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OPACITY, EQUATION OF STATE, AND RADIATION TRANSPORT
MODEL FOR MODERATE DENSITY, eV-TEMPERATURE PLASMAS

I. Introduction

Historically, a principal interest of the Radiation Hydrodynamics Branch has been

dense, highly ionized plasmas. Such plasmas have temperatures in the hundred-eV to

kilovolt range, and are typically stripped to or near the K shell for atomic numbers Z

< 20, or the L shell for mid- range atomic numbers. They are of considerable interest

in such areas as fusion, weapons effects simulation, and development of x-ray lasers. The

bulk of the Branch's modeling capability has been shaped and tailored to meet the difficult

challenge of calculating the radiation hydrodynamics and interpreting the emissions of such

media.

However, interest in much cooler, more weakly ionized plasmas has heightened recently

due to their presence and application in the rapidly developing areas of plasma processing1

(including arcjets 2 ) and electromagnetic launchers.' In many instances, these media do not

possess either the symmetry or uniformity associated with higher temperature plasmas,

such as spherically compressed pellets or exploded-foil x-ray lasers. This complicates the

task of modeling. However, a compensating simplification is present in that most if not

all of these plasmas can be adequately described by the local thermodynamic equilibrium

approximation (LTE). This is almost never true of their high temperature counterparts.

In the succeeding sections we describe the individual facets of a model which provides

highly efficient calculation of charge state, internal energy, opacity, and radiation transport

for use in conjunction with hydrodynamics calculations of the evolution and properties of

such plasmas. In Sec. II, the basic atomic data and its storage are covered. In Sec. III, we

des-ibe the calculation of charge state, internal energy, and opacity in both LTE and CRE

cases as well as the comparison of results from these two assumptions. Finally, in Sec. IV,

the radiation transport model which makes uer of the stored opacities is developed.

II. Atomic Data and Storage

The fundamental quantities of interest are the charge state, internal energy per

ion, and absorption coefficient for a given element as a function of plasma temperature,

photon energy, and electron density. Electron, rather than total ion density ,is chosen as

Manuscript approved July 22. 1992.
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an independent variable because these plasmas in general may contain several different

elements which each contribute electrons. At the end of each hydrodynamic tin- , step,

mutually consistent values for electron density and temperature are determined from the

tables assuming that total internal energy (i.e., thermal plus ionization and excitation) is

conserved. The electron density is obtained as the sum of the density of each ion species

times its charge.

To calculate the plasma's average charge state and internal energy per ion, one need

not know the detailed atomic rates if the plasma is in LTE. In such a situation, where

collisional rates dominate radiative decay, the population ratio of two levels within a single

ionization stage is given by the well-known Boltzmann distribution

Ni, g

where the g's are the levels' statistical weights and Eij and T the level separation and

temperature in eV, respectively. For levels in adjacent ionization stages, their ratio is

determined by the Saha equation

N, g- 6.04 x 1021 (2)
N o  go Ne

where N, is the total electron density (cm- 3 ), 1 is the more highly ionized state, and X is

the ionization energy in eV between states 0 and 1. Since it is obvious that no atomic rates

occur in eq. (2) and eq. (1) it is reasonable to question the need for such rates for an LTE

plasma. There are two factors which argue strongly for the calculation and availability of

such rates: first, the need to know opacity, which depends on line broadening which in turn

depends in part on collisional rates, and, second, the need to check the range of validity

of the LTE approximation, which requires collisional- radiative equilibrium caiculations

using atomic rates.

Therefore, the fundamental data upon which our calculations of charge state, internal

energy, and opacity are based consists of a complete atomic table including all appropriate

radiative and collisional rates connecting the levels. Collisional rates, of course, include

ionization and 3-body and dielectronic recombination. A more complete description and

methodology is given elsewhere .4
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The structure of this table has been reformulated to provide for much greater efficiency

and economy in both the storage and retrieval of data. The vast bulk of the rate tables

produced previously by the Branch were intended for use with much hotter, more highly

ionized plasmas where stripping to the K shell was guaranteed or well within the realm of

possibility. These tables always included the bare nucleus and K shell; the bare nucleus.

itself was labelled state No. 1, the hydrogenic ground state, No. 2, etc. The computer

codes that read these tables had these labellings assumed and built into their structure.

While simple and efficient for the highly ionized plasmas, such a structure becomes quite

wasteful if one is interested in, say, copper (atomic number 29), at temperatures of 1-5 eV,

where only the first few ionization stages will be present. Reserving space for the - 25

ionization stages which will not be present clearly makes no sense.

The tabular arrangement used in the present work makes use of an "equivalent bare

nucleus" whose number of electrons is given by the integer LNGS-1. This is labelled state

No. 1. For instance, consider boron (Z=5) which we use as an example throughout

the remainder of this report. If LNGS=2, for example, the hydrogenic ground state

is equivalent to the bare nucleus, i.e., no more highly ionized states are carried in the

table. It is up to the user to check that this is consistent with the expected plasma

temperatures. There are other individual integers stored at the beginning of the table

which denote the first and last ionization stages with structure, and the most neutral

ground state. Therefore, nearly complete flexibility can be obtained with almost no wasted

storage space. Furthermore, readability of the table for use in analysis is greatly improved

by the recapitulation of the temperature before each block of rates as well as the clear

listing of the spectroscopic notation for each level in "A" format at the beginning of the

file. Within each ionization stage, the ordering of the rates and numbering of the levels is

unchanged from the old format. This new system does not require that the neutral stage

be carried, that is, an "equivalent neutral state" is allowed whose number of electrons is

denoted by the stored integer KNGS. This gives even more versatility as one can imagine

cases where expected temperatures are sufficiently high that few neutrals are present. All

results given below were obtained using a boron table constructed according to this new

and considerably more efficient scheme.
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III. Equation of State and Opacity

In the present work, we apply the term "equation of state" to mean the determination

of the mean charge state and internal energy per ion as a function of electron density

and temperature for a given element. No attempt is made to accomodate the physics of

degeneracy or continuum lowering. The charge state and internal energy are determined,

of course, by the populations of the various ground and excited levels. In calculating those

populations, we first seek to determine whether the greatly simplifying approximation of

LTE is accurate for eV plasmas. We chose boron as a test case for these plasma calculations

where only the first three ionization states are expected to be present. A temperature range

of 0.3-4.0 eV and ion densities down to 1016 cm-3 were thoroughly explored by computing

and comparing the level populations in both CRE and LTE.

The atomic model employed for boron ions includes the ground states from neutral

through hydrogenic, as well as 5 excited states for the neutral species, 9 for the singly

ionized state, and 7 in the doubly ionized Li-like stage, for a total of 26 levels. In addition

to solving for the level populations, a detailed calculation of boron's absorption coefficient

at each of the temperature-density points was performed. This opacity calculation utilized

a grid of 1400 separate energy points ranging from 1 to 50 eV. Each spectral line in this

energy range is given a Voigt absorption profile whose width is determined self-consistently

from the radiative and collisional rates affecting the upper and lower levels of the transition.

A total of 49 lines and 19 bound-free continuum transitions are included, as well as free-free

absorption using the Gaunt factors of Karzas and Latter.5

It is well known that, in order for LTE to be a good approximation, the collisional

rates connecting the levels must well exceed the strongest radiative decay rates, thus

imposing a lower limit on the electron density needed for this to occur. The dominant

scaling of collisional rate coefficients with ionic charge is Z-3 , for radiative decay, Z 4 . It

is easily seen that the scaling of the collisional to radiative rate ratio (Z- 7 ) indicates that

compensating electron densities must scale rapidly upward (Z') as the plasma temperature

and ionic charge increase, to keep LTE valid. A previous detailed investigation 6 showed

that aluminum (Z=13) ions stripped to the K shell require electron densities of 1025 for
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LTE to be a valid approximation. Working backwards, a typical singly ionized species

would need an electron density of only - 1, 1017 cm- 3 for LTE to be valid.

The present results are consistent with this estimate. For boron ion densities above

101 7 cm- 3 (electron density is of the same order), no significant differences between LTE

and CRE populations were found. Only for the lowest ion density (101 Cm-3 ) did serious

differences appear. For instance, at 4 eV, at this density, the LTE approximation predicts

that 97% of the boron ions will be in the He-like stage, whereas CRE yields 73%. A

few of the excited state populations differ by an order of magnitude. Both the detailed

nature of the opacity calculation and the effect of the ORE vs. LTE assumptions are

illustrated in Figs. 1 and 2, where one notes that differences in absorption coefficient

are minimal, but they become more pronounced at higher energies. Only at energies

greater than 20 eV, where a 4 eV Planckian emits just 24% of its energy, do the continuum

absorption coefficients differ .ppreciably. Given the demonstrated wide applicability of the

LTE approximation for these eV-temperature plasmas, we have adopted this assumption

in obtaining the results described below. At this date, comprehensive tables of the mean

charge and internal energy per ion have been established for helium, boron, and aluminum

using the LTE assumption.

In general, the plasma radiation hydrodynamics calculations also require a radiation

transport model to provide local radiative heating (or cooling) rates within the plasma as

well as heat loads on the surfaces of interest. The transport calculation itself is covered

in the next section. All radiation transport algorithms, however, need an absorption

coefficient (opacity) to calculate both emissivity and attenuation as a function of energy.

Clearly, the direct use of all 1400 absorption coefficients from the fundamental energy

grid (Figs. 1 and 2) would provide optimum accuracy, but it would also be prohibitively

expensive. Use of a single mean opacity for the entire spectrum represents the other

extreme; cheap but very poor results would generally be obtained. The usual solution,and

the one also adopted in the present work, is a compromise in which the absorption

coefficient is averaged over 10-100 energy bins for use by a transport calculation. The

critical question is: which type of mean coefficient should be used?

Two varieties of mean absorption coefficient are in general use, the Rosseland and
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Planck means, both described, for example, in Mihalas' textbook. 7 The Rosseland mean

is the reciprocal of the weighted mean of the reciprocal of the absorption coefficient. The

weighting factor is the temperature derivative of the Planck function. The Planck mean

is the simple mean of the absorption coefficient weighted by the Planck function itself.

As discussed in Ref. 7, the Rosseland mean gives optimum results when used with the

diffusion approximation, which in turn works only for optically thick media. Since many

of the plasmas of interest do not meet this criterion of large optical depth, the Rosseland

mean is not an appropriate choice for the present scheme. The Planck mean absorption

coefficient between energies Eo and E1 is given by

k, f;:, kEBE(T)dE=P (3)
f;E Bj(T)dE

where in eq. (3), kU is the monochromatic absorption coefficient, and B the Planck function.

Note that in LTE, the numerator of the above expression is the exact emission coefficient

integrated between E0 and El. This allows recovery of the exact optically thin result and

extremely accurate cooling rates. Furthermore, if k. is stored, this emission coefficient

is obtainable if an accurate algorithm for obtaining the integral of the Planck function

between two energies is available. Fortunately, a very useful rational approximation for

this integral was developed by Thachere and has been adopted in the present work. The

Planck mean also gives the correct absorption in the optically thick limit (see Ref. 7, p.41,

and Sec. IV B), and is therefore the most suitable mean opacity for use in the transport

calculation. The Planck mean opacity is generally higher than the Rosseland. This is

not surprising, since the Rosseland mean is a harmonic mean, weighting the low-opacity

spectral regions, and the Planck is a direct mean. Fig. 3 illustrates the differences between

Planck and Rosseland means for the same boron plasma conditions of Figs. 1 and 2. The

spectrum from 1-50 eV has been divided into 16 energy bins each of approximately 3 eV

width. Note also that in regions where spectral lines are few, the Planck and Rosseland

means are nearly equal.

As a practical matter to accomodate multimaterial hydrodynamics and zonal

variations in density and abundance, the opacity is stored as the base 10 logarithm of

the cross section per ion in cm 2 , for each of the 16 bins. The interval in electron density
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is 100.2, in temperature, 100"1. A portion of the actual opacity table which is read by the

transport routine is shown in Fig. 4.

IV. Radiation Transport

In its present realization, the radiation transport model is set up to calculate the

volumetric cooling and wall loadings in a 2-D cylindrical medium where the radiative

source function varies with z, the axial coordinate, as well as the radius r. There are two

facets to such a calculation: (1) calculation of the specific intensity along a ray whose

source function and optical depth are specified, and (2) arrangement and angle integration

of the rays. These are now discussed in turn.

A. Solving the intensity along a ray

The specific intensity viewed along a ray at each grid point is given by the so-called

formal solution to the transfer equation. Consider a given viewing point (called optical

depth 7-=0, for simplicity). Viewed in the direction of the next optical depth point r7, the

specific intensity at r=0 is

10 = Ie-"' + j B(,)e-"d-r. (4)

In eq. (4), 1, is the intensity incident at T1 and B(r) is the Planck function-the LTE source

function. It is understood that this intensity applies to a specific energy, for which the

subscript is suppressed for clarity. Let B0 be the Planck function at r=U, B, that at r1 . If

we assume linear variation of B(T) between these points then B(r) = a + brr where a = B0

and b = (BI-Bo) .This linear form for B(Tr), substituted into eq. (4), yields for the intensity
1*i

1o = a, + b + e-" (I, - a- b- b-,l). (5)

Therefore, beginning at the far end of the ray, the intensity at any grid point may be

obtained by considering each adjacent pair of points, and solving for 10 according to eq. (5).

10 then becomes the incident intensity (i.e., I1) for the next pair of grid points, and the

process continues until the near end of the ray is reached. This technique is amenable

to very efficient programming, and can obviously be followed along either direction for a
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given ray. In the initial realization of the model, the incident intensity at the ends of each

ray is set to 0, i.e., the walls are assumed not to radiate and also have zero source function.

We remind the reader that the optical depth is calculated using the stored Planck mean

cross sections, using bilinear interpolation in temperature and electron density. The source

function in each energy bin is obtained by using Thacher'ss efficient rational approximation.

to the integral of the Planck function.

B. Optically thin and thick limits

Eq. (5) may be used to derive the optically thin and thick limits obtained in the

present approximate scheme, verifying their correctness. Let T1 now be the optical depth

to the surface of the medium, measured from a given interior point. If there is no incident

external radiation, I, =0, and eq. (5) becomes

Io = (a + b)(1 - e-") - &T, e-" (6)

Clearly, in the limit that T1 =0, I0=0 as expected, and its angular mean J, also=0. The

net radiative cooling is given by a sum over the energy bins, of emission minus absorption,

viz.

CR = 47r Z(jE - kpEJE). (7)
bins

In eq. (7), jE and JE are the emission coefficient and angular mean intensity integrated over

the energy bin E. In the thin limit, JE =0, therefore, the cooling rate is jst 47r -bin0 jE-

But jE in LTE exactly equals kpEBE, and since the Planck mean opacity kpE and bin-

integrated Planck function are in the first case stored, and in the latter case readily

obtainable, the present algorithm yields the correct emission term for any LTE plasma,

and therefore the exact cooling in the optically thin limit.

In the optically thick limit, eq. (6) is easily seen to yield a single angle specific intensity

of Io = a + b = B 0 + (BI-Bo) --+ B0 as Tr, -- oo. Therefore, as expected, the angular mean

intensity will approach the Planck function at each energy where the optical depth is large.

As shown above, the emission portion of the net cooling is given correctly by the present

technique. The absorption term in the optically thick limit where JE = BE becomes
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41r Y•i,. -kpE BE, which is exactly equal to the emission term, showing that, as expected,

the net radiative cooling approaches 0 as all locally emitted radiation is locally absorbed.

C. Ray arrangement in cylindrical geometry

The initial objective in the use of the model described above is to calculate plasma

cooling rates and the thermal radiative loading on the sides of a cylindrical medium whose

properties vary with both z and r. In general, this requires a full two-dimensional treatment

employing hundreds, perhaps thousands, of rays to fully capture all spatial variabilities

of the radiation field. This may well be prohibitive when used in conjunction with

hydrodynamics codes; therefore, the geometrical arrangement described below necessarily

represents what is believed to be an optimal compromise between realism P.nd efficiency.

The cylinder is divided into a number of axial zones, not n, :essarily of the same

length. Fig. 5 shows a case of four zones. A ray is traced along the central axis, and

the specific intensity along this ray is calculated at each end of the cylinder, and also in

both directions at the midpoints of each axial zone. The radiative flux at each end of

the cylinder is obtained by multiplying the specific intensity at each end of the ray by 7r,

as if the radiation field were spatially isotropic. In addition to this central ray, rays are

traced from the midpoint of each axial zone at r=0 to the midpoint along the wall of each

zone, including the same zone, as illustrated in Fig. 5. Note in Fig. 5, only the rays

emanating from zone 2 are shown for clarity. Therefore, solving the specific intensity along
each of these rays provides multiangle intensity information at the axial midpoint at the

radial center of each zone. The angle-averaged intensity for each energy bin is computed,
which in turn allows calculation of the radiative heating term by multiplying by the local

absorption coefficient and integrating over energy. Subtracting this heating factor from

the cooling rate gives the net radiative heating or cooling for the zone.

At the midpoint of each axial zone along the cylinder wall, we also have multiangle
intensity information since a ray has been traced there from the midpoint of each other
zone as well as the local zone. The local radiative flux in an energy bin is then given by

F =I I(10pdc (8)
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where t& is the cosine f *be angle the ray makes with the perpendicular to the radius, and

the integral extends over the 27r ster. of the hemisphere. Integrating this flux over energy

then gives the local radiative heat flux to the cylinder wall.
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FIG. 5. Ray tracing scheme for quasi-two-dimensional cylindrical radiation transport
model. For clarity, only the rays emanating from cell 2 are shown.
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