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~Abstract. it is shown that the Veoronoi diagram for the Euclidean traveling salesma'n_ﬁFo'JbW ToTTT o
piecemeal quartic and hyperbolic. Previous attempts to leverage the traditional (linear) Voronoi
diagram upon the problem have failed; in particular, counterexamples have demonstrated that the
optimal tour need not traverse the Voronoi dual. In this paper, the shortest tour is treated as the union
of a set of perturbations of the convex hull, with interior cities added incrementally, one at a time. A
perturbation is defined to be the union of a new city with a subpath which connects two adjacent hull
vertices to a set (possibly nuil) of previously entered interior cities. The length cf a perturbation is
therefore equal to the sum of two variable distances, minus the sum of a set of fixed distances. This
length is called the eiliptic length of the perturbation. Beginning with the convex hulil, a single city is
randomly added to the interior, and the hull is perturbed to capture the new city in optimal fashion. For
a perturbation of a specific elliptic length, this quantity determines an ellipse symmetric about a hull
segment, with foci at the segment endpoints. Any other hull perturbation of the same length defines
another ellipse symmetric about some other hull segment. As the perturbation length is allowed to vary
continuously from zero to infinity, a set of confocal ellipses is produced about each hull segment, and
the intersection across all other such sets produces a set of quartics. For the special case in which hull
segments share an endpoint (focus), the locus is a hyperbola. Each hull segment is bounded by those
quartics for which the segment is the source of minimal perturbation length. The region of the piane
thus bounded is called the guartic Voronoi cell for that segment. There is a quartic cell corresponding to
each hull segment, and the union of all such cells forms the Voronoi diagram of the hull. Now, if a
random city is injected into the hull, and the city is observed to lie in a specific Voronoi cell, we know
that to produce the minimal tour, the city must be connected to the endpoints of the hull segment
corresponding to the cell, and in turn the endpoints of the hull segment must be disconnected. If one
maintains the proper canonical forms to alter the topology of the perturbation space when a new city is
added, the technique may be extended to accommodate multiple interior cities. The quartic Voronoi
diagram is shown to differ from the traditional Voronoi diagram in three distinct ways: it depicts
shortest tour connectivity rather than point-to-point proximity; its cell boundaries are quartic and
hyperboli. rather than linear; and the diagram is bounded by the convex hull rather than being
unbounded (although this last constraint may be relaxed to add new cities outside the hull). A naively
derived ceiling function demonstrates that an unsupervised perturbation approach is of exponential
complexity, with a scaling factor as a function of the size of the hull. By resorting to an algorithm which
exploits the canonical forms, it is shown that this bound may be diminished to O[n3]. The algorithm s
demonstrated for a database consisting of the forty-eight capitals of the contiguous United States.
Open research issues include whether the technique may be extended to accommodate a hull which
encloses an arbitrary number of cities, and whether the ceiling function may be further reduced

Statement of the Problem. The Euclidean traveling salesman probiem (ETSP) is a special case of the
general traveling salesman probiem (TSP). Given a set of cities and the associated costs between pairs of
cities, the goal of the TSP is to find the optimal tour which visits every city exactly once, except for the
start city, which is revisited at tour's end. Unitke the TSP which utilizes a general cost function to link
cities the ETSP employs the Euclidean distance between cities as the metric, and equates optimality with
shortest tour length. The objective of this research is to attempt to rigorously characterize the
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underlying geometry of ETSP tour construction, and subsequently to pursue an algorithm for an exact
solution to the problem for city databases of modest size.

Background. The traveling salesman problem has been an outstanding research issue for over a century,
and has been approached computationally since the end of the second world war [L1]. Itisimportant to
differentiate between the TSP and TSP decision; the former requests a list of cities ordered as they
appear in the optimal tour, whereas the latter seeks a yes or no answer to the question “is there a tour
of costk orless"? In 1972, it was proven that TSP decision is NP-complete [K2]; and in 1976 it was shown
that ETSP decision with discretized distance is also NP-complete [P4, G1]. The ETSP with non-discretized
distance is NP-hard in the strong sense [G1]. The failure of the ETSP to yield to known problem-solving
strstegies has caused the vast majority of researchers to abandon the search for an exact ailgorithm, and
instead strive for fast approximation techniques. Many heuristic algorithms have been developed to
date; they include: k-opt edge exchange [L3, J4], branch-and-bound [L4], simulated annealing (M1, 14],
neural networks [F1, J4), genetic algorithms [B4),; and elastic bands [D4] A preeminentresearcher inthe
field is of the opinion that for consistently high quality solutions on databases of very large scale, the
Lin-Kernighan edge exchange algorithm has few competitors [JS]. Chapters 5-7 of reference [L1]
provide valuable suggestions for evaluating the performance of some of the heuristic methods

An Historical Perspective of the Euclidean Traveling Salesman Problem and the Voronoi Diagram.

Operations research has been the historical forum for ETSP. There have been very few efforts
possessing a computational geometry flavor. In the seventies, the issue was raised about whether a ETSP
optimal tour must necessarily traverse adjacent cells of the Voronoi diagram [$2]. This conjecture has
subsequently been answered in the negative. A counterexample for a degenerate case was discovered
tn 1983 [K1], and one for the general case was skillfully crafted five years later (D3], the latter
counterexample is portrayed at Figure 1. It will be shown in this paper *hat the fundamental reason for
the difficuity in applying the traditional Voronoi diagram to ETSP is that the search space imposed by a
perturbation of Euclidean distances is non-linear (in particular, it is quartic), whereas the traditional
Voronci cell possesses linear boundaries. It will also be shown that with modifications, the traditional
Voronoi diagram may be extended to portray the optimal tour for an n-city problem, given the optimal
tour for n-1 cities.

Figure 1. The traditional Voronoi diagram, computed for the Dillencourt dataset. In the optimal tour, t4 and
t3 are connected, but their respective Voronor cells are not, which counterindicates Shamos' conjecture that
an optimal tour must traverse the Voronoi dual.
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The Euclidean Shortest Tour as a Perturbation of the Convex Hull.

In 1957, Barachet proved that there exists an optimal tour which preserves the relative order of
the points on the convex hull [B1]. This result implies that the shortest tour may be expressed as a hull
deformation produced by an excursion into the interior, to capture points which do not lie an the hull
(Figure 2). In 1977, a heuristic was developed to utilize the hull as an initial starting tour, and to attach
interior Cities based on a two step procedure [S4]. First, the sum of the distances from aninterior city to
the endpoints of an existing segment are computed, and the length of the segment subtracted; across
all existing segments, the minimal such expression associates the Gty with a oarticular segment. The
next step involves selecting a city to be inserted based on the maximal angle formed with its associated
segment. The procedure iterates until a Hamiitonian cycle is formed utilizing all interior cities. Finaily,
an arbitrating function decides if the resultant cycle is sufficiently accurate. Analysis of the method has
indicated that itis superior to some methods which do not utilize the hull [G3]. Nevertheless due to the

fact that the approach is only approximate, the tour produced is generally suboptimal, and it 1s not well
understood why the heuristic performs as it does.

a3 !

. 1
a7 !

»

—

Figure 2. What is the shortest tour connecting cities d1-d7? We know that the tour must preserve the order
of the cities lying on the the convex huil, 5o a natural way to proceed is to perturb the hull. The problem thus
reduces to finding the optimal (shortest) way to attach city d7 to a pair of adjacent hull vertices.

Terminology and Notation,

In the following discussion, we shall call any excursion into the interior from two adjacent hull
vertices a perturbation of the hull. It is important to note that a perturbation of the hull entails the
corresponding loss of the segment which connects the two adjacent hull vertices. If a hull segment is
unperturbed itis called a null perturbation. A tourisdefined to be the union of a set of perturbations in
counterclockwise order, as they appear about the hull. A convention will be adopted to represent
certain perturbation concepts: a perturbation is denoted by the letter "n ™, a tour is denoted by the
fetter "t *; the length of perturbation n. or tour t | is denoted respectively "'en n.” or "len ¢ . ", the
Euclidean distance between points p, q is denoted “d(p, g)"; the set of cities lying on the convex huli is
denoted "H"; the convex hul!l itself is denoted "t ", the number of cities in set S, also cailed the order

of 5. s deroted [ S ]. In concluding this introductory section, we formaiize the definition of a
perturbation, and prove three minor counting theorems.




Definition. Hull Perturbation. Given convex hull t 4 ordered with counterclockwise

orientation, and the set | of interior cities. A perturbation of the hull n, is an ordered
subpath my = hy U || Uhie,1; |, C I [Note that | may be the null set, in which case 11,

is a null perturbation].

Theorem. When computing the Euclidean shortest tour, the number of perturbations of
the convex hull cannot exceed the rank of the hull. Proof: By definition, a hull
perturbation is an excursion into the interior of the hull which connects two adjacent
hull vertices to a subset of the interior. Without regard to order, there are n ways to
connect n adjacent hull vertices (the first to the second; the second to the third; .., the
nth to the first), producing a set of n hull segments. Each of these segments may be the
source of a perturbation.

Theorem. If the size of the set of interior cities [ | | exceeds the size of the hull [ H ], then
the shortest Euclidean tour must contain a hull segment perturbation of order at least [ t ]
-[H] + 1. Proof: from the pigeonhole principle, since there are more interior cities
than hull segments, some hull segment must be assigned atleast[{]-[H] + 1interior

cities.

Theorem. if the size of the hull [ H ] exceeds the size of the set of inner cities [ 1], then
there must exist at least [ H - | ] hull segments which remain unperturbed when
constructing the shortest Euclidean tour. Proof: again, from the pigeonhole principle,
since there are fewer interior cities than hull segments, at least { H - | ] hull segments
must be null perturbations.

An Arbitrary Hull Enclosing a Single Interior City.

Since we know intuitively that the shortest Euclidean tour may be represented as a perturbation
of the huil, let us proceed with the simplest case by introducing a single interior city into an arbitrary
hull. itis natural to derive under what conditions a perturbation initiated from a given huil segment to
the new city results in the shortest tour, versus one initiated from another segment. If len t ; represents
the sum of the lengths of the segments which comprise the ~nnvex hull, and p 15 an arbitrary point
introduced into the hull interior, then to produce the shortest tour, one is interested in minimizing the
expresstonlenty + [d(p, h) +d(p,h.i)-d{h,h,:)]Vh € H The boundaries of equal hull
perturbation are those for which len 0, = len 0, for distinct elements h, h, € H. To formally
characterize the boundaries of equal perturbation requires that the exoressions for perturbations
initiated from two distinct hull segments be set equal to each other, and the resulting equation solved.

The Elliptic Distance of a Paint to Two Other Points.

During traveling salesman problem solving, the operation which decrements the length of a
segment from the sum of the the distances from the segment endpoints to an arbitrary point :s
sufficiently fundamental to be given a special name, which we will cail the elliptic distance.

Definition. The elliptic distance of a point p to two points q, r, denoted d.(p,q,n), is
defined to be:

de(p.q,r) = d(p.q) + d{p,r)- dlq,r) (1]
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Derivation of the Quartic Locus for the Single Interior City Problem.

Theorem. In general, the Voronoi diagram of the convex hull of the set of cities for the
guclidean traveling salesman probiem has quartic edges.

Proof: Let p be an arbitrary point on the interior of convex hull t , and let n, i, be
perturbations of two distinct hull segments such thatlenn, = lenm,.

(d(p.h) + d(p, h,y)-d(h,h 1) forsomeh € H, and
[(d(p.hy) + d(p, hj.1)-d(h, h,)]forsomeh, € H.

lenm,
len m,

Letlenn, = lenn, = k,, which represents some specific elliptic length. Thus,
de[ p:hu h|¢~1] = de[ [*} h;: hj+1] = klj [2]

Equation [2] describes two ellipses, the first with major axis aligned with the huill
segment having endpoints h;, h,,, and the second aligned with the hull segment
having endpoints h;, h, . 1. The endpoints of the hull segments are the respective foci of
the ellipses. The distances involving point p are variable, while the distances on the hull
are constant. Letusrepresent the two ellipses as follows:

x2/a2 + y2/b2 = 1 (3]
Ax2 + Bxy + Cy2 +Dx + Ey + F = 0 (4}

Equation [3] denotes one of the twa ellipses of interest after it has been rotated
and translated to be in standard form about the origin. Equation [4] represents the
second ellipse with the coefficients A, 8, C, D, and E determined in the coordinate system
of (3]. To characterize the locus of equal perturbation, we are required to
simultaneously solve [3] and (4].

Shortest Tour Criteria

g+ta = ki

utvb =k,

Two Ellipses

s+t :a+ki

utv=b+k,

Figure 3. The locus of equal perturbation between hull segments is obtained by intersecting two ellipses.
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From [3], we obtain: = +/- (b/la)VaZl-xZ (5]
Substituting the positive root foryin [4] yields

Ax2 + Bx(b/a)VaZ-xZ + C(b/a)2(a2-x2) +Dx + EV al-x2 +F=0 [6]
Factoring, and moving the radical to the right side of the equation produces
[A-(b2/a2)C|x2 + Dx + b2C + F = -(b/a)V aZ-xZ (Bx + E) (7]

Squaring both sides of (7] to clear the radical, and gathering coefficients with respective
powers of x resuits in the equation:

[AZ-(2b2AC/a2) + b3C2/a% + (b2/a2)B2] x4
+ [2AD-(2b2CD/aZ) + (2b2BE/a2)] x3
+ [ 2Ab2C + 2AF -(2b4C2/a2)-(2b2CF/a2) + b2E2/a2-b2B2 + D2)] x2
+ [2b2CD + 2DF - 2b2BE | X
+ b3C2 + 2b2CF - b2E2 + F2 = 0. {8]

QED. Thus the locus of equal perturbation for inserting a random city into the huil is
defined by a quartic equation, with coefficients expressed in terms of the parameters for
two ellipses, where the ellipses are symmetri¢ about segments formed by linking two
cities.

A Graphic Depiction of a Simple Quartic Space.

Figure 4 illustrates an example of a quartic space imposed on a four city database. The segment
containing 21 and z2 is fixed in the plane. The segment containing z3 and 24 is allowed to pivot about
z4, with z3 being rotated counterclockwise ninety degrees through an angle 8, in increments of ten
degrees. We are trying to find the locus such that a perturbation from the segment z1-z2 is equal to a
perturbation from segment z4-z3. Initiaily, when z3 is on the x-axis, the locus is a horizontal line lying
halfway between the two segments. For the sake of argument, when the angle 8 = 0,1et the locus be
the line y=k. At ten degrees, the locus lifts slightly from the horizontal and develops curvature At
about forty-five degrees, the locus develops a prominent maximum, and also mainfests two inflection
points; it visually resembles the planar curve known as the Witch of Agnesi Beyond forty-five degrees,
the locus gradually loses its smooth maximum and develops a pronounced cusp; the fact that four
distinct roots exist is now apparent. fFinally, at ninety degrees of rotation, the locus becomes a diagonal
line connecting z1 with the imtial position of z3.

Nole that a peculiar phenomenon has occurred. Although the segment containing z3 has been
allowed to rotate ninety degrees (from the liney = 0 to the line x = 0), the corresponding locus has
rotated oniy forty-five degrees (from the liney =k to theliney = -x + 2k). Therefore, the angular range
of the outputis only half that of the input. It should also be noted that realistically, the behavior which
produces the cusp does not occur, for when city z3 is rotated beyond a certain critical angle, 't is
absorbed by segment z1-z2, and the shortest tour becomes z21-23-22-z4-z1, rather than z1-z2-23-24-21
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Figure 4. A plot of a quartic locus, using 24 as a pivot, while rotating z3 counterclockwise.

Two Hull Segments Sharing an Endpoint Produce a Hyperbolic Locus.

In this section, a corollary to the theorem is proven to show that in a special case which
frequently occurs during traveling salesman problem solving, the locus of equal perturbation is
hyperbolic rather than quartic. The simplest hypothesis to maintain when inserting another city into the
hull is that the current set of perturbations will merely be extended by the new city, without radically
altering the topology. As will become apparent below, the simple extension of a perturbation is
arbitrated by an intrapath hyperbolic discriminator; the more complex operation of reasoning between
perturbations requires a quartic discriminator.

Corollary. When two hull segments share a city, the Voronoi edge is 3 semi-hyperboia

Proof: Refer to Figure 5 below Letthe endpointsof the segments be respectively h..., h,
and h,h., . Letabe the length of the hull segment connecting h. and h. . 1, and b the
length of the segment connecting h, and h..;. Let p be an arbitrary point on the locus.
Let x be the distance from h,, 1 to p, y the distance from h, to p, and z the distance from
h_;top. We proceedtoderive the locus:

de(h, h.1) = do(h, h , 1)
X+y-a=y+12z-b
x-a=12-b
x-2=a-b (9]

QED Equation (9] represents a semi-hyperbola passing through hull vertex hy, w:th foa
ath.. and h .. 1t1s bowed toward the longer of the two hull segments In the case
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when the two hull segments are of equal length, the semi-hyperbola degenerates to a
line.

il
"~

1+y-2

Il
»

2+7y-b

xtya=1z+y-b

-z =ab

—~ Semi-hyperbola

with lociat b and b i-1
i+ 1

passing through h
i

Figure 5. A hyperbolic locus results when two hull segments share an endpoint.

The Quartic Voronoi Diagram to Determine an Exact Solution to the Single Interior City Problem.

Itis clear that to develop the delimiters of equal hull perturbation, we are required to develop a
subset of the union of quartics and hyperbolas induced by the elliptic distance between pairs of hull
segments. Thissubsetiscalled the quartic Voronoi diagram of the hull, and is defined as follows:

Definition. Given convex hull t , the quartic Voronoi diagram of the hull, VorQ (t ), is
defined to be:
VorQ (v w) = {x t delx, h,,h, 1) = delx, h.h,.1) forsomeh € H,
and de(x, h,, 1) < delx, hy, ¢ 1) Yk =j}

For the seven city example introduced above, VorQ (t ) is displayed at Figure 6. City d7 is properly
contained within the quartic Voronoi cell corresponding to the segment connecting d5 and d6, implying
the segment must be perturbed to capture d7 Note that prior to introducing city d7, the existing
optimal tour s the convex hull. The Vorono: diagram consists of some edges passing through the
existing tour’s vertices (the cities on the huil), and some which do not pass through any of the cities in
the search space. In the former case, the edges are composed of hyperbolas, whereas in the latter case
the edges are pieces of quartic curves. It 1s 1mportant to keep this concept in mind, because it will be
revisited when the diagram s extended in general to accommodate a new city deposited nto an
arbitrary opumal tour space. The generalization will be seen to function in the following manner: If
the existing optimal tour is extended simply by inserting a new Gty between two cities in the tour, the
locus of equal perturbation which arbitrates the dec:sion s a semi-nyperbola; otherwise, a more
complex decision process must be invoked to reason across the perturbation space, and the locus 15 a
quartic poiynorm:al
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Figure 6 (computed quartics and hyperbolas). The quartic Voronoi diagram of the hull as a connectivity map.

The curves passing through the hull vertices are hyperbolas; whereas the others are quartics. City d7 resides

within the guartic Voronoi ceil corresponding to the segment connecting dS and d6, and therefore the

optimal connection is as shown at the right.

A Two-City-in-a-Hull Example.

We will continue in this vein by commiting to computer memory the optimal perturbation for
¢ity d7, and introducing yet another city into the perturbed space. Figure 7 depicts an instance of a
two-city-in-a-hull quartic Voronoi diagram. City d7 has been fixed, after having discovered its optimal
perturbation (d6-d7-d5) in a previous step. A new city (p) is about to be introduced. At the left, the
quartic edges demarcating optimal connectivity of p with d2, d3, dS, d6, and ¢7 are displayed, with the
globally relevant pieces highiighted Similar plots may be obtained for other pairs of vertices; for the
complete interaction between segment d5-d6 and each of the other five hull segments, please refer to
the Appendix (where d7 appears under the alias of d8). When computed across all relevant pairs, the
guartic Voronoi diagram emerges (right). As an example, if p happens to fall in the quartic cell labeled
with the descriptor "6p75”, the optimai tour must iisert p between cities d6 and d7, in the already
established perturbation dé-d7-d5. However, if p happens to fall in the cell labeted "1p6;675", two
distinct perturbations are required: the one involving pisissued from segment d1-d6; whereas the one
involving d7 isissued from segment d6-dS.

Note that in the vicinity of city d7, a single perturbation from some hull segment is sufficient to
ensure optimality However, if city p happens to reside in one of the quartic cells beyond this region, it is
necessary to perturb two hull segments to achieve optimality. Perhaps the most intriguing aspect of the
Voronor diagram as a corectivity map is that (t partitions the plane into cells which indicate precisely
how to maintain optimality when inserting an arbitrary city into the current tour. What this really
means is that one can predict how to attach a new city to an optimal tour, without specifying the
coordinates of the city ahead of time. The implications are profound, for if an efficient aigorithm can be
designed to construct (or perhaps merely reflect) the quartic diagram for arbitrarily large sets of cities, it
follows that a dynamic program:ng approach s sufficient to solve the problem exactly The
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fourth-order complexity inherent to the loci of tour constraints in large part explains why those
approaches which subscribe to Dantzig's linear simplex have to date failed to solve the problem.

Figure 7 (computed quartics and hyperbolas). The quartic Voronoi diagram for two interior cities.

Nested Hull Traversal, Qutside-in vs. Inside-out.

Since the theory is based on a perturbation of the convex huli, there is an obvious requirement
to secure an algorithm which efficiently computes the hull. It is shown in reference [K3] that in the
plane, the hull may be optimally computed in O [ n * log h ] time. With the traveling salesman probiem,
we interpret n as the total number of cities, and h as the number of cities on the convex huil. For our
implementation, we will compute the entire nested hull decomposition, sometimes called the “onion”
[E2]. The purpose of computing the onion is to gain control of the search space by attempting to insert
the cities uniformly into the hull, to limit generation of “greedy" perturbations. A greedy perturbation
occurs when by mere virtue of having probed sufficiently far into the hull, a perturbed hull segment
continues to absorb cities which rightfully belong to another perturbation. Reference [C2]
demonstrates that a planar nested hull structure may be constructed in O [ n * logn ] time. However, in
the implementation described below, we will utilize an algorithm due to Eddy [E1], with time
comp'exity O [n?], but with average run time O {n 1.

Recall that by convention we order a hull with counterclockwise orientation, smallest ordinate
first. If we label the outer hull with index 0, and label each inner hull with an ordinal number formed by
incrementing the index b, 1, itis seen that during processing, a city will be inserted based on a primary
key equal to the ordinal number of its hull, and a secondary key equal to its relative counterclockwise
position within its hull. The exception to this rule is to reject the insertion if it causes some unprocessed
city to be bypassed.

A rather startling twist to the outside-in approach is based on the fact that the quartic loci of
equal perturbation axtend both inside and outsiae a hull. |f we start with the innermost hull (the core
of the onion), in theory we should be abie to probe outward one hull at a time, maintaining optimality
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as we proceed. This technique, which we will call the inside-out approach, isin fact as valid as the other.
An experiment detailed below demonstrates that both approaches are indeed capable of producing the
optimai tour.

The Topology of Quartic Voronaoi Space, in the Context of the Shortest Tour.

In this section we develop the canonical forms required to maintain quartic incremental
optimality. Three primitive operations wiil be informally introduced, and then developed more
rigorously.

The quartic Voronoi diagram partitions the plane into cells, the boundaries of which demarcate
the locus of the shortest tour among various combinations of subtours. it is intuitively obvious that if a
newly in oduced city lies within an arbitrarily small neighborhood of an existing optimal tour, the new
tour can be formed simply hy extending the old space to the new city. This topological structure, which
we shall call hyperbolic extension space, is computationally the simplest hypothesis to be entertained
when introducing a new city. Hyperbolic extension space preserves an existing tour by extending an
existing perturbation to encompass the new city.

A marked!, different topology is manifested when an extended perturbation interplays with
another perturbation, which is located two hull segments backward (forward) to compel the issuing of a
new perturbation at the preceding (subsequent) hull segment, which is called a shunt to the left (shunt
to the right). This topology is called quartic shunt space. it addresses the issue of maintaining optimality
in a radial fashion; i.e., in a manner roughly orthogonal to the convex hull which defines the baseline
tour. An intuitive way to describe this canonical form is that it acts as a monitor of flanking behavior on
both sides of a perturbation, and cedes the flank to a neighboring hull segment when necessary to
maintain optimality.

Because of the existence of the two distinct topologies, it is necessary to maintain separate
computational hypotheses in parallel (Figure 8). An extension occurs if a new city lies in one of the
extension cells in the 'awer por ion of the diagram at the top. However, if the city lies within a Voronoi
shunt cell as indicated at the top, a transition to quartic shunt space occurs when two existing
perturbations are bridged (diagram at bottom). This not uncommon spatial phenomenon may radically
alter the global shape of the tour, and must be hypothesized every time a new city is processed, to
guarantee tour optimality.

The final topology deals with the issue of perturbation encroachment. There are instances when
a perturbation probes suffciently far into the hull that for the sake of optimality it is necessary for it to
claim cities from another perturbation. This spatial phenomenon produces the third topology which we
call quartic interchange space. Quartic interchange space consists of those Voronoi cells which indicate
that cities from one or more perturbations are to be exchanged into an extended or shunted
perturbation. Quartic interchange is invoked after hyperbolic extension and quartic shunting, which
are performed in parallel. It can be an operation of quadratic complexity, because an existing
perturbaticn may be broken into sections and nullified by the operation, with separate sections being
absorbed by separate perturbations. Quartic interchange is particularly relevant when using the
outside-in nested hull approach, because at certain moments in time perturbations from across the hul!
begin to rollide with those on the near side, and the interaction must be arbitrated to preserve
optimality.
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Primary topology:
Noo-linear
Estension Space

ARernative (hidden) togology:
Nog-ligear
Shunt Space

Figure 8. Maintaining two quartic topologies in paratlel .

Assume that after k cities have been optimally connected to the convex hull, we would like to know
under what conditions it is possible to simply extend the tour to a new city, vs. radically altering the tour
by permitting the new city to link others which are currently non-adjacent. It is obvious that if the new
city is within a small spatial neighborhood of the existing tour, optimality is preserved by simply
inserting the city into the tour between two cities. The question of which two cities is governed by a set
of hyperbolas which pass through the endpoints of the segments that connect the ordered list of cities
defining the current optimal tour. Whether or not the new city is within a suitable neighborhood of the
current tour is arbitrated by a set of quartic curves which discriminate if a shunting operationisin arder.

Hyperbolic Extension Space.

Itis a simple matter to connect a new city to an existing perturbation, if that is what s desired (it
will be seen below in the section on quartic shunting that optimality is not always preserved by simply
extending a perturbation). The city is connected to those two cities in the perturbation for which the
elliptic distance 1s minimal. In other words, an existing perturbation should be extended to a new point
if and only (f the length of the perturbation plus the elliptic length of the optimal extension to the point
is less than the corresponding sum for all other perturbations. For example, referring to Figure 9, :f a
new city is found to reside in quartic Voronor cell “jk", it must be connected to cities | and k, while at the
same time the segment joining | to k must be deleted. In this way, perturbation m3; 1s extended to
capture the new city.

There are cases when a specific perturbation requires reordering to maintain optimality:
namely, when some city 1s nearer to the city to be inserted than either of the endpoints of the best
segment found when minimizing the elliptic distance across all segments in the perturbation However,
the algorithm required to implement this operation is of linear time complexity, and does not detract
from the performance of the general extension philosophy.
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Figure 9 (estimated quartics and hyperbolas). Extending an existing perturbation is straightforward. when a
new city enters the system, it is connected to the perturbation for which the elliptic distance to a segment is
minimal, across all perturbations.

Quartic Shunt Space.

A shunt to the left is a bridging operation which connects a new city to the hull segment to the
teft of its extended perturbation, whereas a shunt to the right connects the city to the hull segment
succeeding it. The left shuntis formed by connecting the city to its nearest neighbor two perturbations
to the left, and then following the respective perturbation subpaths down to the hull vertices of the
perturbation at the left. Any cities which become detached by this process must be reconnected to the
perturbation space. The quartic shunt operator is a powerful tool, useful for merging two perturbations
of the same parity into one with opposite parity, lying between the ather two.

An example of a quartic shunt to the left is shown at Figure 10 (the data is a handcrafted
approximation of a graphic depicted on p. 224, reference [PS]. At the left side of the figure, city ¢12 has
just been introduced Hyperbolic extension space cails for a perturbation of hull segment ¢5-c4,
indicated by the dotted lines. However, quartic shunt space calls for a shunt to be formed between ¢12
and c16, which is the nearest neighbor two hull segments to the left of ¢12's extended perturbation.
The endpoints of the shunt are followed down from ¢12 and ¢16 respectively to ¢5 ard ¢6. City c13,
which is left dangling by the shunt operatian, is optimally reattached to the perturbation space by
connecting it to segment c6-¢7.
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Figure 10. A guartic snunt to the left, using the Preparata and Shamos dataset.
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Quartic Interchange Space.

Quartic interchange space dictates when a new city's perturbation, whether it be an extension
or shunt, has encroached sufficiently far into the hull to encompass cities which earlier were sptimaily
installed in some other perturbation. Every time a new city 1s processed, 1t must be hypothesized that
the extending perturbation may now have encroached deep enough :nto the hull to begin influencing
perturbations on the ather side. While at some time in the past it may have been legitimate to have
constructed a cross-huil perturbation to maintain optimality, it may now be time to partially or
completely "undo” the perturbation by swapping some of its cities to the near side of the hull.

Quartic interchiange is iterative. The currently extended perturbation is compared to all other
perturbations in the space. If an exchange of cities is warranted, it is permitted to occur, and the revised
perturbation space is subjected to interchange once again. This action is repeated until no
improvement is obtained.

The General Voronoi Diagram for the Euclidean Traveling Salesman Problem.

Earlier, we proved that the Voronoi diagram of the convex hull has quartic edges, but possesses
hyperbolic edges between adjoining hull segments. For the general case, this concept may be extended.
The generalized Voronoi diagram partitions the plane into three types of cells: hyperbolic extension
cells; quartic shunt cells; and quartic interchange cells. Before the kth city is introduced, one computes
the Voronoi diagram for the set of previously introduced k-1 cities. As in the convex hull case,
computation must once again resort to an elliptic distance comparison, except now three different types
of tour topologies must be hypothesized, rather than the single hypothesis entertained by introducing a
single city into the hull. The space is once again quartic, because to obtain the boundaries of equal
perturbation to the kth city, two variable distances are added, and the sum of a set of fixed distances
(the length of a specific hypothesized subpath) is subtracted Rather than reasoning with perturbed
segments on the hull, one must reason with tangible segments which are part of an existing tour,
hypothesized segments which form shunts between perturbations, and hypothesized segments which
form interchange links with other perturbations. To formalize, the quartic Voronoi diagram indicated
by the optimal tour for k-1 cities, denoted VorQ( t (.- ), 15 a function y of five arguments:

VorQluag) = wlt e, ExtH(t .- ), Shunt (t (1), ShuntR(t .1 )}, Inter(t (.1)]

where:
T = the optimal tour for k-1 cities;
ExtH(tv .r) . the hyperbolic extension space ‘nduced by v .+
Shunt{,(t(:) = the left guartic shunt spaceinduced by ¢ , .-
ShuntR(t ¢.1) = the right quartic shunt space induced by t .
Inter{c 1) - the quartic interchange space induced by t .

The Principie of Quartic Incremental Optimality.

it 1s clear we are proceeding with a strategy akin to dynamic programming. Namely, when
adding a new city to the interior, we attach the city to an existing optimal tour in a way indicated by the
quartic Vorono! diagram computed just prior to the city's introduction  “ormaily, the shortest tour t
for k cities s a function A of two arguments:
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Tk = A (feky, e ) VorQ(t 1) ) k=[H]+1.. .n;

where:
Tk = the optimal tour containing k cities;
(ciy, Ci,) = the coordinates of the kth city to be introduced;
T k-1 = the optimal tour containing k-1 cities;
VorQ(ti.s) = the quartic Voronoi diagram prescribed by k-1 cities;
[H] = the order of the convex hull H;
n = the total number of cities to be processed.

Unique vs. Multiple Numbers of Distinct Optimal Tours as a Function of the Quartic Space.

Proper containment within a quartic Voronoi cell guarantees a unique tour. in nondegenerate
cases, there can be no more than three unique tours because quartic Voronoi edges converge in groups
of three just as linear Voronoi edges do If a newly introduced city is situated at a Voronoi junction (a
point where three quartics come together), three optimal tours exist; whereas if the city lies on a quartic
but not on a junction, two optimal tours exist. In the degenera“e case when cities are equispaced in the
plane, there may be more tours than in the nondegenerate case. For example, a hull consisting of a
regular polygon containing k sides produces k optimal tours if the introduced city lies at the center of
the polygon, because the center is at the intersection of k Voronoi edges (degenerate hyperbolas). As a
point of interest, it can be seen that if one allows the number of vertices of a regular polygon to
approach infinity, so does the number of optimal tours connecting the hull to the center. However, in
this case, the limiting form of the polygon is a circle, and a paradox arises, because the Euclidean
distance between adjacent hull vertices approaches zero as the number of distinct optimal tours rises to
infinity.

Future Work on A Proof of the Admissibility of A. .
Mathematical induction will be used in an attempt to show that A is admissable. For the case of
inserting a single city into the hull (i.e., k = 1), the shortest tour is trivially depicted by VorQ (t ), 50 the
initial step of the inductive proof is satisfied. What remains to be shown is that the sequencing of the
operations of hyperbolic extension, quartic shunting, and quartic interchange preserves optimality.

Summary of the Generalization of the Voronoi Diagram to ETSP.

During the first decade of the century, Voronoi's intention was to develop a mathematical
structure which could be used to rapidly associate a query point with the nearest point contained within
a known two-dimensional constellation of points [V2]. In decades of subsequent work, the
dimensionality constraint has been relaxed, as well as the specification that both the query object and
known objects be points [P5, £2]. This paper has focused on an exact solution to the Euclidean traveling
salesman problem, and consequently has introduced a new distance metric, known as the elliptic
distance, used to compute the distance of a floating query point from two fixed points. The limiting
form of this metric, when intersected with that from another perturbed segment, induces a quartic
structure on the Voranoi diagram. This non-linear search space permits a feasibie testbed arena for the
proriem which the traditional Voronoi diagram cannot provide

Ddlencourt’s nondegenerate counterexample [D3] to Shamos' conjecture that the shortest tour
must traverse the Vorono:r dual is shown at the left of Figure 11. At the right 15 the quartic Voronos




diagram, which depicts connectivity of the three interior cities to the convex hull. All the curves
indicated are hyperbolas, except the short one piotted between segment t1-t7 and segment t2-t3, which
is a quartic locus. The shortest tour s t1-12-t4-t3-t5-t7-t6-t1, but the linear Voronoi dual does not permit
t3 and t4 to be connected Note that in this instance, if one merely attaches each of the three interior
cities to the hull segment indicated by the quartic Voronoi ceil in which it resides, using the hyperbolic
extension operator, the shortest tour is obtained Of course, the actual computer run invokes “he
processes of quartic shunting and quartic interchange, but in this case the fourth-order operators fail to
improve the tour produced by hyperbolic extension space.

figure 11 (computed edges). The Voronoi diagram for the Dillencourt data (left), and its one-city-in-a-hull
quartic Voronoi diagram (right). This data is the first known nondegenerate counterexample to Shamos’
conjecture that the shortest Euclidean tour must traverse adjacent Voronoi cells. In the optimal tour, t4 is
connected to t3. it is apparent that t4 and t3 can be connected in the qurtic diagram, but not in the linear one.

The traditional Voronor diagram s a proximity map, where at a glance it can be seen which
object in a search space 1s nearest to a query point The quartic Vorono: diagram is a connectivity map,
which displays shortest tour connectivity information for the kth ¢ity, as a function of a constellat:on of
k-1 fixed cities. It has been shown that the process of intersecting an infinite set of confocal eilipses
symmetric about an existing ETSP link with those about another link produces a quartic curve  The
quartic curve, which in practice frequently reduces to a hyperbola because of the tendency of extens.on
space to dominate during nested hull traversai, serves the same role as the perpendicular bisector does
tn the traditional Voronor diagram. Thus, instead of being piecemeal linear, the extended Voronoi
structure for ETSP 1s plecemeal quartic. The final discrepancy oetween the traditional Voronoi diagram
and the quartic diagram deals with the issue of boundedness. Traditional Vorono: diagrams are
unbounded; 1 e, cells on the perimeter of the diagram are permitted to extend to infinity. However, for
the Euclidean traveling salesman problem, the quartic Voronoi diagram 1s bounded by the convex hull
of cities, so that no ceil is unbounded. Nevertheless, this is not to say that the boundedness constraint
cannot be loosened to incrementally add new cities exterior to the hull, which is the philosophy beh:nd
the nside-out nested hull approach (an example of this technique will be elaborated upon n an
example appearing below, in which the innermost huil is used as a baseline optimal tour from which to
add cities incrementally to the exterior) Table ! summarizes the three distinctions hetween ‘the
tradittoral, linear Voronor diagram, and its quartic counterpart desigred for exact solution of *he
Cuctidean traveling salesman probiem
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Traditional Usage _ Extension to ETSP

Proximity Shortest-tour
Map Connectinity Map

i Ceil Boundaries
Cell Boundaries _ .
are Piecemeal Hyperbolic
are Line Segments

and Quartic
Perimeter of Diagram Penmeter of Diagram
is Unbounded is Bounded by Convex Hull

Table 1. Extension of the Voronoi Diagram to the Euclidean Traveling Salesman Problem.

The Computational Complexity of the Hull Perturbation Approach.

a. The Time Complexity of Blind Search.

The convex hull of a set of cities serves as a control structure from which to initiate
perturbations. In this section we naively derive an expression for the time complexity of the approach, if
the tack is taken to blindly generate perturbations from hull segments in an arbitrary fashion. The
derivation hinges upon making a substitution at an opportune moment when the binomial coefficients
are manifested. It is hoped that future research will lend insight into technigues to improve the naive
bound. The number of perturbations in the optimal tour cannot exceed the size of the hull, because a
perturbation 1s defined to be an excursion into the interior from a hull segment, the number of which is
equal to the number of huil vertices. Let H be the set of cities on the convex hull, and | be the set of cities
lying on the interior of the hull. Let the rank of H be h, and the rank of | be i. If n s the total number of
cities, then n = h + i. From each hull segment, the set of interior cities may be visited zero at a time,
one at a time, two at a time, ... ori at a time. Thus the total number of computations required to find
the shortest tour is:

h*Ci +h*C, +. + h*C =
h*(C + C +. .+ C) =
h*(2') =

h*(2"") =

htz"

7
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Some observations may be made about this naive bound. Note that alarge huil is gesirable, because the

effect of the denominator is to diminish the 2" term. Although the complexity is exponential, it ;s an
order-of-magnitude improvement over a brute force approach, which is of factoriai complexity.

b. The Time Complexity of Quartically-Controlled Search, using Nested Hull Traversal.

As a city is processed during nested hull traversal, there are three general phases of compcuting
which must be performed in sequence. The first is a linear time operaton to extend the current
topology by minimizing the eiliptic distance from all perturbations to the new city, which includes
reordering a perturbation f necessary. The second phase involves two linear time operations, to
construct the left and right quartic shunt topologies, after which they are compared with the extension
topology to render the one with shortest tour length. Finally, the quartic interchange space i$
computed, which 1s a quadratic operation, because the left and right tour edges produced by the
inseruon of the new city act as windows to possibly absarb whole groups of cities from perturbations on
the far side of the hull. Therefore, to process each new city, the worst case time complexity (s quadratic.
The sum of a set of quadratic expressions in k, where k ranges from 0 to n, is a closed form expression
equalton®*(n + 1)*(2n + 1)/6.

in summary, a computer implementation of the principle of guartic incremental optimality
requires O[ n * log n ] preprocessing time to compute the nested hull decomposition, O[ n ] storage for
intercity distances and optimal partial tours, and O n3 ] time complexity to maintain incremental
optimality.

An Example: The Forty-eight Capital Problem.

The shortest tour connecting the forty-eight capitals of the contiguous United States remained
an intriguing open problem until Shen Lin obtained an optimal solution n 1985 [A1, A2]. Each
coordinate of the database represents the location of a Bell telephone office in the capital of a state
The principles of nested hull traversal and quartic incremental optimality were leveraged against this
database The nested hull structure for this data is exhibited at Figure 12. The implementation to derive
the convex hull 1s based on an iterative enhancement made by the author to an algorithm developed in
tHe seventies by W.F. Eddy [E1]
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Figure 12. The Nested Hull Structure of the Forty-erght Capitals.
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Working from the Quter Hull to the inner.

First, the problem was attacked by starting with a baseline tour consisting of the outer convex
hull, and probing inwards. Each nested hull is traversed in counterclockwise order to insert new cities,
before the next inner hull is processed. A temporal history of incremental optimality is shown in Figure
13. The inserted city and the quartic function triggered are listed below each graphic. The interesting
cases are those which are not mere hyperbolic extensions, but those which also involve quartic shunts
and exchanges. The most dramatic guartic shunt occurs in row five, column seven, when the
introduction of Springfield, illinois produces a shunt to the right. Springfield is originally processed by
the hyperbolic extension operator, which compels attachment to the perturbation which contains
Lincoin, Nebraska. However, quartic shunt space produces a shorter tour by conjoining Springfield with
a perturbation to the right containing Frankfort, Kentucky. Another interesting iteration occurs in row
four, column six, when the introduction of Cheyenne, Wyoming into hyperbolic extension space causes
the transposition of Bismarck, North Dakota with Pierre, South Dakota. Subsequenrtly, quartic
interchange causes Salt Lake City , Utah to be drawn out of its perturbation with Carson City, Nevada
Into the perturbation containing Cheyenne. The algorithm correctly terminates with Lin's optimal tour,
shown in row six, column two.

Working from the inner Hull to the Quter.

Next, the same data was processed by starting with the innermost nested hull and probing
outward. Because the quartic Voronoi edges extend through the hull vertices both on the inside and
the outside, the nested hull technique is theoretically valid in either direction. Figure 14 illustrates the
optimal subtours produced by the algorithm when starting with the innermost hull and probing
successively outward through the outer hulls. In this case, the innermost hull contains only four cities, so
the original number of perturbations is four. There is an interesting tradeoff on time complexity when
working with fewer perturbations. Again, note that the optimal tour is produced.
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Figure 14. Working outwards from the inner hull, employing quartic nested hull traversal.

Summary.

The chief result of the research to date is a proof that the underlying search space (the Voronoi
diagram) for the Euclidean traveling salesman problem is non-linear; specifically, the space is quartic
when reasoning across subtours, and hyperbolic when reasoning within subtours. These facts become
apparent when one realizes that reasoning about shortest tours is a process which inherently involves
the intersection of a pair of eliipses, the foci of which are defined by pairs of cities. Ellipse intersection is
an operation which in the worst case produces a fourth-order equation (quartic). in the special case in
which two ellipses share a focus, the locus is a semi-hyperbola. The discovery of the non-linear search
space has prompted the author to devise an algorithm which utilizes three operators to constrain
search: hyperbolic extension; quartic shunting; and quartic interchange To limit the generation of
greedy perturbations, cities are gradually inserted in an incremental fashion, according to their position
within the nested hull structure of the city database. The new knowledge about the non-linear search
space has resuited 1n an O[ n3 ] solution to optimality of a forty-eight city problem. The solution is
obtained both by beginning with the outer convex hull and probing inward, or by starting with the
innermost hutl and probing outwards.

Future Directions of the Research.

It 1s desirable to pursue a ngorous proof of the theory of quartic incremental optimality; the
proof will proceed by irduction. Also, to facilitate further empirical analysis, the theory as it currently
stands will continue to be developed and leveraged against several large databases of cities for which
the optimal tour 1s known, In an attempt to find examples which counterindicate the algorthm.
Short-term plans include runs against a 127-city database [R1}, and a 532-city bencnmark for which the
optimal solution has been developed [P1] Subsequently, the runtime for the experimenrta data will be
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plotted as a function of the number of cities, to determine if the algorithmic ceiling function is of cubic
order as predicted by the analysis.
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APPENDIX

The appendix consists of a series of five computer plots which graphically portray the quartic
(fourth-order polynomial) 'oa which exist naturally when hypothesizing a solution to the
two-city-in-a-hull Eucfidean traveling salesman problem described in the main body of text. These loci
were discovered empirically by the author during the summer of 1989; it was only later after several
months of research that a proof was obtained to demonstrate aigebraically that the lod are actually
comprised of quartic and hyperbolic curves. It may be of interest to some readers to know how the plots
were obtained. An algorithm was designed to capture the knowledge about the possible ways
(permutations) to connect city d8 and one other arbitrary city to the convex hull (d1-d2-d3-d4-d5-d6). In
the eight city example, there are six possible topologies to compare between any two hull segments:
the two ways to attach d8 and the arbitrary city to each of the two hull segments (which yields a
subtotal of four), and the two ways to attach one city to one segment and the second to the other
segment. In general, this means that there are fifteen quartic loci (the combination of six topologies
taken two at a time) among which to arbitrate when hypothesizing a shortest tour. The algorithm was
encoded in Lisp and run on an artificial intelligence computer workstation. A set of experiments were
conducted as follows: the computer mouse was moved about its pad on the desk, which caused the
cursor to move about the monitor screen displaying the constellation of cities. If the length of a specific
arrangement of cities was within one unit of that of another arrangement, a black dot was plotted to
the screen at the position of the cursor. This action provided positive feedback to the author, who
dynamically readjusted the position of the mouse to obtain "more black dots” in a continuous fashion,
until an entire quartic curve manifested itself. When a point in time was reached in which it became
obvious that no more loci were forthcoming, the session was terminated, and another pair of segments
was selected for experimentation. In the set of graphics selected for exhibit here, one of the pair 1s
always segment d6-dS. Also note that what in the text was referred to as city "d7" is here called city
"d8". Itshould also be pointed out that in exhibits A-3, A-4, and A-5, the quartic plots are supermposed
over the solution to the one-city-in-a-hull problem discussed in the text.
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Exhibit A-1. The quartic interplay between segment d6-d5
and segment d5-d4, when attaching d8 and an arbitrary city

to the convex hull to produce the shortest Euclidean tour.
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Exhibit A-2. The quartic incerplay between segment d6-d5
and segment d4-d3, when attaching d8 and an arbitrary city

to the convex hull to produce the shortest Euclidean tour.
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Exhibit A-3. The quartic interplay between segment d6-d5
and segment d3-d2, when attaching d8 and an arbitrary city
to the convex hull to produce the shortest Euclidean rour.
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Exhibit A-4. The quartic interplay between segment d6-d5
and segment d2-dl, when attaching d8 and an arbitrary city
to the convex hull to produce the shortest Euclidean tour.
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Exhibit A-5. The quartic interplay between segment d6-d5
and segment dl-d6, when attaching d8 and an arbitrary city
to the convex hull to produce the shortest Euclidean tour.
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