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1.0 Summary of Research Progress.

An experimental technique has been developed to measure droplet dispersion and velocity
statistics. Collection of statistically large sample sizes is facilitated by digital data ac-
quisition. The experimental difficulty in tracking individual particles has been overcome
using laser sheets and a position sensitive photo multiplier tube. Monodisperse droplets
are injected onto the centerline of an air jet and their radial displacement is measured as
a function of axial position. Direct measurements of particle velocity are obtained using
thinly spaced parallel sheets of light. Time of flight, from the exit of the jet nozzle to
the laser sheet, is measured for each particle. From these measurements dispersion rates
(and particle diffusivities) are obtained. Measurements of droplet size, based on a slide
impaction technique, allow mean vaporization rates to be measured.

Droplets have been generated from hexadecane, water and pentane, the later of which
is volatile at room temperature. Hollow glass beads have also been utilized. Dispersion
and vaporization are compared for droplets in an isothermal room temperature jet and
from a heated jet (60°C) into room temperature air.

Radial displacement, axial velocity, axial velocity autocorrelation functions and time of
flight are measured and compared to simulations. For droplets with large inertia relative
to the turbulence, the initial conditions and early droplet displacement history have a
significant effect on the downstream dispersion and particle diffusivity. Interactions with
turbulence control the dispersion process for droplets less than - 50 pm. Axial velocity
fluctuations and vaporization rates are underpredicted by the stochastic simulations. A
comparison with a stochastic simulation of vaporizing particles suggests that the mass
transfer and drag models may not be entirely satisfactory in a turbulent flow.

Theory and Computation.
The flow field in turbulent round jets and the paths of droplets ranging from zero mass
(fluid material points) to heavy particles (hexadecane droplets) are calculated numerically
with several levels of sophistication.

The first method for the numerical simulation is based on a second order closure model
for the jet turbulence and a stochastic simulation for the particle trajectories. Results are
presented for a range of particle sizes from 35pm to 160pm, covering a range of particle
response times from 3ms to 50ms. A typical fluid response time is 18ms at an axial
downstream distance of x/D = 40, based on results from the second order closure scheme.
The jet Reynolds number is nominally 15,000, based on a nozzle diameter of 7mm, and
hot wire measurements indicate the turbulence is fully developed.

The second method is based on three-dimensional vortex dynamics for the simulation
of the turbulent flow field at nominally infinite Reynolds number and numerical integration
of the particle equations for the trajectories of the particles. Vortex rings are released at
the jet pipe exit and their interaction and convective tranport provides the velocity field
for the particle dynamics. The interacting vortex filaments stretch each other and the
number of discrete elements representing them increases rapidly as time evolves. Thus a
limit for the simulation is reached at about eight to ten jet pipe diameters.

The drawbacks of the vortex dynamics approach lead to the third method. Highly
accurate finite-difference methods were developed for the Large Eddy Simulation of the
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flow fields in turbulent round jets. The dynamics of particles released at the nozzle center
are calculated numerically and their statistical properties compared to measurements. The
unsteady turbulent flow field can be calculated down to 40 diameters.

1.1 Experimental Approach.

This section of the report outlines the novel experimental technique that was developed to
measure particle displacement and velocity. The measurements can yield either Lagrangian
or Euerian statistics of displacement and velocity. Single particles are tracked from a
known initial location, and the time of flight is known for each particle.

In this study the droplet mass fraction is of the order 10-6. The droplets are separated
by more than 1000 droplet diameters; hence, the droplets are non-interacting and have a
negligible effect on the gas phase flow properties. The vaporization of hexadecane droplets
in air at 60*C or less is negligible over the times of flight under investigation (typically
less than 50ms).

A steady stream of monodisperse droplets is generated using a piezoelectric transducer.
The droplets are accelerated by the air flow in the nozzle contraction. As each droplet
passes from the nozzle, it intercepts a He-Ne laser beam which is monitored by a photo-
diode. The diode signal is used as a trigger for the data acquisition system, and thus allows
the time of flight to be measured for each droplet.

As the droplet travels axially downstream, it is radially displaced by the jet turbulence;
the displacement from the jet axis is measured. The experimental difficulty in tracking
individual particles from a known initial point has been overcome using a sheet of laser
light and a position-sensitive photomultiplier tube (pint). Droplet dispersion statistics are
computed from the position measurements. For the present study, results are obtained
for a jet Reynolds number of 15,000 based on a jet nozzle diameter of 7 mm. The axial
distance from the tip of the jet nozzle to the laser sheet is variable as the jet nozzle and
droplet or particle generation equipment are mounted on a motor driven slide mechanism.

The droplet size is governed by a glass nozzle attached to the transducer. A series
of nozzles are fabricated from 1/8 inch hollow Pyrex rods. A rod can be heated and
stretched, causing a waist to form in the region of stretching. Depending on the degree of
stretching applied, the rod may no longer be hollow at this waist. The rod is then split
at its narrowest point and both halves can be used as nozzles. The final step is to grind
the tip smooth with sand paper. Depending on the extent of stretching and subsequent
grinding, the orifice opening can vary from 15 to 300 prm. For hydrocarbon fuels, the
droplets are typically 30% larger than the orifice diameter.

A 514 nm Argon-ion laser beam, rated at 4W, is used to form a nominally 100 mm
wide laser sheet using two cylindrical lenses. A polarization rotator can be used to rotate
the polarization to yield the optimum signal to noise ratio. With the beam polarized
horizontally, the quantity of light scattered from the droplets is maximized along with the
quantity of Rayleigh scattered light from the air. This tends to maximize the signal-to-
noise ratio since the signal strength increases more than the noise.

Light scattered from the droplets as they pass through the sheet is focused to a spot
on a position sensitive detector by a collection lens. The photo-current signals from the
detector are fed to operational-amplifier integrated circuits (op-amp) configured as current-
to-voltage converters. Several types of detectors have been tested for use in the particle
imaging. Three will be briefly described along with their relative advantages. The first
detector investigated was a photo-diode with a square active area of 100 mm 2 and four
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photo-current outputs- one on each side. Photodioxes are relatively inexpensive (this one
costing - $150), but the signal to noise ratio was prohibitably high for droplets less than
150 ptm. Additionally, the demagnification was relatively large: a viewing area of 100 cm 2

(the laser sheet) was being imaged to a 100 mm 2 active area. High demagnification ratios
tend to increase the uncertainty contained in the calibration measurements as well as other
sources of uncertainty such as the discretization error.

In an effort to reduce the noise, a second photodetector was tested. It has an active
area of 3mm x 33mm and only two photo-current outputs: one on each end of the active
surface. Thus, the detector can be used only for a one dimensional measurement of position.
The magnification ratio was reduced from 10 to 3; but, since the active area is still 100
mm 2 , the signal-to-noise ratio is equally poor compared to the first photo-diode.

Finally, a Hamamatsu position sensitive photomultiplier tube (pint) was evaluated.
The pint has four outputs, one from each side of its square anode. The effective active area
is 1600 mm 2 , and the demagnification ratio is approximately two. The photomultiplier
tube inherently has significantly less noise than the large active area photodiodes. This de-
tector provides useful measurements for particles as small as 35pm. The only disadvantage
of this detector is its relative cost: - $2500.

The CAMAC data acquisition system incorporates two primary components: a clock
and a data logger. The clock issues trigger pulses to the data logger, which samples the
pint signals each time a trigger is received.

A "burst mode" of data collection is used, whereby a fixed number, or burst of square
wave pulses is issued by the clock to the data logger at a preset frequency each time a
rising signal is received at the clock input. These clock output pulses are hard wired to
the data logger, which takes a data sample each time a pulse is received. The data logger
is configured to simultaneously record signals on a preset number of channels.

The data logger has 12 bit integer storage (i.e., 0 to 4,095 counts) corresponding to an
input range of ±5.0 volts. The electrical ground is assigned an integer value of 2,047. The
data logger has storage capacity for 32,768 samples in the two memory modules connected
to it.

A FORTRAN 77 data collection program was written to drive the CAMAC system.
After initialization of the variables, the clock mode of operation is set to "burst mode". The
number of pulses per burst is set along with the frequency of the pulses within each burst.
Thus, each time a rising signal is received by the clock (i.e., a droplet passes through the
He-Ne laser beam and is detected by the photo-diode), a string of data points is recorded.

The burst size and frequency are set so as to record data over a time period sufficient
for the droplet to pass through the Argon-ion laser sheet. When the data logger's memory
has been filled, the data logger is switched to "read" mode and the data are read out. The
stream of integers is received by the PS/2 computer into an array and then stored as a
data file on the hard drive. The data logger is then reset to "sweep and log" mode for more
data collection. This process is repeated until the desired quantity of data is collected and
stored.

The clock frequency is nominally set at 20 kHz. In the region near the nozzle, where the
droplet velocity is high, a faster sampling rate is desirable. In this situation, it is useful to
consider two channel data collection, since if only two channels are sampled, the maximum
sampling frequency of the data logger is 50 kHz. With two channel data collection, the
dispersion in the X2 or X3 direction can be measured, but not both simultaneously. The
total data collection time is approximately 4 minutes per 1000 droplets. The droplets are
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separated by more than 1000 droplet diameters; hence, the droplets are non-interacting and
have a negligible effect on the gas phase flow properties. The vaporization of hexadecane
droplets is negligible over the times of flight under investigation (typically less than 50 ms).

The time of flight for each particle is measured independently during the data collec-
tion. The number of counts between the center of the signal peak and droplet trigger signal
divided by the CAMAC clock frequency yields the time of flight. If the clock frequency
is 20 kHz, the time interval between data points is 0.05 ms. This time interval suggests
an uncertainty two or three orders of magnitude less than the time of flight. A systematic
error is introduced because the He-Ne laser beam is positioned slightly below the tip of the
air jet nozzle (typically 1 mm). Since the particles are traveling 15 - 30 m/s, this error is
also on the order of 0.05 ma.

Particle Velocity
Axial droplet velocities are measured by timing the passage of droplets through the laser
sheet. It is apparent that there is very little noise on the signal for 130 um droplets.
Furthermore, the signal is approximated well by a Gaussian function as would be expected
from an Argon-ion laser beam. The width of the pulse is proportional to the variance of
the Gaussian curve fit, a. This parameter is related, in turn, to the transit time of the
droplet as it passes through the laser beam. Assuming the velocity gradients in the axial
direction are not large, this time is inversely proportional to the droplet velocity. This has
been calibrated by using the strobe light to time droplet motion over a measured distance.

The radial dispersion a, is computed using the following expression:

2 _1 n 2
r n_(X2,i + X,i)

r ni=1

where n is the number of droplet samples obtained and the x2,i and X3,i are the measured
displacements from the jet axis for each droplet. The dispersion in the X2 or X3 direction
is also readily computed:

1 n 
n

oZ2 - 2 O'Z- - E 2,i

i=1
2 2 Freprmna ipr

Since the flow field and dispersion are axisymmetric, a.2 = a43* For experimental disper-
sion measurements, a total of 1000 droplets are used for statistics at each axial location
downstream from the air jet nozzle. The radial displacement of a particle ri = (x2 + X3,) 

is a function of both the Eulerian variables t (time of flight ) and X3 (axial distance). The
time of flight and radial displacement is recorded for each droplet at a particular axial
location.

Particle Sizing
The droplet diameter can be measured by video micro-photography, with an estimated
uncertainty of ±2pm. An alternative approach for droplet diameter measurement, precise
only for non-vaporizing droplets, is to mensure the droplet terminal velocity in quiescent
air using the strobe light synchronization circuitry, an oscilloscope, and a small ruler ( 100
mm). The diameter of the glass particles is measured by collecting a sample of the particles
exiting the jet and having them analyzed by the Facility for Advanced Instrumentation,
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located on campus at UC Davis. They use a Cambridge Instruments QUANTIMET 900
particle sizer for this purpose. Of the sample analyzed, the mean particle diameter is
60pm.

Dispersion Results for Isothermal Non-vaporizing Droplets
Particle displacement and time of flight statistics have been measured using a particle
imaging method developed for this study. The statistics can be cast in an Eulerian or
Lagrangian form since individual particles have been tracked from a known initial location,
and each particle's time of flight is measured. The experiments have been simulated using
a second order closure for the jet flow and a Lagrangian integration for particle trajectories.

The statistics are directly comparable to the droplet dispersion simulations. Sim-
ulations of particle dispersion have yielded good agreement with the experimental mea-
surements provided that initial fluctuations in the radial velocity components are imposed
so that the mean square particle velocity of the simulated droplets equals the observed
velocity.

The droplets are far from equilibrium with the turbulence during the first 30D due
to mean slip between the particles and fluid. Slip decreases the interaction time between
the particles and the surrounding fluid resulting in decreased dispersion.

The measurements of dispersion show the same limiting cases as do measurements
from other types of flows. Dispersion grows quadratically in time early in the droplet
history, then slows to a nearly linear growth rate. Beyond an axial distance of x1/D = 30,
the variance in time of flight begins to grow rapidly.

This study has highlighted the importance of specifying the initial conditions for
particle trajectory, and in particular for droplets greater than about 90 pm because they
possess sufficient inertia to be significantly far from equilibrium with the fluid in the rapidly
evolving shear flow. As a consequence, the effect of the initial conditions at the nozzle exit
may persist far downstream. This finding may be important with regard to modelling
practical combustion sprays, where up to half of the fuel mass can be contained in droplets
with significant inertia.

Droplet Velocities and Correlations
If the pair of coplanar sheets is redirected back through the flow field, a second measure-
ment of the axial velocity is readily obtained. By collecting a large set of such measure-
ments, it is possible to compute a two point axial velocity autocorrelation. The beam
redirection is accomplished with a large right angle prism oriented with the largest face
perpendicular to the incoming pair of laser sheets. A right angle prism used in this manner
is often referred to as a retro-reflector. Retro-reflectors return the reflected light precisely
coplanar with the incoming light, even if the prism is not oriented exactly perpendicular
to the incoming light.

The following conclusion have been drawn:
1. The multiple sheet/position sensitive pmt diagnostic developed for this investiga-

tion can be used to measure particle velocities and correlations.
2. Hexadecane droplets of 35prm or less follow the large scales of the flow. Particle

Stokes numbers need to be less than 0.1, based on the Eulerian time scale for the particle
to follow the integral fluctuations.

3. The stochastic simulation under predicts the integral length scales and the mag-
nitude of the velocity fluctuations by a factor of two. This result could have considerable
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importance in using this approach to model practical sprays.

Vaporizing Droplets
This section presents experimental measurements and numerical simulations of droplet
dispersion and time of flight within a round jet shear flow for heated (60*C) and unheated
(20*C) air jets. The objective of the experiments is to compare the droplet interaction
with the jet turbulence under two conditions:

a) an isothermal room temperature air flowfield; and
b) a 60°C air jet issuing into room temperature air.

Both vaporizing and non-vaporizing droplets are injected into both flows.
Pure n-pentane was used for the vaporizing liquid. Its normal boiling point is 290C.

Pure n-hexadecane, with a melting point of 18°C and a boiling point of 287°C, is not
volatile at these temperatures. The isothermal case presents a situation in which the
droplets experience unsteadiness only in the velocity field. In the heated jet, they experi-
ence an additional unsteadiness in the temperature field. The goal is determine the impact
of the fluctuations on the droplet dispersion behavior. A technique using Polaroid film was
used to estimate do-n stream droplet diameters for the pentane droplets. The film was
exposed with no light providing a black print which was then cut into thin strips. At each
axial location, a strip was attached to a thin rod and inserted into the flow, centered about
the jet axis, for about 30 seconds. During that time roughly 40 droplets would strike the
strip and etch its coating. The diameter of the etching is linear with the droplet diameter.

Droplet generation using pentane required the use of a thermo-electric cooling device
to prevent vapor bubbles from forming inside the generator. The device was attached to
an aluminum plate which surrounded the droplet generator. The thermoelectric cooler
used a water heat exchanger for heat rejection. The device lowered the temperature of
the pentane within the droplet generator to - -5*C. The pentane reservoir level had
to be carefully monitored to maintain a constant pressure head of about 1 mm pentane
between the reservoir level and the lower tip of the droplet generation nozzle. Pentane is
particularly sensitive to vibrations, loss of pressure head at the nozzle tip, and generator
temperature variation, probably due to its lower viscosity and surface tension relative to
hexadecane or water.

Data were obtained for hexadecane droplets of 90pm and pentane droplets with nozzle
exit diameters of 113 um. The vaporizing droplets take longer to reach a given axial dis-
tance: as their diameter decreases, their inertia is reduced. This effect should be partially
negated by the decrease in drag that results from the vaporization, but the data indicate
that the vaporization effect is small.

The velocity measurements indicate that the peak velocity of the droplets in the heated
jet is higher than the corresponding isothermal case. This behavior is due to the fact that
the air jet velocity is higher at the nozzle exit and the droplet velocity shows a similar
increase.

Simulations reproduce the mean velocity and time of flight statistics reasonably well.
Some shortcomings of the stochastic simulations are apparent. First, the times of flight are
underpredicted, implying that the drag coefficient may be too low. The same interpretation
of the velocity data is applicable. The most interesting observation is that the relative
positions of the two data sets are switched in the simulations. The data show indicate that
the pentane droplets slow down more rapidly late in the flowfield (and have longer times of
flight at a given axial location), but the simulations do not show this trend. It was found
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that vaporization is not predicted accurately, and can account for the discrepancy.
The heated jet with pentane droplets had very strong dispersion, accentuated by the

decrease in droplet size. This gives rise to a strongly varying dispersion rate throughout
the flow domain. It may appear surprising that the hexadecane droplets in the heated
jet disperse more rapidly than in the unheated jet. However, other researchers, such as
Yuu, et al. (1978), have noted that dispersion scales with the absolute value of the initial
velocity in the jet rather than the jet Reynolds number. The heated jet has a higher initial
velocity and lower Reynolds number due to the increase in viscosity. The density variation
is less than 1% beyond 20 jet diameters down stream.

Simulation of the pentane droplets show significant under prediction of the droplet
vaporization, particularly in the heated jet case. Fuirthermore, the variance in droplet
diameter is less than 5 mm 2 for both cases at the downstream axial stations. The experi-
ment had a much wider range. This result is obviously coupled to the under prediction of
velocity fluctuations.

The results indicate the stochastic separated flow model used in these simulations,
which neglects fine scale structure for the phase interaction, does a reasonably good job
of predicting droplet drag, based on the observation that the mean profiles approximately
agree. However, the agreement is not as encouraging for the calculations of heat and mass
transfer to the droplet required for the prediction of vaporization rate. This result should
be coupled to the under prediction of droplet velocity fluctuations.

Fine scale structure in the boundary layer of the droplets should have the effect of
increasing heat transfer to the droplet and mass transfer away from it. Although it can not
be determined unambiguously from the present study effects such as these would account
for the differences between the measurements and the simulations; the evidence supports
this conclusion.

1.2 Computational Approach.

1.2.1 Stochastic Simulation.
A second order closure model (Dibble et al., 1986), consisting of the transport equations
for the mean velocity, the Reynolds stress components and the dissipation rate, is used
to simulate the turbulent flow in the round jet. The model yields an Eulerian description
of the turbulence statistics at single points and global scales for length and time in terms
of the kinetic energy of turbulence and its dissipation rate. The mean and rms velocity
components are specified at the particle location and the pdf of velocity is assumed to
be Gaussian. The trajectory of each particle in the turbulent jet is marched in time by
sampling the velocity pdf and solving the particle equations with a fourth-order accurate
Runge-Kutta scheme. Three equations for the velocity components of a particle and three
equations for its position were integrated simultaneously. If the particle is volatile, another
equation for diameter is carried. If the flowfield has a temperature fluctuation imposed
by heating the jet (which issues into ambient air), the local gas (or eddy) temperature is
obtained from the simulated mixture fraction. It is assumed that the temperature field (or
more appropriately, heat) is transported as a passive scaler such as mixture fraction. The
local temperature is then found by sampling the mixture fraction pdf for a local value C.
The local eddy temperature T. for nonreacting flow is then: T. = C(Tjet - T,,m) + Tams.

A Lagrangian simulation of the droplet dispersion was then performed in the same
manner as Faeth and co-workers (1985) by integrating the equations for particle motion
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through the flow field. Three equations for the force components on a particle, with
. - only drag and gravity considered, and three equations for its velocity were integrated

simultaneously with a fourth order Runge-Kutta scheme to yield particle velocity and
position:

dt 4d pp

dt

CD is the drag coefficient discussed below, p is the particle or gas density, i'is the particle or
gas velocity, X' is the particle position, dp is the droplet diameter, and ' is the acceleration
due to gravity in the x, direction.

For the simulations reported in this study, one thousand particles were simulated in
each run to give representative statistics and the integration time step was 1 microsecond.
The interaction of particles with the turbulence was simulated stochastically by randomly
sampling the velocity pdfs, given the mean and variance of each flow velocity component as
determined by the second order closure. The velocity pdfs were assumed to be Gaussian.
Typical eddy length and time scales were estimated in the same manner as Shuen, et al.
(1985) based on the dissipation length and time scales provided by the turbulence model:

Le C 0 .5 7 ,= Le
e

k is the turbulent kinetic energy and e is the dissipation rate. C is an semi-empirical
coefficient set equal to 0.28 for all simulations in this study.

Use of this formulation implies that the interaction can be represented with only two
turbulence scales. The interaction time for the droplet with the turbulent eddy was taken
to be either the eddy lifetime or the transit time for the droplet to cross the eddy, whichever
is shorter. The latter quantity was evaluated in the following manner. The distance that
a droplet travels is tracked from the beginning of its interaction with an eddy. When this
distance becomes greater than the eddy length scale, the flow velocity pdfs are sampled
for new values.

Results of the simulations indicate that the eddy time scale rather than the length scale
consistently constrains the interaction throughout the flow field. This result is apparently a
deviation from simulations in grid turbulence. Such studies report that for light particles,
such as hollow glass spheres transported in the grid turbulence of Snyder and Lumley
(1971), the length scale should limit the interaction.

Droplet Vaporization Model
The mass vaporization rate rhd is found from a mass balance:

md=Sh rdppgDAB (YFs - YFoo) = Nu rd (T - g -T)
(1 - YF,,) q"

where dp is the droplet diameter, A. is thermal diffusivity, Nu is the Nusselt number, T.
is temperature at the droplet surface, qi is the latent heat of vaporization, p. is the gas
density, and DAB is the mass diffusivity of pentane in air, YF is the mass fraction at the
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surface and in the free stream (YF, OO = 0). The heat and mass transfer numbers are defined
.- by:

Bh = (T9 - T.) Bm (YF,. - YF,oo)
q, (- YF.)

and are used in the calculation of the Nusselt and Sherwood numbers, as well as the
drag coefficient. The drag coefficient CD recommended by Renksizbulut and Yuen (1983)
includes a high Reynolds number correction to the Stokes formula that is important in
modeling the behavior of the relatively large droplets as well as a correction for blowing:

CD = -L4 (1 + O.2Re 36 )(1 + h) - 0-2, Re= PEISE - I Idp
Rep M~g

N, = 2 + 0.57Re,' 5Pr°'33 (1 + Bh) -0 '7, Pr = pgp pg C,

Sh = 2 + 0.57Re°' 5 Sc°. 33 (1 + Bm ) - 0.7, Sc -= g
pp9 DAB

Rep is the particle Reynolds number based on the droplet diameter, the relative velocity of
the droplet and gas (eddy), and the gas kinematic viscosity. At each time step during the
particle trajectory simulation, these equations are solved iteratively for the vaporization
rate and the droplet surface temperature.

The droplet size change and temperature are then given by:

d(dp) =_rd
dt ir p dP

dT. 1d - -g(Nu rd, A(T. - T.) - Thdq1)

The partial pressure of pentane at the droplet is used to calculate the mole fraction of
pentane at the surface and is given by its surface temperature:

PF,aP,' = X F, s f (T,)

P is the absolute pressure (1 atm), and the function f is given by the Clausius-Clapeyron
equation.

Jet and Droplet Scales
The dispersion of heavy particles deviates from fluid particles for several reasons, all relat-
ing to the particles inertia. The droplets sizes which have been studied in this investigation
cover a large range of response time scales and inertial effects are important. The droplet
relaxation time that characterizes the particle inertia is based on terminal velocity and the
gravitational constant, and is given by:

UT (4dp(pp - pp)
" 3CDPgg
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g is the gravitational acceleration constant, d. is the particle diameter, p is the density of
the particle or gas, and CD is the drag coefficient given in the equation above, with the
Reynolds number based on the Iroplet terminal velocity. Table 1 shows the scales for the
droplets used in this investigation.

For Stokes flow, the time constant reduces to:

rp'st =dp P>P
=, 1 8 pg PPg

where pg is the absolute viscosity of the fluid, in this case air, Table 1 shows the scales for
a range of the droplets and particles used in this investigation.

Table I. Time scales of the air iet and droplets studied in this investigation.

Droplet Dimneter (pm) 35 60 120 160
Terminal Velocity UT (m/s) 0.029 0.092 0.27 0.43
Terminal Reynolds Number UTdp/v 0.07 0.39 2.2 4.76
Response Time Constant r. (ms) 2.9 9.1 28.0 44.0
Turbulence Stokes Numberrp/r 0.16 0.51 1.6 2.4

Kolmogorov Stokes Number rp/"(6)  4.76 15 45 70
Acceleration Stokes at xil/D = 20: 0.17 0.55 1.67 2.63

Number rp/ra(c) at xI/D = 40: 0.043 0.14 0.42 0.66

Crossing Trajectories Ratio UTT/V dmm 0.03 0.1 0.3 0.5
Kolmogorov Length Scale at xI/D = 20: 1.38 1.53 3.06 4.08

Ratio dp/I7K at xi/D = 40: 0.69 0.76 1.53 2.04

(a) re 18.0 ms, obtained from the jet simulation at xI/D - 40.
(b) TK = 0.6 ms, with e obtained from jet simulation at x, /D = 40.
(c) ra 16.7 ms at xi/D = 20 and 67 ms at xi/D = 40.
(d) Vg,,ms = 0.90 m/s at x,/D = 40 on the jet axis from hot wire measurements.

The effect of inertia is relevant to these experiments and is related to the droplet
response time: a heavy droplet will pess through an eddy if the instantaneous inertial
force is considerably larger than the drag force. Due to mean slip between the particles
and the flow, the interaction time between a particle and an eddy can be significantly
decreased. This inertia effect is related entirely to mean velocities as opposed to velocity
fluctuations and can be particularly important in free shear flows, since the gas mean
velocity is continuously decreasing.

The relative importance of inertial effects can be deduced by comparing the ratio of
a fluid time scale to the particle response time. If this ratio, or Stokes number, is greater
than unity, the inertia significantly affects the droplet dispersion. These Stokes numbers
are also provided, and as can be seen, for the flow conditions and particle sizesof this
experiment, inertial effects can be important.

The Kolmogorov length scales at xi/D = 20 and 40 for a jet Reynolds number of
15,000 are estimated to be 39 and 78 pm, respectively, using the relations given by Antonia
et al. (1980). Because the smallest length scales of the turbulence are of the same order
as the droplet diameters, it is possible that the turbulence may have an influence on the
drag which is not predicted.
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1.2.2 Vortex Dynamics.

The predominance of ring-like vortex structures in the transition region and possibly the
fully turbulent region of the round jet suggests that this flow can be modelled by periodi-
cally releasing near the jet pipe exit vortex rings with small amplitude helical disturbances.
A numerical simulation of this type of flow can be done in various ways but the presence
of ring-like structures indicates that vortex dynamics offers the advantage of tracking the
relevant parts of the fluid without requiring the discretization of the complete flow field
(Chorin, 1980 and Leonard, 1985). The method developed for the present purpose is based
on the inviscid Navier-Stokes equations written in terms of vorticity WJ assuming constant
density

DJ

where the Stokes derivative is defined by

D aDt + Vt + .V

The velocity V- follows from the relation

Ai" = -V x J

and the solution of this Poisson equation can be given explicitely in the absence of bound-
aries. If the vorticity is concentrated in thin filaments, then the velocity induced by the
filaments can be calculated from the Biot-Savart integral representing the solution of the
Poisson equations for the velocity components. This integral is known to diverge for fil-
aments of zero thickness and it follows that the internal structure of the filaments must
be taken into account in order to obtain acceptable (convergent) values for the induced
velocity. Several approximations are available (Chorin, 1980, Anderson and Greengard,
1985 and Leonard, 1985) for thin filaments. The method developed for the present pur-
pose asumes thin filaments with circular cross-section and employs Rosenhead's method
(Leonard, 1985 and Lundgren and Ashurst, 1989) where the integrand of the Biot-Savart
solution is modified to remove the singularity according to

r Jc [X-- r-s)i2 +21

The circulation of the filament is denoted by r and r(s) is the position of the centerline C
of the filament with arclength s. The parameter p > 0 accounts for the internal structure
of the filament in an approximate manner (Leonard, 1985). Moore (1972) showed that it
should be proportional to the local core radius a

where a is a non-dimensional parameter which reflects the vorticity distribution in the
core of the filament. For uniform vorticity distribution in the core a--0.22 holds.

The thin filament approximation has several limitations. In particular, it predicts
excessive growth rates for short wavelength disturbances and energy is not conserved if
the filament cores overlap (Ashurst and Meiburg, 1988). It is able to simulate the dynamics
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of inviscid flows as long as the filaments do not come too close to each other and create
the excessive growth rates. It cannot represent the viscous reconnection phenomenon
of filaments which is important for turbulent flows at high but finite Reynolds numbers.
Therefore, the vortex dynamics scheme based on the thin filament approximation was used
to represent the flow in the initial region of the jet.

Particle dynamics.
Fluid particles (fluid material points) and solid particles were considered. The fluid par-
ticles are essentially massless particles which move exactly with the fluid velocity. The
Lagrangian position field for fluid material points requires integration of the kinematic re-
lation between velocity and position. Thus, the integration of the fluid particle equations
is straightforward. The kinematic relation between position X and velocity V is given by
the system of odes

'9X,
,5---(-a, 0 -- V.( (, 0, t)

with the initial conditions X(a, t) = a (a denotes the Lagrangian label variable defined
by a E X(a, 0), v(x, t) is the Eulerian velocity). The Eulerian velocity field is given by
the approximate form of the Biot-Savart law discussed in the previous section. The time
integration is carried out simultaneously with the advancement of the vortex filaments
using the second order accurate trapezoidal time integration. The dynamic equation de-
termining the location of heavy particles is a consequence of Newton's second law with
approximations for the forces acting on the particle (see Odar and Hamilton, 1964). The
equation for the particle velocity contains terms representing drag and virtual mass, the
Basset term and buoyancy.

du 3 CD P-9 1 pg Dug3:M =, lT_ - - UP U -up) + D , -u)+  ,D
dt 4d P pP Pp

9 Pg (\4dT D
GB ( - _,)+ ([L -dpp (t -) Dp

to

The subscript g denotes gas and p particle properties, the substantial derivatives are to be
taken accordingly as following a material point or the particle, d is the particle diameter,
v is the gas viscosity and ug, Pg are taken as the values undisturbed by the particle at the
location of the particle. The coefficients CD, CI and CB are in general functions of the
particle Reynolds number

Rep = 1- - UPI4

and the acceleration number (see Faeth, 1983 and ,ansell et al., 1992)

An = d[-Us - Up 2

The drag coefficient is given by (Putnam, 1961)

Cd 24(1+ Rep 1=Re 6 )  Re <100
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The particle velocity is thus determined as solution of

_k 3 CD PL

dt 4 d pp pp Dtg p

For these calculations, the properties for d = 36 pm liquid hexadecane particles are used
which are given by pp = 775[ -4]. The relevant properties of air are v = 1.45(10)-s,
P = 1.19k

The dynamics of the flow field and the particles transported by it are illustrated in
Fig.1 to Fig.3. The vortices are shown as lines (centerlines of the filaments) and the
particles as circles. These pictures show how the vortices coalesce, the helical disturbances
grow and the filaments entangle as time progresses. Three coalescing regions are present
from 0.5D to 3.5D, which agrees with the observations made by Yule (1978). The first
combination of ring structures occurs at approximately one diameter as shown in Fig.1
(upper graph). This group then combines with either one, two or three rings to form a
group of 3 to 5 rings as illustrated by the groups centered at 1.75D and 1.5D in Fig.1 and
Fig.2 (upper graphs). The final combination involves groups of 3 to 5 vortices and occurs
between 2D and 3.5D. The large group located at 3.5D in Fig.3 (upper graph) is the
result of this last combination and corresponds to the puffs of smoke which were observed
by Crow and Champagne (1971). The particles shown as circles in the figures show rapid
acceleration in axial and radial direction but very little movement in azimuthal direction.
The final coalescence of the vortex filaments and the large group of filaments formed during
this process are primarily responsible for the radial dispersion of the particles. As the group
of five rings at 1.75D in Fig.1 passes through the rings at 2.5D, it accelerates both axially
and radially. A few of the particles are pulled along, as seen in Fig.2 at 2.5D. Most are left
behind, however, due to their inertial resistance to fluid accelerations, as indicated by the
group of particles at 3.0D in Fig.3. Since the fluid velocity in the region between the large
groups of filaments is small, the group of particles at 3.0D in Fig.3 will decelerate. This
group will then be dispersed radially away from the jet by the group of filaments at 2.OD
in the same figure, like the group of particles currently at 4.5D. From these observations
a two-step process for particle dispersion in the transition region of round jets may be
deduced. In the first step particles are stranded by the final coalescence of vortex rings
in the regions with low velocity behind and in front of the coalescing filaments. These
stranded groups of particles are then dispersed radially away from the centerline by the
next group of filaments.
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1.2.3 Large Eddy Simulation.

The Large Eddy Simulation or Direct Numerical Simulation of the flow in turbulent round
jets is the most realistic approach for the prediction of the flow field and the simulation
of Lagrangian particle dynamics in this type of flow. The simulation of turbulent flow
fields in round jets is based on highly accurate finite-difference methods, which offer the
flexibility necessary for the treatment of non-periodic jet flows emitting from nozzles and
the consideration of a variety of exit conditions. Furthermore, the influence of disturbances
created at the jet pipe exit on the flow development can be studied in detail.

Solution method.
Mass and momentum balances are set up in cylindrical coordinates for the primitive vari-
ables velocity and pressure. Cylindrical coordinates (r, 0, () are appropriate for circular
jets. Stretched grids are used in the r and C directions to concentrate the grid points in
the region of interest and to remove the outer boundary as far as possible without wasting
too many grid points. The grid stretching transformation allows the solution to be com-
puted on a uniform mesh and then to be transformed onto the real (physical) mesh. The
transformation is given by

log

log(0I)

where %P represents either r or C and P is the stretching parameter (80 < 1). The stretching
is greatest for # --. 1

The inverse transformation (which is what is actually used in practice) is then given by

()3 + 1) - 6+-1)1-_ ] -
= + 1

The derivatives of the above transformation can be calculated analytically as follows

0¢ 20

O/ 1 1 ]2 }ln

and the second derivative emerges as

a2 -4)3--~ 4/3{2 [I  1}

[1 122n[-

All derivatives are calculated in the transformed space and then brought back to real space
via the transformation metrics using the chain rule as follows

av Ov O'P0 = - -0

The transformation rules allow the set up of the Navier-Stokes equations in the stretched
coordinates.
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Naier-Stokes equations in transformed space
" The Navier-Stokes equations are made dimensionless as usual by using reference values for

all variables based on the radius of the jet (riet) and the average velocity of the jet at
the pipe exit (Viet). Thus, the dimensionless variables are defined as follows (bars indicate
nondimensional variables)

Vr Ve VCv-, ;V= _; VC-_
Viet Viet Viet

t = - ; - - 1; (for incompressible flows)
riet Piet

Al= ; Re = rjietV et

All variables will be nondimensional in the following and the bars can be dropped for
convenience. (Note that the bars will hereafter indicate the transformed space).

The Navier-Stokes equations are transformed to the stretched coordinates. The start-

ing point are the mass and momentum balances in cylindrical coordinates. Application of

the stretching transformation to the mass balance leads to

SO l Ove OOvc

--X ,,("v,) + - -+ -----C o 0=o

The radial momentum balance in transformed coordinates is given by

--- + v, -Or + v + v1 C-F

r a( r p r Oaf e Or 2

+1 a2j -,_E 142V +1 ( 4--- -2-2V (&

+rTr +- X2 Or r2  r2 02  a( +o 2 a(2 a( r2  J
The azimuthal momentum balance in transformed coordinates is given by

OV9O r t9 a)9 Ve avo O(~OV9 VeV 7  Op 1fO 2 0v- + V, r-- + - -19 + V _
O rf rGr pr,0e Re)49r, aF2

+ 10 a2* a*2 92O+ 2av
v(1 1V 0i. ( 2 2e OOv 2OV,

r X+ 2 r r2 2 2 a (2a Oj Q C2 r2 e

Finally, the axial momentum balance is given by

Ovc + 0OVr ve OV(+ a are 1p . 1 f (Of& 2O Cv
T( ~ Re _'' &2

2r v r~ 1( Ov (N~0
+r X + X-2 7, 2 r 2 a9 -+ a() a(2 9( -a(

The next step is now the discretization of this system of nonlinear partial differential
equations and the design of the solution algorithm.
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Solution algorithm
The difficulty with the above equations is that there is no explicit evolution equation
for the pressure. The incompressibility constraint yields the continuity equation as given
above but in practice this equation is not solved. Rather the momentum equations are
first updated and the result is then "corrected" in order to satisfy conservation of mass.
The effect of mass balance is essentially to modify the pressure field and this method is,
therefore, termed a pressure correction method.

Since pressure is a phenomenon which acts at cell centers it does not generate fluid
vorticity for incompressible flow. (Pressure can generate vorticity for compressible flow
because it causes density differences between neighboring cells which can cause fluid rota-
tion.) This implies that for incompressible flow the velocity correction field & is irrotational
and incompressible. It can be shown that for this case the velocity correction field can be
represented as the gradient of a scalar

Mass balance is now enforced by carrying out the following steps. First the momentum bal-
ances are solved providing the intermediate solution v+. Then the velocity is corrected
in the following manner

n.+1 = Un'+1 +n = '+11

In order to satisfy continuity at the new (n + 1) time step we have

V. n+1 = V.(n'+1 - V) = 0

Thus a Poisson equation for the pressure correction variable 0 is obtained

V._*='+ = 2o

Now, the equation for the pressure correction can be derived by substituting the
above relation into the momentum equation. This step can be carried out if the time
derivative is discretized. Hence, let the time derivative be discretized using the three point
backward (Adams Bashforth) finite difference approximation. Writing the vector form of
the momentum equations using explicit convective and diffusion terms yields

3( n'+1 VS) - 4,n +.,n - I  1

2At p Re _

Subtracting from equation the explicit momentum equation update yields the following
relation for the pressure correction pC.

3 p)
P =

and .c is calculated from 1 = -VO. Thus the procedure for the enforcing of the
mass balance consists of the following steps:

a) Update the momentum equation to n' + 1.
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b) Calculate 0 from V2 , = . n' 1.

." c) Calculate u.4 and Pc.
d) Update "+1 = V '+ I + v and p,,+ = pfl + Pc.
e) Repeat this process at the next time step

Differencing of the fundamental equations
The discretization of the momentum balances requires the treatment of the convective
terms and the viscous terms. The convective terms are discretized in a fully windward
manner using the split coefficient scalar (S.C.S.) form for the incompressible equations.
This is handled with the use of conditional velocities which are only nonzero for the proper
sign of the velocity. These are calculated in the following manner:

, v+ IvoI - O V0 IVI+ V
VO - 2 - 2

where a = r, 0 or C.
The time derivative is calculated using 3 point backward (Adams Bashforth) time

differencing scheme, which is second order accurate.

0 vO 3vn'+ l  4vl + vl, (
-- ,Vo - 2zt + 3 a3)

The convective terms are calculated to fourth order accuracy using the three point wind-
ward compact (Hermite) differencing. This involves solving a simple tridiagonal matrix for
the derivatives at the points j - 1,j and j + 1. The compact forward windward difference
for the point j is given by:

z- + 4 +v +b v+ , a6 j +, = -3v 0 j + 4vj+ Vaj+2 +o(A 4  &V,)0

and for the backward difference:

+ 4av
bi- " + 3v,, - 4vj-1 + v,j-2+ T4

C,6 0 k &

The pressure term is calculated to fourth order accuracy using the three point central
compact (Hermite) differencing.

+9 4, o . Ii+
"Ki +44 +'-' P+1-P-' +o

6 2AfV 30 AF5

The viscous terms are calculated only to second order accuracy because we are mainly in-
terested in high Reynolds number flows (Re , 10) and thus the numerical error associated
with these terms is negligible in the equations compared to the other errors.

v,j~i - 2vctj + vo,,+1 -o(A'j2 84V
Aq2 12 O

22



Vaj+i - V@,j-1 A y 2 a 3 Va
-= v +0-

(SV0 2AP (6 n3~

The finite difference equations for the momentum balances in axial, radial and azimuthal
directions can now be established. The discretized radial momentum balance emerges in
the form
b,',, + T,(v b- v ,,, + ,,v- , b+ -',6 , ,;6 , ) +- , Vo ,, -7 =
6, r+( P 6 7 r+ V 6 r)+r +Vr + Vr) + (VrVr+-

r r 0 a 0 C C ( r

-- b p + 'f bVr+ (-)+ fv,

-- +6C99Vr 2 bO + -Ii Vr+ 69v}

For the azimuthal momentum balance we get

6btv + (v~6-o(v + V?6tve) + v~6VO +v6bve)++ =+ ) +Orr r O( 0" r a

- e L I( &)2 bre+0i f
p Re T ;rI

+ - j 1 6 8v + ( fV* + v + 2bv

Finally, the discretized axial momentum balance appears in the form

Thedivrec ftevlct il snwcluae tten + 1 time level and stored in)

6tv + (v~b-vc + vr vc) + -(v. 6 vC + -~C) Cvbv -~

4 1,. _ of a., _ 1( + - " , ) + -- 
"6ev, + ,2

These are the finite difference equations providing the intermediate solution

The divergence of the velocity field is now calculated at the n'+ 1 time level and stored in
the f array. It is calculated to fourth order accuracy using five point central derivatives.

f~re, ) = ~'.j~fl+1 rrj-2 - 8 Vr,j-1 + 8 Vr,j+i - Vrj+2 'rj
12AF l2A

+ I f~k2 -8vo,&..I + 8v*,k+l - VO,k+2 )+ a( 1 V1-2 -8(tl+ 8VC1 -V,2
r~ (v 2 - i) 12- 2A(,1 (I

Algorithm for the pressure equation.
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The Poisson equation for pressure correction is discretized using fourth order accurate
." central differences. It is solved using the optimized Point Successive Over Relaxation

(P.S.O.R) algorithm. Several different techniques were attempted for the solution of this
Poisson equation. Besides the P.S.O.R. algorithm, a direct solver in the r, C plane was
used and iteration in the 0 direction was performed This proved to be more computa-
tionally expensive than the P.S.O.R. algorithm and also required much more memory for
the direct solver. Also, the Line Successive over relaxation algorithm was tried. This
actually converged the pressure correction solution in fewer iterations but was slower due
to the solution of the matrices (tridiagonal for second order accurate and pentadiagonal
for fourth order accurate). Also, an ADI technique was tested. This also required more
computer time mainly because of the inversion of matrices. Thus the P.S.O.R. algorithm
was chosen because of the low memory requirement and computational speed. A compu-
tational procedure for determining the optimum acceleration factor w was available. It
involves determining the eigenvalues of the Jacobi iteration matrix computationally and
then calculating the optimum w for S.O.R. from this.

For the P.S.O.R. algorithm, first the provisional values 4 are solved for using:

O0._ - 1t- + 160', 1 - 304, + 160

ar 12Af 2

-2f -+1 _ + 8+ - +
+ 2- - 1

+r a2, 12Af
+ !( ]. i+. + 160+'1 a 30 + 16,'+ 1 -4k+2

+ (8~) (. 1-2~ + 160'+1 - 30i + 160'1~

- ~+ 1- 1+1' f- 0142- 1 "1)

Then the difference is extrapolated to the new iteration level using

0i+1 = 0i + W(4- 0)

This iteration is continued until the maximum change in 0 at any cell is less than 10- 5
(i.e. Maxlo' + ' - O'l <_ 10-5).

Now, the velocity and pressure corrections are calculated to fourth order accuracy
using:

Vr'C 0j-2- 80- + 8 0j+1 - O+v7 ,c =-1-" 12AF

Ok-2 - 8 ,0k-1 + 80k+1 - Ok+2

VD~c =12AO

01-2 - 8 1-1 + 8101+1 - 0+2V(,c = 12,N

24



3 pO•. Pc - - 2-A

2 At
and the equations are updated using

n+1 = V '+i +V, pn+1 =P n + PC= +a r"vc,c; -- =pl P

Boundary and initial conditions.
The real jet in nature has no boundary conditions since it is in an infinite domain. This
could also be simulated by setting the values of all variables to zero at infinity. Therefore
the boundary conditions for the computational simulation must not affect the jet and must
allow flow structures to pass freely out of the region. The boundary condition which was
found to do this well was to set the normal derivative of velocity to zero on the boundaries
of the computational region. This can be represented mathematically by

V& .!I = 0

where 71 is the outward pointing normal derivative on the boundary of the computational
region. The centerline is not really a boundary condition since information is available
on the other side of the centerline. The strategy which worked well was to place the first
computational cell at Ar away from the centerline. Then the differences for this cell can
be obtained by "reaching over" the centerline. Practically this was obtained by defining
rows of cells to the left of the first computational cell and carrying information over into
these cells.

The pressure and pressure correction boundary conditions were determined in sim-
ilar fashion and the same conditions were applied for each. The conditions which were
prescribed was to set the pressure gradient in the direction normal to the computational
boundary (77) to zero. This was done on the jet inlet and jet exit planes. On the radial
plane parallel to the jet flow, the pressure and the pressure correction were set to zero. This
provided stability for the jet and did not affect the solution appreciably. It also increased
the rate of convergence of the Poisson equation.

The inlet condition for the jet was obtained using the experimental results of Call
and Kennedy (1991). The measured velocity profile at the jet exit was interpolated with a
fourth order polynomial. The jet inlet was defined to have no radial or azimuthal velocity
(vr = 0, ve = 0) and the axial velocity is given by:

VC = Vjet for -- < 0.725

and

vC = vet(-1.374(10)2(1 - r) 4 + 1.212(10)2(1 _ r )3 - 5.225(10)1(1 - r ) 2

r 7.t rjet r jet

+1.168(10)'(1--L-)' -536(10 3 (1 - ) for 0.725_ r < 1.0
r jet rtet

The entire flow field was initialized to this profile. The flowfield could have been
statically initialized (v,. = 0, ve = 0, vc = 0) and then the inlet profile could be brought
in smoothly over a given number of time steps and the flow field could be developed.
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An initial startup vortex would travel downstream and leave through the exit section
of the computational region. It would establish essentially the same flowfield as the inlet
profile. This is the solution to the inviscid problem. This field would then develop the
Kelvin Helxnholtz instabilities, torroidal vortex structures would emerge, which would
later lead to breakdown. This type of initial condition was not chosen since it takes a
significant amount of computational time to compute the startup. Also, the analysis of
the vortical flow structures developing around the inviscid solution (initialization profile)
is very interesting and an important topic. Hence the inviscid solution was taken as initial
condition. The pressure was initialized to zero which was found to have no effect on the
velocity solution.

Disturbances were introduced at the inlet to initiate the roll-up process. Care must
be taken that thess disturbances do not violate the continuity equation. For this reason,
a disturbance was chosen &((8, t) which is only a function of 6 and time. The disturbance
was chosen with known energy spectrum, intensity and frequency. This disturbance form
is similar to that used by Rai and Moin (iJ91). It is given by

K N 27rnt
= j A,,sin(kO + 0)sin(- + ¢t)

k=1 n+1

where
A., _= cvjetrjtbk-1l 7 -l, b = 0.25, - = 0.5, c = 0.1

In the above disturbance, two modes in both 0 and time were chosen (i.e. K = 2, N = 2).

Time step restriction
The time step is calculated using the maximum stable explicit time step for the model
problem. Since the high Reynolds number jet is mostly convection dominated, the convec-
tive terms dominate the time step limitation. The extension to three dimensions considers
stability in all three dimensions and essentially adds the Courant numbers in each direc-
tion to get an effective Courant number. An extensive analysis for the Adams Bashforth
time differencing and the fourth order accurate compact three point backward windward
differencing on the convective terms revealed that the maximum stable Courant number
is (1). For the viscous terms, the maximum stable diffusion number is (1). Thus, we have
the maximum stable time step computed as:

AtImaz = 2

aft ia + + + 1 ,P2 1 + I 2 1 min
r A P r A O ( a 3R -e r A F T A C 2 )

This is computed automatically during the solution procedure and the maximum
stable time step (with a safety factor) is used for updating the momentum equations.

Code verification
Extensive tests were carried out to ensure that the solution method produces the correct
solution. First the laminar jet solution of Schlichting (1960) was calculated for the plane
and the axisymmetric case. Excellent agreement with the analytical solution was achieved.
The second test was the comparison of the spreading rate for the unsteady turbulent
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solution with the experimental values which was within the experimental error. Finally,
the results of linear stability theory (Michalke and Herrmann, 1982) were verified with the
three dimensional version of the code.

Results and discussion.
The turbulent flow in a round jet was simulated with a standard second accurate method
and the fourth order accurate finite-difference methods descussed in the previous sections.
The simulation must be regarded as Large Eddy Simulation since the grid is not able to
resolve all scales of the flow. Monotonic schemes can be viewed as LES methods where
the discretization error plays the role of a numerical filter (Boris, 1989). The Reynolds
number is defined by Re = u!'.D = 15000, where uo denotes the bulk exit velocity and D
the jet pipe diameter. The grid was set up as 54 x 25 x 100 for the radial, azimuthal and
longitudinal directions and stretching transformations were applied to concentrate the grid
in the high shear region. The computational domain covered the first ten diameters of the
jet. Disturbances were introduced at the jet pipe exit to induce the roll-up of the vortex
layer and the subsequent break up of the ring structures. All calculations were carried out
on workstations.

Preliminary results for the second and fourth order methods are presented in Fig.4
to Fig.13. The instantaneous vorticity vectors in Fig.4 are plotted in the plane 0 = 0 for
the fourth order method at the dimensionless time t = 56. Vorticity is concentrated in
the shear layer as the fluid leaves the jet pipe. The shear layer starts to roll up leading to
amplification of vorticity and a big ring vortex is formed at about four diameters down-
stream. This large structure breaks up as it moves downstream generating fluctuations of
smaller scale. The axial range shown corresponds to about eight jet pipe diameters and
close to fully developed flow. The early stage in the development of this large structure is
illustrated as iso-surface for enstrophy in Fig.5 and Fig.6. At dimensionless time t = 14.0
in these two figures the formation of braided structures can be observed (note that the flow
direction is from the lower right corner to the upper left corner) breaking the azimuthal
symmetry of the flow. The large ring vortex is not yet fully established but can be seen
at the later time t = 54 in Fig.7 and at t = 55 in Fig.8. The growth of the dominant ring
peaks at about t = 54 with the next upstream vortex just in the beginning of formation.
The next Fig.8 shows the formation of the upstream vortex well under way as the large
ring moves downstream. The break up of the downstream vortex nearly completed at
t = 55. A different illustration of the vortex break up is shown in Fig.9 (second order
accurate scheme) as vortex lines (tangential to vorticity). It is evident that the break up
process involves the production of axial and azimuthal vorticity components.

The dynamics of particles released nar the center of the jet pipe is shown in Fig.10 to
Fig.13. The pathlines of several (hexadecane) particles show that they move through the
potential core without radial dispersion and undergo violent motion in radial direction as
the large vortex structure at about five diameters is encountered. The dispersion of fluid
material points (massless particles) is shown in Fig.11 as a function of the time of flight.
The scatter plots for fluid material points in Fig.12 and hexadecane particles in Fig.13
prove that fluid material points undergo more radial dispersion than the heavy particles.
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Abstract. An experimental technique is described which has been from a large sample of single particle integrations. Informa-
developed to study particle dispersion in a round turbulent *)et. tion about the assumptions and models that are incorporat-
Droplets are injected on the jet axis, and a laser sheet and position
sensitive photomultiplier tube are used to track their radial displace- ed into these calculations can be inferred only from Eulerian
ment. Data processing is greatly simplified compared to video or statistics at present.
photo imaging techniques which provide similar measurements. There are three notable studies in which Lagrangian mea-
Statistically large samples are used to calculate dispersion and axial surements of dispersion are presented. Snyder and Lumley
%elocity as a function of axial downstream distance or particle time- 11971)photographed particles transported'in a grid generat-
"1f-flight. Dispersion and velocity statistics can be computed which pod
are Lagrangian or Eulerian in nature. The technique has been ed flow. Transformations were used to compensate for tur-
demonstrated with 69 g.m droplets of hexadecane in a jet of air with bulence decay so that the fluctuations were stationary with
a Reynolds number of 15.000; in principle it could be used to study respect to the transformed variables. Direct measurements of
the motion of very small, quasi-fluid particles, the particle velocity correlation and the dispersion rate were

presented. A primary drawback of the technique was the
time expense associated with obtaining and analyzing pho-
tographs and the restricted number of samples that were

I Introduction obtained. A similar technique is under development by Lee
et al. 11989: it is capable of providing dispersion measure-

Many practical industrial processes require the rapid mixing ments for droplets in isothermal pipe turbulence. An auto-
of liquid or solid particles within a gaseous phase. Particle- mated photograph analysis is used. Another technique has
turbulence interaction plays a fundamental role in the mix- been utilized recently by Vames and Hanratty (1989) to ob-
ing of these phases. Examples include spray and pulverized tain Lagrangian measurements of water droplet dispersion
coal combustion. Both gas phase turbulence and particle in pipe generated turbulence. The approach is similar to that
response characteristics determine the mixing rate. used by Wel and Stock (1983). A potential drawback to this

This paper reports a novel experimental technique devel- technique is that the time-of-flight for each droplet is not
oped to measure particle displacement and velocity. The measured. Instead an average time-of-flight is determined
measurements can Nield either Lagrangian or Eulerian from the integration of mean velocity data. This point will be
statistics of dispersion and velocity, single particles are discussed further in the results.
tracked from a known initial point, and the time-of-flight is
known for each particle. Most measurements of dispersion
presented in the literature are of the purely Eulerian type. a 2 Theoretical foundation
probe or other observation apparatus rests at a fixed loca-
tion and collects a sample of particles which find their way The basic theory for the dispersion of a particle, developed
to the probe volume. Examples of this methodology are the by Ta lor (1921). considers the displacements of a fluid par-
measurements of Yuu et al. 11978) and Hardalupas et al. tide in a stationary, isotropic flow. The fundamental result
(1989). "sherebv an entire flow was seeded while measure- of the analysis is the following expression for the particle
ments were obtained at fixed downstream points, dispersion as a function of the velocity correlation:

Lagraneian measurements of particle statistics are partic- I I I'
ularly useful. The most common spray modelling approach- (T 2 t( = 2 j V. v t') > it) d" dt'= 2v ) " J RL(t'. t") d" dr'
es involve integrating a particle path through a flow-field. 0 0i

This approach uses a Lagrangian description of particle where v, is the particle velocity relative to the mean flow.
motion for each droplet and spray statistics are computed RL(t'. I") is the particle Lagrangian velocity autocorrelation
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function defined by < 'i (t') v tt")),'(v,). The dispersion a2 is I)roplct
the mean square particle displacement along the x-axis. Dis- ge nerater

placement is a random variable, and averages refer to ensem- Pulse Ai
bles of realizations of the variable. The statistically averaged generation
particle velocity. <,2 ' is constant in time for stationary curcuit
flows. Direct use of the theory in real flows requires knowl-
edge of R -. which is generally unknown.

Two important special cases of Taylor's original theory Photo- le-Ne
are observed. For short separation times. the particle veloc- diod laser
ity is perfectly correlated with itself: as t"-t'--,O then Arion
RLIt' ,C) -1. Equation (1) can be integrated, and the disper- laser
sion is quadratic in time. For large times, the particle veloc-
ity becomes uncorrelated, RL (t', t") - 0, and the dispersion is -I
linear in time. The slope of this line is defined to be the Y
particle diffusivity. X

The above results for a fluid particle can be generalized to z
three dimensions and under restricted conditions the theory
can be extended to nonhomogeneous self-preserving flows.
The linear behavior of Taylor's theory for large times should IL PMT
also be observed in the dispersion of fluid particles in a
round jet as shown by Batchelor (1957). Taylor's original CfAMAC Signal
presentation was developed for the dispersion of a fluid par- A/D amplifier
ticle, but can be applied to larger particles with the appropri- Fig. 1. Sketch of experimental apparatus
ate definition of RL based on the velocity correlation of the
discrete particle. A limited theory has been developed for the
dispersion of a discrete particle in homogenous turbulence the gas phase flow properties. The vaporization of hexade-
by Friedlander (1957). Saffman (1960) and Reeks (1977). cane droplets is negligible over the times of flight under

investigation (typically less than 50 ins).
A 514 nm Argon ion laser beam, rated at 4 W, is used to

3 Experimental technique form a nominally 100 mm wide laser sheet using two cylindri-
cal lenses. Light scattered from the droplets is focused to a

A schematic of the experiment is shown in Figure I. A steady spot on a Hamamatsu position sensitive photomitiplier
stream of monodisperse droplets are generated using a tube. The pmt has four diametrically opposed outputs and
piezoelectric transducer. The droplets are accelerated by the an effective active area of 1600 mm-. The photocurrent sig-
air flow in the nozzle contraction. As each droplet passes nals are amplified, low-pass filtered and fed to a four channel
from the nozzle, it intercepts a He-Ne laser beam which is analog to digital converter, which samples each pulse simul-
monitored by a photo-diode. The diode signal is used as a taneously at 20 kHz. The instantaneous position of the
trigger for the data acquisition system and allows the time- droplet can be determined by comparing the four signals
of-flight to be measured for each droplet. As the droplet along each pulse.
travels axially downstream. it is radially displaced by the jet Figure 2 shows a typical signal from opposite sides of the
turbulence and the displacement from the jet axis is mea- anode as a droplet passes through the laser sheet. The base
sured. The experimental difficulty in tracking individual par- line or dc offset on both signals (Vo. 1, V. 2) is due to the
ticles from a known initial point has been overcome using a background Rayleigh scattering from the air and stray laser
sheet of laser light and a position-sensitive photomultiplier reflections. This scattering cannot be eliminated optically
tube lpmt(. Droplet dispersion statistics are computed from and hence is subtracted during data processing. The ratio of
the position measurements. For the present study the jet the difference of the two signals to the sum of the signals
Reynolds number is 15,000 based on a nozzle diameter of yields a unitless function X which is proportional to the x

Tmm. The droplet diameter is measured by video micro- displacement from the centerline:
photography. with an estimated uncertainty of + 2 pm. The
droplet size is governed by a nozzle attached to the transduc- . IV, - 1 ,) -( V - I .Y

or. The present data are for 69 gm hexadecane droplets. V- ,, -4- V ,1 - V, )
The droplet generation frequency is nominally 10 Hz.

rhe total data collection and computer processing time is Calibration is then necessary to relate X to the actual dis-
Approximately 2 minutes per 1000 droplets. The droplets are tance of the droplet along the x-axis. The system has been
separated by more than 1000 droplet diameters: hence, the calibrated using droplets in a laminar flow at known posi-
droplets are non-interacting and have a negligible effect on tions and the calibration is shown in Fig. 3. It is apparent
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third order curve fit

that the pint response is quite linear in position over a wide laser beam. Assuming the velocity gradients in the axial
range. In order to cope with outlying droplets we have cho- direction are not large. this time is i iversely proportional to
sen to iit th. calibration measurements with a 3 "d order the droplet velocity. Calibration of velocity is performed
polynomial. Because the collection optics and pmt are loeat- L'Sini two closely spaced laser sheets with a known separa-
cd on the jet axis :-. the calibration in the direction ts tion distance.
identical to that in the x. ( Fig. I illustrates the orientation of
the coordinate axes. I 3.1 Anhsso atcepsto

Axial droplet velocities are measured by timing the pas- ftiIA/Prilepsiul

sagle Of droplets through the laser sheet. A typical total pmnt As each droplet passes through the sheet a series of x. v pairs,
signal is shown in Fig. 4. obtained by summing the four are obtained, each pair separated in time by '0) ps (due to thc
c:hannels. The sigtnal is approximated well by a Gaussian 20 kl-z diaitization rate). These pairs are then averaged.
function as would be expected from an Argon ion laser providing a mean displacement for each drop. A distribution
beam. The width of the pulse ts proportional to the variance of droplet displacements is shown in 1-ig. 5. The scatter data
of the Gaussian curve fit, a. This parameter is related, in are typical for an axial location of zcD = 51. The pdfs for
turn, to the transit time of the droplets as it passs through the displacement of the droplets in the x or Y direction are
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Gaussian to within the accuracy of the experimental data. 0.6-

There is no a priori reason to expect a Gaussian distribution
since the droplet trajectories are through a non-homoge-
neous flow field which is non-stationary in the Lagrangian
reference frame. However, the result is not surprising since 24

Gaussian distributions have also been observed for particle
displacement in pipe generated turbulence.

One experimental objective is to measure the dependence
of dispersion on axial position and on droplet time-of-flight.
From these measurements, a particle diffusivity and root 0.2

mean square Irms) radial velocity can be estimated by con-
sidering a limiting case of Taylor's theory. The diffusivity is
dependent on the flow characteristics and time scales, as well
as particle parameters. 0

The radial dispersion a,- is computed using the following -6 - 4 - 2 a 2 4 6
expression: V -<v > (m/s)

Fig. 6. Vclocit% probability density functions at _ D -27 and 51. El
'T" = I II Y (x+.v+ ) (3) D=27. E -D=5

mherc n is the number of droplet samples obtained and the to noise ratio of - 100. The peak signal strength depends
v, and v are the measured displacements from the jet axis for quadratically on particle diameter. Therefore. a 35 pm
each droplet. The dispersion in the x or y direction is also droplet would provide approximately four times less signal.
readily computed and since the flow field and dispersion are The signal to noise ratio can be improved by increasing the
axisymmetric. r,2 =,,2. For experimental dispersion mea- laser power and by decreasing the background scattered
surements. a total of 1000 droplets are used for statistics at light.
each axial location downstream from the air jet nozzle. The The effect of noise on the pint signals gives rise to uncer-
time-of-flight and radial displacement are recorded for each tainty in the position and velocity measurments. As the
droplet at a particular axial location, droplet passes through the sheet of light, a minimum of 3

useful data samples along a pulse are obtained (for which the

3.2 Anaisis o/ particle velocity total pint signal is greater than 20% of its measured maxi-
mum value). This leads to at least three values of X to be

The axial velocities of the droplets have been measured at a averaged to determine the droplet displacement and three
number of axial stations along the jet. Figure 6 presents two points for the Gaussian curve fit for velocity. Additional data
velocity probability density functions at 27 and 51 nozzle can be obtained by increasing the data collection rate above
diameters downstream. Both pdfs are close to Gaussian. At 20 kHz.
the more downstream position the pdf variance is less as the Precision of the position measurements has been estimat-
turbulence kinetic energy decreases. The statistics are effec- ed for typical experimental conditions at an axial location
tively Eulerian statistics i.e.. dependent upon the particle of : D = 27. At this position. the droplet mean axial velocity
being at some particular axial location. The data could also is 10.5 m/s. The average number of useful data points along
be presented in a purely Lagrangian fashion by analyzing the a pint pulse at this velocity is 3.4 and the average variance
results as functions of the time-of-flight for each droplet. of the x or y position obtained from the groups of 3 or 4 data

points was 0.35 mm2 . If it is assumed that the error in posi-
tion measurement from the true position is normally distrib-
uted and the droplets are passing vertically through the sheet

The random signal noise affecting the measurements is due Ino change in radial position). the uncertainty in the mean
to pmt dark noise, laser noise, fluctuations in stray light value for displacement is +0.3 mm. (The latter assumption
intensity arriving at the pmt. electronic noise, and discretiza- suggests the uncertainty should be less than 0.3 mm because
tion error. The discretization error is + I count which cor- some droplets may possess a radial velocity within the laser
responds to + 2.4 mV for our 12 bit analog to digital con- sheet.) Accuracy of the position measurements is ensured by

erter. With the laser off. the rms noise on each sigral has calibrating just prior to data collection using 60 droplets and
been measured to be 1.3 mV with the pint cathode voltage then averaging at each calibration point.
-'t at - 8(X V (same as for data collection). This measure- The precision of the velocity measurements can be in-
ment includes contributions from pmt dark noise and elec- ferred by injecting droplets into a 10.5 m/s laminar flow and
tronic noise. W h the laser power on. the rms noise is measuring the rms velocity fluctuation. The mean droplet
9.6 mV. A typicat signal for a 69 pm hexadecane droplet is velocity and true rms are measured using two sheets of laser
1 V peak on each of the four channels giving a peak signal light and a 100 kHz transient recorder. The true rms velocity



.C. J. Call and i. M. Kenned.: A technique Idr measuring Lagrangian and Eulerian particle statistics in a turbulent flow 129

was 0.2 m s I 1.9o of the mean) and the value obtained using 300

one sheet and the Gaussian curve fitting technique was
0.34 in s 0.2% ). providing an indication of the precision of
this approach.

200

4 Results and discussion -

9L

The radial dispersion of the droplets can be analyIed in
either purely Eulerian terms or Lagrangian terms. The Eule- 00
rian dispersion of droplets is shown in Fig. 7 as a function of
the axial location. The dispersion increases quite rapidly for "
- D greater than about 30. The time-of-flight measurements
have been ensemble averaged and are shown in Fig. 8. The 0
quadratic dependence of time-of-flight on axial position is 0 1 0 20 30 40 50 60

consistent with that expected for a round jet. zID

With the time for each droplet's flight known we are in a Fig. 7. Radial dispersion measurements as a function of axil
position to present truly Lagrangian statistics for particle distance

dispersion in a turbulent jet. This is achieved by taking data
at many finely spaced axial locations along the jet. We then 50
analyze the entire data set and sort it into narrow bins of
time. The results are shown in Fig. 9. For this plot. a data set
was collected at intervals ol 1.4 _-/D. The entire set was re- 40-

sorted into bins of time: the width of each bin was At ' t
+ 0.04. 1

By combining the data of Figs. 7 and 8. the Eulerian 30
dispersion data can provide an quasi-Lagrangian result that
is a function of mean time-of-flight rather than position (also v 20
shown on Fig. 9). The "mean" refers to an average at each
axial location. As can be seen in Fig. 9. for our experi-
mental conditions the results overlap. The practice of deriv- 10
ing Lagrangian statistics from essentially Eulerian measure-
ments was used by Vames and Hanratty (1988) and is valid
under certain conditions. For systems in which the particle 1 0 20 30 40 50 60
velocity fluctuation is negligible relative to its mean axial z/D
velocity, the times-of-flight pdf at a given axial location will Fig. 8. Mean time-of-flight measurements for 69 pm hexadecane
appcoach a delta function. For these systems the mean time- droplets
of-flight approach provides an excellent approximation to
the true Lagrangian measurement.

In the current experiment we have measured a time-of- 300
flight pdf that exhibits some significant spread as shown in a Lagrangian dispersion
Fig. I0. The pdf appears to be log-normal; this may be due m Data of Figs. 7 and 8 U

to the fact that the time-of-flight is a bounded stochastic aU
Svariable i.e.. it cannot be less than zero. Based on this obser- E": 200 a

vation, one would not necessarily expect the two data sets of , ,,
Fig. 9 to overlap.

The experimental approach reported here collects inde- a.
pendent samples of x. v. - and t allowing OUy(t) and ir,- -5
(:or , t .) to be considered separately. The results will neces- 100

s)ril, converee when the variance in time-of-flight t at a fixed ,
axial location z approaches zero. However, a positive vari- c

ance does not necessarily imply ,'lt) will not be numerically
equal to aV,2 (. ) . but the accuracy of the approximation is 0 _ .
dubious. Fundamentally. the assumptions is unjustified al- 0 10 20 30 40 50
thougl- in practice the measurements of an averaged quanti- Time of flight (ms)
tv such as particle dispersion may not be strongly affected. Fig. 9. Lagrangian measurements of radial dispersion
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5 is directly, in comparison to the time intensive data reduction

and analysis which characterize photo and video imaging
methods.,The statistics can be cast in a form which is truly
Lagrangian in nature since individual particles have been

0 1 - tracked from a known initial location and their time-of-flight
is measured. For the particle and flow scales of this experi-
ment it was found that an average time-of-flight analysis
provides close agreement to the true Lagrangian time-of-

005- 2flight measurements for dispersion calculations. Since the
o\ technique is non-intrusive, it can be used in a wide range of

- flow conditions and configurations including dilute com-

busting sprays.
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