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A COMPARISON OF ACOUSTIC IMPEDANCE

MEASUREMENT TECHNIQUES

1. INTRODUCTION

The acoustic impedance of a material is its most basic acoustic property.

Impedance, defined as the ratio of the pressure to the volume displacement at a given

surface in a sound-transmitting medium [11, is usually a frequency-dependent complex

number. Because the acoustic impedance of a material determines the acoustic response of

the surrounding environs, careful impedance measurements are required to produce

accurate system models. Acoustic enclosure designers can then use these models to select

suitable materials for wall, floor, and ceiling coverings.

A number of acoustic impedance measurement techniques have been developed.

Many of these techniques used an impedance tube and a single microphone [2] - [6] to

determine the acoustic impedance based on the spatial location and magnitude of the

maximum and minimum sound pressure levels at an acoustic resonance. (This type of

measurement is sometimes referred to as ASTM Standard C 384 [7].) These methods have

two disadvantages: the first is nonstationary instrumentation and the second is difficulty in

measuring the measurement of maximum and minimum pressure levels in the impedance

tube.

More recent acoustic impedance measurement methods have used two microphone

systems [8] - [10] which require two similar, phase-calibrated microphones at some

location in the tube with a known distance between them. The acoustic wayv response is

mathematically separated into its reflected and incident components using a transfer

function between the microphones. This decomposition of wave propagation allows the

computation of acoustic impedance. (This type of measurement i. sometimes referred to as

ASTM Standard E 1050 [111.) These measurements are sometimes difficult to calculate
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because of numerical instability at certain frequencies and sensitivity to instrument

calibration.

Another recent acoustic impedance measurement technique utilized the eigenvalues

of the transfer function of the impedance tube to evaluate the impedance at the end of the

tube [121. One microphone recorded the input pressure at the end of the impedance tube

while a second recorded the tube response at a different location. A fast Fourier transform

of the system was calculated and its eigenvalues extracted. The functional form of the

eigenvalues were then inverted, and the acoustic impedance at each duct resonance was

computed. This method, while extremely stable, is a spectrally sparse identification

technique; the impedance of the material at the end of the duct can only be computed at

discrete duct resonances.

This report describes a study that compares two acoustic impedance measurement

techniques: the wave decomposition technique and the inverse eigenvalue technique. A

theoretical derivation is presented, and an experiment comparing acoustic impedance

measurements from both methods is provided.

2. THEORY

2.1. WAVE DECOMPOSITION METHOD

The first method investigated is the wave decomposition method 181,111]. The

mathematics presented here are only slightly different than those from the reference [81,[ 111

derivation.

The system model is the wave equation designating a one-dimensional hard-walled

duct. The model has a pressure boundary condition at one end that represents an excitation

speaker and an impedance boundary condition at the other end that represents some material

inserted in the end of the duct. This material produces a partially reflective and reactive

boundary condition that results in a bounded complex transfer function of the duct.

The boundary condition at x = L is the ratio between the pressure and the particle

velocity and is expressed as [61,[131,[141

2
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where K is the complex acoustic impedance (dimensionless) at the end x = L, u(L,t) is the

fluid particle displacement (m) at x = L, c is the sonic wave speed in the duct (m/s), t is

the time variable (s), x is the spatial variable (m), and L is the length of the duct (m).

Acoustic impedance K = 0 + Oi corresponds to a totally reflective open end, IKI -

corresponds to a totally reflective closed end, and K = 1 + Oi corresponds to a totally

absorptive end where the dynamic response of the duct appears as if the duct were infinitely

long. In general, the acoustic impedance is neither totally reflective nor absorptive, and K

does not equal any of the above three values that correspond to ideal boundary conditions.

The homogeneous wave equation that models particle displacement in a linear,

hard-walled one-dimensional duct can be expressed as [ 141,[15]

d 2u(x,) 2 d2 u(xt) = 0 (2)
d,2 c X 2 '

where u(x,t) is the particle displacement (m). The wave equation assumes an adiabatic

system, uniform duct cross section and negligible air viscosity effects. All system

dissipation is assumed to occur at the termination end x = L; in other words, the duct is

acting as a pure energy transmitter. The one-dimensional assumption requires the diameter

of the duct to be small compared with the wavelength of acoustic energy. This assumption

is usually considered valid when f < 0.586(c/d) where f is the frequency of the acoustic

wave (Hz) and d is the diameter of the tube (m) [7],[1 11]. Although the forcing function of

the excitation speaker could be added to the right-hand side of equation (2), it will be

advantageous to include it as a boundary condition for this method.

The excitation speaker at the duct end at x = 0 is modeled as a harmonic pressure

excitation (or source). This boundary condition is [ 16]

du =-Po eion
0 0 -(3)

3
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where P0 is the magnitude of the pressure source (N/m 2 ), p is the density of the medium

(kg/m3 ), wo is the frequency of the excitation (rad/s), and i is the square root of -1. Implicit

in equation (3) is negligible source impedance. If the source impedance is not small, it can

be incorporated into the model [17].

The acoustic pressure of the system is proportional to the spatial derivative of the

particle displacement. This equation is [14]

P = 2 (X, t , (4)

where P(x,t) is the acoustic pressure response of the tube (N/m 2 ) at some location x.

Equations (1) - (4) can be solved by using separation of variables and then equating

the ordinary differential equations to the boundary conditions. This technique results in the

following response of the system [61,[16]:

P(X'r I (K - I)expli C(x - L)] + (K + 1)expl-i C (x - L)] }x~cr (5)
"0(K - ) exp(-i C L) + (K+1)exp(i- C L)

The transfer function T(K,oc,L) of the system is the coefficient of exp(iox) in equation

(5).

The acoustic impedance K may be determined by expressing T(K,to,c,L) in an

alternate form. This process begins by expressing the function T(K,wcL) in terms of the

real and imaginary parts as

Re(K)cos[C (x - L)] + iIm(K)cos[. (x - L)] - sin[-C(x - L)]}Re(T) + ilIm(T) = 'L C, (6)

Re(K)cos( C L)+ i{Inm(K)cos( C L) + sin(- jL)}

where T is the transfer function data (dimensionless) determined experimentally. (Re()

denotes the real value of a complex number, and Im( ) denotes the imaginary value of a

complex number.) Although the transfer function data are normally displayed as a

4
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magnitude and a phase angle, it is advantageous to leave them in the form of a real and an

imaginary number for the computations discussed here. Equation (6) is now expressed as:

Re(K)Re(T)cos(L)- Inm(T)Im(K)cos(L)- LIm(T)sin(EL)

i[Im(T)Re(K)cos(C L) + Re(T) Im(K) cos( C L) + Re(T) sin(LL)] = (7)

Re(K)cos[ (x-Lj +i{Im(K)cos[-(x-L) -sin[-(x-L)]}

Equating the real and imaginary parts of equation (7) yields the system of equations given

by

{Re(T)cos( L) - cos[C (x - L)]} Re(K) - Im(T)cos( C L) Im(K) (8)

= Im(T)sin( C L)

Im(T)cos(-C L)Re(K) + {Re(T)cos( -• C-cos[ (x - L)T}lm(K)

=- sin[-c(x-L)] -Re(T)sin(-cW L)

Equations (8) and (9) can also be written in matrix form as

Ak = , (10)

where

Re(T)cosOLI)-cos{.(x - L)] -Im(T)cos L L) ]A=Im(T)cos( CL) Re(T)cos(-CL+-cos[ C(x - L)

k LRe(K)J, and
Im(K)

5
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(x- ) -R(T)si ±L (

b=T si(C~ L) WL).

When A is nonsingular, a unique solution for k is given by k = A'lb such that

Re(K)= l ( {Re(T)cos(- L) -cos[C(x- L)]}Im(T)sin( L(

+ Im(T)cos(-..L){sin[-(x-L)]+Re(T)sin( WL)})

and

Im(K) = Re(T)cosI±L- cos -si -L(x -L) Re(T)sin-L)ý
A ( t C J LCI-DfsI I-

- [Im(T)]2 cos(-C L)sin( C L))

(12)

where

A = det[Al = {Re(T)cos( C L) Cos[.C(x-L + Im(T)cos(- -L . (13)

Acoustic impedance K represents the acoustic impedance at the frequency o;, therefore at

any frequency where the transfer function is measured, the impedance can be computed.

Because a determinant is involved in the calculations, there is some instability in the

measurement technique. This instability occurs whenever the determinant of A is equal to

(or near) zero. The determinant is strictly real-valued, therefore det(A)--0 when

Im(T)cos(CL) = 0 (14)

and

Re(T) cos(~ LI + Cos[ C (x - L)] = 0 . (15)

It is shown below that equations (14) and (15) are concurrently equal to zero when

Im(T) = 0 (16)

6
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The imaginary value of T can be rewritten from equation (6) as

- Re(K) sin(- x)
Im(T) 2 (C(17)[Re(K)cos W LJ +[Im(K)cos W L + sin(•W L)]Z

Assuming the real part of the acoustic impedance is not zero, then equations (16) and (17)

are satisfied when

sin( x)=O (18)

Equation (18) implies that

Cos(•x +1 (19)

Inserting equations (18) and (19) into the real part of equation (6) yields

Re(T) = +1 (20)

Inserting equations (18), (19), and (20) into the left-hand side of equation (15) enforces the

equality. Therefore,

Im(T)=O =ý det[A]=0 , (21)

and impedance calculation instability occurs at

0) = n n = 0,1,2,... (22)

x

where x is the location of the response measurement microphone and o) is measurement

frequency in rad/s.

Another possibility for the determinant of A to vanish is that

cos( C L+ 0. (23)

However, inserting equation (23) into equation (15) will produce a zero value (and

consequently det(A)--0) only if sin Wix =0 which is identical to equation (18) and is
(C .7

conseuentl
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already considered above. Thus, equation (23) alone does not produce a zero valued

determinant of A.

The system o0 equations can be evaluated when det(A)=O. If equations (16), (18),

(19) and (20) are inserted into equation (10), the result is A=b=O. There are an infinite

number of solutions for k, as any value will satisfy Ak=b when det(A)=O. Note that in

order for an infinite number of solutions to exist, the vector b must be orthogonal to the

null space of AT. It may be shown that this requirement implies b=O, consistent with the

above conclusion. If specific frequencies are of interest where impedance calculation

instability occurs, the location of the response measurement microphone can be changed,

and the impedance calculation instability will be moved to different frequencies.

2.2. INVERSE EIGENVALUE METHOD

The second method ;nvestigated is an inverse eigenvalue method [121. The system

model is similar to the previous one, except the forcing function has been moved from the

boundary condition at x = 0 to the right-hand side of the wave equation. ihe termination

end impedance is the same as above:

du =- I)-d(L,t) (24)
dx \c) dt

The linear second-order wave equation modeling particle displacement in a hard-walled

one-dimensional duct is

d2u(x,) c2 d2u(xt) = 3(x)P,(t) (25)
dt2 dx 2 P'

where 6(x) is the Dirac delta function and Pe(t) is the excitation pressure of the speaker at x

= 0. The duct end at x = 0 is now modeled as a totally reflective open end. Th.s boundary

condition is

S00 (26)
dx

8
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Equation (26), along with the right-hand side of equation (25), models the speaker as a

pressure source at x = 0.

The eigenvalues of the model are found by application of the separation of variables

to equations (24) and (26) and the homogeneous version of equation (25). Separation of

variables assumes that each term of the series solution is a product of a function in the

spatial domain multiplied by a function in the time domain:

u(x,t) = X(x)T(t) . (27)

Substituting equation (27) into the homogeneous version of equation (25) produces

two independent ordinary differential equations, each with a complex-valued separation

constant A:

d2X(x) - )3X(x) = 0 (28)

and

d2 T(t) _2A2T(t)= 0 (29)
dt•

The separation constant A = 0 is a special case where X(x) = T(t) = 1 to satisfy equations

(24) and (26). Although A = 0 is a separation constant of the system, it does not contribute

to the pressure field in the duct and is therefore ignored for further computational purposes

[181,[19]. The spatial ordinary differential equation (28) is solved for A # 0 using the

boundary condition in equation (26):

X(x) = eXX + e-X . (30)

The time-dependent ordinary differential equation yields the following general solution:

T(t) = Aecat + Be-ct. (31)

Applying the boundary condition in equation (24) to equations (29) and (30) yields

B = 0 and the separation constant

1 . (1-K'\ n~ri
An L loge• __ , n = 0,+±1, ±2,... (32)

2L (l+K) L
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The system eigenvalues An are equal to the separation constant multiplied by the wave

speed c (An=cAn). Each of these eigenvalues are functions of acoustic impedance, K. The

inverse function will allow impedance K to be computed from the measured eigenvalues.

The acoustic impedance K of the end can now be determined at each duct resonance

from the eigenvalue at that resonance. This computation assumes that the eigenvalues of

the system are known. Measurement of these duct system eigenvalues is discussed in the

next section. Directly solving for K in terms of A is very difficult; therefore, an

intermediate variable P3 is introduced to simplify the acoustic impedance computation. The

variable O3n is related to the nth eigenvalue A. from equation (32) as

Re(An) + i m(An ) = - loge[Re(fn ) + ilm(n3)]- n 'rc_ (33)
2L L

where the subscript "n" denotes the nth term. Equation (33) is now broken into two parts,

one equating the real coefficients and the other equating the imaginary coefficients. The

complex logarithm on the right-hand side is rewritten as

loge[Re(13n) + i Im(P.n )] = loge 1nI + i arg(8n3) (34)

where I13nI is the magnitude of 13n and arg(13n) is the argument of /3n (i.e., the arctangent of

[Im (fin)/Re(fin)].)

The intermediate variable 1On is now solved in terms of the real and imaginary parts

of the eigenvalues. The real pan of On, is

Re(fl.) = +/ ( C l , (35a)

where [1+ tan2(2L4n )
where

ncir
dn = Im(An)--LL

The sign of Re(fln) in equation (35a) is determined by

10
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S= {+1 if 0• JAI< 0.25
[-1 if 0.25 J IAI< 0.50 ' (35b)

where

A dn

If the value of A is less than -0.5 or greater than 0.5, the eigenvalue index n is incorrect and

corresponds to an eigenvalue other than the nth one. The value, n, must then be changed to

produce a A between -0.5 and 0.5 that will correspond to the correct eigenvalue index.

Once Re(Pn) is found, Im(fin) is obtained by the equation

Im(,fl3) = Re(I3n)tan- I, (36)
"CI

where Re(f3n) is given in equation (35).

The term (1-K)/(I+K) is now equated to the intermediate variable 3,n using

equations (32) and (33) as

Re(fln) + i Im(fin) = I - Re(Kn) - i Im(Kn ) (37)1 +Re(Kn)+iIm(Kn)

where Re(Kn) is the real part of K and Im(Kn) is the imaginary part of K for the nth

eigenvalue. Breaking equation (37) into two equations and solving for K. as a function of

f3n yields the acoustic impedance as

Re(Kn) = 1 - [Re(I6 )]2 _ [Im( )]2 (38)
[Re(•fln) + 11 2 + [Im(Pn)] 2

Im(Kn) = 
)[Re(in) 

+ 112 +[im(fln)]2"

Acoustic impedance measurement Kn represents the acoustic impedance at the nth resonant

frequency.

11
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3. EXPERIMENT

The two acoustic impedance measurement techniques were compared

experimentally. A 2.94-m long, 0.0762-m (3-in.) diameter PVC schedule 40 duct with a

speaker mounted at one end was fabricated. A piece of packing foam was inserted at the

termination end. This foam provided a boundary condition that was neither highly

reflective nor highly absorptive. Speaker input pressure was measured at the entrance to

the duct with a Bruel and Kjaer Type 4166 half-inch microphone attached to a Hewlett-

Packard 5423A digital signal analyzer. The response of the duct was measured at x =

0.792 m with a second Bruel and Kjaer Type 4166 half-inch microphone, also attached to

the digital signal analyzer (figure 1). The microphones were phase matched and calibrated

with a Bruel and Kjaer Type 4230 sound level calibrator. Although a digital signal analyzer

was used in this experiment, the same measurements could be made with a gain-phase

meter. The digital signal analyzer is more useful for the inverse eigenvalue method because

it contains an algorithm to extract the complex-valued eigenvalues from the transfer

function of the system. This algorithm is transparent to the user.

The measured frequency response function is shown in figures 2 and 3. Figure 2 is

the function illustrated using real and imaginary parts. Figure 3 is the function displayed as

magnitude and phase angle, which is the conventional form in which transfer functions are

displayed. The data Re(T) and Im(T) used in the first measurement technique are taken

directly from figure 2. These data provide two of the parameters used to determine the

acoustic impedance. The other parameters required are the speed of sound in the duct, the

length of the duct, and the measurement frequency. All the parameters are relatively easy to

measure. The measured duct eigenvalues, listed in table 1, were extracted from five

independent transfer functions with the response measurement microphone at five different

locations from x = 0.792 m through x = 1.42 m at 0.157 m increments. These eigenvalues

are used in the second measurement technique. Note the low value of the standard

12
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deviations in columns three and five of table 1. Table 2 shows the calculated acoustic

impedance measurements for this second method.

The computed acoustic impedance from both methods is displayed graphically in

figure 4. The acoustic impedances using the wave decomposition theory [81 are displayed

as x's and +'s. The real value of K is shown on the upper plot as x's and the imaginary

value of K is shown on the lower plot as +'s. The acoustic impedance measured using the

eigenvalue inverse technique [121 is shown on both plots as squares. There is an extremely

close agreement for the real value of K and relatively close agreement for the imaginary

value of K. For this specific case, the acoustic impedance is dominated by the real value of

K, and the small difference in the imaginary values of K is negligible. The divergence of

the calculated acoustic impedance around 217 Hz for the wave decomposition theory can be

viewed clearly. This divergence is predicted in the previous section by the theory.

LNo
X

Excitation Speaker
_• ,• Duct

Input Response Termination
Reference Measurement Acoustic
Microphone Microphone Impedance K
P(0,t) IP(x,t)

Fast T (co) =(,W
Fournier P0O _ Frequency
Transform Response

Figure 1. Laboratory Configuration

13
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Table 1. Measured Duct Eigenvalues for the Impedance Tube

Eigenvalue Re(An) Re(An) Im(Ar) Im(An)
(n) mean, m std. dev., s mean, m std. dev., s

(Hz) (Hz)

1 -4.955 0.033 57.89 0.045
2 -5.204 0.124 116.3 0.055
3 -5.713 0.091 174.7 0.152
4 -5.755 0.131 233.8 0.259
5 -4.231 0.122 291.7 0.164
6 -5.414 0.117 350.5 0.192

Table 2. Calculated Acoustic Impedance Using Inverse Eigenvalue Method

Eigenvalue (n) Re(Kn) Im(Kn)

1 0.260 0.032
2 0.273 0.037
3 0.298 0.042
4 0.300 0.014
5 0.224 0.046
6 0.283 0.031

14
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Figure 2. Transfer Function Real and Imaginary Terms Versus Frequency
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Figure 3. Transfer Function Magnitude and Phase Versus Frequency

16



TR 10,131
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Figure 4. Acoustic Impedance Versus Frequency
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4. CONCLUSIONS

Both the wave decomposition and inverse eigenvalue measurement techniques

provided similar values of acoustic impedance for the material tested. The wave

decomposition method is useful because it provides a measure of impedance at every

frequency where the transfer function is measured. The inherent disadvantage is its

numerical instability at or near certain frequencies. Although the inverse eigenvalue method

is an extremely numerically stable measurement technique it provides a measure of acoustic

impedance only at duct resonances. Other values must be interpolated.

18
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