) but contains no
water vapor. The solid circles represent every Bth experimental data point.
What we see is an evaporation curve wherc the drop initially evaporates as a
pure water drop and ultimately evaporates as a pure MS drop. Note the sudden
change in the evaporation rate near 850s (marked by the arrow in the inset),
Because the measured evaporation rate after this time corresponds to that of a
pure MS drop, it is valid to assume that at 850s the drop is pure MS. The
surface area of the drop at this point is 1.68mm’. The volume at this point
is 2.05x10°"*, Thus, the volume of condensed MS is 56 times greater than the
volume of MS that would be dissolved in the initial waterdrop were it
saturated with MS,

To investigate the mechanism by which MS condenses onto the waterdrop,
we compare the experimental results with the evaporation/condensation model
deacribed in the preceding section. The model predicts that, under our
experimental conditions, evaporative self-cooling reduces the waterdrop
temperature to 11°C, sixteen degrees below the dew point temperature of the
gas stream for the Ms (T, =27°C). Thus, MS condensation is driven by
evaporative self-cooling. The solid line in Figure 1 is the surface area
predicted by our two-component model., What we see is that the model
accurately predicts both the initial and final slopes of the evaporation
curve., More importantly, the model predicts that at 7508 the water has all
evaporated leaving only a MS drop whose surface area is 1.73mm’, This surface
area compares well with the experimentally determined value of 1.68mm’. The
agreement between these two values demonstrates that evaporative self-cooling
dominates the MS condensation

Fig. 2 dispiays the results when we evaporate a pure waterdrop into a
dry nitrogen stream containing DMMP vapor, p_=0.7ltorr. The solid circles
represent the experimental data. The dashed line shows the results when the
two phase liquid model that worked so well for MS is applied to the DMMP/water
aystem, The solid line shows the results obtained from the nonideal solution
model. In neither case do we get satisfactory agreement with the experimental
data. What we see¢ 1s that the two phase liquid model underpredicts the DMMP
condensation volume by a factor of 42% while the nonideal solution model

underpredicts the DMMP condensation volume by 25%. (Xnclusion of finite
liquid phase diffusivity in the model can only result in less DMMP
condensation.) We have compared the nonideal solution model with the

evaporation data for six different drops of water. The results are all
similar to what we show in fig. 2. For every drop, the model underpredicts
the DMMP collection volume by amounts that vary from 17% to 25%.

12
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Conclusions:

wWe have ivvestigated the evaporation of individnal water drops in the
presence of either methyl salicylate or dimethyl methyl phosphonate vapor. A
two-component gontinuunm model, which accounts for evaporative self-cooling,
accurately predicts the amount of methyl salicylate collected py the
waterdrops A nonideal golurion yersion of this model, which should provide an
upper 1imit, underpredicts the amount of dimethyl methyl phosphonate condensed
py 20%.

The methyl salicylate results demonstzate rhat evaporative self-cooling
can induce the condensation of laxge amounts vf insoluble yapors onto 2 drop.
The presence of a second 1iquid phase precludes the use of Henzy'$ law a3 &
predictor of the amount ©f ingoluble vapor present jn the 1iquid phase when
evaporative self»cooling occurs. The amount of condensat® can only be
p:edicted provided one knows the drop nistory with cespect tO its jocal
numidity and wind speed.

The dimethyl methyl phosphcnate results are inconclusive with respect to
the use of nonideal gsolution pehavior a3 a predicto: of 1iquid phase
concentrations. Further experiments are required using organic molecules
whose interactions with water are well characterxzed in order tO determine
what predictive methods will descclibe gagseous scavenging by waterdrops.
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DETERMINATION OF ABSORPTION OF MINUTE AMOUNTS OF VAPOR
IN MICRO-DROPLETS USING ELASTIC-SCATTERING DATA

A. K. Ray and J. L. Huckaby
Department of Chemical Engineering
University of Kentucky, Lexington, KY40506~0045.

ABSTRACT

A technique, based on transverse magnetic (TM) and transverse electric (T1) mode
resonances observed in the scattered light, has been developed for the detection of trace
amount of absorbed material in a microdroplet. The technique has been applied to
determine absorption of immiscible water vapor in dioctyl phthalate droplets. Experiments
were conducted in an electrodynamic balance where a charged droplet was suspended in the
path a tunable ring dye laser, Intensities of scattered light in the planes parallel and
perpendicular to the plane of polarization were detected using two photomultipliers to
isolate the TE and TM resonances in the scattered light. Wavelengths of the TE and TM
mode resonances were interpreted to determine the absolute size and refractive index as a
function of wavelength of a pure DOP droplet. The droplet was subsequently exposed to
environments with precisely controlled humidities, At each humidity level, the droplet size
and refractive index changes were obtained from the observed shifts in the TE and TM
resonating wavelengths. The size and refractive change data were then used to determine
the absorbed amount of water in the droplet as a function of relative humidity.

INTRODUCTION

The interaction of small droplets with surrounding vapor is an important
phenomenon in atmospheric, industrial and indoor air processes. Such an interaction
results in absorption of molecules from the vapor phase to the droplet phase. When the
vapor molecules 2e miscible in the liquid state with the droplet phase, droplets can remove
vapor on!lv by absorptions, and the concentration of absorbed species increates xs the
partial pressure of the vapor increases. Rubel! and Ray et al? have experimentally
examined the problem of absorption of water vapor on single phosphoric acid and glycerol
droplets. When the vapor molecules are partially miscible in the liquid state with the
droplet phase, droplets oniy absorb vapor molecules as long as the partial pressure of the
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vapor is below the equilibrium partial pressure corresponding to the miscibility limit.
Currently no accurate technique exists for the determination of the concentration of
absorbed molecules as a function of the partial pressure of the vapor if the miscibility limit
of the vapor molecules in the droplet phase is small. In such a situation, data on the
miscibility limit of the vapor component in the droplet phase component and vice versa are
used in a thermodynamic activity model (e.g. van Laar equation) to predict the miscibility
of vapor molecules as a function partial pressure.

The objective of the present study is to develop a technique for the detection of the
absorbed amount of partially miscible component in a droplet as a function of its partial
pressure in the gas phase. The technique is based on the precise determination of size and
refractive index of a droplet from the iransverse magnetic (TM) and transverse electric
(TE) mode resonances observed in the scattered light as the wavelength of the incident
beam is varied. This study is unique in the sense that it utilizes a technique for the
determination of dispersion (i.e., variation of refractive index with wavelength) in the
droplet. In previous studies involving size and/or refractive index determination from
wavelength—dependent resonance spectra, either the size and refractive index were
simultaneously determined neglecting the effect of dispersion’, or an absolute size was
obtained using a known dispersion formulal, These techniques have limited applicability
or accuracy. In this study these limitations are avoided by utilizing the shapes of the
scattered intensity spectra as well the positions of resonating wavelengths.

THEORY

For a linearly polarized plane electromagnetic wave of intensity I, and wavelength
A, incident on a sphere, the far—f 21d scattered intensities I, and I, in the planes parallel

and perpendicular to the plane of polarization are, respectively, given by®’

2
L= 1 [8,40)]? (1)
and
2
L= 2ty 15,(0)|? (2)
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where

®
S0 = 2“2:_'1_‘}5(%% + byTy),

net

o
Sq(0) = Z%ﬂbnﬁ + agTy),

nei

(4)

r (>> )) is the distance from the center of the sphere. The angular functions are defined

by

y
T, = 2“%%%@ and 1, = ‘al-oP.‘,(cosO)

where PJ}(cosd) is the associated Legendre function of degree n and order 1, and 0 is the
scattering angle. For a homogeneous sphere of radius a the scattering coefficients a, and
bn, associated with the transverse magnetic (TM) and transverse electric (TE) modes can

be writien, respectively, in the forms®¥;

8 = Ap (x,m
n = A [xm 1T, (x,m

b = Bn(x,m
n alX,m 1D, (x,m

where
A(x,m) = n(x)¥n’ (mx) — mn(mx)¢n’ (x)
B, (x,m) = myn(x)¥n’ (mx) — Pn(mx)¢n’ (x)

Cp(x,m) = xn(x)¥n’(mx) — men(mx)xn’(x)

D,(x,m) = myn(x)¥n’ (mx) = Yn(mx)xn’ (x)

(9)

(10)

where t¥q(x) and xn(x) are the Ricatii—Bessel functions of the first and second kinds of
order n, respectively, x = 27Na/), is the size parameter, m = Ny/N is the relative
refractive index, and N; and N are the refractive indices of the sphere and surrounding
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medium corresponding to the thc vacuum wavelength Ag, respectively.

For given relative refractive index m and a mode number n, the denominators of the
scattering coefficients ap and by, vanish for an infinite number of complex values of the size
parameter x, and the complex frequencies corresponding to these values are called the
natural frequencies or modes of vibration of a sphere. These vibration modes can not be
excited by an imposed field whose frequency is real, and thus, no resonance in the strict
sense can be observed. However, when the imposed frequency is the same as the real part
of a natural frequency, the denominator reduces to a minimum, and the scattering
amplitude achieves a maximum value. For practical purposes these maxima are considered
as resonances. For a diclectric sphere (real m), the functions Ay, By,Cy and Dy, are real,
and the scattering coefficients are complex except at the resonances which occur for the
values x for which C,(x,m) =0, or D (x,m) =0. At a resonance, a, or b, is real and

reaches a peak value of 1 as the imaginary part goes from a positive to a negative value.
The locations of the peaks of the coefficients can be calculated from the roots of
C,(x,m) = 0, and D, (x,m) = 0 or from the roots of the characteristic equations obtained

by equating the denominators of Eq.(5) and (6) to zero. The real roots of the former
equations are identical to the real parts of the complex roots of the latter equations®.
Resonance peaks associated with the scattering coefficients a, and by, are referred to as
TM and TE mode resonances, respectively.

The width of a peak depends on the imaginary part of the root, and decreases with
sinaller imaginary part. In general, for a given mode number n, the width of a peak
increases as the order £ of the root of C (x,m) = 0, or D(x,m) = O increases where the first

positive root is labeled as ¢ = 1, and for a given order the width decreases as the mode
number n increases. The width of a peak of a given mode and order also decreases as the
refractive index increases. Probert—Jones? has provided relations that approximately
provides the width of a peak of a given mode and size parameter. The approximate spacing
between two successive order resonances of the same mode and polarization is given by*®??

X

ne

m
R T R LY (1)

where p = (m? ~ 1){ The approximation is valid for large values of x (2 30), and the

accuracy increases as the size parameter x increases. Similarly, the approximate distance
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between two resonances of successive modes having the same order and polarization can be
obtained from the following expression®!!

_ tan!
= Xpa1t” X2 ) (12)

Ax,
Recently, Chylek!? has shown that the above relation is accurate to within 1% if
(n —x) < 4, and for (n — x) 4, the following relation applies

" xtan"! [ (mx/n)? - 1]‘} (13)

Axy = Xn41,8 " %n e = nf(mx/n)? - 1]*

Equations (11) to (13) can be used to determine an approximate droplet size from a
wavelength—dependent intensity spectrum in which resonances of successive order and
mode can be identified.

Due to the presence of slight asphericity and small imaginary component in the
refractive index, extremely natrow resonances cannot be detected experimentally. For a
given experimentally deiectable peak width limit the observable lowest order resonance
depends on the size parameter. For example, for a detectable limit of peaks with full width
at half maximum Ax " > 103, the lowest order resonance detectable for m = 1.4750, is 3

when x ¥ 30, and is 16 when x ¥ 200. Higher order resonances due to their increasing
widths overlap with resonances of other mode, and moreover, their contributions become
comparable with higher mode terms. As a result, these resonances become
indistinguishable in an elastic scattering spectrum. Only a two to four successive order
resonances of a given mode, with the lowest order being dictated by the size parameter, can
be observed in an elastic scattering spectrum. Moreover, a detectable resonance may not
be observed in the scattered light at all angles. Whether a particular resonance will be
observed in a measured spectra depends on the contribution of the resonating term to the
overall sum as indicated by Eqs.(3) and (4). The number of observable resonances in
scattered light depends on the scattering angle. The maximum number can be detected in
the backscattering (0 = 180), and this is foilowed by the forward scattering (8 = 0)
direction, since for a given mode the coefficients associated with TE and TM mode
contribute oppnsitcly in backscattering, whereas in forward scattering they contribute
identically. Morcover, the resonances of both modes appear in these two directions. At

any other angle, the relative contributions of TE and TM mode coefficients for a given
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mode number n, are dictated by the functional values of 7, and , at that angle. At 0%
90°% n/mn >> 1 when x > 100, and as a consequence, the terms due to transverse electric
modes dominate over the terms due to transverse electric modes in Eq.(3) while a reverse
situation occurs for Eq.(4). For x > 100, intensities of scattered light at around 4 = 90°, in
the planes parallel and perpendicular to the plane of polarization of the incident beam can
be approximated by

12
1,(0% 80 ¥ 40 [ Ty BuT(0 ¥ 90°) (14)
n={ ’
i ,\2 ] 112
I,(0% 90°) ¢ pipy [ F%'E‘I_ii (0¥ 90°) (15)

nel

Thus, only TE mode resonances are observed by a detector recording I,(¢ & 90°), and only
TM mode resonances by a detector recording I5(0 & 90°). Equations (14) and (15) form the
basis for the design of the experimental system for the present study.

On the basis of the theory, an experimental scattered intensity data at a fixed angle
as a function of the size parameter can be interpreted to obtain particle size and refractive
index. Intensity versus size spectra can be measured two ways: (i) using a fixed
wavelength laser beam for an evaporating or growing droplet, and (ii) by varying the
wavelength of the incident beam for a droplet with an invariant or a slowly changing size.
The former method is useful to situations where the droplet size changes significantly. The
variable wavelength method used in the present study provides highly accurate size and
refractive index information for a droplet with an invariant size, and can be used to detect
minute size and refractive index changes that occur due to the absorpiion of a trace
amount of vapor. Moreover, the technique can be used to detect the formation of an
adsorbed layer on the surface of a spherical particle.

An intensity spectrum obtained by varying the incident wavelength shows a series
of resonances.  The positions of resonating wavelengths along with the shape of the
intensity spectrum are used for the absolute size and refractive index determination. Since
the positions of the resonating wavelengths depend on the size and refractive index of a

droplet, the positions change when the size and refractive index of the droplet change due
20




to the absorption of a vapor. The data on the shifts of the resonating wavelengths can be
utilized to determine minute size and refractive index changes. Since in the present study
we examined the absorption of a vapor which is relatively immiscible in the liquid state
with the componeni of the droplet, we had to assure that the droplet remained
homogeneous when it was exposed to the vapor, that is, an absence of a second phase in the
form of a layer on the surface of the droplet. The data of the present experimental scheme
can precisely discern the presence of a layer on the surface of a droplet. The theoretical
basis for such a discrimination can be understood on the basis of the theory of scattering by
a coated sphere. Equations (1) through (4) apply for scattering by a coated sphere,
However, the expressions for the scattering coefficients a,, and b,, depend on the inner size

parameter xo = 27ae/A, the outer size parameter x = 2xa/), and the relative refractive
indices of m, and m of the inner core and outer layer, respectively . The expressions for
the scattering coefficients for a coated sphere were derived by Aden and Kerker'?, and can
be found in references 6 and 7. The scattering coefficlents for a coated sphere also show
resonance features similar to a homogeneous sphere. However, for two droplets, one
homogeneous and one layered, having identical amounts of two components, the position of

a resonance for the homogeneous droplet differs the position of the same order and mode
resonance for the coated droplet. When a homogeneous droplet undergoes changes in the

13 size and refractive index during an
Size Inorcax due the addition of a com onent

| e Mmy 2v gy @ 40 4 absorption process, its resonating

] wavelengths of TE and TM modes shift

. by almost equal amounts. However, for

10 a size change due to the formation of a

layer the shift of a resonating
wavelength of TE mode differs from the
shift of a resonating wavelength of TM
\ mode. The difference between the shifts
< @ A depends on the difference between the
refractive indices of the core and layer.
Figure 1 shows calculated shifts of a TM

O T T T T T T T R T T T T 4o @nd a TE mode resonances of a 20 yum
SIZE INCREASE (A)

Figure 1. TE and TM resonance peak shifts for
homogeneous and co ated droplets

size droplet with a refractive index m == 1.6303 due to the homogeneous and
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inhomogeneous addition of a component with a refractive index m,= 1.2090. The results
show that as long as the droplet remains homogeneous TE and TM resonances shift almost
identically, and the shift increases as the size increases. When the component is added in
the form of a layer, the shift of a resonating wavelength of TE mode is lower than the shift
of a resonating wavelength of TM mode, and is also almost identical to the situation where
the droplet remains homogeneous, Since in the present experimental scheme TE and TM
resonances are detected individually by two separate detectors we can precisely determine
the formation of a layer on a droplet by comparing the shifts of resonances of the two
detectors,

EXPERIMENT

Experiments were performed on single charged dioctyl phthalate (DOP) droplets in
an electrodynamic balance which consists of two central ring electrcdes and two endcap
electrodes above and below the central electrodes. An a.c. voltage drives the central ring
electrodes while a bipolar d.c. potential is applied across the endcap electrodes. A
schematic of the experimental system is shown in Figure 2. The balance is mounted inside
a sealed chamber whose temperature is controlled to within ¢ 0.08* C by using a constant
temperature water circulator. A air stream, selected from a dry and a humid stream,
enters through a port at the base of the chamber, and flows past a suspended droplet. The
humid air is generated by passing a dry air stream through a flask of heated water and
succeasively through West and Graham condensers. A second constant temperature water
circulator is used to control the dew point of the air leaving the chamber.

A tunable ring dye laser beam entering vertically through a hole in the bottom
electrode is used to illuminate the droplet. The wavelength of the laser beam can be varied
continuously in the range of 560 nm to 610 nm. The laser is computer controlled, has its
own wavemeter with a resolution of 1 part in 107, and & linewidth less than 10" nm. Two
fixed—position photo—multiplier tubes (PMT's) are arranged to measure the intensity of
light scattered by the droplet in the planes parallel and perpendicular to the plane of
polarization of the laser beam. Both PMT’'s are placed at about # = 80°, and collect
scattered light with an acceptance angle of Af = 0.05°. As discussed in the theory section,
the PMT in the plane parallel to the plane of polarization of the incident beam detects only
the TM mode resonances while the other PMT detects only TE mode resonances.
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Figure 2. A schematic of the experimental system

In a typical experiment, a DOP droplet was suspended into a steady stream of dry oy
air, and the laser was scanned from 17100 ¢cm™! to 17600 cm™! with data being collecte. at b 13
intervals of 5000 MHz (0.1667 cm™) to establish the positions of sharp resonances, and ¢n V
approximate droplet size. The regions around the observed sharp resonances from both the
detectors were then rescanned with a data interval of 250 MHz (0.00833 cm™!) to determine
the positions of the resonances more accurately. After determining the resonance locations
in the dry air stream, a steady humid stream was introduced by switching off the dry
stream. The positions of the sharp resonances from each of the detectors were monitored
until the droplet growth due to the change in humidity terminated. After establishing new
positions for the resonances, the humid air stream was sw’' ched off and dry air was
reintroduced. The entire process was repeated for various humidity levels.
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Sum of peak position error squared (cm™’)

RESULTS AND DISCUSSIONS

In the present study, to estimate the amount of absorbed water in a droplet as 2
function of the relative humidity, we needed to determine the absolute size and refractive
index of the droplet when exposed to dry air, and and then determine the change in the
droplet size and refractive index when the humidity of the surrounding air was altered. To
this purpose, the resonances of successive modes having the same order was first visually
identified from the patterns observed in the experimental intensity versus wavelength
spectra of the droplet. The approximate size corresponding to an assumed refractive index
was estimated from Eq.(12). Plots of the theoretical scattered intensity as a function of
the size parameter corresponding to the range of experimentally scanned wavenumbers
were compared with the experimental spectra from the two detectors. The process was
repeated for a number of refractive indices, and it was found that over a range of refractive
index both TE and TM mode experimental intensity spectra showcd good visual
agreements with the theoretically calculated spectra. In this range, a change in the
refractive index shifted the theoretically calculated spectra to higher or lower size range
without affecting the visual appearances as well as the mode and order numbers of the
individual resonances. This means that the accuracy with which size can be determined is
inter—related with the accuracy with which refractive index is known. The visual matching
provides an acceptable range for the refractive index and a corresponding range for

tohgo droplet size for the observed spectra.
' \ f Even  though the  theoretically

generated spectra for over a range of
0.40 - Minimum sum of squareq errors wavelength independent refractive index

at a = 26,0035 u showed excellent visual agreements with

the experimental spect-a, the positions
of all the resonances in the observed
spectra could not be aligned perfectly
with those calculated from the theory.
However, the positions of a number of
observed resonances over a small
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calculated resonances for a given refractive index. This indicated the existence of
dispersion, and we needed a model for dispersion for a comparison between the theory and
experiments. In this study we chose Cauchy dispersion formula given by

m = A + Buw? + Cu* (16)

where w is the wavenumber in vacuum. This formula can describe the dispersion of a
compound in the region where no absorption bands are present !4,

The problem now involves determination of four parameters, the droplet size and
the constants of the dispersion formula, from the experimental resonance positions. As
mentioned before the position of a theoretically computed resonance peak depends on the
refractive index, that is,

x_,= {m) (17)

where x_, is o resonance of nth mode and £ th order. The form of f(m) is dictated either

)
by Eq.(9) for TM mode or Eq.(10) for TE mode. Equation (17) suggests that for an
assumed droplet size a, in the acceptable size range obtained from the visual matching, we
can align an observed resonance in the experimental spectrum of a given mode with the
corresponding peak in the theoretical spectrum of the same inode by adjusting the
refractive index. We followed this procedure to obtain a refractive index mj,obs
correspcnding to the each observed resonating wavenumber, wi,ons. The set my,gny versus
wi,obs data points were fitted to Eq.(16) using a regression routine which provided the best
estimates for the parameters A,B and C. The resulting dispersion formula was then used,
with the assumed droplet size ¢, to calculate theoretical resonance peak positions wi,cal.
An estimate of error between the observed and calculated peak positions was obtained
using the following equaiion

N
¢(a) = :S:(wi»ohs ~ Wical)? (18)
Pel
where N is the number of observed resonances. Using a computer program with 4 double
precision accuracy, this procedure was repeated by changing the droplet size by * A, ard a

minimum in the error estimate ¢, was obtained. The minimum value of ¢ is assumed to be
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associated with the best determination of the droplet radius and its dispersion. The
function ¢, is a smooth function of droplet radius and has only one minimum. Figure 3
shows the value of ¢ as a function of radius for the resonances observed in the light
scattered by a DOP droplet. The minimum value of ¢ for this droplet occurs at a droplet
radius a = 25.9935 um, and the corresponding dispersion formula is given by

m,, = 14627815 + 9.5402020x10°11? — 4.88811802x10 20,4 (19)

Theory ; Parallel to plane of polarization
6=90.30

AWAWATSYASTA

Experiment
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L 0=91.1
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Experiment

S NAAAN
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Figure 4. Comparison bi.tween experimental and theuretical spectra for a DOP droplet.

The theoretical intensity spectra calculated for the estimated size and dispersion
formula are compared with the e..perimental spectra in Figure 4. Except for the absence of
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very sharp resonances in the experimental spectra, the theoretical and experimental
spectra show excellent agreements. The absence of sharp resonances in the experimental
spectra is, as discussed before, due to the presence of slight imaginary component in the
refractive index which has been neglected from consideration in the present study. A
comparison between the theoretical and experimental resonance peak positions is given in
Table I. The results show that a maximum difference of 0.075 cm™! between the observed
and calculated values of resonating wavenumbers. This difference corresponds to an error
of about 1 A in the estimate for the droplet radius.

Table I. A comparison between the observed and calculated peak positions

Observed resonance Calculated resonance Mode Order
peak position peak position number number
cm-t cm-t

16788.862 16788.833 281 21
16878.637 16878.712 287 21
16968.512 16968.506 289 21
17237.266 17237.208 205 21
17322.150 17322.120 293 22
17501.830 17501.767 297 22
16938.033 16937.971 288 21
17028.078 17028.095 2900 21
17207.948 17207.971 294 21
17560.536 17560.577 298 22
17650.561 17650.576 300 22

After we introduced humid air into the chamber the droplet size increased due to
the absorption of water vapor, and as a consequence, the resonances of TE and TM modes
observed in the dry environment shifted to lower wavenumbers. We continuously
monitored one resonance peak of each mode as a function of time after each step change in

the humidity level. When the positions of these two peaks indicated a cessation of droplet
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growth, we determined the positions of a number of resonances of both modes. Figure 5
shows the shifts of a TE and a TM mode resonances of a droplet from dry environment to
when it reached equilibrium with the surrounding air having a relative humidity of 94%.

Dry olr, o= 23.3038 um To calculate the amount of absorbed water from

V7do7.a8 17237:2% | ihe observed shifis in the peak locations we used a
method based on successive approximations of the
amount of water absorbed by the droplet. In each
step of thc method, we assumed an amount of

T™ Peak TE Peak

water absorbed by the droplet and calculated
Water vapor @b Sw0.04, am 26,0048 um | yhaoretical peak shifts due to this addition of
17203.01 1723227

water. The procedure was repeated till the
theoretical peak shifts matiched with the
experimentally observed peak shifts, and an
estimate of the amount of absorbed water was
reTrrETTPTIFTYTrrTCETTYrEY Y TR obtained. @ To implement this procedure we
17138 17&0%;"7.%‘1‘?";.7:?::’"_1'7&55 7243 agsumed that the absorbed water and DOP

Figure 5. Shifts TE and TM resonance
peaks due to absorption of water,

underwent ideal volumetric mixing, and that the droplet was a single phase, homogeneous
solution of DOP and water. Furthermore, we assumed that the refractive index of a
homogeneous solution of DOP and water can be described by

Intensity

™™ Peak TE Paok

m(w) = mnop(‘")vnop + mu,o(w)v}{,o (20)

where v and m are the volume fraction and pure component refractive index, respectively,
of the subscripted species. The following dispersion formula!® was used for water at 25°C

vn  1.17487x10° 0.43450080 1}
mnao(w) = [1.7602312 - —Ugl—-— + mmrg—m] (21)

Assuming an initial value for the volume of water absorbed by the droplet, we
estimated the droplet size and its refractive index using Eq.(20). Using the size and
refractive index we calculated the theoretical shifts of the resonance peaks observed under a

humid environment, ard compared the calclated shifts with the observed values.
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Successive approximations were then used to find the volume of water that when added to
the DOP droplet in dry environment results in a droplet radius and refractive index which
in turn cause the observed shifts of the resonance peaks. The resultant estimate of
absorbed water by this successive approximation scheme was always found to be unique
and unambiguous,

For the peak positions shown in Figure 5, the TM mode peak shifted by 4.97 cm™!
and the TE mode peak shiffed by 5.01 cm™ when a pure 25.9935 um radius DOP droplet
wag exposed to a relative humidity of 84%. Both the peaks shifted by almost the same
wavenumbers, indicating that the droplet remained homogeneous after the exposure to the
humid air, Using the successive approximation procedure described above, we
estoigxzaéted a radius change of 0.0113 um, or the final droplet radius after equilibration with
water vapor at 94% relative humidity was
26.0048.

.

wmere a=29.8268 um

Figure 6 shows the calculated size change of a
droplet as a function of the saturation ratio of
water vapor., The results show the droplet size
increases monotonically as the saturation ratio
of water vapor increases. The size increase of &
droplet due to the absorption at a given
saturation ratio depends on its initial size.
However, the equilibrium weight fraction of

water in a droplet at a given saturation ratio is
' 0-'25;&}‘“' R?:i'?o. ‘s 0.8 1.0 independent of its size. To

Figure 6. Droplet size change as a function
waler saturation ratio,
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examine the reproducibility of our results we have plotted in Figure 7 the observed weight
fraction of water as a function of the saturation ratio of water vapor for three different
droplets having different initial radii. The results show that all three droplets have almost
identical water content at a given saturation ratio, thus, demonstrating the reproducibility
of the experimental data.




0.0020 CONCLUSIONS
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sssse g=29.8268 um :
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assas g-:ztz &e?g We have developed an experimental scheme by

es

whichk TE and TM mode resonances can be
recorded separately by two detectors located on
the planes parallel and perpendicular to the
plane of polarization of the incident beam. We
have used the experimental system to obtain
intensity spectra from single suspend droplets.
By matching the shapes of the spectra with the
theoretical spectra, and by aligning the observed
resonance peaks with theoretical peak positions,
we have simultaneously determine the size of and
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Figure 7. Weight fraction of water in different,
droplets as a function of saturation ratio.

the dispersion in a droplet. The results show that the absolute size can be detected with a
resolution of 1 nm, and the size change with a resolution of 1 A, From the observed shifts
of resonating wavelengths of TE and TM modes, we have detected minute amounts of
absorbed material in a droplet. The technique used in this study can also be used detect
the formation of a layer on the surface of a droplet. Results on adsorbed layers on single
particles will be presented in a future paper.
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INTRODUCTION

The dynamics of concentration fluctuations is of considerable basic and
practical interest. The visibility of an object viewed through aerosol plumes
is determined, for example, by the instantaneous value of the integral of the
concentration along the line of vision. As the instantaneous concentrations in
turbulent flows fluctuate strongly in time and space. one is interested in
estimates of the probability that instantaneous values exceed the mean or other
critical values, and in the time variation and intermittency of the concentration
fluctuations. The correlation of statistical properties of the concentration
fluctuations with those of the turbulenc in the flow is also of interest, as it
provides a better understanding of the dynamics of diffusing plumes and enables
prediction of diffusion characteristics when turbulence data are available. A
tast-response IR/CO, system for measuring the fluctuations of IC, see Figure 1,
has been developed and is described in Poreh and Cermak [1,4]. The system has
been previously used to study the statistical properties of Vertically Integrated
Concentrations (VIC) across plumes diffusing in simulated atmospheric surface
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layers [3-5]. To advance understanding of turbulent diffusion of plumes, the
fluctuations of Integrated Concentrations (IC) along lines normal to a plume
diffusing in grid-generated turbulence, which is one of the simplest and most
studied turbulent flows, have been measured and analyzed. Initially, a grid with
relative porosity p = 0.54 was used to generate the turbulence. During the
analysis of the data it was suspected that the flow might have been affected by
possible coalescence of jets from neighboring openings in the grid. It was
therefore decided to repeat the measurements with a more porous grid; p = 0.64.
Differences between the two experimental series (I and II) were not large,
although the scatter of the data in Series I was larger. Only data from Series
I1 are presented in this paper.

THE EXPERIMENTAL SYSTEM AND PROCEDURES

The expariments were conducted in the Industrial Wind Tunnel at the Fluid
Dynamics and Diffusion Laboratory at Colorado State University. The experimental
system for measuring IC is schematically described in Figure 1. A plume of
carbon dioxide (CO,) mixed with helium (He), to produce a neutrally buoyant
mixture, was generaﬁed in the wind tunnel. The horizontal exit velocity of the
gas at the source was matched with the mean velocity in the wind tunnel, which
was set to approximately U = 2.5 m/sec. A blackbudy was used to emit infrared
(IR) radiation toward a circular sapphire window (4 mm diameter) at the floor of
the wind tunnel. The IR beam crossed a 1ight chopper and a calibration chamber.
It was then focused on 1iquid nitrogen cooled Indium-Antimonide Photovoltaic IR
detector [InSb(PV)], with a narrow-band (4.257 10.04 um) optical filter. The
amplified AC signal from the detector and the reference frequency of the light
chopper were fed via a preamplifier to a lock-in amplifier which produced a DC
signal proportional to the intensity of the IR beam. The signal was then
filtered (f, = 160 Hz) and digitized at 600 samples/s. The response of the
system was determined using calibrated mixtures of CO, in nitrogen, which filled
the calibration chamber. The distance of the source from the grid area in all
the experiments was constant, (x/M = 20). A detailed description of the system
is presented in [7].

PRESENTATION AND ANALYSIS OF THE RESULTS

Mean and fluctuating dimensionless values of 1C°(t) = ICH + ic’*(t),
defined as IC = IC U M/Q, where U is the mean velocity, M is the mesh size of
the grid, (7.62 cm), and Q is the strength of the source, were calculated from
the data. The lateral distributiops of ICM'(y) were found to be Gaussian,
namely: ICM = ICM (0) exp[-(y)°/(20°)], where o(x) is the local lateral length
parameter of the plume. Typical measurements of IC at different off-center
locations at a distance of x/M = 20 downwind of the source plotted versus the
dimensionless time T = tU/M are shown in Figure 2. The measurements show that
values of IC> 0 were continuously recorded at the centerline of the plume,
whereas the appearance of an 1C signal at off-center locations was intermittent.
Figure 3 shows the lateral distrihution of the dimensionless rms/mean valuves of
IC". The data suggest that the IC fluctuations at different distances from the
source are similar, in the sense that they are functions of y/c and almost
independent of x, at leatt in the range of the experiments: 20 < x/M < 120.

Many statistical characteristics of the fluctuations are described by the
Probability Distribution Function (PDF) P(IC /ICM ), defined so that P(a) is
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equal to the probability that the relative instantaneous value IC'/ICHM" » a.
Figure 4 shows the measured PDFs at different off-center locaticns at x/M = 20,
Figure 5 shows the measured PDFs along the centerline of the plume. Figures 6
and 7 show the measured PDFs at other values of y/o. Again, the data suggest an
approximate similarity of the relative fluctuations at the different distances,
although a small effect of the distance on the PDFs is noticed in Figure 5.

The value of P(0) indicates the intermittency y of the signal, namely the
percentage of time for which IC = 0 was measured. The measured values of the
intermittency are presented in Figure 8. These values of ¥ were corrected for
the effect of noise, as outlined in [6]. One sees that there is no
intermittency, v = 1, near the centerline of the plume, up to approximately y/o

=0

Figure 9 shows the dimensionless spectral density distribution (SDD)

of the integrated concentrations, §* = S(n) U/[o(vi*')’]), along the centerline
of the plume plotted versus a dimensionless frequency no/U, where S(n) is the SDD
of the IC fluctuations. The simitarity of these dimensionless distributions
indicates that the time variation of the fluctuations at different distances is
scaled as o/U. A -5/3 inertial subrange behavior is observed at 0.5 < no/V <
1.5, followed by a -11/3 law up to no/U » §, A similar -5/3 law was observed in
SOD of point concentration measurements [8-11], except that it extended to higher
frequencies. It appears that the observed -11/3 1aw is the result of integrating
in-plume point concentration fluctuations at this higher frequency range.
Measured autocorrelations of the fluctuations are plotted in Figures 10 and 11.
The data confirm the conclusion that the time variation of the fluctuations is
scaled as o/U and suggest that periods of elevated concentrations at a given
distance will be of the order of o/U or smaller,

It should be stressed that the observed similarity of the IC fluctuations,
as well as that of the VIC fluctuations in plume diffusing in the ASL, s not
expected to extend indefinitely. At large distances from the source,
particularly where shear and surface roughness are present, the concentration
fluctuatiuns and the intermittent nature of the plume should decay and eventually
disappear. It is planned to substantiate these expectations experimentally.
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ABSTRACT
During experiments on electrocatalyzed dimerization of hydrocarbons, it was observed that
carbon fibers grow at the ends of corona wires during negative point-to-plane corona
discharges in hydrocarbon atmospheres. Under certain growth conditions, these fibers are
hollow tubes with smooth walls; under other growth conditions, the fibers are also hollow
tubes, but have rough surfaces. Scanning electron micrographs of thesc fibers are
discussed and possible applications for these fibers are noted.
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INTRODUCTION

There is a large literature on the formation of carbon filaments by catalytic
processes - 10, Also some work has been done on fiber formation associated with electric
discharges. For example, Bacon reported!1-13 formation of graphite whiskers in an arc
struck between graphite electrodes under a pressure of 92 atm, of argon at 3900 °C, More
recently, Kwong et all4 showed that hydrocarbon polymer whiskers, believed to be of
polyethylene type, were formed by hydrocarbon polymerization on drift chamber wires.

We report here observations of carbon fibers grown at the ends of corona wires
during negative point-to-plane corona discharges in hydrocarbon atmospheres. Under
certain growth conditions, these fibers are hollow tubes with smooth walls; under other
conditions, the fibers are also hollow tubes, but have rough and apparently self-similar
surfaces. First, the experimental system is described. Then some scanning electron
microscope (SEM) photographs of these fibers are presented and discussed.

EXPERIMENT

During studies of hydrocarbon reactions in negative discharges at
atmospheric pressure we observed that, during negative corona discharge, fibers grew
from the tips of the corona wires in a point-to plane discharge. Fig. 1 is a schematic
diagram of the experimental arrangement. Fibers grew from tips of corona wires of
tungsten, nickel, and fplatinum. Initially, tne end of the negative corona wire was
approximately 1.5 cm. from the plane anode and a visible corona developed at the wire tips
at around -3000 volts, when fibers commenced to grow at the rate of a few mmy/sec; the
corona discharge was maintained thereafter from the growing fiber tip. In an alkane
atmosphere, we noted that electrically conductive fibers always grew from the tip of any
corona wire sustaining a corona discharge. During many of the experiments, various alkane
( n-C7- n-C10) vapors in nitrogen carrier gas flowed with an average axial velocity of ~2.4
cm/sec through the reaction tube past the corona wires toward a plane aluminum anode . In
other experiments, pure methane (99.9%) flowed through the reaction tube. In all cases,
regardless of the alkane, either with or without flow, fibers always grew from the corona
wire tips so long as a corona discharge existed. If flow ceased, the corona current and fiber
growth rate tended to decrease after around a minute, apparently because of the
development of spuce charge. In all cases the pressure in the reaction tube was one
atmosphere.

At corona currents less than the order of 1. mA per wire (this obviously
depends on the point to plane distance, which was here ~1 - 2 ¢cm.), the growing fibers
were found to have smooth, uniform surfaces and to be stiff with noticeable elasticity.
Figs. 2-3 show a few examples of fibers grown under these conditions from n-heptane
vaper. Fig. 2 shows a branched fiber with a rough surface, grown at 2 mA in n-heptane
vapou, lying on a long smooth fiber which was grown at a current of around 1 mA. in n-
heptune vapor Close examination of the surface of the smooth fiber shows 4 seam towarrd
the left of the figure. Fig. 3 examines a break in one of the smooth fibers; Fig. 3 shows
that these fibers are hollow tubes, the one shown having a wall thickness somewhat greater
than Sum. Apparently, the interior surfacz is also smooth, Associated with the ends of
these smooth tubes, we have seen many small tubes truncated at both ends at angles of
from 12¢to 30° with lengths of around 10 pm and diameters of a few pm. The
mechanism of their formation remains to be determined.

At currents in excess of the order of 2 mA per fiber, the fiber morphology
changes, and branching of the fiber can occur. The surface becomes rough with a pebbie
texture. At corona currents in excess of 1 mA in methane, the fibers have the characieristic
pebble texture surface shown in Fig. 4. At the end of the fiber shown, branching has talen
place, with three distinct tubes projecting from the end. Fig. 5 shows in detail the surface
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of such fibers. It can be seen that the surface is not continuous, but that there are apparent
voids present. Further magnification of these surfaces reveals that they may be self-similar
and fractal. Fig. 6 shows a break in one of these rough surfaced fibers. Apparently, these
fibers are also hollow tubes with interior surfaces raatching the exterior surfaces.

Several previous studies suggest chemical mechanisms in the fiber growth
process. Ton formation was investigated in a glow discharge in methanelS. In this study,
highest ion intensities were measured in the region close to the cathode, Some of the
reactions with high cross-section were:

CH* + CHg---> CpHat + Hy +H

CH2t + CH4---> CoH3t + H2+H
It seems likely that these species contribute to the formation of the graphite fibers, although
close to the growing fiber tip, we suggest that hvdrogen would be removed. This is
consistent with conclusions from a recent study: " of carbon cluster growth kinetics
indicating that a rapid mechanism exists for eliminating hydrogen from carbon clusters
formed by polymer ablation,

THEORY

The surface morphology of the fibers suggests the growth mechanism. The
morphologies displayed in Figs. 2,4-6 are similar to those found with ballistic growth
models and in thin films formed by sputteringl7, This is consistent with the occurrence of
rough surfaces when corona currents are high, implying large electric ficlds and ballistic
trajectories for charged species depositing on the giowing fiber tip; at lower electric fields,
diffusive motion is more important and permits deposition of hydrocarbon species to take
Flace at preferred sites on the growing fiber tifp. thereby leading to smooth, closed surfaces.

t is significant that with either ballistic or diffusive deposition, hoilow tubcs are formed.

Models have ben proposed to account for the phenomena displayed here in
which growth takes place through diffusion as well as through ballistic trajectorics for the
monomer responsible for solids formation. A model giving surfuces very similar to those
observed here has the general form;

02
vn(s) = I J(@)n(s) doo + Do2x(s)/9s2 (1)
il
where the two angles in limits of integration are the angles defining that part of a rough
surface that can be "seen” a molecule with a linear trajectory, vp(s) is the velocity of the
growing surface and s is a surface position and n(s) defines the surface normal at s, J() is
the flux of monomers at s. The second term on the r.h.s. accounts for the diffusive ux of
monomer.
Of course, a model of the growing fiber must allow for all the
electrodynumic and ionization processes occurring in a corona discharge. Assuming
pseudo stationary conditions the set of equations required for a model would be:

div J. = - a(E).J. (2)
divd, = ofE).J, (3

where the current vectors, J , are given in terms of the negative and positive charge carrier
densities, their corresponding mobilities and the electric field:

J.= n.eu_E 4)
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J.= n,en,E &)

the electric field is given by the relation:
div E = d4ne(n -n) (6)

+ -
This set of equations is would be coupled to the ion balance equations for electron impact
jonization, recombination, etc. The identification of the charge carriers in a highly stressed
hydrocarbon atmosphere will re?uirc spectroscopic studies. The relation for the mobilities
is a complicated function of the field and must depend again on the properties of the charge
carriers. Therefore, additional experimental work would is needed for testing of a complete
model of the fiber growth process.

CONCLUSION

The fibers formed during the corona discharge have some interesting
properties, which could be exploited for a number of purposes. It has been noted lthat for
present liquid double layer capacitors to be more effective, major improvements are
necessary. For one, while the active carbon now used has high surface area, its electrical
conductivity is very low, Fibers grown by corona discharge obviously have high electrical
conductivity since the fibers sustain a corona discharge. The fibers grown at high currents
have a complex surface, as Figs. 4-6 show. Also, these fibers might be easily produced in
the Yresence of other chemical species, leading to fibers with interesting properties.
Additional work is necessary to determine the feasibility of producing these conductive
fibers using typical diesel fuels. By careful design, based on present observations, one
fiber(~ 100um x 0.1 um) per second could be produced at power levels of ~ 10-4- 10-6
watts. An additional subject for further investigation is the growth of diamond-like fibers
in these discharges.
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FIG. 1, Simplified schematic diagram of experimental
arr
production of carbon fibers, C is the cathode ':veire. A the pll::.:::;;‘e‘,

i:. ;:row tube for admitting alkane vapor, G2 the outlet for flowing alk

FI1Q. 3. Details of a break in a smoothurfaced fiber showing that these

: i . fibers are hollow tubes,
FIG. 2. Brunched fiber with a rough surfuce Blown at a coronu current of

~2mA lying on o fong smooth fiber grown at ~ 1 mA, both in n-heprane
vilpor.
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Introductiva

The practical difficulties in producing deagglomerated aerosol sprays of
fine particles cxposes the weakness in our understanding of the phenomena
involved in their transport, Particles of the order of 1 micron in size tend to be
cohesive, that is, they often stick together so strongly that they cannot be aerated
to any extent, Unless they can be aerated they will not flow into a transport line
from a hopper to produce thc deagglomerated aerosol sprays needed to obscure
tanks and armored vehicles from heat seeking missiles.

In this work, we report experiments with 1 mm glass particles where
surface forces (van der Waal's, electrostatic, etc.) do not play a significant role in
their transport through a pipe. In this way, we can focus on the purely
hydrodynamic aspects of the problem which are formidable in their own right,
The data will be analyzed in terms of the basic equations of dilute phase fluid

and particle flow in a vertical transport line. The two unknown parameters are

the interphase drag coefficient between the fluid and particles and the frictional
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effects of the flow at the pipe wall., Since our application is concerned with dilute
phase flow in small diameter lines, both drag forces and wall friction mast be
taken into account in modeling the flow.

When the particles enter the transport line from the hopper in Figure 1,
they accelerate to a terminal steady flow condition. In the acceleration zone, the
voidage (or solids fraction) varies significantly and it is important to describe this
region properly for design purposes. For example there is a need to know the
solids fraction in the spray and the pressure at the inlet to the line,

Experimental

The experitnents were performed in a 28,45 mm ID stainless steel line 5.49
fta in length using 1,004 mm glass particles of density 2500 kg/m3 in our
computer controlled transport line, This apparatus has been described in detail
(see aforementioned refsrence) and a schematic diagram is given in Fig. 1,

Air at a controlled temperature and pressure is fed into the feed hopper
through flowmeter Fi causing particles to be sucked into the line and to flow
through it. The cyclone at the top of the line separates the air and particles
leaving the line, The solids flowing through the line are collected and weighed to
obtain the solids flowrate. The air flowrate is the sum of the flowrates Fy + F3 -

F3 measured by the meters.

Summary and Conclusions

The basic equations for dilute phase fluid and particle flow in a vertical
transport line have been analyzed and experimental data obtained using large

glass particles to test the equations. We have found that

1.  The solids flowrate is sensitive to the feeder gap above V2 in Figure 1.




5,

The acceleration zone is about 3 meters long for 1.004 mm glass particles,
In short pipelines, the flow may be accelerating and the drag coefficiant
must be measured in each case at present., The non-acceleration drag

coefficients are in reasonable agreement with predictions.

Using the experimental pressure profile and a wall friction correlation, gas
velocity, particle velocity, pressure and drag coefficient have been
calculated by solving continuity and momentum equations in vertical dilute

phase flow,

The drag coefficient in the acceleration zone is not just a function of

voidage as in non-acceleration flow.
Importance of various hydrodynamic forces in the acceleration zone,
a. In small diameter pipes at high voidage, the wall friction is important,

b. The inertia force of the particle phase diminishes with distance from
inlet.

c. The inertia force of gas phase is negligible.

d. The gravitational force on the particle phase is the largest force.
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Il.  AEROSuL CHARACTEHIZATION METHODS
A. SPECTROSCOPY OF SINGLE PARTICLES AND A=ROSOLS

AEROSOL ABSORPTION SPECTROSCOPY

J.D. Eversole
Potomac Photonics Inc., Lanham, MD 20706

A.J, Campiilo, H.-B. Lin and C. D. Merritt
Optical Sciences Division, Naval Research Laboratory
Washington, D.C. 20375

RECENT PRESENTATIONS, AND PUBLICATIONS:

(A) 1.D. Eversole, C. D. Merritt, H.-B, Lin and A.J. Campillo,

"Broadband Aerosol Absorption Measurements Using Photothermal
Interferometry with FTIR Spectrometry”,Proceedings of the LEOS 1990
Annual Meeting, Boston, MA; November 1990.

(B) A.J. Campillo, J.D. Eversole and H.-B. Lin, "Cavity Quantum
Electrodynamic Enhancement of Stimulated Emission in Microdroplets”,
Phys. Rev, Lett,, 67 437-40 (1991).

(C) P. Chylek, H-B. Lin, I. D. Eversole and A. J. Campillo, "Effect of
Absorption on Microdroplet Resonant Emission Structure", Accepted by
Optics Lett,, August 1991,

(D) H-B. Lin, J. D. Eversole and A. J. Campillo, "Spectral Properties of Lasing
Microdroplets", Accepted by JOSA B, September 1991,

(E) J. D. Eversole, H-B, Lin and A. J. Campillo, "Cavity Mode Identification of
Fluorescence and lLasing in Dye-doped Microdroplets”, Accepted by
Applied Optics, September 1991,

ABSTRACT

Continuous 2 to 14 micrometer absorption spectra of aerosols may be
obtained using photothermal interferometric detection in conjunction with
step-scanned Fourier Transform Infrared spectrometry. Aerosol
absorption of broadband black body radiation is deduced by detecting
time-dependent thermally induced refractive index changes in the carrier
gas interferometrically. It may be possible to extended this same
approach to visible and ultra-violet wavelengths.
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The technical goal of this prog:ar is to answer a "how" question regarding true
optical absorption of suspended aerosols. Scattering makes traditional extinction
measurements difficult to interpret. Therefore one must use some sort of indirect
thermal mechanism to determine when absorption occurs. The main physical
consequences of absorbed heat by a particle are changes in temperature, pressure and
density of the surrounding gas.

Interferometers offer extreme sensitivity in detection of refractive index changes.
For spherical particles the changes in surrounding gas refractive index and resulting
phase shift in the interferometer can be cstimated as shown in Fig. 1. A schematic
detector arrangement is shown here with PZT driven mirror to maintain
interferometer in quadrature for maximum sensitivity.

Such an interferometer detector arrangement has been utilized in prior work to

detact trace amounts of ammonium sulfate aerosol in nitrogen carrier gas. The

ID Advantage : Disadvantage:
Pl Detector High Sensitivity, Noise Suseptatbility
Universality

(n-1) |! u

Estimate of Induced Refractive Index Change : Anh= m cpT Pa

Yields a net phase shittof : 0 = 21l An/A

\
D IR

{ Sample | ' Chopper
1)

P —

PD é\ Low |
-pass

_mn_é

Figure 1 - Aerosol Absorption Detection Schematic

Laser
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interferomster was forined with a He-Ne laser and the IR source usad was 4 CO2
laser. By measureing the interferometer phase shift signal for different available
CO: laser wavelengths a minimum detectable concentration of about 9 mg/m
sulfate aerosol was determined. The advantage of a laser IR source is high
intensity, but its major disadvantage is lack of tuning or small tuning range. For
the current projoect we proposed using a broadband IR source of moderate intensity N
similar to commercial FTIR instruments. Two design characteristics of such a
source not commercially available are: (1) step-scan approach to be compatible with
- aerosol thermal tirae response, and (2) high intensity blackbody source. It should
be noted that unlike traditional extinction measurements, the interferometer
detector signal is directly proportional to IR intensity.
A prototype "high" intensity step-scan FTIR has been constructed and !

calibration tests are presently being conducted. Figure 2 shows a schematic C

Programmable

R Step-Motor
¢ ’
- CONTROLLER 1[ pC ]

s EINCTTIIIIN

LOCK-IN
AMPLIFIER

—

|

monolithic Phom 1
Jamin
Interferomater

]

L

1 TEMPERATURE
: IR CONTROLLEK
'

- -e-—-——--

Figure 2 - Schematic of FTIR source and interferometric detector
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diagram of the complete instrumentation for aerosol absorption measurement. The
box indicated with the dashed line delineates the interferometric detector system,
while the optical elements exterior to the box represent the "FTIR" source. Figure 3
shows two "single beam" spectra computed from interferograms obtained by |
attenuation measurement with an IR detector. The upper spectrurr is just through
normal atmosphere while the lower spcctrum has a sample of tetraniiromethane gas
placed in the path....three additional absorption dips ai: seen superimpased on the
normal water and carbon dioxide structure. By taking the ratio of these two wpectra
the normalized absorbance can be plotted s shown in Fig. 4, A similar absorhance
spectrum taken on a comnercial (rapid scan) FTIR is shown as an inset for
comparison which shows that the construéted FTIR is funciioning properly., These
specira were obtained ui & blackbody temperaturc of only 250¢ C, When the

| temperature is increased to 950° the total IR intonsity was measured to be 0.7 Watts
which will provide more th:an 0.3 W in the average outprt beam of tlie FTIR

<

7
{

Emissivity

L] L ¥ L

2000 1500 1000 500
Wavenumber (cmet)

Figure 3 - Single beam absorption spectra of FTIR source

54




0.4~

o. U
N th\,

v T
2500 2000 1500 1000

Absorbance

Wavenumber (cm-t)
Figure 4 - Absorbance spectrum from ratio of spectra in Fig 8

Based on these measured IR intensities, calculations were performed to
esitmate the sensitivity of the overall system for a hypothetical aerosol absorption
band having a peak absorbance of 5 X10-3 cm-1. Uring the formulae similar to
those shown in Fig. 1 for estimating the interferometer phase shift and integrating
over the aerosol absorption band, an interferogram of the interferometer detector
was computed for different assumed absorption band widths. The expected
Fourier relations of higher peak and narrower width interferogram for broader
absorption were readily apparent, however, the significant point of these
calculations is that the magnitude of the phase shifts are on the oi.r of
milliradians which should be an acheivable sensitivity.

A prototype interferometer detector using a Mach-Zehnder configuration has
been constructed and waus capable of easily resolving a calibration phase shift
signal set at 30 mrads rms (tuned to 35 Hz). This calibration peak is 40 dB (two

orders of magnitude) above the noise floor, so that even without an optimal

experimental arrangement, it would appear that aerosol detection will be feasible.
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He-Ne or
Nd:YAG

Figure § - JAMIN INTERFEROMETER

An interferometer aerosol detector is currently being constructed based on a
Jamin configuration (having only two distinct nptical elements Figure 5 ) to
minimize mechanical noise, Actusl application of the Jamin interferometer
detector to measuring aerosol absorption requires good overlap of the Jamin probe
beam with the IR excitation beam. The ideal case with the two beams to be
colinear may not be realized due to the severe optical materials constraints. A
practicible optical arrangement will most likely be a shallow «agle crossed beam
geometry as shown in Figure 6. The figure is shown in two perspectives to clarify
that the IR beam and Jamin probe beam are in a plane orthogonal to the piv.e of

the Jamin probe and reference heams.

TOP VIEW ]

\)‘:” j’r.ﬂ\ﬂ.nwr

Side View

ProSe Laser

Figure 6 - Jamin interferometer and IR beam geometry
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LASER ABLATION MASS SPECTROMETRY
OF LEVITATED MICROPARTICLES

J. M. Dale, W. B. Whitten, and J. M. Ramsey
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831-6142
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A)  W.B. Whitten, J. M, Ramsey, S. Arnold, and B. V, Bronk, "Progress in the Detection of
Single Molecules in Levitated Droplets”, Proceedings of the 1990 CRDEC Scientific
Conference on Obscuration and Acrosol Research, in preparation.

B) S. Arnold, C. T. Liu, W. B, Whitten, and J. M. Ramsey, "Room Temperature Persistent
Spectral Hole Burning", U.S. Dept. of Energy Contractors Workshop on Laser Spectroscopy,
Oak Ridge, TN, Oct. 1990,

C) 1. M. Dale, W. B. Whitten, and J. M, Ramsey, "Laser Ablation of Microparticles in an Ion
: . Trap Mass Spoctrometer”, Workshop on Laser Ablation, Qak Ridge, TN, April Q, 1991,

D) S Arnold, C. T. Liu, W, B. Whitten, and J. M. Ramsey, "Room-Temperature Microparticle-
Based Persistent Spectral Hole Burning Memory", Optics Lett., 16, 420 (1991).

E) J. M. Dale, W, B. Whitten, and J. M. Ramsey, "Chemical Characterization of Micropatticles
by Laser Ablation in an Ion Trap Mass Spectrometer”, Arnual meeting of the ASIMS,
Nashville, TN, May, 1991,

F W. B. Whitten, J. M. Ramsey, S. Arnold, and B. V. Bronk, "Single Molecule Detection Limits
in Levitated Microdroplets®, Anal. Chem. 63, 1027 (1991),

ABSTRACT

We are developing a techinique to sumple levitated microparticles by laser ablation or laser desorption
and analyze the resulting ions by ion trap mass spectrometry. Both the particle levitation and mass
analysis will be carried out within the same quadrupole trap, Experiments with laser ablation and
mass analysis of particles dropped through the trap will be described.

Charged microparticles can be levitated in a three-dimensional quadrupole by a combination of AC
and DC electric fields (1) or by a DC field with optical feedback stabilization (2). With different
voltage and frequency conditions, the same quadrupole can be used to confine ions and to measure
their mass to charge ratio (3). We are developing techniques to produce atomic or molecular ions
by laser ablation or desorption from levitated microparticles and mass analyze the ions in the
quadrupole trap. These techniques will complement our work on fluorescence spectroscopy of
levitated microparticles and will permit the characicrization of a single microparticle by a combination
of optical methods and mass spectrometry.
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Our initial experiments have been made on particles falling through the trap to test these ideas with
less complicated instrumentation. Light scaticred by a falling particle from a weak HeNe laser beam
triggers a Nd-YAG laser. A 10-ns pulse of 532-nm light is focused on the particle, ablating and
ionizing a portion of its surface. The resulting ions are trapped and mass analyzed by conventional
ion trap techniques (3). We have obtained representative mass spectra of quaternary alkylammonium
halides (4) on the surface of silicon carbide particles in this way. A typical mass spectrum, in this case
of tetraphenyl phosphonium bromide, is shown in Fig. 1. ‘The spectrum shows the cation resulting
from loss of bromine along with lines from the loss of 2 and 3 pheny! or benzene groups. Sodium
and potassium appcar to be prescnt as well as smaller molecular fragments, Our present sensitivity
is such that a useful mass spectrum can be obtained from a fraction of a monolayer of analyte on a
100 pm SiC particle.

Measurcments have also been made on metallic particles. A spectrum obtained from a niobium
particle is shown in Fig. 2. Niobium has only one stable isotope, 93 amu. The signal observed at
other masses from 92 to 96 amu is presumably due to mass 93 ions that were poorly resolved, A
trace of iron at mass 56 amu is also observed.
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Fig. 2 Mass spectrum of laser-ablated niobium particle.
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Application of Factor Analyais-Rank Annihilation Technique to
Interpretation of Aerosol Fluorescence

D.L. Rosen and J. B, Gillespie
U.S. Army Atmoapheric Scliences Laboratory
U.3. Army Laboratory Command
White Sands Missile Range, NM 88002-5501, USA

I. Introduction

Laser induced fluorescence (LIF) is sometimes used for
lidar beoaua? LIF spectra contain information about chemical
composition., Fluorescence lidar has been limited because the
LIF spectra of most constituents in the troposphere are very
broad and devoid of line structure. The LIF spectra of aerosol
particlea do not have line structure because of inhomogeneoiLs
broadening by vibrabtional states, Sharp fluorescence lines from
gases in the troposphere are quenched by coilisional de-
excltation, The broad LIF apwctra from an atmospherio
congtituent overlaps LIF spectra from other constituents and the
spectrum of sky radiance, An atmospheric constituent is not
easily distingulished from the background speotra because of this
overlap.,

Rank annihilation=-factor analysis (RAFA, s & set of
algorithms for interpreting broad fluorescence spectra in oomplex
mixtures, RAFA compares the excltation-emission matrix (EEM) of
an unknown to the EEM of a ocalibrant. An EEM (s & matrix
containing the spectral intensity as a funotion of excitation
wavelength and emission wavelength, RAFA can only deteot tne EEM
of a calibrant within the EEM of a complex mixture under the
following oconditions. First, the fluorescence of the various
components of the mixture should add up linearly. Second, %he
EEM can only be analyzed If both the number of exocitation and
emission wavelengths are greater than the number of fluorescing
compounds in the mixture, Many more excitation wavelengths than
fluoreacing compounds may be necessary due to nolmse and
uniqueness problems, This means that a wavelength tunable
exeltation source ia necessary for RAFA,

This paper describes a ocomputer simulation of a RAFA
detection algorithm applied a hypothetigal fluorescence lidar
return with noise and sky radiance. Deteotion algorithms
determine whether or not the concentration of the calibrant in an




unknown mixture is zero. Previouys simulatlions done by us2 have
analyzed RAFA algorithms that can caloulate only nonzero
concentrations of the calibrant in the unknown mixture from a
fluorescence lidar return. Nolse and sky radiance were not
included in our previous studies,

If the spectra of the components are both nonoverlapping
and free of random noise, RAFA requires a calibrant EEM only from
the compound of interest, This auggests that RAFA may be useful
in remote sensing where an unknown background may also be
fluoresoing. However, real lidar measuremsnts often contain
large amounts of random noise and overlap., A priori information
i3 necesssary to eliminate random noise, We will show that
detectlion by RAFA may require some knowledge of the fluoreéescence
background in order to set a rejeotion level. A detailed
knowledge of the fluorescence background may not be necessary |{f
one has used the worst possible fluorescence background to set
the rejeotion level, We consider an asrosol, fly ash, as the
source of the fluorescence baockground ln this paper. RAFA can
also be applied to analyze a compound of intereat in an aerosol.

II. Theory

The theory behind the simulation is described in two
parts: the RAFA deteoction algorithm and the UVTRAN model for
lidar.

A. Detuotion Algorithm

We used the overlap index method3 to determine the
presence or absence of the calibrant compound in the mixture.
The overlap index method assumes that the calibrant EEM is
bilinear, i.,e., the emimssion 8speotrum of the calibrant is
independent of excitation wavelength., Pure compounds generally
have bilinear EEM because of rapld nonradiative transitions
within a molecule, The overlap index method will not work if the
EEM of the callbrant is linearly dependent with a set of EEM from
other ocomponents {n the unknown,

We now define the overlap index, p. In the following
discussion, the row vectors of an EEM correspond to emission
spectra and the column vectors of an EEM correspond to excltation
spectra, The overlap index method requires a bllinear callbrant
EEM, N, and the EEM, D, from an unknown mixture. Then,
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where x is a normallzed excitation gspeactrum of the cealibrant, y
is a normalized emission spectrum from the ¢alibrant, | and J are
a §ubsor*pts designating the signifioan% nonzero elgenvalues of
DD or D'D, u, i9 an eigenvector of DD assooiatqd with a
significant eiffenvalue, v, i8 an eigenvector of D' D assovclated
with a asigniflcant eigenvalue, a?d r is the nnmber of significant
nonzero elgenvalues of DD° and DD, '

The value of r is necessarv [or 4.':, lating a precise
value ot p. Underestimating r generates a .umerinal error in p
while overestimating r causes p to he sensitive to nolse ang 5
experimental error, \lgorithms for finding r are available '’
but were not inocluded in this study., We simulated EEM whose
values of r were known, modified these EEM using a lidar model
that accounted for atmospheric effeots, and then used the
unmodified values of r In our caloulations of p.

The overlap index, o, {8 used to comparn spectra in a
similar way to correlation functiona. The overlap index
algorithm will work under certain conditions even in the presence
of unknown fluoresoing speotra, where correlation functions can
not work., If p ims zero, the calibrant EEM and the unknown EEM
are completely uncorrelated and the calibrant is not part of the
unknown mixture., If p is one, the calibrant EEM and the uriknown
EEM are completely ocorrelated and the calibrant may be part of
the mixture, A detection oriterion ls necessary If p is between
zero and one, We will propose a possible detection oriterion in
the Disvussion mection., Howevar, this coriterlon requires partial
kKnowlodge of the background fluorescence.

B, Lidar Model

UVTRAN {8 an ultraviolet and visible wavelength
atmoapherig propagation model recently reported by Patterson and
Gillesple. UVTHAN caloculates the atmospheric extinction oco-
efflolent, opticval atmospheric trahsmission, sky radlance, and
the total lidar signal for baockscatter and fluorescence, Only
calculations for the atmoaspheric extinotion co-efficient have
been previcusly descrlibed, The other parts of the model are
ourrently being documented and verified.

A modified version of UVTRAN simulated the fluorescence
lidar return signals. Ths new version inoludes RAFA analysis and
photon oounting (i,e., 8snot) noise, The calculation of photon
noise required the detector lntegrution time and fluorescence
lifetime as input parameters. The new model enters the
concentration and laboratory EZM of the unknown mixture, the
excitation and emission spectrum of the calibrant, ¢the




visibility, desired options, and other parameters. The program
calculates fluorescence lidar returns. The overlap index i{s then
caloulated from the fluorescence lidar return as a funotion of
diastance or datection integration time,

The new model has several optiongs concerning sky radiance
and noise. The overlap index can be calrulated wiith or without
photon noise, and with or without sky radiance. Typloal sky
radlance can be calculated for night, overcast day, or clear day.
The calculations shown are for night time sky radianace,

The f'luorescsnce detector is asaumed to be a shot nolise
limited photon counter. The photon deteoctor has a shutter, The
deteotor has a temporal window over whioh the deteoctor counts
photons., With photon noise, the mean collection rate of photons
ls oaloulated and multiplied by the detector integration time,
The photon count L8 assumed Poisson diatridbuted about the mean
number of photens, Once the random numbaer |s generated, the mean
sky radiance signal was subtracted from the nolsy signal.

4 Computer Simulation

The following scenaric was , ochosen for our simulation.
The fluorescence lidar was being used in the tropcsphere to
deteot the presence or absence of nitrogen dioxide, NO,, in a
plume whioch contained carbon particles. The overlap Lﬁdex for an
NO_, calibrant was caloulated using simulated lidar returns from
aaﬁosol plumes with and without NO, as the unknown EEM. The
ovarlap index for unknowns with ana without NO, were compared.
The computer simulaticn will be desorived in three parts:
parameters for the NO, vapor, p:rameters for the carbon
particoles, and parame%ers for the flucrescenos lidar apparatus,

We used emission speotr; of NO at 0.1 Torr pressure
measured by Sakuria and Broida, The dmission spectrum has two
componeints: a broad band component and a narrow line component,
The narrow band component is far more ezsily quenched at higher
pressures than the broad band component. The simulation
therefore did not Inoclude the sharp lines.

.py Our,simulation used a peak fluorescence cross seotion of
9x10 em © and a fluorescence decay time of 1.65 nsec., These
values were estimated for atmospheric pressure by multiplyling the
low pressure values by the quenching factor. The fgqgres enoe
oross section without quengging (peak value of 3x10 om™) and
the quenching factor (3xi ) at atmospheric pressure ot NO, were
taken from Measures book, The fluorescence lifetime éor N62 of

55 ps was measured without quenching by Keyser et. al.
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We chose Kansas City fly ash studied by Tucker et. al.9

as the background fluorescence source. Fly ash and NO, are
often emitted together from smoke stacks. This 1ls only one of
several possible fluorescence backgrounds because the
fluorescence spectra of fly ash changes with the sourace,

The emission spectra of NO, and fly ash was measured ¥rim
Journal illustrations using a digigizer. The excltation spentrum
in the literature was incomplete in the literature for both N02
and fly ash, It was necegsary to interpolate the excltation
speotrum from only a few points, The interpolaticn was done in
such a way that the EEM c¢f NO9 and the EEM of fly ash were eacgh
bilinear (i,e,, r=1 for each). The fly ash EEM was definitely
not bilinear out to 355 nm in the literature, but the simulation
was done over a muoh narvrower range of excltation wavelengths,

The fluorescence lidar EEM was a linear combination of
the NO, and the fly ash EEM, &Emisgsion speotra of the NO,, the
fly ashf, and the mixture at one excltation wavelength aré shown
in Fig. 1, A concentration for NO, of 100 pph was chosen for the
unknown because *8 was the maximum©conocentration measudured by
Gelbaochs et, al, in the amblent atmosphere of a oity., The
ooncentration of the fly ash was vhosen so the peak fluorescence
of fly ash was twioce the peak fluoresocence of NO22 which was also
consistent with measurements by QGelbwachs et., al. The EEM of
the unknown from whioch the fluoregocence lidar returns were
generated had two components (l.e., r=2), For caloulational
@aase, the fluorescence lifetimes of the No2 and the fly ash were
assumed Lo be the same,

Qur hypothetical lidar Lls now described, The lidar uses
three exoitation lines: 457.9 nm, 488.0 nm, and 514.5 nm., The
energy of each pulse 13 0.1 J and each pulse i3 much shorter than
elther the fluorescence lifetime or the detector integration
timea., Other parametersa of the detector are gilven in Table 1.
The receiver fleld of view was assumed perfeotly matohed with the
laser divergence. The emission spectra were collected from 400
nm tc 750 nm in % nm increments, FElastic scatter was not
inoluded as there are methods of tiltering 1t out of the
fluorescaence lidar return., The recelver was shot nolse limlited,
The lidar path was horizontal through an atmoaphere wvith a 23 km
vigibility.

We averaged the slgnal over 6000 pulses per excitation
wavelength for each trial, Adeq .ate lidar returns with sky
radiance and photon noise could not be gathered with a much
smaller number of pulses. Thils number is far too large {or many
applications of fluorescence lidar, However, fluorescence lidar




may pﬁuposgible for gases whooe c¢ross section 1s much larger than
9x10 em” or whose concentration is much larger than 100 ppb
because fewer pulses would be necessary. The statistical average
and standard deviation of the overlap index was calculated from
17 trials, The error bars were defined as plus or minus a
standard deviation,

Iv. Results and Discussion

A threshold (i.e., rejection level) for the overlap index
is required to determine whether a compound 1s present or absent.
We determined one possible criterion as followa, We assumed that
the fly ash background we used was either very typlical or worse
than the actual bhaokground., For example, aerosols can be
monitored by independent techniques. The RAFA analysis would
then be discarded if the aerosol concentration was too high. A
reasonable threshold under these condlitions would be between the
two curves,

The following numerical definition of threshold was
tested, Tha overlap indlices with no sky radiance are clearly
separable out to 10 km for the mixture of NO, and fly ash (p. )
and the fly ash background alone (p,). A sl%ght dependenoe 8n
distance was obsgserved for both p aRd P,y 8¢ a threshold, pt.that
was also dependent on distancs wls dofiRad. The threshold, Py
was defined a3 the average of pm and pb, i.e.,

P * P
p, = -Bog-l (2)

L

Any p above p_. Indicates the presance of N(, and any p
below p, Indicates thé absence of NO.. This criterfon presumes
that thg user has antlcipated the wogse fluorescence background
Iinterferent possible in a given situation,

The simulation was done with photon counting (i.e,, shot)
nolso and night time sky radlance, The mean sky radiance was
subtracted from the signal because methods of subtracting a
constant hackground are avallable to experimenters, The shot
noise asnoolated with sky radiance was not subtracted from the
signal becauso shot nolse 12 random. Actudal 8Ky radiance will
vary greatly under fleld conaitions, The values of sky radiance
used here are crude approximatlions of a typical mnonlilt night.

The noise from the sky radlance severely limlted the
ahlility of the fluorescence lidar to distingish btctween the
pregsence and ahsunce of NO?. The functional dependence of the




average overlap index on distance 1s shown in Figure 2 for night
time sky radlance. The overlap indices with aond wichout N02 are
indistinguishable for distances greater than 460 m,

There uare conditions under which the sky radiance would
be insignificant, The functional dependence of the average
overlap index with the NO, calitrant are shown in Figure 3 for
the neo sky radiance ard a "shot noise limited signal, The overlap
indices with and without NO_, do not intersect for distances less
than 3 km. This is a vast %mprovement over the night time sky
radliance situation.

Simulations done under day light conditions showed tLhat
shot noise from day time sky radiance reduced the overlap index
to zero with and without NO? for all reasonable distances,

V. Conclusions

Photon counting noise with sky radiance severely limits
the ability to detect NOE. 3Ky radiance with noise limits the
range of the fluorescenceé lidar, snd limits fluorescence lidar te
night time applications. The photon nolse from the sky radiance
iz a larger problem than photon nolse from the fluorescence alone
because the sky radliance {s stronger than the {fluorescence
signal. These limitations are fundamental to lidar and not a
limitation of the factor analysls-rank annihilatlion technique
alone,

The nolse from sky radiance problem may make the ?
detection of NJO, impractical., Th2 large number, 6000, of pulses
per excitation wWavelength required for signal averaging would
occupy a large amount of the observers time. The experimenter
would have to walt 60 35 per excitation wavelength at a very high
repetition rate of 100 Hz, This would not be a real time
measuraement for many applications. Fluorescence lidar may be
practical for atmospheric constituents with much higher
fluorescence cross sections or concentrations than was used in
our simulation.

These calculations are snow that RAFA vould be limited at
large d1stances by shot nolse and sky radiance. The sky radiance
used ir this study was a crude cruae approximation., Better
evaiuations of the fluorescence lidar technique will require
preclse sky radiance data under the conditions of the
application,

The fluorescence lidar apparatus that we simulated is
feasible bul would be very marginal. Our fluorescence lidar
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model is beling used to invastigate the effectiveness of possibie
improvements, Narrowing “he receiver fleld of view could reduce
the sky radiance noise. However, the 2 mrad used in our
simulation 1s already too narrow to easily achieve. Using an
excitation source with a greater the number of lines would
enable the lidar to discriminate NO, from even more complex
fluorescence backgrounds than the s%mulated fly ash., In future
studies, we will evaluate applications for fluorescence lldar

using better data on fluorescence spectra, cross sections, and
sky radiance.




Table 1: Lidar parameters

Laser pulse energy -- 0,1 J

Number pulses -- 6000

Receiver Mirror Diameter =-=- 0.6 m
Receiver fleld of view =-- 2 mrad
Spectral Bandwidth of System -- 2.5 nm
Transmitter Efficliency -=-= 0.55
Receiver Efficiency -=- 0.54
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ABSTRACT

We show both theoretically and experimentally that a random distribution of
spherical microparticles may be used as a spectral hole burning memory. This
Microparticle IHole Burning Memory, which can be both written and read at room
temperature, is a diract consequence of the properties of morphology
dependent resonances of microparticles.

* present address, Dept. of Applied Physics, Columbia University
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The narrow electromagnetic morphologically dependent
resonances(MDR's) which are so distinctly present in single particle
experiments are virtually washed out in experiments on polydispersed
distributions of particles. This is even the case for the narrowly distributed
perticles produced in space, "space beads’.! In this |atter we present a means
for encoding information into such a distribution of particles which takes direct
advantage of the narrow MDR's, This procedure known as microparticle hole
burning, to our knowledge, Is the first axample of the use of a collection of
microparticles as a medium for persistent spectral hole buming. Unlike all other
condensed matter hole burning media the microparticie hole burning medium
does nct have to be either written or read at cryogenic temperature 2; it
operates at room temperature,

The piinciple of the Microparticle Hole Burning Memory(MHB) is
based on the fact that a given MDR ocours at a wavelength in proportion to the
particle's size(with the refractive index held constant). Thus & collection of
particles having a distribution of sizes gives rise to a photophysical response
which is heterogeneous. A good example of this etfect, as we will ooe; ooours
for the case of the fluorescerice excitation spectrum taken on an ensemble of
dyed microspheres. Such a spectrum is composed of the sum of spectra from
individual particies,3 sach with resonances occuring at ditferent wavelengths.
Thus the nomal homogeneously broadened excitation spectrum of & typical
dye at room temperature is found to become inhomogeneous for
measurements on an ensemble of dyed particles. Memory may be imprinted
by alaser, for example, by prefarentially photolyzing molecules within patticles
having an MDR at resonance with the laser wavelength. The memory may be
read out by taking the fluorescence excitation spectrum; photolysis causes
fluorescence to be reduced thus putting holes into the excitation speotrum, In
what follows we review important aspects ot MDR's, construct a simple model
for understanding microparticle hole burming, and present resuits of
experiments which confirm our basic idea.
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A Spherical particle of radius a iradiated by & plane wave of
wavelength A exhibits an enhanced internal field when its optical aiie X
(circumierence to innident wavelength ratio, X=2ra/A) corresponds to a
resonant oondition. These resonancas are distinguished by their polarization
P (l.e., TE or TM), angular momentum &, and radial order number s (i.e. the

number of nodes of the wavefunction inside the particle). A general mode ie
labelled Py q. The "free spectral range" In X between Py y snd Py 44 4 18

dependent chiefly on the refractive index, and vonsequently the wavelength
ditference between Py 4 and Py, 44 o, AA, I8 inversely proportional to X and

proportional to A (i.e. the larger the panicis size the closer the apacing in
wavelength near & given wavelength).4
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Fig.1.Simulated nomal random distribution of 104 polystyrene particies
having & mean radius of 1.44 um and a standard deviation of 1% of this
size. The arrows indicate the parts of the distribution in resonance with
@ laser at 588.3nm.




In Fig.1 we show a simulated normal random distribution 5 of 104
polystyrene particies having a mean radius <a> of 1.44 um and a standard
deviation to average size ratio ag/<a>of 0.01. The arrows indicate the sizes of
particies within the distribution which have MDR's in resonance at 588.3nm,
Our goal is to model the flucrascence excitation spectrum of this ensemble.
Since fluorescencs is incoherent, an excitation spectrum for the distribution in
Fig. 1 may be constructed by adding the Mie absorption of each of the
paricles. The curve in Fig.2a is the Mie absorption of a single particle at the
center of the distribution (a=<a>=1,44um) using a refractive index of 1.59 +
10°6i,
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Fig. 2. (a) Simulated fluorescence excitaticn spectrum for a particle at the
center of the distribution, a=1.44u,; (b) Simulated fluorescence
exoitation spectrum for the particie distributior: in Fig.1.

The resonant features are clear, As the size of the panicie changes the
resonances shift in anoordance with our previous discussion. The sum of the
absorption from all 104 particles in Fig.1 is shown in Fig.2b . We see that the




oollective fluorescence(Fig.2b) has lost vinually all of the detail piesent in the
single particle spectrum. Now we suppose that an intanse laser is projected
onto the distribution at & wavelength A, of £88.3nm. Although the rate of
photolysis is expected to vary spatially due to nonuniform absorption, for
simplicity we assume that this rate is propoitional to the power absorbed by the
entire particle. As a consequence the fluorescence will fall exponentially with
axposure time. Using this recipa tha initial fluorescence from each panicle of
size & s muitiplied by F(&) = exp|-B8G(a)], with G(a) =
aaQa(mmw)/<a>%a(2ﬂ<a>lkw). where " (X)is the Mie ahsorption efticiency
at optical size X, and 8 is a parameter which is propcrtional the incident
intensity of the photolyzing light, the quantum efticiency for photolysis and
time. Fig.3 shows the fluorescence excitation spectra before (3=0) and after(B
= 1 or 20) the simulated photolyais. As one can plainly sae, narrow holes are
predicted which are clearly distinot from the noise due to number fluctuations,

k should be noted thst these holes become broadened beyond the width of
the Tkgq ¢ resonance as i3 increases.
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Fig.3. Fluorescence excitation spectra before(3==0) and after two simulated
burns (B=1 and 20) on the particle distribution in Fig.1.




Although all three sizes indicated in Fig.1 oontribute to the hole at
the "write" wavelength \, (i.e.588.83nm), the feature at 538nm in Fig.3 is
principally contributed to by particles near the centor of the distribution,

_ av1.44um. The fluorescence of these particles are bleached by stimulating their
» TEp20,1 resonance. Once bleached the particles will not fluoresce when probed

at any of their other resonances. The feature at 688nm in Fig.3 is due in fact to
the TM1g 1 resonance of particles near 1.44um. Such a feature will be termed
subsidiary since it owes its axistence 10 on'y one of the three groups of particles.
In this respent it is interesting to note that the model predicts that such
subsidiaries become less distinct as the distribution becomes vroader and
oontaitis more resonances which can be stimulated by the "write" wavelength
(e.9. a distribution such that cg/<a> >> AMA), All particles in resonance at Ay

contribute to the hole at this wavelength, however, other resonances (l.e. the
subsidiary resonances) of these particies are separated from Ay bv an amount
which depends distingtly on thelr individual sizes, Consequently the subsidiary
- | resonances from difterent particies in the ensenble will not be in register; these
subsidiaries becoms muted in comparison to the hole at Ay. In the experiments
to fullow we have chosen just stich a distribution.
Our experiments were performed on dyed latex particles (<a>
=12.1 pm, gg= 2.2 pm) on a cover glass slide, Latex particles dried from a
hydrosol were dyed with Nile red by stirring and sonicating the particles in a
10°4M xylene solution. Following centrifugation and decanting, a 1% Triton-X
solution wes added to the test tube containing the particles. After further stirring
centrifugation and decanting, water was added. The contents of the test tube
were then agitated by stirring and sonicating. This resulted in a resuspension of
the riow dyed hydrosol panticles, A drop of this hydroscl was piaced on a cover
gless elide. After air diying, this slide was placed on tho stage of & fluorescence
microscope and irradiated from above by a CW dye laser beam at 80° from the
vertical. Fluorescence was isolated by a filters (Corning CS 2-59 and CS 2.60)
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and detected by a cooled photomultiplier. The fluorescence from approximately

2000 particles |

n an area of ImmZ2were viewed by this detector.
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Fig.4. Fluorescence exadtation spectra taken before(a) and after(b) projecting a
relatively intense laser on the sample at 572.3nm.

Fig.4a shows the fluorescence excitation spectrum recorded on the
sample at an incident intensity of 0.4 mW/om?2 over a period of 10 minutes.
Following this scan the sample was irradiated for 6 minutes at 40W/om?2 with the
wavelength fixed at 672.3nm. Fig.4b shows the resuiting excitation spectrum

taken under the same oconditions as in Fig.4a. The overall reduction in

luminescence of the scan in Fig.4b in comparison with Fig.4a Is due to
photolysis of the Nile red dye. The "hole" in the spectrum in Fig.4b at 572.3nm
is apparent. The lack of an apparent subsidiary hole is consistent with our model.
The breadth of the hole is considerably wider than the width of a narrow
resonance for particies of this size. However, this effect is similar to the effect

which occurs in the model distribution for large B.

79




Although our model discloses the basic idea behind MHB, there are

many theoretical questions to be answered in connection with this new memory
system:
(1)How does one include the effects of the substrate? (2)What is the effect of
the proximity of one particle to another?(i.e., many paricles touch in our
experiments) (3) What is the ocngequence of a radial dependence in the
distribution of dye within the particlea? With respect to the first question, our
owh measurements, and the measurements of others® indicate that resonances
remain intact on a glass surlace, The seoond question is much harder to answer,
however recent caloulation oi light scattering from bispheres suggest an
alteration in spectra for two identical particles Ir{ contact. Howaver, even in this
extreme case resonances are still predicted.’

MHB may have intereating applications not only as a memory device
but also in the diagnostics of particlie size distributions. As we have already
pointed out the degree to which siibsidiary features are present is controlled by
tha ratio of ag/<a> to AMA.

Both theoretical questions and the possihle use of MHB as a tool for
evaluating size distributions are currently under study in our labotatories.

We would like to acknowledge the sssistance of John H. Blalock for
making the optical measurement. Research at Oak Ridge was supported by the
U.S. Department of Energy, Office of Energy Research, under contruct DE-
AC05-840R21400 with Martin Marietta Energy Systems, Inc, S. Arnold and C.T.
Liu were cooperatively supported by the NSF and the U.S. Army Chemical
Research [ evelopment and Engineering Center(under ATM-89- 176871) and
by a contract from the Joint Services Electronics Program.
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B. PHYSICAL CHARACTERIZATION - LIGHT SCATTERING & INVERSION
CONSTRAINED LINEAR INVERSION OF LIGHT SCATTERED FROM NON-
ABSORBING, NEARLY IDENTICAL SPHERICAL PARTICLES FOR SIZE AND
REAL REFRACTIVE INDEX

Matthew R. Jones**
Bill P. Curry*
M. Quinn Brewster**

*Azrgonne National Laboratory
9700 South Cass Avenue
Argonne, I1. 60439

**University of [llinois at Urbana-Champaign
Department of Mechanical and Industrial Engineering
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The Fredholm equation of the first kind representing the light scautcring by a narrow log normal distribution
of non-absorbing aerosol particles is inverted to obtain the pr.ticle size distribution function and real
refractive index. The deconvolution technique is a generalization of the process previously developed to
obtain particle size diswribution functions when the optical properties of the particles are known. The
solution is obtained by expanding the scattering kernels and the particle size distribution function as linear
combinations of Schmidti-Hilbert eigenfunctions. The orthogonality properties of the Schmidt-Hilbert
eigenfunctions and of the eigenvectors of the kemel covariance matrix are employed to obtain a solution
which minimizes the residual errors subject to a trial function constraint, Application of the trial function
constraint requires prior knowledge of the type of distribution. The inversion process is described briefly,
and the results from the inversion of several synthetic data sets are presented. It is anticipated that future
improvements in the technique will result in a quantitative analysis of the error in the size distribution and
in the value obtained for the real refractive index. Optimization of the inputs should lead to a reduction in
the number of measurements required for a successful inversion. Also, it is anticipated that further
generalization will allow for the retricval of the imaginary part of the refractive index.

RECENT PUBLICATIONS
A) B. P. Curry, "Inversion of Single Size Particle Scattering Data by Use of a
Constrained Eigenfunction Expansion” , Proceedings of the 1990 CRDEC
Scientific Conference on Obscuration and Aerosol Research, In Preparation.

INTRODUCTION

Measurements of the light scattered by a particle provide an indirect way of
determining the particle’s properties. Techniques for solving inverse scattering problems
are of great interest due to the wide range of potential applications in areas as diverse as
combustion, meteorology, geology, and bioengineering. This paper describes a
generalization of the constrained eigenfunction method developed by Curry! to solve the
inverse scattering problem when the optic.l properties of the scatterers are known. The
method described here retrieves the particle size distribution function and the real part of the
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refractive index by deconvolving the synthetic measurements of light scattered from a
narrow log normal distribution of non-absorbing aeroso! particles. A brief description of
the technique is followed by the presentation of results from several inversions of synthetic
data sets. A full mathematical development of the technique was presented at the 1990
Symposium,

THE SCATTERING EQUATION

In the development of this inversion process, attention was focused on simulating a
possible experiment in which measurements were made of the light scattered from nearly
identical, non-absorbing spherical particles. It was anticipated that the differential
scattering cross sections would be measured. The differential scattering cross sections are
equal to the convolution of the particle size and refractive index distribution function
(PSRIDF) with the scattering kernels. Thus, the following Fredholm equation of the first
kind relates the measured differential scattering cross section to the desired particle size
distribution function.

0o
(-]

G=G"+30G = Igf(x,n)K(x,n)dxdn 1)
1
The vector G represents the set of measured differential scattering cross sections.
The vector G° is the set of error free differential scattering cross sections and the vector 8G
represents the error associated with each of the measurements. The desired PSRIDF is
represented by f. The scattering kernels, K, are also differential scattering cross sections,
and they depend on the polarization of the incident light and €2, the direction in which the
light is scattered, as well as the size parameter and the refractive index of the particle.
When the incident light is polarized parallel or perpendicular to the scattering plane, the

scattering kernels arc simply the ratio shown in Equation 2 where i represents the Mie
intensity functions2,

i(polarization,£2,x,n)

K(polarization,£2,x,n) = !

(2)

DECONVOLUTION METHOD

The deconvolution method outlined in this scction is simply an extension of the
derivation given by Curry to include an unknown real refractive index!. References 3 und
4 are good sources for information on Schmidt-Hilbert theory.

Define a function of size parameter and real refractive index such that
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M(xnx'n') = 3 Kj(x,mKj(x',n') (3)
]

where j runs from 1 to the number of measurements made. The kernel covariance matrix is
defined as

on

Njk = JJKj(x,n)Kk(x,n)dxdn 4)
1

The scattering kernels can be expressed as an expansion of the Schmidt-Hilbert
eigenfunctions of M, and the eigenvalues and eigenvectors of the kernel covariance matrix.

Kk(x,n) = E Vhguloixm) )
J

Since f(x,n) is sourcewise representable, the PSRIDF can be written &s an
expansion of the eigenfunctions3,

f(x,n) = 3aj®j(x.n) (6)
]

Substituting Equations S and 6 into Equation 1 gives the following expression for
the unconstrained expansion coefficients aj

1 i
aj=—= g Gkujk o))
VA

The use of these expansion coefficients produces highly oscillatory, unsatisfactory
PSRIDFs. This difficulty is overcome by the introduction of a trial function constraint,
A performance function is defined as

00

Q= EBGJZ + yJJ(f(x,n)-f‘(x,n))zdxdn (8)
J 1

where fY(x,n) is a trial function of the assumed form and 7y is a Lagrange multiplier.
The performance function can be expressed in terms of the expansion coefficients,

the eigenvulues, the eigenvectors, and the set of measurements. The constrained expansion
coefficients are then determined by finding a minimum in Q with respect to (8j).




t
aj)vj + 78

¢
aj—lj+‘y @

The optimal value of the Lagrange multiplier must now be determined. It can be
shown that the square norm of the error introduced by applying the constraint is bounded
by the parameter referred to by Curry as the residual relative variance or RRY!, The
optimal value of the Lagrange multiplier is found by tninimizing the RRV with respect to v.

The constrained PSRIDF is calculated from Equation 6 with {a;} replacing the {aj).

Once the constrained PSRIDF has been obtained, the real part of the refractive

index is retrieved from
(- -]

JJ.W(n)fc(x,n)dxdn
Wing) =

[ Jf’c(x,n)dxdn
1

ng = W-1(W(ng)) (10)

where W(n) is a weighting function. The results presented in this paper were obtained
using the phase shift squared, x2[n-1]2, as the weighting function, Physically, this
weighting function corresponds to the small argument form of the Anomalous Diffraction
approximation to the extinction efficiencyS.

To summarize, the deconvolution proceeds according to the following steps:

1. Equation 7 is used to calculate the unconstrained expansion coefficients.

Information obtained from the unconstrained solution is used to determine

the nature of the trial function.

2. The optimal value of the Lagrange multiplier is determined by increasing

¥ from zero until a minimum in the RRV is reached. This value of vy is used

in Equation 9 to calculate the set of constrained expansion coefficients.

3. If the rms value of the residual errors is less than or equal to the expected

error, the PSRIDF is calculated using Equation 6 and the real part of the

refractive index is calculated from Equation 10. Otherwise, the trial
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function expansion coefficients are set equal to the constrained expansion

coefficients, and the procedure is repeated beginning at step 2.

4. If the peak value of the PSRIDF and the retrieved real part of the

refractive index are within a specified tolerance of the trial size and refractive

index, convergence is obtained. Otherwise, the trial function expansion

coefficients are set equal to the constrained expansion coefficients, and the

procedure is repeated beginning at step 2,

Three more matters need to be discussed before presenting the results of the
deconvolution of several synthetic data sets. First, each of the synthetic measurements are
normalized by the average of the measurements. Because of the difficulties associated with
making absolute scattering measurements, it is anticipated that such relative measurements
will be made in an actual experiment. Secondly, experience has shown that it is helpful to
weight the scattering kernels by the imprecision estimates!6. Finally, the use of an
numeric filter is useful in smoothing the PSRIDFs, The filter simply averages the values of
the PSRIDF at three neighboring sizes, and sets the value of the PSRIDF at the maximum
and minimum sizes to zero,

DECONVOLUTION OF TEN SYNTHETIC DATA SETS

The intention here is to simulate an experiment in which measurements are made of
the light scattered from nearly identical, non-absorbing spherical particles. Therefore, it
was assumed that f(x,n) is the product of a narrow log normal distribution in x and a Dirac
delta function in n,

f(x,n) =

1 exp{ 218(n-ng (11)
\J 2% xIn(o) ‘

In all ten cases presented in this paper, o, the geometric mean standard deviation, is 1.01.
Thus, the distribution is extremely narrow, and the median value xg corresponds to the

peak value. Normally distributed random error with a standard deviation of 5% of the
original value has been added to each synthetic data set. Sizes between 5 and 10 m with a
step size of 0.05 wm are considered. The possible values of the real part of the refractive
index vary from 1.4 to 1.7 with a step size of 0.01. The incident light is linearly polarized
with a wavelength of (0.5145 um. Synthetic measurements for incident light polarized
parallel and perpendicular to the scattering plane are calculated at 50 polar angles ranging
from 5° to 175" in steps of 3.47°. The Mie intensity functions used to calculate the
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scattering kernels are generated using BHMIE written by Bohren and Huffman. All ten
synthetic data sets were generated by a third party, so the authors are unaware of the peak
size and refractive index of the PSRIDF prior to inverting the data.

In each case a preliminary solution is obtained in which the entire range of real
refractive indices are considered. Once a value for the refractive index is obtained the,
range of refractive indices is narrowed to include only the 2 or 4 refractive indices closest to
the preliminary result. The inversion process is then repeated and the results are taken to be
the retrieved size and refractive index. Table 1 compares the retrieved values with the
original values used to generate the synthetic measurements.

Table 1. Comparison of Original and Retrieved Values

}‘ Retrieved Size (Um) i| Retrieved Ref.Index
5.50 5.40 1.69 1.70
6.00 6.00 1.50 1.50
7.50 7.50 1.41 1.41
9.50 9.45 1.58 1.58
10.0 10.0 1.70 1.69
5.00 5.00 1.40 1.41
9.00 9.05 1.63 1.43
6.00 595 1.56 1.56
7.50 7.45 1.46 1.46
8.50 8.45 1.68 1.68

Several of the retrieved particle size distribution functions are compared with the
actual distributions in Figures 1-4. These comparisons show *hat the distributions obtained
when the size and refractive index are near the center of the x-n space are betier than when
these values are near the boundaries of the space. Improved results would be easily
obtained in the cases where the retrieved values are near the boundaries of the x-n space by
shifting the size and refractive index ranges, and repeating the inversion process.
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CONCLUSIONS
The constrained eigenfunction method has been generalized to include retrieval of
the real refraciive index as well as the particle size distribution function.
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1. INTRODUCTION

Three-phase electrodynamic particle traps were originally developed by
Wuerker, et al.l and others?:3 in connection with fusion research. The typical
configuration involved six planar electrodes arranged in a cubic pattern,
Apertures in the electrodes provided for laser illumination and observation.

Advantages of this type of trap for aerosol studies include relatively
wide—angle optical access (especially if modern conducting glags or fine
photoetched mesh is used for the electrodes) and a geometry naturally suited
to the use of three—axis DC cross—fields for particle manipulation,

2. THREE-PHASE ELECTRODYNAMIC LEVITATION

Ve have constructed and tested a Wuerker—type three—phase particle trap at
frequencies in the range 40 o 1200 Hz and amplitudes of 500-2100V rms. The
cube edge dimension was 3.2 cm. A simplified diagram of this trap is shown in

Filg. 1. Glass, metal and liquid particles up to at least 80um in diameter
were levitated successfully.

3. TWO-PHASE LEVITATICN

It can be inconvenient to interface a 3-phase trap, with very high AC
potentials on all electrodes, with adjacent electrical devices such as
particle injectors cperating at low voltages. As well as the obvious problems
of electrical arcs and corona discharges, there are more subtle problems of
electrical noise generation affecting adjacent image intensifiers, television
monitors and similar sensitive equipment. A variant of the basic three-phase
trap with zero or very low voltages on one pair of plates was therefore
sought.

The gsolution to this problem is shown iu Figure 2. Let the phasors X, Y
and Z represent the instantaneous phases and the magnitudes of the AC signals
applied to the pafirs of electrodes perpendicular to the x, y and z axes,
respactively. To the neutral point N of the three—-phase system shown in 2(a)
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i added an additional AC ‘soltage exactly equal and opposite to that
tepresented by phasor Z, This additional phasor 1is shown 1in 2(b). The
resultant, shown in 2(¢), is a signal of zero amplitude to the z plates, and
signals X' and Y' (which are 60 degrees apart and 1.73 times the amplitudes of
X and Y) applied to the x and y plates. Internal fields remain exactly the
same as in the three—-phase case because the same additional AC voltage is
added to every electrode, yet only two AC generators are now required, as
shown in Flg. 3,

This system is conveniently used with the AC signal applied to the two
palrs of plates with their planes vertical, while only low-voltage DC is
applied to the top and bottom (z) electrodes to balance the force of gravity,
These electrodes carry the injectors and any other sensitive components,

As expected, the new system traps particles just as well as the original
but is much more convenient to use,

4. AMPLITUDE OF PARTICLE MOVEMENTS

Although it might appear that a particle in a dynamlec trap would be in a
constant state of oscillation in three dimensiony, it is found in practice
that the amplitudes are negligible if a vertical DC field is used to bring the
charged particle exactly to the center of the levitation cell and if the mass-
to-charge ratlo is in the stable range. The positions of particles of 20 um
diameter and optimum mass—-to-charge ratio can easily be kept steady within
45um at 60Hz. These excursions are further reduced as the frequency is
increased.

5. EXTENSION TO DOUBLE CELL

Having low—potential electrodes on two of the faces makes it relatively
easy to interface two calls, This double cell was used successfully to
exchange particles in either direction between cells, The entire assembly can
be mounted inside a transparent dome for cuntrolled-humidity expevriments.

6. ADDITIONAL EXPERIMENTS

In addition to the development of the three—phase and two-~phase trapping
systems with transparent planar electrodes, as discussed above, a number of
additional experiments have been carried out. They include:

a) Operation of particle injectors for bouth solids and 1liquids in
conjunction with both types of multiphase traps.

b) Selectlon and manipulation of speciflc particles has been demonstrated
by moving the desired particle to the exact center of the cell and
progressively rejecting other purticles by quickly removing and restoring the
correct AC driving voltage. Additional studles of stability parameters will
be 1ecessary to put this technique on a more scientific basis. At pre:ernt it
depends greatly on the skill of the operator.

c) After launching positively chai, :d particles (20 micron pglass spheres),
negative particles weras injected intuv the same cell and the resulting
collisions observed by eye. Up to four or five charge exchanges were counted
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in some cases before a particle was lost. This work involved highly-charged
positive particles and lightly-charged negative particles to reduce the chance

of complete neutralization (and hence loss) of the original particle after the
first collision,

d) A 5 watt argon laser has been installed and has been used to illuminate
levitated solids and liquid droplets. Some interesting effects involving
asymmetrical evaporation and large resultant forces on droplets have been
observed. These merit further study.

e) A variable-frequency chopped-beam helium—neon laser has been used to
study the motions of particles in a multi-phase trap. All particles in a
glven segment of the trap orbit in the same direction relative to well—defined
planes of symmetry. The major orbiting frequency is at the drive frequency
although interesting perturbations occur when adjacent particles interact.

f) A double—~liquid injector is in the final stages of construction so that

oppositely-charged liquid droplets can be injected and manipulated in and
between the two sections of a double cell.

7. PROPOSED FUTURE WORK

Future work will include the study of controlled addition of one aerosol
droplet to another. Theoretical studies of the multiphase stability criteria,
with gravitational effects included, are planned, Additional work 1is
desirable on methods of particle selection and manipulation.
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ABSTRACT
Studies of light scattering at an angle of zero degrees by single
particles have been undertaken. Calculations for single spheres, and both
calculations and measurements for glass fibers are presented. The
measurements on glass fibers were made using the 0.5145 pm line from an
Ar* laser. Data have been obtained as a function of fiber radius from 1 um to
35 um and are in excellent agreement with theory. The measurement

technique is similar to the two beam coupling technique we used in previous
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measurements. However, the present approach is simpler and more robust.
It is based on the fanning of a coherent light beam in a photorefractive
BaTiOj crystal.

Future work will be directed towards increasing the sensitivity so that
zero degree scattering by single spheres and other microscopic particles
can be measured. Attention will be given to measurements of the scattering
angular distribution in the vicinity of zero degrees with millidegree angular

resolution,

Introduction

Light scattering near, as well as precisely at, an angle of 0° is of special
importance for a variety of reasons. These mc!ude.: (1) The scattering
amplitude and phase at 0° gives the extinction via the optical theorem; the
latter {s an important fundamental relation underlying a wide body of physics
but has previously not been directly verified in the optical region.m (2)
Scattering near 0° is so large it significantly affects light propagation
through dust, smoke, haze, etc,; consequently, it plays a critical role in
imaging and light propagation. (3) Forward scattering can produce
erroreous results in experimentally measured optical extinction coefficients
and several algorithms have been used to overcome these difficulties.!?: 3l
(4) For identical scattering particulates, there is a coherent scattering effect
at zcro degrees that, although not yet observed, should increase the
scattered intensity by a large factor.*l (5) Mueller matrix elements at a 0°
scattering angle have been shown to permit classification of the shapes of
scattering particles into six symmetry classes, including the class of

(5}

particles with no symmetries, (6) Finally, scattering at 0° provides an

accurate measure of particle projected areas; in particular, it ylelds an

accurate measure of the radit of scattering spheres that is relatively

independent of their index of refraction.
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Theoretical Results for Scattering by Spheres at 0°

Item (6) 1s of special importance and some theoretical results are
provided to illustrate it. Consider the Mueller matrix elemeni &;, that gives
the scattered irtensity I for an unpolarized incident {nionsity I (i.e.
1;=S,,I). For a sphere scattering at 0°, S;,(0%=|8(0°) 2, wi-re 8{0") is the
complex scattering amplitude.4! Fig, 1 shows S,,(09%10® as a function of
the index of refraction for three spheres whose radil differ by 5%. The
wavelength is A=514.5 nm. Clearly, for all indices of refraction greater than
approximately 1.1, a determination of $,,(0°) to an accuracy of =10% 1is
sufficlent to determine the radius to an accuracy of ~3%.

160
140 4t
120 l 2=21 pum
100 - l a=20 um
: [T YN i radd 3
80 — A PANWRVAVANAVAAWWWI 2=19 Lm
.
60 -
-
40 | 1 T t T | T I I 1 T T 1 1 ¥ 1 Al T
1.0 1.2 1.4 1.6 1.8 2,0

Index of Refractionn

Figure 1. S“(O°)><10'6 as a function of the index of refraction
for three spheres of radii 19 um, 20 um, and 21 um,

For a fixed index of refraction n=1.55, §,,(0°) is shown in Fig. 2 as a
function of radius. Also shown is the diffraction term which gives the
dominant contribution, and which is independent of index of refraction.!®! 1t
is given by,

S11(difrraction)(0°) = 4(“3/7‘-)4- (1)
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Figure 2, $,,(0°%10°® as a function of sphere radius for an
index of refraction n=1.65. The smooth monotonic
increasing curve is the diffraction contribution.
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Figure 3. Superimposed plots of S“(O°)><10'6 as a function of
sphere radius from 1 um to 25 pm for indices of
refraction from 1.25 to 1.60 in steps of 0.05.
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Fig. 3 shows a superposition of the calculated S;,(0°) as a function of
radius for indices of refraction n=1.25 to 1.60 in steps of 0.05. Once again,
it is clear that a measurement of $;,(0°) to an accuracy of ~10% is sufficient
to determine the radius to an accuracy of a few percent, independent of the
index of refraction in this range. This effect on the relative errors is also
apparent by using only the dominant diffraction term to calculate the
relation between errors in $,,{0°) and the radius a,

da _ 1 A[S1 yairraction)(©)]
a 4 Sll(difl'rnction)(oo)

: (2)

Thus, the fractional error in the determination of the radius a is accurately
given by 1/4 the fractional error in the measurement of $,,. Finally, Iig, 4
shows details of the calculations in Fig, 3 for radi from 1 pm to 6 um,

.
6
n=1.,25-1.60
4 — i e e T
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1 2 3 4 5 6

Sphere radius (um)

Figure 4. Superimposed plots of $,;,(0°)X 10°% as a function of
sphere radius from 1 pm to 6 pm lor indices of
refraction from 1.25 to 1.60 In steps of 0,056, The
smooth curve {8 the diffraction term.
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Experimental Background:

Experimental studies on light scattering by small particles are
generally limited to angles from the near forward direction to the
backscattering direction. The limiting experimental factor in the forward
direction, 6 =0°, is the unscattered plane wave which is superposed with the
scattered spherical wave.!”! Separation of the two waves is not "impossible"
but is difficult.

The identifying characteristic of the light scattered at zero degrees is
its phase shift. This phase shift has a spatial time dependence when light is
scattered from a moving particle. Our new technique, which takes
advantage of the time varying phase shift, will measure light scattering at
zero degreces from isolated scatterers that are oscillating on undergoing
translation, The approach is based on transient energy coupling with
coherent light beams in BaTi03.!% ®! Its application to the measurement of
scattering at 0° has been previously described.!’® The present results were
obtained usiny a simplified version based on beam fanning,!1!!

Experimental Results for Glass Fibers:

Fig. B shows a schematic of the experimental setup. The cw Art laser
(514.5 nm) s polarized in the plane of the figure, as is the C- axis of each
BaTiO4 crystal. The first crystal is 45° cut and the second is 0° cut, Each
crystal was a cube of approximately 5x5x5 mm®, For all measurements the
laser power was kept below 10 mW to maintain a relatively long response
time (T~ a few sec). Adjustable apertures Al, A2, and A3 shield the two
crystals and the detector from stray light. The lens collects the light that is
transmitted through the two crystals and focuses it onto the detector.

The scattering sample is a micron size glass fiber whose axis is normal
to the plane of Fig. 5 (and thus to the Incident laser beam). The fiber is

mounted on a 12 rpm syichronous motor that rotates it in a circle of radius
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3 cm. In each rotation, the fiber crosses the laser beamn twice, producing
two pulses of scattered light. The forward scattered portion of these pulses
together with the strong unscattered beam then passes through the two
successive BaTiOg crystals.

Fiber Al A2 A3 Detector

Art laser

|
,’ | |
\
\\ ’/ \ I4ens

Polarizer Ba’I‘ioa crystals

Oscilloscope

Figure 5. The experimental set-up to measure light scattering
at zero degrees by a single glass fiber.

Initially, the crystals were exposed to the direct laser beam for several
minutes. The 45° cut crystal produced a very strong beam fanning at normal
incidence. However, due to the asymmetry of beam fanning, there was some
intensity left on one side of the laser beam. The second crystal further
reduced this background. More than 99% of the incident radiation was
deviated out of the direct beam path, creating a relatively dark background
in the forward direction. Each time the fiber crossed the laser beam, a
pulse of light appeared in this dark background. This pulse was detected
with a photodiode and the intensity was measured with a sampling
oscilloscope. The oscilloscope was triggered by the synchronous motor
which rotated the fiber.

Scattering by glass fibers with radil from 1 pm to 27 um was observed.
The observation solid angle for these measurements was a cone with full
angle of 0.08° centered at 0°. It was determined by the aperture A3, the
collecting lens, and the position of the fiber. The fiber radil were estimated

from the angular intensity distributions of their diffraction patterns.
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Figure 6. The absolute square of the scattering amplitude at
zero degrees, S*(0°)S(0°), vs. fiber radius.

Black dots in Fig. 6 show the measured intensity vs. the fiber radius.
The rapidly oscillating solid line is the theoretical prediction for the
scattered intensity at zero degrees.!?! For reference, the monotonically
inereasing curve is the diffraction term which is proportional to the square
of the radius.!12l Opne fitting parameter, the normalization for the ordinate,
was used. The data shows very good agreement with theory. Slight
variations in the measured intensity are believed to be due to minor
imperfections in the fibers, Specifically, a small nonuniformity in the fiber
cross scetion produces a significant change in the forward scattered signal.
This is precisely one of the reasons that scattered intensity measurements
al 0" are useful for size determinations, (The other principle reason is the
‘elatively negligible dependence on index of refraction for Q° scattering.) At
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times, small noise signals were seen due to dust particles crossing the laser

beam. These were removed by averaging over several measurements.
Finally, Fig. 7 shows the variation of the forward scattered intensity as

a function of the incident laser power for five different fiber radii. The

forward scattered intensity measurements aie linearly proporfional to the
incident intensity as expected.
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Figure 7. Forward scattered signal as a function of input laser

power. Each graph is for a fiber of a different radius
ranging from 1.3u - 45.

Summary

A new technique for measuring light scattering at 0° has been
successfully demonstrated by measuring the forward scattering from a single
micron size glass fiber. Future work will be directed towards measurements
and analyses of the forward scattering by single spheres and other particles.

This novel technique should also be applicable to measurements of forward

scattering from aerosols as well as particle suspensions.
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Abstract

Inversion of light scattering by a single spherical scatterer with or without a luyered
structure is studied. By numerical simulation of the statistical properties of experiments,
we can select those angles that will maximize the ability of the experiment to resolve a
sphere from a layered scatterer. Applying statistical decision theory, we obtuin a criterion
for decision making that minimizes the probability of incorrect guesses.
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Introduction

Inversion problems have existed in various branches of engineering and physics for
a long time, but in the past twenty years they have received far more attention than ever
before because of the available of high speed computers. In the present paper, we are
going to invert light scattering information to recognize an inner structure of a spherical
object. Because intensities of scattering light are highly nonlinear functions of the size and
index of the scatterer, and noise is present, arbitrary pattern recognization is difficult, We
will restrict ourselves to distinguishing two kinds of refraction index patterns (uniform or a
layered sphere) with a range of parameters. We assume that the scatterer may be one of
two kinds of objects: a sphere with a uniform refractive index or a layered sphere with
different refraction indices for the core and shell, respectively, Our problems are: (1) For
given experimental conditions, is therc enough information to make a decision? What is
the best choice of angles to yield the most significant statistics, (2) For given experimental
data, how should one make a decision that minimizes wrong guesses.

We assume that we already know the following facts; The wave length A of the
light in vacuum is 4416 microns, For the u= uniform sphere (hypotheses 1), the varying
parameters are the radius R* and refraction index »*, in the ranges 4<R“/A<8 and
1.533<n"< 1.8, For the /= laycred sphere (hypotheses 2), the varying parameters are the
inner radius R, core and shell wt‘mcuon indices nj, and ng, They am, in the ranges
4SR,,,/7\S7 l.335nm <1.5 and 1.55<nl, <1.8. The outer radius RL, of the layered
sphere is fixed at R., /A=8. Moreover, we assume there is a Gaussian noise added to the
scattered mtcns:ty with ¢//1=0.1, where o is the width of the intensity distribution of the
Gaussian noise and / is the mean intensity of the light scattered at a given angle,

The method of examining general experimental data to decide between two
hypotheses is a clussic problem in decision theory. A procedure in the absence of a priori
information was proposed by Neyman and Pearson' i 1933, "Their results are expressed
in terms of “'maximum likelihood ratios™™, An excellent overview is given by Kendall and
Swart?, A readable description of the Bayes theorem approach to the same problem is
given by van ‘Trees’. The close connection between these two approaches is touched on
by Middleton® in his section on binary detection systems,

Our problem is more general, in that we must estimate some continuous parameters
first, in order to make the best hinary decision. In the present application, these parameters
are radii and indices of refraction, Thus our problem mixes continuous  parameter
esiimation with discrete parameter detection,

Distinguishability

o

We propose 1o study the statistical properties so that we may obtain a eriterion for
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measuring the distinguishavility.

Suppose the experimenial light scattering data have been taken at (spherical)
scattering angles 6; and ¢=0; the intensity of the scattering light per unit solid angle is
denoted as 7(9;). We want to relate the ohservation information to the siructure of the
scatterer, Because noise is always involved and can not be separated from the
experimental data, it will mix the two hypotheses such that they can not be distinguished
when the noise level is relatively high, The noise level depends on the experimental
apparatus, the environment and the kind of data taken, For a given apparatus and
environment, we should measure such data to minimize the relative noise level.

For a single scattering process, the data measured at different angles are not
independent; they are correlated through complex formulas (Mie scattering for a sphere and
shell) Because of the complex relationships of the scattering formulus, we can not
analytically solve and will use numerical simulations to our problem.

Let’s say the object is o uniform sphere with the parameter element n0e {R* 0%}
in the allowed range and the experimental observation iy taken at M angles 8y, ... .0y
Here M is a moderate number of order 10, We cun regard the scattering as a4 mapping
‘rom the parmmeter  space N to an M dimensional  observation  space

{lre,),....,/(eM)} Beenuse noise s preseny, one point in 1 ospace naps v an M
dnnen.sional "box" in LM space. A similar mapping also applies for a layered object, If, af
euch angle ©;, sepurate mensurements with P diflerent polarization intensities are mude,
corresponding to different polarizution of the incident and scattered beam, then PM will be
the dimension for the observation space.  For simiplicity of notation, however, we do not
always introduce an explicit polarization index,

In the following, we will define a resolution criterlon,  First, we generate o set
I} which includes N elements of random parameters n%° in the allowed runges for
hynmhesls J (=1 tor uniform sphere and j=2 for luycnul object), where m=1,.N. Here N
i5 a large number of order 1000, The mth clement n,,, nt the uniform sphete set {n‘”}
has two purameters R und n,,,. and the anth \lt ment n,,‘ of the luyucd ohject set {n'~'}
containg three pmumctcrs R s Mo, Jn and b, 0. With the added noise, one image lur
each of the two sets {n‘ "} oand {n‘ "} oare obtained in the observation spice 1Y, Within
the overlap region of the two images in the observation space L M the two kinds of objects
are indistinguishable from the given M intensity measurements, We will give the definition
of averlap later, An event producing an image in the overlap region of the observation
space is regorded as an indistinguishable event Tor the two hypotheses.  Counting the
number of the events which overlap in the observation space, we may get & measure of
indistinguishability between the two cases, The ratio of the number of overlapped events 1o
the total number events represents a measure of the indistinguishability.

We study the probability properties of the two hypathoacs Inthe observation space

M
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an image point from one hypothesis can always have a probability of overlap with the an
image of the other kind of hypothesis. Therefore we need to precisely define overlap of
images in the observation space. We use N (/(8)) for the number of events such the
intensity is in the range of /(0) to /(0)+d/(0) and N for the total number of events, We
then define an overlap function:

NUD@, M) NaP@, i@y |12
N N

where the subscript p denotes the polarization and the superscript (1) and (2) are for
different hypotheses. The set of N (~1000) points in {nY)} possesses a subset MY’ (@)
which overlap in the sense that it may no longer be possible to distinguish whether case
J=1 or j=2 iy the correct with respect to a single measurement, We can choose a
threshold o, of indistinguishability for 8; and measured intensity /, by using the criteria

FOulpn hin@haey, forall n{e{n®} )

to determine the elements of subset [nY(8;)]. For obscrvations at many angles, the joint
set of subsets for all measured angles

Fp®, 0 iny{n@ = (1)

fn
m‘”(el,...,e,,>|=ir-l.|n“><em 3)

measures the overall fuzziness of the experiment, As an application, we assume the
measurement is taken at given angles 0=285, 40, 90, 105, 1285, 140) for two polarizations (12
measurements).  For simplicity we set all o, to be the same oy ,=o. In Fig. | we show
the original ser (dots) of parameters for the uniform sphere chosen by Monte Carlo
techniques, and its joint subset for 12 measurements (trinngles). The ratio of the numbers
of the elements of the joint subset and the original set is about 109, Therefore, about
90% of uniform sphere events (the dots not covered by the triangle in Fig, 1) are
distinguishable from the layered events in the 1.\ spuce. The superseript 12 is the number
of dimensions of the observation space, that is the number of meusurements, The
remitining  10% of the events for the uniform sphere (the triangles in Fig. 1) are
indistinguishable from the layered scatterer for the given set of 12 measurements,

To produces a bet er resolution between these two hypotheses, a trivial u}a})rouch is
to incrense the number of the detectors so that the events in the new space L™ (M>12)
will not overlap as much as in the originl space '3, In most experiments,
distinguishability is limited by the number of detectors. To make the most of the
equipment for a better resolution, one can rearrange the detectors for some optimized
angles so that the number of the elements in the joint subset is minimized. This can be
done by the following iteration procedure: First we randomly generate two parameter sets
1M} and {0} as initial sampling sets. Use Eq. (4) below to tind the best angle 6, by
taking o minimum of the overlap function F for two polarizations over 6. Substitute 0,
and the original sampling sets into Eq. (5), below, to obtain the subsets [n(8y,] and
(M0,)] by Eq. (5. herating this procedure by using the new sets [)(6,)] in Egs. (4)
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and (5), we will obtain the second best angle 0, and the subset [n‘-’)(Ol,Oz)l. Repeat the
iteration procedure (4? and (5) for angles 0y, 65, 03, * + until the number of elements of
the joint subset [N’(0;,...,6,)] is less than u desired value, With the optimization
completed for i-1 angles, we can optimaize over 6; using:

2 o0
min I {d' Fp@; 1tV ©1,...8i-0)LINP @1,...,8,-)]) @)
p:

N9e M@, 0i-1,0)] I Fp(8,0,m V01, 8L MNP @), 812201,

for all nYeInV’(6y,...,6;-1)) (5)

Here we assumed that intensities of two polarizations (the subscript p) for each angle have
been measurcd,

Decision

In this section, we apply statistical decision theoty to the inversion problem, Let H
and H4 denote the two hypotheses; 1 for the uniform sphere und 2 for the layered sphere,
Suppose we have obtained a set of experimental datu for the intensities at several angles
op(9)). We want to decide which cluss (uniform sphere or lnyered object) the scatterer
belongs to. We can use the least squure fit to find the best fit for the hypothesis A

2
Vp = ?\}’S ; [l uxp(el)"l (9;.11("))] (6)

within the permitted purameter space. A simple stutistic to decide between these cases can
be chosen as v|-vy. Suppose the experimental data are from a uniform sphere, k=1,
Then v Is dominated by the experimentul noise, usually a small value, while v is a large
value because it is not dominated by noise but by the shift because of an incorrectly
chosen hypothesis, For some experimental data the fiting with wrong hypothesis may be
small if the number of the detectors is not lurge enough, The wrong fitting value of v
covers o large range of a uniform scale space. Therefore we use o log scule for the statistic

R=logio(v/vj)

to decide betweein the two hypotheses, The decislon rule can be obtained as follows,
Let's assume we know the the conditional probability P(R |H,) of getting R under
hypothesis A, According to Neyman-Pearson' ™, when a priori probability and the cost of
the decision are unknown, we may use u constraint condition on the probability Pp, of a
"false alarm" is:

Preo= PR |H )R ™

to find the threshold A, where o is the value permitted for o fulse alarm (we say H, while
H is true). After finding the threshold, we shall make decision by the criterion:
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if AGR)>A choose Hq 8

if A(R)<h  choose H 9
where
AR)=PR |H)IPR |Hj) (10)

is the maximum likelihood ratio,

The conditional probabilities, P(R | H)), can be obtained (ahead of time) by
numetical simulation, As an application, we generate a set consisting of 1000 elements of
random parameters for each hypothesis, We then calculate the intensitiss of the light
scattering for these parameters at the angles 0=90, 105, ,120, 135, 150, 165 for both parallel
and perpendiculur polarizations, Finally we add 10% nolse to the calculated intensities and
regard the result as pseudo experimental duta, To get the distribution profiles for both
cases, we also use the least square method

s v (h) 2
V= ll}}'? z [qup (el)_, (ehn ) (] 1)
) G

to fit the pseudo experimental data with the best parameter n®), Here Iy Was computed
for source s (pseudo experimental datn), v} Is the best least square fit for a set of
experimental duta of source s by the hypothesis & within the permitted parameters, Because
we used wide ranges for the parumeters, the intensities have hundreds of osolllations over
the varying parameters, It is difficult to locate a global minimum for vjj, because it has
huridreds of oscillutions over the varying parameters, To make the programs more
efficient, we made lookup tables for the Bessel und Legendre functions, Defining
R*=log,y(v{ /v§) and counting the number of the events in which R* falls into the interval
(R\R+dR), denoted as N(R¥), we obtain the distribution profile for the source s, In Fig, 2,
N(R*) vs R* Is plotted for both sources. The left profile of this figure is for the source
y=| the uniform sphere, while the right one is for the source y=2 the layered object. The
smull overlup between the two curves in Fig, 2. shows that the resolution of these two
cases is quite good.

L), Neyman and E. S, Pearson, *‘On the Problem of the Most Efficient Tests of Statistical
Hypothcues,” Philosophical 'Trans. A, 231, 289 (1933)
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Publlshing Co, New York (1967)

SH. L. Van Trees, Detection, Extimation, and Modulation Theory, Part I, John Wiley und
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“David Middleton, Introduction to Statistical Communication Theory, McGraw-Hill
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Rig. 1. Joint subset and original parameter set for the uniform sphere, The vertical scale
is for R¥/A. The 1000 dots (and triungles) are randomly selected from the available
parameter set {n'"} for the uniform sphere. The triangles are for the elements of the
joint subset of uniform sphere for the 6 given angles and two polarizations; they are the
points indistinguishable from the layered objects, ‘I'he ratio of the numbers of the
triangles and dots is about 10%, or about 90% of the uniform sphere events are
distinguishable from luyered objects. The original parameter set consists 1000 elements,
each one has two components of random numbers for the parameters of the uniform
sphere. The two purameters are the radius and refraction index in the ranges of
4sRY/A<=8 and 1.33sn“<1.8, The measurements are tuken for the intensities of twe
polarizations (parallel und perpendicular) at 6 angles 8=25, 40, 90, 105, 125, 140,
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Fig. 2, Distribution profiles. The vertical axis is N(R*) the number of ¢vents per unit R,
dR=0.1 iy used. The left profile is the distribution profile for the appropriate for uniform
spherical source, while the right one is for the layered scatterer. 'The measurements are
taken for the intensities of two polarizations (parallel and perpendicular) at 6 angles
6=90, 105, 120, 135, 150, 165 with 10% noise. The uncertainty of the parameter ranges
are follows: For the sphere, the two parameters are the radius and refraction index in the
runges of 4SR"/As8 and 1.33sn“<1.8. For the layered object, the three parumeters ure
the mner radius and refraction indices in the ranges of 4<Rj,/As7, 1. 33snf,<1.5 and
] SS"”II‘\ Sl 8
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ABSTRACT

The problem of scattering and absorption of electromagnetic rudiutionct):g particles
can be solved analytically for only the simplest cases, but numerical methods allow a
straightforward extension to particles with arbitrary inhomogeneitics, arbitrary shapes, and
nonlinear response, In this puper a recently developed frcqucncr domain method involving
CFD techniques is reviewed and apflied to the problem of a dielectric sphere of arbitrary
size purameter, Numerical results ndicatinf the promise of finite element methods are
given and recommendations for further investigations are presented.

INTRODUCTION

Mie theory exactly describes the absorption and scattering of a plane electromag-
netic wave by an isotropic, dielectric sphere of arbitrary size and refractive index (van de
Hulst, 1957; Kerker, 1969). This conceptually simple analytical solution is well known,
but it involves cumbersome computations. Since the advent of high-speed computers,
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which utilize parallel and vector processing, much effort has been made to improve the ana-
Iytical scattering algorithms (Wiscombe, 1979 and 1980). However, while it is relatively
simple to generate data for the spherical probleny, the analytical calculations can not be ex-
tended to arbitrary nonspherical particles. If a numerical rather than an analytical approach
is taken, the extension to particles with arbitrary inhomogeneities, arbitrary shapes, and
nonlinear response is more apparent since the general governing equations and the solution
technique remain unchanged.

Previously a finite difference method was aglfalied to the problem of a linearly polar-
ized plane electromagnetic wave scattered by a perfectly conducting sphere (Ling, 1988).
The results demonstrated the applicability of computational fluid dynamics (CFD) methods
to the busic scattering problem. In this presentation, the investigation is broadened by
using & finite element method to model scattering by a dielectric sphere; results confirm that
(})FI% m::thodis ure a promising technique, The objectives of further studies are discussed in
the final section,

THEORY

The problem to be solved consists of 4 plane polarized wave incident on a dielectric
particle; only lineur scattering is considered. Assuming exp(-iet) dependence for all fields,
the electric und magnetic flelds must satisfy the vector wuve equation both inside and out-
sido the partivle;

VIE 4+ KTE =( ViH+k?H=0 (1,2)

whote k2 = w%p, Additlonally, the boundary conditions

hox (B - Eyp) w0 Aox (Hp - Hy) =0 (3,4)

require that the tangential components of E and H must be continuous across the surface of
the particle (Bohren and Huffman, 1983) and the Sommerfeld radiation condition (Stratton,
1941) requires that the scattered fields represent divergent traveling waves us r = oo, In
equations (3) and (4), “I" denotes the extorior region and “11" denotes the internal region.

By introducing two auxiliary scalar functions, the electric und magnetic Debye po-
tentials, u und v (Kerker, 1969; Born and Wolf, 1959; Borghese, ct ul., 1979), it is
possiiwlc to reduce the vector equations (1) and (2) to u set of uncoupled scalar wave
equations:

Vau + k% =0 Vv + kv = 0. (5,6)
The field quantities can be deduced from the potentials as follows:

E=Vx[VeuxTt]+iopvx(v) @)

H=Vx[V(@yx y ] + icoer(ru?'). (8)

Since the field variables ure oscillatory in nature over the infinite domain it is advan-
tageous to reformulate the problem once again, this time in terms of a gencralized amplitude
function which eliminates the oscillations due to the incident field (Ling, 1987). By mak-
ing use of the superposition property of the fields, the Debye potentials outside the particle
can be decomposed into incident and scattered components. The scattered components then
ure written 0
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where f(r,0) is a Debye amplitude function. Similar expressions can be written for the po-
tentials inside the particle. It should be noted that the formulation of equations (9) and (10)
inherently restricts one to the consideration of only axisymmetric problems. For asymmet-
ric cases the ¢ dependence of the Debye potentials can not be factored out explicitly and one
must solve for fg-

By substituting equation (9) into (5) and equation (10) into (6) it can be shown that
the problem to be solved is

2cotd d ofy .
V(i . °r°2‘ ik‘rs% % Kl (.é_f;‘l...,klfl).cl'kltf](kZ ] ;25) = 0 )

12 925, oiklry . 26010 ili9f2 2 2 2, e . okl (12 - 2Y) m
(u) (V(f ) - Eoek2 (i) - e o2 - )) 0. (12)

The boundary conditions (3) and (4) are, in terms of f; and f,:

1
e gllgll olr plyt o ffwé (13)
il I iklr IW
e Al fl e el 8 = = (14)
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where

W(r0) = lkrcose ( ) ﬂ(r (9) -ikr 7
r - ¢O =~ = tan
<in® ) 32 a7

and the radiation condition can be expressed as
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lim 9f im 9 _
r—o0 Frl =0 r—oo =0 (18)
Equations (13) through (16) are formulated for a spherical parnclc where "a" is the radius
of the sphere. For the tﬁt‘:ncral asymmetric problem, equations (13) through (16) must be
satisfied at all (x,y) on the particle surface and the partial derivatives are given by Vf+ n,

FINITE ELEMENT METHOD AND RESULTS

The system of equations is solved numerically on a Cray Y-MP8/864 by a finite
clement method with 9-node Lagrange quadrilaterals (Becker, et al., 1981) using the sub-
routine HCGBLE, part of the Boeing Computer Services mathematical library (BCSLIB,
1989). A multiplier method (Carey and Oden, 1984) is used to enforce the jump in solu-
tion across the particle boundary, which must coincide with element boundaries. The ra-
diation boundary condition is imposed at a finite artificial surface (r << o0) with good
accuracy by using a second-order approximation to the Sommerfeld condition (Buyliss, et

» 1982). Both the radiation boundary condition and the jump in flux condition are
mcorporated into the weak formulation of the differential equation.

Initial investigations have been performed for a CO, luser, that has a wavelength in
vacuo of 10.591 le. incident on a spherical water pamcle that has a refractive index of
1.179+0.071i. The particle was isolated and was surrounded by air that was assumed to
have a refractive index of 1.0. Size parameters that were studied include 2.97, 5.93, and
‘1‘(1) (8)7 which correspond to water droplets having diameters of 10.0 pm, 20, 0 Mni, and

L1,

Results are presented for the 40.0 um case in Figs. 1 through 3, These results
were obtained using a 26x45 uniform mesh having a muximum grid radius of twice the
particle radius and requu‘ed 13.8 seconds of CPU time (w1th a code that has not been fully
vectorized) to determine both f; and f5 over the entire domain, Fig. 1 depicts three-
dimensional views of the numcrlcal and analyncal solutions of the real purt of f5. In these
graphs the incident wave propagates in the positive z-direction, from the left toreground to
the right rear. The particle is centered at the origin which is at the center of the plot, and the
x- and z-axes show distances in micrometers. By comparing the top and bottom pictures,
the excellent agreement between the two solutions can be seen. Plots of the imaginary part
of f5 and the real and imaginary parts of f; show similar agreement.

Figures 2 and 3 show two- dlmcnsnonal views of the Debye amplitude functions f)
and f, on the centerline of the sphere along the z-axis. The incident wave propagates from
left (6 180°) to right (8=0°), so the forward direction corresponds to the right side of the
figures. The numerical solutions are given at the nodal locations while the analytical solu-
tions are represented by continuous curves. Several observations can be made from these
figures, the main one again being the good agreement between the numerical and analytical
solutions. fi and f, are also qualitatively similar, which is expected because of the similar-
ity of the govermng equations given in (11) and (12) and the boundary conditions given in
(13) through (17).

One quantitative measurenjent of the error of the numerical solution over its domain
is given by the meun-square, or L4, norm (Becker et al., 1981), which is defined for com-
plex functions as

= [fue(ee®) aa]2 (19)

whicre e is the difference between the analytical and the numerical solution and_e” is the
complex conjugate of e. The better the nume 5cal approximation, the closer the L2 norm is
to zero. For the 40.0 pm water droplet, the L* norms for f; and £, are both 3.7x10%,
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Figure 4 shows both the computation time and the L2 norms as a function of size
parameter of water droplet. Note ihat the computation times are i1ot prohibitive and that the
relationship between CPU and x is approximately linear. Additionally, the norms do not
increase with increasing x, demonstrating, for examples studied so far, that the accuracy
of the solutions does noi degrade with increasing size parameter. These items
support the idea that much larger spherical particles as well as more complicated scatterers
can be studied without modifying the underlying solution technique presented here.

RECOMMENDATIONS FOR CONTINUED INVESTIGATIONS

Fo!lowing is a list of recommendations for further investigations; a short descrip-
tion of necessary requirements accompanies each suggestion.

(1) Improve current algorithm. Decrease computaiion times through full vectorization of
the finite element code and the use of nonuniform and adaptive grid techniques.
These modifications will become important as more difficult scattering problems, in-
cluding problems in three dimensions, are modelled,

(2) Add postprocessor. If results are desired in terms of fields, scattering amplitudes, the
Mueller matrix, or another quantity, these values can be calculated from the Debye
amplitude functions.

(3) Consider multilayer spheres. This generalization will require minor modifications to
the code to allow the handling of more than one material interface. The solution
technique will remain unchanged.

(4) Cousider arbitrarily-shaped axisymmetric particles for which the axis of symmetry is
aligned with the direction of propagation of the incident field. A grid generating rou-
tine that ailows the user to define an arbitrary surface of revolution must be added to
the code for this case.

(5) Extend the calculations to asymmetric cases. For asymmetric problems the Debye
amplitude functions are functions of r, 6, and ¢ and the problem must be solved in
three dimensions,

6) C_o_m_d_c_r_ngnhmmm If the optical parameters are dependent on the electromag-
netic field, the differential equations that govern the scattering problem are nonlinear.
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» spherical water droplet with x=11.87 and m=1.179+0.071i. (a) Numcricalzsolu-
- tion. (b) Analytical Solution.
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Figure 2. Comparison
of numerical and analyt-
ical solutions of internal
and scattered Debye
amplitude function f,
along the centerline of a
sphere having x=11.87
and m=1,179+0.071i.

Figure 3. Comparison
of numerical and analyt-
ical solutions of internal
and scattered Debye
amplitude function f,
along the centerline of a
sphere having x=11.87
and m=1.179+0.071i.

Figure 4. Trends of
CPU time and L? norms
for water droplets of in-
creasing size parameter
(m=1.179+0.07 1i).

The CPU time is the to-
tal iime for calculating
both Debye amplitude
functions, f; and fj
{including output of the
results).
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ADBSTRACT

A procedure for systematically comparing cxperimental and theoretical Jight
scattering propertics of dielectric spheres —~ essentially an inversion technique —
was developed and applied to synthetic data of a kind obtainable with the Submicron
Particle Analyzer light scattering instrument, We found that with about 12 or more
measurements at varlous scattering angles and polarizations, each with an uncertainty
of £:10%, we could locate a sphere’s parameters on the x-n plane to within a reasonably
small connected area. The next step in this work will be to perform inversions on
actual experimontal measurements from well-characterized spheres.

1. INTRODUCTION

The Submicron Particle Analyzer (SPA) is an instrument built by Wyatt Tech-
hology Corp. for the U.S. Army Chemical Rescarch, Development, and Enginccring
Center (CRDEC) and is used to study light scattering by aerosol particles. It com-
prises « sphericul chamber in the center of which a dilute strcam of sampled acrosol
particles traverses an intense laser beain, onc particle at a time, Light scattered
from cach particle optionally passes through lincar polarizers and is intercepted and
measurcd via 22 optical fibers which arc distributed on the surface of the sphere und
lead to 22 photomultiplicr tubes and assoclated electronies in a separate instrument
rack. The optical fibers, which are terminated on the chamber end with SELFOC
gradicnt index lenses, can be deployed among any of 72 ports on the sphere; the
same nine port scattering angles are repeated along eight semi-great circles 45° apart,

The obj:ct of the SPA is to gather a set of light scattering data from each
acrosol particle, from which physical characteristics of the particles, such as size and
shape, may be inferred. The aim of our current rescarch with this instrument is
to work out the appropriate types of data to include in the measured sets and to

125

————— e




discover the manner in which thosc data sets may be manipulated to reveal the
desired particle characteristics.

2. OUTLINE OF THE INVERSION METHOD

An inversion method, in the context of the present problem, may be said to
have succeeded when it produces numbers for the size and refractive index of a
sphere such that the calculated light scattering propertics of that sphere agree with
the corresponding measured properties. We shall discover acceptable values for x
and n (the size parameter and real refractive index) by considering, onc pair at a
time, “all” possible values of x and n, and repeatedly asking whether the spheros so
specified scatter light in agreement with the measurements, and noting the ones that
do.

As a starting point, we consider spheres represented by their coordinates
on the @ — n plane in the limited region 0 < =z < 10 (diameters up to about 1.6
micrometers in blue light) and 1.3 < n £ 1.8 (which covers most diclectric materials).
The region is divided into a number of much smaller rectangular arcas (pixels) of
dimensions Az and An, with the intention of letting the sphore defined by the central
coordinates of cach pixel stand for all the spheres representod within that pixel. This
scheme succoeds If the relevant scattering propertios of contral spheres in adjacent
pixels differ by less than the expected cxperimental uncertainty. Clearly the pixel
resolution must be at least as small as the accuracy with which we wish to recover
@ and n, but the finer the resolution the lengthicr the inversion computation, We
choose, rather arbitrarily, Ac = .05 and An = .005, This results in an array of 20200
pixels, stacked in 200 columns centered at @ = 0.05,0.10,...,10.00, and along 101
rows centered at n = 1,300, 1.305,. .., 1.800.

To distinguish spherical from nonspherical particles, cight detcctors, without
polarizers, arc located in a ring at scattering angle # = 55, and the incident beam
is prepared in 4 right circularly polarized state. For spherical particles illuminated
in this way there can be no variation of light scattering with azimuth angle, ¢
uniformity of the cight detector signals confirms particle sphericity. Since the exact
path of particles through the Gaussian laser beam is uncontrollable, the incident
bcam intensity for any particle is not known and so only ratios of intensitics provide
uscful scattering properties, The average intensity measurement of the cight ring
detectors will be the denominator for cvery intensity ratio.

We have chosen to distribute the remaining 14 detectors at scattering angles
40°,75°,90°,105°,126°, and 140° with no polarizers and with horizontally oriented
polarizers, and at 40" and 90° with diagonally oricnted polarizers.

126




3. CALCULATION OF SCATTERING RATIOS

All the possible intensity ratios (or, equivalently, flux ratios) were calculated
with a program based on SMIE, the well-known Mie scattering subroutine written
by J. V. Dave® and which we obtained from Peter Barber.

The SELFOC lenses which collect light in the SPA have a small but finite
acceptance angle. An analysis showed that if the magnitude of scattered flux F is
known (only) at points 1° apart, and assumed to vary linearly in between, then the
flux through the SELFOC circular aperture of 1.1° centored at 8 should be written
as

F(6) = .1175 F(8 — 1°) + .7660 F(9) + 11756 F(0 + 1°)

The difference between F(6) and F(6) is very small for the size parameters we
arc considering; novertheless, this correction for the detector acceptance angle was
included,

A typical result iy shown in figure 1, where the flux ratio D040 (Diagonal
polarizer, 8 = 40°) is plotted in two rcpresentations over the x-n plane. We sce
a landscape of sloping valleys and ridges, approximately parallel to lines of nx =
constant, For larger values of n or x the ridges beenme very steep near their crosts, a
consequence of morphology-dependent resonances; the apparent spikes along some
rims arc plotting artifacts, which result because the sampling mesh iy too coarse to
represent the knife-edge ridges.

A smaller pixel size is needed in the vicinity of rosonances, but a resolution
everywhere which iy adequate to this worst case would require fur too many pixels
to be practical. Instcad, we kept the current pixel size and wrote & program to find
the minimum and maximum values of each flux ratio over the sutface of every pixel,
A pixel will be said to be in agreecment with an experimental measurement of 4 flux
ratio if the range between the calculated minimum and maximum values of that flux
ratio overlaps at all with the experimentally determined range: [measured value =+
uncertainty|.

4. TESTING THE INVERSION METHOD

A Fortran program namcd INVERT was written to cxplore and test the
inversion procedure, It first reads in a4 number of files, including the computed
mir/max valucs for the 14 sclected flux ratios, a row of cxperimental detector
calibration cocflicients (used in this study to apply controlled crrors to the synthetic
input data), and an N by 24 array of numbers generated in a separate program and
simulating SPA mcasurements on « run of N particles, When inverting real data, the
experimental uncertainty to be associated with cach flux ratio measurement for cach
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particle will be individually determined, based on the measured absolute intensity,
but for this feasibility study we have just assigned various uncertainties to flux ratios
to observe their effect,

Taking one particle at a time, the program computes the average ring intensity
and flux ratios, and then for cach pixel checks for agreement between the “measured”
range of ratio valucs and the calculated range of ratio values for each of the flux
ratios. In the end, each pixel is assigned a number between 0 and 14 according ta
the number of measurements with which it agreed. (The program does not literally
ask 20,200 x 14 times whether an overlap occurs; the calculated min and max input
data files have been sorted in ascending order, and are accompanied by integer arrays
which relate the sort order to the pixel order. With this information one can write
an algorithm to cstablish pixel hits and misses that runs about a thousand times
faster than direct inquiry). The output file written by INVERT is actually a set of
statemonts that instruct a page formatting program (PageGardon, Bloc Publishing
Corp.) in drawing & map of the x-n planc, Simple changes to INVERT can alter
the information related by the pixel print density.

Because actual moasuroments of flux ratios may occasionally be in orror by
moro than our best cstimate of the oxperimental uncertainty, it may be dosirable to
admit solutions that do not necossarily satisfy all 14 of the avallable measurements.
We wanted to sce how the numboer of false returns grew as we pared the number of
ratios with which agrcoment ways required, and how the domain of solutions varied
with different lovels of experimental uncertainty, A fow of the many tests done are
shown in the following throe representative figuros.

Four pairs of x.n coordinates (indicated by crosses in the figure) wore selected
and used to calculate the four rows of scattering measurcments that would be
produced by the (perfectly operating) SPA instrument sampling the corresponding
spheres. These data then were input to INVERT, and INVERT was told they were
accurate to within £3%. In the figure, the solidly shaded pixels are those on which
flux ratios formed from the input data agree with previously calculated min/max flux
ratios for all 14 cases, Partially shaded pixels agreed with 12 or 13 of the flux ratlo
“measurements”, and open pixels with 10 or 11 of them. We believe 3% s an upper
limit for the SPA accuricy; under the most favorable conditions that accuracy might
bo approached by one or two of the detectors, In the upper right of the figure note
that some returns for 10-11 agreements have alrcady scparated out from the main
cluster. Notice also that for very small particles it will be almost impossible to get
refractive Index information from ratio data,

An accuracy of +10% is more typical of the expected SPA performance, This
is the uncertainty level assumed in figure 3, which show results for the same four
spheres. We still see returns that are tightly clustered, except when as few as ten
agreements are accepted.
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At £30% uncertainty, figure 4, the number of returns with 10-11 agreements is
overwhelming, Even worsc than the high number of these returns is the way they arce
distribuied in disconnected patches all over the x-n plane; there is no hint of where
the right answer might lie. The pattern looks much better for 12-13 agreements and
is quite good for 14 agreements. We expect 30% to be near the lower limit of SPA
measurement accuracy.

We have looked at many plots such as those in figures 2-4, including plots
in which the input data was corrupted with random errors — though always within
the limits set by the assumed experimental uncertainty, There is surprisingly little
difference whether the data is actually distorted or notj the nature of the returns Iy
protty much completely established by the level of experimental uncertainty allowed.
Taking 10% as an average uncertainty value for the SPA, we concluded that requiring
13 or more agreements of a pixel to return it as a (possible) inversion solution should
produce uscful results.

Figure 5 shows the inversion result for 12 sphores, with a 10% uncertainty
level assumed in the measurements, and requiring that a pixel agree with at least
13 of the 14 measurements, The outcome s encouraging. We sce mostly compact
connected patches of returns whose size parameter spread is about 0.3, roughly 0.0S
micrometers for blue light. The refractive index spread is not so useful, about 0.1,
but the product nx is vory accurately determined.

We conclude that it is feasible to characterize small dicloctric spheros with
data measured by the Submicron Particle Analyzer. We will next undertake the
oxperiments to do so, and if successful, will attempt to extend the method to spheres
of larger size and/or made of absorbing materials,
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ABSTRACT

The technique of measuring angular variation of a combination
of Museller matrix elements for a suspension of a single species of
niicroorganisms is considered in combination with the measurement of
tluorescence of the same suspension. The case of germination of
bacterial spores is considered as a dynamic example. The use of the
combined methods is shown to give a characteristic combination which in
this case identifies a population as bacterial spores. This is an
example showing how two optical methods can be combined to give
improved identification of a population of micron sized particles
coliected from an aerosol.

INTRODUCTION:

During the last several years in various collaborations, we
have been considering how biological particles which might be found
in aerosols could be distinguished from background and then identified by
optical means. The advantage of optical methods isthat these are rapid
and should be readily automatable.

We started by studying angular polarized light scattering rrofiles
of various pure strains of bacteria and spores in liquid suspensions.
We found that a particular combination of Mueiler matrix elements,
namely (S34 + §14)/(511 + S31) , shows interesting changes from one
species tc another and is extremely sensitive to size and perhaps
shape changes within a single species. Unfortunately this extreme
verv sensitivity precludes using this technique alone as a unique
"fingerprint" for a bacterial species since bacteria are highly variable in
size and shape depending on growthconditions.

On another front, this year we studied the use of steady-state
fluorescence of bacteria and spores in liquid suspension as a
possible means to rapidly identify populations of microorganisms. We
found that these measurements are relatively less sensitive to size and
shape changes and show some distinguishing features from one
microorgahism to another. The fluorescent spectra however do show
some changes depending on the method of preparation, and these changes
are apt tobe as large as the differences between the fluorescent spectra
of different species.

in this presentation we take the example of germination of bacterial
spores and examine the dynamics of the changes occuring during this
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process using both poiarized light scattering and fluorescence as an
example of the use of combined methods for identification of aerosol
particles.

BIOLOGICAL BACKGROUND:

Sporulation is a means that certain species of bacteria have
chosen , in the course of evolution , for survival of lean times. Among
those bacteria are the Bacilli which are found in great numbers In most
areas in the soll. When a given popu!ation of bagcilli runs out of one or
more essential nutrients a type of differentiation takes place in a portion
of the bacteria present. A spheroidal or ellipsoidal body forms Inside the
individual bacterium which is affected. This object becomes the spore, a
hardened body with reduced water contant which is characterized an index
of refraction elevated above that of the bacterium from which it came
(which was mostly water), a different chemical composition, and greatly
increased survivablility in the face of hazards such as UV radiation,
lonizing radiation, heat, and antibiotics. The relative impunity of spores
to conditions hostile to bacteria is why the U.S. Army must be prepared to
detect and defend against them in the unfortunate event of the use of
biological weapons by an enemy.

A | " "‘\
A Nuclear
Reglon b

Figure 1. A drawing from electronmicrographs of typical Bacilius cereus
spores. '
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There are other more philosophically satisfying reasons to be
interested in bacterial spores.  All the genetic information
to produce unceasing generations of progeny is contained in a single
bacterial spore, however the spore remains dormant until it receives
a signal from its environment indicating that conditions are again
favorable for the reproductive cycle of its bacterial offspring. Because of
the great resistance of spores to environmental hazards, it has been
speculated that the first interstellar travelers came here as spores.

The physical and chemical changes which occur after a spore receives
a signal from the environment to revert to bacterial form are what Is
called garmination. Numerous such changes take place in a period lasting
from several minutes to an hour or more after the germination signal.
Examples of these changes follow.

Biologlcal:
* Spore bacomes less heat, radiation and UV resistant to damage.
* Spore Is ready to start reverting to bacterial form.

Chemical:
* Various chemicals are released into the spores environment.

Physical:
* Optical density decreases substantially, i.e. much less
light Is scattered by the garminated spore.

1. Hoat 2, Add QGorminant

Examplos of
Gormingnia

Small amounuy
of L-slanipe,
Inusine, or

other nuirten

2]

(,% ..... h

Figure 2. Approximate conditions for germination in the laboratory are
illustrated
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Results:

In our experiments we found good germinating conditions for
spores of two species of bacilli, B. megatarium and B. cereus. The resuits
of preliminary optical measurements appear similar for both these cases,
but at this time we are only pre;sied to show the results for
B. megaterium.

To check that germination was ocouring we utilized both optical density
measurements at 600nm, These register a substantial drop within
about twenty minutes when germination occurs. We also examined ~ 100
spores under a phase contrast microscope. When > 80% of these change
from a bright white appearance to a dark grey appearance. This is takenr to
indicate germination.

At various times during the germination process, samples were
taken, chilled on ice, centrifuged and resuspended in a buffer at an optical
density of about 0.1 at 600 nm for examining the emission fluorescence
spectrum for an excitation at a wavelength of ~280 nm. As is seen In
Figure 3, the main change in the emission fluorescence spectrum occurs
after the heating of the spores (~ 20 minutes at 70 degrees)with
relatively little change after adding the germinant.

Fluorescence Spactra for B, Mearreaium

t—— EPOAIL, futst DOy
-0 =d HIAY TAgATYR
B - aveLuy

KX etmivam

210 nw  Eneiraten

400 300
Bmission Wavelength (nm)

Figure 3. Fluorescence emission for B. megaterium spores during
germination
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Since it was found that substantial changes occur fairly rapidly in the
angular pattern for the Mueller matrix combination

(S34 + S14)/(S11 + S13) = (S34/S11)¥

after the addition of the germinant, these measurements were made in
the germinating solution. This solution was found to have very little
absorbance at 633 nm which was the wavelength for these scattering
measurements. As is seen in Figure 4, a small change occurs after
the heating step, but a major shift in the pattern occurs after the
spores are Iimmersed In the germinating solution. The graph labeled
3 In Figure 4 was generated about 40 minutes after adding the
germinating solution during which time most of the rapid changes In
the pattern have already occured. The germinated spores were
allowed to grow overnight in a nutrient medium and the scattering
pattern for the resulting bacteria washed and resuspended In butfer
is seen to have undergone still further changes as Is seen In the

more oscillatory nature of graph 4 In Figure 4.

(8 '/SJ"' Scaitering Results

4= & baoteria grown {n nutrient broth
Wem. . gporen suspended | water '
“®<p heat treated spores : :
= X4 -gorminated spores |

} Scattering Angle
i i | N | s i

| \ i
2 a0* 0 K0* 100* 120° 140°

Figure 4. Changes in angular scaltering pattern for germinating B.
megaterium spores.
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Conclusions:

For the particular bacterial spores we are presently discussing,
the fluorescence emission spectrum changes substantially after
heating, but has very little change in form after germination. The
spectra all appear typical of what we have observed for a number of
bacterlal spores. The other approach, the angular ($34/811)* pattern
shows very little change after healing, but a very substantial and
progressive chanyge occurs during germination. These results, while
preliminary, show that, a combination of optical methods is
useful In studying the dynamics of spore germination and provides
substantial evidence for identifying a given suspension of particles as
made up of bacterial spores.
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ABSTRACT

An optical technique to identify the presence of chemical coatings over rough surfaces is de-
scribed. It is based on selective use of alemonts of the 1x4 Mueller matrix. The full wave theory
of electromagnetic scattering Is used to predict six independent Mueller elements from randomly
rough uncoated (dry) and coated (wet) surface materials as functions of the media complex dielec-
tric coeflicionts, backscattering angle and mid-infrared wavelongths of laser beatn excitations that
are polarization-modulated. The set of indopendent elements at beam wavolengths and backscat-
toring angles {Mmn(Ai,8;)} most sensitive to i optically thick contaminant coatings nre statistically
obtained from the full wave data base, and detection paramaters sots {6, A;} are inputs to another
algorithm designed to idontify the contaminant coating (when present and interacted by the irra.
diating beams).

FUTURE WORK

These algorithms facilitate the operation of a multi-CO;y laser ellipsometer facility now undor
development at CRDEC for tho remote detection of chemical/biological surface contaminants,

1, INTRODUCTION

Tho objoctive of this work Is to develop algorithms that operate on a Mucller matrix infrared
duta baso for the identification of Interstitial liquid chomical coatings (contaminant luyors) over a
rough surface that soparates two semi-infinite media, Statistical tochniques widely used in simi-
lar romoto sonsing probloms are usually hased on spectral roflectance, cmlssivity, or pulso shape
monsuromonts, However, such moasuromonts do not unlquely roprosent topography and physical
propertios of the surface and subsurfuce constituonts, We have doveloped multivariate statistical
algorithms for dotacting the coatings based on amplitude and phase information in the 16-clemont
Mueller matrix, a moasured data flold that completely charactorizos the surfaco at boam onergles of
vibrational resonance In the contaminant and backscattoring anglos whero this contaminant signal
in Btrongest,

An analytical study bused on the full wave approach! directod us first to develop a mothod
for selocting beam backscattoring nnglea (6;) and wavelongths () producing independent Mueller
oloments sonsitive to the contamination and uncommon with the background scatterer (torrain).
The contuminants of Intorest are classos of IR-oxcitable liquids that have a rheology similar to
chemleal warfaro agents, (The contaminant is somotimos referred to as the chemical analyto, and
ls charactorizod by Ity complox dicloctrle coefficlonts ¢y,) The ulgorithms that dotermine theso
dotoction paramoters and procoss the Mucller clemonts around these Input data wore spoclally
designed for the CRDEC expurimontal ellipsomotor sonsor, Typleally, outputs of the first algorithim
will specify tuning throe of the cllipsomater’s four Infrared laser tranamittors to energlos that
vibrationally exclto the analyte (1e., at absorption rosonance whero thoe analyte’s imagluary part of
¢ maximizon), and off-tunc a fourth laser to non-resonance beam enorgy (for measuring a Mucller
matrix roforence). In tho full wave model prodictions, it in assumed that the randomiy rough
conting layer is optically thick. Morcover, the coated and bare surfaces may or may rot have
the same topography, Initial outputs from the first slgorithi train the eolllpromotor sensor to
recognize candidate Muoller scattering clemonts containing foature: of the analyte most useful for
making a detection declalon. The sonsor can be iralned fur simultancous analyte detectious by its
initinlizatlon to (6;, X)) pales specifie to several analy's compounds,
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After detection parameter scts {6;, A\;} arc obtained from the processing of matrix clements
calculated by full wave theory, a second algorithm positively identifies a pa: .cular coating ma-
terial, If an alarm condition exists (indicating probable identification of a contaminant), then a
third algorithm proceeds to deterinine confidence of detection, The detection algorithin is based
on Hotelling's T-squared method.? It involves a principal axis transformation of a vector whose
components are the independent, susceptible (most sensitive to the presence of the coating mate-
rial), Mueller matrix clements ylelding a most probable analyte detaction. The transformed vector
contains specific inforination on the analyte coating that is most reliable for making a statisti-
cally based decision to discriminate among varlous coatings, and between coatings and background
material (terrain).

An overviow of the full wave expressions used to develop a theoretical data base of indepen.
dent Mueller matrix elements has been published recently.® The algorithm that first ‘targets’ all
analytes by determining paramoters sets {6;, A} is described in Section 2, and its accompanying
identification algorithm (if the analyte is present in the irradiation zone) is described in Section 3.
Numerical examples from paramcter selection and analyte detection algorithms are presented in
Section 4.

2. SELECTION OF INCIDENT ANGLE AND WAVELENGTH FOR OPTIMAL
IDENTIFICATION OF THE COATING MATERIAL

For isotroplc rough surfacos, the backscatler Muellor matrix (per unit area) reduces to the
following special form
My My O 0
Mia My 0 0 (1)
0 0 My My
0 0 —-My My

A solectlon of beani incldent angle - wavelength palrs, one per chemleal coating, that produce
the most susceptible Mueller clemonts (to tho coatings and botwooen coatings and substrate) is
performed by the first algorithm In two stages. The initial (6;, A;) solection I based on Mueller
element calculations® by the full wave model for a surface structuro Including two randomly rough
interfacos (Figure 1), The final scloction of these paramoters is basod on oxperimontal data map-
pings of thoe slx Indepondent Muollor elements (1) in a region 6; & 66; and A; £ §); about inltinl
values 6; and A;. For simplicity, the coating Is assumed to be optically thick. Thorefore, scattoring
at tho lower rough luterface of the coating material is noglectod, (Chemlcal coatings thut do not
totally attenuato the refracted boam can also bo treatod by full wave annlysis, )4

The s'x Indopondent oloments are evaluatod at §; and A; and form a 6-dimonsional vector wo
call p. (The full wave model computations are made over the ellipsomotor systems's full angle and
spoctral ratigos,)

M=

= o pa iy payoma ool @ [Migy Mgy Magy My, Magy Myy ! (2)

Let p° and 2" denoto vectors associatod with conted (superseript ¢) and baro (suporscript 6) rough
surfacos, rospectivoly. For rach couting of spoectral permittivity oy, renlizations of p are computed
as functlons of @ and A with random varlations A0, AX, e, A < 0¥ >, A < u? >, and AL that
reprosont oquipment tolerancos, deviations in the scattorer’s physical proporties, and varlations in
rough surfnce statistical paramotors, For thowe roalizations, mean values < py > and standard
doviations wy (k = 1, 2, 3, 4, 8, 6) are comiputed for each olemoent of the vectors Bb andd pe. o
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prevent this algorithm from selecting 6; and A; for sufficiently low reflective coating layers, Mueller
matrix elements that satisfy the condition | < p§ > | < p} > | are ignored. Components of the
vector ¢ are defined by:

ry 2 Pk‘u(l < pi > l - | < PZI)' k=1,2345,6 (3)
and

3k = components of r that are non — zero for k=1, L. 4)

In the above expression, u(+) is a unit step function, and dimension L < 6. The standard doviation
associated with the corresponding components s, of the vector g is defined as by, Finally, the
components z, of the normalized difference vector 2 are defined as follows:

wn=<‘3>-<’b!'> (5)

b

The magnitude of z is the distance between vectors < ¥ > and < g° > normalized to unit variance,
An initlal selection of heam parameters (6;, A;) that make a cortain matrix detection event most
probable is detormined when z = \/z7z i¢ largest for a specific analyte coating (e abors), and can
be repeated for many physically dissimilar coatings.

3. IDENTIFICATION OF THE COATING MATERIAL

The identification algorithm is based on Hotelling’s T-squared method?, and involves inverting
the specific covariance matrix for < g > of Equation (4), L.e,, C B< ¢ >< ¢* >*. For some natural
and manufactured surfaces of interest In remote sensing, det(C) Is vanishingly small. Therefore, to
avold singularitios in the inversion operation, the following principal axis transformation® (apply a
principal component analysis pre-operation) is performed on the vector < & >:

i=Z2<g> (6)

where Z ls the principal axls operator. The covariance matrix of Equation (6) is a dlagonal matrix
denotod I'. It s related to the original covariance mnatrix C as follows:

I'= 202 (7

The operator Z Is unitary (Z~! = 2!) since C Is real, symmotric, and non-nogative definite,
The elements of diagonal matrix I' are, therefore, real cigenvalues (¢ 2 0) solving the following
characteristic equation.

det(C - I,,) = 0 (8)

Eloments of the €% column of the matrix Z! are given by the components of the characteristic
voctor Z} which satiafy the following oparator expression.

CZi = 1l (9)

Those olements of ¢ assoclated with negligibly small elgenvalues (that cause inversion problems)
are nnt Included In constru-ting ¢, a quantity we call the reduced discriminant vector, Its covari-
ance matrix ls the NxN dli.gonal matrix I'o where N < L. Denote ¢,(6;,A;) the analyto reduced
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discriminant vector (¢ associated wiin tl . coating material with the subscript i = 1,2, - M-1 eval-
uated at 0 = 6; and A= \;, j = 1,2, +M=1), and {ps the background reduced vector discriminant
corrcsponding to ¢ for a bare surface. When applying Hotelling’s T-squared method to ¢, a new
scalar quantity d?; is defined.

(€850 A5) = Cag (85, A5 D1'T5 (85, A5)(E, (05, A3) ~ €10 (851 45))

N
= [C"(o'i'\')l - CM(G',&\‘){]2
- Z.:; B ey (10)

&,

The values d;; = \/d?,- are stored in a computer data bank and accessed when compared to measured
scattering data from bare and coated surfaces. That data base is structured in the following array
format,

dyy « « dipg d:1
p=| oo )
dmMr ¢+ ¢ dpmm-r die

To identify an unknown surface coated with one of the M-1 mate-ials, or to determine whether the
surface is bare, it Is necessary to bulld the identifier vector:

u‘ = [ulauﬂy'auM-llv (12)

In the following manner, Let €, (A16;) be the measured reduced discrimirant vector ¢ for the
unknown materlal at (6;,4;). We dofine u; the same as d}; in Equation (10) except §; 18 replaced
by ¢, for the unknown material. The identifier vector % now has M-1 components. Positive
Identification of the M-1 coating materials Is done by evaluating the lengths of ¢; of the difference
vectors y - g

g = |u - d"'. (13)

The identifier vector y is classified as representing material n if ¢, < ¢/(€ = 1, \M, £ # n), or y
represents the bare surface if ep < ei(f = 1,, M-1). The assurance that an identification is true
depends on the value of ¢,. The smaller ¢, Is relative to ¢ (i # n) the more assured one is of
detecting aralyte n. Additional data may lead to a moie definite identification. Faster acquisition
rates of data will also improve the performance of this algorithm when the chemical coating is
highly volatile or diffuses rapidly into tho bare surface (e.g., soil).

4. ILLUSTRATIVE EXAMPLES

The coating materials considered are DMMP (Dimethyl methyl phosphonate - CHaPO(OCH3);),
DIMP (Dilsopropyl methyl phosphonante - CH3PO(OCH(CHa)s)), and SF96 (General Electric
nomenclature, Polydimethyl siloxane - (~8i(CHa);0~]x). An optimum infrared probe beam wave-
length generally corresponds to a strong IR conter absorption band (Im(-¢) is maximum) repre-
senting stretching, rocking, or bending normal vibrational modes in primary atom groups of the
analyte molecules (viz, laser stimulation of an oscillating molecular dipole moment). DMMP and
DIMP have strong P-0-C, C-0, and P=0 vibrational modes within the ellipsometer’s bandwidth,
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while SF96 can be excited into fundamental Si-O-Si and Si-Cl3 vibrations. The background ma-
terial in these data runs is a composite clay (soil) whose ¢ values were derived from an admixture
of three minerals: montmorillonite, kaolin, and illite.

It is assumed that variations ¢, § < h? >, and 6§ < o2 > are uniformly distributed and can
cause up to 5% deviation in the scatterer’s physical properties, mean squarc height and slope,
respectively. Therefore,

< h? >=< h? >0 (14 0.05r) (14)
< 02 >=<0a? >9 (1% (0.05r) (15)
€& = ir(1 £ 0.05r) = d¢;r(1 £ 0.058), {=1,2,3,4 (16)

where r and s are uniformly distributed random variables bounded by 0 < (r, s) < 1. The values
for the mean square height and slope, < h? >¢ and < 03 >¢ used in this example are 20 ym? and
0.5, respectively, In Equation (18) € and ¢ are the real and imaginary parts of permittivity
€()), respectively. The value of ¢;r(t = 1 for DIMP, § = 2 for SF96, ¢ = 3 for DMMP, and i = 4 =
M for composite clay) will peak at vibrational resonance of the material. The CO; laser beam
excitations that drive these resonances are tuned between the sensor’s 9.0 um < A; £ 12.5 um
bandwidth.

On implementing the algorithm that selects sets of {6;, A;} pairs to identify ¢ coating materials,
50 realizations of the vector p are used to obtain averages < p > and standard deviations wy. For
these three analyte coatings:

6y = 48° Ay = 10,17 um for detecting ¢; (DIMP)
f; = 48°, A = 12,35 um for detecting €3 (SF96)
83 = 48°, A3 := 12,21 pm for detecting e3 (DMMP),

The value of L in Equations (4) and (6) is the minimum number of independent Mueller elements
needed to detect the coating material (or bare surface) for each incident angle/wavelongth pair.
For DIMP, L = 1: the Mueller matrix element used to detect it is Maq. For cach SF96 and DMMP
coating, L = 6: all six independent Mueller elements arc required for singular detections of SF96
and DMMP.

Figure (2a) shows a scatter plot of the reduced discriminant vector component (;(61,A1h
of Equation (10) trained for coating DIMP. In Figure (2b), the discriminant vector component
Ci(82, A2)a is plotted against component (;(3, Az)1, trained for coating SF96. Finally in Figure (2c),
the discriminant vector component (;(63, Aa)z is plotted against component {;(81, Az)y, trained for
coating DIMP, Note that in all Figures (2a-¢) the analyte and background data are clustered and
disjointed, so that a partition function can be defined. Muecller element data passed from the
ellipsometer sensor can be categorized as within (alarm) or outside (no alarm) the cluster do-
mains of specific materials, separated by the partition function. These data show that the incident
angle/wavelength selection algorithm worked reliably in this trial,

The detection algorithm presented in Section 3, was programmed and exccuted with Mucller
element inputs used to build the vector discriminants { of Figures (2). Run time was short, and
the operation was completed without flaw. In these data, siinulated experimental trials produced
values of ¢, (8;,,)(j == 1,2,-,M-1) for each of the different analyte coatings and for the background
composite clay surface. Results of ¢; computations via Equation (13) are shown in Table 1, where
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rows 1 through 3 cunzist of values of ¢;(¢ = 1,2,+,M) for rough surface analyte coatings with
permittivites: ¢, (DIMP, row 1); €1 {SF96, row 2); and e¢; (DMMP, row 3). In row 4, ¢; is
given for tiie bare composite clay rough surface of permittivity ¢;. A high confidence of analyte
discrimination in this trial is clear from inspection of the table data, i.e., diagonal numbers are far
less than uff-diagonal numbers.

5. CONCILUSIONS

An algorithm based on phase-sensitive light scattering and detection of randomly rough sur-
face interfaces was applied to the remote detection problem. Independent elements of the Mueller
matrix are selectively measured at infrared beam energies that coincide with molecular vibrational
excitations in the contaminant layers, and angles of incidence determined in part by the scatterer’s
surface topography. Algorithms process information in thuse susceptible Mneller elements on the
IR-absorbing coatings (analytes) and discern it from information on scaviering by the substrate
(background). These algorithms can be applied to a full wave theory data bank and the real-time
operation of a multi-CO3 laser, photelastic modulation, ellipsometer instrument now being devel-
oped at CRDEC. Initial determinations of beam backscatter angle and wavelength pairs that train
the sensor for specific detections is based on full wave computations of groups of six independent
Mueller matrix elements, given inputs of topographical detzil and complex refractive analyte and
substrate. Once detection parameters (6;,A;) are determined, an aigorithm based on Hotelling’s
T-squared nethod is applied to identify the coating material (or to verify a non presence). The
degree of assurance that a particular identification is correct is also determined by the nigurithm.
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TABLE 1

Tha Unknown Surface is Compared to:

DIMP SF96 DMMP Composite

Unkrown (e1)
" SF96 49.4 2.1 34.6 53.1

Scattering (e2)

DMMP 169  36.9 1.8 20,5

Surface (¢s)
Composite | 24.8  53.7 2.2 0.4

()

Table 1. A trial run of the identificution algorithm computing ¢; values fromn Equation (13) and
the discriminant vectors of Figures 2a-c. In row 1 of the table, the unknown surface is positively
identified as that of DIMP sinc ¢; is much less than c3, ¢, and c4. Sim* 'rly, SFY6 is detected in
row 2, DMMP in row 3, and the bare composite clay surface in row 4.




y = by (X,2) “""'?1':"1

h
y=hyx,2) gt °

Figure 1. Definition of surfaces and some scattering parameters used in the full wave model
rode for computation of the Mueller matrix elemente. Incident beam and backscattered ray Stokes
vactors are g and g’ (b Is bure, ¢ is contaminated surface), respectively, media permittivity and
permeabllity are € and u, respectively, and mean height of coating material (¢;,4,) is hg.
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Abstract

A method for measuring multiple scatiering by a Side Looking Lidar SLL , in which one of
the detectors’ field of view is off the laser beam , is presented.
The range-resolved multiple scattering signal ,approximated by double scattering, is used 10
determine the cloud particle size distribution by means of the double scattering phase function.

The results are compared with in situ cloud droplet nieasurements using an airborne micasuring

system. The good agreement between the two measurements is presented and discussed.




I Introduction

It is accepted that the contribution of multiple scattering in Lidar measurements from
optically dense media causes difficulties in the interpretation of the Lidar signal usually based on a
single-scattering approximation. This is due the fact that most methods used in the past for
inferring particle sizes from mensurements obtained by a Lidar, are based on spectral or angular

single scattering mensurerments(!) ,

On the other hand, the multiple scattering itself provides an additional plece of information when
it can be separated from the single-scattering contribution, This additional information is used here
to deduce the cloud droplet size distribution function. The scattering medium in the case disoussed
below is optically dense and the multiple scattering plays a major role in providing the necessary
independent pieces of information for the inversion of the SLL measurements into tho size
distribution function,

A preliminary approach for measurement of the multiple scattering contribution to the

backscatiered signal of a pulsed Lidar previously reported (23 In the reported mensurements, a

sot of spatial filters in the focal plane of the receiver were used to block the receiver Fleld Of View
(F.0.V.) corresponding to the diverging transmitted beam. Consequently, the mensured signal was
a result of multiple-scattering effects |, the scattering of which originate only from the volumes
outside the blocked F.O.V.

In this paper, we present a method for measuring range resolved single and multiple
scattering in one wavelength with two detectors, Actual measurements from clouds are used to
deduce the double scattering phase function of the cloud particles from which the size distribution
function Is inferred. The results are compared with in situ cloud droplet menasurements using

nirborne measuring systems,




II  Multiple Scattering Measurements by SLL Methoc

In the SL.L measuring technique the total (s _-'z.'i-" sie nultipls) scattering on the one hand
and multiple scattering nlone on the othur harid wn heasured simultancously, The measuring

system is schematically described In Fig.1. The laser transmits a pulse in the direction of f4
(shown in Fig,2) . In the focal plane of the telescope (1.e, the receiver), there are two holes 8 and
s3. The F.O.V. of the hole 8 detects n signal consisting mainly of single-scattering contributions

contnining the laser beam divergence denoted as gy, The F.0.V. of the second hole s, is directed
away from the lager beam so that it consists of only multiple soattered photons that were redirected

from dirsction {4 to direction {5 | which is at an angular distance d away from {4 . The SLL

geometry 1y such that there i no overlap between the laser beam and the F.O.V. of & and thus
thers must be at lenst two scattering events to redirect photons from direction f4 to f 5, See Fig,
2.The signal recelved through 5 I8 denoted as gy .

We note that 8; ¢hosen for the single scattering F.O.V., is kept very small to reduce the multiple
scattered contribution to the measured signal gy to 1 negligible value so that gy can be regarded as
consisting merely of single scattering contributlons,  Since the F.O.V.s of 5 and 8, are small, the
geometry of the SLL aystem can be slinplified at a large distance R, from the laser, as shown In

Fig.3. The spatial volumes seen through holes s; and sy can be described as two narrow cylinders
scparated by n distance D =d* R,
At any given time, the laser pulse propagates along the left-hand cylinder , one detector measures

the return signal along the same cyiinder and the second detector menasures the return signal along

the right-hand cylinder, In this Figurethe detector at 8, measures scattering events of order 2

(double scattering) and higher. In the case of double scattering, the first scattering event, takes
place at a height (R,+ z)), along the lefi-hand cylinder at a scattering angle g. The second

scattering event, takes place at a height (R,+74) along the right-hand cylinder at scattering angle

(p-Q) back tothe detector .




Let us define the height (Ry+ 2¢,) as the height corresponding to the distance from which a single
scattering cvent takes place when the laser position is at f | and a measuretment g, takes place, The

time corresponding to this scattering event is equal to t=2(R,+z, ;)¢ where ¢ is the speed of light.
The contribution to the signal go(t) is from all parts of first scattering events at locations (Ry+z))
and the corresponding second scattering locations (Ry+2, ) Fig.3.

The scattering angles Q as a function of 2, .2y and D are given by:

-l D
[} s v ot ——— l
6=2tan [ (zss z|)] ( )

As the laser pulse penctrates the scattering medium (as zg, increases), the range of 2| that can

contribute to the double senttering measured at the receiver position {5 will increase as will the

range of scattering angles @ thar will contribute to the double scattering . The range of G [ G 1yins

Qe | # & function of the single scattering location zge within the scattering medium for a

separation distance D of 10m is shown in Fig. 4. It is shown to increase monotonically as a
function of zy, .

An example of multiple scattering measurements of atmospheric clouds is given in Fig. § for the

separation angle of =7 mrad. The 0.V s of the holes s and s, are both 0.5 mrad , and R ;=2.2

km. The laser wavelength is (0.532 mm .the Lidar pulse width is 10 ns, and the electronic

integration time is 20 ns (corresponding to a 3m spatial resolution). The pulse repetition rate is 20
Hz and we averaged over 8 pulses in each direction . The first curve is the measured signal g, and
the second curve is the multiple-scattering signal g4 detected at s5. The curve of g is as expected at

first much weaker than g but as the pulse penetrates into the cloud gy increases sharply relative to
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II1. Retrieval of the double scattering phase function p,(q) from
double scattering measurements g,(z) of a real cloud.

As mentioned above, real clouds cannot be characterized as homogencous media. This is in
particular the case near the cloud surface,

We first assume that the laser signal is scattered by different volumes within a cloud layer all
characterized with the same size distribution function except for the number density. “This is found

to be the case when the layer is horizontal and thus represents the same stage in the growth process

of the cloud droplets (4) ,

Let 5(z) be the single scattering volume extinction coefficient for a given cloud depth 2.
Therefore:

P(0,z) = o(z)p(0) (2)

where p(Q) is the normalized single scattering phase function,

The use of Eq. 2 leads to the double scattering equation of an inhomogenuous cloud:

2ma )
gz(zss)=AJ0 l[p(e)p(n-e)o(zl)o(zz)(Roizz)z sgzecxp(-jLo(t)dt)]dz, (3) !

where:

Zoax = D/tan(Q e ) s the highest first scattering location satisfying the constraint of a
common z., forall double scattering events.See Fig.3

lzg-2)0= Dfin(@ ), z5= 2, + Ditan(qQ), L is the total optical path in the cloud and A

is the system constant . In the case of double scattering the scattering process is limited to

scatlering occurring within one plane formed by f4 and f, .

It should be emphasized that p(Q) (Eq.3) dependent on the laser beam polarization. In our case

the laser is linearly polarized in the scatiering plane and therefore p(q)=p\(q). We also note that
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this equation represents water cloud droplets for which absorption is negligible.

Knowing the value of S(z) (sce below) makes it possible to use Eq.3 for the derivation of the
double scattering phase function: p,(q) p(a)p(p-q).

This is achieved by using a recurrence approach as follows:
The range of angle Q contributing to gy(zss) increas monotonically with zg. .Since the Lidar spatial

resolutio is constant the value of z is varied in steps of Dzy=Dz ,the integrals in Eq .3 are
replaced by the averaging sums:

g2(Az*n) = Aipz(ei)o(zn)o(zzi) 1 2Sin229‘ exp(—j c(t)dt)Az (5)
=1 (Ry+zy)” D Ly

where:

2; = Dz

and:

2= T tar:?()i)

In this case L; is also varying and is determined by the optical path in the cloud

The initial velue of py(Q) can be chosen as a normalization constant. It follows that py(q) is
given by:

2™ (Azxn) ~ gy(Azx(n-1))
Agy(Az*n)

[’2(9n) =

where g, (Dz*n) is the measured signal, g, (D2*(n-1)Y is given by Eq.5 and:




<l

1 sinze,,
( R 0+ Zzn)2 Dz

Aga(Az*n) = A*c(z,)0(z7,) expul‘no(t)dt)Az (6a)

for any given value of n.
We note that the vatuc of the scattering angleq; is defined by:

q; = [q(Dz*(i-1))+q (Dz*i))/2  where q(Dz*i) is determined by Eq.1 with De = (z¢ - 7).
£2(Q;) is therefore the average value of py(qQ) in the range [a(Dz*(i-1)) , qQ(Dz*i)). Therefore the
average value of q representing the first spatial Lidar step within the cloud is about 80 degree (See
Figs. 8,9).
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1V. The determination of the volume extinction profile 8(z).

For the derivation of 8(z) we use the single scattering measurements g, as obtained through hole

s{» by applying the backward Klett method (5) for the inversion process:

g1(2)z*
gl(zm)zlzn

Om

(7

o(z) =
7.m 5

+ 2] gi(Hi“at
A

where gy(2) is the backscattered signal frem a distance z and s, is the assumed volume

extinction coefficient of z=z,, in the cloud. S(z) is the required extinction coefficient profile within

the cloud layer.
In order to use the inversion Eq.7 we use the following assumptions:

a. The ratio of the single backscattering coefficient over the extinction coefficient is constant |
This assumption is a direct consequence of the fact ihat the distribution function is constant vs. z.
b. Klett's inversion methed is based on the single scattering Lidar equation,

This assumption is justified by the use of a very narrow F.O.V, which ensures that multiple
scattering contributions to gy are negligible,

In Fig.6 Multiple/single scattering g, /g, Lidar return signal are calculated by a Monte Carlo

code(?) for a detector F.O.V. of 0.5 mrad, a range to the cloud Ry=1Km, a Cl cloud , a volume
extinction coefficient s=17km-1 , and a laser wavelength of 0.532 mm.

It can be seen that the multiple scattering calculations g, (where m  2) for a F.O.V. of 0.5 mrad,
gives rise to a multiple scattering contribution of less than 5% compared to the single scattering

signal up to a penctration depth of z=100m (corresponding to an optical depth of t 8 4),

£. The main inaccuracy in using Klett's approach is the necessity of choosing a boundary value

S, at 7, . However it has been shown (5.6) that when the medium is very dense  the choice of

m'
S + has a little influence on the accuracy of the results, since S(r) converges rapidly to the real

value for any given value S,
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In our case, we use this result in the following way :
We chose S, in the depth of the cloud far away from the layer of interest being within the first

60m from the cloud surface.

Doing so, the results S(r) at z <60 is reaches a high degree of accuracy.,

V. The Double Scattering Approximation.

'The multiple scattering signal g, in Eq.5 represent double scattering contribution and neglect higher
orders of multiple scattering. In order to check the validity of the double scattering approximation

for g, a Monte Carlo code (7) was used to compure the relative magnitueds of the varius

scattering orders, for the SLL geomatry.
The results of the calculations are presented in Fig. 7 . Multiple/single scattering SLL return
signal through hole sy g,,/g85 (Where m>2) curves is plotted against the cloud penetration depth,

The detectors is F.O.V. of 0.5mrad and volume extinction coefficient §=10km-1, It can be seen
that the SLL signal g, (where m>2) is less than 5% compared to the double scattering signal g, for

a penetration depth of 60m when =3 mrad and less than 15% for =7 mrad. Therefore the

double scattering approximation is valid for optical depth velue t < 1. This requirment is obeyed in

all our experement.




VI. The Determination of the cioud droplet size distribution f(a)
from the double scattering phase function p,(q).

The double scattering phase function p,(Q) can be used as an input data for an analytical inversion

method (8:10) i order to yield the cloud droplet size distribution f(a). However since field

measurements from real clouds may introduce large errors , we used an additional approach for the
inversion of the measured values. This approach is based on the fact that in most practical cases a-
priori information on the cloud is available, ‘
In our particular case in-situ measurcments provided the general behavior of the distribution

function,

Moreover since our measurements were limited to the cloud base zone the distribution funstion
could be assumed to have one maximum within the size range 1-10 mMm (4,9),

We therefore assumed a log-normal distribution function for which the geometrical mean radius

M and the expansion parameter@ are determined from the measuremenis.
The Log-normal distribution has the form:

- _1( Log(a) — Log(n) 2]
f(a) A*exp[ 2( Toa(@) ) (8)

We thus limit the practical inversion method into the determinationof m anda .

In order to simplify the comparison of pz(“‘)(q) derived from the measurements with the
theoretical py(q,m,a) calculated for a given set of M and @ ,we developed a library of
p,({Q,m,a) for a series of average valuesof m and & in such & way that:
p2(8,1,0) = p(B,u,0) p(m—6,,00) 9)

where:
amax

p(O,u,0) = f

amin

04(0,a)f(, ¢)(a) da




where {m g)(@) is the Log-normal size disiribution function and $¢(Qq,2) is the differential
scatiering cross rection of a particle of a size parameter 2paAd (calculated irom Mie theory) .

In this way we have formed a matrix of the double scattering functions py(q,m, a).

The best matched p2(q,m,a) frorn the matrix to the "measured" pz(m)(q) is found by' adopting
the following rriterion:

(m)
C(p.o) = ‘le’(e""( i ®)] (10)
i=1 m(ei)

The "measured” pz("’)(q) is derived from the measurements using Fq, 6 and the parameters m

and a are chosen such that Cis minimized.

VII. The Sensitivity of the Method to Measurement Errors.

In order to examine the sensitivity of this approach to the measurement accuracy, we have
performed several computer simulations

The simulations were performed as follows:
A trial profile was chosen for the extinction coefficient profile within the cloud layer for a given
cloud size distribution function, We then used Eq.5 to calculate g5(z,,) to which we added an error.
The calculate gy(2g5) with the errors was regared as the measurements to which we then applied

the recurrence Eq.6 and then we use the inversion method described above to get f(a).
It can bee seen (Fig. R) that the reconstruction of py(Q) reached a high degree of accuracy for

the angulurrange Q = 15 to 80 degrees even for random data error up to 10%.

In Figs. 8a and 8b the effect of the random arror is seen. The pronouncedminimmum in the value of

the correlation parameter C is smeared as the errors increase.
In the simulation we chose a=m=2 the distinct minimum in C can be found even for a

random error of as high as 10% in the simulated measurements .

167




In order to simulate the effect of errors due to the higher orders of multiple scattering
contribution, we introduced a systamatic arror in the forme: g°2(z) =g, (z)(1+bz) to take into

acount the increase contribution of multiple scattering as a function of the penetration depth.
Figs. 9, 9a,9b present the results achieved with simulated measurements containing systematic

errors of up 1o a value of b=0.5 which corresponds to a 50% error in the largest penetration depth.
It can be seen that even with such a big error the results agree with the assumed distribution to a
good degree of accuracy.

VIIL. Field Experiments and Results

During the winter of 1990 various measurements were performed in the Israel costal area
intended to determine the cloud droplet number density and size distribution function,

Simultaneous in-situ measurements were taken by a Knollenberg droplet counting system
mounted in a air-plane,

In Fig, 10 the SLL-cloud-plane geometry is presented. The penetration path within the cloud is

contained in one heigth layer for which one can assume that the size distribution function is
constant (4),

Several profiles of the SLL echoes g,(z) and gy(z) were taken as a function of time, one
example of which is presented in Fig, 11.

In this example the distance to the cloud is Ry =1.9 km The Lidar spatial resolution is 3m. For
the calculation we use 20 data points , corresponding to total penetration depth of 60m.

The two curves ( not in the same relative units) represent a typical shift of the maximal signals
from the shorter distances in g, to the longer distances in gy for which only multiple scattering
contributions are measured.

We note that the fluctuations in g; are mainly due to the cloud structure in addition to the

extinction,
In order to calculate the valuem extinction profile S(z) in this inhomogencous cloud we used the
Klett method Eq.7. boundary value s, was chosen at a cloud depth of 175m, and as a

consequence the extinction profile of ranges up to 60m can be treated with a high degree of

accuracy (See Fig 12, and see discussion in 1V).
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The numerical results of Fig. 12 were then used for the determination of the double scattering

"measured"” phase function pz(m)(q), based on Eq. 6.
The double scattering "measured” phase function pz(m)(q) is shown in Fig. 13 with the best-fit
matrix vector element py(q,m,a) found by minimizing the correlation parameter C. The minimum

was also shown to be well defined either as a functionof m or a, See Fig. 13a,

Finally, the corresponding size distribution function of the cloud droplets given in Fig, 14 is
compared against the in-situ measurements. As can be seen there is a good agreement between the
two curves. We note that the Knollenberg counter did not meseared small particles whose radins
is smailer than 1,5 microns.

IX. Discussion

The approach discussed is an example of the added information to the Lidar measurements
provided by the multiple scattering effect previously treated as a disturbance.

The double scattering phase function p»(q) is very sensitive to the size distribution parameters,
For exemple p,(10)/p,(80) varies by one order of magnitude when the droplet mean size m varied
from1lto2 mm,

The inversion of field measurements into the size distribution function was shown to be
practically possible by using a priorl knowledge of the general behavior of the distribution
function. By reducing the number of unknowns to the mean radius and the expansion of a log-
normal distribution even highly fluctuating inhomogencous clouds in respect to the aumber density
can provide measurable information on the sizes.

It is practically inpossible to perforin the rirbom and SLL measurements at the same position.
But several in-situ records from the same horizontal cloud layer a few km wide showed almost no

variations in the size distribution
(4) and therefore all records cloud from the same heigth could be used for the discussed

comparisons,

Finally, the same approach can be used for different layers in the cloud by varying the Lidar
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clevation angle. "This wity the cloud size distribution and density

profiles can be obtained for the study of the droplet growth process in the cloud.
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180

160

140

120

100 - min

80 -t mox

scattering angles

f ¥ ' 1

30 40 50
758 (M)

0 1 A 4
0 10 20

Fig.4 The range of scattering angle la min.qm”\ that contribute to the double scattering returns s 2

gunction of the sin gle scattering Jocation zgg for D= 10m.

175




Multiple Scattering Mcasurements
1/2/90 14:40

80

Return Signal [Relative Units]

o] 100 200 300

Depth in the cloud [m]

Fig.5 Single and multiple scattering signals g, and g, . The F.O.V of holes 5, and s, ate 0.5 mrad
.The angular distance between f | and f, d=7mrad. The range to the cloud Ry=2.2Km , The Iaser

wavelength is 0.532 mm and the range resolution is 3m.
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Fig.6 Multiple/single scattering Lidar rcturn signal ratio g, /g; . as calculated by M.C code. The
detector F.D.V is 0.5 nirad. The range to the cloud Ry=1Km The cloud is C1 type. The volume

extinction coefficient s=17k= "1 and the laser wavelengthis 0.532 mm,
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Fig.7 Multiple/single scattering SLL retum signal 8m/8; ratio through hole s, , as calculated by
M.C code. The detectors F.O.V are 0.5mrad. The range 1o the cloud Rc=1Km . The cloud is Cl

type. the volume extinction coefficient S=10km™! and the laser wavelength is 0.532 mm.
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Fig 8 Double scattering phase function Log(p,) as computed from g, containing various random
error. The cloud particle size distribution is log-normal with mean and expansion parameters
Muea=2Mmm.
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Fig.8a The correlation parameter C as a function of the mean radius parameter m of the Log-
normal size distribution function, for various random error.
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Fig.8b The correlation parameter C as a function of the expansion parameter @ of the Log-normal
size distribution function, for various random error.
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Fig.9 Double scattering phase function Log(p,) as computed from g7 containing various systematic

error (see text). The cloud particle size distribution is log-normal with mean and expansion
parameters M=a=2mm,
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Fig.9a The correlation parameter C as a function of the mean radius parameter M of the Log-
normal size distribution function, for various systematic error.
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size distribution function, for various systematic error.
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Fig.10 The experiments field set up.
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Fig.11 Single and multiple scattering signals g; and g, . The F.O.V of holes s and s, are 0.5
mrad . The angular distance between f | and f ; d=mrad. The range to the cloud Ry=1.9Km . The

laser wavelength is 0.532 mm and the range resolution is 3m.
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Fig.12 The volume extinction profile in the cloud S(z), as computed from g; of fig.11 by Klett
method.
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Fig.13 The "measured” Double scattering phase function Log(p,(™(q)). Computed by the

recurrsion Eq.5 from g, of fig.11 and S(z) of fig.12, and the best-fit "calculated"
Log(py(q,m,a)) (Sce text).
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Fig.14 The cloud droplet size distribution measured by Knollenberg droplet counting and SLL

measurement (Log-normal withm=1mm and a=1.1 ,see fig.13a) normalaize at the peak.
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ABSTRACT

Theoretical calculations of the internal particle normalized source function (S = |EJ?) dis-
tribution are presented for plane wave illuminated particles of spherical, prolate spheroidal, and
axisymmetric corrugated geometries. For the parameters considered (size parameter = 10.0, com-
plex relative refractive index = 1.33 + 1.0x1078i), the calculations indicate that shadow side
field enhancement apparently does not require a pure spherical geometry, und can accur in even
“nonstandard” geometries, such as the axisymmetric corrugated particle. Future calculations will
be performed investigating effects at both higher and lower size parameters, and for additional
geometries,

I. INTRODUCTION

In recent years, nonlinear optical effects have been experimentally studied by focusing a laser
beam on isolated micron-sized liquid droplets. For weakly absorbing liquids, and for wavelengths
of-the-order-of or shorter than the droplet diameter, the carved surfaces of the spherical droplet
can result in an internal “focusing” of the incident light so a8 to create regions of concentrated
electromagnetic energy density near the shadow side of the droplet. Hov ver, droplets may not
always be perfectly spharical because of aerodynamic, elastic, thermal, and/or electromagnetic
stresses. In this paper, systematic theoretical calculations are presented investigating the internal
electromagnetic field enhancement within nonspherical particles.

II. GENERAL THEORY

The electromagnetic field calculations were performed using a recently developed theoretical
procedure that permits the determination of the electromagnetic fields for an arbitrary incident
field directed upon a homogencous particle of arbitrarily-defined shape.! The theoretical procedure
is described in detaii in Ref. 1. Only the general assumptions and parameters will be deseribed
here,

A particle within an infinite, nonabsorbing, diclectric medium is considered. Both the particle
and the surrounding medium are homogencous, isotropic, and nonmagnetic (2 = 1). A monochro-
matic field, presumed known, is incident on the particle. The coordinate system origin is located
within {and near the ceuter) of the particle. All electromagnetic quantities are nondimensional-
ized relative to an electric field amplitude characteristic of the incident field (Eg) and all spatial
quantities are nondimensionalized relative to a characteristic radius of the particle (a).

Iimportant input parameters for the analysis are as follows: (1) the particle shape fuuction,
#(8,¢) (A nondimensionalized single-valued function of the spherical coordinate angles that defines
the surface of the particle.), (2) the particle size parameter, a = 2ma/ Aot (Aert is the wavelength
within the surrounding medium.), (3) the complex relative refractive index of the particle, 2 =
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V€int/€ert, and (4) the vurious parameters associated with the character (plane wave, focused
beam, propagation direction, etc.) of the incident field.

For the calculations presented here, the incident field is assumed to be a linearly polarized,
plane wave. The plane wave propagates parailel to the x-z plane with a propagation direction angle
of 6y4 relative to the y-z plane. The polarization angle ¢,q indicates the angle of the direction of
the incident electric field polarization relative to the x-z plane. For the calculations presented here,
the direction of the incident electric field polarization was kept parallel to the x-z plane (¢4 = 0°)
for all cases.

III. SYSTEMATIC CALCULATIONS

In order to investigate the effect of particle geometry on the distribution of the internal clectro-
magnetic field, a set of systematic calculations were performed for a linearly polarized plane wave
incident on particles of spherical, prolate spheroidal, and axisymmetric corrugated geometries. A
complex relative refractive index of f = 1.33 4+ 1.0x10~% (approximately that of water in the
vicible spectrum) and a particle size parameter of @ = 10.0 werc used for all calculations. For the
prolate spheroid, a 1.3 to 1.0 axis ratio was chosen,

#s(6) = 1//(1.33in8)? + (cosB)?. (1)
The axisymmetric corrugated particle, with corresponding particle shape function,
Fac(8) = 0.92 + 0.08¢0s(78), (2)

was selected as an example of a “nonstandard” geometry. For the prolate spheroidal and axisym-
metric corrugated particles, calculations were performed for incident propagation angles of 0pq =
0°, 30°, 45°, 60°, and 90°,

The results are shown in Figs. 1-11. The plots provide the normalized source function (S =
IEI’) distribution in the x-z plane. Only the internal particle normalized source function is plotted
(the near-field values of § were artificially set to zero) so as to clearly distinguish the particle
boundaries. Figure 1 gives the normalized source function distribution for the reference case of a
plane wave (6,4 = 0°, incident propagation in the +2 axis direction) incident on a spherical particle.
The familiar clectromagnetic field enhancement near the shadow side of the spherical particle is
clearly shown in Fig, 1. From Fig. 1, the peak value of the normalized source function for the
sphetical particle is approximately 20,

Figures 2-6 show the internal normalized source function distributions for a prolate spheroid
with incident propagation angles of 6yg = 0°, 30, 45°, 60°, and 90°, respectively. Figure 2 is for
on-symmetry axis incidence (854 == 0°). In comparison with the spherical particle case, the smaller
radius of curvature front and back surfaces of the prolate spheroidal particle creates shadow side
fild enhancement (8,42 % 30) greater than that of the spherical particle. As the angle of incidence
is increased 10 30°, 45°, 60?, and finally, 90° (Figs. 3-6), the shadow side field enhancement remains,
but diminishes with increasing angle. At 84 = 00° (Fig. 6) the peak value of the normalized source
function is approximately 10.

The results for the axisymietric corrugated particlo are shown in Figs, 7-11. For on-symmetry
axis incidence (8py = 07), as shown in Fig. 7, there is again strong field enhancement, greater
than that of the spherical particle, and similar to that of the prolate spheroidal particle. As the
angle of incidence is increased to 309, 45%, 60°, and finally, 90° (Figs. 8-11) the shadow side field
enhancement remains but is less diminished and shows an irregular angle of incidence dependence
in comparison with the prolate spheroid.
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IV. CONCLUSIONS AND FUTURE WORK

For the choice of parameters considered (a = 10.0, i = 1.33 + 1.0x107%i), shadow side field
enhancement within a particle apparently does not require 4 pure spherical geometry, and can occur
in even “nonstandard” geometry particles such as the axisymmetric corrugated particle, Further
calculations will be performed investigating effects at both higher and lower size parameters. Other
particle gcometries will also be considered.
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FIG. 1, Internal normalized source function distribution in the x-z plane for a plane wave
(0° angle of incidence) incident on a sphere.

fi=133+1.0x 1078, a = 10.0, 854 = 0°, ppq = 0°.

FIG. 2. Internal normalized source Tunction distribution in the x-z plane for a plane wave
(0° angle of mcidenco) incident on a 1.3 to 1.0 axis ratio prolate spheroid.
A= 133+ 1.0x 1078, a = 10.0, By = 0°, dpy = 0°.
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FIG. 3. Internal normalized source function distribution in the x-z plane for a plane wave
(30° angle of incidence) incident on a 1.3 to 1.0 axis ratio prolate spheroid.
fi = 1.33 4 1.0 x 1078, a = 10.0, 64 = 30°, dpa = 0°.
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FI(‘ 4. Tnternal normalized source function distribution in the x-z plane for a plane wave
(45°

angle of incidence) incident on a 1.3 to 1.0 axis ratio prolate spheroid.
= 1334+ 1.0 x 107%, ao = 10.0, Oy = 45°, $ya = 0°.
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FIG. 5. Internal normalized source function distribution in the x-z plane for a plane wave
(60° angle of incxdence) incident on a 1.3 to 1.0 axis ratio prolate spheroid.
i = 1,334 1.0 x 108, a = 10.0, 69 = 60°, gpg = 0°,
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FIG. 6. Internal normalized source function distribution in the x-z plane for a plane wave
(90" angle of lnndonro) incident ona 1.3 to 1.0 axns mt io prolate spheroid,
=133+ 1.0 x 1078, a = 10.0, Oy = 90°, dpy =
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FIG. 8. Internal normalized source function distribution in the x-z plane for a plane wave

(30° angle of incidence) incident on an axisymmetric corrugated [#(8) = 0.92 + 0.08cos(76)]
particle, @t = 1334 1.0 x 1078, « = 10.0, 6pq = 30°, dpq = 0°.
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FIG. 9. Internal normalized source function distribution in the x-z plane for a plane wave
(45° angle of incidence) incident on an axisymmetric corrgated [#(6) = 0.92 + 0.08cos(76))
particle, # = 1.33 4+ 1.0 X 10734, a = 10.0, Opq = 45°, ¢bg = 0°,
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FIG. 10. Internal normalized source function distribution in the x-z plane for a plane wave
(60” angle of incidence) incident on an axisymmetric corrugated [#(0) = 0.92 + 0.08¢08(70))
particle. i = 1.33 4+ 1.0 x 1078, v = 10.0, B4 = 60°, g = 0°.

190




FIG. 11, Internal normalized source function distribution in the x-z plane for a plane wave
(90° angle of incidence) incldent on an axisymmetric corrugated [r(0§ = 0,92 + 0.08cos(76))
particle. # = .33+ 1.0 X 10~84, & = 10.0, 8,y = 90°, ¢pg = 0°,
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ABSTRACT

It is well known that the Rayleigh approximation to extinction, scattering and ab-
sorption efficiencies for spheres is limited to small size parameters, z, and small values
of |m|z, where m is the complex index of refraction. It is also known that the Thomson
approximation to these same efficiencies is valid for small 2 and m = co. We have found
a powerful exact transform of the Mie coefficients, for both spheres and infinite cylinders,
that removes the m related restrictions of the Rayleigh and Thomson approximations. The
resulting approximate series for spheres and infinite cylinders are valid for all m and small
I,

If this transform of the Mie coeffients and their series expansion were limited to spheres
and infinite cylinders, it would have only limited interest. However, this transform gener-
alizes, in an approximate form, to other convex bodies when & Rayleigh or Thomson-like
series can be obtained. These can sometimes be obtained by a method given by Stevenson
(1953). Series are available in the latter paper for ellipsoids (which includes spheroids).
We will present results of a comparison between the newly obtained series and the exact
codes for spheres and spheroids.

1. INTRODUCTION

If a particle is geometrically and optically small enough, then a simnple formula can
usually be found for the extinction and scattering cfficiencies as well as the plase func-
tion. Such approximate formulae are usually called the Rayleigh upproaimation to the
scattering!. If the particle is still geometrically small but optically very large, the Thom-
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son approximation results?.

Often, however, a small particle may be neither optically small nor very large. This
creates a gap that has not been completely filled until now.

In this paper we demounstrate a powerful transform that bridges this gap for spheres
and infinite cylinders and, in an approximate way for spheroids.

2. THEORY

2.1 Spheres

We will first derive the general expausion of the Mie coefficients for small size param-
eters z, and show how the Rayleigh and Thomson expressions result.

Starting with the definition® of Q,cq and Q. ¢, the scattering and extinction efficiencies
respectively, we have

Quea = = 321 + D{lanl? + bal’) il
1T |
and w
0
Qese = = D (2n +1){Re(an + bn)} [2]
Y on=1

where a, and b,, are the external field Mie coefficients. These Mie coefficients are given by

_ VBV T) Yale) = VEUaly/TE) () g

Ay

and

b Vevn(VeE ) Cali) = i Ya(VeE ) (i ()
where € und g are the relative diclectrie constant and the relative magnetic permenbility,
ty 18 the Riccati-Besscl function of the first kind and ¢, is the Riccati-Bessel function of
the third kind. Note that the b, coefficients are symmetrical with the a,, coefficients upon

substitutioa of € for u and vice versa, Henee, we need only discuss «,, in detail.
Expanding e, and ay in small 2 we obtain

2. (e=1\ 4 1./ -6et+d+ep) 5 4/e—-1\" 4
‘“*5‘(e+2>” +5’(“7m‘>‘2‘"‘ Tty :;5) z
1 (et + 4(9p® + 35p — 25) — €*(T04 + 150) + 200(2¢ - 1)\ ,
+oi - - - PN
(e+2)°

(6]

175

1(, e—1 5y 6
ity — —1 - &€ e
LT 2¢ + 3 : 6]
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bp=ap, € p

Expansions for higher order coefficients can also be derived. Yor classic Rayleigh (4 = 1,
m? = ep),

2. (m? -1\ 3 2. ((m?*-1)(m?-2)\ . 4 m’—-l)2 6
““5'( 2+2)x +§'( (rn? 4+ 2)? *+3 mit2) T

+L 175 ((m - 1)}m* -Z-nz‘(z),iiz)amﬂm? + 200)) 4 U
by = Z}gi(m" 1)z ... (8]
for Thonupson (¢ = oo, u = 0),
a;, = §iz3 + -:-_)-ia:“ + %m“ - -17-1':::7 +... (6]
b = —%im:’ + %iz’ +... (10]

It is immediately apparent that as m — oo the Rayleigh expansion for either a; or b,
does not converge even for small values of . Hence, the requirement for small optical
size |mz|. The Thomson expansion having no index dependency applies only to infinite
optical size. The problem with the Rayleigh series mathematically arises from the terms
in a,, with e2u and in b, with u?e. If these terms were set to zero, the divergance problem
wouid disappear. We must, however, recover the lost information without reintroducing
the divergence problem.
To co this rewrite a,, to isolate the material properties as

vn(e) - { ST} v
iul) = { Yol (1 (2)

Consider the result of letting 4 — 0 in the expression above (which will make all the €24
terms zero aloug with others):

Gy =

[11]

¥n(z) - { 25} (@)

lim a, = 12
B = @)~ () G 2
To recover the full Mie coefficients, transform e in the above limit by
\//7 Y (\/'77 ) "
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and by symmetry

_, VE(m+ 1) ¥n(VFEz) _
T Ve & dh(VERe) =t 14

Both £,, and Y,, can be considered as transformed material properties. Putting these new
variables back into [12] and expanding again in small z we obtain

_2.(6-1) 4 1, £§-6£,+4) ’ (61—1) .
“= '(e,+2) +5‘( G+or )* to\a+sz) ®

1, (&) +6E% - 166 +8) 7
7:( CETIE z' +... [15)
_ 1 R 82 "1 .3
=15 (282 +3)‘” te [16]
and again by symmetry
bp = ap, €y #+ Un
Note singularities occur if and only if
En=~(n+1)/n [17]
and
Up = —(n+1)/n. [18]

which requires a real € (or real u). For all other values of £ and ¢/ thc coefficients of
series (15| and [16] are finite to all orders of 2. Thus [15] and [16] are valid for all non-
real values of the refractive index. However, when the conditions [17] and [18] are nearly
satisfied many terms in [15] and [16] will be required before the series converges to & given
accuracy. For convenience in computations we can rewrite E, a8

2%F | __3¢(1+3F)

b@ =-grFy B = -gxer—F 119)
with C
F(2) = z Otiz) and z = \fepz = (n — ik)z (20]
and
Up = Enyeo

Since the ‘Mie’ coefficients for the normal incidence infinite cylinder® are identical
to the sphere Mie coeflicients apart from the order of the Bessel functions involved, the
same procedure can be used to obtain a series for small particles independent of material
properties. Oblique incidence can also be done but generates much more complicated
expressions.
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2.2 Spheroids

The above series [15] etc. by itsclf is interesting only from the classic nature of the
Rayleigh and Thomson series. However, the idea of transforming a Rayleigh like series,
(with the optical size constraint) into a series that is independent of the material properties
for many types of regular particle shapes would be of practical use. We show here that
this can be achieved, in some approximation, with oriented and randomly oriented prolate
spheroids.

The Rayleigh approximation (with arbitrary u) for oriented spheroids®, Qrqy, i8
given by

Qr‘ay = Qaca + Qalu [21]

Where 8 bir? (sin® @ (1 2 6)

r“ rs1n + cos .
Quca = 3 T{ 2 (l”hl2 + |17;|2) + — (|712|" + |713|2) } (22]
b .[8in’ 6 . (14 cos? ) )
Qs = 47 Refi[ 5= (01 4+ 1) + = (a4 1) |} (23]
and where

p = V/cos? 6 + r? sin? 6, a=2ra/l, b=2rp/). [24)

Here r = a/b is the aspect ratio (for prolates r > 1 and for oblates r < 1), & is the length
of the semi-axis of rotation, B is the other axis of the spheroid, # is the angle between
the incident radiation and the a or a axis, A is the wavelength of the scattered radiation.

Furthermore 1 1
= —————— and ) = ——7— 25
LTg 25 L TF 1) 129
1 1
= e and ) = ——— 26
"= 3L + ) T P sy 126)
and the form factors are defined for prolates (i.e. r > 1) as
Qg ., 1 14y
L= 1+2gln(1__g)} [27)
1-L
L, = —-2-—-'- [28]
1 :
92 =1- ;3 [29]
For oblates (i.e. r < 1) we have
1+ f? tan~! f
Li=—F {1- 7 } [30]
1-L
Ly = ——2-——’ 31]




fr= gt 132

Normally, ¢ = 1 in the above and hence 7{ and 7} are both zero. The procedure, as
demonstrated for spheres, requires the full expression for the efficiencies, therefore we
retain the y terms.

Since the scattered wave at large distances from finite convex bodies can be approxi-
mated Ly a series of Riccati-Bessel functions, we will use the same material transforms, [13]
and [14], but with the arguments modified. The modification is simply an approximation
to the effective optical size of an equivalent sphere. For a given orientation this equivalent
optical radius, z, is

rb
2= \/3717; [33)

which is the same expression used in the eikonal approximation®,

For randomly oriented spheroids the cross sections C,eq and C,p, must be integrated
over all angles, C,¢, is just [22] multiplied by npb? and similarly for C,p, from [28).
The efficiencies are then obtained, in the usual way, by normalizing the cross sections by
the average projected area. Before applying the material transform, the integration is
simple since ny, 7], 72 and ) are independent of the orientation angle. However, after
the transform they become dependent which greatly complicates the integrals. Hence to
maintain a simple expression we will assume, at first, they are independent of angle and
correct, in an approximate fashion, loter, This correction will be in terms of the spherical
average of the effective optical size, 2. Integrating C,cq and Cap, over sin(6) d6 from 0 to
7/2 and then normalizing we get

16 b'r?

Quea = 5= {0l + i + 2 (il + 1751%)) [34]
and 2 b
auba =3 _R(’ {z [7“ + 771 +2 (7?2 + Up) )]} [35]
where the normalization factor is, for prolates,
.2 p)
T _ 7 .- \/;' -1
A=1+ T sin ( " --) [36)
and for oblates,
2 N )
y QUL Y [ 2 [37]
V31— r
and 1 !
= e, i = g7 38
"L ) T A ) o
- 1 - 1
g = —v T (39)




Note that in the expressions for £& and Y, [13] and [14], \/egz must be replaced by Z
which follows.
The spherical average of z is

®/2
T=\/eurb / Em—(e)-dﬂ
0 p

.
= Jeu b f-m—g-(ﬁl for prolates, and ([40)

= /epb In(f + \;1 + ) for oblates.

It is found, empirically, that the two latter expressions are good only for very small b and
that as b — 1, 7 — /eb. This is to be expected since the equivalent optical radius varies
with orientation angle and size in a non-linear way. Again, empirically (for prolates only),
a simple solution to this problem is to impose a power,as a function of b on the expression
in [40). The situation for oblates is still under study. From this we finally obtain (for
b< 1),
. a1 1-b2
Z = /epb [ﬂ-g—(-g-)-] for prolates [41)

3. RESULTS OF COMPARISON

In this section we will demonstrate the accuracy and utility of the expressions and
idens in the last section. First, we will discuss the comparison of the Rayleigh (7], Thomson
[9] and our new series [18] with the exact Mie solution,

Figure 1 shows the Mie calculation normalized by the three series as a function of
size parameter. The series for Q,c, are calculated to fourth order in ¢ and for a refractive
index of 500 — 500i which corresponds to metals in the millimeter wave region, When |mz|
is small both the Rayleigh and the new series are excellent approximations. As expected
the Thomson series overestimates Q,c, by 26%. The situation reverses when |mz| is very
large. Now the Rayleigh series underestimates Q,ca by 26%. Note, however, that in the
intermediate range of |mz|, [15] is still excellent.

To show that [15] adequately models resonances we now choose an index with large
real part and small imaginary or shsorptive component. Figure 2 is a diagram of Q..¢ as
calculated by Mie theory and the new serivs [16] for an index of 100 — 10~%. Although
this index is extreme and not physical, it is used here to demonstrate that it valid for such
unusual cases. This emphasizes that [15] applies to arbitrary indices for small z. Notice
that not all resonances are modelled. This is because the higher order Mie coeflicients have
not been used.

The effect of using the sixth order expansion instead of the fourth order can be seen in
Figs. 3 and 4. The cases are Q.. for water at 33 GHz and 95 GHz respectively. It can be
seen that the sixth order corrects for both amplitude and skewness around the resonances.
Fvidently, higher order expansion would improve the accuracy further, It is interesting
that the fourth order captures most of the detail, even around the resonances.
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Figures 5 and 6 are the same cases as for the previous two diagrams except that
prolate spheroids, with an aspect ratio 2, are considered instead of spheres. The exact
calculations are performed using the T-Matrix method®. Also the size parameter = has
been repleced by the semi-minor axis b. As expected the features are similar but many
significant changes can be observed. Relative amplitudes and locations of the resonances
have changed as well as the underlying trend in the curves. The agreement, while not
excellent is still remarkable becausc of the simplicity of the series compared with the exact
calculation for such a large optical size. This large optical size almost makes the T-matrix
ill-conditioaed. No such probiem will occur for the series.

The accuracy of the series for the spheroid would likely improve if numerical integra-
tion of the series was performed instead of using the empirical formula [41]. This and small
particle scattering from oblates is currently under study.

It is evident from the above calculations that it is possible to obtain series for the
efficiencies with out consideration of optical size, for spheres, prolate spheroids and infinite
cylinders. It is therefore clear that small particle phase functions can also be computed
for arbitrary indices by using the same, material transformed series.

3. CONCLUSIONS AND REMARKS

We have derived & series that lifts the optical size constraint that is inherent in both
the Rayleigh and Thomson approximations, This series has been applied to spheres and
in an approximate way to prolate spheroids. Comparison of the new scries with the exact
Mie formalism show excellent agreement. A similar comparicon between the T-Matrix
method and the randomly oriented prolate spheroid series shows that the agreement is
not as good as in the case for spheres. However, & substantial portion of the underlying
structure or physics is being modelled correctly. Additional work will be needed to improve
the approximation for randomly oriented prolate and oblate spheroids. A study of the
numerically integrated series, to randomize the orientation of the spheroids, will likely aid
in this direction.

Combining this approach with our previously described techniques®?, for approximat-
ing extinction, scattering and absorption efficiencies, we are obtaining simple formulae for
arbitrary materials, particle sizes and aspect ratios.
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Refercences 13

Bodies of revolution are structures, including acrosol particles which are fibers and
flakes, which have an axis of symmetry with the property that if one examines the seatter-
ing body before and after any partial rotation about this axis, an impinging clectromagnetic
wave can see no difference. The electromagnetic interaction problem is complicated by the
fact that cvery portion of this body of revolution as it is stimulated by the impinging
radiation communicates with every other portion of the hody of revolution, Becausc of the
rotational symmetry, it seemns prudent to represent the components of the induced clectrice
and magnetic fields as a Fourier series and solve an integral equation formulation of the
scattering problem by solving for Fourier comnponents of piecewise polynomial approxima-
tions of the fleld components within each cell of the body. This Fourier analysis involves
trigonometric integrals which vhen transformed to the complex plane would involve anal-
ysis of functions defined on a Ricmaun surface, We provide in this paper a new way of
evaluating these integrals using ouly information around an essential singularity.

Bodies of revolution also include bodies that have spheres, cylinders, oblate or prolate
spheroids, or a torus as boundaries of a material that responds to the radiation. Analyzing
the latter may have some benefit in the controlled thermonuclear fusion problem ([1]) as a
design for a material with ultra high absorption efficiency could be obtained inexpensively
by computer analysis ([2]). The low cost of computer experimentation may also permit one
to design an ultraviolet light absorbing aerosol that will protect man and animals from the
coming ozone depletion problem The material body may have tensor properties, but the
body, together with its properties is still unchanged by any partial rotation about the axis
of symmetry. This could include, for example, a tensor material which has one property
in the direction of the axis of rotation and another property in all directions going radially
outward from this axis of symunetry. Here, one might think of cutting a sphere out of
a cylinder comprised of elosely packed diclectric needles; externally to visible light this
sphere might look to our eye like any other round acrosol, but to clectromagnetic waves
polarized in the direction of the axis (aud consequently parallel to these soft diclectrie
needles) und to those electromagnetic waves polarized in a direction perpendiceular to the
axis of revolution, the response would be completely different. This materials are used
in liquid erystal coneepts which may in the future be used as a healthy replacement for
video displays. The details of the connection between the integrals diseussed in this paper
and electromagnetie internction problems are found in many sourees ([21]) but is lueidly
explained in Glisson and Wilton ([13]). We explain here o method of evaluating integrals
of exponential polynomials of nlgebrate funetions of trigonometric functions from 0 to 27,

1 Exact Evaluation of Integrals

We introduee o funetion § which represents the distance between two points, represented
in eylindrical coordinates as (p, 6, 2) and (5.6, 3) so that

E SR 2 con(p) (1.1)
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where 1 is the difference between ¢ and ¢, The integral under consideration s

I((ec,)m) = Az?lil—é(tlél-co.s(7'nz/))d1/; (1.2)

where
¢ = (A — 2Bcos(¥)) (1.3)

where
A? > 4B’ (1.4)

where A is positive and m is a nonnegative integer. The function ¢ defined by equation (1.3)
is an algebraic function defined by a Riemann surface if you make the normal « xtension to
the complex plane by rewriting equation (1.3) in the form,

Lo (A =B-(C+1/Q) (1.3)
where if ¢ is equal to exp(iv), then
2.cos(yp) = (C+1/¢) (1.6)

The rational function ¢ has & simple pole at the origin and one zero inside the unit circle
and another zero outside the unit circle. The algebraic function ¢ is deﬁmd by a Ricmann
surface with a Branch cut from the orgin to a zero,

A - VAT - 4B? 2B

G = 2 B i gy ey (L.7)

of the function £? that is inside the unit circle

¢l =1 (1.8)
and a branch cut from oo to the zero,

A 4 VAT 48!

= 1.9
G2 5. B (1.9)

that is outside the unit circle. If we use the argument funetion defined by
Arg(e +1y) = 6 (1.10)

where if

ro= a4y (1.11)

then, 6, the value of the argument function defined hy equation (1.10) is such that
rcos(f) + irsin(6) = x +iy0 > 6 < 27 (1.12)

We can use a Riemann surface to define the square root of the meromorphie function €
defined by equation (1.9) to define the algebraic fun: ion € or use the argument function
Arg defined by equations (1.10) and (1.12)

£ =
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Bi¢-gli¢-aI)" . . : .
| ’L. : Gl crp(i(1/2)(Arg(¢ - ) + dArg(C = y) = Arg(0)) (1.13)
Thus, an integral of a holomorphic function of € around the unit circle will be equal to the
integral of the same function around a rectangle inside the unit circle which contains the
slit from the origin to ¢;. We show how information around the cssential singularity will

give us an exact formula; our formula will be checked by direct Fourier analysis observing

that 1 1 .
= (1) ok, k \
(A =2 B cos(p))1/* — (\/Z)E,P“ 12 cos(y) (1.14)
where o
B\* [ (2:5-1
piY — <_.) <ﬂ _ ) (1.15)
¢ A J'I=-Il 2']

which means that we can think in terms of representing powers of cos()) as a Fourier
series,

2 Reactive Integrals

An exact formula for the values of the reactive integrals has been obtained, and fur-
thermore, the cost of finding the value of the reactive integrals, which were in all other
works (e.g. [21] and [13]) carried out by a numerical integration scheme whose compu-
tation tmu' increases directly with the m appearing in equation (1.2), is with this exact
formula independent of m. Furthermore, this exact formula depends only on values at
the essential singularity expausion at ¢ equals 0. These formulas have been validated by
Fourier expansion and by numerical comparison to 12 or more decimal places with the
straightforward numerical integration scheme deseribed in the previous section, The first
essential singularity expunsion has the form,

1

1
ZP"’( ) ] (2.1)
6 g=0 H

We cau expand the functionr cos(€) by the series

1 2k Y
cos(E) = L[( (916 :ll = ZC <Q+ ) (2.2)

k==0) =0

We now use the Cauchy product and equations (2.1) and (2.2) to write
cos k) _ 1 - ' (r) 1\j
) = {Z (E(‘ ! o (&3

(’) . Z( _j (") (24)

k=0

If we define

216




then equation (2.3) implies that

cos 1 el 1\’ .
%2} - zm‘[%’);”(“z)] 2%)

There are two expansions of even and odd powers of cos(i) which enable us to evaluate
these contour integrals. The even powers of cos are given ([17], p 24-26) by

cos™ () =
-1
5%7[Z{Z(zée)-cos(z'(t’—k):/))} + (228)} (2.6)

l.k:()
and the Fourier expansion of an odd power of the cosine ([17], pp 24-26) is

cos® () =

1 q-I ‘ - ’ \
7 [2{2'(2 1) cosi2 -2k w)}} @)
k=0

If we assume that ¢ is equal to exp(itp), then we can use equations (2.6) and (2.7) and the
relationship

[_tr (C + 2_)" cos(nld’)d‘d) = ./—: (21 . COS"(tl))nos(md))) dw (2.8)

to evaluate the reactive integrals. We consider first the case where j is equal to 2. £ and
use equation (2.8) and equation (2.6) to obtain for positive even integers m not exceeding
2 - ¢ the relationship,

L) B (e 2) % = o ,220,) 0

to evaluate the reactive integrals. In the case where j is equal to 2. € and
20 - 2k (2.10)

we observe that .
k= 220 (2.11)

In considering the casc where j is equal to 2+ ¢ — 1 we usc the fact that in the cese where
m is an odd integer and j is equal to 2. ¢ — 1 that

" Ny 1) dC 2.q-1
L) O d) g =w(ei ) e

/

We conclude that equation (2.5) implies that

/ﬂ {(vC’S(E)} . COS(?TN/))(I!/’ -

T
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« m+2-)
1:/1 [Z Dy, - 27 ( : )] (2.13)

J=0 J

We next develop an expression for integrals involving sin(€)/€ by first observing that

t‘-’l’;(f) 25 (c+ ) (2.14)

We then make use of the fact that

sin(f) 1\ (sin{é)\ _
& (27_')( 3 ) -

A(t.’l‘x)/-z [ZP(M) (<+ ) 3"2(5)] (2.15)

Multiplyving the series given by equations (2.14) and (2.15) we see that

. ¢
sin(€) 1 = () [ - 1 9 1A%
El = A(l—l)/? [ZOEJ ¢ + E (216/
J=

Y|

where
E = Z(s-, pY) (2.17)
k=0
Thus, we conclude that

(580 o -

1 c- m+2.
Al-1)72 [Z{Eﬁﬂ-'z-ﬂﬂ} ( q 1 )] (2.18)

9=0

By making use of the identity

J N j ,
( (= m)/2 ) - ( (j +m)/2 ) (2.19)

the formula (2.18) and the formula (2.13) can be given a different look, but several different
numerical checks all agreed to machine precision. Thes formulas were checked by numer-
ical computation using Gaussian quadrature. In the case where the observation point is
close to the variable of integration ot said differently when 2B is very nearly as large as A,
then the series can converge slowly, but they can still be evaluated accurately if one uses
Euler’s method of accelerating convergence of sums ([14], pp 201 - 207). The following
table shows a weakness in the method without the use of accelerated convergence. When
p and p are both equal to 1 and when 2 and # are both equal to 1.1 as in equation (1.1)
and we just use 139 terms for the geemetrie series and we make use of the fact that cos(¢)
divided by €2 is meromorphic and use the contribution to the reactive integral from the
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simple pole at the zero zeta; inside the unit circle given by equation (1.7) versus using the
Riemann surface concept with just a small number of terms

Essential Gaussian Pole and  Mode
Singularity Quadrature ¢=0 Indea
Contribution Integration Contribution

139 terms
3.724 3.726 3.726 1
2.842 2.844 2.844 2
2.110 2.112 2,112 3
472 4739 4739 8

For the difficult cases described in the above table over 6000 thousand terms were used
along with accelerated convergence and 15 decimal place agreement between the three
methods was achieved. The following table shows the capabilities of the formulae when
augmented by Euler’s method for accelerated convergence for the case where p is equal to
1, pis equal to 14+ 0.2, z is equal to 1, and # is equal to 1 +0.2. Using the Riemann surface
concept and carrying out an expansion about the essential singularity we have

ep(i cos(my) dy)

.S'INGUCLARITY ENHANCED exp(imy)

EXPANSION GAUSSIAN MODE

METHOD QUADRATURE INDEX
3.76346548 — (1.5112968): 3.75346548 — (1.5112968): 1
.382050948 — (.05620636761):  .382950948 — (.0520636761): 10

.0291669710 — (.00285093482): .0291669710 — (.00285093483): 20

Also, the terms of the expansions of sin({) and cos() can be determined by exact formulas
by making use of the J.nsen Voller’s formula, a variant of the Faa Di Bruno formula ({9]).
For example the term Cj appearing in equation (2.2) is given by

Co = cos(VA) (2.20)

An alternative representation of these integrals in terms of known special functions is
found in a much more general setting in Chapter 7 of (Carlson, [5]), where the integral

I(r,m) = /OM(A — 2. Beos($))""? - cos(mup)dy (2.21)

arises as a special case, and Carlson’s condition for rapid ordinary convergence of the series
which states that the ratio
A-2.B

R=4728 (2:22)

stay away from zero is equivalent to ours.
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3 Surface Integral Equation Methods

In this section we shall show how in the case where the irradiated structure consists
of homogneous regions which are delimited by diffeomorphisms of the interior of a sphere
or a torus in three dimensional space (in the body of revolniion case) to represent the
solution of the scattering problein as the solution of two combined field integral equations
with integral operators formed from from the Green's functions defined on opposite vides of
the separating surfaces. The surface integral equation methods reduce the computational
complexity in the serse that they require discretization electric and magnetic fields defined
on a surface rather than on a region of three dimensional space. In a general nonrotationally
symmetric setting the development which follows is valid for regions which are the interior
of diffeomorphisms of N handled spheres,

3.1 Combined Field Integral Equations

Consider a set { in R® with boundary surface 0Q on which are induced electric and
magnetic surface currents J; and M;. If we have a simple N 4 1 region problem, where we
have N inside and a region outside all N bounded homogenous aerosol particles corresponds
to the region index j being equal to 1 and the region inside corresponds to j values ranging
from 2 to N +1, then if the propagation constant k; in region j is defined also by a function
k;, naturally defined on a Riemann surface as the square root of,

k= wlue ~ iwpo (8.1)

For a Debye medium (Daniel, [11]) the branch cuts are along the imaginary w axis. For a
Lorentz medium particle (Brillouin, [4], [29]) the branch cuts are in the upper half of the
complex w plane parallel to the real axis, where y, ¢, and o are functions of frequency
that assure causality and that the radiation does not travel faster than the speed of light
in vacuum. There are two Helmholtz equations, one for the interior of the particle and the
other for the exterior, defined by

(A + k)G, = 4né (3.2)

where G is the temparate, rotationally invariant, fundamental solution ([16]) of the
itelmholtz operator. We let
l]l = |I = - ']2 (303)

and

My =M = --M, (3.4)

where we assunie that the surface S ) separates region 1 and region 2. We generalize
equations (3.3) and (3.4) inductively by saying that for any surface S(;;) scparating region
J from region j where

J < (3.5)
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we have

JJ' = J = -".]J (36)
and
M,’ =M = —M_‘,‘ (37)
We define )
I = {(j,j):S(j’j) is a separating surface} (3.8)

where j is less than 7. We get a single coupled, combined field integral equation which
describes the interaction of radiation with the conglomerate aerosol particle or cluster given
by

Ax Bm =dx Y {(%) /b . / J(7) (s Gy(iF) + p; - G;(r, 7)) da(F)

(50)€T

i G L GinD
+ 4Mgmd{ /S (div, J)[ o da(7)} +

(113) j

(f,‘,) curl ( L( / M7y (Gj(r,7) + G;(r, ) da(r“))} (3.9)

In addition to equation (3.9) we need equation involving the magnetic vector H™ of the
stimulating electromagnetic field which is given by

Ax Hn =dx Y {(%)L
(

(4.9)€7

: \ - G'("',F) G’(T, 7‘:) o
+ (m) grad {/5(,,;) /(dw, M) [ ’w + Jﬂ‘ ] da(i )} +

i
—l—cur' /
ar s

(2,3)

Jl;)

f M) (e Gir,7) + & G3(r,7)) da()

i)

/J“(f) (Gs(r,7) + G;(r,7)) da(f-))} (3.10)

Once the coupled combined field system (3.9) and (3.10) is solved for J and M, the surface
electric and magnetic currents respectively and we define the surface electric charge density

by ((13], p 7) ,
p(F) = é[div,-f(r’)] (3.11)

and the surface magnetic charge density
p™(F) = : [div, : M’(f)] (3.12)
w
where div, is the surface divergence. Now for cach region index 7 we define
JG) = {i:G.)) e} (3.13)
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where 7 is the set of all indices of separating surfaces defined by (3.8). We now need to
be able to express the electric and magnetic fields inside and outside the scattering body.

We first define the vector potentials A; and F by the rules, ({13] (21])

4; = = [4ﬂ_ /s(“)/J (F) - G4(r,7) da(r)] (3.14)
£ = em[(% /s(”)/M 7). Gy r,F)da(i)] (3.15)

The scalar potentials are defined in terms of the electric charge density (3.11) and magnetic
charge density (3.12) by the rules,

¢,(f) = Z [(4%6,)/9

I€T(J) (9:3)

/ Pi(F)G; (r,r)da(r)] (3.16)

and

V(7)) = Gm[(w) L [ermai m)da(r)] (3.17)

(4,3)

We now can define the electric and magnetic vectors inside the region j in terms of these
potentials (3.14), (3.15), (3.16), and (3.17) by the rules,

B = ~iwdi(r) ~ grad(®(r) + —ourl(F)() (3.18)

J

and 4
H = ~iwF(r) = grad(¥,(r) + —fcurz(,«i‘j)(r-) (3.19)

Similar equations apply outside the body, by there the fields represented are the differences
E and H} between the total electric and magnetic vectors and the electric vector Einc and
the magnetic vector H™ of the incoming wave that is providing the stimulation. Thus
([13]) we see that outside the body,

E = —iwdi(r) ~ grad(®,(r) + lcurl(ﬁ,)(r) (3.20)
€
and
H = —iwF(r) - grad(¥,(r) + —-curl( 1)(r) (3.21)

These equations generalize the formulation of Glisson ([13]) to a three dimensional struc-
ture whose regions of homogencity are diffeomorphisms of the interior of the sphere or a
torus in R, If the scattering structure is not a body of revolution, then the region may be
a diffeomorph of an N handled sphere.




4 Zeros of Functions of a Complex Variable

Important design problems can be solved with good algorithis for finding zeros of entire
or meromorphic functions of a complex variable. One of the most important problems
attached to Riemann’s name was the Riemann hypothesis. In this section we discuss some
novel homotopy methods ([6]) for finding zeros of analytic functions. The problem of
finding modes of propagation in an anisotropic, magnetically lossy coating on a perfect
conductor ([10]) is related to the problem of finding complex numbers z such that

cosh(y/z) — %zig = 0 (4.1)

by moving this problem up to a higher algebra where the solution becomes transparent
and then following a homotopy path down to the solutions in the space of interest; this
permitted the authors to track propagation constants as magnetic properties went through
regions of anomalous dispersion and the material thickness changed.

We consider here the problem of finding complex numbers z such that sin(z) is equal
to 2. Since there are no polynomial functions P(z) and entire functions h(z) such that

- -;-ewp(z'z) + %cwp(——iz) -z = P(2)exp(h(z)) (4.2)

it is clear from the theorem of Picard that there are an infinite number of solutions of the
equation

sin(z) — 2 = 0 (4.3)
We transform the equation,
sin(z) = z (4.4)

to an equation in another space by using auxiliary functions so that the transformed
equation has the form,

sin(A(2(8)) = (3(x) + B(x)) (4.5)
where
B(s) = (n-mi)(1~s) (4.6)
and
20) = —nmi (4.7)
and
A(s) = (1l —s)+s (4.8)

so that when & is equal to zero, equation (4.5) has the form,

stn(i(—~nmi)) = «n(nr) = (—nmi + nri) (4.9)

which is true, and when & is equal to 1, then as the trivial equation (4.9) holds at one end
of the homotopy path and if equation (4.5) is preserved all the way along the path, and us
this equation has the form

sin(A(D)-2) = = B(1) (4.10)
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at s cqual to one, since

All) = 1 (4.11)

and

B(1) = 0 (4.12)

we see that we obtain a solution of equation (4.4) at the other end of the path,
Thus, the problem is finding & scheme for assuring that the equation (4.5) is preserved
all the way along the path. Differentiating both sides of equation (4.5) we see that

#(s) + B(s) =
cos( A(s)2(s)) {A'(8) - z(s) + A(s) - #/(s)} (4.13)
Collecting terms involving z'(s) we find that
{A(s)cos(A(s)z(s)) = 1} 2(s) =
B/(s) - 2()A'(s)eos( A(s)2(s)) (4.14)

which leads, after solving equation (4.14), to a coupled system of differential equations in
z(8) and y(s) with known values at s = 0. Thus,

o [ Bls) = a(s)A(s)eos(A(s)2(s)) .
w(s) = R“"{ A(3)cos(A(s)2()) = 1 } (4.1)

and

B/s) - z(a)A’(s)cas(A(S)z(s))} (4.16)

y'(s) = Im“g{ A(s)cos(A(s)z2(s8)) = 1

() - (2

These equations have been computer tested and orbits starting at z(0) + iy(0) equal to

where

z(0) + iy(0) = 0+ 271, (4.18)
for example, end up at 4
z = 7.4976... — 42.7686 (4.19)

5 Applications

The homotopy method deseribed in the last section provides us with a powerful design
tool. By designing parameters in an irradiated toroidal plasma that will increase its effi-
ciency of energy absorption by a fuctor of 1,000,000 one could in the light of the already
successful Fusion reaction in England design practical, commercial fusion reactors which
would replace all other means of generating power, abate the global warming, and give us
a means of having safe drinking water 10 years from uow, Perhaps a large acrosol which
specitieally absorbs dangerous UV light could be placed in orbit between the the sun and
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the carth or one worid have enough power to carry out the generation of large quantities of
the ozone free radical in any prescribed portion of the Earth'’s atmosphere, Sinee half of the
effort in solving integral equations of electromagnatic seattering involves finding entries in
a matrix operator vepresenting the diseretization of the integral equations (3.9) and (3.10),
the exact formulas (2.13) and (2.18) for integrals of functions defined on Riemann surfoces
have made it easier to accurately determine the interaction of clectromagnetic radiation
with penetrable bodies having rotational symmetry.
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ABSTRACT

This article is to summarize un extensive theoretical computation on Mie scattering by
spheres whose size is distributed according to the Hansen-Travis' stundurd size distribution (| Ref.
3j; often abbreviated as the gamma distribution) within natrow limit, The results are presented in
graphical forms to show some interesting findings on rainbow und glory phenomena, Comparison
of the microwave experiment on scuttering by randomly oriented, rough particles |Ref, 7) and the
Mie scattering calculation for narrow size distribution of spheres, is also made, This article is an
integral part of work plunned for submission to public journals,
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1. Introduction

Aerosols in the atmosphere are usuaily found in a wide spread of sizes, shapes and optical
properties, Many circumstances exist, however, that we may find fascinating optical phenomena
(such as the glory) resulting from the scattering by remarkably uniform particulates. We restrict
the discussion here to spherical particles and assume they have the same refractive index m=m'-
im", In the following Sec. 2 we briefly explain the mathematics involved in evaluating the
scattering by spheres whose sizes are distributed according to the Hansen-Travis' standard size
distribution (or simply the gamma distribution [Refs, 2, 3]), The stable, efficient Mie codes [Ref.
8] are employed in all numerical calculations, Sec. 3 illustrates the rainbow intensity profiles for a
narrow size distribution of water drops around the effective diameter 2a,=400 pm while Sec, 4
depicts the intensity and polarization profiles of the glory scattering by four types of narrow-size-
distributed Ha0 drops with 2u, = 12,5um, Comparison of the microwave angular scattering
functions for randomly otlented rough particles [Ref, 7] with three types of the gamma distribution
is made in Sec. 5. Summuary Is made in Sec, 6.

* For the distribution function we take the Hansen-Travis' standard size distribution (often
ubbreviated as the gammua distribution [Ref. 3]), so that the particle number density n(x) at the
particle size purameter x = 2mu/A is :

n(x) = const, X (1-3b)/b exp| - ;‘-’55) 2.1

where b denotes the effective variance of the distribution, which is 1 measure of the spread of n(x)
around the effective size purameter xo = 2may/A. 1l 1y the effective particle radius, corresponding to

a certnin mean radius of the spheres,

* The perpendicular and parallel components of Mie scattering intensity for single sphere are
respectively [Refs, 1, 2, 8, 6]:

il(x.m.e) i n”(gii (A, (1) +b,Ty( “))‘

(2.2)

2 , 2
2cx,m 8) =| 2 A (00T (1) +by o ()|
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H=c080, T, (1) = dP,(K) / A}, To(M) = UTa(W) - (1-p?)dm, (1) / dit, and P,(R) is the n-th order
Legendre Polynomial of 1.

* The corresponding scattering intensity components for the size distribution are evaluated by
integrating (2.2) over x according to the weighting function n(x) of (2.1):

X X
1= [ 4yemnciax/ [ ncodx
A X, (2.3)
g X3
I2 - J. i,(x,m,0)n(x)dx / J. n(x)dx
!1 xl

*Expressions for the total scattering intensity for unpolarized incident light and the degree of
polarization of the scattered light from the distribution are then:

Si1=(I) +12) /2
Pa(lj-Ip)/(I1+1p)

(2.4)

By virtue of the exponential dependence in (2.1), the integration limits x; and x, in (2.3)
are chosen in such a way that both n(x,) and n(x,) fall off from n(x,) by four orders of

magnitude, thereby contributing little to the integrals, i.e., to the scattering. The smaller the value
of b, the more rapidly n(x) falls off from n(xc), and thus x, and x, get closer to each other and the

distribution becomes narrower. Also, in (2.3) a smaller number of divisions, ngiv, is needed for
the interval (x,, x). For example, b=0.005 gives a rather narrow distribution so that x, = 0.71x,

and x, = 1.32x¢, and ngiv = 40 was found to give fairly good convergence of (2.3). We also
noticed then the further increase of ngjy beyond ngiy > 160 did not improve substantially the

accuracy of evaluating (2.3).

The efficient Mie codes described in [Ref, 8] were employed to carry out the integration
(2.3) for the size distribution. Due to the numerical stability, only the 8-digits, single-precision
arithmetics (on VAX 11/730 or VAX 11/750 computers) Mie code was found adequate to cover up
to X¢ =~ 7000 in particle size. The CPU time T required for a typical calculation on VAX 11/750
was also clocked:

T=~ 0.63 millisecond ¢ x; ¢ ngiy ¢ (# of scattering angles)
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3. Rainbows by Water Droplets of N Size Disribu

With a small effective variance, b = 0.005, we depict in Fig. 1 the rainbow intensity
profiles at three visible wavelengths for narrow-size-distributed water droplets with an eftective
diameter 2a = 400 um. The Mic results of Sq1 for the size distribution are shown by cuntinuous
curves, while the Airy theory S11 [Ref. 8] for single size x¢ are plotted by dotted curves. The
primary rainbow for which p = 2, is on the right-hand-side, and the secondary rainbow (p= 3) is
on the left. Fig. 1 is selected out of many similar plots for various sizes, and we sumniarize only a
few outstanding features: |
(1)  Compared to the Mie rainbow profile for single-sized droplets, the Mie S1; profile is

considerably smoothed out even with such a narrow size distribution. This smoothing is

accompanied by the smearing out of the supernumeraries of both p=2 and p = 3 rainbows,
especially at the 2nd and higher order supernumeraries,

(2)  The Airy and Mie theory results agree strikingly well, both on the magnitude and the
position of the main peaks of the primary (p = 2) and the secondary (p = 3) ruinbows. In
contrast to the long houts of Mie computation by VAX 11/750, the Airy calculation
requires less than two minutes by a 100 times slower PDP11/23 computer. We reiterate
therefore that Airy theory is a powerful tool in laboratory study of rainbows,

4. Glories by Water Drops of N Size Distribu

More elusive, but no less important than rainbows, are the glory phenomena, the enhanced
backscatterings near 0 = 180°, excellent expositions of which based on single-sized droplets can be
found in |Ref. 4, 6). Briefly stated, a glory phenomenon can be seen by an observer as rings,
which are often colored, around his own head's shadow on a water droplets cloud. We know this
happens only when the droplets are remarkably uniform in size and optical property. Using the
similar Mie scattering programs as in the previous sections, an extensive study has been made for a
number of effective variances b as well as effective sizes x¢. We present, howcver, only one set of
glory intensity/polarization profiles for water drops of 2ug = 12.5 pm, at three visible wavelengths
(Fig. 2). In addition to curves corresponding to the effective variances b = 0,001, b =0.005 and b
= ().025, the glory profiles due to the single size with 2a, = 12.5 um are also shown for direct
comparison.

A few interesting features noted:

(1) As in the case of rainbows, the effect of the droplet size being distributed is to

smooth out the glory intensity/polarization profiles, and the smoothing is more
extensive as the effcctive variance b increases.
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(2)  The number of glory intensity peaks/troughs in a given backscatter angular interval
increases with the droplet size x;. Unlike rainbows, the glory can only be clearly
seen for relatively small size xe. This is because the angular spacings between
successive glory rings become so small for large x¢ (> 1000) that only 1 small
spread in droplet size would smear out the profile.

(3)  The intensity profiles for the size-distributed droplets are noticeably different from
those for the single size, both in magnitude and in the angular positions of
peaks/trougis.

(4) A distinct glory is observable for b < 0.025, especially near the first ring closest to
0 = 180°. With b = 0,025, the second higher rings are considerably smeared oui.

(5)  The glory light is positively polarized (Pol ~ + 50%) near 6 ~ 179°, This angle
depends slightly on x¢ (i.e., get closer to 8 = 180° as x; increases), but is rather
insensitive to the value of b.

(6)  Fxcept by the straight Mie computation or via the complex angular momentum
theory of Nussenzveig-Kahre [Ref. 4], no systemnatic explanations are as yet
available for the glory phenomena.

5. Compsrison of Microwave Scattering by Randomly Qriented Rough Puticles with Mie
Scaltering by Sol.cros of Narrow Sige Diseribut

Extending the similar Mie calculations as in the preceding sections, we now turn into a
closer look at the microwave scattering by randomly oriented rough paiticles {Re. 7], where we
had also reported the comparisons with both single-sphere and b = (0.005 gamma-size-distribution
Mie calculations.

Esch large data symbol in Figs. 3 & 4 represents the averaged microwave data at each 6
and polarization setting (11, 22, or 12) over 272 random orientations of each target, whose particle
shape is shown at the figure's upper right comer. xy denotes the volume-equivalent size
narameter, and the two particles shown are both efficient scatterers for having the volume-
equivalent phase shift parameter py = 2 « xy » (m'-1) near 4, i.c., near the first mejor resonance.
Both particles look like spheres of roughened surface; hence the name, "rought particle.”

Iy is the intensity of scattering when both the transmitter and receiver polarizating are
vertical, I92 is for both polarizations being horizontal, and 119 (= I9)) is where one of them is
vertical but the other is horizontal. In general, 17 # 0 for nonspherical paticles. Even though its
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magnitude is rather small compared to I} or I22, the correct expressions for the total intensity S11
for unpolarized incident light and the degree of polarization, P, have to take 112 into account;

St =7 (I +Ia2 +21p)
(5.1)

P=(I1y - I22) / (I11 + 122 + 2112)

Continuous curves in Figs, 5-6 are calculated by Mie theory for the gamma-size-distributed
spheres with xe = xy and with b = 0.001, b := 0.005 and b = 0.025, respectively. For readability,
the b = 0,005 curves are accented by ==+, which seem to give the closet inatch to the observed
microwave data.

Rrief summary on the comparison:

(1)  For both rough particle shapes, the intensity component I3 is rather well predicted

by the narrow size distribution of spheres having xe = xy. The match between the
experiment and theory is perhaps at its best with b = 0.00S.

(2)  Similar match also exists for the intensity components I22, except in the larger
scattering angles: 8 > 80°, where the theory tends to overestimate the 123

magnitude.

(3)  If the rough particles in [Ref, 7] for other sizes are included, the gamma-size-
distribution Mie theory gives, in general, a larger backscatter intensity than the
experiment,

(4)  For the particle size in Figs. 3 & 4 (or smaller), the polarization by rough particles
can be well approximated by the gamma-size-distribution of spheres, but the best
effective variance b to be employed is not well defined.

(5)  Since the best match between the experiment and the theory is in 6 < 80°, wherein

most of the scattered energy is directed, it is now clear that the asymmetry factor of
scattering by rough particles is well approximated by the garnma-distribution Mie
theory.
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Summary

The present Mie calculation work for the narrow-size-distribution of spheres led to the

following conclusions:

*

Rainbow intensity profiles can be well predicted by the classical Airy theory for particles as
small as x¢ ~ 200. Its match with Mie theory is particularly excellent at the first peak and a
few supernumeraries, both in magnitude and in positions of the peaks. Since Airy theory
is much simpler to evaluate than Mie's, it is obviously a powerful tool in characterizing a
particle, .

A realistic explanation of the backscattet glory phenomena may have to take the size
distribution of droplets into account, We demonstrated that the Hansen-Travis' standard
size distribution function (the garnma distribution) was a very useful model to represent
such a distribution,

Mie computation of scattering by gamma-size-distributed spheres was shown to match very

well the observed angular scattering by a rough particle with xy = Xe, especially at forward
angles © < 80° where the scattered radiation is concentrated. Thus the Mie theory would

provide precise information on the asymmetry factor of scattering, which is also a crucial
information on a radiative transfer problem,
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Abutract

Simple and efficient trial fields are developed for the transverse-magnotic
plane-wave scattering from penetrable cylinders with impedance boundary
conditions. The trial fields are capable of satisfying the boundary conditions, and
incorporate a suitable shadow-imitating factor with an adjustable parameter. As
is explicitly demonstrated for this test problem, when such trial fields are
employed in an appropriately formulated Schwinger-type variational principle,
accurate scattering amplitudes and cruss sections are obtained for all size
parameters and arbitrarc'ly scattering directions. Further investigations are
underway for the more difficult case of transverse-electric polarization.

Introduction
This work is an extension of the previous variational calculations involving

idealized, impenetrable scatterers [1-11] to more realistic penetrable scatterors
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with impedance boundary conditions (IBCs). It was shown earlier [1,2,5] that the
go-called boundary-Born trial functions with the built-in capability of satisfying
the homogeneous Dirichlet and Neumann boundary conditions (BCs) yield
reasonable broadband accuracy for a scalar plane-wave scattering from a
perfectly-conducting cylinder or a hemicylindrically-embossed plane. However,
the large size parameter limits (ka >> 1, where a is the cylinder radius, and

k=2 /A is the wavenumber, with A being the wavelength of incident radiation)
of the variational scattering amplitudes in the forward and specular direction
were incorrect. In addition, the variational results were contaminated with
spurious wiggles or spikes at moderate and large size parameters. Later, upon
realization of the crucial role of the shadow-forming wave in forward scattering
(12], it was found [7] that, for scatterers with Dirichlet boundary condition,
premultiplying the houndary-Born trial function by a simple shadow-imitating
factor not only corrected the large size parameter limits but algo effectively
removed the spurious spikes and wiggles. This was explicitly demonstrated for
simple test problems such as plane-wave scattering from perfectly-conducting
cylinders [7] and hemicylindrically-embossed planes [8], as well as soft spheres
[9,10] and prolate spheroids [11]. Very accurate variational results were obtained
for all size parameters and arbitrary scattering angles. For scatterers with
Neumann's boundary condition, the boundary-Born trial functions with simple
shadowing are not as accurate, and further investigations are underway.

In this paper, after a brief discussion of BCs suitable for penetrable
scatterers, the Schwinger-type variational principle and boundary-Born trial
fields with simple shadowing are introduced and discussed for a special problem
of plane-wave scattering from an infinitely-long impedance cylinder. The croes-

sectional view of the problem is depicted in Fig, 1, where the axis of a cylinder

having radiur a is along the 2 direction, I.:, I?,s are the incident, and scattered
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propagation vectors, respectively, and ¢ is the scattering angle. The usual polar
coordinates p, ¢ are used to specify an arbitrary point in a plane normal to the
cylinder axis. Only normal plane-wave incidence is considered. [It is
unfortunate but, unlike the idealized case of perfect conductor, a general three-
dimensional (3-D) problem of oblique incidence cannot be reduced to two scalar
(i.e., transverse-magnetic (‘TM) and transverse-electric (TE)) 2-D scattering
problems even for a homogeneous impedance cylinder.] Without loss of
generality, the incident plane wave propagating in the x direction is assumed to
be of unit amplitude.

It is worthwhile to notice at this point that our approach to developing
mathematically simple and physically plausible trial fields [13] by incorporating
the essential physics inherent in scattering processes [1,2,6,7,8,14] is a generic
one and is not limited to special cases of scattering problems. We are interested in
gcattering from canonical separable shapes [15,16] bacause manageable exact
solutiony are available for these scattering problems, so that the variational
calculations can be tested analytically and/or numerically for all size parameters,
scattering directions, and polarizations,

The scattering problem can be defined as the solution of the Helmholtz
equation for a plane wave normally incident on a cylindrical cbhject where certain
BCs are satisfied. At this level, the present investigation examines whether the
use of "boundary-Born trial fields with shadowing" can produce all-frequency
accuracy in variational solutions with the standard Leontovich BC and with the
curvature-dependent IBC. In other words, our goal is to test the efficacy of our
{rial field design procedure, which is based on physical inisight, At a difierent
level, however, one can be confronted with the need to calculate the scattering u

an electromagnetic field from a penetrable scatterer. In that event. onc is

interested in whether IBCs are a reasonable approximation to the rigorous BCs.
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These latter issues are explored in the next section and the variational procedures

are tested in the final section.

Boundary Conditions for Penetrable Scatterers

Penetrable scatterers are represented by dielectric and/or magnetic objects
in electromagnetics and by elastic bodies in acoustics. The rigorous boundary
conditions for such scatterers are well known [12,17,18); e.g., in electromagnetics
these consist of the continuity of tangential components of the electric (E) and
magnetic (I? ) fields at the scatterer boundary. Generally, this requires
knowledge of the fields both outside and inside the scatterer, and thus complicates
the problem. For the problem of plane-wave acattering by an infinitely-long
circular cylinder at normal incidence (see Fig. 1), the rigorous boundary

conditions can be written down for both TM(E T 172) and TE(H T 15)

polarizations as

wouds = W‘”Ig H /ﬂo ’ ™ (WII Ez)
with{ = (1)
;QMI =.‘_9.'Etn| €l/e, , TE (ymH,)
on 's on's

where Y represents the electric or magnetic field component along the cylinder
axis, &o,€ and Uo,U denote electric permittivities and magnetic permeabilities
outside and inside the cylinder, respectively, and the normal derivatives are
evaluated at the cylinder's surface, p = a.

On the other hand, significant simplifications usually arise if approximate
houndary conditions, such as IBCs, can be employed, since these involve fields
only outside a scatterer characterized by relevant surface impedance. The

(conventional or standard) Leontovich IBC in its simplest form is [19,20]

E-#(E-n)=2Z,(AxH) @
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where Zg = \/‘u / € is the surface impedance of the scatterer, and 7 is the unit

vector in the outward normal direction.

In many practical situations, the concept of surface impedance as a

boundary condition is a suitable approximation to the true physics of the
scattering problem, being generally applicable to the so-called locally-reacting
surfaces, examples of which are well-known in acoustics as well as
electromagnetics [18). In particular, it has been used to model scatterers with
high but finite conductivity, to model surface roughness, to account for coating
layers that produce microwave absorption, and to model scattering from
overdense plasma [16,21].

For the cylinder scattering, the Leontovich IBC reduces to

1/Z,T™M (y = E;)
-Qyil-ﬂknwl =0 with n={ : 3)
on s $ Z, TE (y=H,)

where Z = Z, m Z; / Z, is the relative surface impedance, and Z, =+/it, / &, =
1207 (ohms) is the intrinsic impedance of free space. A time variation e~i®% has
been assumed, with  being the frequency of the incident wave. In this paper, we
shall consider the case of a rionferrous (/1 ~ ,) metallic conductor or a lossy
dielectric for which 1Zz1 < Z,. Then the relative surface impedance can be
conveniently expressed [22] in terms of the dimensionless skin-depth parameter
kd as

Z,=(1-)k8 /2 @
where 0 = m is the skin depth, and ¢ the conductivity of the scatterer.

Note also that in this case, the complex refractive index of the material relative to

free space is simply the reciprocal of the relative surface impedance, i.e.,

N=\eulep, =1/2,=(1+i)/ k. (6)
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The Leontovich IBCs are a valid approximation to the rigorous boundary
conditions in scattering problems when the following three conditions [20,22] are

satisfied, viz.,
IN' >>1 R (6a)

IIm leamin >> lv (6b)

where Gmin is the smallest radius of curvature, and

(218721 (6c)

where £ is the distance to the nearest significant source. For the problem under
consideration, the last requirement is automatically fulfilled, and the first two
can be stated as

(k6)? <<1 and &/a<<1. )
More specifically, extensive numerical calculations [23] indicate that when k8 <
0.141 and &/a < 0.435 the Leontovich IBCs are expected to provide accuracy with
~1% error at all scattering angles and 0.5 < ka < 500.

Generally, for scatterers of larger values of curvature and surface
impedance, more sophisticated curvature-dependent IBCs provide a better overall
approximation [22]. For the cylinder case, these are given by the same expression
(3), except that now

Z,(1+iZ, [ 2ka) , ™

Z= . (®)
2,(1+iZ,/2ka)™ , TE.

Note the explicit dependence of Z on the radius of curvature. For small surface
curvatures (large size parameters) this Z tends to the usual Leontovich form,
which therefore can be considered as the zero-order term in the expansion of the

surface impedance in terms of the curvature [24].




There are different forms of curvature-dependent IBCs availuble in the
literatire [22,24,25], some of which were originally developed by Leontovich [19].
Our numerical and analytical asymptotic analyses show that the choice made in
Eq. (8) yields the correct ka-dependence (albeit with an incorrect factor) of the lead
term in the small size parameter expansion of the scattering amplitude T defined
as in Ref. 16.

Figure 2(a) illustrates the effects of BCs on the TM forward scattering cross-
section by comparing results using the (conventional) Leontovich BC, Eq. (3), the
curvature dependent IBC, Eq. (8), and the rigorous BC, Eq. (1). These cross
gsections werz calculated with the exact Mie-type solutions derived by standard
separation-of-variables techniques in terms of Rayleigh series [16,22]. Three
markedly different values of the skin depth are presented to demonstrate the
impertance of this parameter. Note that for the smallest skin-depth corcidered,
48 =0.005, the field barely penetrates the scatterer an-! all three BCs yield results
that are indistinguishable from one another on the scale of plctting (top curve).
For larger skin-depth parameters and sinall size parameters the curvature-
dependent IBC provides a more accurate approximation to the exact BC than the
Leontovich BC does. All the results coincide at large values of the size parameter,
ka, approaching the same limit value of unily, as they should because the field
scattered at and very near the forward direction is the same in the high-frequency
limit for all cylinders of width 2a, regurdless of the cylinder material, incident
polarization, or cylinder geometric cross section [12,16]. For other scattering
directions, even though the three BCs yield almost identical results for ka >> 1,

these results depend on the skin-depth parameter and polarization, as well as

scattering angie.




Tests of Variational Procedures

Our primary interest is not to investigate the relative virtues of various
IBCs for approximating the rigorous BCs, but rather o develop and test simple
broadband variational solutions for a variety of ECs useful in practical
applications. As noted aho'e, our previous experience suyggest: BCs and
shadowing can provide physical insights that prove rewaiding in the design of
trial fields. The fundamental question addressed in the rest of this paper is
whether these considerations continue to hold in the case of penetrable scattevers.

Thus we will concentrate on comparisons betwe2n exact and variational results

 for a given BC, und not on the appropriateness of that BC for a given physical

problem.,

In deriving efficient variational principles and trial fields for impedance
scatterers, we follow the approach developed earlier [1,2,7,8] for impenetrable
scatterers. Impenetrable scatterers ars, of (Lurse, appropriately characterized by
the well-known [12] Dirichlet (or soft) BC

yl, =0, TM (y=E,) ©

and Neumann (or hard) BC
oy, _ _
-5’?|S- 0, TE (Vf=[‘17) . (10)

These idealized BCs represent a spacial case (Z3 = 0) of the IBCs in Eq. (3). The
formal structure of the IBCs as a comhination of the field and its normal
derivative evaluated at the scatterer surface allows one to anticipate the
performance of the boundary-Born trial fields with simple shadowing (see below)
from the results for impenetrable scatterers [7-11]. In particular, whenever the

contribution from the field normal derivative to the IBC is dominant, as is the
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case for TE polarizaticn, one can expect inaccuracies similar to those encountered
in the variational calculations with the Neumann BC. Our numerical and
analytical analyses corroborate this foresight, but will not be discussed here.
Physically, as for impenetrable scatterers, this discrepancy is due to the well-
established fact [26] that the creeping wave effects are significant for TE
polarization, and should be incorporated into the trial fields to render them more
accurate in the resonance region. Further investigations of this problem are
underway.

The Schwinger-type variational principle [12] for the scattering amplitude
for the impedance cylinder problem under consideration can be derivad in a

straightforward manner and written down in the standard form

T™V=NN/D (11a)
in terms of line integrals along the cylinder circumference
2z - _‘.E 2
N 49| 9185, MK (Bi8e ”’] (11b)
0 p=a
N 5020, 0 D
W [ ag| F@s 0 DR 9517 | 119
0 p’=q
r2ﬁ 2n .
D | d¢f KB oCUB-FIMR:09] .
0 0 p=a
p'=a
Here
) oy /op|,_, . T™ (y=E) (12a)
Vpey + TE (w=Hy) (12b)
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is the surface current density for each polarization, G is the effective Green
function given by a combination of the usual 2-D free-space Green function and its
first- and second-order normal derivatives, and & is a simple function of the
scattering angle, the impedance parameter, and the integration variable, The
quantities with tilde, N , R , and h, represent the adjoint solution, i.e., the
solution of the reciprocal problem in which the source and observer are
interchanged, so that the reciprocity relation [12,13] is satisfied due to the form of
Eq. (11a). Thus, the adjoint field ¥ = VI(—I'{,) follows directly from the original
field ¥ = y(k) by substitution ¢; — ¢, + 7. Using Graf's addition theorem [27),
the double integral in Eq. (11d) can be reduced to a product of single integrals.
With the correct fields y, { (and, hence, currents K,K,), each of tho
integrals N, N, and D, as well as their ratio (11a), will yield the correct scattering

amplitude 7. Then, the differential cross section

T 1 (ka)®> | forward (¢ =0),

o= (18)
IT|*(4 / mka) , otherwise (¢ #0),

normalized us for perfectly-conducting cylinders [7], immediately follows. On the
other hand, when a trial field containing some error is used for y (and ), the
variational-approximate TV with errors of the sacond and higher orders is
obtained by Egs. (11) and (12). The first order errors in TV cancel out due to its
inherent stationary property [12], and this is potentially advantageous when
compared to other, non-variational approximate techniques.

In developing trial fields for the impedance cylinder problem we followed
the Ansatz previously devised for perfect conductors [1,2,7,8]. Namely, starting
with the simple Born approximation, i.e., just the incident plane wave, we

augment it by the same expression, but evaluated on the scatterer surface and

premultiplied by a simple factor, sc that the resulting boundary-Born trial
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function is capable of satisfying the pertinent BCs, To provide for shadowing,
which is important for moderate and large size parameters, this trial function is
premul_tiplied by a simple, shadow-imitating function. The followirg boundary-

Born trial field with shadowing

V@) =01-plarcosglf P - 1P| _ )| 10

is capable of satisfying the IBCs by virtue of ﬂexibiliﬁy provided by f(5). When
this trial field is substituted into Egs. (11),(12), a variational parameter A(ka,n)
derived from f(P) is obtained, with its "optimal” value found from the stationary
condition dTV/9A =0,

The shadow-regulating parameter B in Eq. (14) can be adjusted so that the
correct large ka-limit of TV(¢s = 0) is obtained [7,8,10), i.e.,

TV (95 =0) =22 T(9;=0), (15)

with the limiting value of 7'V derived by employing the asymptotic techniques
considered in Ref. 28. According to the physics of wave scattering [12], shadowing
is not present for small size parameters because diffraction causes the entire
scatterer to be illuminated. Thus, we set 8 = 0 for, say, ka < 1 by introducing a
simple ramp function, B(ka). With such a ramp function the shadowed trial field
in Eq. (14) goes over to the original boundary-Born field for small ka's, which
yields exceptionally good results in this ka-region for both TM and TE polariza-
tions. It may be noted here that choosing f§ in this way does not limit the
applicability of this procedure to problems where the exact solution is known. All
that is actually needed to fix B(ka) at large ka is the generic, readily obtainable,

physical-uptics result for forward scattering. In fact, the variational results
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displayed in Figs. 2 and 3 were obtained with a simple, physically reasonable

choice of

0, ka<0.7,
P(ka) = {(ka-0.7)/(4.0-0.7), 0.7< ka< 4.0, (16)
1, ka24.0.

Numerical results for TM polarization show only minor changes with plausible
changes in the choice [10] of the cutoff ka values in the ramp function.

As for perfect conductors [7-11], incorporating the simple shadowing into
the boundary-Born trial fields not only corrected the large ka-limit of the TM
variational results for forward direction, but also effectively suppressed spurious
spikes and/or wiggles for all scattering directions. Thus, while the variational
results without shadowing appear to coincide with the exact solutions for the
impedance cylinders as plotted in Fig. 2(b), plots on a magnified scale (cf. Fig.
2(c)) reveal significant, ever-increasing errors of the variational results for large
size parameters, as well as the presence of spurious wiggles. The simple ramp-
function shadowing remarkably removes these discrepancies, as is illustrated in
Fig. 2(¢c). The unshadowed boundary-Born variational results for backscatter are
very accurate for small ka’s, but are heavily contaminated with spurious spikes
for moderate and large size parameters, as shown in Fig. 3(a). Again, the simple
shadowing eliminates the spurious spikes (see Fig. 3(b)), so that the maximum
error of less than 4% occurs at ka =~ 2,1 for the most demanding case considered
of kd = 0.3 (see Fig. 3(c)).

Summary
For TM scattering from an impedance cylinder, the shadowed-boundary-

Born trial fields that incorporate either the Leontovich or curvature-dependent
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IBC and simple ramp-function shadowing, yield veriational results that are in
excellent agreement with the exact solutions for all size parameters and arbitrary
scattering angles. Similar results are expected for penetrable scatterers of other
shapes and compositions with applicable IBCs to be considered in future

research. For TE polarization, the agreement is reasonable but not as accurate,

with further investigations underway.
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FIGURE 1. SCATTERING CONFIGURATION, Plane-wave scattering by an infinite
penetrable circular cylinder at normal incidence.
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FIGURE 2. TM FORWARD SCATTERING. (a) Plgts of the
exact normalized cross sections for a ponetrable cylinder with
the rigorous diclectric (——), Loontovich (- - -), and
impodancoe curvature-dependent (---) BCs. For k8 w 0,005 the
threo results are indistinguishable and are given by the top
curve, the middle three curves are for k8 = 0.0, and the results
for k8 = 0.3 arc given in the lower thres curves. (b) The exact
resulis for the Leontovich (- ~ -) and curvature-dependent (---)
IBCs are compared with the corrospotiding variational results
(——-) oblained with the boundary- Bom trial fislds without
shadowing for the throo values of k8 as in (a), The variational
and exact results uppear to coinciile on this scale of plotting,

(c) Variational boundary-Born results without shadowing (——)
and with shadowing (---) are compared with the exact result

(~ = =) for the Leontovich BC and k3 = 0.3. The need to
incorporate shadowing into the boundary-Born trial fleld is
obvious from the improvements that are cvident at this
magnified scale.
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FIGURE 3. TM BACKSCATTER. (a) At small values of
size parametor, the non-shadowed boundary-Born variational
rosults (—) agree with the exact cross sections for both the
Leontovich (~ - -) and curvature-dependent (---) IBCs. The
top curve Is for an almost impenctrable scattorer, k8 = 0,005,
where the curvature-dependent and Leontovich results are
indistinguishable. The middle two curves are for k8 = 0,05,
and the bottom two are for k8 = 0.3, Spurious spikes and
wigglos contaminate the variational results at larger values of
ka. (b) The exact results are the same as in (a), but the
variational results are now calculated using the boundary-Bom
trial flelds with the ramp-function shadowing. Notice the
absence of spurious spikes und wiggles, (c) The exact (---) and
variational with shadowing (——) results for the Leontovich
BC and k8 = 0.3 from (b) are plotted on a magnificd scale o
exaggerate the small discrcpancies, The variational result Is
accurate for all size parameiers. The maximum error occurs at
ka ~ 2.1 and is less than 4%.
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ON USING DIFFERENTIAL
EQUATIONS
TO INVERT INTEGRAL EQUATIONS
DESCRIBING
ELECTROMAGNETIC SCATTERING
BY
HETEROGENEOUS BODIES

D. K. Cohoon
West Chester University

November 2, 1991

We are interested in predicting the seattering of clectromagnetic radia-
tion by heterogencous acrose! particles, We can represent, the clectromag-
netic ficlds induced within such o body as the solution of a coupled system
of integral cquation relating the clectric and magnetic veetors of these fields
to the clectric and maguetic vectors of the stimulating electromagnetic field.
The ideas developed here can be appli d to bianisotropic structures, but for
simplicity we restrict our attention to the case of u nonmagnetic body, By
solving a differential equation, we develop o new inverse integral equation
where only known functions appear under the integrals.

1 INTRODUCTION




When a scattering body has a general shape, there is no exact solution
to the boundary value problem associated with Maxwell's equations. The
problem is usually formulated in terms of integral equations where the field
quantities £ and & being sought appear both under the integral and outside
the integral. The clectric field integral equation has the form,

BE-F =
—grad (/{'] div(iweE + af - iweE)

Wep

G(r.s)dv(s ))

tegrad ([ (weE + afl - iveE) - nG(r, .9)(1«4(3))

WEn

¢ (5) 8- Bt

div(e (B ~ (it B)ii))grad(G(r, s))} (.la(s))
Wy /ﬂ(z‘weﬁ + af = twegE)G(r, 8)dv(s)+

~curl ( [ ont +BE - iopBG(r, s)clv(s)) (1.1)
and the magnetic ield integral equation for a bianisotropic material is given
by _

q-il'=
- div(iwpd
_grail (/ (/:)(1wuH+ﬂb zwu,,ll) G, 8)dn(s )>
J1 wily

e rrr// 1wuH+ BE - zw/tuH n)G(r, s)da(s)
LV'/I()

- (/ (o (= (i E)i) x (yl'm'l(G'(r,3)))(1(1(.9))
Sl ‘

— Wy /{;(iwuﬁ +BE - lu)/l()][)G(T, Ydv(s)+

+oeurl (/(iwcfj’ +afl - -iwe(,[;:)(}'('r,.s')rl'n(.s)) (1.2)
Ju




where €, o, u, a, and 3 are tensors and the Maxwell equations for time
harmonic radiation with an ezp(iwt) time dependence are given by

curl( E) = iwpoli - J,, (1.3)
and . .
curl(H) = iweo + J. (14)
where . . .
J. = iweE + aff - iwe,E (1.5)
and . . .
T = iwpH + BE — iwnoH (1.6)

To simplify the development we assitme that the integral cquation that
we are solving has the form,

}
'3 -

E_E =)\LE (1.7)

By working with this cquation we have developed a resolvent operator R\
such that

B - B=-)RE (1.8)
This resolvent operator R, is given by
REp) = /nR.\(Pafl)El(‘l)”’-’(‘l) (1.9)

and R, is the solution of the ordinary differential equation, in the indepen-
dent varinble A, given by

iI—R—\—(zw) = / Rulp, w)Ry(r0,q)dv(w) (1.10)
d\ )
with
Ro(p,q) = G(pry) (L11)
where
LE(p) = [ G Enyivia) (1.12)

We note that onee Ry s known, we can prediet the interaction of radia-
tion with different erientations of the seattering body simply by applyving
transformations o E and caleulating E for cach of the transformed valnes
of K. This method gives s o kind of homotopy between the seattering
problem for a vacuous seatterer to the moee complex seattoring problem.
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2 OPERATOR ITERATES

The main theorem of Calderon and Zygmund ([2]) shows that if we
define an operator L on the space L*((,C?) using the free space Green's
function G by the rule,

LF(p) = [ Fl)6(p,a)du(a), (21)

then the operator norm of L is finite, The theorem of Calderon and Zyg-
mund ([2]) tells us that the integral operators of electromagnetic scattering
transform fields producing a finite total power into other fields producing
a firite total power. Since all ¢, norms on R™ are equivalent, we may defiue
the norm of L to he

at feL(Q,C%), and| f |a=1}) (2.2)

| Lla= sup

where
f(p) = (fi(p), f2(p), fs(p)) (2.3)

implies thui ,
£ la= 30 [ 1A [ dvty) (24)
=1

It is clear, therefore, that if A is sufficiently smiall that the operator norm
of AL is smaller than 1. Thus, in everything that follows in this scction we
shall assuine that

| AL Ja< 1 (2.5)

. . . = = . .
It is now vasy to derive an expression for E° — F'y under this assumption.
Just using concepts associated with the surmnmation of a gecometric series
we find that

Ei- Fy ==\ (E ,\*'-'L*E“) (2.6)
k=1

We express the right side of equation (2.6) as an integral operator by in-
troducing the sought after solution finder or resolvent kernel Ry(p,q) via
the relationship

3 [Rap)- Bl = 23 (¥E) @)

k=1




Combining (2.6) and (2.7) and the basic definition (2.1) of L in terms of
G(p, q) imply that if we introduce the functions G**)(p, q) by the relations,

Ra(p.9) = 6(p,0) + 35 (M5, 0)) (28)

k=1

so that it would then follow that
LB = [ 0W(p.0)E(q)ivla) (29)
and since
LB = fn G(p,w) ( /n g" (w, q)E“(Q)dtf(q)) dy(w) (2.10)

and since an interchange of the order of integration in (2.10) implies that
in view of (2.9) and the relationship,

LM E = L(L*F) = LY LEY (2.11)

that .
g+ (p,q) = [ Gpw)g™ (w, q)du(w)

= '/‘;Q(k)(p,w)(;'(w, q)dv(w) (2.12)
it will follow upon substitution of (2.12) into (2.8) that

Ri(p,0) = 6 ) + A ([ 6B v, () (219)
k=1

We now resubstitute the original representation of Ry given by (2.8) into
(2.12) making use of the fact that

GgW(p,q) = G(p,q)

to deduce that sinee (2.8) says that
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IRi(p,q) = i MgW(p, q) =

k=1 o
A (Q’ (p,q) + Z»\"Q("“)(p q)) . (2.14)
. ka1 o

and since

SN (p,g =5 / 0(p, )0 W w, q)du(w))

[ 96w (,,_2, wm(w,@) dvlw) = [ 06, w);\m(@,q)du(w) (2.18)

the relation,

Ralps) = 6pa) 4 ([ 6o w)Ro(w, () (2.0

is vahd for A with a sufhuently small absclute value. Our next objective is
{o obtain an expression for

QA ) = (—-’%:—:\3&) (2.17)

and take the limit as  epproaches ).
We begin by noticing that in view of equations (2.12) (2.14), and (2.16),
we obtain the relation,

A /n Ra(p, w)G(w, q)dv(w) - ;\fng(p., w)Ri(w, q)dv(w) =

A {2: (W09, w)G (w, g)) -

j=0

S (Mg (w, q)g(p, w))} dv(w) (2.18)

J=0

In working with equation (2.18) we will make usc of the standard identity

M i (- j\) (ﬁ: (,\k,'\f-")) (2.19)

k=0




and the fact that (2.12) implies that

> (z’: <mf—*gu+=><p.,q>)) -

gm0 \ k=0

i (2’: (Mit-w) ( /n g(p’w)g(ﬂl)(w,q)du(w))) (2.20)

J=0 \k=0
However, in order to proceed we need the following Lemma.

Lemma 2.1 If§ is a dyadic Calderon-Zygmund kernel (Calderon and Zyg-
mund [2)) on the open set Q of R™ and if W is defined by equation (2.18).
then if § 13 @ nonnegative integer,

[, 93, w4 w, q)av(g) =

/{;g("“)(p, w)GU=*+1)(w, q)dv(q) (2.21)

for all integers k between 0 and j.

Proof of Lemma 2.1, The proof of the Lemma will proceed by induction
on j. If j = 0, then k = 0 and equation (2.21) is a tautology. Thus, we
let P(j + 1) be the sentence that says that equation (2.21) is valid for the
nonnegative integer j. We have just obscrved that P(1) is true, and we
proceed to prove that P(n) implies that P(n + 1) is true. We note that
P(n) is always truc if k = 0 or if & = j, and we conscquently assume that
0 < k < j and proceed by induction on j. The definition of GY+(an, o)
and the inductive hypothesis imply that

/I G(p, w)GH ) (w, q)du(w) =

/ng(p,w).L (g(w,u)g(”(u,q)) dv(w)dv(w) =

/g(p, w) / G-I (o, 1) GU === D4 gy (g ) () (2.22)
0 Jn

Interchanging the order of integration in equation (2.22) implics that




[ 60 w19 w, q)dv(w) =
J, (0% ) 94449, gl
= [ 641 (p, g+ (u, q)dv(u) (2.23)

and this completes the proof of Lemma 2.1.
We will now use Lemma 2.1, equation (2.21), to rewrite equation (2.20)

in the form _
o0 J - ,
5 (£ r0090,0) =

J=0 \ k=0

o [ 4
> ( > (A"?\f-* [ G¥+1(p, )@=+ (w, q)du(w))) (2.24)
740 \ km0 a
We will now prove the validity of another Lemma, This Lemima will be more
abstract and will treat properties of sequences of, possibly, noncommuting
linear transformations {Ai, Az, 43, *+} and {B;, By, Bs, - +} where the A
map a Banach space Y onto a Banach space Z, and the B; map a Banach
space X onto the Banach space Y, and the conditions under which one may
define the product of a series of the form,

A = z (Q’kA)H.])

k=0

and a series of the form oo
B= Z(/’jﬂiu)
j=0
While the Lemma which follows may appear to be formally obvious, a proof
is needed because of the interchange of infinite processcs.
The Lermma is the following,.

Lemma 2.2 Let {A),A;, As,: -} be a sequence of bounded linear trans.
formnations of the Banach space Y with norm, | |y into the Banach space
Z with norm, | |z. Let {B,, B3, B3, -} be a sequence of bounded linear




transformations of the Banach space X with norm, |. |x, into the Banuch
space Y such that if

| Aj livzy=sup{| Ajf |z f €Y and | f|y=1}

and
| Bk l(xy)y=sup{| Bxf ly: f € X and | f |x=1}

then there are positive real constants Cy, Cp, R4, and Rp with the property
that
| Aks1 lrzy € CaRY

and .
| Bjy1 lxy)y < CsRj

for
{j’k} - {172»3" ' '} ’

If A and X are such that AR4 < 1 and ARp < 1, then

(i (“*H)) (f (RJ'B,.H)) _

k=0 J=0

%0 3 ..
Yo | 20 (AN A By i) (2.25)
1=0 \k=0

and either side of this equation represents a bounded linear transformation
of the Banach space X into the Banach space Z.

Proof of Lemma 2.2, Since By -, maps X into Y and Agy) maps ¥
into Z, it is clear that Ay Bj4- transforms elements of X linearly and
continuously into Z. Also, the hypothesis of Lemma 2.2 guarantee that both
sides of equation (2.25) define uniformly series of bounded linear ogerators
acting on the Banach space X and that, consequently, any rearrangement
of terms leaves the sum unchanged. Since

/\k}! = ,\k:\j—k

if k4 € = j, the Lemma follows by induction ou the products of the number
of terms in finite partial sums approximating the left side of (2.25).
We now apply Lemma 2.2 to prove the following.

265




Lemma 2.3 If R, is defined for complez numbers \ by equation (2.8) or
(2.14), then the relationship (2.18) represents G4t and

| Rap w)R5(w, 9)d(w) =

) J .. .
5" (z (A3hgl(p, q))) (2.26)
J=0 \k=0
Proof of Lemnma 2.5, By equation (2.8) we see that
Ralp,w) = 3 (Mg (p,w)) (2.27)

k=0

Thus, by Lemma 2.2 it follows that

[ Ra(y )R (w, a)dv(w)

./n <§ (.Akg(k+1)(7),'tl)))> (f: (,\Jg(:+1) (w, q))) dv(w) =

=0

/ﬂ (i: (‘2 ()\k}\ﬁkg(kw)(p, w)g(j-u-l)(,u,a,q)))) du(w) (2.28)

=0 \ k=0

Now using the relation (2.22) and the definition, equation (2.12), of §¥*+1(p, q)
we sce that

Gutip, q) = /ng““'"(p, w)gi ) (w, q)dv(w) (2.29)

Thus, Lemima 2,3 and equation (2.26) then follows as a result of substituting
equation (2.29) into equation (2.28). This completes the proof of Lemma
2.3.

We now complete the proof of tl - final Lemmma which will give us an
expression for Ry(p, q) = Ri{p. ¢). Equation (2.16) then tells us that

R,\(P, ’I) - R,\(P, ’I) =

A [ Qoo Ry () = X [ G(py )Ryt () (2.30)
Ji .




Substitution of the power series representation, equation (2.8), of Ry(w, q)
into (2.30), we can obtain the relationship,

Ra(p g) = R3(p,q) =

£ (V1ge,g) - 190G (p, ) =

/\fng(p. w) (Z (z\"G"'“’(w,q))) dv(w)-

j=0

jm0

5 [ d(pw) (}:( g4+ (w, q))) dv(w) (231)

Substituting (2.19) into equation (£.31) gives us the following lemma

Lemma 2.4 . If Ry(p,q) is given by equation (2.8), where %) (p, q) is
defined by (£.18), then

RA(pyq) = Ry(p.q) =
(A= A) (f‘. (f: (AeRe-kglisa(y, q>))) (2.32)
J=0 \kr2f)

These Lemmas enable one to prove the following theorem.

Theorem 2.1 If Ry(p,q) ds defined by (2.7) and (£.8), and G(p,q) is o
Culderon Zygmund Kernel (Calderon and Zygmund [2]), then

Ra(pyq) = Ri(pyq) =

(A— ;\)/QR,\({', “’)R,'\(U’,q)du(w) (2.33)
and
d;z\x (p,q) / Ra(py )Ry (w, q)dv(w) (2.34)
where

Ro(p,q) = G(py1q) (2.35)




Proof of Theorem 2.1. Equation (2.33) follows by substituting equation
(2.26) into (2.31). Equation (2.34) follows by dividing both sides of (2.33)
by A — A and taking the limit as A approaches A, Equation (2.35) follows
from equation (2.16).

In solving the initial value problem suggested by this theorem we note
that the Cauchy integral theorem tells us that an integral of R, over a
curve or a path of A values in the complex plane is independent of path if
one path can be deformed into another without crossing a pole of R,.
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An Algorithm for the Eigenvalues of
the Angular Spheroidal Harmonics and
An Exact Solution to the Problem
of Describing Electromagnetic Interaction

with Anisotropic Structures Delitnited by
N Confocal Spheroids

D. X. Cohoon
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Prolate Spheroid Scattering ~ an Exact Solution

References
1 Introduction

Prolate spheroids are cigars and footbails and oblate spheroids are falling raindrops and
doorknobs. A spheroid is an ellipse rotated about an axis. If it is rotated about a major
axis it is a prolate spheroid. If it is rotated about a minor axis, it is an oblate spheroid.
In the halls of Congress a certain young representative had his desk in & most undesirable
location; for some reason, however, he was able to rise instantly and give brilliant rebuttals
of the arguments of his opposition. It turned out that the roof was a spheroid and his desk
was at one of the focal points and the desk of the opposition was at the other focal point.
He could hear the whispered planning of the oppositon long before they got up to speak.
Unlike the wedding guest described 2000 ycars ago, he refused to move up to a place of
greater honor, and, his secret remaining with himself, others were content to allow him to
remain in his more humble post.
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Spheroid scattering is important herause it provides challenges for general purpose codes,
and because one is interested in the propagation of clectromagnetic information through
clouds of spheroids, such as falling raindrops. The computer codes developed may alsc have
a bearing on the design of liquid crystal devices, such as liquid crystal television sets and
coinputer monitors which would, as they use natural room light, be far safer for the users,
often young girls, than cathode ray tube (CRT) devices currently in use. Young children,
in poor urban settings, often spend hours huddled close to television sets. If they are going
to do this anyway, let us, for the sake of the children, make television screcns safer with a
liquid erystal design. The ability to remember sight together with sound, may provide a
way to teach and make literate a larger segimnent of human society all over the world; we
have many serious problems to solve, and no one knows from where the genius to create a
golution may come.

The Helmholtz equation can be solved in spheroidal coordinates, and using this solution,
we can obtain solutions of the Faraday and Ampere Maxwell equations. Note that if ¥ is a
solution of the Helmholtz equation, then if ¥ is the radial vector, then

= curl(F: V) (1.1)

and
N = (1/k)ourl(M) (1.2)

can be used to obtain a solution of Maxwell's equations. We proceed to define these com-
putations in spheroidal coordinates,

2 Spheroidal Coordinates

Consider an ellipse with foci at (0,~d/2) and (0,d/2) on the z axis and if
r? =2t 4 P (2.1)

and (r, z) is a point on the generating curve for the spheroid, then if we define for r; being
the distance between (r, 2) and (0, —d/2) and if ry is the distance between (0, d/2) and (r, 2),
snd if we then define € by the rule,

E=(r +r)/(2¢) (2.2)

and define 7j by the relation,

i = (r —r3)/(2:¢) (2.3)
where ¢ is a constant, we have a sct of coordinates for deseribing points within a spheroid.
We shall actually use a slightly different set of coordinates that are qualitatively the same.
We can define points on the surface of the spheroid as all those points (€,7, ¢) for which £
is a constant, which since an cllipse is the locus of points such that the sum of the distances
from fixed foci is n constant is embodied in the definition of ¢ given by cquation, (2.2).
The other coordinate surface defined by setting n equal to a constant is a hyperbola, as
this says simply that the differcuce of the distances between two foci is a constant. The
third coordinate surface defined by sctting ¢ cqual to a constant is simply a planc passing
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through the axis of rotation. We give an alternative definition of the spheroidal coordinates
and show that this definition is compatible with the more intuitive definitions of equations
(2.2) and (2.3) The relations between spheroidal and Cartesian coordinates are given by

e = 211 = )€ + 1] con(9) (2.4
and d 1/2
v=3 (- n)e + 1)) sin(g) (2.5)
and d
z=51 (2.6)
Going back to the equation for an oblate spheroid we have that
(2 +9%)/AP + 4B =
(@A = PAE+Y) | (@FE
Al B3
dif1 - nn n?
¢ [+ ] = D

if we simply let A and B be defined by

A= g,/en 1 (2.8)

and d
B=3l¢| (2.9)
For the oblate spheroid, we have
A>B (2.10)
and the foci of the ellipse may be thought to be on the r axis located at
z = C = VA~ DB = d/2 (2.11)

and the sum of the distances from a fixed point on the surface to the two foci is 24 which
happens to be

04 = d\fE +1 =1y 41 (2.12)

If we compare equation (2.12) with the earlier equation (2.2) we can sec easily the connection
between { and § and that setting either one of these equal to a constant defines a surface of
a spheroid.

We now try to develop the unit vectors in the direction of the normals to the coordi-
nate surfaces { = constant or n = cunstant. Note that if we had a general coordinate
transformation relationship

] z(u,v,w)
( y ) = ( y(u, v, w) ) (2.13)
z z(u,v,w)
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and the unit vector in the direction of the normal to the coordinule surface

u = constant (2.14)
is given by
d dR
€y / | == du ” (2‘15)
where
R =zé, +y&, + 28, (2.18)

If we imagine an ar¢ in three dimensional space and try to describe it in Cartesian and
spheroidal coordinate. Assume that the arc R(t) is defined as an orbit defined by a contin-
uous parameter ¢, Let s(#;) minus s(t;) denote the arc length between R{t,) and R(t;) on

this curve so that y y J
o Y az .
(dt) (dt) + (dt) + (dt) (2.17)

In order to get values of parameters hg, hy, and hy so that we may express the Laplacian
and curl operations in spheroidal cuordinates we observe that equation (2.4) implies that

B =0 el 4] e (219
From equation (2.5) we see that
=g [0-m)]" e+ ] sin(s) (2.19)
From equation (2.6) we sce that
oz d [

Thus, using the unit vector equation (2.15) and equations (2.18) and (2.19 ) and (2.20 ) we
sec that the unit vector & is given Ly

=

¢ f’ am(¢)e, qé',] (2.21)

Thus, we see that the length factors In an analogous manner we write down the unit vector

€, by the rule
11
€y = \/57‘"71 [ \[C cos¢e,

—n f’_‘*‘n:sin((ﬁ)é‘y + ee;] (2.22)

1331
A
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We observe from eqnations (2.4 ), (2.5 ), and (2.6 ) that

% = - 3la-m@+1)"sn) (2.29)
g% = g[(1~n’)(€’+1)]mcos(¢) (2.24)

and
%-o (225)

Finally, again making use of the equation (2.15) and equations (2.23) and (2.24 ) and (2.25
) we see that the unit vector € is given by

Zo = —sin(¢)éx + cos(d)e, (2.26)

It is clear from the definition, equation (2.15) used in creating equations (2.21), (2.22), and
(2.23) that there are scalar functions he, h,, and hg of £ and n that satisfy

- 82 - a - a -
heze = -5'-6, + -6%6" + -a—:e,, (2.27)
—J a - P ~d
h"eg — 5;37‘3, + ‘g‘"y'e" + gzﬂg (2028)
and
o w Oy, Oz,
We notice that these vectors &, €,, €, are pairwise orthogonal in the sense that
¢ Ony Co
Gy By =&y Ty =g Ey=0 (2.30)

We can use these relationships to represent the vector R defined by equation (2.16) in terms
of &, €,, and -&,. We see that

R = (R-&)& + (R &)8 + (R-&)8 (2.31)
where
4y _ T O y Oy z 62:-
(R-&) = e B + he " ¢ + e 56 (2.32)
2y = 202 v % 2 O
(R &) = P T et R By (2.33)
and
Fey = 202 v % oz 0 9.0
(R-&) = e ds Tk og T Ry B (2.34)

First, substituting equations (2.18), (2.19), (2.20), (2.4). (2.5), and (2.6) into equation (2.32)
we obtain
£+1

(R &) = e

(2.35)
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Next, determining that

o = e+ 0] e fa -] eost) (2.26)

-g% = g[‘/——f’jn:’(—'))’i"(d’) (2.37)

Fquations (2.36), (2.37), and (2.4), (2.5), and (2.6) tell us that

(B.g) = - n%/%ﬁ% (2.38)

For a general coordinate transformation from an (x,y,z) frame to a (u,v,w) frame we have
the relationship,

(&) (@) (&) -{[&) - 3+ )] (5) -
@) () + GG |5 () (32) ] (3

and that

02 00, 00 0y 05 8s)du v
Ou v Ou Ov Ou Ov| dt dt
o bz 8z @ 8y+__.8z gtid_w+
Ou Ow  Ou Ow  Ou Ow|dt dt
0s 0z Oy Oy 0 B:]dv du
213 3wt aw+av’aw] a dt} (2.39)

Making use of the orthogonality of the £, n, and ¢ coordinate system we see that with
(u,v,w) = (§n, ¢) (2.40)

that all of the terms in equation (2.39) with a factor of 2 vanish, and that

(8) ()8 - &) on (@) vu(E) oo

Thus, for oblate spheroidal coordinates we obtain upon making use of equation (2.41) the
fellowing expressions for h¢, h,, and hy. From this equation and equations (2.18), (2.19),

and (2.20) we see that
_ d 62 + ,’2
he = 2\/ 41 (2.42)

Next observe that

_ é, /é__'v_
h, = 5 e (2.43)
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Finally equations (2.23 ), (2.24), and (2.25) imply that

he= V(T )E+D) (244)

In order to carry out vector calculus in oblate sphercidal coordinates we need the following
relations. Equations (2.42}, (2.43), and (2.44) inply that

£ .
hehohy = T (& +n) (2.45)
Also, equations (2.42), (2.43), and (2.44) imply that
hoh d
Inf . S (e
el (€ +1) (2.46)
The other two similar relations are
g n é £ +n? )
5 = 3 (Erosm 240
and
hehg . diy_ .
™ 5 (1-7%) (2.48)

The above relations are needed to define the Helmholtz equation in oblate spheroidal coor-
dinates. In order to define the curl operation in oblate spheroidal coordinates we need the
product pairs as well Equations (2.42 ) and (2.43 ) imply that

heohy = L L0 (2.49)
CT T A lerna-m

Equations (2.42) and (2.44) imply that

be-hy = S @ ) (2.50)

Finally, equations (2.43) and (2.44) imply that

hyhs = SO @+ D) (2.51)

The curl operator in a general orthogonal coordinate system of orthogonal u, v, and w
coordinates is given by

curl(E) =

0

h h (hwEw) - ‘a—'—(h Eu)] €y
A
o

[Ow(h ) -
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1
hohy

Equation (2.52) may be derived from combining the representation of Cartesian frame unit
vectors in terms of ¢, &,, and €, and using the gradient equation,

100, | 10v. . 180,
Rt T Rme t et

since (2.53) can used to express the curl of a vector field as the gradient cross this vector
field. The divergence is given by

div(B) = (ﬁl'i{,;) {(58;) (hohu - E.)

(h E,) - i(huE..)] €w (2.52)

grad(¥) = (2.53)

[/} i}
(5;) (hwhy + Ey) + (3;;) (huh..-E..,)} (2.54)
It is easy to show that
curl(curl(B) = grad(div(E) -~ AE (2.55)
Where 1 [0 [hhyO¥
AV = k. {Ou( e au) +
0 (hyh, 0¥ 8 (hyh, 0¥
8v( hy 8v) + aw( hu 8w)} (2.56)
The relationship (2.56) implies that
Aleurl(E)) = — curl(curl(curl(E))) = curl(A(E)) (2.57)
since 3
curl(grad(¥)) = 0 (2.58)
The Mie solution is based on applying the curl three times in succession to the vector Rw
where
- 2,24 ,2
R = grad (z—-%-—-’-—f-) = 26y + YEy + 26, (2.59)

which means that since for any vector field I and any scalar function W it is true that
curl(F¥) = Yeurl(F) + grad(¥) x F (2.60)
that if R is defined by (2.59) that
curl(¥R) = grad(¥) x R (2.61)

and since We also have the relationship,

A(YR) = {A(W))}R + 2-grad(¥) (2.62)
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Substituting equation (2.62) in‘c equation (2.57) we see that in case ¥ satisfies
AV + k¥ =0 (2.63)
that, since both the curl of a gradient and the divergence of a curl vanish,
curl(curl(curl(VR))) = curl(-A¥) = + k3curl(VR) (2.64)

Equation (2.64) is the basis of the Asano and Yamamoto solution ([1]) as well as the classical
Mie solution for isotropic materials. For example, for an isotropic material we could let the
electric vector be given by

E=a M+ b-N, (2.65)
where 1
M = F-curl(ﬁ\l’) (2.66)
and where 1
N = -k—z--curl(curl(ﬁ\ll)) (2.67)

with ¥ being a solution of the scalar Helmholtz equation (2.63). Then if the magnetic vector
H is defined by

B=——(kahN+ kb i (2.68)

— twy
then the pair of vector valued functions (2.65) and (2.68) are solutions of both the Faraday
and Ampere Maxwell equations for isotropic spheroids.

3 Vector Calculus for Oblate Spheroids

The Helmholtz operator in a general orthogonal £, 7, and ¢ coordinate system may be
expressed in the form is
AV + K =

1[0 (hihyd¥)
hehohg \ O \ he OF
2 (hehs0¥Y |
on \ h, On

0 (heh, 0¥
%(Tj"%)} + k¥ (3.1)

and using the values of h¢, hy, and hy for an oblate spheroidal coordinate system we have
upon making the substitutions of equations (2.46), (2.48), (2.47), and (2.51) into equation
(3.1) we deduce that

AV + kY =

(e (@+05) 5 (0-5)
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e £ 49 8’\11}
(€* +1)(1 - n?) 64
+ k’i::(e’ +7 )0 =0 (3.2)
We now seek solutions of equation (3.2) of the form
¥ = R({)S(n)exp(im¢) (3.3)

and substitute equation (3.3) into equation (3.2) and then divide all terms of this equation
by the function ¥ defined by equation (3.3) after making use of the relationship
£+ _
e +1)(1-n%
1 1
1-92 41

(3.4)

and making the subsitution
A = Kd?/4 (3.5)

we obtain the relation, 5 5
{55 ((1 - ﬂz)%s(c, 7’)) } /S(c, n)

mﬂ
T =

(b -

™A= - 3.6

a1 Tl = ~dnm (3.6)

From equation {3.6) we oktain a kind of Rayleigh Ritz functional for the value of A(m ).
Equation (3.6) tells us that

A("‘i") =

(L [e-n (@) s {cons i) apiLia)  n

We note that when c is equal to zero, we are dealing with a sphere and that the angular
functions are the associated Legendre functions P"(n) so it makes sense that we want S to
behave like the function P(n) when c is zero. We note that either n — m is even or odd,
and we know the initial conditions exactly in each case. We use partial derivativc notation
for functions G(z,n) and note that

LIM 6G

DQG(C,O) = n — 0 5,7

(3.8)
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and define the inlial conditions for the second order ordinary differential equation satisfied
by the functions S(c,n). We find that if n —m is an even integer

Simmy(©0) = {(=1)®™V3(n 4 m)t}/ {2» (" '2"‘)! (" ; "‘) !} (3.9)

and
and when n — m is an odd number that
S(mm)(c, 0) = 0 (3.11)
and that
DaSimn6s0) = {(=1*-in 4t 1}  {on (RZRL)y (bt L)
(3.12)

With these initial conditions we have completely specified S and its partial derivative and
mixed partial derivative as a function of 5, ¢, and A and we also know that

M0) = n(n+1) (3.13)
This gives us an initial value problem and an ordinary differential equation
M) = F(e, ) (3.14)

where the function F is determined by differentiating both sides of equation (3.7) with
respect to ¢ and collecting terms involving X'(c), and then dividing all terms by the coefficient
of M(¢) to get the first order ordinary differential equation (3.14). By the uniqueness of the
Cauchy problem, different initial values cannot lead to the same eigenvalue at

c = kog (3.15)

This is effective if ¢ is real, but if k is complex, then we think of ¢ as being a function of a
paramter s defined by P

c(s) = .s-k--i (3.16)
and with the same initial condition develop an ordinary differential equation of the form,

N(s) = G(s,\) (3.17)

Once these eigenfunctions are known, the steps for getting an exact solution for N layer
isotropic spheroids is clear. The vector valued functions M described in the previous section
are proportional to the curl of R¥, where

Ry = R“(£)5(m.n>('l)°zp(i"'¢){g

T | -3
(e - )
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All three components appear in the M vector represented in spheroidal coordinates and this

is given by
curl(RY) = é‘g{mimr)ﬁ2 " 1):5' +”,)\I'} +
& {im s rﬂ)“'} ¥

N GERED! (
This is k - M and by expressing N in terms of the curl of M, we obtain the vector flelds,
a combination of which, can be used to represent the electric and magnetic vectors inside
and outside the spheroid. The scattering problem is then solved by matching the n and the

¢ components of the electric and magnetic vectors across the boundaries of the spheroidal
scatterer,

4 Prolate Spheroid Scattering ~ an Exact Solution

Here we consider a tensor material whose regions of continuity of tensorial electric per-
mittivity and magnetic permeability are delimited by confocal spheroids. We assume that
the foci are on the z-axis at (0,0,d/2) and (0,0, ~d/2). We assume that the N confocal
spheroids are delined by equations of the form,

§=¢ (4.1)

where the relationship between Cartesian and Prolate spheroidal coordinates are given by
equations

» = 21 = )€ - 1)] " os(4) (42)
and
[(1 — (e - 1)) sin(4) (4.3)
and by equation (2.6) which is the same in oblate and prolate coordinates, which means
that the equation of the ith spheroid (4.1) is, in Cartesian coordinates given by
al 4yt K]
@@ -1) T @O

We use the curl operator in a coordinate system with the same angle coordinate ¢ of spherical
coordinates that runs from 0 to 360 degrees so that in spherical, spheroidal, cylindrical, or
toroidal coordinates the Faraday Maxwell equation is defined by

0
on

=1 (4.4)

curl(E) = ZL (heEy) ~ imh,E,| & +
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L limkEe - Znmpla +
h€h¢|. ¢L¢ 66 ¢L¢)| “n
1 |8 0 -
hehe Ef(h"E") - b*n(the)] € =
— lwpeHel — iwunHn8y — iwpgHyey (4.5)

We can solve equation (4.5) for components of the magnetic vector; this is simply a statement
of Faraday’s law which says that if one integrates the tangential component of the electric
vector around the bnundary of a surface, the value is equal to the negative time derivative
of the normal component of the magnetic flux B.i integrated over the surface,

Ampere’s law states that if we integrate the tangential component of the magnetic vec-
tor around the boundary of a surface that this is equal to the normal component of the
current, which includes disp_!acement current or the time derivative of the vector D ) as
well as conduction current J, integrated over the surface. The Ampere Maxwell equation
is, therefore, in this coordinate system, given by

1 a » . -
curl(I?) = m [-é; (h¢H¢) - zmh,,H,,] e +
2 limnelt, - 2 (ney)| 2, +
hehe ($2 8¢ ¢41¢)] €n

o 2 (el = g (heti) & =

(iweg + 0¢)Eedy + (iwen + on)Enéy + (iweg + 09)Byéy (4.6)
Solving equation (4.5) for H; we see that
i 1 d .
He = e (m) E;"(h‘E‘) - 'mhnEn] (4.7)

Equating the n components of both sides of the Ampere Maxwell equation (4.6) and sub-
stituting equation (4.7) into this equation we deduce that

| 1 [ i (1),
e o0+ 5 e () ] 24 =

1 T, i 1 0 0
rar [ (1) o) = hut) e
We can introduce functions A, and B, such that equation (4.8) may be rewritten as
V] 0
E, = An‘é‘r;(héEé) - By (heHy) (4.9)

Similarly, it is clear that by equating the n components of both sides of (4.5) and solving
the Ampere Maxwcll equation (4.6) for E; we sce that we can find functions F, and G,, such

, 0 é .
(heHy) — Gngg("oEé) (4.10)
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where if we define k(p,, ¢) by the rule,

k(pny€)! = (W*pneg ~ swpgoy) (4.11)
then

- im/h,
B T ke 73 (412

We now solve equation (4.6) for E, obtaining the relationship

1 1178 .
Be = mate [hnhé] [3’; (heHe) - 'mh"H"]

We can, thus, express E; in terms of E4 and Hy and can similarly express He. If we
meke all of these substitutions into the & components of both sides of the Faraday and
Ampere Maxwell equations we get two coupled partial differential equations in the E4 and
Hy variables.

Thus, we have a coupled system of elliptic equations of second order in the angular
components of the electric and magnetic vectors, with all other components of the electric
and magnetic vectors being simply expressed in terms of these components,
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OPTICAL AND ABSORPTION
EFFICIENCIES OF, AND POWER DENSITY
DISTRIBUTIONS WITHIN N LAYER
BIANISOTROPIC SPHERES
SUBJECTED TO ELECTROMAGNETIC
WAVES

R. H. Frickel
' D, K. Cohoon

March 5, 1992

We consider the problem of determining the optical and absorption efficiency of a
class of N layer full tensor clectromagnetically bianisotropic spheres to a plane polarized
clectromagnetic radiation. Considerable flexibility ([47]) has been demonstrated with two
layer structures in relobing their properties in such a way that these particles have an
extremely high optical and absorption efficiency. Groundwork has been laid for the design
of materials with differing clectromagnetic properties in different directions which have
extremely high efficiencies of uhsorpti(m..

By careful analysis it would he possible to do the same for a heterogencous radintion
source(Barton (8], Chevaillier [10] [18], Chylek [20] Schauly [42], Tsui [46], Yeh [57]) when
these spheres are placed in an ambient medium with material propertios such that if Q is

an open set in the sunbient medinm and

/m’u(ﬁ x H*)dv =0,
J{)
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then E and & are both zero in §

In this paper we describe the exact solution to the problem of describing the interac-
tion of electromagnetic radiation with an N layer structure whose regions of continuity of
tensorial electromagnetic properties are separated by concentric spheres, We assume that
each of the layers are bianisotropic. For the most general case, the radial functions are
solutions of a system of equations, and we get a four parameter family {or each index in
each layer. However, we also get an interesting, but easily computerizable example.

Bianisotropic materials have used (Ferencz [25], Gamo [26], Hebenstreit [29], Shiozawa,
[44] and Yeh [56]) in modeling a medium moving through an electromagnetic field. We
consider also the possibility of an electromagnetic field whose spatial distribution would
suggest a complex source that would include an off center laser beam interaction with a
droplet or a radar beam sweeping across a stationary structure, By considering a layered
spherically symmetric structure whose core may be metallic and with outer layers having
complex material properties or containing sources of radiation, we may be able to predict
the level of the hazard experienced by an individual with a metalic bone replacemnent or
clamp who is placed in such a field.

The source of internal power density distribution for a hianisotropic structure exposed
to external sources is distinet from anisotropic materials, since terms involving the produet
of the clectric vector £ and the niagnetic vector H appear in the iuternal power density
distribution, Using the coneepts contained in this paper, a solution of an energy cquation
with a tensor conduetivity can be obtained hy an exact formula when the electromaguetic
properties do not change during the exposure process. Using the derived energy density
distribution as a source term, a more general nonlinear heat equation, taking into account
radiative conduetivity coneepts can he derived. Several suthors (Barton [8], Chiylek [22],
Schaub [42]) simply asswme that the power density depends on the square of the length
of the eleetric veetor times the conduetivity, In o bhisaisotropic material, however, there is

n power density contribution from the coupling of the clectrie and mognetic veetors (see

cquation (5.2.0),
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1 A Mie Like Solution for Bianisotropic Sphere Scat-

tering

1.1 Introduction

Although it is possible to develop an integral equation formulation of the problem
of describing the scattering of electromagnetic radiation by a bounded three dimensional
body (Jones [33], pp 528-529), the only bounded body for which a truly exact solution has
been obtained to the problem for describing its response to electromagnetic radiation have
been those with spherical symmetry. It is possible to give a representation (Jones [33], pp

490 to 495) of the fundamental Green’s tensor I satisfying
curl(curl(T)) - °T = Té (1.1.1)

in terms of vector spherical harionics and to use these to develop a concise derivation of
the solution of the problem of describing scattering by a sphere (Jones [33] pp 496-526).
Some earlier work on anisotropic sphere scattering ([28] [32]), [49], [53]) have extended the
classical result of Mie ([34] 1908) which is believed to have been first obtained by Clebsch
([23] 1863). We describe, here, an exact Mie like solution that is applicable to a class of

bianisotropic spheres.

1.2 Problem Definition

We assume that € and 7 are tensors defining the permeability and permittivity that
are functions of the spatial variables and the frequency w of the radiation. Here Maxwell's
equations have the form

curl( B) = —iwfiH - &F (1.2.1)
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and

curl(H) = iweE + GE + BH (1.2.2)

In the ambient medium we assume that the tensors @ and ? are the zero tensor 0. In this
paper the energy balance is described which enables us to validate a computer code for
describing the interaction of radiation with an N layer bianisotropic sphere where t layers
may be separated by impedance sheets. The inner core may be penetrable or petfectiy

conducting.

1.3 Spherical Harmonics and Orthogonality Relations

The basic idea of the code is that the induced and scattered electric and magnetic

vectors can be expressed in terms of

o 1 P'“(coa(G)) d
A(ml.n) = [zm dm(e) € — dBP (cos(0))éy| exp(ime), (1.3.1)
_ |4 . Pr(cos(8))
ﬁ(m.n) = [dG " (cos(8))ep im Zn(8) s | exp(ime), (1.3.2)
and
Cimmy = FI*(cos(6))exp(im¢)é;, (1.3.3)
where €,, €5, and £, are the unit vectors perpendicular, respectively, tother = 0,6 = 0,
and ¢ = 0, coordinate planes, and where P,(cns(8)) is the ordinary Legendre function
defined by Rodrigues’s formula
g l d " n "
Pu(z) = 5 ('J;) (" -1) (1.3.4)

The associated Legendre functions PJ* arc given by

Pr(z) = (1= 22" (f) Pu(z) (1.3.5)

It is obvious that even without integrating over a sphere that the dot product of either

of f-f(,,,,,,) or B'(m,,,) with C‘(m_,l) is zero. The orthogonality of the functions exp(inig) and
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explim$) on the unit circle for m # i show that if as in ([11]) we define the inner product

of two vector valued functions U(8, ¢) and 3 (6, ¢) defined on the unit sphere by,
<0 P> = [ [ 0(6,4)- V(6,6 sin(0)dsdg (1.3.6)
0 0

with two different values of m are orthogonal. If we take the dot product of two distinct

members of the collection
S = {A‘(m'"),ﬁ(m,"), C-:(m‘,.) :meZ, and ne{lm|,|m|+1,. - }}, 1.3.7

with the same values of m and make use of ([2], p 333) the negative index relationship

P(v—p+1)
Nv+p+1)

we find that any two members with different values of n are orthogonal with respect to

P = [Pre) - Zempl-ipmsinum@e(a)]  (138)

the inner product defined by equation (1.3.6), For example, to see that
< A.(m.n),ﬁ(m.r) > =0 (1‘3'9)
for all n and » we note that this dot product reduces to
im(27) / " (P (cos(8)) P (cos(6)) dB = im(2n) / "4 pn)P™Y(e)) dz (1.3.10)
0 de n r -1 d"v n r

The details of the remaining orthogonality relations are found in ([11)) or can be derived
from properties of the Legendre functions deseribed in Jones ([33)).
Plane waves in [ree space can be represented using the functions described above by
carrying out the expansion(Bell, [10] page 51 and Jones [33], page 490, equation 94)
o
exp(—ikoreos(6)) = Y anPu(cos(6))jn(kor) (1.8.11)
n=0

where the expansion cocfficients a,, are given by (see Jones [33], page 490)
an = (—1)"(2n + 1), (1.3.12)

These coeflicients are determined by letting z = kgr, carrying out a Taylor series expansion

in 2, and making use of the orthogonality relationships

r 2/(2n 1) ifn=m
P.(cos(B))P, (cos(B)sin(6)de = | 2/ T D ifn=m (1.3.13)

0 0 if n#m
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This equation is based on the relation (Bell [10], page 61)

! 2 __1\n — ! 1\ n __w_‘!l
/;l(z 1) dz—[l(z )z + 1) = Ty

(-1 (1.3.14)
which follows from integration by parts in the left side of equation (1.3.13). This relation-
ship can be proven using the Rcdrigues definition (equation 1.3.4). By using the notion
that the algebraic structure formed by linearly combining these vector fields in a ring of
radial functions is invariant under the curl operation also enables one to get an exact

solution to the scattering problem for bianisotropic spheres.

1.4 Plane Wave Spectral Decomposition

An alternative to the consideration of & full wave solution is the utilization of a plane
wave spectral decomposition, where specially selected planc waves with carefully chosen
(i) amplitudes, (ii) polarizations, and (iii) frequencies are used to represent a complex
impinging wave. Two calculations are shown here. They represent the response of a
sphere of brain tissue to a complex radiation field. For the purpose of illustration we give
plots of the real part of the radial component of the electric vector on the intersection of
this sphere of brain tissue with a plane whose normal coincides with the laboratory z-axis.

The two following plots show the real part of the radial component of the electric vector

on this slice at two different times.
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The program is cupable of producing on any intersection of the sphere with any plane

passing through its center the

o the real part of any component of the electric or magnetic vector (6 different 3D

plots)

e the imaginary part of any component of the electric or magnetic vector (6 different

3D plots)
¢ the absolute value of the Poynting vector
¢ the absolute value of the radial component of the Poynting vector
o the square of the length of the electric vector

o the square of the length of the magnetic vector

It was found that there are considerable possibilities for cooperative interactions of phasc
related sources with this brain tissue sphere deseribed in Bell ([10]).

Let us assume that the incoming radiation is a plane wave traveling in the direction
€5 = 8in(8y)cos(Py )&, + sin(6,)sin(@s)€y + cos(6y)e, (1.4.1)

Assume further that we look at field distributions in the intersection of the structure with

a plane passing through the origin and that the normal vector to this plane is
€z, = sin(0,)cos(d,)e, + sin(b,)sin(d,)c, + cos(0,)c (1.4.2)

The unit vector in the direction of the y, axis is defined as a constant ¢ times the cross

product of €, and the unit vector in the beam direction or

€y = (@, X &) (1.4.3)
which implies that
E‘Uf, = —‘“i""((/’b)aﬂ + ('-U"-‘((/)h)('-"u (1.4.4)

Then there is only one choice for the unit vector in the direetion of the positive », axis,
namely

M g e
Cay = Oy, X Cp ==
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cos(0y)cos(ps)€x + cos(By)sin( gy )ey, + (—sin(h,))e (1.4.5)

We assume that the electric vector of the incoming wave is polarized along the z, axis
and that we would like to use the answer to a different plane wave interaction problem
associated with the direction of propagation being the laboratory z axis and the direction

of polarization being the laboratory z axis. In case,
6 = 6,=0 (1.4.6)

we see that 8 = 0 and

¢ = é— &, (1.4.7)

This fact is a specialization of the general relation,

cos(By)cos(8, )cos(dy ~ ¢,) + sin(b )sin(6,) (1.4.8)

3

The rest of the story is obtained hy simply computing the angle between ihe z, axis and

the z, axis. By computing another dot product we find that
cos(6) = sin(8y)sin(8,)cos(ds)cos(d, )+

8in(68y)sin(8, )sin(¢p)sin(@,) -+ cos(8y)cos(8,) (1.4.9)

By requiring that theta be the inverse cosine of the right side of equation {1.4.9) we cun
use the standard Mie solution for plane wave incidence to determine the field distributions

in the plane whose normal is €,. We note that in case
o =0y =0
that equation (1.4.9) implies that
cos3(8) = cos(6y —6,)

which is exactly the solution that one would expect,
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1.5 The Full fensor Solution

Ve assume that if V is a vector, then

1 oV
r3in(0) [ae(”"(e)v’) ;] +

| (35) el +

1[ (rVo) ~ a ]e¢ (1.5.1)

We then find that if we define vector fields A, B, 6 by the rules

curl(V) =

-

A= F(r)A(mmn) (1.5.2)
B = F(r)Binn) (1.5.3)
€ = F(r)Cimm (1.5.4)
that then
curl(A) = n(n + I)E'f.ﬁé(mm) +
10 "
;5;(TF(7'))B(m.n)(9a¢) (1.5.5)
curl(a) F(r)A(mm) (1.5.6)
and
curl(é) a (7 F( )A(m.n) (157)

For each pair (m,n) of indices we seek a spec1a1 solution of Maxwell’s equations in the

full tensor bianisotropic material of the form,
E = A(")Amm + Br)Bimm +C(r)Cimm (15.8)

We now attempt to find combinations of the functions A(r), B(r), and C(r) which satisfy
Maxwell's equations. The first Maxwell equation obtained by taking the curl of both sides
of equation (1.5.8) is, making use of equations (1.5.5), (1.5.7), and (1.5.6), we see that

CU?'I(E) = = n(n + I)Air)é(nn,n) +
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1(0
;_ (b_) 7"4 ’))B(m n)

a Ny c ) -
(2) BN Am + —‘;—)A<,,..,,)

3|
P S

= — Wil - 58 (15.9)

Thus, in general we see from equation (1.5.9) that there are linear functions, F, G. and H,

of several variables such that

F = FAm, 20, i), By, 22, B, ), (1.5.10)
by which we mean that there are constants f; with
je {1,2,3,4,56,7) (1.5.11)
such that
F=hdr) + HE 1 A 4
£iB) + £ B(’) + B0) + HC), (15.12)
g = G(A(), f—f,—), ),80), 22 B, €0, (16.13)
and similarly
_(_) B(r) g
H = H(A(r), A'(r), B(r), ===, B'(r),C(r)), (1.5.14)
so that the magnetic field is given by
A = f(?')li.(m,n) + g(r')ﬁ(m,,l) + 7((7')5(%,,) (1.5.15)

We now obtain the final Maxwell equation by taking the curl of both sides of equation
(1.5.15), and from it equations for a four parameter family of vector velued radial functions
needed to represent the general field as a linear combination of solutions of the form (1.5.8)
in a full tensor bianisotropic material. In the traditional Mie solution (Mie (34]) the radial

functions are spherical Bessel functions.

r'url(ﬁ) = n(n+1)—— ( ) (n.n)+

~ |

A, ~onA
(5’7:} (7-7:(7 ))B(m,n) +
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~3 |-

d -~ H(r) -
(é:) ra(r)}A('m,n) + '—‘_;‘_)A(m,n)
= - (iwt+&)E + BH (1.5.16)

In order to see the general furin of the last Maxwell equation (1.5.16) note, for example,

that
1 N\ K
Ha Jo=; (2 thrd+ fud+ frdtoy 4
1) + 52 4 1)+ )| (15.17)

Expanding the right side of equation (1.5.17) we find that

L (9-) o) = 120 4 f A 4 2D

r \Or

.A'(r) B'(")

1A + 2 4 () + £
LG

+ fo——

+ feB"(r) + fvc( r) + fC'(r) (1.5.18)

We can then see that the final form of the resulting system of equations in the radial
functions is given by,

jory

K Amm + LB ny + MGy = 0 (1.5.19)

We get three ordinary ditterenii~! equations in the unknown radial functions A(r), B(r),
and C(r) that are used to represent the electric vector. Assuming that the terms in the
tensors are such that we can eliminate the undifferen‘iated function C from the equation
obtained by equating coeflicients of C-"(,,,.n) on both sides of equation (1.5.16) we get a
system1 of two simultaneous second order differential equations in the radial functions A
and B. A solution is specified by giving values of A, B and their first derivatives at a
prescribed point R,, where r = R, might represent the outer spherical boundsry of the
layer of interest. Thus, therr are four indpendent solutions in each layer. By emulating
the solution of the specific example, which follows, we see that the complete solution is
obtaincd by using continuity of tangential components of E and H across the spherical
boundaries separating regions of continuity of tensorial electromagnetic properties. A

— -
solution E and H of Maxwell's equations is then for each Fourier mode corresponding to
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the index m and in the layer cuiresponding to index p a linear combination of the four

solutions corresponding to

(A(R,), A'(R,), B(R,),B(R,)) = (1,0,0,0), (1.6.20)

(A(R,), 4'(R,), B(R,), B'(R;)) = (0,1,0,0), (1.5.21)

A(R,), A(Ry), B(R,), B'(R;)) = (0,0,1,0), (1.5.22)
and

(A(Ry), A(Ry), B(R,), B'(R,)) = (0,0,0,1), (1.5.23)
As it will turn out that these functions depend only cn n and and p and not cn m.

Thus, replacing A by Ag)m), where j runs over the indices 1 through 4 to denote the four
independent solutions, we see that the general representation of the electric vector in the

pth layer is given by

E = E{ a8 [AD (1) Ay (6, 6) +
&

(mm)ET
e (1)Cmm)(6,8) + BE() By (8, 8]} (1.5.24)
Note that the three functions Ag’r) and B(n ) end C((,’;fp) appearing in equation (1.5.24)

are not independent, but the linear combination in the summand of equation (1.5.24)
represents a vector valued solution of Maxwell’s equations in the full tensor bianisotropic
material. Using equation (1.5.15) we see that we can write the the magnetic field in the

form

7= £ (S (a0 +

(m,n)eT {Jj=1
(n p)(r)C(m.n)(o ‘)S) + g‘" p)(’ )B(m ,,) ] } (1'5'25)

Using equations (1.5.24) and (1.5.25) and requiring continuity of tangential components
of E and H across the boundary r = R, we can relate expansion coeflicients in layer p to
those in layer p + 1 by four equations in.fom' unknowns. Certainly, if we had a perfectly
conducting core there would be no trouble in reducing the number of unknowns at the

first spherical boundary by requiring that the tangeutial compcuent of the electric vector

vanish on this surface. For a penetrable core the matter is a little more delicate as one
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must select a pair of indpendent soluticns with at worst an integrable singularity at the
origin.
With what we have developed and will develop we can describe scattering of a geneval

source by a spherical core that is

¢ hollow,
¢ perfectly conducting,
¢ anisotropic with diago..al tensors having the theta and phi components equal, and

¢ bianisotropic and satisfying the conditions described in the following section,

surrounded by any number of spherically symmetric layers which are bianisotropic with
tensors satisfying conditions in the Heritage of Gauss paper ([13)).

In the remainder of this paper we discuss an example with nontrivial values of @ and
B where the electric and magnetic fields can be represented using Bessel functions with

complex index and argument,

1.6 A Specific Class of Examples

We give a simple exact Mie like solution for a class of hianisotropic N layer magnetie,
penctrable spherically symmetric structures. We consider a special class of diagonal &
and ﬁ coupling tensors with complex nunbers a, and 3, being their radial parts and with
complex numbers o and g being their tangential components and assume some additional
special relations between these. We shall use a modified complex propagation constant k

which in each layer has a square given by
k¥ = wlue—iwpo +af (1.6.1)

For the propagation constant defined by equation (1.6.1) we seek a simple Mie like electric
vector solution of both the Faraday Maxwell equation (1.2.1) and the Ampere Maxwell
equation (1.2.2) which has the form,

E-"': Z {“(m.n)Zy(;a)(kr)“i‘(m,ﬂ](0,(ﬁ) +

{(mn)el
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kr
Clmn) ’\( )C(m 11)(0 ¢)

) (- (a‘) (rzs,b)(k.r))) B (6, ¢)} (16.2)
7 r
where the three radial functions Z{*, Z{), and Z{ are to be derived and the functions
.‘f(mm), B‘(m,n), and C."(mm) are defined by equations (1.3.1), (1.3.2), and (1.3.3). We shall
derive relationships needed between the radial functions Z{), Z®), and Gy and the
complex expansion coefficients a(um,u), bimn), and ¢, ) needed to get an interesting, but
easily computed, exact Mie like solutions for a the reponse of a class of N layer bianisotropic
spheres to both plane waves and complex sources,

We now begin to develop the consequences of Maxwell's equations by noting that
equation (1.6.2) and the three basic curl relationships, (1.5.5), (1.5.6), and (1.5.7) and the
Faraday Maxwell equation (1.2.1) imply that curl(E) is given by

curl(ﬁ) =

) {a(,,, ) [n(n+1) " ("’)c""(,,,,n) + 1;’ (7z,§°>(k,))§,,.,.,] +

(mmn)el

20 (kr 1 :
Comm) 75 /»(J )A(m.n) + b(m.n)k (_) Z(b)(kr))A(m N)}

- Z(C)
“(\‘[ Z {a(m n)Zn (k7 )A(m n) + Cimm) k C(m n +

(mm)eT

b!m.n 0 ) -~ L =t
by ! (_ (b?) (7'Z,(,’)(k1‘))) B(m.n)}] - ’w/tH (1.6.3)

This is the completely general Faraday Maxwell equation for electrie vectors given hy
equation (1.6.2). We want to solve cquation (1.6.3) for B so that we can substitute this
veetor valued funetion into the Ampere Maxwell equation (1.2.2) and determine what types
of equations the three radial funetions ZM, 2, and Z{9 should satisfy. Solving equation

== s —3 .
(1.6.3) for iH, we see that in general if we simply assume that & is a diagonal tensor whose

action on a veetor represented in spherieal coordinates is defined by,

)

a, 0 0 E,
6 -E= 0 o 0 E, (1.6.4)

0 0 o E,
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that then making use of equation (1.6.4)

—

~iwpH =
“ ZE9(kr)] =
Z {[a(m n)"(n + 1) ( + arc(m,n)‘"*“—k;—)'] (mm)
(mi")ez
10 a 0 o
+ [a(m,n);"a'r' (rZ,(‘ )(kr)) ~ Cthim,n) (kr> (6 ) ( Z(b)(k,.))J By +

24Nk 1 o
[c(mm)_n.k_%.'.'). + b('"'”)k ( ) (rZ(b)(kr)) + aa;mm)Z (kr)} A(mm)} (1.6.5)

In the previous section we allowed &, ﬁ,.’?, T, and @ to be general tensors and solved for
the general radial functions C(r), B(»), and A(r) used in the represenatation (1.5.8) of the
electric vector, we now assume that all these tensors have the same form as the complex
« tensor given by equation (1.6.4).

With these assumptions, we see that for our simplified bianisotropic material, the

magnetic vector will then have the form

A=
3 Z'(ln)(kr)n(n +1) Z,(f)(kr) .
(m%er [“’#r {a("' " " F arcmm =5 [ Clmm
i 19 1 /8 )
—— (7 b
+ oi {a(mm)rar(V Z) (kr) — bimm) 1 (B) ( A\ )(k,.))} Bium +

i{c(mm)Z(:(fr) + bimm) (ZIT) (%) (rZ'(l")(kr)) + aa(,,,,,,)zf‘a)(kr)}fr(m,,l)
(1.6.6)
Applying the curl operation to both sides of equation 1.6.6 using the three curl equa-
tions (1.5.5), (1.5.6) and (1.5.7) we obtain an expanded form of the Ampere Maxwell
* equation given by,

(a) (<)
cur !( ﬁ) l A(m,n Z" (kr )n(n + 1) U rCm,n 'Z‘_(:')' A mn +
wl"r (myn) (m.n) {m.n)

r r kr

: -19 10
—— — — — et Al (a) 4
(Wﬂ) ( T 67') (r {a("l'") r Jr (7 Z, (kr))

19 o
-—-ab(m ")rb- (1 Z(b)(k1 ))) } A(m,n) +
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i \n(n+1) [ Z(kr) n
Wit r Hmn) T2

1 () .
b(mm)ﬁ (8-7) (rz,(f)(kr)) + aa(m,ﬂ)z,g )(kr)} d(m,n) +

10 ( f,  Zkn)

ror Clmm) ™ gy
1/ a
b(m’")l_c; (-0;;) (rZ,(tb)(kr)) + aa(m,n)z,ﬁ )(kr)}) é(m.n)

= (iwi+5)E + i (1.6.7)

To make use of the Ampere Maxwell equation (1.6.7), we need to use our original

equation (1.6.2) for E and equation (1.6.6) for & to obtain
(iwe+F)E + 3l =

{[(zwe+a)a(mn)z(“’(1) + ﬂ {J’;-"’—;QZ“)(kr) +
(m n)el r

4 : -
"L—lb ;:7:" (b%) (rz,(.b)(kr)) + Q'G(m,n)z'r(tn)(kr)}J Amm)(6,9) +
[(z’we +0)J—lb v (';9"9,'.) (raP(kr)) +

[z__ﬂ_ {a(m.n)lb?' ( z'(‘d)(kr)) + g_ll(k:?"ﬂ (-:——r(rz,(f’)(kr))) }” B'(m.n)(oo¢)

wit

. 2 (kr)
+ [(“Ufr + oy )c(m.n) Ir
18, (a) n(n + 1) €, ,,)Z( r)
e {a(m,,,,z (k) === + a, === Cimm (6, (1.6.8)

The solution of the electromagnetic interaction problem is then obtained by relating
coefficients on both sides of equation (1.6.7) and making use of orthogonality relations to
get differential equations for the, a priori unknown, radial functions, Z{*), Z{¥, and Z\),

Equation (1.6.7) coupled with equation (1.6.8) is the key to the development of a system
of ordinary differential equations satisfied by the radial functions. Using orthogonality

properties of the vector functions A.(m,n) and ﬁ(m,n) and C-'.(m,,,) defined, respectively, by

(1.3.1) and (1.3.2), and (1.3.3) we shall develop three relationships involving only the radial
304




functions, express one of these radial functions in terms of the others, and get an uncoupled
system whose solutions will be Bessel functions with complex index and argument. by
equating tueir coefficients on bath sides of equation (1.6.7). Equating coefficients of fi‘(mm)
on both sides of equation (1.6.7) we find that

' (a) (¢)
(o it 5.

Wy r kr

() (8) ot atin
—abmm g (r Z(")(kr)))}]

[(z’we + )t 23 () + 1@- {fikﬂriglz,@(kr) +

2
hasd (£ (r2i(ir) +aa(m.n)Z,(,“)(kr)}] (169)

We can see the consistency of this equation with the equations obtained for the special
case of anisotropic spherical structures ([15]). If in equation (1.6.9) we set 7 and § equal

to the zero tensor, we obtain

(o) Btz

(:,z'l‘[) (:1'1'56;) ( {a(m.n) ; (rZ(a)(Im )}] = [(iwe+ a‘)a(m'")z'(‘a)(kr)] (1.6.10)

or upon multiplying both sides of equation (1.6.10) by —iwp we find that if we define the

propagation constent for a class of anisot.'.ropic structures ([15]) by the rule,
k? = wine —iwpo (1.6.11)
that then Z{* satisfies,
(L) Zithary 2 - 20 k) = () (-2 (kar) (1.6.12)

which, with the propagation constant k, being defined by (1.6.11) rather than by (1.6.1),

is exactly the equation satisfied by the radial function Z{*) for an anisotropic sphere ([18)).
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We can also, in a similar fashion, relate coeflicients of E(m,n) on both sides of equation

(1.6.7) with k? defined by (1.6.1) to cbtain the relationship.

(5)52 et

ror kr3
. 2
b(m,n)',;l; (-887) (rZ,(f’)(kr)) + aa(mm)Z,(“’)(lcr)}) =
[(zwe + a)—(—'ﬂ ( ) (r28)(kr)) +

[ (a2 (20 + 2 (- Lo zpery ) ]| (16.9)

If in equation (1.6.13) we equate the terms operated on by 1 over r times the partial
derivative with respect to », and then divide all terms on both sides by r we deduce that

equation (1.6.13) is implied by the simpler relution,

2 29 (k)
Wit Clmm) ™

1 0\ | .
b(m,n)',; ("a_r) (rzi(l.b)(r)) -+ aa(ﬂhn)zt(; )(7')}) =

[(z’we + a)ﬁ(ﬂtﬂ (—Z,‘,")(r))

iﬂ (a) Qb(m'” 8/,
[w{ amm (259(r) = =22 ((209(r))) (1.6.14)
Equating coefficients of C(mm) on both sides of our specialized Ampere Maxwell equation

(1.6.7) with k& defined by (1.6.1) reveals that
i \nn+1) Z{) (kr)
(3] 22

1/0)\°
b(m‘,,)-’;; (5;) (v'Z'("’)(kr)) + aa(,,.m)z'(tﬂ)(kr)} =

2 (kr)
¥ [(’“"v + 1) (mm) ”Im
_I.ﬁl. (@)( Lo 71(7& + 1) C(m.n)zn (k7)
w/tr {n‘("l.ﬂ)zn (k’) 10 + k’ (1-6.15)
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To compare equation (1.6.14) and equation (1.6.15) we multiply both sides of equation
(1.6.15) by »/(n(n + 1)) and we find that

i Clmm) m(c 1 b 7(a —
(Jﬁ) {—ik—ﬁlz})(kr) +bnmy () ( ) rZO(kr)) +aa(m,n)4,£>(kr)} -

<zwe,. + a,) A kr)
(mn)— 1.

(n+1)
i . oy By i 2 (kr)
ﬂrj;'a(mmzf. Mkr) + ( (n' m 1)) ( C(m.n)) e (1.6.16)

Since the left side of equation (1.6.16) is identical to the left side of equation (1.6.14) it
is clear that we have consistency between equation (1.6.16) and equation (1.6.14) provided
that

(iwe + &) (~bimumy 28 (1)) +
(i’%) ka2 (kr) - (35“_”) by 27 () =

tWey + Oy
(n(n + 1)) C(m'")z () +
&

n(n + 1)

4ﬂr
Wi a(m.n)zn (k )+

;o
Z™ (k 6.
(wr) e 28 (kr) (1.6.17)
where k is deflned by (1.6.1),
We note that the consistency relation given by equation (1.6,17) specializes for the case
of the ordinary anisotropic sphere, where the coupling tensors & and 3, are both equal to

the zero tensor, to the simple anisotropic sphere relation of ([15]) given by

, IWwe, -+ o .
(rwe + 0')("‘b(m.n))z,(;b)(kur) = (m) C(m, n)Z( Hhar (1'6'18)

where k, is given by (1.6.11) We note that equation (1.6.18) is satisfied if

2\ (kyr) = Z0)(kqr) (1.6.19)
and :
iwe+o
Comm) = —n(n + 1) (m) b(m.n) (1.6.20)

which arc identieal to the relations derived in ([15]) for anisotropic spheres.
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We, hiowever, now again suppose that k is defined more generally by (1.6.1) anc collect
the terms multiplying the coefficients (), bimn), 80d cn .y in equation (1.6.9). In doing
so we rewrite (1.6.9) in the form,

[(—‘—-) (3) 2806 222 et 0)2kr)

u)[l,-

i 1(8\*
--—%QZ(“)(k )= I:Z; (5;) (rZ,(,“)(kr)] Ammn) +

[(57:) i J"“fk] { (a)z(rzﬁ"’(kr))}b(mm, +

[(; - —_—-) Z(°)(kr)] ety = 0 (1621

By rearranging equations as we have done we are attempting to develop, for our class of
bianisotropic spheres, relationships for the radial functions analogous tn the relationships,
(1.6.12) and (1.6.19), for anisvtropic spheres. Thus, collecting the coefficients of ag ),

bimn), and ¢(mn) in equation (1.6.14) we have

A i \
[(;’;) aZ{(kr) - ;;Z&”(kr;] G(mm)

i (1 o+ lwe
AN (O)( by i, 2(O) ( o
+ [wu (kr> (01') (rZ;%(kr)) + k 2y (kv)

+ -‘f’-‘-'-z"')(h )] b + = (27‘) ZhrYeqm =0 (1.6.22)

Equation (1.6.22) ywlds ihe ro.].ntumslup

i1 /(a\*
g BN 10 1 20 G
’)(m.n)w“ k’" (07') \’ Z" (’\1)

—-aZP(kr) - ——Z‘“)("f )J Ymm)

wit
o + twe i “
[ - — 2z (kr) + L (z Z,‘,"’(kv')] bm,m)
t 1 a0 2
—_ u—)-l-lmzn (k7 )(‘(m.n) (16”&3)

with the k being given by (1.6.1).




Equation (1.6.15), after collecting terms multiplying the same coefficients, yields the

rord {b(mm o (-g})’(rzw(kr))}

relationship

r Wt kr

-n(n+ 1) o Qr (e
- (et D (L Lapan) + 6 () Fase)

+ wﬁ,c%ﬁ Z,(f’(kr)} Cimm) +

G m) {;—;ﬁ'l;tl)-az,‘."’(kr) + By (ﬁ;) 2@ (kr)™ n(n + 1)} (1.6.24)

Multiplying all terms of equation (1.8.24) by r/(n(n + 1)) we find that

{b('"’"’:#kl (Bar) - Z(b)(kr))}

1 ia,
e | e Z2(0) add {e)
{ [wu Tt 20 ”]*(wu)kn(nﬂ)z" (kr)

U.UG,. + @ (O)( Lone
+ kn(n + l)zn (k7 )} c(mm) +

{ 2aZ (k) + (‘ﬁ”) z,ﬁ“)(k.r)} ) (1.6.25)

Solving for the term
i1
= — e | == ) (ke 6.
U oy (8) (rZ)) (k1)) omm) (1.6.26)
in equations (1.6.25) and (1.6.23) we find that equating the two expressions for U yields,

o ey - B @) g
[aw“Z" (k) wuz" (k)| amm)

|2 g0 + L8200 b

:
—Clmm) (m) Z}:‘)(’C?') =

[ ZM (kr) - iz(“)(kv)] Amm) ~
wit

[(_"_) 1z ey = 22T 20 (4

kn(n4+1) "'
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kwyien(r + 1)
Equation (1.6.27) implies, after subtracting identical terms from both sides of the equation,
that

— ( —-ﬁ—ﬁ——-——) Z}f"(kr)] Cmm) (1.6.27)

[ twe, + oy B, oy

- - (O o) <=
k?l(n + 1) kwﬂ,‘n(n + 1)] C(m.n)zn (kr)

_ (B _ i) g
(wu wm) 2k )am +
c+iwe ifa

k + wuk

Solving equation (1.6.17) for c(m,n)Z,(f)(kr) we find that

wer o, __andh O (kr) =
{ nin+1) * when(n + 1)} Cmm) 2y (kr) =

| 201060800 (1.6.28)

(iwe + o) B2 ®
{ (we + o) " }b(,,,,,.)z,, (kr) +

18k i[é,k) ,
— = ) Ay 28 (b 1.6.29
( x " wpy ) M) (kr) ( )

We could use this relationship (1.6.29) to eliminate Z!9 but we would end up with &
coupled systetn in the other two radial functions, However, for a rimpler chiral sphere
where

(1.6.30)
equation (1.6.29) has the form

iwe + 0 +ifaf(wp)
(iwep 4- 00) + (10 3/ (wiir)

‘-"(m.n)Z:(f'(k") = —n(n+1) (

)b(,,,‘,;)Z,(,")(Arr) (1.6.31)

If we assume that equation (1.6.29) is satisfied, and equation (1.6.30) is valid so that

equation (1.6.31) is valid and, furthermore, that

o _ip

. ; .6.32
Wit Wit (1.6.32)

then equation (1.6.14) will be of the form

i iwe + o + 1fef(wp) _Z__,(ﬁ)_(_i__)
oy [ i+ ) ((-iwrr T o0) + Gan )/ ) | ™ ke
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i AT N
(/u,j,) b(m n) (k (07) ) (an (7 )) -

o 4 twe tfo
5 b(m.n 1(16)(7')

% ~bim ) (~ Z( )("))"‘

If we also impose the condition
tay 8

——— T

Wiy Wi
then equation (1.6.9) takes on the form

: 2(0) (1) 4 B9 Hta)
(o + )280r) + 22 2

Multiplying all terms of equation (1.6.35) by iwp and observing that
K=hklta p
where k; is defined by (1.6.11) and k is defined by (1.6.1) we see that
2
_pnntl) @ 1O zmny) =
#”1 n + 57' (an (7 )) =
- KZ0(r) ~ aBZ(r)

or if we introduce the variable
1

Qo = ;;:

the ordinary differential equation (1.6.37) satisficd by Z{(kr) is

n(n+4+1 a
—(—73-—2 ZW(kr) =0

1/0\ (1) 2
3 ) (P2 + | (K + aB) — G

r
where k, is given by (1.6.11) and k is given by (1.6.1)

The spherical Bessel function is defined as

U,(2) = VTdueipa(2)
v \/5\/5

where ¥, (2) satisfles

2
) (20, (z n+[1+~(’—i—12] ,(z) =0

by | o=
Pl

(
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(1.6.33)

(1.6.34)

(1.6.35)

(1.6.36)

(1.6.37)

(1.6.38)

(1.6.39)

(1.6.40)

(1.6.41)




Dividing all terms of equation (1.6.37) by

K = Kk +af =wlpe + fa —iwpo (1.6.42)
we have with the definition

2 = (wipe —dwpo + fa)r? = k*r? (1.6.43)

the fact that equation (1.6.39) implies

2 .
% (5‘?;) (20,(2)) + [1 - ﬂ%‘*—ll} ¥, =0 (1.6.44)
where
v(v+1) = (an(n + 1) (1.6.45)

We can find a simple formula for the index v of the form

~1+ ﬁ +24Cn(7} +1) (1.6.46).

V=

Equation (1.6.33) gives the second equation which implies that

LR iwe + o + ifa/(wp)
o () [0 (252 e )| 2t

; 178\
)

“’“ 20 (k) (1.6.47)

o+ twe

(—Z1(xb)(k7'))

Multiplying all terms of equation (1.6.47) by —-zwuk'r and using cquation (1.6.36) we
deduce from equation (1.6.47) that

10\, o 2 )
- '5" (1‘2" (k7))+(kn +“’ﬂ,)zr(n ("’7') -

T y

_L _ Z.UJ(+(T+7.ﬁﬂ’/(W[L) D) 1r) .
i [ nn+ 1) ((z‘wer Yo+ (mrﬁ.»/(wur))l Z0kr) =0 (1.648)

where k, is defined by (1.6.11) and & is defined by (1.6.1). Letting G be defined by

¢ = ( twe + o +ifa/(wit) ) (1.6.49)

(iwey + o) + (e ) [ (Wytr )
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Substituting equation (1.6.49) into equation (1.6.31) we deduce that
CmmZE) = =n(n + 1)GZ8 bim n) (1.6.50)

The equation (1.6.49) is substituted into equation (1.6.48) to yield the equation,

(% (56;)2) (rZ3(kr))

\

+ [(kf +af) - 1’—(-’—'-7%—1&] Z8(kr) =0 (1.6.51)

where k, is defined by (1.6.11) and k is defined by (1.6.1)

Combinations of solutions of equations (1.6.39) and (1.6.51) and their derivatives are
used to represent the electric and magnetic fields induced inside an N layered sphere where
each layer has nontrivial magnetic properties and the electric and magnetic properties are

coupled in the sense that the layers are bianisotropic.

2 Expansion Coefficient Relations

2.1 Representations of E and H

Substituting equation (1.6.31) into (i.6.2) and making use of the relation defined by
equation (1.6.49 ) and the modified propagation constant k defined by (1.6.1) we sce
that we can satisfy the Faraday and Ampere Maxwell equations for the special class of

bianisotropic spheres treated in the previous section with an electric vector of the form,

E= Z {a(m,n)Zy(;a)(kr)‘z(m.n)(oa’b) +

(mn)eT

r Z'(‘b) }u' t) o
l'_n(" + 1) {Cb}]b(m.n)_z(;‘—,—)'C(m'n)(o, ¢) +
bm n (') -
L (— ( —67) (rz.‘f’(kr))) B(",.n)(o,¢)} (2.1.1)

where the radial functions Z{*) and Z!® satisfy equations (1.6.39) and (1.6.51).
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Now making use of a form of the relation (1.6.51) given by

2
(% (zs%) ) (rZ{(kr)) =

["(" + 1)G
7'2

+ ~ (k3 + ﬂ)] ZO(kr), (2.1.2)

where k, is defined by (1.6.11) and k is defined by (1.6.1) and its square is equal to the

square of k, plus o3, we will be able to siniplify the equation,

curl(B)= ¥ {

{(mmn)el

2@ (kr 10
A ) (T [ (n +1)—2 ( )C(m n) + —5- (rZ(a)(kr)) B(m u)] -+
: ZO (kr
(—n(" + l)cb)b(m Y A k(’ )A(m.n
b (2 120k £ (2.1.3)
(mym) kr \ or n {mn) \
In fact, substituting equation (2.1.2) inte equation (2.1.3) we see that
curl(ﬁ) =
1
Z {a(m.ﬂ) [72(11 + 1)_" (r)C(m n) + _éq' ( Z(a)(kr)) B(m n)] +
{(mmn)eT
z! Gl (kr) -
( 71(71 + I)Cb)b(m n) ,(‘(21 )A(m n)+
b(m n)x' [1(1'&—;:‘1‘& (k? <4 ﬂ)] Z{b)(k‘l )A(m ")} (2-1.4)

where k, is given by (1.6.11) and k by equation (1.6.1).

Some telescoping in the right side of equation (2.1.4) yields the reduced form,

curl( E) =

2 (kr 10 . =
( )C(,,. n) + ™ (r/J( )(M‘)) B(m.n)] +-

Z {n,(,,h,,) [n(n +1)——-

(mn)el

b > [(A‘ +ai)

Z( )(k7 ) 4(m n)}

314




= il ~ BE (2.1.5)
again with k and k, defined by (1.6.1) and (1.6.11), respectively.

Defining a new function W{* by the rule

i

1({9d ‘
Wi (kr) = . (5;) (rZ) (kr)) (2.1.6)
or equivalently by
LIM /1y\ 8
@) (k) = 2 L@ 1.
Wk = 7 (5) ) (2.1.7)

where ¥(%) is defined by (1.6.44) and where (, is related to the parameter v in equation
(2.1.7) by equation (1.6.38). We define W{")(r) by changing a to b in equation (2.1.7).
Using the new function W/®) defined by equation (2.1.7) we define

curl(E) =
ZE)(for) 4
b {a(m.n) ["(" + 1)5%—1‘)'0(7'..7‘) + a(m.n)kW,s“)(kr)ﬁrm,n)} +

(mn)eT
1 -
._b(,,,,n); [(kz + aﬂ)] Z’(‘b)(kr)A(m,n)}
= il - BE (2.1.8)

where k and k, are defined by (1.6.1) and (1.6.11), respectively.
In terms of the function W{*}(kr) we express the function H by the rule,

iwﬁﬁ =

k
Z {a("‘o") [n(n + 1) n ( . )C(m n) + a(m n)kw,( )(kr)B(m n)]
(mm)eT

-b(m.n)-:- (k2 + )] Z,‘f”(kr)fi'(m.n)} +

Z { a(,,.m)[iz'(‘a)(kr).ti‘(,,w)(ﬂ,qS)+

(mn)el

Be[=n(n + 1) {G} b~ Z, (}”)C(m n)(8,¢) +

kr
{ mn —
ﬂ)(,” ) ( (0‘71 ) (rZB(kr)) ) B(,,,.,‘)(o,qs)} (2.1.9)
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with k& being given by (1.6.1) and 4, by (1.6.11)
Collecting terms we find that equation (1.6.31) which relates the function c(n )2 to

the function Z{* can be used to derive the relationship,
—iwiH =

Z(" k Z(°) k
2 {{a(mm)n(n-l 1)Lt ( r) + ayCimn) k( r)] (mm)

(mmn)eT

+ [a(m,,,)%-éa; (rZ@(kr)) = abpmm (7};) (g;) (rz,g")(kr))] Binmy+

 ZE(kr) 1 (8)\° a ¥
lqm.u)“;;,(ﬁ“" + bman) 3 ('5{) (rZ0(kr)) + e m 28 ’(kr)] A(m.n)} (2.1.10)

and we could then use the differential equation (2.1.2) to simplify equation (2.1.10).
So far we have been trying to develop representations of the electric and magnetic
vector in a special class of bianisotropic spheres. Let us now consider an /N layered sphere

and let k, denote the propagation constant in the pth layer given by
k: = Wl e — juuPlg) 4 olP)glr) (2.1.11)

where for the layer with index p, wherc p runs from 1 to N for the actual layers of the
sphere and where N + 1 is the region outside the sphere, and where u(P), €, g(#) o(r)
and B) are respectively the tangential components of (i) the magnetic permeability, (ii)
the permittivity, (iii) the conductivity, (iv) the Faraday Maxwell equation coupling tensor,
and (v) the Maxwell equation coupling tensor, where these five tensors all have the same
form as that given in equation (1.6.4).

Let us develop the full theory using the functions,
a, 1 ,
W (k) = T( )( Z{0 9 (k) (2.1.12)

where the propagation constant &y, is given by (2.1.11) and where Z((::;;( kyr') is the singular
solution if j = 3 and the solution with the integrable singularity at » = 0 corresponds to
Jj=1

The expansion coefficients in layer p associated with the functions, Z((n ;;(k,,r) and
with the functions W((,:';)’(k,,r) which have the integralle singularity at the origin will be
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denoted by am'n) and b('m «y and the coefficients and aff,z‘n) and B((:;‘)ln) will be multipliers of
(¢,3)

(a3) (g
np)

the functions Z;;'{(k,r) and W 'V(k,r) which are singular at r = 0. The electric vector
with general representation given by equation (1.6.2) is in the pth layer of the multilayer

bianisotropic sphere represented by

.Ep:

= 3 { (o ) Zng) (ko™) + &y Zip) (o)A, (6, 8) +
(mm)eT

(ﬂ ’)
(=t 1) (G 2R a0, 0) 4+

{mn)

(°v3)
(=n(n+1) {ca}lﬂ(‘;’!,ﬂ)—i—"l‘——-]qm,ﬂ)(o 4+

[~ 8]y Wins) (ar) = B oy W) ()] B,y (6, ) } (2.1.13)

where k, is defined by (2.1.11).

Using our previous expression for the magnetic field vector but using the definitions
(2.1.12) and the fact that the k, defined by (2.1,11) is the propagation constant in the pth
layer, we see that the Ampere Maxwell equation with a coupling tensor defined by (1.6.4)

the magnetic vector in the innermost layér with p equal to 1 has the form,

A= ¥
(mm)el

_"'_{a?:) )Z(:.';))(kr")"("*‘l) + fo.,:,))(h)}c-.o

Wiy r XrClmm) ™ oy (mn)

® @k o L1 (_0Y peu 3
+Wﬂ{ (fn n)kwn p)( Pr) + ab(:t.n)_k_;— (—5_’:) ( (n, p,)(kpr))} B(m.n) +

. 1
IR ) ((2 n(ky ")
Wit Emm) ~ k,r?

1 i : a g
b%m ") (_) (5_) ( ((i ]P))(kP7 )) + aag”)l.n)Z((v(uz')l)))(kﬂr)} A("‘v")} (2'1'14)




where k, is given by (2.1.11) Now using equation (1.6.50) and equation (1.6.20) we see that
equation (2.1.14) can be simplified by the telescoping of terms and specifically making use
of the relation that is derivable from equations (1.6.50) and (1.6.51) given by

e Zg(:',;)z(kp’) +

(m.n) k ,.2

0 (LY (2 (hzen
o) \ 5 ) \Br (rZ{en)(ker)) =

wz (P)C(P) ) (P)O-(P) + a(P)ﬂ(P)
) [_( v s 1 289 (k) (2.1.15)
p

In doing this we see that the magnetic vector in the core of the multilayer spherical structure

corresponding to p = 1 is given by

. ﬁ -
Z{m(k 1 (“’"2 k
> [ p(”){ 0 Zpplkrinntl) cin(n + DR o (KyT) Conm
(mn)ex P

G(1nn) P r (mn)

J ® e () _pon g
+m( {J;m) (np)(kpr\""ab(fn.n)( (np) kyr) )}é(m.n)+

{88) 1 (=) ZED(kyr) + a®haff) 20D (1)} iy )] (2.1.16)

where k, is defined by (2.1.11) and where we have made use of the relation,

w’p(P)G(P) — iwu(?)a(l’) + Q(P)H(P)

(2.1.17)

We now consider the representation of the magnetic vector in an interior layer of a
multilayer sphere that does not contain the center of the sphere. The magnetic vector has

the representation in terms of functions Z((: :,)) and Z((,'::,; which have integrable singularites
(a,3)

at the origin, and the functions Z, ")

and Z(n ») Whose representation, in the case considered

here involves Hankel functions with complex index. The magnetic vector representation

in a penetrable shell is given by

' Z\ (k rin(n+1)
i ( i ) o7 2o (ke N
(rn%EI w“g’) (myn) r
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o Lol kyrn(n + 1)

(mm)

(b 1)
T
+ (_1) (asf’)cbn(n +1 )b(l’) __ﬂ’l(_p_) +

r (n,n) L "

(b Nk
aS'p)Cbn(n + 1)ﬂ§:¢)‘n) _.(_.EM_).) } C7(m,n) +

P(P) {aﬁ,’ﬂ'mk W(:;;))(k?’rl) + O‘Eﬂ.n)kp (:':))(kp }B(m.n) +

. b,
(w“ P)) {a(”)bf’,’l ")( ((: :’)(kpr)) + a(P)ﬁ&).n) ((n.:;(kﬂr))} B(m.n)+
b b -
(k) b e )+ 228230}

(w,A )) {0l ) 200} (kar) + oo 20 (kor)} A<mm>] (2.1.18)

where k, is given by equation (2.1. 11) and we have made use of equation (2.1.17).
We now consider the representation of the electric vector in the core region p = 1 of the
multilayer, spherically symmetric bianisotropic structure, Making use of equation (1.6.51)

we deduce from equation (1.6.2) that

B= S {a<m,,,,z(‘;;;}(k,,r)z(,,,,",(e, $) +

(mm)el
" 2{ (k) 4
[=n(n+1) {Ca}lb(m.n)—i’ﬂ’— 2 G (6, 8) +
b"hﬂ 8
s (— (57> (r 2y (K ))) B (6, } (2.1.19)

where k, is given by (2.1.11).
Equating tangential components of E wcross the shell » = R, equation (2.1.13), the
representation of the electric vector in a shell region, implies that equating coefficients of

A‘(m,,,,(e, ¢) leads, for r equal to Ry to the relation,

B 3
[a{?) 28 kr) + o)y Z i) ()]

1 o ¢
= [agfn.tngz((: p)+l)(kp+‘7 )+ a(m,ugz((’:,:-){-l)(klﬂ'”')] (2'1'20)

Multiplying both sides of equation ( (2.1.13) by B'(m.") nal integrating over the sphere

r = R,, we deduce, for r cqual to R, that

B8 200 (k) + B ) 2y Rt

{n.p) (mm)“(np)
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b, +1) (b
= [bg’r;"vllgz((n ;)L-l)(kp-f-l"') + ﬂ((::z.n))z((n ;,)+|)(kp+17‘)] (2.1.21)

We now set up the differential equations which state that the tangential components
of the magnetic vector are continuous across the boundary of a sphere separating regions
of continuity of tensorial electric properties, Equation (2.1.18) implies, upon cquating
tangential components A, on each side of the boundary r = R,, by taking the dot product
of both sides of (2.1.18) with respect to ﬁ(m,n) and integrating over the sphere r = R, that

!

a1 3
m {“gz.u)k W(('“ p))(k”r) + agzm)ki’w(:m))(k”r)} +

° b, Wb

(m) (@ (Wi} ) + B2 (WS k) } =
i

m {a(mm)kPHVV(n p+1)(kP+l") + a(m n) kPHW(n p+1)(kp+1r)} +

1] b!
(m‘r) {a®H OB (b)) + aPHIBEINWED, (har))}  (21.22)

Using equation (2.1.18) and equating coefficients of the vector A on both sides of the

sphereical shell » = R, we have

b, 1)
() (b o ) + 820 25}

1) W3
(wu(v ) {“(p)“ (mn) ((n ) (Kp417) +al? ’“8’3 n) ((::.p;(kw")} =

; +1
(w,l(r+1)) { 81" "'; [ "”+I] Z(n ,)+|)(kp+l7)

+1)
+"i((::'")[ I‘”'HJAan) 1'+l7)}

' {» ! +1) 2 W ~
() Lol i)+ OGN} (212)

2.2 Transition Matrices

We now attempt to develop transition matrices which will relate expansion coefficients

in one layer to expansion cocflicients in another layer, We start with equation (2.1.22);
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we find, after multiplying both sides of this cqnation by p(?) and dividing both sides of
equation (2.1.22) by k;, that

{af) oy W) (Ryr) + aff) WS (kyr)} +

(m.) Winp

(mn) (n.p)

. )
{(-i'-‘(-'i-)b(” WD k) + (—%)ﬂf&’.n)(W‘ﬁtﬁg(kr"))} =

(») k
(ks ) (i) + W20} +

plrH)k (mm)
- (P)a(?+) b, b
(‘ﬁm’ﬁ'};‘) bt (Winpny (ko) + ﬂm:;(w((n!:)m(kv’"))} (2.2.1)

Multiplying both sides of equation (2.1.18 ) by .;f(m,n)(ﬁ, ¢) and observing that

LIM N
H'A" ” 9 dA =
o R; /s,.m () (6,6)
LIM S
B A0 6)dA 2.2.2
. R /s,(r) (mm) (65 9) (2.2.2)

we derive equation (2.1.23). From this, after multiplying all terms by —twu®k, and
dividing all terms by k3, where k, is defined by (2.1.11), we derive the relation that

a(P) 1 3
(57 (e ztemtor) + ol ztialor)} +
b ) 53) (1, o
{bgr’z'")z(("d’))(k r ) + ﬁ((:" 1) ((“-P))(kp‘, )}
(P)ey P H1)
u'Pla 1 +1) (a3
(‘—,mur) RO R ARGl
_ Bk | o) p0) ) g0 (o
p(p+1)k { (mn) (n p-H) P+|7 ) + [J\m n) (n.p+1)(kp+l7 )} : (223)

where k, and kp4; are defined by (2.1.11).

We now define parameters which appear in the matrix relating expansion cocflicients

in one layer to those in an adjac nt layer. We obtain these hy considering terms nppearing

in equation (2.2.3)

(» .
o) _ K (kpt1
Py = (”(,,H)) [— ky (2.2.4)

321




Also

(P)  (Pp+1)
(th _ (M
Plag) = ( P ) (2.2.5)

with k, and k,4; being defined by (2.1.11). A similar term appearing in the inner shell

matrix is

al?)
i = () (226)
p
A term in the second row of the outer shell matrix is
(g
() _ [ £ Fpt
p(n.?) = (u(p+|)kp) (227)
Another term appearing in second row of the matrix is
~uPlaletl)
) _ (4P
Piba) = ( g ) (22.8)
The corresponding term in the inner shell matrix is
()
(» -«
o= (5 (2.2.9)
(b:2) ™y
With the special functions Z((,‘:;;, defined by (1.6.39), and Z((,‘:;,)), defined by (1.6.51),

and the derivative terus defined by equation (2.1.12) being evaluated at the separating
spherical boundary » = R, we see that the matrix equation relating expansion coefficients

in layer p to those in layer p + 1 is given by

[ Z(ﬂol) Z(ﬂ|3) 0 0 (»)

(1) (1) A
W/(ﬂsl) “V(nd’) (r) W'(b-l) (») WU’S’) (»)

(mp) (e) PO ) P W) | | Fomay | _
() plwd) (P} rp(ad) (1) (4:3) (r)
p(u..’i)l(n.p) p(u.IJ)Z(:l,p) Z(u.p) Z(n.p) (mn)
17(01) (b/3) {»
0 0 W Wom  § L Aonmy |
(1) () 11 e+) ]
Z(n.,p-.-l) Z(u.p+l) 0 0 ‘q’(m.n)
rlat) 7(n3) (p+1)gpr(bit) {r+ 1) gzr(00) {r+1)
W {np41) W (nap+1) p(b,'))‘ Wu,p+l) p(b,‘)) Wn.p-H) “(m.n) (2 o 10)
(p+1) (1) (k1) p(ad)  (p41) p(bl) (p+1) (h3) (p+1) -
Pa.3) Z(n.p»H) (o) an.p+|) Ph3) Z(n.p-}-.‘) P(b,3) Z(u.p-H) b(m.n)
(1) (b,3) {p+1)
L 0 0 I/V(n.p-J-l) w’(u.p+l) J L vH(m.n) J
This equation enn bhe written more compactly in the form
[ )] [ (41 ]
() a(f‘u.n)
“,gv) ) a(”“:
Tk Ry) | o | = Tk Ry) | (22.11)
b(mm) ()
(n (p+1)
L ﬂ(m-n) J L ﬁ(sml) J
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To compute the inverse ot the matrix T we need its transpose which is given by

((:';;(k Ry) W((:,}))(";’Rp) pfz)a)z((,‘::;))(k,,R,,) 0
(a.B) (a,3) {r) (a:3)
(n p)(k R ) W(n p)(k RP) p(z.a)z(n,p)(k RP) 0 = (T(p))trampose)l
b, b, n
0 AP WENkR)  ZEN(kR)  WED(KR,)
L0 iy Wan(kRy)  ZE5(R) WD (R,) |
(2.2.12)

Wronskian relations will show that we can define a new matrix Q) by the rule
QY = Tk By)™ T+ (k1 By). (2.2.13)

Using equations (2.2.11) and (2.2.13) we see that the expansion coeflicients in the core are

related to the expansion coefficients in the outer shell by the rule,

uy

N+1
agﬂz n) a‘%m.n))
0 a(N“)
(1) (2) L O (mm) a
o = Q4 Q. o - (2.2.14)
mmn mn
N+1
0 i . H((m n)) J

This gives us four equations in four unknowns, since we assume that the expansion co-
(N+1) and ﬁ(N-{-l)

efficients Xy 1m) )

are determined; these expansion coefficients could define a
comnplex source such as a radar or laser beam in the near field (Bﬂrton [8] and [9], Pinnick

39] and [37]). Solving equation (2.2.14) we find values of of and b')  and assuming
(m nm) (mymn)
(1)

that g, .

and i(m ») are both zero, we ean ensily obtaiu the expansion coefficients in every

layer of the structure. If we define the matrix R by the rule,
RP = T (kg By) TN (R, Ry ) (2.2.15)

We see that the definition of RE) by equation (2.2,15) implies the relationship

(m (r+1) ]
r “(m n) F ”’(m.n)
{r (r+1)
:R1(l])) (V(" W) — (V(HLJI) (2-2-16)
pivd pirth)
() (rm,m)
4(r) Jlot1)
f/(m ny | /(:n n) |

between expansion cocflicients in ndjneent layers of the spherienl structure,
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These computations using equation {2.2.16) are facilitated by the fact that we have
exact formulas for the determinant and inverses of the 4 by 4 matrices T{*) Let the dcter-

minant of T be defined by
Bp = 20k R)W o) (o Ry)
{280k RYWED(k,Ry) = WD (ko R 202 (koR)} +

(=1) [Z2{3) (ky By )W )k, Ry )|

(np)
) ' b, b,

{20 kR IWED (ko) = W) (ko) 205} (ko Ry } (22.17)
which means that the determinant A, is the product of two Wronskians W(n » and W(n »)
where

(6) _ (b0t wibe) Wikl (5,3) .
w(n,p) - Z((n p))(’c R ) (n, p)(’c R ) np;(k R )Z(n p)(k RP) &2‘2‘18)

We find that equation (2.2.17) and the Wronskian relationship,

—1
W ,p)(knRP) = W
enables us to compute determinants with no roundoff error. This enables us to get exact
formulas for the entries of the inverse of this matrix. If (TP (k,R,)™"),4) denotes the entry
in the ith row and jth column of the inverse of the matrix T, then the entry in row 1

and column 1 of the inverse is

(TP (ky Ry) ™) = WDk, BIWE (KR, )/, (2.2.20)

The (1,2) eutry is
(Tff)("“rRr)-l)(l.ﬂ) == ::’S))(kl)np)w(n‘p,(kF’R}‘)/AI” (2'2'21)

The (1,3) term in
(T,?)(A?,,RP)'-' )(I.-’l) = () (2.2.22)

The (1,4) term in
(T (k)™ V1) = ~(Z{ (ko R, )(“” )w{,”,’p,(k,,n,,))/a,,, (2.2.23)

324




Equations (2.2.20), (2.2.21), (2.2.22), and (2.2.23) define the first row of the transition

matrix. The entry in row 2 and column 1 of the inverse is

(TD (ks Rp) ™" Yan) = ~ W) (ks Ro )W (ke Ry) [ Ay (2.2.24)

{n.p) {n,p)

The entry in row 2 and column 2 of the inverse is
(T2 (ks Ro) )2y = Z{a5) (ko Re)W oty (ks Ro)/ By, (2.2.25)

The entry in row 2 and columnn 3 of the inverse is
(T2 (kpRo) )33y = 0 (2.2.26)

The entry in row 2 and column 4 of the inverse is
@R a0 = (ZEN AR (T | W) A 2227)

Equations (2.2,24), (2.2.25), (2.2.26), and (2.2.27) define the second row of the transition
matrix, The (3,1) entry is

ol

@Dk R) oty = WE () ( : ) W (ko Ry)/ By, (2.2.28)

The (3,2) entry is
(Tyf)(kpRp)-l)(s,z) =0 (2.2.29)

The (3,3) entry is
(TR (kpRy)™" Vo) = W) (ko Re) Wiy (kR )/ A, (2.2.30)

The (3,4) entry is
(T (kpRy)™ Vo) = = Z(m) (ku R)WE) (ko Ry) [ A, (2.2.31)

Equations (2.2.28), (2.2.29), (2.2.30), and (2.2.31) define the third row of the matrix, The
(4,1) entry is given by

—cy(?)
(TR (kyRy) ™y = —~W“’“’(k,,R,.)( 2’ ) W (k,R,)) A, (2.2.32)
P

(n,p) (n,p)
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The (4,2) entry is

(TP(kyRp) N4y = 0 (2.2.33)
The (4,3) entry is
(T By) ™ ay = ~ WD (ki Ry) Wik (kuRy ) (2.2.34)

Finally, the (4,4) entry of the inverse of T{*) is
(T2 (kpRo) ™ Nty = Z) (kuRIW( (kyRy)/ A, (2.2.35)

We have therefore obtained round-off error free expressions for the entries of the in-
verse of T\P)(k,R,). Thus, except for the expression rel#ting the expansion coefficients in
equation (2,2.14), all computations arc carried out by exact formulas. The matrix inverse
computation requires no subtractions or additions and consequently there is no round off
error if the Bessel and Hankel functions of complex index and their derivatives can be

computed precisely.

2.3 Determination of Expansion Coefficients

Let us siuppose that we have an N layer sphere subject to plane wave radiation. By
multiplying the inverse of T{") evaluated at kR, by the matrix T{**!) evaluated ut ki R,

we obtaining the matrix
7;1(')) = ﬁ;p)("’pRP)-Iﬂ;””(kwlRp) (2'3'1)

relating the expansion coefficients in layer p to those in layer p + 1. We then multiply all

of these matrices (2.3.1) obtaining a matrix
' N
T=TW.TH...TV (2.3.2)

where N is the number of layers of the sphere which relates the expansion cocfficients
in the core to the expansion coefficients in the space surrounding the sphere. This gives

four cquations in four unknowns. But it is really simpler than that, Using the second

and fourth rows of this matrix equation, we ean relate the expansion cocficients of the
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scattered radiation to the known expansion coefficients of the incoming radiation. We then
have in the first and third rows of this equation a formula for the expaision coefficients in

the inner core.

3 Optical and Absorption Efficiency

3.1 Definition of Terms

The optial efficiency of a general N layer sphere exposed to plane wave radiation is

defined to be
Qs+ Qa) ( 1 ) /e
Oe = N {31 11
(#5) (= )
where
$* = the incoming radiation’s Poynting vector (3.1.2)
and where
Q. = the total absorbed power . (3.1.3)
and
Q, = the total scattered power (3.1.4)
and
Ry = the radius of the outer shell (3.1.5)

The absorption efficiency is

(@ (2 .,
v = (7%7) (=) A0

Theze efficiencies (), and A, are unitless as @, and (), both have the units of Watts, and
the Poynting vector ' hins the units of Watts per square meter, and the apparent projected
size, m times the square of the radius, has the units of square meters.

These quantities can all be computed systematically just with a knowledge of the
expansion cosflicients of the scattered radiation and the expansion coefficients of spherical

Lharmonic representation of the plane wave tepresenting the impinging clectromagnetice

327




wave. Suppose that E* and H* are the electric and magnetic vectors of the scattered
radiation and suppose that £ and H" arc the electric and magnetic vectors of the incoming

radiation that stimulates the sphere filled with electromagnetic material. The quantity
Q. + Q, = the total extinguished power (3.1.7)
is called the eztinction and is calculated by integrating the Poynting vector,
§ = (1/2)(E* + By x (H* + H')) (3.1.8)
over the outer surface of the sphere. For'a plane wave, the result of integrating
§ = (1/2)(8) x (&) (3.0.9)

over the surface of a sphere is zero, since the average value of the normal vector to this
surface is zero. The rate at which energy leaves the surface of the sphere as a result of

reradiation of the energy incident on it is similarly determined by integrating
§ = (1/2)(B*) x (H')) (3.1.10)

over the surface of the sphere.
In this section we shall study how absorption and optical efficiency depend on the wave-
length or the frequency of the incoming radiation, but we shall transform this wavelength

or frequcncy, respectively, into a unitless quantity called the size parameter. If

w = 2.7 f (3.1.11)
then the size parameter is defined as
8 = 2.7 Ry (3.1.12)
A
where
2707 = w ior) = 2+ 7 ffkoeo) (3.1.13)
or
27
A= ——— 3.1.14
(w\/ﬂofo) ( )
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where

po = 4w x 1077 (3.1.15)

and

& = 8.854 x 10712 (3.1.16)

are the free space magnetic permeability and electrical permittivity.

3.2 Computer Calculations

If we look at the representation of expansion coefficients in terms of index of refraction,
we find that as this index of refraction gets close to an imagninary part of /2 and a real
part near zero, that there is very strong scattering and absorption at apparently periodic
values of the size parameter. The first graph below shows the absorption efficiency of a

spherical particle with an index of refraction m given by

m = .0001 + i(1.4140) (3.2.1)

and the subsequent graph shows the optical efficiency for the same index of refraction.
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These graphs suggest that scattering is much more important than absorption, but as
we allow the size parameters to become very large there is a cross over in the scattering
and absorption efficiency curves for the same index of refraction, This is shown in the next
computation represented on a logarithmic scale which considers size parameters as large as
1000. In this graph, there are the same early maximums as before, but they simply cannot

be seen on the logarithmic scale. Some of the maximums are shown in the following table

size absorption optical
parameter + efficiency  efficiency
.010000E0 .43077010E + 2 .3090E + 6
973500E0 .13852698E + 2 .2388F -4
.168930F1 .86167641E+ 1 .9345F + 3
.239210E1 .66955849E 4 1 .6047F + 3
.309430E1 .56436136E + 1 .6412FE + 3
379800E1 .407283490E + 1 .T194F + 3
450370E1 ,45070065E +1 .8206E + 3

On the vertical axis of these graphs we are computing the logarithm of the efficiencies.
When the imaginary part of the index of refraction is slightly above the square root of
two, we see a strong peak in optical efficiency that is due to absorption efficiency, The
graphis which follow show, over a small range of size parameteres, results for an index of

refraction of

m = .0001 + i(1.4144) (3.2.2)
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In thege calculations going out to large size parameters, around 8000 size parameters
were considered along with a procedure which searched for the maximums and the troughs
in the graph, The following table shows a computation of the low points in the graph of

absorption efficiency.

size absorption
parameter efficiency

147 .43106236E + 1
218 .30434158F + 1
289 .35037823E + 1
.360 .33305300F + 1
431 33306300 + 1
502 .20903701E + 1

Note that the locations of the troughs in the above table are in between the maximuins in-

dicated in the previous table, For this particular calculation great caro must be exercised in
locating the maximutns, When the spheriesl purticle has a greater permittivity, the poaks
are broader and can generally be observed graphically by a straightforward computation

with evenly spaced size parameters,
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3.3 Highly Efficient Two Layer Spheres

Van de Hulst ({47]) develops the relation between the permittivity €, of the core of
radius ¢R, where ¢ is a number between zero and one and the permittivity e; of the shell
of outer radius R which will produce a very high efficiency. This relationship ([47]) is

_ ((1—=2¢%)e} + ea(4 +2¢°) .
“= ( (2 - 2q°)2+ €2(1 + 2¢3) ) (3.3.1)

The following shows some computations of efficiency tor two layer structures which nearly

satisfy this relationship. Figure 3.3.1

Optical Efficiency vs Size Parameter
ms: (2,0) me:(0.001, 2) ve/v: 0/5
The figure below shows extinction, X, absorption, A, and scattering, S,
efficiency as a function of size parameter. The index of refraction of
the shell is 2 + 0f and the index of refraction of the core is
001 + 2i. The ratio of the volume of the core to the total volume
100 Of the spherical structure is one half.

1000 —

10 ~

1

0.1 -

Optical

Efficiency 0.01 4

0.001 —

0.000] -

1¢.08 4

le-06 -1

le-07 ~T T r ] ’ '
0.0001 0.001 0.01 0.1 ! 10
Size Parameter
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I(X)O—l
100 ~

10 ~

Optieal
Efficlency

0.1

0.01 -~

0.001

Figure 3.3.4
This figure shows the optical efficiency versus
size parameter for a two layer sphere with a core
having an index of refraction of 0+ 2i and a
shell with an index of refraction of 2 + 0i.

0.216

1000 =

100

10

Back
Scattering 1 'J

0.1 —

0.01

0.001

T | T T -
0.2165 0.217 0.2175 0.218 0.218%
Size Parameter

Backscattering vs Size Parameter
mst (2,0) me:(0,2) velv: 0.5

Figure 3.3.5
This. figure shows the backscattering which
is the unitiess quantity of the total scattered
power per steradian divided by the power incident
on the sphere in a direction opposite from that
of the incident beam.

0.216

| 1 1

¥ 1
0.2168 0.217 0.2175 0.218 0.2185
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1000 —

100

10

—r = wtnninGy VS DIZE Parameler
ns: (2,05 me:(l.eb, 2) velv; 0.5

Figure 3.3..
This figure shows optical efficiency versus
size parameter for a two layer sphere where the
ratio of thé volume of the core to the total volume
of the spherical structure is one half, The index
of refraction of the core is .000001 + 21 and that
of the shell is 2 + 0f.

Optical 1.
Efficiency
0.1
.01 -
0.001 ] 1B i T A
0.216 0.2165 0.217 0.2175 0.218 0.2188
Size Paramater
Backscottering vs Size Parameter
ms: (2,0) moilaé, 2) vo/v; 0.5
, Figure 3.3..

1000 This figure shows the backscattered power versus
size parameter for a two layer sphere where the
index of refraction of the core 1s .000001 + 21 and
that of the shell is 2 + 01.

100
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Scactering

o-l -y
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0.00! T ¥ 1 T -

0.216 0.2165 0.217 0.2175 0.218 0.2185
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4 Spatially Complex Sources

4.1 Expansion Coefficient Determination

We provide the user with an analysis of the response of an N layer structure to spa-
~ tially and temporally complex sources of electromagnetic radiaton. Let E‘(w,y, z,t) and
H(z,y,%,t) be the electric and magnetic flelds of a complex source with Fourier transforms

E(w, ¥,%,w) and H (2,,%). We suppose that this radiation source exists in layer
pe {2’3,' ' ',N+1}|

where N is the number of layers in the spherical stucture. Let us suppose that this energy

source in layer p has an electric vector (see equation 2.1.1) given by

E= Y {am.n)z(‘:::;(r)&m.n)(o,¢>+

(mmn)el
[-Mn+n{c4ﬁmm )6mmw¢)+

87”" b
-%f(~(§)w%ﬂ%m)mmma@} @11

Observe that the coeflicients a}f,z n) &re determined for every p > 1 by the relation,

LIM | ] Joum Eul2, 5, 2,0) - Apny(6,6)*sin(8)dbdg
r — Rp_1 ff()(r) A(m.n)(oa ‘75) ’ A(m.n)(oa ¢)'3i"(6)d8d¢
= a{h) oy Z () (Bp-1) (4.1.2)
where
C(r) = {(z,,2) 1 2 + ¢ + 2% = 17} (4.1.3)

Thus, equation (4.1.2) gives us the expansion coefficients for the representation of E just
outside the sphere C(Rp-1) defined by equation (4.1.3). The coefficients B are deter-

(mn)

mined by the equation,
LIM ] Je f’:’,,( 2,9y 2w} * By (0, 8)*sin(6)dfds
s Ryt | L Jote) Bonn)(8,8) + Bl (6, 8)*sin(8)d8db
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= b (=W (Ryo1)) (4.1.4)

(m, n) (n.p)

where, using the definition (see equation 2,1.12),
b é b,j
W () = ( a,.) (rZ{a(r) (4.1.5)

and the functions .4’(m‘,,)(0,¢) and ﬁ(m‘,.,(o, @) are given by equations (1.3.1) and (1.3.2).
We will show that the integrals in the denominators in equations (4.1.2) and (4.1.4) can
be determined by an exact formula. To exactly evaluate the integrals appearing in the
denominators, we use the equation (see Bell [10], equation 11 and equation 18) which
states that

ropr 4 m( o 2 ‘
./_n [; { (Q%P’:n(c”w))) + 7"25‘;'(;1—:}(%')')“} sin(6)dbd¢ =

- (2::11)(%23235) n(n+1) (4.16)

where the functions PI"(¢) are defined by

P (z) = ——l—-n - )D"*"‘(m 1) (4.1.7)

of the associated Legendre function,

We use the basic definition

— pdym/2
P,',"(:l:) - (1 o ) Dn+m(w2 - 1)" (4.1.3)
pATH
of the associated Legendre function, If
o = cos(f) (4.1.9)
then
= - (4.1.10)
RV p~y o
and

[ P (cos(6))sin(6)ds =

2(n 4+ m)!
2n + 1)(n = m)!

+1
1__/] (1 _ x?)m(Dn-Q»rn(mﬂ - l)n))dm =

23n(nl)? (4.1.11)
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The orthogonality relationship follows from the fact that

d drd . d
il —sm(ﬂ)-—a—: (41.12)

implies that
mo 4 i m d m :
Aln = ./; [dﬂp" (cos(O))] [_dBP' (cos(G))] sin(6)d6

- [a- ) P(2) PP (o) (4.1.13)

The derived identity then follows from an integration by parts and a use of the differential

equation relationship,

2
(1-27) [(%) P,'{‘(:v)] + (—2m)2%P,’,"(w) =

[-—-n(n +1)+ 5 Tw,] P (z) (4.1.14)

Detasils of the analysis can be found in ([11]) and the basic properties of P* are found in

([52])

4.2 An Exterior Complex Source

We now define intialayer relationships that give us the induced field when there are no
sources in layeis indexed by
p€ {2,3, N}

where N is the number of layers in the sphere. The intralayer relationship yields, for a

penetrable core,

\ . (N ]
F 0,{"2‘“) aé"‘!"))
0 a(N-H)
o (mm)
B = Sw N+ (4.2.1)
(mn) (mm)
N+1
L 0 4 L ﬂ((m'"')) R




We can separate the four, a priori unknown coefficients, from the known expansion coeffi-

cients of the known external source by 1ewriting equation (4.2.1) in the form

- - r - r . N -
ag'l’zvﬂ) 0 asmt‘l))
0 oVt 0
~Sy| ™ | =8y (4.2.2)
1 T(N+1
b 0 B
N+1
L 0 J [ B((mm)) J L 0 J

Thus, relating the a priori unknown coefficients to the known expansion coefficients &{,’X;l))

and Efﬁ";;) reduces to the problem of finding the inverse of the matrix

T=1-8y (4.2.3)

4.3 Interior Sources

We now suppose that there are interior sources in the layers, This could be important
in nssessing the impact of a sweeping radar on a person living near the radar who has one
or more metalic implants to replace broken bones or clamps to hold them in place. The
pntentially serious nature of this can be seen from the fact that ([55) p 40) has used this
concept to postulate a design for an electromagnetic missile.

With interior sources, the expansion coefficients in the free space surrounding the N
layer sphere and the expansion coefficients in the inner core will be shown to be related by
affine transformations rather than linear transformations.

We model complex sources in a layer by allowing an arbitrary representation of a source
in terms of an expansion in a Hilbert space of vector valued functions. We assume that
if the shell containing the source lies between r = R, and r = R,y and represent the
expansion cocfficients of the electric field due to this source in the inner shell in terms of

expansion coefficients &ff’,f'"), Emm).

We assuine that these are given and represent a source
located at a point r == R, that is between r = R, and r = R,;;. These arc obtained
by assuming that the source is unaffected by the medium and that the currents, say in

a dipole source, are used to represent an electric vector E',,. This electric veetor is then
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represented on the inner shell by the relations,

LIM | [ fou Ep(@,y, 2,w) - Aimn)(8, 8)"sin(8)d8d¢
r — Rp ffo(r) A(m,n)(es ¢) ' A(m.n)(ea ¢).“n(o)d0d¢
G 2o (ko) (4.3.)
The values of the expansion coefficients Emn) of this source field on the shell r = Ry are
given by . ‘
LIM ([ foiw Bo(®yys2,w) - Bim)(6, 8)"sn(6)d6ds
r= Ry | I Jow Bunm(8,8) Bimu)(8, ¢)3in(6)dfds
= 50 (W R,)) (4.3.2)

Thus, we know the electric fleld due to the isolated source at this point cn the shell
r = R,. However, unlike the source in the spuce surrounding the N layer spherical structuve

we cannot assume that the fleld is represented by these expansion coefficients and the
(r)

(mm) used to represent the radiation emanating from

expansion coefficients a(m n Bnd 3
the inner shell, as there may be additional sources coming from beyond » == R, that are
due to external sources aud reflections of these sources from the layer r = RK,, Instend
we approximate the representation of this source by & finite linear combination of vector
spherical wave functions and assume that at some point r = I~2,, possibly just slightly smaller
than the location of the actual source, so that value of the fleld at the point considered
would not be singular, we impose essentially an impedance boundary condition (Wu [35))

at r = R, which will give us & relationship between the general expansion coefficients

(7’-

Ol and ﬁ(m » and =) and b(’""’) used to represent the fields when r < R, and the

{mn) (mm

expansion coefficients a{fn";) and ﬂ((,’:{",? and “Efy'...tx)) and bg’,;:’;‘)) that are used to rpresent the

flelds when » > f\',,,. We suppose that the magnetic vector just outside » = fi‘,,, is denoted by
I? + and that the magnetic vector just inside r == R, is given by I? ~ and that the boundary

conditions used to relate the expansion coefficients erf’,{ W) And ﬂ((,’:; n) and ng’,; w and bg:"‘m))

for R, < r < R, to the expunsion coeficients “{ﬁ:-’;;)) and ﬂ((::;;)) and “Efy'.-t;) and bgf,‘t"';f) for

Ryy > r > R, are continuity of tangential components of E and the nonhomogeneous

impedance boundary condition

~ ~

itx (Bt — A7) = (iwe + 7) E, - (B, &)&) (4.3.5)
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Taking the dot product of both sides of equation (4.3.3) with respect to the vector

Vs = Bipn(6.4)

and integrating over the sphere r == R, we see that
,"‘T‘ {a otk Wil (ko Rp) + o gy ((,:’:))(k &)} +

(wum) {afr Wil B,)) + ot )ﬂfﬁ';’;(w((b'a)(kpﬁp))} =

np)

u(ﬁ) { Q:‘._n))k W(n.p) ko Ry) +a(m.n)‘&}’ (n's) (k, Rp)} +

(n p)

(ﬁ-) {a by Wik ) + alP)glor pis B} +

('h”)

('we(p) + a,(p) ["' ?,).n) ((i‘:;))(bﬁﬁi’) (m.n)w(n ag kPﬁ’P)] . (4'3'4)

Teking the dot product of both sides of equation (4.3.3) with respect to the véctor

VA = "T(mm) (0, ¢)

end integrating over the sphere » = B, wo see that

"""-—"i v+ bt ) b3
(wn(r)) [~k {68’" ﬂ)) ((nm;("’ &) ‘|‘ﬁ((:;.n)z (n,p;(k R,) }

i

1 |l ] 's )
(m) {a"’)agf"':‘)) ((:.p))(’” Rp) + “(p)“(::;t)) Z((: p))(kpRu)} +

(e + o) (a0) ) 2Nk ) + 612, 2000k, ) (4.3.5)

(m, n) (np
Using the fact that ¢/

) = 0 and ﬁ(m n) = 0 and that the coeflicients af:’,z n) and 7)(," n) Bre

completaly known gives us a simplo relationship hetween the expansion coefficients (see

equation 2.1,13)

W F) 1, 1, =
[a((zt-.tx) Z((:.p))(k RP) + agn:‘:t))z((v:.;:))(kPRP)]

= [aff;:."n’) ((::;;(k R) + alP™) gt ”(k R,) (4.3.6)

(mn) “(np)

and mulitplying both sides of thn relationship

(4.3.7)




by B‘(m,ﬂ)(ﬂ, ¢) and integrating over the sphere r = R, we see that
] bt [} 53
(=S Wy Ry} = Bl W (o) (k)

= b Wiam e Rp) - ﬂE::;% Wi ko )]
Wé define L :

€ = 0m i),
- and
¢t (iwe® + o®alf) 1 20l e a)
and finally,

(iwelP 4 0‘("))5("'3) w =B Wl ';))(Rpj

(m n) (n

(4.3.8)
(4.3.9)
(4.3,10)

(4.3.11)

The expansion coefficients on opposite sides of the sphere r = R, nre in view of equas
tions (4,3.5), (4.3.4), (4.3.6) and (4.3.8) aund equations (4.3.9), (4.3.10), and (4.3.11) are

related by




[ “8; n)) 1 - aff,:ﬁ,’) 1 - 5&?3) -
ol | o | lwm | _ gt | Elnm (4.312)
bzmm) b{f,{:t,)) v 6(5:?2 -
B 1 LA | | € |

To coraplete the determmatmn of the relationship between expansion coefficients in one

' flaym to those in the next one we use equation (2.2.11) and equation (2.2,13) to write

- [ =) ] [ alp1) ]
é";‘m)) a f’:’i) ) e((:h'z
(p1=) | owleEh=) | (p)3)
o o ¢
(mm) (») {rn) - (mm)
b?’.") =q: b}"“'-) S("") e(Pn”) (43.13)
mn) mn) (m;n)
(e ‘ 1~ i
LB 1 LAt L &

Now a8 tlhere are no sources in the core region we have for the simplest atrurture with a

source in a single shell the relationship |

14 : 3~ [ 4(3,1)
a’%m,n)) ‘] afm.n)) e((m.n)
= QNQW) @ ?';;*)) - Q('l) g1 65'2"?’2) (4.3.14)
bh*‘) AL b(at") nS(n) (a@ -
im,n) {mm) £(m a)
I 3." 9|4
o A L ﬂ((mm)) o . e((mn'z) N

where the known fleld representation coefficients E((,’f;i,z), (,’n':z) and Q‘,’:;",z and f((,"n' w) &re given

by equations (4.3.10), (4.3.9), and (4.3.11) respectively. The general relationship is given
by




) ] [ (N4+1,-)
“E:" "')) a’%m,n) T
0 Vo | em”
- (13, , ., myn _
(1'4_) Qn Qn Qn N+1,—)
b(’”v") b}m,n
N+1,=
L 0 o L ﬂ((m'n,) ) o
W1
[ i) |
o . owgmr | S
T QPP - QPS L | o (4.3.15)
prl f(mn

»d
L 6((mi'z) o
As before, if the expansion coefficients a((ﬁ'“;’)") and b}ﬁf;’)") of the external source are
known, then we have a system of 4 equations in 4 unknowns connecting the expansion

( +1|“‘) (N+1|"‘) Of

coefficients in the source free core and the expansion coefficionts Ul BRG Bl

the radiation scattered by the N layer bianisotropic structure,

5 Energy Balance

5.1 General Considerations

The total yower absorbed by a general structure can be determined by a Poyuting
vector analysis on the snurface of the body. The total energy absorbed s the total energy

entering the body minus the total energy scattercd away from the body,

5.2 DBianisotropy and E H Coupling

In this section we consider the unusual energy balance relationships associated with the
interaction of radiation with a bianisotropic material ([13]). The energy balance analysis

for an isotropic sphere iy carried out in great detail in (Bell [11]). An interchange of dot

product and cross product in the triple scalar product implics that the total absorbed




power P, is given by

P, = (1/2)Re / /C (RN)(EN“ x Hyy1)* - ftdA

= (1/2)Re / /C - [(Br x Hpry) - 7] dA (5.2.1)

where we have used the fact that on the spherical boundary » = Ry we have
i X EN-M =7 x En (5.2.2)

because tangential components of E are assumed to be continuous across boundaries sep-
arating regions of continuity of tensorial electromagnetic properties. We next make use of
the fact that for an impedance boundary condition on the surface of the scattering body
that

(B = BR) x 8 = 0,(By - (By - 1)) (5.2.3)

where o, is the impedance sheet conductivity. From equations (5.2.3) and (5.2.1) we see
that

P, = (1/2)Re / /C (RN)(EN x Hy)* « #dA+
(1/2)Re / /C - By - (ou(Bi = (By - D)) dt (5.2.4)
Using this and the fact that
div(E x B*) = B* - curl(E) — E - curl(H*) (5.2.5)

we derive a formula for the internal energy density. For a sweeping beam or a stationary
veal interacting with a bianisotropic body or a stationary beam interacting with a moving
body (Hebenstreit [29]) there may be unusual couplings of the electromagnetic energy with
the structure. For a general one layer structure covered by an unpedauce sheet the internal

energy density is given in terms of the bilinear form
— b
WE,H) =

S, (B (G + B)E) + (By - (—us¥ +7)E})} o+

fv, {(B; - @ Hy) + 1By (F)H])} dot
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~ [ R G B + (B (- et
[ B B B + oy B o
Lo+ {(Br B - (Ba- AB; - 7)) da (5.26)

where S; is the bounding surface and V; is the interior volume. This can be used as a
sourre term for the heat equation and can be used to predict the «c~ponse of the structurze
to & sweeping beam or the response of a moving structure to a stationary beam (Ferenca
[26]), Gamo [26], Hebenstreit (29], and Shiozawa, [44]). Energy balance computations were
. carried out in (Bell, Cohoon, and Penn [10], {11]) for isotropic structures and in (Cohoon
[15]) for anisotropic structures. These energy balance computations involve comparing the
total energy entering the structure minus the total encrgy reflected from the structure to
the sum of the integrals of the power density distributions in the impedance sheets and in

the layers themselves,

5.3 Computer Output

Electromagnetic Fnergy Deposjition in a Concentric Layered Sphere.
Frequency = 1.000E+C3 MHz. o
Field Strength = 1.00 V/M  Nuwber or Regions = 2
Core Radius = 1.1 cm Shell Radius = 3.3 cm
Core Properties

Relative Permittivity (Radial): ( 50.00, 0.00 )
Relative Permittivity (Angular): ( 50.09, 0.00 )
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Relative Permeabiliiy (Radial): ( 2.00, 1.00 )
Relative Permeability (Angular): ( 2.00, 1.00)
Conductivity (Mho/M) (Radial): ( .600, .600)
Conductivity (Mho/M) (Angular): ( .600, .600)
Impedance Sheet Cond. (Mho/M): ( 0.00E+00, 0.00E+00)

Surface Boundary (cim) = 1.1
Shell Properties

Relative Permittivity (Radial): ( 30.00, 0.00 )
Relative Permittivity (Angular): ( 60.00, 0.00 )
Relative Permeability (Radial): ( 2.00, 1,00 )
Relative Permeability (Anguiar): ( 5.00, 3.00)
Conductivity (Mho/M) (Radial):  ( .200, .600)
Conductivity (Mho/M) (Angular): ( .400, .600)

, Impedance Sheet Cond, (Mho/M): ( 0.00E+00, 0.00E+00)

Surface Boundary (cm) = 3.3

Total Absorbed Power = 9.10716094E-6 Watts
(by Poynting vector analysis on the surface
and by velume integration of the power density

over the interior)

Average Absorbed Power = 6.04996E-2 Watts/Meter*»3

The fact, that the total absorbed power.obtained by a Poynting vector method and the
total absorbed power obtained by volume integration of the power density distribution
nearly coincide represents a confirmation of the correctness of the coding implementing
the solution for an anisotropic sphere. The determination of the total absorbed power by
the Poynting veetor method js deseribed in (Jones [33]) and in full detail in (Bell, [111).
For the plane wave problem described in Jones ([33]) we can give exact formulas for the
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total absorhed power in terms of the total power eutering the sphere minus the total power
scattered away from the sphere ([33], page 504, equation 126). We let a(n,n+1) aDd Bin,N41)
denote the expansion coefficients of the scattered radiation and by carrying out an energy

balance book keeping on the boundary we observe that the total absorbed power is

2 00
P, = LL];EZ-E_I-\/EZ [Re Z(Zn + 1)(ota,N41) + ﬁ(n.N+l)]
0 Ho n=1

Eq I3 0
E—‘-ﬁ-l-\/% So(2n+1) (l a1y [P + | Banan IP) ] (5.3.1)

n=]

This is the referred to as the Poynting vector method in the computer output; the last.
number is the result of numerically integrating the power density distribution over the
interior of the sphere. The difficulty of this numerical integration is evident from the

following plot of the internal power density distribution for an anisotropic structure with

a radial permittivity that is higher than the tangential permittivity.

Figure 5.3.1 The electric and magnetic power density distribution on
an eguatorial slice of a two layer sphere subjected to
a single plane wave. The core in this sphere and the
one on the following page are identical. The difference
is the protective nature of the shell in the following
figure.
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Figure 5.3.2.

is 1.1 to 3.3. The radial relative permittivity is 30 and the tangential
relative parmittivity is 60. These numbers are reversed in Figure 5.3.1.
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5.4 Thermal Response to Radiation

The absorption of radiation results in a temperature increase. An energy equation

describing this change of state is given by

De a a
_5? = (5{) Qt'n + ('52) Qout+
(—pdiv(D)) + div(Kgrad(T)) + @, (5.4.1)

where ¢ is equal to ¢, with T denoting the temperature, and ¢, denoting the specific
heat at constant volume, @ is the viscous dissipation function (Anderson, Tannehill and
Pletcher (1], pages 188-189), 7 is the fluid veloity, p is the density, p is the pressure, I is
the tensor thermal conductivity, the term representing the transfer by radiation from one

part of the fluid to another is given by (Siegel and Howell [43], page 689)

7] . {160,.T°
(Z) Qo= o (22 graamy), (5:42)
where the internal radiative conductivity is given by
160, T°

where ap is the Rosseland mean absorption coefficient (Siegel [43) , p 504 and Rosseland
[41]) and where o, (Siegel [43], page 25) is the hemispherical total emissive power of a

black surface into vacuum having a value of
0. = 5.6606 x 10™® Watts / (meters? °K ), (5.4.4)

and where if B(E, # ) represents the absorbed electromaguetic energy per unit volue,
whose integral is, (after conversion from cgs units) equal to the b(E, H ) given by equation
(5.2.6) then

(f%) Qn = B(E,H). (5.4.5)
In general solving equation (5.4.1) requires the simultancous solution of the Maxwell,
continuity, and momentum cquations (sce Jones [33], p 775). However, for low levels of
radiation the energy equation (5.4.1) reduces to a simple heat equation with a source term
which can be solved by dovetniling ([12], [14]) it to the solution of the Maxwell equations,
The experimental verification of the latter procedure is deseribed in ([12]) and in ([14]).
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There are as yet no exact solutions to the problem of deseribing the interaction of
electromagnetic radiation with aerosol particles having a complex shape, ¢.g. N handied
spheres, toroids, fibers, flakes, and complex cross linked particles such as those found i
cirrus clouds. Those whose regions of homogeneity are delimited by a surface generate«. by
rotating a curve about an sxis, arc hodies of revolution if the electromagnetic ptoperiie..
are also invariant with respect to rotation about this axis. The interaction of arbitrary
linearly responding materials to electromagnetic radiution can be described by volume
integral equations, whose accurate solution may tax even the most advanced computers.
However, for bodics of revolution we can by Fourier analyzing the field we can represent
the field by solving integral equations in the surface electric and magnetic current Fourier
components on the generating curve - - a one dimensional integral equation instead of a
three dimension integral equation.

We illustrate the method of discretization of integral equations in an elementary way i
this paper by considering an interesting integral equation formulation of the problem of the
interaction of clecromagnetic radiation with an anisotropic magnetic slab. This problem
can be solved exactly, and the accuracy of our discrete representation can he verified by
comparison with the exact solution.




1 INTRODUCTION

The most geperal linearly responding materials are bianisotropic. The Faraday and
Ampere Maxwell equations for titne harmecnic radiation have the usual forms

curl(E) = —iwB

and
curl(H) = iwwD + oE

where the magnetic flux B and the clectric displacement D depend on both the electric
and the magnetic vector,

1.1 Integral Equations for Bianisotropic Materials

We can make Maxwell’s cquations Jook like the standard Maxwell equations with com-
plex rources by introducing the generalized electrie and magnetic current densities by the
relations, ‘

curl(E) = wpyH - J,, (1.1.1)
and |
curl( H) = iwe,E + J, (1.1.2)
whera
‘ J, =iweE + alH - iweE (1.1.3)
and
J =iwpuH + BE — iwpH (1.1.4)

Theo formuluiion of inteyral equations for binnisotropic materials, therefore, is carried out
by the analysis of the following coupled system of integral equations based on the notion
of electric and magnetic charges defined by the two continuity equations

Pl 4 = 1.5
din(J,.) 4 i (1.1.5)
and .
, U
T I S e 1.1.6
div(J,,) + it (1.1.6)

Having develeped this the coupled systenn of integral equations deseribing the inter-
acticn of electromagnetic radiation with a bhounded bianisotropie body Q is given by the
foliowing relations. The clectrie field integral equation is given by

E - B = —qrad (/‘ ‘!'.l‘_(:lﬁl(;( 7',.\’)(11)(.9))

PR (./M(J' -n)(,'(r'..w)(IU(ﬂ))

W
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~iwitg [} J.G(r, 8)dv(s)+

— curl (/ﬂ JmG(r,s)dv(a)) (1.1.7)

and the magnetic field integral equation may be expressed as

H - H'= —grad (/ﬂ dw(:m)a(r S)dv(S))

- i-;grad ([ (I m6(r,s)da(s))

——z’weo/nJmG(r,.s)dv(s)-k

+ curl ( /n J,G(r,.s)dv(a)) (1.18)

where G(r,s) is the rotation invariant, temperate fundamental solution of the Helmholtz
equation,

(A+ k)G =6 (1.1.9)
given by

_exp(=iko | r —~9|)
Grye) = dr|r—s|

Substituting (1.1.3) and (1.1.4) into equations (1.1.7) and (1.1.8) we obtain, the coupled
integral equations for bianisotropic materials. The electric field integral equation for a
bianisotropic material is given by,

(1.1.10)

E-E'=
—grad (/ﬂ div(iweE + aH — iwe E

e G(r, .s)dv(s))
i . .
+:;;grad (/;ﬂ(zweE + aH - iweE - n)G(r, s)da(s))
— 1w o J{-, iweE + aH — iweg EG(r, 8)dv(s)+

~ curl (/n wuH + BE ~ iw;l,oHG’(r,s)dv(s)> (1.1.11)

and the magnetic fleld integral equation for a bianisotropic material is given by

H-H' = —grad (/ﬂ div(iwpH +BE - zwtOHG(r,.s:)dv(s))

Wilo

t . .
—u—#_l-(;gmd/an(w“H + BE — iwpgH - n)G(r,s)da(s)
—iweg /n (iwpH + BE — iwpoH)G(r, s)dv(s)+

+ curl (/n iweE + aH - iweoEG(r,s)dv(s)) (1.1.12)

In the subsequent sections we shall explore methods of resolving these integral equations
on existing computers using novel, powerful analytical methods of solution.
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2 Layered Materials

We have formulated some one dimensional scattering problems associated with mag-
netic materials, and solutions obtained from the differential equation formulations have
been substituted into the integral equations and have been shown to satisly them exactly.
For magnetic materials, a single integral equation was obtained and the significance of
surface values of the derivative of the clectric vector were shown to be important., For
higher order splines all terms arising in a matrix representation of the integral cquation
formulation of the problem, and all iterates of the integrals could be computed exactly,
Using distribution theory concepts, we have combined the electric and magnetic field in-
tegral equations for the case of a plane wave that is incident normally on the magnetic
slab,

2.1 MAGNETIC SLAB IE

We consider in this section radiation normally incident on a magnetic slab, and assume
that the electrie vectnr of the incident radiation has the form

E‘ = Eoﬁ(l;‘])(--?jk()z)em (2.1-1)
so that the magnetic vector of the incident radiation defined by the Maxwell equation,

—iwpoH' = curl(E') =

1] ,
—ey <‘“5;) Eyexp(~ikoz)

= —-ik()E‘()(.'.mp(_—ikuz)e,, (2.1.2)

is after dividing both sides of equation (2.1.2) by —iwy is given by

‘ ky E
H!' = ( 0 ”) ('.rp(—-ik(,::)e,, (2'1'3)

St

Within the magnetie slab, where the permittivity e, the permeability j, and the condue-
tivity @ are diagonal tensors in Cartesian coordinates, the first Maxwell equation has the
form,
curl{ M) = (iwe, + 0,)E,e, 4 (twe, + a,)Eye,

+ (Ij“'":: + ﬂ:)E:e: (2'1"1)
However, if the stimulating clectrie veetor has ouly an x component, then the same is true
of the reflected, indueed, and transmitted vadiation, and, thus, we may assume that within
the slab that this is also true, Henee, we assume that within the slab,

FE . ol2)eep(—~ivte, — K e, (2.1.0)
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Since then

A
curl( ) = —e, ( acz) E, = —wyu Hye, (2.1.6)
we conclude that
) i 9F. (2.1.7)
V7 wp, 8z o
Using (3.4) we conclude that
curl(H)=¢e —-2- H (2.1.8)
IR WPy o
which implies that
curl(H) =
. a2
(o) 5 - o %]
wyl 64 " wpy 0z
= eq(iwe, -+ 0z)E, (2.1.9)
Thus, multiplying all terms of this last equation by iwu, we see that
62E, “)(2) OE,
023 py(2) Oz
= (~wip e, + twpyr, ) E, (2.1.10)
We are, therefure, seeking an impulse response of the equation,
O’E,
e + wiuoeE; =
{1)
ELQ.E{ + \""2(“050 - I‘uft) + w0, )E; (2.1.11)
By 0Oz
We introduce the vanable
T = w’;tvc, — W, O, — w?tgeo, (2.1.12)

where we agree that e, pu, and o take their free space values outside ti.e slab, and assume
that £ — E* has the form,

E-E = c/ e Eoerp(—iko | = — 3 [)d3
(1)(3) OE
Y erp(—ikg |z — 2)\ d3 (2.1.1%)
Jooo pylZ) 0F P o !
where we write the global magnetic permeability via the relationship
pyl2) = (Y () = Y (2 = L)y, - o) + po (2.1.14)
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where

oy g 1ifz220 .
}(*)“{ 0 ifz<0 (2.1.15)

is the Heaviside funcetion and
Y)(z) = §(») (2.1.16)

is the Dirac delta function and where we think of u as the permeability at any point and
think of i as the value of permeability inside the slab. Thus, with this definition and
recognizing the tangential cuinponent of the magnetic field as being proportional to the
reciprocal of the the magnetic permeability times the derivative of the electric vector with
respect to z in view of the relationship

i OF,

=u71: 0z

y

and seek a representation of the form,

. L
E.-FE = c/ TE exp(—iky | ¢ ~ 2| dZ
[

L [‘“) z aEI )
./o %f:(——(s)z-,-—z:ezp( iky | 2 — % |)d2
OE, :
+b (1 - ”N(cz))) 5 (0)exp(—ikyz)
v
-b (1 - ﬁ) %(L)exp(ikoz)emp(—ikoL) (2.1.17)
v

Theorem 2.1 If E, satisfies (2.1.17) and E, is twice continuously at points inside and
outside the slab, then (a) outside the slab E — E* has the representation

Crezp(ikgz) for : <0
E-E = (2.1.18)
Clerp(~ikgz) for = > L

where C7 as the reflection coefficient, and C'' 1s the coeflicient defining the transmitted
rediation (¢) if a function E, that 1 differentiable inside and outside the slab satisfies the
integral equation, then E, is continuous on the entire real line, and furthermore, if H — H'
w8 determined from (2.1.17) via the relationshap

~1

H-H - [ rE crp(- ihylz ~ 3)d:
QUJ[I() Jo
Fl ‘1, ) R )
+ 2*“” / TEerpi-khy( > — 2)d:
: N B TSN,
o iy ) OE, o
iy Yo rpl ikt - 23
Bw‘/l(l Ju 1, HE el thy e
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—i L)
: / Iy (Z)aErcxp(_ikO(;}._z))df

2w/LU z Ity dz
+ i (1 #o) Z(0)erp(—ikyz)
2wpo #4(0)
b fy_ # \OE e w
" 20 (1 uy(L)) 5 (Dleapl(ikoz)eap(=ikoL) (2:1.19)

and H — H' is continuous across the boundaries of the magnetic slab. Purthermore, the

classical solutions of the integral equation (£.1.17) are solutions of Mazwell’s equations
provided that .
i

b= —— 2.1.20

ok ( )

and .
i

= - 2.1.21

©= ok (2.1.21)

Proof. Equations (2.1.20) and (2.1.21), which represent the evaluation of the parame-
ters in the integral equation (2.1.17) follows by substituting (2.1.17) into Maxwell's equa-
tions. We begin by computing the first and second partial derivatives of E, with vespect to
z from the integral equations and we then us= these expressions to show that (2.1.20) and
(2.1.21) are needed in order that Maxwell’s equations be satisfied. We find, upon breaking
up the integral from 0 to L into the integral from 0 to 2 plus the integral from z to L and
differentiating, that

0E OE‘
-6-; - E— = CTE E;,_.

o ~iko) fo rEgeap(~iko(z — 5)di+

L
o(iko) / rEqexp(~iko(5 — z)di+

(1) (1)
08 ok,

z Iy

Nz
(=1ky) b/ a )BE tko(z — 2)dz

(l) ) L X
”(5 53 —Zexp(~iko(Z ~ 2)d3

" po \ OE.,
+(—1ko)b (1 ~ “y(o)) £ (0)eap(-—-ikyz)

i=: +

+(1ko)b

_(iko)b( ;:IZOL)) ap: (L)exp(ikoz Jezp(—ikoL) (2.1.22)
(L)) o

We now take the derivative of both sides of this last equation with respect to z obtaiuing




o(~tko)? /0 CrE,eap(=iko(z ~ 7))di + (~iko)erE,

L
~ (iko)er E, + c(iko)? / rE.cap(~iko(5 — 2))d5 +

(—tk )bij-”-((.z)) 80E~¢ l5=2 +(~iko) 2b’/‘ ) (Z)BE —z-exp(—iky(z ~ £)dF +
tyl2

(3 #y (%) OF, )0Ex

—(tko )b (5) 0% =2 +(—1ko) b/ N —ezp(~iko(% — 2)d:
V\

+(—iko)?b (1 (0)) (O)e:rp( -1koz)

OF
— (ko )b (1 - ._'“P_..) z
(tko) my(L)) 0

We now make use of the fact that

(tkoz)exp(—ikoL) (2.1.23)

, L
~k3(E — E') = k3 {c/0 TEsexp(—iky | 2 — 5 | d

L M)
b/ By z)aE emp( iko | 2 ~ % |)dz
Py

+b(1 “(‘;))> O, £(0)eap(~ikoz)

- b (1 - —‘—297) 6;3 —==(L)ezp(ikoz )ezp(~ zkoL)} (2.1.24)

and substitute it into our equation for the difference between the second partial deriva-
tives of the stimulated and incident electric field vectors., Rewriting (2.1.23) to make this
substitution transparent we see that

0*r  Q'E

d:? 0z?

~ (ko)? JC_/z rEcexp(—iko(z — 7))dz
"o

L
+ (r/ rEverp(—iko(2 — z))d3
SN )OE,

0 pylz

(1) =
b/ “ L crp( —~thy(3 — z)d3

+ b

o(z — 8)d?

jl 2
OF, .
+ 4 (1 - ’—[U(%—)) "‘a“E:"'“(O)(’-IP(”ikllz)
v 2
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- b (1 flo ) (L) mp(rkoz)mp(-—ilco[/)}

py(L)
~ iky)er B, + 2(-—iko)b“1L((—)2 OB, (2.1.25)
y
Simplifying the above equation we find that
FE_ 85, ,.
922 927 = —ko(Be — B;)
(1)
— 2cikorEy - 2ikob (( )) 0F. (2.1.26)
U

We next simplify this equation by making use of the fact that the electric vector, Ei,
of the incident radiation satisfies the free space Helmholtz equation

aZEl ;
S TRE =0 (2.1.27)
Substituting this into the previous equation we find that
O*E.
522 B, =
w!)(z) BB,
- — Nk _L...__ 2.1.28
2¢ikoTE; — 2ikob MORE (2.1.28)

We now need to select ¢ and b in the above equation so tha.t the equation is identical
to equation (2.1.11) where 7 is given by

T = wiye, — wwpy o, — wiigeg

= k2 b I\“g = k'l - wzﬂoéo (2.].29)
We see that we need
— 2ikgb =1 (2.1.30)
and
2ikoc = 1 (2.1.31)

In order to define the operations we note here that, while it is true that we cannot in
general multiply distributions, certain orders of distributions can act upon spaces larger
than the infinitely differentiable functions. For example, order 0 distributions can act on
the continuous functions with compact support, and order one distributions can act on the
f differentiable functions with compact support, et cetera which will enable us to define the

product of an order 0 distribution u and a continuous function f by the rule,

(uf,¢) = (u, f¢) (2.1.32)




where ¢ is a test funetion. However, the function wf is not a general distribution, but is
a continous linear functional on the space of continous functions with compact support.
The integral equation is then derived by recognizing that in view of equation (2.1.9) that

P E,
922

— iwp{(2)H, - TE, (2.1.33)

By convolving the fundamental solution of the left side of this equation with the right
side we obtain the integral equation. Since, as we have shown ([6], [21]), every solution
of the integral equation is a solution of Maxwell's equations and the solutions of the inte-
gral equation satisfy automatically the Silver Mueller radiation conditions and tangential
components of the electric and magnetic vectors are automatically continuous across the
boundaries, the solution of the integral equation is necessarily the solution of Maxwell’s
equations. Since the solution to this electromagnetic interaction problem is unique, the
function space under consideration is the space of functions which are, along with their
derivatives, continuous up to the boundaries. When the slab is nonmagnetic, then unique-
ness may be proven in the function space (|21}, pp 69-130) consisting of all vector valued
functions ¢ such that

+ kgE, =

./n | @ |? dv +/;: | curl() |* dv < o0 (2.1.34)

3 DISCRETIZATION

To approximate the integral equations on a computer with a finite memory, we divide
the slab with which the radiation is interacting into thin wafers separated by planes whose
normals are perpendicular to the planes defining the boundaries of the slab.

3.1 PIECEWISE LINEAR APPROXIMATION

We consider approximate integral equations of the form

N z
)y /;J

j=t 7=

{AJ + B,(y ~ z;)} K(z,y)dy +
1

N 2,
Z/ BiL(z,y)dy +

1=l
F(z)B, - G(z)Bn (3.1.1)

where we suppose that the numbers 2, are defined by

0=z<n< <y << <z2y=1 (3.1.2)
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and that within the subinterval (z;_,, z,), the electric vector is approximated by
E = (Aj + Bj(z - z}))e;, (3.1.3)

where the constants A; and B; contain the exp(iwt) time dependence. We have a separate
equation for cach value of 2, At this stage there are several methods to obtain a matrix
equation from this continuum of approximate equations. One obvious method is point
matching by selecting two points (3;-1 and (y; in the subinterval [z;-1, 2;]. This gives us a
system of 2N equations in 2V unkncewns, which have the form

E(Cﬂ—wl) - Ei(C'zf—qH) =
A¢ + B Catgir = 28) = E* (Gatmg1) =

N 5
YT/ )1 {4+ Bily = )} K(Gue-qrr )y +
= a-
N 2
" BiL(Catqiry)dy +
j=1v%-1
F(Gat—yq41)B1 — G(C2t=q41)BnN (3.1.4)
Defining
1 j=¢ i
bGo = Yo j#e (3.1.5)

We now use the delta function notation to rewrite the previous equation to make it look
like & matrix equation. We find that

N
Y80 {A; + Bi(Car-yr — 2))
j=1
N z
- E{AJ/J K(Cu-g+1,y)dy +
: -

=1

-

&[fﬁwwﬂk@%ﬂ«w@}—

N
2 8GnBiF(Cae-gir) +
.=t
N . .
Y 61 BiC(Car-g41) = B'(Car-gs1) (3.1.6)
i=1
We now represent this last equation in the matrix form
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[ A\ E‘(¢)

B] E'(CZ)

Az E‘(CB)

Bg n E'(C-t)
T . =T¢ = . (3.1.7)

AN E'((an-1) )
\ By / \ E'((av)
We now describe the entries of the matrix T. Note that if we define
_J A4 p=0

§2j—14p = { B; p=1 (3.1.8)

that then the system of equations may be expressed more compactly in the form

N (1
> (2 T(u-1+q.2j-1+p)521'-l+p) =
j=1 \p=0

E¥(Caq41)) (3.1.9)
where qe {0,1}. If p = 0, then for each ge {0,1} we have

5
Ti2e-149,2i=14p) = b(j0) - /' l K(Gat-gs1yy)dy (3.1.10)

-
On the other hand if p = 1, then again for each ge {0,1} we have
Tat-14925-14p) =
8() (Catmqur — 2¢)
= [ K vy

- _[, L(Coe-q41,y)dy

= by F(Catmqt1)
+ 04m G (Catmgst) (3.1.11)
Thercfore, the solution of the matrix cquation (3.1.7)

T¢ = E (3.1.12)

ther gives parameters in an approximate representation of the electric vector of the induced
electromagnetic ficld.
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APPENDIX C

TECHNICAL AGENDA

MONDAY, 24 JUNE

9:00 Registration
9:50 Opening Edward W.Stuebing, Coocdinator, CRDEC
Welcome Michael A. Parker, Technical Director, CRDEC

Announcements, Deborah Clark, Administrative Host, Battelle

(A AERQOSOL DYNAMICS

A. VAPOR - PARTICLE INTERACTIONS

d | n {
10:10 M.E. Seaver (NRL), Condensation of Organic Vapors onto Evaporating Water drops
10:30 K. Leong (Argonne}, Adsorption of Heavy Alcohols onto Simulated Atmospheric Aerosols
10:50 A.K. Ray and J. L. Huckaby (Univ. of KY), Characterization of Absorbed Layers on Single Particles by

Elastic and Raman Scattering

11:20 J.R. Brock, C-W Chong, B. J. Jurcik (Univ. of TX/Austin), Formation and Growth of Particles in
Rapidly Expanding Flows

11:50 LUNCH

B. TRANSPORT AND DISPERSION OF AEROSOLS

1:15 J.R. Brock (Univ, of TX/Austin), Formation and Growth of Conductive Carbon Fibers in Corona
Discharges
1:35 T. Tsang (Univ. of KY), Second Order Closure Modeling of Dispersion of Smoke in Convective

Boundary Layers

1:55 M. Porek and J. E. Cermak (CO State Univ.}, Statistical Analysis of Concentration Fluctuations for
Plumes in Simulated ASL

2:15 H. Littman, M. H. Morgan i, and J. D. Paccione (RPI), Transport of Particulate Aerosols in Pipes

2:35 BREAK




v rawrar Y T, & WMUIVE

. AEROSOL CHARACTERIZATION METHODS

B. PHYSICAL CHARACTERIZATION - LIGHT SCATTERING AND INVERSION (Cont.)

3:15 B.P. Curry and M. R. Jones {Argonne), Single Particle Inversion Study

3:35 J. Bottiger (CRDEC), Feasibility of Direct Inversion for Small Spheres
3:55 M. Lax and P. Hu (CUNY), Semi-Binary Dacisions from Light Scattering Data
4:16 P.A. Lawless and S.V.R. Mastrangelo (Research Triangle Institute), Stochastic R.construction-A New

Data Inversion Technique

4:35 Adjourn

WEDNESDAY, 26 JUNE

Il.  AEROSOL CHARACTERIZATION METHODS

B. PHYSICAL CHARACTERIZATION - LIGHT SCATTERING AND INVERSION (Cont.)
8:30 E. Fry, G. G. Padmabandee, and C. Oh (TX A & M Univ.), Measurements of Scattering At and Near
Q° by Glass Fibers

. NONLINEAR EFFECTS
Moderator: John White

8:50 R.L. Armstrong, J-G Xie, T.E. Ruekgauer, and R.G. Pinnick (NMSU), Evaporative Instability in Pulsed
Laser-Heated Droplets

8:10 J.P. Barton and D. R, Alexander {Univ. of NB/Lincoln), Recent Progress Concerning Electromagnetic
Field Calculations for a Beam Incident Upon an Arbitrary Particle

9:30 G. Chen (Yale Univ.), S. Hill, P. Barber {Clarkson Univ.), and R. K. Chang (Yale}, Frequency Splitting
of Degenerate Spherical Cavity Modes due to Shape Distortion of Flowing Droplets

9:50 BREAK

K. Juvan, D. Lezch and R. Chang {Yale Univ.}, Phase-Modulation Broadening of Elastic Scattering due
to Intensity-Dependent index of Refraction Effects

OVERVIEW AND DISCUSSION

10:50 E.W. Stuebing (CRDEC), Cverview of Aerosol Research Program and Discussion of Directions for
Future Research in the CRDEC Aerosol Science Program

11:50 LUNCH 398
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3:30
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9:30
9:50

10:10

10:30
10:50

11:10

11:30

WEDNESDAY, 26 JUNE

A. POSTER PREVIEWS (Auditorium} (Cont.}

D. Cohoon (West Chester Univ.), Algorithms for the Deteimination of Electrornagnetic Interaction of General
Sources of Radiation with Muiti-layer Bi-anisotropic Spheres and Cylinders

D. Cohoon (West Chester Univ.), Algorithms for the Solution of Integral Equations Describing the Interaction
of Radiation with General Structures and Bodies of Revolution, including Bi-anisotropic Oblate and Prolate
Spheroids

D. Cohoon (West Chester Univ.), A Cannection Between Modes of Propagation in Anisotropic Coatings and
the Theory of Analytic Functions of Exponential Type

J.R. Brock {Univ. of TX/Austin), Finite Elements Solution to Maxwell Equation

B. POSTER SESSION (Seminar Area) (3:30-5:30)

THURSDAY, 27 JUNE
OFTICAL PROPERTIES OF AEROSOLS
Moderators: Qrazio Sindoni, Robert Frickel
D. Cohoon (West Chester Univ.), Mueller Matrix Computations for Multilayer, Magnetically Lossy,
Anisotropic Spheres
R. T. Wang (ISST), Scattering by Spheres of Narrow Size Distribution

E. Bahar, S. M. Haugland, and A. H. Carrieri (Univ. of NB/Lincoln), Muelier Matrix Elements for
Optically Thin Chemical Coating Layers Over Rough Surfaces

BREAK
A. Pluchina and D. W. Pack {Aerospace Corp), A Close Up Look at the Rainbow

S. Hill, P, Barber, D. Q. Chowdhury, M. Mazundir, and E. Khaled (Clarkson Univ.], Resonances in
Inhomogeneous Droplets

M. Kerker {Clarkson Univ.), Scattering of Evanescent Wave by a Particle on a Surface
BREAK

B. Evans and G. R. Fournier (Defence Research Establishment Valcartier}, Bridging the Gap Between
the Ravieigh and Thomson Limits for Various Convex Bodies

L.D. Cohen, A. Cohen, R. D. Haracz (Drexel Univ.), A. Ben-David (Science and Tech. Corp), and Y.
Benayahu (Soreq Nuclear Research Center), Cloud Particle Size Distribution Functions from LIDAR
Muitiple Scattering
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