Test and Evaluation Report
of the Physio Control Defibrillator/Monitor
Model Lifepak®6s

By

James E. Bruckart (Project Officer)
Martin Quattlebaum (Project Officer)
Joseph R. Licina (Project Officer)

Biodynamics Research Division

Bill Olding (UES)

July 1992

Approved for public release; distribution unlimited.

United States Army Aeromedical Research Laboratory
Fort Rucker, Alabama 36362-5292
Notice

Qualified requesters

Qualified requesters may obtain copies from the Defense Technical Information Center (DTIC), Cameron Station, Alexandria, Virginia 22314. Orders will be expedited if placed through the librarian or other person designated to request documents from DTIC.

Change of address

Organizations receiving reports from the U.S. Army Aeromedical Research Laboratory on automatic mailing lists should confirm correct address when corresponding about laboratory reports.

Disposition

Destroy this document when it is no longer needed. Do not return it to the originator.

Disclaimer

The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other official documentation. Citation of trade names in this report does not constitute an official Department of the Army endorsement or approval of the use of such commercial items.

Reviewed:

ROBERT W. WEIEN
MAJ, MC, SFS
Director, Biodynamics
Research Division

Released for publication:

ROGER W. WILBY, O.D., Ph.D.
Chairman, Scientific
Review Committee

DAVID H. KARNEY
Colonel, MC, SFS
Commanding
The Physio Control Defibrillator/Monitor, Model LifePak® 6s, was tested for electromagnetic interference/compatibility in the UH-60A helicopter under the U.S. Army Program for Testing and Evaluation of Equipment for Aeromedical Operations. The tests were conducted using current military and industrial standards and procedures for electromagnetic interference/compatibility and human factors. The Physio Control Defibrillator/Monitor, Model LifePak® 6s was found to be compatible with U.S. Army aeromedical aircraft.
Table of contents

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. EXECUTIVE DIGEST</td>
<td></td>
</tr>
<tr>
<td>1.1 Test objectives</td>
<td>1-1</td>
</tr>
<tr>
<td>1.2 Testing authority</td>
<td>1-2</td>
</tr>
<tr>
<td>1.3 Scope</td>
<td>1-2</td>
</tr>
<tr>
<td>1.4 Material description</td>
<td>1-3</td>
</tr>
<tr>
<td>1.5 Summary</td>
<td>1-3</td>
</tr>
<tr>
<td>1.6 Conclusion</td>
<td>1-5</td>
</tr>
<tr>
<td>2. SUBTESTS</td>
<td></td>
</tr>
<tr>
<td>2.1 Initial inspection</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2 Battery life evaluation</td>
<td>2-1</td>
</tr>
<tr>
<td>2.3 Electrical safety evaluation</td>
<td>2-2</td>
</tr>
<tr>
<td>2.4 Human factors evaluation (laboratory)</td>
<td>2-3</td>
</tr>
<tr>
<td>2.5 Altitude (low pressure) test</td>
<td>2-3</td>
</tr>
<tr>
<td>2.6 Vibration test</td>
<td>2-4</td>
</tr>
<tr>
<td>2.7 High temperature test</td>
<td>2-6</td>
</tr>
<tr>
<td>2.8 Low temperature test</td>
<td>2-7</td>
</tr>
<tr>
<td>2.9 Humidity test</td>
<td>2-8</td>
</tr>
<tr>
<td>2.10 Electromagnetic characteristics test</td>
<td>2-9</td>
</tr>
<tr>
<td>2.11 In-flight human factors evaluation</td>
<td>2-12</td>
</tr>
<tr>
<td>2.12 In-flight EMI/EMC characteristics test</td>
<td>2-13</td>
</tr>
<tr>
<td>3. SUPPORTING DOCUMENTATION</td>
<td></td>
</tr>
<tr>
<td>3.1 Detailed test information</td>
<td>3-1</td>
</tr>
<tr>
<td>3.2 Test data</td>
<td>3-3</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>3.3</td>
<td>Criteria, significant problems, and</td>
</tr>
<tr>
<td></td>
<td>suggested improvements</td>
</tr>
<tr>
<td>3.4</td>
<td>References</td>
</tr>
<tr>
<td>3.5</td>
<td>Abbreviations</td>
</tr>
<tr>
<td>3.6</td>
<td>List of manufacturers</td>
</tr>
<tr>
<td>3.7</td>
<td>Distribution list</td>
</tr>
</tbody>
</table>
Section 1. Executive digest

The Army program for Test and Evaluation of Aeromedical Equipment uses existing military standards (MIL-STD) and collective professional expertise to test and evaluate selected medical equipment proposed for use aboard Army aircraft. Equipment meeting these standards ensures the safety of the crew, patients, and aircraft by eliminating risks due to: (1) Interference by the medical equipment with aircraft systems/subsystems operation, (2) the aircraft system's interference with the operation of the medical equipment, (3) the medical equipment's susceptibility to environmental exposure, or (4) physical and/or functional incompatibility while in use on board selected rotary-wing aircraft. This program tests both developmental and nondevelopmental (off the shelf) medical equipment destined for use aboard Army medical evacuation (MEDEVAC) aircraft.

1.1 TEST OBJECTIVES

1.1.1 To determine if the medical equipment is complete and operational per the manufacturer's operating instructions.

1.1.2 To ensure the electrical safety of the medical equipment.

1.1.3 To ensure the equipment will function as designed throughout the rated battery operation time.

1.1.4 To ensure the safety of the operator, the patient, and the aircrew.

1.1.5 To assess design considerations which could potentially contribute to an operator error.

1.1.6 To determine if the medical equipment can function as designed in a low pressure environment.

1.1.7 To determine the ability of the medical equipment to withstand the vibrational stresses expected in a rotary-wing flight environment without degradation or malfunction.

1.1.8 To determine the ability of the medical equipment to be stored and operated in a high temperature environment.

1.1.9 To determine the ability of the medical equipment to be stored and operated in a low temperature environment.

1.1.10 To determine the ability of the medical equipment to operate satisfactorily for short periods during exposure to high humidity conditions.
To assess the levels of electromagnetic emissions produced by the medical equipment within selected frequency ranges.

To assess the minimum electromagnetic susceptibility levels of the medical equipment within selected frequency ranges.

To assess the physical and/or functional compatibility of the medical equipment while in use on board the aircraft.

To assess the electromagnetic interference (EMI) and electromagnetic compatibility (EMC) characteristics of the medical equipment with the host aircraft and its installed systems.

1.2 TESTING AUTHORITY

1.3 SCOPE

1.3.1 This test was conducted at the United States Army Aeromedical Research Laboratory (USAARL), Cairns Army Airfield (CAAF), and designated test flight areas in and around Fort Rucker, Alabama.

1.3.2 The USAARL UH-60A aircraft, serial number 88-26069, with subsystems delineated in paragraph 3.2.2, was configured with the Physio Control Defibrillator/Monitor*, model Lifepak* 6s and used as the test aircraft for the in-flight evaluation. The in-flight evaluation required 3.0 flight hours.

1.3.3 Laboratory testing was accomplished at USAARL using government furnished equipment (GFE) by Universal Energy Systems, Inc. (UES), under contract No. DAMD 17-86-C-6215.

1.3.4 Prior to flight testing, the following tests were accomplished: Acceptance inspection, equipment training, electromagnetic compatibility, human factors and safety, environmental compatibility, and in-flight compatibility.

1.3.5 An airworthiness release (AWR) dated 5 Mar 1992 was received from the U.S. Army Aviation Systems Command (AVSCOM) prior to the in-flight testing of the Physio Control Defibrillator/Monitor, model Lifepak* 6s.

* See list of manufacturers
1.4 MATERIAL DESCRIPTION

The Physio Control Lifepak® 6s is a portable monitor and defibrillator system. The monitor and defibrillator are separate modules and may be used independently or as a single unit. When used together, the monitor slides over the defibrillator and locks in place. When synchronized defibrillation is selected, the defibrillator receives the QRS signal from the monitor module.

The electrocardiogram (ECG) monitor displays the ECG signal on a 3 x 4 inch cathode ray tube (CRT) in real time. A red light emitting diode (LED) digital display shows the heart rate. Rotary switches are used to set high and low heart rate alarms, ECG size, beep volume, freeze the ECG signal, or select the integral strip chart recorder. The patient connection is made through a 6-pin Physio Control patient cable connector. The unit operates from an internal battery or line voltage. Battery charging is indicated by an LED and the charge is shown on a charge level meter.

The defibrillator delivers energy with the integral paddles or internal paddles in a synchronized or non-synchronized mode. The defibrillation charge is selected as 5, 10, 20, 30, 50, 100, 150, 200, 300, or 360 joules. Push buttons turn power on, initiate the charge cycle, discharge the paddles internally, or select synchronized discharge mode. A digital readout displays the available energy when energized and the energy delivered.

1.5 SUMMARY

1.5.1 Laboratory testing

1.5.1.1 Battery Life Evaluation: The Lifepak® 6s is rated by the manufacturer for 3 hours continuous ECG monitoring and 25 360-joule discharge cycles. Three tests were conducted with the monitor operating continuously and the defibrillator discharged 10 times at the beginning of each hour. The average operating time in testing was 3 hours and 30 minutes and the defibrillator averaged 28 discharge cycles on a battery charge. This exceeds the manufacturer's specification.

1.5.1.2 Electrical Safety Evaluation: All measurements were within acceptable limits. No unsafe qualities were found in the Physio Control Lifepak® 6s. The limits for currents and resistances were in accordance with (IAW) the limits specified in TB-38-750-2, April 1987, and National Fire Prevention Association (NFPA) standards.
1.5.1.3 Human Factors Evaluation: The Physio Control Lifepak® 6s was found to be satisfactory in all categories of the evaluation except Controls. The rotary controls for alarm limits, ECG size, QRS volume, and power are spaced closer than recommended by the referenced guides. The power switch for the monitor does not illuminate when activated, but the power switch for the defibrillator does illuminate. This difference in display may confuse the operator.

1.5.1.4 Environmental Tests: The Physio Control Lifepak® 6s can be expected to perform in a variety of environmental conditions. Its performance was found to be satisfactory in all stages of the environmental testing. The requirements for environmental tests are established in MIL-STD-810D, Methods 500.2 (altitude), 514.3 (vibration), 501.2 (high temperature), 502.2 (low temperature), and 507.2 (humidity).

1.5.1.5 Radiated Emissions Tests (RE02): The Physio Control Lifepak® 6s may be unsatisfactory for use in certain EMI sensitive environments. Broadband (BB) and narrowband (NB) radiated emissions were detected in the test frequency ranges. Some emissions exceeded the test limits. Emission limits are set forth in MIL-STD-461A, Notice 4.

1.5.1.6 Radiated Susceptibility Test (RS03): The Physio Control Lifepak® 6s was susceptible to radio frequency interference in the testing range and magnitude. It may be unsuitable for use in EMI intensive environments.

1.5.1.7 Conducted Emissions Test (CE01, CE02, and CE04): Narrowband and broadband signals were detected on the power lines of the Lifepak® 6s during this test. Some emissions exceeded the test limits.

1.5.1.8 Conducted Susceptibility Test (CS02 and CS06): No susceptibility to the test power line spikes was noted in the monitor/defibrillator.

1.5.2 In-flight testing

1.5.2.1 During the in-flight human factors evaluation, the Physio Control Lifepak® 6s was found to be satisfactory in all categories of the evaluation criteria. The unit was tested using integral battery power and ac power.

1.5.2.2 The aircraft and its subsystems were not adversely affected by the operation of the Physio Control Lifepak® 6s in any of the prescribed flight test modes.

1.5.2.3 The Physio Control Lifepak® 6s was not affected by the aircraft and its subsystems during the in-flight testing.

1-4
1.6 CONCLUSIONS

Based on the results of laboratory and in-flight testing, the Physio Control Monitor/Defibrillator, Model Lifepak® 6s was found to be compatible with U.S. Army MEDEVAC UH-60A Black Hawk with the subsystems listed in paragraph 3.2.2.
Section 2. Subtests

2.1 INITIAL INSPECTION

2.1.1 Objective

To determine if the Lifepak® 6s is complete and operational for testing per the manufacturer’s operating instructions.

2.1.2 Criteria

2.1.2.1 The physical inventory is conducted solely for investigation and documentation.

2.1.2.2 The Lifepak® 6s will display consistent and accurate performance as an acceptable performance test.

2.1.3 Test procedure

2.1.3.1 A complete physical inventory of the Lifepak® 6s was completed per the manufacturer’s equipment list.

2.1.3.2 An operational validation test of the Lifepak® 6s was conducted per the manufacturer’s operating instructions by USAARL's medical maintenance personnel.

2.1.4 Test findings

2.1.4.1 The Lifepak® 6s was inventoried and found to be complete. The unit has been in service for several years prior to testing.

2.1.4.2 The Lifepak® 6s operated as prescribed in the manufacturer’s operating manual. Criteria met.

2.2 BATTERY LIFE EVALUATION (Laboratory)

2.2.1 Objective

To ensure the equipment will function as designed throughout the rated battery operation time.

2.2.2 Criterion

Verify manufacturer's specified full power internal battery life expectancy of 3 hours operation and 25 360-joule discharges.
2.2.3 Test procedure

2.2.3.1 Charging and operation cycles were conducted in ambient room conditions. The monitor was operated continuously and the defibrillator was charged to 360 joules and discharged 10 times at the beginning of each hour.

2.2.4 Test findings

The monitor operated an average of 3 hours and 30 minutes and the defibrillator averaged 28 cycles on a fully-charged battery. This exceeds the manufacturer's specification. Criterion met.

2.3 ELECTRICAL SAFETY EVALUATION

2.3.1 Objective

To ensure the electrical safety, by evaluation of case-to-ground resistance and case-to-ground current leakage of the Lifepak® 6s.

2.3.2 Criterion

The Lifepak® 6s shall meet the standards established in TB-38-750-2 and NFPA 99 for electrical safety of medical equipment.

2.3.3 Test procedure

Performance in the electrical safety evaluation were made with a Neurodyne-Dempsey model 431F electrical safety analyzer* IAW the procedures described in Technical Bulletin (TB) Number 38-750-2. Case-to-ground resistance and various case-to-ground leakage currents were measured. Leakage currents were measured using a 10 by 20 centimeter (cm) aluminum foil sheet taped flush to the equipment case. Checks were made for safety concerns such as case integrity, breaks in power cord insulation, and connectors.

2.3.4 Test findings

Grounding conductor resistance was 77.8 milliohms and maximum case leakage current was 28.6 microamperes. Maximum lead leakage current was 7.6 microamperes. These measurements are below the limits specified in TB-33-750-2 and NFPA 99. Criterion met.
2.4 HUMAN FACTORS EVALUATION (Laboratory)

2.4.1 Objectives

2.4.1.1 To assure the safety of the operator, the potential patient, and the aircrew.

2.4.1.2 To assess the design considerations which potentially could contribute to an operator error.

2.4.2 Criterion

The Lifepak® 6s must be rated satisfactory in all major categories of the evaluation. These include visual displays, controls, maintainability, conductors, fasteners, test points, test equipment, fuses and circuit breakers, labels and coding, and safety.

2.4.3 Test procedure

2.4.3.1 The evaluation was conducted in a laboratory under fluorescent lighting and ambient room conditions.

2.4.3.2 The Lifepak® 6s was operated according to prescribed instructions through its full range of functions.

2.4.4 Test finding

The first Lifepak® 6s was found to be satisfactory in all of the evaluation criteria except controls. The rotary controls for alarm limits, ECG size, QRS volume, and power are spaced closer than recommended. The power switch on the monitor does not illuminate when activated while the power switch on the defibrillator does illuminate. This difference in displays may confuse the operator. Criterion partially met.

2.5 ALTITUDE (LOW PRESSURE) TEST [IAW MIL-STD-810D, METHOD 500.2]

2.5.1 Objective

To determine if the Lifepak® 6s can function as designed in a low pressure environment.

2.5.2 Criterion

The Lifepak® 6s will perform as designed while exposed to an altitude equivalency of 15,000 feet above sea level.

2.5.3 Test procedure
2.5.3.1 A pretest performance check was conducted to ensure proper operation of the Lifepak® 6s.

2.5.3.2 The altitude test was performed in a Tenney Engineering model 64S altitude chamber*. This test is based on MIL-STD-810D, Method 500.2. The Lifepak® 6s was operated on the floor of the chamber. Chamber pressure was decreased to 420 mmHg (15,000 ft equivalent altitude) over a 15-minute period, held constant for 60 minutes, then raised, at 1500 fpm, to ambient conditions (760 mmHg) over a 10-minute period. There are no provisions for the control of temperature or humidity inside this chamber.

2.5.3.3 A posttest performance check was conducted to ensure proper operation of the Lifepak® 6s after the exposure to low pressure.

2.5.4 Test findings

2.5.4.1 The pretest performance check met criterion 2.1.2.2.

2.5.4.2 No failures in the performance of the Lifepak® 6s were noted before, during, or after the altitude test. Criterion met.

2.5.4.3 The posttest performance check met criterion 2.1.2.2.

2.6 VIBRATION TEST [IAW MIL-STD-810D, METHOD 514.3]

2.6.1 Objective

To determine the ability of the Lifepak® 6s to withstand the vibrational stresses expected in a rotary-wing environment without degradation or malfunction.

2.6.2 Criteria:

The Lifepak® 6s will remain operational and be able to display consistent and accurate performance while exposed to vibrational stresses.

2.6.3 Test procedure

2.6.3.1 A pretest performance check was conducted to ensure proper operation of the Lifepak® 6s.

2.6.3.2 The vibration test was performed using an Unholtz-Dickey model TAI15-40/CSTA vibration test system*. It is a single-axis system with an electromagnetic driver unit. The test consisted of sinusoidal vibrations superimposed on random vibrations over a frequency range of 500 Hz, as shown below. These vibrations are derived from performance taken on the floor under the copilot's
seat in a UH-1 helicopter traveling at 120 knots. The reference spectrum breakpoints are from MIL-STD-810D, Method 514.3; reference spectrum levels are based on field performance with a conservatism factor of 1.5. Independent tests were conducted in the X, Y, and Z axes.

Z-axis
duration: 60 minutes
broadband intensity: 0.4506 G_{rms}
random vibration: initial slope: 99.00 dB/oct
 5 Hz level: 0.00006210 G_{sqr/Hz}
 100 Hz level: 0.0006210 G_{sqr/Hz}
 300 Hz level: 0.0006210 G_{sqr/Hz}
 500 Hz level: 0.00006210 G_{sqr/Hz}
final slope: -99.00 dB/oct
sinusoidal vibration: 0.5450 G_p at 11.25 Hz
 0.1690 G_p at 22.50 Hz
 0.1200 G_p at 33.75 Hz
 0.0310 G_p at 45.00 Hz
 0.0530 G_p at 56.25 Hz

X and Y axes
duration: 60 minutes each
broadband intensity: 0.3099 G_{rms}
random vibration: initial slope: 99.00 dB/oct
 5 Hz level: 0.00002920 G_{sqr/Hz}
 100 Hz level: 0.0002920 G_{sqr/Hz}
 300 Hz level: 0.0002920 G_{sqr/Hz}
 500 Hz level: 0.00002920 G_{sqr/Hz}
final slope: -99.00 dB/oct
sinusoidal vibration: 0.3200 G_p at 11.25 Hz
 0.0670 G_p at 22.50 Hz
 0.0950 G_p at 33.75 Hz
 0.0350 G_p at 45.00 Hz
 0.0770 G_p at 56.25 Hz

The Lifepak® 6s was strapped to the vibration table fixture, and its performance was evaluated before, during, and after exposure to vibration.

2.6.3.3 A posttest performance check was conducted to ensure proper operation of the Lifepak® 6s.

2.6.4 Test findings

2.6.4.1 The pretest performance check met criterion 2.1.2.2.

2.6.4.2 No failures in the performance of the Lifepak® 6s occurred before, during, or after exposure to vibration. Criterion met.
2.6.4.3 The posttest performance check met criterion 2.1.2.2.

2.7 HIGH TEMPERATURE TEST [IAW MIL-STD-810D, METHOD 501.2]

2.7.1 Objective

To determine the ability of the Lifepak® 6s to be stored and operated in a high temperature environment.

2.7.2 Criteria

2.7.2.1 The Lifepak® 6s will demonstrate consistent and accurate operation during the high temperature operation check.

2.7.2.2 The Lifepak® 6s will demonstrate consistent and accurate operation after the high temperature storage cycle.

2.7.3 Test procedure

2.7.3.1 A pretest performance check was conducted to ensure proper operation of the Lifepak® 6s.

2.7.3.2 The high temperature test was conducted in a Tenney Engineering model ZWUL-10107D walk-in controlled environment chamber*. This test is based on MIL-STD-810D, Method 501.2. For the high temperature operation test, the Lifepak® 6s was turned on and placed on the floor of the environmental chamber. The chamber temperature was raised to 49°C and the humidity was stabilized at a maximum of 20 percent relative humidity (RH) within 15 minutes. The environmental control system is capable of regulating temperature within ± 2°C and humidity within ± 5 percent RH. Temperature and humidity were held constant for 2 hours. At 30-minute intervals, the chamber door was opened briefly to minimize the change in chamber conditions during performance checks. After the operational test, the Lifepak® 6s was allowed to return to ambient conditions over a 30-minute period.

2.7.3.3 A posttest performance check was conducted to ensure proper operation of the Lifepak® 6s.

2.7.3.4 The Lifepak® 6s was stored (not operated) at temperatures of 63°C for 1 hour, 71°C for 4 hours, then again at 63°C for 1 hour. The chamber and Lifepak® 6s then were returned to ambient conditions over a 30-minute period.

2.7.3.5 A poststorage performance check was conducted to ensure proper performance of the Lifepak® 6s.
2.7.4 **Test findings**

2.7.4.1 The pretest performance check met criterion 2.1.2.2.

2.7.4.2 No operational failures occurred during the high temperature test. Criterion met.

2.7.4.3 The posttest performance check met criterion 2.1.2.2.

2.7.4.4 The Lifepak® 6s functioned properly after the high temperature storage test. Criterion met.

2.8 **LOW TEMPERATURE TEST [IAW MIL-STD-810D, METHOD 502.2]**

2.8.1 **Objective**

To determine the ability of the Lifepak® 6s to be stored and operated in a low temperature environment.

2.8.2 **Criteria**

2.8.2.1 The Lifepak® 6s will demonstrate consistent and accurate operation during the low temperature operation check.

2.8.2.2 The Lifepak® 6s will demonstrate consistent and accurate operation after the low temperature storage cycle.

2.8.3 **Test procedure**

2.8.3.1 A pretest performance check was conducted to ensure proper operation of the Lifepak® 6s.

2.8.3.2 The Lifepak® 6s was placed on the floor of the environmental chamber and the temperature was lowered to 0°C within 25 minutes. The environmental control system is capable of regulating temperature within 2°C. Humidity cannot be controlled in the chamber at freezing temperatures. The temperature was held constant for 2 hours. The chamber door was opened briefly every 30 minutes to minimize the change in chamber conditions, and a performance check was conducted. The chamber temperature then was raised to ambient temperature within a 30-minute period.

2.8.3.3 A posttest performance check was conducted to ensure proper operation of the Lifepak® 6s.

2.8.3.4 The Lifepak® 6s was "stored" in a nonoperational mode. The Lifepak® 6s was placed on the floor of the environmental test chamber and the temperature was lowered to -46°C for 6 hours. The chamber then was raised to ambient temperature over a 30-minute period.
2.8.3.5 A poststorage performance check was conducted to ensure proper operation of the Lifepak® 6s.

2.8.4 Test findings

2.8.4.1 The pretest performance check met criterion 2.1.2.2.

2.8.4.2 No operational failures occurred during the low temperature test. Criterion met.

2.8.4.3 The posttest performance check met criterion 2.1.2.2.

2.8.4.4 The Lifepak® 6s functioned properly after the low temperature storage test. Criterion met.

2.9 HUMIDITY TEST [IAW MIL-STD-810D, METHOD 507.2]

2.9.1 Objective

To determine the ability of the Lifepak® 6s to operate satisfactorily for short periods of time during exposure to highly humid conditions.

2.9.2 Criterion

The Lifepak® 6s will demonstrate consistent and accurate operation while exposed to a high humidity environment.

2.9.3 Test procedure

2.9.3.1 A pretest performance check was conducted to ensure the proper operation of the Lifepak® 6s.

2.9.3.2 The humidity test was conducted in a Tenney Engineering model ZWUL-10107D walk-in controlled environment chamber*. This test is based on MIL-STD-810D, Method 507.2. For the humidity test, the Lifepak® 6s was placed in operation on the floor of the environmental chamber. The chamber temperature was raised to a temperature of 30°C and a relative humidity of 95 percent within 25 minutes. Temperature and relative humidity were maintained for 4 hours. The environmental control system is capable of regulating temperature within ± 2°C and humidity within ± 5 percent RH. At 45-minute intervals the performance of the blood pressure monitor was checked. The chamber door was opened briefly to minimize the change in chamber conditions. The chamber and the Lifepak® 6s were returned to ambient conditions before the posttest performance validation check was conducted.

2.9.3.3 A posttest performance check was conducted to ensure the proper operation of the Lifepak® 6s.
2.9.4 Test findings

2.9.4.1 The pretest performance check met criterion 2.1.2.2.

2.9.4.2 No failures were noted in the Lifepak® 6s performance checks conducted during the exposure to the high humidity environment. Criterion met.

2.9.4.3 The posttest performance check met criterion 2.1.2.2.

2.10.1 Objectives

2.10.1.1 To assess the maximum levels of radiated electromagnetic emissions produced by the Lifepak® 6s in the 14 kHz to 12.4 GHz frequency range.

2.10.1.2 To assess the tolerances of radiated electromagnetic susceptibility of the Lifepak® 6s within the 10 kHz to 10 GHz electric field.

2.10.1.3 To assess the maximum levels of conducted electromagnetic emissions produced by the Lifepak® 6s in the 10 kHz to 50 MHz frequency ranges.

2.10.1.4 To assess the tolerances of conducted electromagnetic susceptibility of the Lifepak® 6s within the range of 50 kHz to 400 MHz and power spikes.

2.10.2 Criteria

2.10.2.1 The Lifepak® 6s will not produce emissions in excess of the limits set forth in MIL-STD-461A, Notice 4, paragraph 6.13.

2.10.2.2 The Lifepak® 6s will not malfunction when it is subjected to radiated emissions as specified in MIL-STD-461A, Notice 4, paragraph 6.20.

2.10.2.3 The Lifepak® 6s will not conduct emissions in excess of the limits set forth in MIL-STD-461A, Notice 4, paragraphs 6.1 and 6.2.

2.10.2.4 The Lifepak® 6s will not malfunction when it is subjected to conducted emissions as specified in MIL-STD-461A, Notice 4, paragraphs 6.7 and 6.10.
2.10.3 Test procedure

2.10.3.1 The radiated emissions test was performed according to MIL-STD-462, Notice 3, Method RE02. The Lifepak® 6s was positioned on a wooden test stand inside the EMI chamber, 1 meter away from the receiving antennas. The antennas were mounted for both vertical and horizontal polarities and connected to EMI receivers. While the Lifepak® 6s was operating, the frequency spectrum (14 kHz to 12.4 GHz) was scanned for emissions. The Lifepak® 6s was operated with ac and battery power.

2.10.3.2 The radiated susceptibility test was performed according to MIL-STD-462, Notice 3, Method RS03. The Lifepak® 6s was positioned on a wooden test stand inside the EMI chamber 1 meter away from the transmitting antennas. The antennas were mounted for both vertical and horizontal polarities and connected to radio frequency (RF) transmitters. While the Lifepak® 6s was operating, it was monitored for faulty operation during exposures to fields of 1 V/m from 10 kHz to 2 MHz, and 5 V/m from 2 to 30 MHz, 10 V/m from 30 MHz to 2 GHz, and 5 V/m from 2 to 10 GHz. The Lifepak® 6s was operated with ac and battery power.

2.10.3.3 The conducted emissions tests were performed according to MIL-STD-462, Notice 3, Methods CE02 and CE04. The Lifepak® 6s was placed on a grounded, copper-covered workbench. The top of the workbench was 1 meter from floor level, 1.37 meters long and 0.81 meters wide. Power was supplied via a pair of line impedance stabilization networks (LISN) and a test jig. The test jig is a wooden tray with two power receptacles and two slots to hold current probes in place around power supply conductors. While the Lifepak® 6s was operating, the frequency range (10 kHz to 50 MHz) was scanned for emissions conducted in the power cable from the Lifepak® 6s.

2.10.3.4 The conducted susceptibility spike test was performed on a chemical resistant counter top according to MIL-STD-462, Notice 3, Method CS06. Power was supplied via a customized metal connection box. The connection box has two power receptacles and four banana jacks on its front panel. Connections to the individual power lines were made in series through the banana jacks. Transient spikes of 100 volts, 10 microseconds were generated with a Solar Electronics model 8282-1 transient pulse generator* and induced onto the power leads at the connection box banana jacks. The spikes were monitored with a Tektronix 2235 oscilloscope* connected to a power receptacle on the connection box. The Lifepak® 6s was plugged into the other receptacle on the connection box, placed in operation. It was observed visually for correct operation while it was subjected to the power line spikes.
2.10.3.5 The conducted susceptibility test was performed according to MIL-STD-462, Notice 3, Method CS02. The Lifepak® 6s was placed on a grounded, copper-covered workbench. Radio frequency interference was induced on the power leads and measured at the Lifepak® 6s power cable. The frequency of the interference was incremented over the 50 kHz to 400 MHz range while the Lifepak® 6s was operated. It was observed visually for proper operation while it was subjected to the radio interference on the power leads. Each frequency was held for 15 seconds.

2.10.4 Test findings

2.10.4.1 During the radiated emissions test, emissions which exceeded specification limits of MIL-STD-461A, Notice 4, were detected. These included:

<table>
<thead>
<tr>
<th>Frequency range</th>
<th>Emission exceeding standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>88 kHz - 8.43 MHz</td>
<td>1.3 - 41.3 dB (NB)</td>
</tr>
<tr>
<td>8.43 - 56.46 MHz</td>
<td>2.2 - 51.8 dB (NB)</td>
</tr>
<tr>
<td>35 kHz - 9.20 MHz</td>
<td>0.9 - 35.5 dB (BB)</td>
</tr>
<tr>
<td>2.4 MHz</td>
<td>23.2 dB (BB)</td>
</tr>
<tr>
<td>9 - 45 MHz</td>
<td>0.4 - 68 dB (BB)</td>
</tr>
<tr>
<td>100 - 968.75 MHz</td>
<td>0.1 - 49.3 dB (BB)</td>
</tr>
</tbody>
</table>

Criterion partially met.

2.10.4.2 The Lifepak® 6s was susceptible to radio frequency interference in the testing range and magnitude. These included:

<table>
<thead>
<tr>
<th>Frequency range</th>
<th>Threshold of susceptibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.8 - 12.0 MHz</td>
<td>1.41 - 3.15 V/m</td>
</tr>
<tr>
<td>20.8 - 22.4 MHz</td>
<td>0.16 - 2.65 V/m</td>
</tr>
<tr>
<td>30.0 - 142.2 MHz</td>
<td>1.68 - 7.94 V/m</td>
</tr>
<tr>
<td>166.0 - 196.6 MHz</td>
<td>3.16 - 6.31 V/m</td>
</tr>
<tr>
<td>200.0 - 216.0 MHz</td>
<td>1.78 - 5.01 V/m</td>
</tr>
<tr>
<td>244.0 - 256.0 MHz</td>
<td>2.66 - 5.96 V/m</td>
</tr>
<tr>
<td>304.0 - 316.0 MHz</td>
<td>2.51 - 5.01 V/m</td>
</tr>
</tbody>
</table>

Criterion partially met.
2.10.4.3 Narrowband and broadband signals were detected on the Lifepak® 6s power lines in the following frequency ranges.

<table>
<thead>
<tr>
<th>Frequency range</th>
<th>Emission exceeding standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>107 - 209 kHz</td>
<td>0.4 - 8.8 dB (NB)</td>
</tr>
<tr>
<td>1.31 - 1.79 MHz</td>
<td>0.2 - 2.4 dB (NB)</td>
</tr>
<tr>
<td>14.5 - 20.14 MHz</td>
<td>10.7 - 13.4 dB (NB)</td>
</tr>
<tr>
<td>250 - 933 kHz</td>
<td>2.4 - 10.4 dB (BB)</td>
</tr>
<tr>
<td>1.04 - 2.4 MHz</td>
<td>1.4 - 22.9 dB (BB)</td>
</tr>
<tr>
<td>10.75 MHz</td>
<td>13 dB (BB)</td>
</tr>
</tbody>
</table>

Criterion partially met.

2.10.4.4 The Lifepak® 6s was not susceptible to radio frequency interference (RFI) or test spikes during the conducted susceptibility tests. Criterion met.

2.11 IN-FLIGHT HUMAN FACTORS EVALUATION

2.11.1 Objective
 To assess the physical and/or functional compatibility of the Lifepak® 6s while in use onboard the aircraft.

2.11.2 Criterion
 The flight surgeon will be able to operate the Lifepak® 6s without physical or functional restrictions aboard the aircraft. Major areas of concern include: Proper operation, visual displays, controls, maintainability, conductors, fasteners, test points, test equipment, fuses and circuit breakers, labels and coding, and safety.

2.11.3 Test procedure

2.11.3.1 A human factors evaluation was performed IAW MIL-STD-1472D, AAMI Human factors engineering guidelines, and UL-544 to ensure the compatibility of the Lifepak® 6s and the in-flight environment. The flight surgeon conducted the test wearing a flight suit, flight gloves, and an SPH-4B flight helmet. An evaluation of the compatibility with the nuclear, biological, and chemical (NBC) protective equipment was not conducted. Due to restrictions of the AWR, testing was conducted during daylight hours only.

2.11.3.2 The Lifepak® 6s was placed on a seat in the aircraft and secured with straps. The Lifepak® 6s was tested using ac and battery power in all flight scenarios required by the In-Flight Test Operations Procedures (ITOP) (refer to section 3.2). Synchronized and routine defibrillation was initiated through a
ground at 100 and 360 joules energy setting in each flight scenario.

2.11.4 Test findings

During the in-flight human factors evaluation, the Lifepak® 6s was found to be satisfactory in all categories of the evaluation criteria. There were no problems with energizing or delivering defibrillator energy in a routine or synchronized mode. Criterion met.

2.12 IN-FLIGHT EMI/EMC CHARACTERISTICS

2.12.1 Objective

To assess the EMI/EMC characteristics of the Lifepak® 6s with the host aircraft and its installed systems.

2.12.2 Criteria

2.12.2.1 The Lifepak® 6s will not radiate EMI to disrupt or interfere with other equipment or systems aboard the aircraft.

2.12.2.2 The aircraft will not radiate EMI to disrupt or interfere with the Lifepak® 6s's operation.

2.12.3 Test procedure

A qualitative EMI/EMC assessment was performed with both the Lifepak® 6s and the aircraft operating as source and victim. The Lifepak® 6s and applicable aircraft instruments and systems were monitored for unusual operation, readings, surges, or power anomalies for each checklist item.

2.12.4 Test findings

2.12.4.1 There were no adverse instances of EMI/EMC noted with the Lifepak® 6s acting as either the source or victim. Criterion met.

2.12.4.2 There were no adverse instances of EMI/EMC noted with the aircraft acting as either the source or victim. Criterion met.
Section 3. Supporting documentation

3.1 DETAILED TEST INFORMATION

3.1.1 General information

3.1.1.1 Lifepak® 6s testing is not considered a major action significantly affecting the quality of the human environment and, therefore, qualifies for categorical exclusion A-28, appendix A, AR 200-1.

3.1.1.2 A safety pilot will be designated for each flight. Flight operations will be conducted IAW the aircraft operator's manual, appropriate aircrew training manuals, and test item technical data.

3.1.2 Material description

3.1.2.1 The Physio Control Lifepak® 6s is a portable monitor and defibrillator system. The monitor and defibrillator are separate modules and may be used independently or as a single unit. When used together, the monitor slides over the defibrillator and locks in place. When synchronized defibrillation is selected, the defibrillator receives the QRS signal from the monitor module.

The electrocardiogram (ECG) monitor displays the ECG signal on a 3 x 4 inch cathode ray tube (CRT) in real time. A red light emitting diode (LED) digital display shows the heart rate. Rotary switches are used to set high and low heart rate alarms, ECG size, beep volume, freeze the ECG signal, or select the integral strip chart recorder. The patient connection is made through a 6-pin Physio Control patient cable connector. The unit operates from an internal battery or line voltage. Battery charging is indicated by an LED and the charge is shown on a charge level meter.

The defibrillator delivers energy with the integral paddles or internal paddles in a synchronized or non-synchronized mode. The defibrillation charge is selected as 5, 10, 20, 30, 50, 100, 150, 200, 300, or 360 joules. Push buttons turn power on, initiate the charge cycle, discharge the paddles internally, or select synchronized discharge mode. A digital readout displays the available energy when energized and the energy delivered.

3.1.2.2 Dimensions: ECG module: 27.3 x 30.5 x 11.4 cm (10.75 x 12 x 4.5 in. Defibrillator module: 48.9 x 30.5 x 11.4 cm (19.25 x 12 x 4.5 in).
3.1.2.3 Weight: **ECG module:** 6.70 kg (14.75 lbs)
Defibrillator module: 8.98 kg (19.75 lbs)

3.1.2.4 Power requirements:
ECG module: 100, 117, 220, 240, ± 10% Vac, 50 or 60 Hz, 30 watts during monitoring, 45 watts during recording. Battery type is nickel-cadmium, 14.4 V, 1.5 Ah, with a typical capacity of 3 hours continuous monitoring or 1 hour continuous recording. Charge time for a depleted battery is 16 hours.

Defibrillator module: 100, 117, 220, 240, ± 10% Vac, 50 or 60 Hz, 160 watts during defibrillator charge. Battery type is nickel-cadmium, 12 V, 1 Ah, with typical capacity of 25 360-joule discharges. Charge time for a depleted battery is 16 hours.

3.1.2.5 Environmental considerations: atmospheric pressure, 500 to 775 mmHg; relative humidity, 0 to 95%; operating temperature, 0 to 45°C; storage temperature, -30 to +65°C.

3.1.2.6 Defibrillator charge and synchronization: charge to 360 joules in less than 10 seconds at 25°C with ac power or fully charged battery; charge to 360 joules in less than 12 seconds with battery operation after 15 maximum discharges. Defibrillator will synchronize discharge 20 ms after marker on cardioscope (R-wave).
3.2 TEST DATA

3.2.1 Photographic description
3.2.2 Aircraft equipment list

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Nomenclature</th>
</tr>
</thead>
</table>
| 1 | Receiver radio -- R-1496A/ARN-89
(automatic direction finder) |
| 2 | Displacement gyro -- CN-1314/A |
| 3 | Gyro directional -- CN-998/ASN-43 |
| 4 | Signal data converter -- CV-3338/ASN-128 |
| 5 | Receiver -- R-2139/ARN-123
(VOR/LOC/MB/GS) |
| 6 | Command instrument system processor -- 70600-01038-101 |
| 7 | SAS amplifier -- 70901-02908-104
(flight control stability augmentation system) |
| 8 | Rate gyro -- TRU-2A/A |
| 9 | Amplifier, impedance -- AM-4859A/ARN-89 |
| 10 | Cargo hook -- FE-7590-145 |
| 11 | Receiver, radar -- RT-1193/ASN-128
(doppler navigation receiver) |
| 12 | Barometric altimeter -- AAU-31/A-1 |
| 13 | Barometric altimeter -- AAU-32A |
| 14 | Receiver/transmitter -- RT-1300/ARC-186
(VHF-AM and/or FM radio) |
| 15 | UHF-AM radio set -- RT-1518/ARC-164 |
| 16 | Interphone control -- C6533/ARC
(aircraft intercom control) |
| 17 | Receiver/transmitter -- RT-1115D/APN-209
(radar altimeter) |
| 18 | Indicator altimeter -- ID-1917C/APN-209
(radar altimeter) |
| 19 | Control radio set -- C-7392A/ARN-89
(automatic direction finder) |
| 20 | Comparator signal data -- CM-482/ARC-186
(comparator for ARC-186) |
| 21 | Receiver/transmitter -- RT-1296A/APX-100
(transponder with IFF) |
| 22 | Computer display unit -- CP-1252/ASN-128
(doppler navigation system) |
| 23 | Compass set controller -- C-8021E/ASN75 |
| 24 | Magnetic compass - standby -- MS-17983-4 |
In-flight test data card

DATA CARD FORMAT

GUIDELINE FOR DATA COLLECTION

IN-FLIGHT SUITABILITY TEST OF MEDICAL ITEMS

<table>
<thead>
<tr>
<th>1. Installation/removal.</th>
<th>Suitable</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Weight and balance (DD Form 365-4, Clearance Form F).</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>b. Space/area allocation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) Operational requirements.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(2) Storage requirements.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>c. Interface connections (safe, positive, secure).</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>d. Installation/removal (expedient/easily achieved).</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>e. Mounting/final configuration (functional/stable).</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Operations and performance.</th>
<th>Suitable</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Manufacturer's operating instruction.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>b. Medical item operation before aircraft run-up.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>c. System interface during aircraft engine run-up and medical item operation (EMI switchology checklist).</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(1) Aircraft voltage output.</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

3-5
<table>
<thead>
<tr>
<th>Suitable</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

(2) Flight control function (UH-60). X

(3) Stabilator function (UH-60). X

(4) Radio communication vs. medical item operation.
 - (a) FM X
 - (b) UHF X
 - (c) VHF X

(5) Navigation equipment vs. medical item operation.
 - (a) Transponder X
 - (b) ADF X
 - (c) VOR X
 - (d) Doppler X

(6) Radar altimeter operation vs. medical item operation. X

d. System interface during aircraft hover and medical item operation (EMI switchology checklist).

(1) Voltage output. NA

(2) Radio communication vs. medical item operation.
 - (a) FM X
 - (b) UHF X
 - (c) VHF X
(3) Navigation equipment operation vs. medical item operation.

<table>
<thead>
<tr>
<th>Suitable</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

(a) Transponder
(b) ADF
(c) VOR
(d) Doppler

(e) Flight mission profile vs. medical item operation (EMI switchology checklist).

(1) Straight and level (1000 ft MSL for 20 minutes).

(a) Compatibility of flight mode and medical item operation.

(b) Radio communication vs. medical item operation.

a. FM
b. UHF
c. VHF

(2) NOE (20 minutes). Compatibility of flight mode and medical item operation.

(3) FM homing (10 minutes).

(4) Doppler navigation vs. medical item operation.

(a) Initialize function.
(b) Fix function.
(c) Update function.
(5) VOR navigation
7000 ft MSL for 20 minutes) vs. medical item operation.

(6) ILS approach vs. medical item operation.

f. Medical item operation after engine shutdown (external power source).

g. Restrictions to the medical item's use (i.e., electrical connectors).

h. Deviations from the laboratory test results.

(1) Electrical/electronic.

(2) Mechanical environment.

(3) Human factors (user interface, controls, markings, lighting, egress).

(4) Safety.

3. Deviations from the in-flight test protocol.

a. The VOR navigation portion of the in-flight test conducted at 2000 feet MSL due to air traffic control clearance.
EMI Switchology Checklist

EMI SWITCHOLOGY CHECKLIST UH-60 AIRCRAFT

IN-FLIGHT SUITABILITY OF MEDICAL ITEMS

<table>
<thead>
<tr>
<th>ENG INSTRUMENTS/CDU</th>
<th>No EMI Affect</th>
<th>EMI Affected Gnd</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel quantity</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel indicator test</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSN oil temperature</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMSN oil pressure</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#1 engine oil temperature</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2 engine oil temperature</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#1 engine oil pressure</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2 engine oil pressure</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#1 TGT</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2 TGT</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#1 Ng speed</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2 Ng speed</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDU digits on/off</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDU instruments dim</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ENG INSTRUMENTS/PLT PDU</th>
<th>No EMI Affect</th>
<th>EMI Affected Gnd</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1 engine RPM</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2 engine RPM</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotor RPM</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#1 torque</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2 torque</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ENG INSTRUMENTS/COPLT PDU</th>
<th>No EMI Affect</th>
<th>EMI Affected Gnd</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1 engine RPM</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2 engine RPM</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotor RPM</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#1 torque</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2 torque</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ENG CONTROLS

<table>
<thead>
<tr>
<th>No EMI</th>
<th>EMI Affected</th>
<th>Explanation</th>
<th>Affect</th>
<th>Gnd</th>
<th>Flt</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1 overspeed</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2 overspeed</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPM switch</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#1 engine anti-ice</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2 engine anti-ice</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#1 inlet anti-ice</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2 inlet anti-ice</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RADIO EQUIPMENT

<table>
<thead>
<tr>
<th>No EMI</th>
<th>EMI Affected</th>
<th>Explanation</th>
<th>Affect</th>
<th>Gnd</th>
<th>Flt</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICS, C-6533 ARC</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VHF-FM, ARC-186/115</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VHF-AM, ARC-186/115</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UHF-AM, ARC-164(V)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crypto, KY-28</td>
<td>Not installed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radio retransmissions PLN</td>
<td>Not installed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transponder, APX-100(V)</td>
<td>Not installed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KIT-1A/TSEC IFF computer</td>
<td>Not keyed with code</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MISSION EQUIPMENT

<table>
<thead>
<tr>
<th>No EMI</th>
<th>EMI Affected</th>
<th>Explanation</th>
<th>Affect</th>
<th>Gnd</th>
<th>Flt</th>
</tr>
</thead>
<tbody>
<tr>
<td>RWR, APR-39(V)</td>
<td>Not installed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IR CM, ALQ-144</td>
<td>Not installed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chaff dispenser, M-130</td>
<td>Not installed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cargo hook system</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HYDRAULIC CONTROL SYSTEM

<table>
<thead>
<tr>
<th>No EMI</th>
<th>EMI Affected</th>
<th>Explanation</th>
<th>Affect</th>
<th>Gnd</th>
<th>Flt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backup hydraulic pump</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Servo off 1st stage/PLT</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Servo off 2nd stage/PLT</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Servo off 1st stage/COPLT</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Servo off 2nd stage/COPLT</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydraulic leak test</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tail servo</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boost servos</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3-10
<table>
<thead>
<tr>
<th>FUEL SYSTEM</th>
<th>No EMI Affect</th>
<th>EMI Affected</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel pump switch</td>
<td>X</td>
<td>Gnd Flt</td>
<td></td>
</tr>
<tr>
<td>Fuel boost pump #1</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel boost pump #2</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel cont panel ESSS</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WARNING SYSTEM</th>
<th>No EMI Affect</th>
<th>EMI Affected</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low rotor RPM</td>
<td>X</td>
<td>Gnd Flt</td>
<td></td>
</tr>
<tr>
<td>Master caution</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caution advisory</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fire warning</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFCS</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stabilator</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#1 engine out</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2 engine out</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAVIGATION INSTRUMENTS</th>
<th>No EMI Affect</th>
<th>EMI Affected</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADF</td>
<td>X</td>
<td>Gnd Flt</td>
<td></td>
</tr>
<tr>
<td>Magnetic compass</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONUS NAV, ARN-123</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doppler, ASN-128</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gyro mag compass (PLT)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gyro mag compass (COPLT)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compass cont panel, ASN-75</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSI</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FLIGHT INSTRUMENTS</th>
<th>No EMI Affect</th>
<th>EMI Affected</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radar altimeter</td>
<td>X</td>
<td>Gnd Flt</td>
<td></td>
</tr>
<tr>
<td>Stabilator pos indicator</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSI</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIS mode select</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAS 1</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAS 2</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPS</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trim</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Go-around enable</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclic trim release</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclic stick trim</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALR encoder</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3-11
<table>
<thead>
<tr>
<th>FLIGHT INSTRUMENTS (CONT)</th>
<th>No EMI Affect</th>
<th>EMI Affected Gnd</th>
<th>Flt</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSI/VSI mode select (PLT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DPLR</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOR/ILS</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BACK CRS</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM HOME</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TURN RATE</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRS HDG</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VERT GYRO</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRG 2</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSI/VSI Mode Select (COPLT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DPLR</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOR/ILS</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BACK CRS</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM HOME</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TURN RATE</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRS HDG</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VERT GYRO</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRG 2</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MISCELLANEOUS EQUIPMENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blade deice</td>
<td>Not tested</td>
<td></td>
<td></td>
<td>Ambient temperature was out of test limits.</td>
</tr>
<tr>
<td>Windshield anti-ice</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pitot heat</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vent blower</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Windshield wiper</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heater</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APU</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generator #1</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generator #2</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generator APU</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air source heat start</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tail wheel lock</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gyro erect</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3-12
<table>
<thead>
<tr>
<th>LIGHTING</th>
<th>No EMI</th>
<th>Gnd</th>
<th>Flt</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cockpit utility</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cockpit flood</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cabin dome</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Search light</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Search light control</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landing light</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flt instr lights (PLT)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flt instr lights (COPLT)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonflight instr lights</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Console lights, upper</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Console lights, lower</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position lights</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formation lights</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anticollision lights</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NVG lighting</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3-13
3.2.6 Electrical safety test

Electrical Safety Test Report Form

Nomenclature: Defibrillator/monitor
Manufacturer: Physio Control
Model number: Lifepak® 6s
Serial number: 0019726 / 0019957
Military item number: None

Options installed: None

Date of test: 6 Aug 91

Performance:

Grounding conductor resistance (milliohms): 77.8

Leakage current - Case to ground (microamperes):

- unit off, grounded, normal polarity 4.6
- unit off, ungrounded, normal polarity 23.1
- unit off, ungrounded, reverse polarity 28.6
- unit on, grounded, normal polarity 4.6
- unit on, ungrounded, normal polarity 23.0
- unit on, ungrounded, reverse polarity 28.6

MAXIMUM LIMITS:

- ground resistance (milliohms): 150
- current (microamperes)
 - current (grounded, type A unit): 10
 - current (ungrounded, type A unit): 100
 - current (grounded, type B unit): 50
 - current (ungrounded, type B unit): 500

Comments on item setup or checks: None

Comments on test run (including interruptions): None
3.2.7 Human factors evaluation

Human Factors Evaluation
Report Form

Nomenclature: Defibrillator/monitor
Manufacturer: Physio Control
Model number: Lifepak® 6s
Serial number: 0019726 / 0019957
Military item number: None

Options installed: None

Date of test: 11 Sep 91

Item configuration during test: Item prepared for operation.

Checklist for HFE

RESULTS

VISUAL DISPLAYS: Satisfactory

display type, format, content
location of displays
indicator lights
scalar displays
color coding
legends and labels
cathode ray tubes
counters
flags, go-no-go, center-null indicators

Comments: Battery charge meters are very small.

CONTROLS: Unsatisfactory

location
characteristics of controls
labeling
control - display relationships

Comments: Rotary control on front panel are closer than recommended in guidelines. Power button for monitor is unlighted, but power button for defibrillator lights when activated.
TIME REQUIRED TO PREPARE FOR OPERATION (list in comment)

Comments: approximately 2 minutes.

MAINTAINABILITY: Satisfactory

component location
component characteristics
rests and stands
covers, cases, access doors
handles
lubrication
component mounting
cord storage provisions
external accessibility
internal accessibility
list special tools required
list realistic inspection requirements
list realistic inspection intervals

Comments: Operational checks should be performed as used and maintenance inspection every 6 months.

CONDUCTORS: Satisfactory

binding and securing
length
protection
routing
conductor coding
fabrication
connectors

Comments: None

FASTENERS: Satisfactory

access through inspection panel covers
enclosure fasteners
device mounting bolts and fasteners

Comments: None
TEST POINTS: Satisfactory

general location and mounting
test point labeling and coding

Comments: None

TEST EQUIPMENT: Satisfactory

general equipment self-test
indicators (list in comments)
controls positive indication of proper operation

Comments: None

FUSES AND CIRCUIT BREAKERS: NA

external accessibility
easy replacement or reset by operator

Comments: None

LABELS AND CODING: Satisfactory

placed above controls and displays
near or on the items they identify
not obscured by other equipment components
describe the function of the items they identify
readable from normal operating distance
conspicuous placards adjacent to hazardous items

Comments: None

SAFETY: Satisfactory

manual materials
fire and explosive protection
operator protection from mechanical hazards
patient protection from mechanical hazards
electrical safety (operator and patient)

Comments: None

3-19
3.2.8 **Altitude test**

Altitude Test Report Form

Nomenclature: Defibrillator/monitor
Manufacturer: Physio Control
Model number: Lifepak® 6s
Serial number: 0019726 / 0019957
Military item number: None

Options installed: None

Date of test: 28 Aug 91

Item configuration during test: Item sitting on chamber floor.

Performance test criteria: Accurate display of heart rate and correct delivery of defibrillator energy.

Ambient conditions outside chamber:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>20°C</td>
</tr>
<tr>
<td>Humidity</td>
<td>87% RH</td>
</tr>
<tr>
<td>Barometric pressure</td>
<td>1 atm</td>
</tr>
</tbody>
</table>

PRETEST DATA

Pretest performance check:

* Item functional (based on performance test criteria): Yes

Installation of item in test facility:

<table>
<thead>
<tr>
<th>Connections</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>to power</td>
<td>None</td>
</tr>
<tr>
<td>to simulators</td>
<td>Valmedix ECG</td>
</tr>
<tr>
<td>to dummy loads</td>
<td>None</td>
</tr>
<tr>
<td>unconnected terminals</td>
<td>ac power</td>
</tr>
</tbody>
</table>

IN-TEST DATA

Time of test start: 1340

POSTTEST DATA

Posttest performance check (complete check of item and accessories):
Time of test end: 1510

Item functional (based on performance test criteria): Yes

Deviation from pretest: None

Comments on item setup or checks: None

Comments on test run (including interruptions): None

Comments on other data: None
3.2.9 **Vibration test**

Vibration Test Report Form

Nomenclature: Defibrillator/monitor
Manufacturer: Physio Control
Model number: Lifepak® 6s
Serial number: 0019726 / 0019957
Military item number: None

Options installed: None

Date of test: 27 Aug 91

Item configuration during test: Item strapped down on vibration table fixture.

Performance test criteria: Accurate display of heart rate and correct delivery of defibrillator energy.

PRETEST DATA

Pretest performance check:
Item functional (based on performance test criteria): Yes

Installation of item in test facility:
- list connections to power: 120 Vac
- list connections to simulators: Valmedix ECG
- list connections to dummy loads: None
- list unconnected terminals: None

Ambient conditions

- Temperature: 19°C
- Humidity: 72% RH
- Barometric pressure: 1 atm

IN-TEST DATA

Data and performance checks during test:

Time at first check:
X: 1325
Y: 1425
Z: 1435

Item functional (based on performance test criteria): Yes

Deviation from pretest: None

3-22
Time at second check:
X: 1410 Y: 1510 Z: 1525

Item functional (based on performance test criteria): Yes
Deviation from pretest: None

POSTTEST DATA

Time at test end:
X: 1415 Y: 1520 Z: 1530

Posttest performance check (complete check of item and accessories):

Item functional (based on performance test criteria): Yes
Item intact: Yes
Deviation from pretest: None
Comments on item setup or checks: None
Comments on test run (including interruptions): None
Comments on other data: Test times for the three axes are on different days.
3.2.10 High temperature test

High Temperature Test
(Equipment Operating)
Report Form

Nomenclature: Defibrillator/monitor
Manufacturer: Physio Control
Model number: Lifepak® 6s
Serial number: 0019726 / 0019957
Military item number: None

Options installed: None

Date of test: 20 Aug 91

Item configuration during test: Unit was sitting on chamber floor, operating on ac power.

Performance test criteria: Accurate display of heart rate and correct delivery of defibrillator energy.

Ambient conditions outside chamber:
- Temperature 24°C
- Humidity 59% RH
- Barometric pressure 1 atm

PRETEST DATA

Pretest performance check:
- Item functional (based on performance test criteria): Yes

Installation of item in test facility:
- list connections to power 120 Vac
- list connections to simulators Valmedix ECG
- list connections to dummy loads None
- list unconnected terminals None
- distance from north wall (meters) 0.56
- distance from south wall (meters) 1.02
- distance from east wall (meters) 1.57
- distance from west wall (meters) 1.45
- distance from ceiling (meters) 1.19
- distance from floor (meters) 0.97

IN-TEST DATA

Time of test start: 1102

Performance checks during test:
First check:

Time: 1132
Temperature: 49°C
Humidity: 15% RH
Barometric pressure: 1 atm
Item functional (based on performance test criteria): Yes, all ok
Deviation from pretest: None

Second check:

Time: 1202
Temperature: 49°C
Humidity: 15% RH
Barometric pressure: 1 atm
Item functional (based on performance test criteria): Yes, all ok
Deviation from pretest: None

Third check:

Time: 1232
Temperature: 49°C
Humidity: 15% RH
Barometric pressure: 1 atm
Item functional (based on performance test criteria): Yes, all ok
Deviation from pretest: None

POSTTEST DATA

Posttest performance check: (complete check of item and accessories)

Time of test end: 1400
Item functional (based on performance test criteria): Yes, all ok
Deviation from pretest: None

Comments on item setup or checks: None

Comments on test run (including interruptions): None

Comments on other data: None
3.2.11 High temperature storage test

High Temperature Test
(Equipment in Storage)
Report Form

Nomenclature: Defibrillator/monitor
Manufacturer: Physio Control
Model number: Lifepak® 6s
Serial number: 0019726 / 0019957
Military item number: None

Options installed: None

Date of test: 22 Aug 91

Item configuration during test: Sitting on chamber floor, in storage, not operating.

Performance test criteria: Accurate display of heart rate and correct delivery of defibrillator energy.

Ambient conditions outside chamber:
- Temperature: 24°C
- Humidity: 57% RH
- Barometric pressure: 1 atm

PRETEST DATA

Pretest performance check:
- Item functional (based on performance test criteria): Yes

Installation of item in test facility:
- list connections to power: 120 Vac
- list connections to simulators: Valmedix ECG
- list connections to dummy loads: None
- list unconnected terminals: None
- distance from north wall (meters): 0.56
- distance from south wall (meters): 1.02
- distance from east wall (meters): 1.57
- distance from west wall (meters): 1.45
- distance from ceiling (meters): 1.19
- distance from floor (meters): 0.97

Time of test start: 0830
POSTTEST DATA

Posttest performance check:
(complete check of item and accessories)

Time of test end: 1515
Item functional (based on performance test criteria): Yes
Deviation from pretest: None

Comments on item setup or checks:
The unit was allowed to cool for 1 hour at ambient conditions before the posttest performance check was completed.

Comments on test run (including interruptions): None

Comments on other data: None
3.2.12 **Low temperature test**

Low Temperature Test
(Equipment Operating)
Report Form

Nomenclature: Defibrillator/monitor
Manufacturer: Physio Control
Model number: Lifepak® 6s
Serial number: 0019726 / 0019957
Military item number: None

Options installed: None

Date of test: 21 Aug 91

Item configuration during test: Sitting on chamber floor.

Performance test criteria: Accurate display of heart rate and correct delivery of defibrillator energy.

Ambient conditions outside chamber:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>23°C</td>
</tr>
<tr>
<td>Humidity</td>
<td>52% RH</td>
</tr>
<tr>
<td>Barometric pressure</td>
<td>1 atm</td>
</tr>
</tbody>
</table>

PRETEST DATA

Pretest performance check:
Item functional (based on performance test criteria): Pass

Installation of item in test facility:

<table>
<thead>
<tr>
<th>Connection Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>list connections to power</td>
<td>120 Vac</td>
</tr>
<tr>
<td>list connections to simulators</td>
<td>Valmedix ECG</td>
</tr>
<tr>
<td>list connections to dummy loads</td>
<td>None</td>
</tr>
<tr>
<td>list unconnected terminals</td>
<td>None</td>
</tr>
<tr>
<td>distance from north wall (meters)</td>
<td>0.56</td>
</tr>
<tr>
<td>distance from south wall (meters)</td>
<td>1.02</td>
</tr>
<tr>
<td>distance from east wall (meters)</td>
<td>1.57</td>
</tr>
<tr>
<td>distance from west wall (meters)</td>
<td>1.45</td>
</tr>
<tr>
<td>distance from ceiling (meters)</td>
<td>1.19</td>
</tr>
<tr>
<td>distance from floor (meters)</td>
<td>0.97</td>
</tr>
</tbody>
</table>

Time of test start: 0800

Performance checks during test:
First check:

Time: 0830
Temperature: 0°C
Humidity: NA
Barometric pressure: 1 atm
Item functional (based on performance test criteria): Yes
Deviation from pretest: None

Second check:

Time: 0900
Temperature: 0°C
Humidity: NA
Barometric pressure: 1 atm
Item functional (based on performance test criteria): Yes
Deviation from pretest: None

Third check:

Time: 0930
Temperature: 0°C
Humidity: NA
Barometric pressure: 1 atm
Item functional (based on performance test criteria): Yes
Deviation from pretest: None

POSTTEST DATA

Posttest performance check:
(complete check of item and accessories)

Time of test end: 1015
Item functional (based on performance test criteria): Yes
Deviation from pretest: None

Comments on item setup or checks: None
Comments on test run (including interruptions): None
Comments on other data: None
3.2.13 **Low temperature storage test**

Low Temperature Test
(Equipment in Storage)
Report Form

Nomenclature: Defibrillator/monitor
Manufacturer: Physio Control
Model number: Lifepak® 6s
Serial number: 0019726 / 0019957
Military item number: None

Options installed: None

Date of test: 23 Aug 91

Item configuration during test: Sitting on chamber floor, not operating, in storage.

Performance test criteria: Accurate display of heart rate and correct delivery of defibrillator energy.

Ambient conditions outside chamber:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>24°C</td>
</tr>
<tr>
<td>Humidity</td>
<td>55% RH</td>
</tr>
<tr>
<td>Barometric pressure</td>
<td>1 atm</td>
</tr>
</tbody>
</table>

PRETEST DATA

Pretest performance check:

Item functional (based on performance test criteria): Yes

Installation of item in test facility:

<table>
<thead>
<tr>
<th>Connection</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>list connections to power</td>
<td>120 Vac</td>
</tr>
<tr>
<td>list connections to simulators</td>
<td>Valmedix ECG</td>
</tr>
<tr>
<td>list connections to dummy loads</td>
<td>None</td>
</tr>
<tr>
<td>list unconnected terminals</td>
<td>None</td>
</tr>
<tr>
<td>distance from north wall (m)</td>
<td>0.56</td>
</tr>
<tr>
<td>distance from south wall (m)</td>
<td>1.02</td>
</tr>
<tr>
<td>distance from east wall (m)</td>
<td>1.57</td>
</tr>
<tr>
<td>distance from west wall (m)</td>
<td>1.45</td>
</tr>
<tr>
<td>distance from ceiling (m)</td>
<td>1.19</td>
</tr>
<tr>
<td>distance from floor (m)</td>
<td>0.97</td>
</tr>
</tbody>
</table>

Time of test start: 0930
Midtest time: 1230
Midtest temperature: -46°C
POSTTEST DATA

Posttest performance check:
(complete check of item and accessories)

Time of test end: 1545
Item functional (based on performance test criteria): Yes
Deviation from pretest: None

Comments on item setup or checks: None
Comments on test run (including interruptions): None
Comments on other data: None
3.2.14 Humidity test

Humidity Test
Report Form

Nomenclature: Defibrillator/monitor
Manufacturer: Physio Control
Model number: ModelLifepak® 6s
Serial number: 0019726 / 0019957
Military item number: None

Options installed: None

Date of test: 21 Aug 91

Item configuration during test: The unit was sitting on the
chamber floor, operating on ac power.

Performance test criteria: Accurate display of heart rate and
correct delivery of defibrillator energy.

Ambient conditions outside chamber:

Temperature	25°C
Humidity	57% RH
Barometric pressure	1 atm

PRETEST DATA

Pretest performance check:
Item functional (based on performance test criteria): Yes

Installation of item in test facility:
 list connections to power 120 Vac
 list connections to simulators Valmedix ECG
 list connections to dummy loads None
 list unconnected terminals None
 distance from north wall (meters) 0.56
 distance from south wall (meters) 1.02
 distance from east wall (meters) 1.57
 distance from west wall (meters) 1.45
 distance from ceiling (meters) 1.19
 distance from floor (meters) 0.97

IN-TEST DATA

Time of test start: 1100
Performance checks during test:

First check:

Time: 1145
Temperature: 29.5°C
Humidity: 95% RH
Barometric pressure: 1 atm
Item functional (based on performance test criteria): Yes
Deviation from pretest: None

Second check:

Time: 1230
Temperature: 29.5°C
Humidity: 95% RH
Barometric pressure: 1 atm
Item functional (based on performance test criteria): Yes
Deviation from pretest: None

Third check:

Time: 1315
Temperature: 29.5°C
Humidity: 95% RH
Barometric pressure: 1 atm
Item functional (based on performance test criteria): Yes
Deviation from pretest: None

Fourth check:

Time: 1400
Temperature: 29.5°C
Humidity: 95% RH
Barometric pressure: 1 atm
Item functional (based on performance test criteria): Yes
Deviation from pretest: None

Fifth check:

Time: 1445
Temperature: 29.5°C
Humidity: 95% RH
Barometric pressure: 1 atm
Item functional (based on performance test criteria): Yes
Deviation from pretest: None
POSTTEST DATA

Posttest performance check:
(complete check of item and accessories)
Time of test end: 1500
Item functional (based on performance test criteria): Yes
Deviation from pretest: None

Comments on item setup or checks: None

Comments on test run (including interruptions): None

Comments on other data: None
3.2.15 **Electromagnetic characteristics test**

**

Electromagnetic Characteristics Testing
Evaluation of Performance
**

T & E Item Number: 31 Date: 5 Aug 91

Nomenclature: Defibrillator/monitor
Manufacturer: Physio Control
Model number: Lifepak® 6s
Serial number: 0019726 / 0019957
Military item number: NA

**

Conducted Emissions Tests

<table>
<thead>
<tr>
<th>Test ID</th>
<th>Testing configuration(s):</th>
<th>Performance (pass/fail):</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE01</td>
<td>NA</td>
<td>NA</td>
<td>No dc conductors</td>
</tr>
<tr>
<td>CE02</td>
<td>Operating on copper work bench.</td>
<td>Pass</td>
<td>No signal failures.</td>
</tr>
<tr>
<td>CE04</td>
<td>Operating on copper work bench.</td>
<td>Fail</td>
<td>NB: 107 - 209 kHz, 0.4 - 8.8 dB; 1.31 - 1.79 MHz, 0.2 - 2.4 dB; 14.5 - 20.14 MHz, 10.7 - 13.4 dB; BB: 250 - 933 kHz, 2.4 - 10.4 dB; 1.04 - 2.4 MHz, 1.4 - 22.9 dB; 10.75 MHz, 13 dB.</td>
</tr>
</tbody>
</table>

Conducted Susceptibility Tests

<table>
<thead>
<tr>
<th>Test ID</th>
<th>Testing configuration(s):</th>
<th>Performance (pass/fail):</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS02</td>
<td>Operating on test bench, connected to test jig.</td>
<td>Pass</td>
<td>None</td>
</tr>
</tbody>
</table>

3-35
CS06 Testing configuration(s): Operating on counter top.
Performance (pass/fail): Pass
Comments: not susceptible to test spikes

Radiated Emissions Tests

RE02 Testing configuration(s): Operating on wooden test stand in the EMC chamber.
Performance (pass/fail): Fail
Comments:

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Failure Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB: 88 kHz - 8.43 MHz</td>
<td>1.3 - 41.3 dB</td>
</tr>
<tr>
<td>8.43 - 56.46 MHz</td>
<td>2.2 - 51.8 dB</td>
</tr>
<tr>
<td>BB: 35 kHz - 9.20 MHz</td>
<td>0.9 - 35.5 dB</td>
</tr>
<tr>
<td>2.4 MHz</td>
<td>23.2 dB</td>
</tr>
<tr>
<td>9.0 - 45.0 MHz</td>
<td>0.4 - 68.0 dB</td>
</tr>
<tr>
<td>100.0 - 968.75 MHz</td>
<td>0.1 - 49.3 dB</td>
</tr>
</tbody>
</table>

Radiated Susceptibility Tests

RS03 Testing configuration(s): Operating on the wooden test stand in the EMC chamber.
Performance (pass/fail): Fail
Comments: Susceptibility manifested by irregular ECG baseline, erratic video display, loss of numerical rate display, or erroneous rate display.
Failure frequency and threshold of susceptibility:

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Threshold of susceptibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.8 - 12.0 MHz</td>
<td>1.41 - 3.15 V/m</td>
</tr>
<tr>
<td>20.8 - 22.4 MHz</td>
<td>0.16 - 2.65 V/m</td>
</tr>
<tr>
<td>30.0 - 142.2 MHz</td>
<td>1.68 - 7.94 V/m</td>
</tr>
<tr>
<td>166.0 - 196.6 MHz</td>
<td>3.16 - 6.31 V/m</td>
</tr>
<tr>
<td>200.0 - 216.0 MHz</td>
<td>1.78 - 5.01 V/m</td>
</tr>
<tr>
<td>244.0 - 256.0 MHz</td>
<td>2.66 - 5.96 V/m</td>
</tr>
<tr>
<td>304.0 - 316.0 MHz</td>
<td>2.51 - 5.96 V/m</td>
</tr>
</tbody>
</table>
3.3 CRITERIA, SIGNIFICANT PROBLEMS, AND SUGGESTED IMPROVEMENTS

3.3.1 Criteria

<table>
<thead>
<tr>
<th>No.</th>
<th>Criteria (source)</th>
<th>Remarks</th>
<th>Applicable subparagraph</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The physical inventory is conducted solely for investigation and documentation.</td>
<td>NA</td>
<td>2.1.2.1</td>
</tr>
<tr>
<td>2</td>
<td>The will display consistent and accurate performance.</td>
<td>met</td>
<td>2.1.2.2</td>
</tr>
<tr>
<td>3</td>
<td>Verify manufacturer's specified full power internal battery life expectancy of 3 hours.</td>
<td>met</td>
<td>2.2.2</td>
</tr>
<tr>
<td>4</td>
<td>The will meet the limits established in NFPA 99 for electrical safety of medical equipment.</td>
<td>met</td>
<td>2.3.2</td>
</tr>
<tr>
<td>5</td>
<td>The will be rated satisfactory in all major categories of the evaluation. These include: Visual displays, controls, maintainability, conductors, fasteners, test points, test equipment, fuses and circuit breakers, labels and coding, and safety.</td>
<td>partially met</td>
<td>2.4.2</td>
</tr>
<tr>
<td>6</td>
<td>The will demonstrate proper operation while exposed to an altitude equivalency of 15,000 feet above sea level.</td>
<td>met</td>
<td>2.5.2</td>
</tr>
<tr>
<td>7</td>
<td>The will remain operational while exposed to vibrational stresses.</td>
<td>met</td>
<td>2.6.2</td>
</tr>
<tr>
<td>8</td>
<td>The will remain operational during the high temperature operation check.</td>
<td>met</td>
<td>2.7.2.1</td>
</tr>
<tr>
<td></td>
<td>Description</td>
<td>Met/Partially Met</td>
<td>Reference</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>-------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>9</td>
<td>The will remain operational after the high temperature storage.</td>
<td>met</td>
<td>2.7.2.2</td>
</tr>
<tr>
<td>10</td>
<td>The will remain operational during the low temperature operation check.</td>
<td>met</td>
<td>2.8.2.1</td>
</tr>
<tr>
<td>11</td>
<td>The will remain operational after the low temperature storage.</td>
<td>met</td>
<td>2.8.2.2</td>
</tr>
<tr>
<td>12</td>
<td>The will remain operational while exposed to a high humidity.</td>
<td>met</td>
<td>2.9.2</td>
</tr>
<tr>
<td>13</td>
<td>The will not produce emissions in excess of the limits set forth in MIL-STD-461A, Notice 4, paragraph 6.13.</td>
<td>partially met</td>
<td>2.10.2.1</td>
</tr>
<tr>
<td>14</td>
<td>The will not malfunction when it is subjected to radiated fields as specified in MIL-STD-461A, Notice 4, paragraph 6.20.</td>
<td>partially met</td>
<td>2.10.2.2</td>
</tr>
<tr>
<td>15</td>
<td>The will not conduct emissions in excess of the limits set forth in MIL-STD-461A, Notice 4, paragraph 6.2.</td>
<td>met</td>
<td>2.10.2.3</td>
</tr>
<tr>
<td>16</td>
<td>The will not malfunction when it is subjected to conducted emissions as specified in MIL-STD-461A, Notice 4, paragraph 6.7 and 6.10.</td>
<td>partially met</td>
<td>2.10.2.4</td>
</tr>
<tr>
<td>17</td>
<td>The flight surgeon will be able to operate the without physical or functional restrictions aboard the aircraft.</td>
<td>met</td>
<td>2.11.2.1</td>
</tr>
<tr>
<td>18</td>
<td>The will not radiate EMI to disrupt or interfere with the other equipment or systems aboard the aircraft.</td>
<td>met</td>
<td>2.12.2.2</td>
</tr>
</tbody>
</table>
19 The aircraft will not radiate EMI to disrupt or interfere with the Lifepak® 6s.

3.3.2 Significant problems which require corrective action

None

3.3.3 Suggested improvements

None
3.4 REFERENCES

3.5 ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ac</td>
<td>alternate current</td>
</tr>
<tr>
<td>AVSCOM</td>
<td>Army Aviation Systems Command</td>
</tr>
<tr>
<td>AWR</td>
<td>airworthiness release</td>
</tr>
<tr>
<td>BB</td>
<td>broadband</td>
</tr>
<tr>
<td>CAAF</td>
<td>Cairns Army Airfield</td>
</tr>
<tr>
<td>dc</td>
<td>direct current</td>
</tr>
<tr>
<td>EMC</td>
<td>electromagnetic compatibility</td>
</tr>
<tr>
<td>EMI</td>
<td>electromagnetic interference</td>
</tr>
<tr>
<td>fpm</td>
<td>feet per minute</td>
</tr>
<tr>
<td>GFE</td>
<td>government furnished equipment</td>
</tr>
<tr>
<td>Gpk</td>
<td>gravity, peak</td>
</tr>
<tr>
<td>G(rms)</td>
<td>gravity (root mean square)</td>
</tr>
<tr>
<td>Hz</td>
<td>hertz</td>
</tr>
<tr>
<td>IAW</td>
<td>in accordance with</td>
</tr>
<tr>
<td>ITOP</td>
<td>in-flight test operating procedure</td>
</tr>
<tr>
<td>IV</td>
<td>intravenous</td>
</tr>
<tr>
<td>kHz</td>
<td>kilohertz</td>
</tr>
<tr>
<td>LCD</td>
<td>liquid crystal display</td>
</tr>
<tr>
<td>LED</td>
<td>light emitting diode</td>
</tr>
<tr>
<td>LISN</td>
<td>line impedance stabilization network</td>
</tr>
<tr>
<td>MEDEVAC</td>
<td>medical evacuation</td>
</tr>
<tr>
<td>MHz</td>
<td>megahertz</td>
</tr>
<tr>
<td>MIL-STD</td>
<td>military standard</td>
</tr>
<tr>
<td>mm</td>
<td>millimeter</td>
</tr>
<tr>
<td>mmHg</td>
<td>millimeters of Mercury</td>
</tr>
<tr>
<td>MSL</td>
<td>mean sea level</td>
</tr>
<tr>
<td>NFPA</td>
<td>National Fire Prevention Association</td>
</tr>
<tr>
<td>NB</td>
<td>narrowband</td>
</tr>
<tr>
<td>NBC</td>
<td>nuclear, biological and chemical</td>
</tr>
<tr>
<td>NOE</td>
<td>nap-of-the-earth</td>
</tr>
<tr>
<td>NVG</td>
<td>night vision goggle</td>
</tr>
<tr>
<td>QRS</td>
<td>largest peak in ECG waveform</td>
</tr>
<tr>
<td>RF</td>
<td>radio frequency</td>
</tr>
<tr>
<td>RFI</td>
<td>radio frequency interference</td>
</tr>
<tr>
<td>RH</td>
<td>relative humidity</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>TB</td>
<td>technical bulletin</td>
</tr>
<tr>
<td>TFT</td>
<td>technical feasibility testing</td>
</tr>
<tr>
<td>T & E</td>
<td>test and evaluation</td>
</tr>
<tr>
<td>UES</td>
<td>Universal Energy Systems, Inc.</td>
</tr>
<tr>
<td>USAARL</td>
<td>U.S. Army Aeromedical Research Laboratory</td>
</tr>
<tr>
<td>V/m</td>
<td>volts per meter</td>
</tr>
</tbody>
</table>
3.6 LIST OF MANUFACTURERS

3.6.1 Physio Control Corporation
11811 Willows Road Northeast
Post Office Box 97006
Redmond, WA 98073-4000

3.6.2 Neurodyne-Dempsey, Inc.
200 Arrowhead Drive
Carson City, NV 89701

3.6.3 Tenney Engineering, Inc.
1090 Springfield Road
P.O. Box 3142
Union, NJ 07083

3.6.4 Unholtz-Dickey Corporation
6 Brookside Drive
Wallingford, CT 06492

3.6.5 Solar Electronics Company
901 North Highland Avenue
Hollywood, CA 90038

3.6.6 Tektronix, Inc.
P.O. Box 500
Beaverton, OR 97077
3.7 DISTRIBUTION LIST

Commander, U.S. Army Natick Research, Development and Evaluation Center
ATTN: STRNC-MIL (Documents Librarian)
Natick, MA 01760-5040

Commander
U.S. Army Aviation Systems Command
ATTN: AMSAV-ECU
4300 Goodfellow Bouvelard
St. Louis, MO 63120-1790

Commander/Director
U.S. Army Combat Surveillance and Target Acquisition Lab
ATTN: DELCS-D
Fort Monmouth, NJ 07703-5304

Commander
10th Medical Laboratory
ATTN: Audiologist
APO New York 09180

Naval Air Development Center
Technical Information Division
Technical Support Detachment
Warminster, PA 18974

Commanding Officer, Naval Medical Research and Development Command
National Naval Medical Center
Bethesda, MD 20814-5044

Deputy Director, Defense Research and Engineering
ATTN: Military Assistant for Medical and Life Sciences
Washington, DC 20301-3080

Commander, U.S. Army Research Institute of Environmental Medicine
Natick, MA 01760

U.S. Army Avionics Research and Development Activity
ATTN: SAVAA-P-TP
Fort Monmouth, NJ 07703-5401

U.S. Army Communications-Electronics Command
ATTN: AMSEL-RD-ESA-D
Fort Monmouth, NJ 07703

Library
Naval Submarine Medical Research Lab
Box 900, Naval Sub Base
Groton, CT 06349-5900

Commander
Man-Machine Integration System
Code 602
Naval Air Development Center
Warminster, PA 18974

Commander
Naval Air Development Center
ATTN: Code 602-B (Mr. Brindle)
Warminster, PA 18974

Commanding Officer
Armstrong Laboratory
Wright-Patterson Air Force Base,
OH 45433

Director
Army Audiology and Speech Center
Walter Reed Army Medical Center
Washington, DC 20307-5001

Commander, U.S. Army Institute of Dental Research
ATTN: Jean A. Setterstrom, Ph. D.
Walter Reed Army Medical Center
Washington, DC 20307-5300
Assistant Commandant
U.S. Army Field Artillery School
ATTN: Morris Swott Technical Library
Fort Sill, OK 73503-0312

Commander
U.S. Army Health Services Command
ATTN: HSOP-SO
Fort Sam Houston, TX 78234-6000

Director of Professional Services
HQ USAF/SGDT
Bolling Air Force Base, DC 20332-6188

U.S. Army Dugway Proving Ground
Technical Library, Building 5350
Dugway, UT 84022

U.S. Army Yuma Proving Ground
Technical Library
Yuma, AZ 85364

AFFTC Technical Library
6510 TW/TSTL
Edwards Air Force Base, CA 93523-5000

Commander
Code 3431
Naval Weapons Center
China Lake, CA 93555

Aeromechanics Laboratory
U.S. Army Research and Technical Labs
Ames Research Center, M/S 215-1
Moffett Field, CA 94035

Sixth U.S. Army
ATTN: SMA
Presidio of San Francisco, CA 94129

Commander
U.S. Army Aeromedical Center
Fort Rucker, AL 36362

U.S. Air Force School
of Aerospace Medicine
Strughold Aeromedical Library Technical
Reports Section (TSKD)
Brooks Air Force Base, TX 78235-5301

U.S. Army White Sands
Missile Range
ATTN: STEWS-IM-ST
White Sands Missile Range, NM 88002

U.S. Army Aviation Engineering
Flight Activity
ATTN: SAVTE-M (Tech Lib) Stop 217
Edwards Air Force Base, CA 93523-5000

Ms. Sandra G. Hart
Ames Research Center
MS 262-3
Moffett Field, CA 94035

Commander, Letterman Army Institute
of Research
ATTN: Medical Research Library
Presidio of San Francisco, CA 94129

COL Eugene S. Channing, O.D.
Brooke Army Medical Center
ATTN: HSHE-EAH-O
Fort Sam Houston, TX 78234-6200

Commander
U.S. Army Medical Materiel
Development Activity
Fort Detrick, Frederick, MD 21702-5009

Commander
U.S. Army Aviation Center
Directorate of Combat Developments
Building 507
Fort Rucker, AL 36362

U. S. Army Research Institute
Aviation R&D Activity
ATTN: PERI-IR
Fort Rucker, AL 36362