Test and Evaluation Report
of the Catalyst Research Oxygen Monitor
Model Miniox III

By

James E. Bruckart (Project Officer)
Martin Quattlebaum (Project Officer)
Joseph R. Licina (Project Officer)

Biodynamics Research Division

and

Bill Olding (UES)

July 1992

Approved for public release; distribution unlimited.

United States Army Aeromedical Research Laboratory
Fort Rucker, Alabama 36362-5292
Notice

Qualified requesters

Qualified requesters may obtain copies from the Defense Technical Information Center (DTIC), Cameron Station, Alexandria, Virginia 22314. Orders will be expedited if placed through the librarian or other person designated to request documents from DTIC.

Change of address

Organizations receiving reports from the U.S. Army Aeromedical Research Laboratory on automatic mailing lists should confirm correct address when corresponding about laboratory reports.

Disposition

Destroy this document when it is no longer needed. Do not return it to the originator.

Disclaimer

The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other official documentation. Citation of trade names in this report does not constitute an official Department of the Army endorsement or approval of the use of such commercial items.

Reviewed:

ROBERT W. WEIEN
MAJ, MC, SFS
Director, Biodynamics
Research Division

Released for publication:

ROGER W. WILEY, O.D., Ph.D.
Chairman, Scientific Review Committee

DAVID H. CARNEY
Colonel, MC, SFS
Commanding
The Catalyst Research Oxygen Monitor, Model Miniox III, was tested for electromagnetic interference/compatibility in the UH-60A helicopter under the U.S. Army Program for Testing and Evaluation of Equipment for Aeromedical Operations. The tests were conducted using current military and industrial standards and procedures for electromagnetic interference/compatibility and human factors. The Catalyst Research Oxygen Monitor, Model Miniox III, was found to be compatible with U.S. Army MEDEVAC UH-60 Black Hawk.
3.3 Criteria, significant problems, and suggested improvements 3-35
3.4 References . 3-38
3.5 Abbreviations . 3-39
3.6 List of manufacturers. 3-41
3.7 Distribution list . 3-42
Table of contents

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. EXECUTIVE DIGEST</td>
<td></td>
</tr>
<tr>
<td>1.1 Test objectives</td>
<td>1-1</td>
</tr>
<tr>
<td>1.2 Testing authority</td>
<td>1-2</td>
</tr>
<tr>
<td>1.3 Scope</td>
<td>1-2</td>
</tr>
<tr>
<td>1.4 Material description</td>
<td>1-3</td>
</tr>
<tr>
<td>1.5 Summary</td>
<td>1-3</td>
</tr>
<tr>
<td>1.6 Conclusion</td>
<td>1-4</td>
</tr>
<tr>
<td>2. SUBTESTS</td>
<td></td>
</tr>
<tr>
<td>2.1 Initial inspection</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2 Battery life evaluation</td>
<td>2-1</td>
</tr>
<tr>
<td>2.3 Electrical safety evaluation</td>
<td>2-2</td>
</tr>
<tr>
<td>2.4 Human factors evaluation</td>
<td>2-2</td>
</tr>
<tr>
<td>2.5 Altitude (low pressure) test</td>
<td>2-3</td>
</tr>
<tr>
<td>2.6 Vibration test</td>
<td>2-4</td>
</tr>
<tr>
<td>2.7 High temperature test</td>
<td>2-5</td>
</tr>
<tr>
<td>2.8 Low temperature test</td>
<td>2-7</td>
</tr>
<tr>
<td>2.9 Humidity test</td>
<td>2-8</td>
</tr>
<tr>
<td>2.10 Electromagnetic characteristics test</td>
<td>2-9</td>
</tr>
<tr>
<td>2.11 In-flight human factors evaluation</td>
<td>2-11</td>
</tr>
<tr>
<td>2.12 In-flight EMI/EMC characteristics test</td>
<td>2-12</td>
</tr>
<tr>
<td>3. SUPPORTING DOCUMENTATION</td>
<td></td>
</tr>
<tr>
<td>3.1 Detailed test information</td>
<td>3-1</td>
</tr>
<tr>
<td>3.2 Test data</td>
<td>3-2</td>
</tr>
</tbody>
</table>
Section I. Executive digest

The Army program for Test and Evaluation of Aeromedical Equipment uses existing military standards (MIL-STD) and collective professional expertise to test and evaluate selected medical equipment proposed for use aboard Army aircraft. Equipment meeting these standards ensures the safety of the crew, patients, and aircraft by eliminating risks due to: (1) Interference by the medical equipment with aircraft systems/subsystems operation, (2) the aircraft system's interference with the operation of the medical equipment, (3) the medical equipment's susceptibility to environmental exposure, or (4) physical and/or functional incompatibility while in use on board selected rotary-wing aircraft. This program tests both developmental and nondevelopmental (off the shelf) medical equipment destined for use aboard Army medical evacuation (MEDEVAC) aircraft.

1.1 TEST OBJECTIVES

1.1.1 To determine if the medical equipment is complete and operational per the manufacturer's operating instructions.

1.1.2 To ensure the electrical safety of the medical equipment.

1.1.3 To ensure the equipment will function as designed throughout the rated battery operation time.

1.1.4 To ensure the safety of the operator, the patient, and the aircrew.

1.1.5 To assess design considerations which could potentially contribute to an operator error.

1.1.6 To determine if the medical equipment can function as designed in a low pressure environment.

1.1.7 To determine the ability of the medical equipment to withstand the vibrational stresses expected in a rotary-wing flight environment without degradation or malfunction.

1.1.8 To determine the ability of the medical equipment to be stored and operated in a high temperature environment.

1.1.9 To determine the ability of the medical equipment to be stored and operated in a low temperature environment.

1.1.10 To determine the ability of the medical equipment to operate satisfactorily for short periods during exposure to high humidity conditions.
1.1.11 To assess the levels of electromagnetic emissions produced by the medical equipment within selected frequency ranges.

1.1.12 To assess the minimum electromagnetic susceptibility levels of the medical equipment within selected frequency ranges.

1.1.13 To assess the physical and/or functional compatibility of the medical equipment while in use on board the aircraft.

1.1.14 To assess the electromagnetic interference (EMI) and electromagnetic compatibility (EMC) characteristics of the medical equipment with the host aircraft and its installed systems.

1.2 TESTING AUTHORITY

1.3 SCOPE

1.3.1 This test was conducted at the United States Army Aeromedical Research Laboratory (USAARL), Cairns Army Airfield (CAAF), and designated test flight areas in and around Fort Rucker, Alabama.

1.3.2 The USAARL UH-60A aircraft, serial number 88-26069, with subsystems delineated in paragraph 3.2.2, was configured with the Catalyst Research Oxygen Monitor*, model Miniox III and used as the test aircraft for the in-flight evaluation. The in-flight evaluation required 2.3 flight hours.

1.3.3 Laboratory testing was accomplished at USAARL using government furnished equipment (GFE) by Universal Energy Systems, Inc. (UES), under contract No. DAMD 17-86-C-6215.

1.3.4 Prior to flight testing, the following tests were accomplished: Acceptance inspection, equipment training, electromagnetic compatibility, human factors and safety, environmental compatibility, and in-flight compatibility.

1.3.5 An airworthiness release (AWR) dated 24 Feb 1992 was received from the U.S. Army Aviation Systems Command (AVSCOM) prior to the in-flight testing of the Catalyst Research Oxygen Monitor, Miniox III.

* See list of manufacturers

1-2
1.4 MATERIAL DESCRIPTION

The Catalyst Research Oxygen Monitor, Miniox III, is an oxygen monitor designed to measure the oxygen concentration in a gas sample on a continuous basis. The unit operation is controlled by a microprocessor that uses a sealed oxygen sensor mounted in the patient breathing circuit. The sensor contains potassium hydroxide electrolyte which produces an electrical current proportional to the oxygen content of the sample gas. The sensor is connected to the monitor with a detachable coiled cable. A keypad on the front panel contains membrane switches to select "READ O₂", "OFF", or "CALIBRATE." These functions are displayed on a liquid crystal display (LCD) on the front of the unit. Calibration to an oxygen sample gas requires use of the "UNLOCK" key and arrow keys on the front panel. High and low oxygen alarms are provided and may be set from 18% to 100% oxygen concentration. When an alarm condition is encountered, the unit emits an audible tone and provides a flashing red light emitting diode (LED) on the display. A "SILENT" alarm switch on the keypad allows the user to silence the alarm tone for 30 seconds. The unit is powered by a single 9 volt alkaline battery which provides 2000 hours of operation.

1.5 SUMMARY

1.5.1 Laboratory testing

1.5.1.1 Battery Life Evaluation: Verification of the manufacturer's specified 2000 hours battery life was not performed. The battery in the Miniox III was not replaced during the period the unit was operated for testing. Actual battery life is expected to exceed the typical aeromedical evacuation mission duration.

1.5.1.2 Electrical Safety Evaluation: Electrical safety evaluation of the power lines and patient leads was not applicable since the unit uses only an internal 9 volt battery. No unsafe qualities were found in the Catalyst Research Oxygen Monitor, Miniox III. The limits for currents and resistances are specified in TB-38-750-2, April 1987 and National Fire Prevention Association (NFPA) standards.

1.5.1.3 Human Factors Evaluation: The Catalyst Research Oxygen Monitor, Miniox III, was found to be satisfactory in all categories of the evaluation.

1.5.1.4 Environmental Tests: The Catalyst Research Oxygen Monitor, Miniox III can be expected to perform in a variety of environmental conditions. Its performance was found to be satisfactory in all stages of the environmental testing except the low temperature storage test. The oxygen sensor could not be
calibrated after low temperature storage and required replacement. The oxygen monitor performed properly with a new oxygen sensor. The requirements for environmental tests are established in MIL-STD-810D, Methods 500.2 (altitude), 514.3 (vibration), 501.2 (high temperature), 502.2 (low temperature), and 507.2 (humidity).

1.5.1.5 Radiated Emissions Tests (RE02): The Catalyst Research Oxygen Monitor, Miniox III may be unsatisfactory for use in certain EMI sensitive environments. Narrowband (NB) radiated emissions were detected in the test frequency ranges. Some narrowband emissions exceeded the test limits. Emission limits are set forth in MIL-STD-461A, Notice 4.

1.5.1.6 Radiated Susceptibility Test (RS03): The Catalyst Research Oxygen Monitor, Miniox III was found to be susceptible to radio frequency interference in the testing range and magnitude. Susceptibility was indicated by inaccurate numerical data, false alarm indications, and false audible tones.

1.5.1.7 Conducted Emissions Test (CE01, CE02, and CE04): Conducted emission testing is not applicable for the Catalyst Research Oxygen Monitor, Miniox III since there are no power leads.

1.5.1.8 Conducted Susceptibility Test (CS02 and CS06): Conducted susceptibility tests are not applicable to the Miniox III since there are no external power lines.

1.5.2 In-flight testing

1.5.2.1 During the in-flight human factors evaluation, the Catalyst Research Oxygen Monitor, Miniox III was found to be satisfactory in all categories of the evaluation criteria. Audio alarms could not be detected while wearing the flight ensemble due to background aircraft noise. Alarms could be detected by observing the flashing alarm LED.

1.5.2.2 The aircraft and its subsystems were not adversely affected by the operation of the Catalyst Research Oxygen Monitor, Miniox III in any of the prescribed flight test modes.

1.5.2.3 The Catalyst Research Oxygen Monitor, Miniox III was not affected by the aircraft and its subsystems during the in-flight testing.

1.6 CONCLUSION

Based on the results of laboratory and in-flight testing, the Catalyst Research Oxygen Monitor, Model Miniox III was found
to be compatible with U.S. Army MEDEVAC UH-60A Black Hawk with the subsystems listed in paragraph 3.2.2.
Section 2. Subtests

2.1 INITIAL INSPECTION

2.1.1 Objective

To determine if the Catalyst Research Oxygen Monitor, Miniox III is complete and operational for testing per the manufacturer's operating instructions.

2.1.2 Criteria

2.1.2.1 The physical inventory is conducted solely for investigation and documentation.

2.1.2.2 The Catalyst Research Oxygen Monitor, Miniox III will display consistent and accurate measurements as an acceptable performance test.

2.1.3 Test procedure

2.1.3.1 A complete physical inventory of the Catalyst Research Oxygen Monitor, Miniox III was completed per the manufacturer's equipment list.

2.1.3.2 An operational validation test of the Catalyst Research Oxygen Monitor, Miniox III was conducted per the manufacturer's operating instructions by USAARL's medical maintenance personnel.

2.1.4 Test findings

2.1.4.1 The Catalyst Research Oxygen Monitor, Miniox III was inventoried and found to be complete.

2.1.4.2 The Catalyst Research Oxygen Monitor, Miniox III operated as prescribed in the manufacturer's operating manual. Criteria met.

2.2 BATTERY LIFE EVALUATION (Laboratory)

2.2.1 Objective

To ensure the equipment will function as designed throughout the rated battery operation time.

2.2.2 Criterion

Unit will operate on battery power for the time specified by the manufacturer.
2.2.3 **Test procedure**

2.2.3.1 This test was not conducted.

2.2.4 **Test findings**

The unit operated on a single 9 volt battery for all other tests conducted in the laboratory. No test was conducted to verify the manufacturer's specified battery life of 2000 hours operation. Criterion not evaluated.

2.3 **ELECTRICAL SAFETY EVALUATION**

2.3.1 **Objective**

To ensure the electrical safety, by evaluation of case-to-ground resistance and case-to-ground current leakage, of the Catalyst Research Oxygen Monitor, Miniox III.

2.3.2 **Criterion**

The Catalyst Research Oxygen Monitor, Miniox III shall meet the standards established in TB-38-750-2 and NFPA 99 for electrical safety of medical equipment.

2.3.3 **Test procedure**

Performance in the electrical safety evaluation were made, with a Neurodyne-Dempsey model 431F electrical safety analyzer*, IAW the procedures described in Technical Bulletin (TB) Number 38-750-2. Case-to-ground resistance and various case-to-ground leakage currents are measured. Leakage currents are measured using a 10 by 20 centimeter (cm) aluminum foil sheet taped flush to the equipment case. Checks were made for safety concerns such as case integrity, breaks in power cord insulation, and connectors.

2.3.4 **Test findings**

The unit has a fully-enclosed plastic case and no power cord to allow measurement of case-to-ground resistance or leakage currents. There were no electrical safety concerns with the characteristics of the Miniox III. Criterion met.

2.4 **HUMAN FACTORS EVALUATION (Laboratory)**

2.4.1 **Objectives**

2.4.1.1 To assure the safety of the operator, the potential patient, and the aircrew.
2.4.1.2 To assess the design considerations which could potentially contribute to an operator error.

2.4.2 **Criterion**

The Catalyst Research Oxygen Monitor, Miniox III must be rated satisfactory in all major categories of the evaluation. These include visual displays, controls, maintainability, conductors, fasteners, test points, test equipment, fuses and circuit breakers, labels and coding, and safety.

2.4.3 **Test procedure**

2.4.3.1 The evaluation was conducted in a laboratory under fluorescent lighting and ambient room conditions.

2.4.3.2 The Catalyst Research Oxygen Monitor, Miniox III was operated according to prescribed instructions through its full range of functions.

2.4.4 **Test finding**

The Catalyst Research Oxygen Monitor, Miniox III was found to be satisfactory in all of the evaluation criteria. No external fuses or circuit breakers are provided. Criterion met.

2.5 **ALTITUDE (LOW PRESSURE) TEST [IAW MIL-STD-810D, METHOD 500.2]**

2.5.1 **Objective**

To determine if the Catalyst Research Oxygen Monitor, Miniox III can function as designed in a low pressure environment.

2.5.2 **Criterion**

The Catalyst Research Oxygen Monitor, Miniox III will perform as designed while exposed to an altitude equivalency of 15,000 feet above sea level.

2.5.3 **Test procedure**

2.5.3.1 A pretest performance check was conducted to ensure proper operation of the Catalyst Research Oxygen Monitor, Miniox III.

2.5.3.2 The altitude test was performed in a Tenney Engineering model 64S altitude chamber*. This test is based on MIL-STD-810D, Method 500.2. The Catalyst Research Oxygen Monitor, Miniox III was operated on the floor of the chamber. Chamber pressure was decreased to 420 mmHg (15,000 ft equivalent altitude) over a 15-
minute period, held constant for 60 minutes, then raised, at 1500
fpm, to ambient conditions (760 mmHg) over a 10-minute period.
There are no provisions for the control of temperature or humidity inside this chamber.

2.5.3.3 A posttest performance check was conducted to ensure proper operation of the Catalyst Research Oxygen Monitor, Miniox III after the exposure to low pressure.

2.5.4 Test findings

2.5.4.1 The pretest performance check met criterion 2.1.2.2.

2.5.4.2 No failures in the performance of the Catalyst Research Oxygen Monitor, Miniox III were noted before, during, or after the altitude test. Criterion met.

2.5.4.3 The posttest performance check met criterion 2.1.2.2.

2.6 VIBRATION TEST [IAW MIL-STD-810D, METHOD 514.3]

2.6.1 Objective

To determine the ability of the Catalyst Research Oxygen Monitor, Miniox III to withstand the vibrational stresses expected in a rotary-wing environment without degradation or malfunction.

2.6.2 Criterion

The Catalyst Research Oxygen Monitor, Miniox III will remain operational and be able to display consistent and accurate performance while exposed to vibrational stresses.

2.6.3 Test procedure

2.6.3.1 A pretest performance check was conducted to ensure proper operation of the Catalyst Research Oxygen Monitor, Miniox III.

2.6.3.2 The vibration test was performed using an Unholtz-Dickey model TA115-40/CSTA vibration test system*. It is a single-axis system with an electromagnetic driver unit. The test consisted of sinusoidal vibrations superimposed on random vibrations over a frequency range of 500 Hz, as shown below. These vibrations are derived from performance taken on the floor under the copilot's seat in a UH-1 helicopter traveling at 120 knots. The reference spectrum breakpoints are from MIL-STD-810D, Method 514.3; reference spectrum levels are based on field performance with a conservatism factor of 1.5. Independent tests were conducted in the X, Y, and Z axes.
Z-axis
duration: 60 minutes
broadband intensity: 0.4506 G
random vibration: initial slope: 99.00 dB/oct
 5 Hz level: 0.00006210 Gsqr/Hz
 100 Hz level: 0.0006210 Gsqr/Hz
 300 Hz level: 0.0006210 Gsqr/Hz
 500 Hz level: 0.0006210 Gsqr/Hz
final slope: -99.00 dB/oct
sinusoidal vibration: .5450 Gp at 11.25 Hz
 1.690 Gp at 22.50 Hz
 1.200 Gp at 33.75 Hz
 .0310 Gp at 45.00 Hz
 .0530 Gp at 56.25 Hz

X and Y axes
duration: 60 minutes each
broadband intensity: 0.3099 G
random vibration: initial slope: 99.00 dB/oct
 5 Hz level: 0.00002920 Gsqr/Hz
 100 Hz level: 0.0002920 Gsqr/Hz
 300 Hz level: 0.0002920 Gsqr/Hz
 500 Hz level: 0.0002920 Gsqr/Hz
final slope: -99.00 dB/oct
sinusoidal vibration: .3200 Gp at 11.25 Hz
 .0670 Gp at 22.50 Hz
 .0950 Gp at 33.75 Hz
 .0350 Gp at 45.00 Hz
 .0770 Gp at 56.25 Hz

The Catalyst Research Oxygen Monitor, Miniox III was strapped to the vibration table fixture, and its performance was evaluated before, during, and after exposure to vibration.

2.6.3.3 A posttest performance check was conducted to ensure proper operation of the Catalyst Research Oxygen Monitor, Miniox III.

2.6.4 Test findings

2.6.4.1 The pretest performance check met criterion 2.1.2.2.

2.6.4.2 No failures in the performance of the Catalyst Research Oxygen Monitor, Miniox III occurred before, during, or after exposure to vibration. Criterion met.

2.6.4.3 The posttest performance check met criterion 2.1.2.2.

2.7 HIGH TEMPERATURE TEST (IAW MIL-STD-810D, METHOD 501.2)

2.7.1 Objective
To determine the ability of the Catalyst Research Oxygen Monitor, Miniox III to be stored and operated in a high temperature environment.

2.7.2 Criteria

2.7.2.1 The Catalyst Research Oxygen Monitor, Miniox III will demonstrate consistent and accurate operation during the high temperature operation check.

2.7.2.2 The Catalyst Research Oxygen Monitor, Miniox III will demonstrate consistent and accurate operation after the high temperature storage cycle.

2.7.3 Test procedure

2.7.3.1 A pretest performance check was conducted to ensure proper operation of the Catalyst Research Oxygen Monitor, Miniox III.

2.7.3.2 The high temperature test was conducted in a Tenney Engineering Model ZWUL-10107D walk-in controlled environment chamber*. This test is based on MIL-STD-810D, Method 501.2. For the high temperature operation test, the Catalyst Research Oxygen Monitor, Miniox III was turned on and placed on the floor of the environmental chamber. The chamber temperature was raised to 49°C and the humidity was stabilized at a maximum of 20 percent relative humidity (RH) within 15 minutes. The environmental control system is capable of regulating temperature within ±2°C and humidity within ±5 percent RH. Temperature and humidity were held constant for 2 hours. At 30-minute intervals, the chamber door was opened briefly to minimize the change in chamber conditions during performance checks. After the operational test, the Catalyst Research Oxygen Monitor, Miniox III was allowed to return to ambient conditions over a 30-minute period.

2.7.3.3 A posttest performance check was conducted to ensure proper operation of the Catalyst Research Oxygen Monitor, Miniox III.

2.7.3.4 The Catalyst Research Oxygen Monitor, Miniox III was stored (not operated) at temperatures of 63°C for 1 hour, 71°C for 4 hours, then again at 63°C for 1 hour. The chamber and Catalyst Research Oxygen Monitor, Miniox III then were returned to ambient conditions over a 30-minute period.

2.7.3.5 A poststorage performance check was conducted to ensure proper performance of the Catalyst Research Oxygen Monitor, Miniox III.

2.7.4 Test findings
2.7.4.1 The pretest performance check met criterion 2.1.2.2.

2.7.4.2 No operational failures occurred during the high temperature test. Criterion met.

2.7.4.3 The posttest performance check met criterion 2.1.2.2.

2.7.4.4 The Catalyst Research Oxygen Monitor, Miniox III functioned properly after the high temperature storage test. Criterion met.

2.8 LOW TEMPERATURE TEST [IAW MIL-STD-810D, METHOD 502.2]

2.8.1 Objective

To determine the ability of the Catalyst Research Oxygen Monitor, Miniox III to be stored and operated in a low temperature environment.

2.8.2 Criteria

2.8.2.1 The Catalyst Research Oxygen Monitor, Miniox III will demonstrate consistent and accurate operation during the low temperature operation check.

2.8.2.2 The Catalyst Research Oxygen Monitor, Miniox III will demonstrate consistent and accurate operation after the low temperature storage cycle.

2.8.3 Test procedure

2.8.3.1 A pretest performance check was conducted to ensure proper operation of the Catalyst Research Oxygen Monitor, Miniox III.

2.8.3.2 The Catalyst Research Oxygen Monitor, Miniox III was placed on the floor of the environmental chamber and the temperature was lowered to 0°C within 25 minutes. The environmental control system is capable of regulating temperature within 2°C. Humidity cannot be controlled in the chamber at freezing temperatures. The temperature was held constant for 2 hours. The chamber door was opened briefly every 30 minutes to minimize the change in chamber conditions, and a performance check was conducted. The chamber temperature then was raised to ambient temperature within a 30-minute period.

2.8.3.3 A posttest performance check was conducted to ensure proper operation of the Catalyst Research Oxygen Monitor, Miniox III.
2.8.3.4 The Catalyst Research Oxygen Monitor, Miniox III was "stored" in a nonoperational mode. The Catalyst Research Oxygen Monitor, Miniox III was placed on the floor of the environmental test chamber and the temperature was lowered to -46°C for 6 hours. The chamber then was raised to ambient temperature over a 30-minute period.

2.8.3.5 A poststorage performance check was conducted to ensure proper operation of the Catalyst Research Oxygen Monitor, Miniox III.

2.8.4 Test findings

2.8.4.1 The pretest performance check met criterion 2.1.2.2.

2.8.4.2 No operational failures occurred during the low temperature test. Criterion met.

2.8.4.3 The posttest performance check met criterion 2.1.2.2.

2.8.4.4 The Catalyst Research Oxygen Monitor, Miniox III could not be calibrated after the low temperature storage test. The sensor unit functioned properly after replacement of the oxygen sensor. Criterion partially met.

2.9 HUMIDITY TEST [IAW MIL-STD-810D, METHOD 507.2]

2.9.1 Objective

To determine the ability of the Catalyst Research Oxygen Monitor, Miniox III to operate satisfactorily for short periods of time during exposure to highly humid conditions.

2.9.2 Criterion

The Catalyst Research Oxygen Monitor, Miniox III will demonstrate consistent and accurate operation while exposed to a high humidity environment.

2.9.3 Test procedure

2.9.3.1 A pretest performance check was conducted to ensure the proper operation of the Catalyst Research Oxygen Monitor, Miniox III.

2.9.3.2 The humidity test was conducted in a Tenney Engineering model ZWUL-10107D walk-in controlled environment chamber*. This test is based on MIL-STD-810D, Method 507.2. For the humidity test, the Catalyst Research Oxygen Monitor, Miniox III was placed in operation on the floor of the environmental chamber. The chamber temperature was raised to a temperature of 30°C and a
relative humidity of 95 percent within 25 minutes. Temperature and relative humidity were maintained for 4 hours. The environmental control system is capable of regulating temperature within ± 2°C and humidity within ± 5 percent RH. At 45-minute intervals the performance of the unit was checked. The chamber door was opened briefly to minimize the change in chamber conditions. The chamber and the Catalyst Research Oxygen Monitor, Miniox III were returned to ambient conditions before the posttest performance validation check was conducted.

2.9.3.3 A posttest performance check was conducted to ensure the proper operation of the Catalyst Research Oxygen Monitor, Miniox III.

2.9.4 Test findings
2.9.4.1 The pretest performance check met criterion 2.1.2.2.
2.9.4.2 No failures were noted in the Catalyst Research Oxygen Monitor, Miniox III performance checks conducted during the exposure to the high humidity environment. Criterion met.
2.9.4.3 The posttest performance check met criterion 2.1.2.2.

2.10.1 Objectives
2.10.1.1 To assess the maximum levels of radiated electromagnetic emissions produced by the Catalyst Research Oxygen Monitor, Miniox III in the 14 kHz to 12.4 GHz frequency range.
2.10.1.2 To assess the tolerances of radiated electromagnetic susceptibility of the Catalyst Research Oxygen Monitor, Miniox III within the 10 kHz to 10 GHz electric field.
2.10.1.3 To assess the maximum levels of conducted electromagnetic emissions produced by the Catalyst Research Oxygen Monitor, Miniox III in the 10 kHz to 50 MHz frequency ranges.
2.10.1.4 To assess the tolerances of conducted electromagnetic susceptibility of the Catalyst Research Oxygen Monitor, Miniox III within the range of 50 kHz to 400 MHz and power spikes.

2.10.2 Criteria
2.10.2.2 The Catalyst Research Oxygen Monitor, Miniox III will not malfunction when it is subjected to radiated emissions as specified in MIL-STD-461A, Notice 4, paragraph 6.20.

2.10.2.3 The Catalyst Research Oxygen Monitor, Miniox III will not conduct emissions in excess of the limits set forth in MIL-STD-461A, Notice 4, paragraphs 6.1 and 6.2.

2.10.2.4 The Catalyst Research Oxygen Monitor, Miniox III will not malfunction when it is subjected to conducted emissions as specified in MIL-STD-461A, Notice 4, paragraphs 6.7 and 6.10.

2.10.3 Test procedure

2.10.3.1 The radiated emissions test was performed according to MIL-STD-462, Notice 3, Method RE02. The Catalyst Research Oxygen Monitor, Miniox III was positioned on a wooden test stand inside the EMI chamber, 1 meter away from the receiving antennas. The antennas were mounted for both vertical and horizontal polarities and connected to EMI receivers. While the Catalyst Research Oxygen Monitor, Miniox III was operating, the frequency spectrum (14 kHz to 12.4 GHz) was scanned for emissions.

2.10.3.2 The radiated susceptibility test was performed according to MIL-STD-462, Notice 3, Method RS03. The Catalyst Research Oxygen Monitor, Miniox III was positioned on a wooden test stand inside the EMI chamber 1 meter away from the transmitting antennas. The antennas were mounted for both vertical and horizontal polarities and connected to radio frequency (RF) transmitters. While the Catalyst Research Oxygen Monitor, Miniox III was operating, it was monitored for faulty operation during exposures to fields of 1 V/m from 10 kHz to 2 MHz, and 5 V/m from 2 to 30 MHz, 10 V/m from 30 MHz to 2 GHz, and 5 V/m from 2 to 10 GHz.

2.10.3.3 The conducted emissions tests are performed according to MIL-STD-462, Notice 3, Methods CE02 and CE04. Conducted emissions testing of the Miniox III was not applicable since there are no power or patient leads.

2.10.3.4 The conducted susceptibility tests are performed according to MIL-STD-462, Notice 3, Method CS06 and CS02. Conducted susceptibility testing of the Miniox III was not applicable since there are no power or patient leads.

2.10.4 Test findings

2.10.4.1 During the radiated emissions test, emissions which exceeded specification limits of MIL-STD-461A, Notice 4, were detected. These included:
Frequency range

<table>
<thead>
<tr>
<th>Frequency range</th>
<th>Emission exceeding standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 MHz</td>
<td>16.4 dB (NB)</td>
</tr>
<tr>
<td>0.294 MHz</td>
<td>5.2 dB (NB)</td>
</tr>
<tr>
<td>0.497 MHz</td>
<td>7.3 dB (NB)</td>
</tr>
</tbody>
</table>

Criterion partially met.

2.10.4.2 The Catalyst Research Oxygen Monitor, Miniox III was found to be susceptible to radio frequency interference in the testing range and magnitude. These included:

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Field Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>36.8 MHz</td>
<td>2.0 V/m</td>
</tr>
<tr>
<td>67.4 MHz</td>
<td>3.76 V/m</td>
</tr>
<tr>
<td>74.2 MHz</td>
<td>1.41 V/m</td>
</tr>
<tr>
<td>77.6 MHz</td>
<td>1.86 V/m</td>
</tr>
<tr>
<td>111.6 MHz</td>
<td>2.24 V/m</td>
</tr>
</tbody>
</table>

Failure was indicated by inaccurate numerical data, false alarm indications, and false audible alarms. Criterion partially met.

2.10.4.3 Not applicable.

2.10.4.4 Not applicable.

2.11 IN-FLIGHT HUMAN FACTORS EVALUATION

2.11.1 Objective

To assess the physical and/or functional compatibility of the Catalyst Research Oxygen Monitor, Miniox III while in use onboard the aircraft.

2.11.2 Criterion

The flight surgeon will be able to operate the Catalyst Research Oxygen Monitor, Miniox III without physical or functional restrictions aboard the aircraft. Major areas of concern include: Proper operation, visual displays, controls, maintainability, conductors, fasteners, test points, test equipment, fuses and circuit breakers, labels and coding, and safety.

2.11.3 Test procedure

2.11.3.1 A human factors evaluation was performed IAW MIL-STD-1472D, AAMI Human factors engineering guidelines, and UL-544 to ensure the compatibility of the Catalyst Research Oxygen Monitor, Miniox III and the in-flight environment. The flight surgeon conducted the test wearing a flight suit, flight gloves, and an SPH-4B flight helmet. An evaluation of the compatibility with
the nuclear, biological, and chemical (NBC) protective equipment was not conducted. Due to restrictions of the AWR, testing was conducted during daylight hours only.

2.11.3.2 The Catalyst Research Oxygen Monitor, Miniox III was held by the flight surgeon. The Catalyst Research Oxygen Monitor, Miniox III was tested in all flight scenarios required by the In-Flight Test Operations Procedures (ITOP) (refer to section 3.2).

2.11.4 Test findings

During the in-flight human factors evaluation, the Catalyst Research Oxygen Monitor, Miniox III was found to be satisfactory in all categories of the evaluation criteria. Audible alarms could not be detected in the high ambient noise environment. Visual alarms could be detected by the presence of the flashing red LED. The display LCD could be read at most light angles without difficulty. Criterion met.

2.12 IN-FLIGHT EMI/EMC CHARACTERISTICS

2.12.1 Objective

To assess the EMI/EMC characteristics of the Catalyst Research Oxygen Monitor, Miniox III with the host aircraft and its installed systems.

2.12.2 Criteria

2.12.2.1 The Catalyst Research Oxygen Monitor, Miniox III will not radiate EMI to disrupt or interfere with other equipment or systems aboard the aircraft.

2.12.2.2 The aircraft will not radiate EMI to disrupt or interfere with the Catalyst Research Oxygen Monitor, Miniox III’s operation.

2.12.3 Test procedure

A qualitative EMI/EMC assessment was performed with both the Catalyst Research Oxygen Monitor, Miniox III and the aircraft operating as source and victim. The Catalyst Research Oxygen Monitor, Miniox III and applicable aircraft instruments and systems were monitored for unusual operation, readings, surges, or power anomalies for each checklist item.

2-12
2.12.4 Test findings

2.12.4.1 There were no adverse instances of EMI/EMC noted with the Catalyst Research Oxygen Monitor, Miniox III acting as either the source or victim. Criterion met.

2.12.4.2 There were no adverse instances of EMI/EMC noted with the aircraft acting as either the source or victim. Criterion met.
Section 3. Supporting documentation

3.1 DETAILED TEST INFORMATION

3.1.1 General information

3.1.1.1 Catalyst Research Oxygen Monitor, Miniox III testing is not considered a major action significantly affecting the quality of the human environment and, therefore, qualifies for categorical exclusion A-28, appendix A, AR 200-1.

3.1.1.2 A safety pilot will be designated for each flight. Flight operations will be conducted IAW the aircraft operator's manual, appropriate aircrew training manuals, and test item technical data.

3.1.2 Material description

3.1.2.1 The Catalyst Research Oxygen Monitor, Miniox III is an oxygen monitor designed to measure the oxygen concentration in a gas sample on a continuous basis. The unit operation is controlled by a microprocessor that uses a sealed oxygen sensor mounted in the patient breathing circuit. The sensor contains potassium hydroxide electrolyte which produces an electrical current proportional to the oxygen content of the sample gas. The sensor is connected to the monitor with a detachable coiled cable. A keypad on the front panel contains membrane switches to select "READ O₂", "OFF", or "CALIBRATE." These functions are displayed on a liquid crystal display (LCD) on the front of the unit. Calibration to an oxygen sample gas requires use of the "UNLOCK" key and arrow keys on the front panel. High and low oxygen alarms are provided and may be set from 18% to 100% oxygen concentration. When an alarm condition is encountered, the unit emits an audible tone and provides a flashing red light emitting diode (LED) on the display. A "SILENT" alarm switch on the keypad allows the user to silence the alarm tone for 30 seconds. The unit is powered by a single 9 volt alkaline battery which provides 2000 hours of operation.

3.1.2.2 Dimensions: 6 x 3.5 x 1.3 in

3.1.2.3 Weight: 13.4 oz (379 gm)

3.1.2.4 Power requirements: One 9-volt alkaline battery.
3.2 TEST DATA

3.2.1 Photographic description
Aircraft equipment list

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Nomenclature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Receiver radio -- R-1496A/ARN-89 (automatic direction finder)</td>
</tr>
<tr>
<td>2</td>
<td>Displacement gyro -- CN-1314/A</td>
</tr>
<tr>
<td>3</td>
<td>Gyro directional -- CN-998/ASN-43</td>
</tr>
<tr>
<td>4</td>
<td>Signal data converter -- CV-3338/ASN-128</td>
</tr>
<tr>
<td>5</td>
<td>Receiver -- R-2139/ARN-123 (VOR/LOC/MB/GS)</td>
</tr>
<tr>
<td>6</td>
<td>Command instrument system processor -- 70600-01038-101</td>
</tr>
<tr>
<td>7</td>
<td>SAS amplifier -- 70901-02908-104 (flight control stability augmentation system)</td>
</tr>
<tr>
<td>8</td>
<td>Rate gyro -- TRU-2A/A</td>
</tr>
<tr>
<td>9</td>
<td>Amplifier, impedance -- AM-4859A/ARN-89</td>
</tr>
<tr>
<td>10</td>
<td>Cargo hook -- FE-7590-145</td>
</tr>
<tr>
<td>11</td>
<td>Receiver, radar -- RT-1193/ASN-128 (doppler navigation receiver)</td>
</tr>
<tr>
<td>12</td>
<td>Barometric altimeter -- AAU-31/A-1</td>
</tr>
<tr>
<td>13</td>
<td>Barometric altimeter -- AAU-32A</td>
</tr>
<tr>
<td>14</td>
<td>Receiver/transmitter -- RT-1300/ARC-186 (VHF-AM and/or FM radio)</td>
</tr>
<tr>
<td>15</td>
<td>UHF-AM radio set -- RT-1518/ARC-164</td>
</tr>
<tr>
<td>16</td>
<td>Interphone control -- C6533/ARC (aircraft intercom control)</td>
</tr>
<tr>
<td>17</td>
<td>Receiver/transmitter -- RT-1115D/APN-209 (radar altimeter)</td>
</tr>
<tr>
<td>18</td>
<td>Indicator altimeter -- ID-1917C/APN-209 (radar altimeter)</td>
</tr>
<tr>
<td>19</td>
<td>Control radio set -- C-7392A/ARN-89 (automatic direction finder)</td>
</tr>
<tr>
<td>20</td>
<td>Comparator signal data -- CM-482/ARC-186 (comparator for ARC-186)</td>
</tr>
<tr>
<td>21</td>
<td>Receiver/transmitter -- RT-1296A/APX-100 (transponder with IFF)</td>
</tr>
<tr>
<td>22</td>
<td>Computer display unit -- CP-1252/ASN-128 (doppler navigation system)</td>
</tr>
<tr>
<td>23</td>
<td>Compass set controller -- C-8021E/ASN75</td>
</tr>
<tr>
<td>24</td>
<td>Magnetic compass - standby -- MS-17983-4</td>
</tr>
</tbody>
</table>
3.2.3 **In-flight test data card**

DATA CARD FORMAT

GUIDELINE FOR DATA COLLECTION

IN-FLIGHT SUITABILITY TEST OF MEDICAL ITEMS

1. **Installation/removal.**

<table>
<thead>
<tr>
<th>Suitable</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

a. Weight and balance (DD Form 365-4, Clearance Form F). X

b. Space/area allocation.

(1) Operational requirements. X

(2) Storage requirements. X

c. Interface connections (safe, positive, secure). X

d. Installation/removal (expedient/easily achieved). X

e. Mounting/final configuration (functional/stable). X

2. **Operations and performance.**

<table>
<thead>
<tr>
<th>Suitable</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

a. Manufacturer's operating instruction. X

b. Medical item operation before aircraft run-up. X

c. System interface during aircraft engine run-up and medical item operation (EMI switchology checklist).

(1) Aircraft voltage output. X
(2) Flight control function (UH-60).

(3) Stabilator function (UH-60).

(4) Radio communication vs. medical item operation.

<table>
<thead>
<tr>
<th></th>
<th>Suitable</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>(a)</td>
<td>FM</td>
<td>X</td>
</tr>
<tr>
<td>(b)</td>
<td>UHF</td>
<td>X</td>
</tr>
<tr>
<td>(c)</td>
<td>VHF</td>
<td>X</td>
</tr>
</tbody>
</table>

(5) Navigation equipment vs. medical item operation.

<table>
<thead>
<tr>
<th></th>
<th>Suitable</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>(a)</td>
<td>Transponder</td>
<td>X</td>
</tr>
<tr>
<td>(b)</td>
<td>ADF</td>
<td>X</td>
</tr>
<tr>
<td>(c)</td>
<td>VOR</td>
<td>X</td>
</tr>
<tr>
<td>(d)</td>
<td>Doppler</td>
<td>X</td>
</tr>
</tbody>
</table>

(6) Radar altimeter operation vs. medical item operation.

<table>
<thead>
<tr>
<th></th>
<th>Suitable</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

3-5
(3) **Navigation equipment operation vs. medical item operation.**

<table>
<thead>
<tr>
<th></th>
<th>Suitable</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

(a) Transponder
(b) ADF
(c) VOR
(d) Doppler

(e) **Flight mission profile vs. medical item operation (EMI switchology checklist).**

(1) **Straight and level (1000 ft MSL for 20 minutes).**

(a) **Compatibility of flight mode and medical item operation.**

(b) **Radio communication vs. medical item operation.**

 a. FM
 b. UHF
 c. VHF

(2) **NOE (20 minutes).**

Compatibility of flight mode and medical item operation.

(3) **FM homing (10 minutes).**

(4) **Doppler navigation vs. medical item operation.**

 (a) Initialize function.
 (b) Fix function.
 (c) Update function.

3-6
(5) VOR navigation for 7000 ft MSL for 20 minutes) vs. medical item operation.

(6) ILS approach vs. medical item operation.

f. Medical item operation after engine shutdown (external power source).

g. Restrictions to the medical item's use (i.e., electrical connectors).

h. Deviations from the laboratory test results.

(1) Electrical/ electronic.

(2) Mechanical environment.

(3) Human factors (user interface, controls, markings, lighting, egress).

(4) Safety.

3. Deviations from the in-flight test protocol.

a. The VOR navigation portion of the in-flight test conducted at 2000 feet MSL due to air traffic control clearance.
3.2.4 EMI switchology checklist

EMI SWITCHOLOGY CHECKLIST UH-60 AIRCRAFT

IN-FLIGHT SUITABILITY OF MEDICAL ITEMS

<table>
<thead>
<tr>
<th>ENG INSTRUMENTS/CDU</th>
<th>No EMI</th>
<th>EMI Affected</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel quantity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel indicator test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSN oil temperature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSN oil pressure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#1 engine oil temperature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2 engine oil temperature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#1 engine oil pressure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2 engine oil pressure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#1 TGT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2 TGT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#1 Ng speed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2 Ng speed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDU digits on/off</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDU instruments dim</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ENG INSTRUMENTS/PLT PDU</th>
<th>No EMI</th>
<th>EMI Affected</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1 engine RPM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2 engine RPM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotor RPM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#1 torque</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2 torque</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ENG INSTRUMENTS/COPLET PDU</th>
<th>No EMI</th>
<th>EMI Affected</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1 engine RPM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2 engine RPM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotor RPM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#1 torque</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2 torque</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENG CONTROLS</td>
<td>No EMI</td>
<td>EMI Affected</td>
<td>Explanation</td>
</tr>
<tr>
<td>--------------</td>
<td>--------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>#1 overspeed</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2 overspeed</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPM switch</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#1 engine anti-ice</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2 engine anti-ice</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#1 inlet anti-ice</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2 inlet anti-ice</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RADIO EQUIPMENT</th>
<th>No EMI</th>
<th>EMI Affected</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICS, C-6533 ARC</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VHF-FM, ARC-186/115</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VHF-AM, ARC-186/115</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UHF-AM, ARC-164(V)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crypto, KY-28</td>
<td>Not installed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radio retransmissions PLN</td>
<td>Not installed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transponder, APX-100(V)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KIT-1A/TSEC IFF computer</td>
<td>Not keyed with code</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MISSION EQUIPMENT</th>
<th>No EMI</th>
<th>EMI Affected</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>RWR, APR-39(V)</td>
<td>Not installed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IR CM, ALQ-144</td>
<td>Not installed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chaff dispenser, M-130</td>
<td>Not installed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cargo hook system</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HYDRAULIC CONTROL SYSTEM</th>
<th>No EMI</th>
<th>EMI Affected</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backup hydraulic pump</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Servo off 1st stage/PLT</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Servo off 2nd stage/PLT</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Servo off 1st stage/COPLT</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Servo off 2nd stage/COPLT</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydraulic leak test</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tail servo</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boost servos</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FUEL SYSTEM</td>
<td>No EMI Affect</td>
<td>EMI Affected</td>
<td>Explanation</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Fuel pump switch</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel boost pump #1</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel boost pump #2</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel cont panel ESSS</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WARNING SYSTEM</th>
<th>No EMI Affect</th>
<th>EMI Affected</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low rotor RPM</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Master caution</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caution advisory</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fire warning</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFCS</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stabilator</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#1 engine out</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2 engine out</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAVIGATION INSTRUMENTS</th>
<th>No EMI Affect</th>
<th>EMI Affected</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADF</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetic compass</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONUS NAV, ARN-123</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doppler, ASN-128</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gyro mag compass (PLT)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gyro mag compass (COPLT)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compass cont panel, ASN-75</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSI</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FLIGHT INSTRUMENTS</th>
<th>No EMI Affect</th>
<th>EMI Affected</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radar altimeter</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stabilator pos indicator</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSI</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIS mode select</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAS 1</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAS 2</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPS</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trim</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Go-around enable</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclic trim release</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclic stick trim</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALR encoder</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3-10
<table>
<thead>
<tr>
<th>Flight Instruments (Cont)</th>
<th>No EMI Affect</th>
<th>EMI Affected Grid</th>
<th>Flt</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSI/VSI Mode Select (PLT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DPLR</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOR/ILS</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BACK CRS</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM HOME</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TURN RATE</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRS HDG</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VERT GYRO</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRG 2</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSI/VSI Mode Select (COPLT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DPLR</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOR/ILS</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BACK CRS</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM HOME</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TURN RATE</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRS HDG</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VERT GYRO</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRG 2</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miscellaneous Equipment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blade deice</td>
<td>Not tested</td>
<td></td>
<td></td>
<td>Ambient temperature was out of test limits.</td>
</tr>
<tr>
<td>Windshield anti-ice</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pitot heat</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vent blower</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Windshield wiper</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heater</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APU</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generator #1</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generator #2</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generator APU</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air source heat start</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tail wheel lock</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gyro erect</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3-11
<table>
<thead>
<tr>
<th>LIGHTING</th>
<th>No EMI Affect</th>
<th>EMI Affected</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cockpit utility</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cockpit flood</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cabin dome</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Search light</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Search light control</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landing light</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flt instr lights (PLT)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flt instr lights (COPLT)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonflight instr lights</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Console lights, upper</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Console lights, lower</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position lights</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formation lights</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anticollision lights</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NVG lighting</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.2.5 Battery life evaluation

Battery Life Evaluation Report Form

Nomenclature: Oxygen Monitor
Manufacturer: Catalyst Research
Model number: Miniox III
Serial number: 3-07716
Military item number: None

Options installed: None

Manufacturer battery life specification: Up to 2000 hours.

Overall performance: Not evaluated

Performance: The battery on the unit secured for laboratory testing was not replaced during testing. The estimated time in service was 40 hours operation.

Comments: None
3.2.6 **Electrical safety test**

Electrical Safety Test Report Form

Nomenclature: Oxygen Monitor
Manufacturer: Catalyst Research
Model number: Miniox III
Serial number: 3-07716
Military item number: None

Options installed: None

Date of test: N/A

Performance: Not evaluated.

Grounding conductor resistance (milliohms): N/A

Leakage current - Case to ground (microamperes):

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>unit off, grounded, normal polarity</td>
<td>N/A</td>
</tr>
<tr>
<td>unit off, ungrounded, normal polarity</td>
<td>N/A</td>
</tr>
<tr>
<td>unit off, ungrounded, reverse polarity</td>
<td>N/A</td>
</tr>
<tr>
<td>unit on, grounded, normal polarity</td>
<td>N/A</td>
</tr>
<tr>
<td>unit on, ungrounded, normal polarity</td>
<td>N/A</td>
</tr>
<tr>
<td>unit on, ungrounded, reverse polarity</td>
<td>N/A</td>
</tr>
</tbody>
</table>

MAXIMUM LIMITS:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ground resistance (milliohms)</td>
<td>150</td>
</tr>
<tr>
<td>current (microamperes)</td>
<td></td>
</tr>
<tr>
<td>current (grounded, type A unit)</td>
<td>10</td>
</tr>
<tr>
<td>current (ungrounded, type A unit)</td>
<td>100</td>
</tr>
<tr>
<td>current (grounded, type B unit)</td>
<td>50</td>
</tr>
<tr>
<td>current (ungrounded, type B unit)</td>
<td>500</td>
</tr>
</tbody>
</table>

Comments on item setup or checks: None

Comments on test run (including interruptions): None

Comments on other data: No power leads or patient leads and plastic case prevent completion of this test. No unsafe electrical conditions noted in connectors or case design.
3.2.7 Human factors evaluation

Human Factors Evaluation Report Form

Nomenclature: Oxygen Monitor
Manufacturer: Catalyst Research
Model number: Miniox III
Serial number: 3-07716
Military item number: None

Options installed: None

Date of test: 10 Jan 90

Item configuration during test: Item prepared for operation.

Checklist for HFE

RESULTS

VISUAL DISPLAYS: Satisfactory

display type, format, content
location of displays
indicator lights
scalar displays
color coding
legends and labels
cathode ray tubes
counters
flags, go-no-go, center-null indicators

Comments: None

CONTROLS: Satisfactory

location
characteristics of controls
labeling
control - display relationships

Comments: None
TIME REQUIRED TO PREPARE FOR OPERATION (list in comment)

Comments: approximately 2 minutes.

MAINTAINABILITY: Satisfactory

component location
component characteristics
rests and stands
covers, cases, access doors
handles
lubrication
component mounting
cord storage provisions
external accessibility
internal accessibility
list special tools required
list realistic inspection requirements
list realistic inspection intervals

Comments: None

CONDUCTORS: Satisfactory

binding and securing
length
protection
routing
conductor coding
fabrication
connectors

Comments: None

FASTENERS: Satisfactory

access through inspection panel covers
enclosure fasteners
device mounting bolts and fasteners

Comments: None

3-16
TEST POINTS: Satisfactory

- general
- location and mounting
- test point labeling and coding

Comments: None

TEST EQUIPMENT: Satisfactory

- general
- equipment self-test
- indicators (list in comments)
- controls
- positive indication of proper operation

Comments: None

FUSES AND CIRCUIT BREAKERS: Satisfactory

- external accessibility
- easy replacement or reset by operator

Comments: None

LABELS AND CODING: Satisfactory

- placed above controls and displays
- near or on the items they identify
- not obscured by other equipment components
- describe the function of the items they identify
- readable from normal operating distance
- conspicuous placards adjacent to hazardous items

Comments: None

SAFETY: Satisfactory

- manual materials
- fire and explosive protection
- operator protection from mechanical hazards
- patient protection from mechanical hazards
- electrical protection (operator and patient)

Comments: None
3.2.8 Altitude Test

Altitude Test
Report Form

Nomenclature: Oxygen Monitor
Manufacturer: Catalyst Research
Model number: Miniox III
Serial number: 3-07716
Military item number: None

Options installed: None

Date of test: 11 Dec 89

Item configuration during test: Item sitting on chamber floor.

Performance test criteria: Accurate maintenance of selected temperature.

Ambient conditions outside chamber:

<table>
<thead>
<tr>
<th>Temperature</th>
<th>20°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humidity</td>
<td>87% RH</td>
</tr>
<tr>
<td>Barometric pressure</td>
<td>1 atm</td>
</tr>
</tbody>
</table>

PRETEST DATA

Pretest performance check:
Item functional (based on performance test criteria): Yes

Installation of item in test facility:
list connections to power None
list connections to simulators None
list connections to dummy loads None
list unconnected terminals None

IN-TEST DATA

Time of test start: 1335

POSTTEST DATA

Posttest performance check (complete check of item and accessories):

3-18
Time of test end : 1450

Item functional (based on performance test criteria): Yes

Deviation from pretest: None

Comments on item setup or checks: None

Comments on test run (including interruptions): None

Comments on other data: None
3.2.9 Vibration test

Vibration Test
Report Form

Nomenclature: Oxygen Monitor
Manufacturer: Catalyst Research
Model number: Miniox III
Serial number: 3-07716
Military item number: None

Options installed: None

Date of test: 12 Dec 89

Item configuration during test: Item strapped down on vibration table fixture.

Performance test criteria: Accurate display of oxygen concentration.

PRETEST DATA

Pretest performance check:
Item functional (based on performance test criteria): Yes

Installation of item in test facility:
list connections to power None
list connections to simulators None
list connections to dummy loads None
list unconnected terminals None

Ambient conditions

Temperature 19°C
Humidity 61% RH
Barometric pressure 1 atm

IN-TEST DATA

Data and performance checks during test:

Time at first check:
X: 0930 Y: 1235 Z: 1210

Item functional (based on performance test criteria): Yes
Deviation from pretest: None

3-20
Time at second check:
X: 0940 Y: 1245 Z: 1220

Item functional (based on performance test criteria): Yes
Deviation from pretest: None

POSTTEST DATA

Time at test end:
X: 1020 Y: 1325 Z: 1300

Posttest performance check (complete check of item and accessories):

Item functional (based on performance test criteria): Yes
Item intact: Yes
Deviation from pretest: None
Comments on item setup or checks: None
Comments on test run (including interruptions): None
Comments on other data: Test times for the three axes are on different days.
3.2.10 High temperature test

High Temperature Test
(Equipment Operating)
Report Form

Nomenclature: Oxygen Monitor
Manufacturer: Catalyst Research
Model number: Miniox III
Serial number: 3-07716
Military item number: None

Options installed: None

Date of test: 28 Dec 89

Item configuration during test: Unit was sitting on chamber floor.

Performance test criteria: Accurate display of oxygen concentration.

Ambient conditions outside chamber:
Temperature 25°C
Humidity 50% RH
Barometric pressure 1 atm

PRETEST DATA

Pretest performance check:
Item functional (based on performance test criteria): Yes

Installation of item in test facility:
list connections to power None
list connections to simulators None
list connections to dummy loads None
list unconnected terminals None
distance from north wall (meters) 0.25
distance from south wall (meters) 0.41
distance from east wall (meters) 0.79
distance from west wall (meters) 1.75
distance from ceiling (meters) 1.1
distance from floor (meters) 0.7

IN-TEST DATA

Time of test start: 1130
Performance checks during test:

First check:

Time: 1200
Temperature: 49°C
Humidity: 15% RH
Barometric pressure: 1 atm
Item functional (based on performance test criteria): Yes, all ok
Deviation from pretest: None

Second check:

Time: 1230
Temperature: 49°C
Humidity: 15% RH
Barometric pressure: 1 atm
Item functional (based on performance test criteria): Yes, all ok
Deviation from pretest: None

Third check:

Time: 1300
Temperature: 49°C
Humidity: 15% RH
Barometric pressure: 1 atm
Item functional (based on performance test criteria): Yes, all ok
Deviation from pretest: None

POSTTEST DATA

Posttest performance check:
(complete check of item and accessories)

Time of test end: 1330
Item functional (based on performance test criteria): Yes, all ok
Deviation from pretest: None

Comments on item setup or checks: None
Comments on test run (including interruptions): None
Comments on other data: None

3-23
3.2.11 **High temperature storage test**

High Temperature Test
(Equipment in Storage)
Report Form

Nomenclature: Oxygen Monitor
Manufacturer: Catalyst Research
Model number: Miniox III
Serial number: 3-07716
Military item number: None

Options installed: None

Date of test: 2 Jan 90

Item configuration during test: Sitting on chamber floor, in storage, not operating.

Performance test criteria: Consistent and accurate display of oxygen concentration.

Ambient conditions outside chamber:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>24C</td>
</tr>
<tr>
<td>Humidity</td>
<td>28% RH</td>
</tr>
<tr>
<td>Barometric pressure</td>
<td>1 atm</td>
</tr>
</tbody>
</table>

PRETEST DATA

Pretest performance check:

- **Item functional (based on performance test criteria):** Yes

Installation of item in test facility:

<table>
<thead>
<tr>
<th>Connection</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>list connections to power</td>
<td>None</td>
</tr>
<tr>
<td>list connections to simulators</td>
<td>None</td>
</tr>
<tr>
<td>list connections to dummy loads</td>
<td>None</td>
</tr>
<tr>
<td>list unconnected terminals</td>
<td>None</td>
</tr>
<tr>
<td>distance from north wall (meters)</td>
<td>0.25</td>
</tr>
<tr>
<td>distance from south wall (meters)</td>
<td>0.41</td>
</tr>
<tr>
<td>distance from east wall (meters)</td>
<td>0.79</td>
</tr>
<tr>
<td>distance from west wall (meters)</td>
<td>1.75</td>
</tr>
<tr>
<td>distance from ceiling (meters)</td>
<td>1.1</td>
</tr>
<tr>
<td>distance from floor (meters)</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Time of test start: 0820
POSTTEST DATA

Posttest performance check:
 (complete check of item and accessories)

 Time of test end: 1530
 Item functional (based on performance test criteria): Yes
 Deviation from pretest: None

Comments on item setup or checks:
The unit was allowed to cool for 1 hour at ambient conditions before the posttest performance check was completed.

Comments on test run (including interruptions): None

Comments on other data: None
3.2.12 **Low temperature test**

Low Temperature Test
(Equipment Operating)
Report Form

Nomenclature: Oxygen Monitor
Manufacturer: Catalyst Research
Model number: Miniox III
Serial number: 3-07716
Military item number: None
Options installed: None
Date of test: 29 Dec 89
Item configuration during test: Sitting on chamber floor.
Performance test criteria: Consistent and accurate display of oxygen concentration.

Ambient conditions outside chamber:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>23°C</td>
</tr>
<tr>
<td>Humidity</td>
<td>42% RH</td>
</tr>
<tr>
<td>Barometric pressure</td>
<td>1 atm</td>
</tr>
</tbody>
</table>

PRETEST DATA

Pretest performance check:
Item functional (based on performance test criteria): Pass

Installation of item in test facility:
list connections to power: None
list connections to simulators: None
list connections to dummy loads: None
list unconnected terminals: None

distance from north wall (meters): 0.25
distance from south wall (meters): 0.41
distance from east wall (meters): 0.79
distance from west wall (meters): 1.75
distance from ceiling (meters): 1.1
distance from floor (meters): 0.7

Time of test start: 0815

Performance checks during test:

3-26
First check:

Time: 0845
Temperature: 0°C
Humidity: NA
Barometric pressure: 1 atm
Item functional (based on performance test criteria): Yes
Deviation from pretest: None

Second check:

Time: 0915
Temperature: 0°C
Humidity: NA
Barometric pressure: 1 atm
Item functional (based on performance test criteria): Yes
Deviation from pretest: None

Third check:

Time: 0945
Temperature: 0°C
Humidity: NA
Barometric pressure: 1 atm
Item functional (based on performance test criteria): Yes
Deviation from pretest: None

POSTTEST DATA

Posttest performance check:
(complete check of item and accessories)

Time of test end: 1030
Item functional (based on performance test criteria): Yes
Deviation from pretest: None

Comments on item setup or checks: None
Comments on test run (including interruptions): None
Comments on other data: None
3.2.13 **Low temperature storage test**

Low Temperature Test
(Equipment in Storage)
Report Form

Nomenclature: Oxygen Monitor
Manufacturer: Catalyst Research
Model number: Miniox III
Serial number: 3-07716
Military item number: None

Options installed: None

Date of test: 3 Jan 90

Item configuration during test: Sitting on chamber floor, not operating, in storage.

Performance test criteria: Consistent and accurate display of oxygen concentration.

Ambient conditions outside chamber:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>24°C</td>
</tr>
<tr>
<td>Humidity</td>
<td>44% RH</td>
</tr>
<tr>
<td>Barometric pressure</td>
<td>1 atm</td>
</tr>
</tbody>
</table>

PRETEST DATA

Pretest performance check:

Item functional (based on performance test criteria): Yes

Installation of item in test facility:

<table>
<thead>
<tr>
<th>Connection</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>list connections to power</td>
<td></td>
</tr>
<tr>
<td>list connections to simulators</td>
<td></td>
</tr>
<tr>
<td>list connections to dummy loads</td>
<td></td>
</tr>
<tr>
<td>list unconnected terminals</td>
<td></td>
</tr>
<tr>
<td>distance from north wall (meters)</td>
<td>0.25</td>
</tr>
<tr>
<td>distance from south wall (meters)</td>
<td>0.41</td>
</tr>
<tr>
<td>distance from east wall (meters)</td>
<td>0.79</td>
</tr>
<tr>
<td>distance from west wall (meters)</td>
<td>1.75</td>
</tr>
<tr>
<td>distance from ceiling (meters)</td>
<td>1.1</td>
</tr>
<tr>
<td>distance from floor (meters)</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Time of test start: 0850
Midtest time: 1230
Midtest temperature: -46°C
POSTTEST DATA

Posttest performance check:
(complete check of item and accessories)

Time of test end: 1600
Item functional (based on performance test criteria): No
Deviation from pretest: Cannot calibrate sensor.

Comments on item setup or checks: None

Comments on test run (including interruptions): None

Comments on other data: Oxygen sensor damaged and required replacement. Remainder of unit worked properly with new sensor in place.
3.2.14 **Humidity test**

Humidity Test
Report Form

Nomenclature: Oxygen Monitor
Manufacturer: Catalyst Research
Model number: Miniox III
Serial number: 3-07716
Military item number: None

Options installed: None

Date of test: 29 Dec 89

Item configuration during test: The unit was sitting on the chamber floor, operating on ac power.

Performance test criteria: Consistent and accurate display of oxygen concentration.

Ambient conditions outside chamber:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>25°C</td>
</tr>
<tr>
<td>Humidity</td>
<td>58% RH</td>
</tr>
<tr>
<td>Barometric pressure</td>
<td>1 atm</td>
</tr>
</tbody>
</table>

PRETEST DATA

Pretest performance check:
Item functional (based on performance test criteria): Yes

Installation of item in test facility:
- list connections to power: None
- list connections to simulators: None
- list connections to dummy loads: None
- list unconnected terminals: None
- distance from north wall (meters): 0.25
- distance from south wall (meters): 0.41
- distance from east wall (meters): 0.79
- distance from west wall (meters): 1.75
- distance from ceiling (meters): 1.1
- distance from floor (meters): 0.7

IN-TEST DATA

Time of test start: 1120
Performance checks during test:

First check:

<table>
<thead>
<tr>
<th>Time</th>
<th>1230</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>29.5°C</td>
</tr>
<tr>
<td>Humidity</td>
<td>95% RH</td>
</tr>
<tr>
<td>Barometric pressure</td>
<td>1 atm</td>
</tr>
<tr>
<td>Item functional (based on performance test criteria):</td>
<td>Yes</td>
</tr>
<tr>
<td>Deviation from pretest:</td>
<td>None</td>
</tr>
</tbody>
</table>

Second check:

<table>
<thead>
<tr>
<th>Time</th>
<th>1315</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>29.5°C</td>
</tr>
<tr>
<td>Humidity</td>
<td>95% RH</td>
</tr>
<tr>
<td>Barometric pressure</td>
<td>1 atm</td>
</tr>
<tr>
<td>Item functional (based on performance test criteria):</td>
<td>Yes</td>
</tr>
<tr>
<td>Deviation from pretest:</td>
<td>None</td>
</tr>
</tbody>
</table>

Third check:

<table>
<thead>
<tr>
<th>Time</th>
<th>1400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>29.5°C</td>
</tr>
<tr>
<td>Humidity</td>
<td>95% RH</td>
</tr>
<tr>
<td>Barometric pressure</td>
<td>1 atm</td>
</tr>
<tr>
<td>Item functional (based on performance test criteria):</td>
<td>Yes</td>
</tr>
<tr>
<td>Deviation from pretest:</td>
<td>None</td>
</tr>
</tbody>
</table>

Fourth check:

<table>
<thead>
<tr>
<th>Time</th>
<th>1445</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>29.5°C</td>
</tr>
<tr>
<td>Humidity</td>
<td>95% RH</td>
</tr>
<tr>
<td>Barometric pressure</td>
<td>1 atm</td>
</tr>
<tr>
<td>Item functional (based on performance test criteria):</td>
<td>Yes</td>
</tr>
<tr>
<td>Deviation from pretest:</td>
<td>None</td>
</tr>
</tbody>
</table>

Fifth check:

<table>
<thead>
<tr>
<th>Time</th>
<th>1520</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>29.5°C</td>
</tr>
<tr>
<td>Humidity</td>
<td>95% RH</td>
</tr>
<tr>
<td>Barometric pressure</td>
<td>1 atm</td>
</tr>
<tr>
<td>Item functional (based on performance test criteria):</td>
<td>Yes</td>
</tr>
<tr>
<td>Deviation from pretest:</td>
<td>None</td>
</tr>
</tbody>
</table>

3-31
POSTTEST DATA

Posttest performance check:
(complete check of item and accessories)
Time of test end: 6105
Item functional (based on performance test criteria): Yes
Deviation from pretest: None

Comments on item setup or checks: None
Comments on test run (including interruptions): None
Comments on other data: None
3.2.15 Electromagnetic characteristics test

Electromagnetic Characteristics Testing
Evaluation of Performance

T & E Item Number: 23 Date: 20 Feb 90

Nomenclature: Oxygen Monitor
Manufacturer: Catalyst Research
Model number: Miniox III
Serial number: 3-07716
Military item number: NA

Conducted Emissions Tests

 CE01 Testing configuration(s): NA
 Performance (pass/fail): NA
 Comments: NA

 CE02 Testing configuration(s): NA
 Performance (pass/fail): NA
 Comments: NA

 CE04 Testing configuration(s): NA
 Performance (pass/fail): NA
 Comments: NA

Conducted Susceptibility Tests

 CS02 Testing configuration(s): NA
 Performance (pass/fail): NA
 Comments: NA

3-33
CS06
Testing configuration(s): NA
Performance (pass/fail): NA
Comments: NA

Radiated Emissions Tests

RE02
Testing configuration(s): Operating on wooden test stand in the EMC chamber.
Performance (pass/fail): Fail
Comments: NB failure 16.4 dB over specifications at 0.1 MHz; 5.2 dB over specifications at 0.294 MHz; and 7.3 dB over specifications at 0.497 MHz.

Radiated Susceptibility Tests

RS03
Testing configuration(s): Operating on the wooden test stand in the EMC chamber.
Performance (pass/fail): Fail
Comments: Interference present:

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Field Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>36.8 MHz</td>
<td>2.00 V/m</td>
</tr>
<tr>
<td>67.4 MHz</td>
<td>3.76 V/m</td>
</tr>
<tr>
<td>74.2 MHz</td>
<td>1.41 V/m</td>
</tr>
<tr>
<td>77.6 MHz</td>
<td>1.86 V/m</td>
</tr>
<tr>
<td>111.6 MHz</td>
<td>2.24 V/m</td>
</tr>
</tbody>
</table>
3.3 CRITERIA, SIGNIFICANT PROBLEMS, AND SUGGESTED IMPROVEMENTS

3.3.1 Criteria

<table>
<thead>
<tr>
<th>No.</th>
<th>Criteria (source)</th>
<th>Remarks</th>
<th>Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The physical inventory is conducted solely for investigation and documentation.</td>
<td>NA</td>
<td>2.1.2.1</td>
</tr>
<tr>
<td>2</td>
<td>The Catalyst Research will display consistent and accurate performance.</td>
<td>met</td>
<td>2.1.2.2</td>
</tr>
<tr>
<td>3</td>
<td>Verify manufacturer's specified full power internal battery life expectancy of 2000 hours.</td>
<td>not eval- uated</td>
<td>2.2.2</td>
</tr>
<tr>
<td>4</td>
<td>The Catalyst Research will meet the limits established in NFPA 99 for electrical safety of medical equipment.</td>
<td>NA</td>
<td>2.3.2</td>
</tr>
<tr>
<td>5</td>
<td>The Catalyst Research will be rated satisfactory in all major categories of the evaluation. These include: Visual displays, controls, maintainability, conductors, fasteners, test points, test equipment, fuses and circuit breakers, labels and coding, and safety.</td>
<td>met</td>
<td>2.4.2</td>
</tr>
<tr>
<td>6</td>
<td>The Catalyst Research will demonstrate proper operation while exposed to an altitude equivalency of 15,000 feet above sea level.</td>
<td>met</td>
<td>2.5.2</td>
</tr>
<tr>
<td>7</td>
<td>The Catalyst Research will remain operational while exposed to vibrational stresses.</td>
<td>met</td>
<td>2.6.2</td>
</tr>
<tr>
<td>8</td>
<td>The Catalyst Research will remain operational during the high temperature operation check.</td>
<td>met</td>
<td>2.7.2.1</td>
</tr>
</tbody>
</table>
9 The Catalyst Research will remain operational after the high temperature storage.

10 The Catalyst Research will remain operational during the low temperature operation check.

11 The Catalyst Research will remain operational after the low temperature storage.

12 The Catalyst Research will remain operational while exposed to a high humidity.

14 The Catalyst Research will not malfunction when it is subjected to radiated fields as specified in MIL-STD-461A, Notice 4, paragraph 6.70.

16 The Catalyst Research will not malfunction when it is subjected to conducted emissions as specified in MIL-STD-461A, Notice 4, paragraph 6.7 and 6.10.

17 The flight surgeon will be able to operate the Catalyst Research without physical or functional restrictions aboard the aircraft.

18 The Catalyst Research will not radiate EMI to disrupt or interfere with the other equipment or systems aboard the aircraft.
19 The aircraft will not radiate
EMI to disrupt or interfere with
the Catalyst Research.

3.3.2 **Significant problems which require corrective action**

None

3.3.3 **Suggested improvements**

None
3.4 REFERENCES

3.5 ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ac</td>
<td>alternate current</td>
</tr>
<tr>
<td>AVSCOM</td>
<td>Army Aviation Systems Command</td>
</tr>
<tr>
<td>AWR</td>
<td>airworthiness release</td>
</tr>
<tr>
<td>BB</td>
<td>broadband</td>
</tr>
<tr>
<td>CAAF</td>
<td>Cairns Army Airfield</td>
</tr>
<tr>
<td>EMC</td>
<td>electromagnetic compatibility</td>
</tr>
<tr>
<td>EMI</td>
<td>electromagnetic interference</td>
</tr>
<tr>
<td>fpm</td>
<td>feet per minute</td>
</tr>
<tr>
<td>GFE</td>
<td>government furnished equipment</td>
</tr>
<tr>
<td>Gpk</td>
<td>gravity, peak</td>
</tr>
<tr>
<td>G(rms)</td>
<td>gravity (root mean square)</td>
</tr>
<tr>
<td>Hz</td>
<td>hertz</td>
</tr>
<tr>
<td>IAW</td>
<td>in accordance with</td>
</tr>
<tr>
<td>ITOP</td>
<td>in-flight test operating procedure</td>
</tr>
<tr>
<td>IV</td>
<td>intravenous</td>
</tr>
<tr>
<td>kHz</td>
<td>kilohertz</td>
</tr>
<tr>
<td>LCD</td>
<td>liquid crystal display</td>
</tr>
<tr>
<td>LED</td>
<td>light emitting diode</td>
</tr>
<tr>
<td>LISN</td>
<td>line impedance stabilization network</td>
</tr>
<tr>
<td>MEDEVAC</td>
<td>medical evacuation</td>
</tr>
<tr>
<td>MHz</td>
<td>megahertz</td>
</tr>
<tr>
<td>MIL-STD</td>
<td>military standard</td>
</tr>
<tr>
<td>mL</td>
<td>milliliter</td>
</tr>
<tr>
<td>mm</td>
<td>millimeter</td>
</tr>
<tr>
<td>mmHg</td>
<td>millimeters of Mercury</td>
</tr>
<tr>
<td>MSL</td>
<td>mean sea level</td>
</tr>
<tr>
<td>NFPA</td>
<td>National Fire Prevention Association</td>
</tr>
<tr>
<td>NB</td>
<td>narrowband</td>
</tr>
<tr>
<td>NBC</td>
<td>nuclear, biological and chemical</td>
</tr>
<tr>
<td>NOE</td>
<td>nap-of-the-earth</td>
</tr>
<tr>
<td>NVG</td>
<td>night vision goggle</td>
</tr>
<tr>
<td>RF</td>
<td>radio frequency</td>
</tr>
<tr>
<td>RFI</td>
<td>radio frequency interference</td>
</tr>
<tr>
<td>RH</td>
<td>relative humidity</td>
</tr>
<tr>
<td>TB</td>
<td>technical bulletin</td>
</tr>
<tr>
<td>TFT</td>
<td>technical feasibility testing</td>
</tr>
</tbody>
</table>
T & E test and evaluation
UES Universal Energy Systems, Inc.
USAARL U.S. Army Aeromedical Research Laboratory
V/m volts per meter
3.6 LIST OF MANUFACTURERS

3.6.1 Catalyst Research
3706 Crondall Lane
Owings Mills, MD 21117

3.6.2 Neurodyne-Dempsey, Inc.
200 Arrowhead Drive
Carson City, NV 89701

3.6.3 Tenney Engineering, Inc.
1090 Springfield Road
P.O. box 3142
Union, NJ 07083

3.6.4 Unholtz-Dickey Corporation
6 Brookside Drive
Wallingford, CT 06492

3.6.5 Tektronix, Inc.
P.O. Box 500
Beaverton, OR 97077
3.7 DISTRIBUTION LIST

Commander, U.S. Army Natick Research, Development and Evaluation Center
ATTN: STRNC-MIL (Documents Librarian)
Natick, MA 01760-5040

Commander
U.S. Army Aviation Systems Command
ATTN: AMSAV-ECU
4300 Goodfellow Bouvelard
St. Louis, MO 63120-1790

Commander/Director
U.S. Army Combat Surveillance and Target Acquisition Lab
ATTN: DELCS-D
Fort Monmouth, NJ 07703-5304

Commander
10th Medical Laboratory
ATTN: Audiologist
APO New York 09180

Naval Air Development Center
Technical Information Division
Technical Support Detachment
Warminster, PA 18974

Commanding Officer, Naval Medical Research and Development Command
National Naval Medical Center
Bethesda, MD 20814-5044

Deputy Director, Defense Research and Engineering
ATTN: Military Assistant for Medical and Life Sciences
Washington, DC 20301-3080

Commander, U.S. Army Research Institute of Environmental Medicine
Natick, MA 01760

U.S. Army Avionics Research and Development Activity
ATTN: SAVAA-P-TP
Fort Monmouth, NJ 07703-5401

U.S. Army Communications-Electronics Command
ATTN: AMSEL-RD-ESA-D
Fort Monmouth, NJ 07703

Library
Naval Submarine Medical Research Lab
Box 900, Naval Sub Base
Groton, CT 06349-5900

Commander
Man-Machine Integration System
Code 602
Naval Air Development Center
Warminster, PA 18974

Commander
Naval Air Development Center
ATTN: Code 602-B (Mr. Brindle)
Warminster, PA 18974

Commanding Officer
Armstrong Laboratory
Wright-Patterson Air Force Base, OH 45433

Director
Army Audiology and Speech Center
Walter Reed Army Medical Center
Washington, DC 20307-5001

Commander, U.S. Army Institute of Dental Research
ATTN: Jean A. Setterstrom, Ph. D.
Walter Reed Army Medical Center
Washington, DC 20307-5300
Assistant Commandant
U.S. Army Field Artillery School
ATTN: Morris Swott Technical Library
Fort Sill, OK 73503-0312

Commander
U.S. Army Health Services Command
ATTN: HSOP-SO
Fort Sam Houston, TX 78234-6000

Director of Professional Services
HQ USAF/SGDT
Bolling Air Force Base, DC 20332-6188

U.S. Army Dugway Proving Ground
Technical Library, Building 5330
Dugway, UT 84022

U.S. Army Yuma Proving Ground
Technical Library
Yuma, AZ 85364

AFFTC Technical Library
6510 TW/TSTL
Edwards Air Force Base, CA 93523-5000

Commander
Code 3431
Naval Weapons Center
China Lake, CA 93555

Aeromechanics Laboratory
U.S. Army Research and Technical Labs
Ames Research Center, M/S 215-1
Moffett Field, CA 94035

Sixth U.S. Army
ATTN: SMA
Presidio of San Francisco, CA 94129

Commander
U.S. Army Aeromedical Center
Fort Rucker, AL 36362

U.S. Air Force School of Aerospace Medicine
Strughold Aeromedical Library Technical Reports Section (TSKD)
Brooks Air Force Base, TX 78235-5301

U.S. Army White Sands Missile Range
ATTN: STEWS-IM-ST
White Sands Missile Range, NM 88002

U.S. Army Aviation Engineering Flight Activity
ATTN: SAVTE-M (Tech Lib) Stop 217
Edwards Air Force Base, CA 93523-5000

Ms. Sandra G. Hart
Ames Research Center
MS 262-3
Moffett Field, CA 94035

Commander, Letterman Army Institute of Research
ATTN: Medical Research Library
Presidio of San Francisco, CA 94129

COL Eugene S. Channing, O.D.
Brooke Army Medical Center
ATTN: HSHE-EAH-O
Fort Sam Houston, TX 78234-6200

Commander
U.S. Army Medical Materiel Development Activity
Fort Detrick, Frederick, MD 21702-5009

Commander
U.S. Army Aviation Center
Directorate of Combat Developments
Building 507
Fort Rucker, AL 36362

U. S. Army Research Institute Aviation R&D Activity
ATTN: PERI-IR
Fort Rucker, AL 36362
Commander
U.S. Army Safety Center
Fort Rucker, AL 36362

U.S. Army Aircraft Development
Test Activity
ATTN: STEBG-MP-P
Cairns Army Air Field
Fort Rucker, AL 36362

Commander U.S. Army Medical Research
and Development Command
ATTN: SGRD-PLC (COL Schnakenberg)
Fort Detrick, Frederick, MD 21702

MAJ John Wilson
TRADOC Aviation LO
Embassy of the United States
APO New York 09777

Directorate of Training Development
Building 502
Fort Rucker, AL 36362

Chief
USAHEL/USAAVNC Field Office
P. O. Box 716
Fort Rucker, AL 36362

Commander U.S. Army Aviation Center
and Fort Rucker
ATTN: ATZQ-CG
Fort Rucker, AL 36362

Chief
Test & Evaluation Coordinating Board
Cairns Army Air Field
Fort Rucker, AL 36362

Commander
U.S. Army Biomedical Research
and Development Laboratory
ATTN: SGRD-UBZ-I
Fort Detrick, Frederick, MD 21702

Defense Technical Information Center
Cameron Station
Alexandra, VA 22313

Commander, U.S. Army Foreign Science
and Technology Center
AIFRTA (Davis)
220 7th Street, NE
Charlottesville, VA 22901-5396

Director,
Applied Technology Laboratory
USARTL-AVSCOM
ATTN: Library, Building 401
Fort Eustis, VA 23604

U.S. Army Training
and Doctrine Command
ATTN: Surgeon
Fort Monroe, VA 23651-5000

Aviation Medicine Clinic
TMC #22, SAAF
Fort Bragg, NC 28305

U.S. Air Force Armament
Development and Test Center
Eglin Air Force Base, FL 32542

Commander, U.S. Army Missile
Command
Redstone Scientific Information Center
ATTN: AMSMI-RD-CS-R/ILL
Documents
Redstone Arsenal, AL 35898

U.S. Army Research and Technology
Laboratories (AVSCOM)
Propulsion Laboratory MS 302-2
NASA Lewis Research Center
Cleveland, OH 44135

Dr. Christine Schlichting
Behavioral Sciences Department
Box 900, NAVUBASE NCON
Groton, CT 06349-5900

Commandant
Academy of Health Sciences
ATTN: HSHA-COM (LTC Huether)
Fort Sam Houston, TX 78234