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Development of Neural Network Architectures
for Self-Organizing Pattern Recognition and Robotics

Contract AFOSR 90-0083 (Year 2)

Principal Investigators:
Gail A. Carpenter and Stephen Grossberg
Center for Adaptive Systems
and
Department of Cognitive and Neural Systems
Boston University

SUMMARY

During the second year of the DARPA ANNT Program contract, new neural network
architectures were developed to carry out autonomous real-time preprocessing, segmentation,

recognition, timing, and control of both spatial and temporal inputs. Brief summaries are
followed by more extensive ones.

(1) Preprocessing of visual form and motion signals: Parallel cortical systems for
the processing of static visual forms and moving visual %orrns are derived from a principle
called FM Symmetry. A feedforward What-and-Where filter models parallel visual systems
to generate an input representation (What it is) that is invariant to position, size, and
orientation without discarding this information (Where it is). Synchronized oscillations in a
model of visual cortex are capable of rapidly binding spatially distributed feature detectors
into a globally coherent segmentation. The vision model is also applied to the processing of
synthetic aperture radar (SAR) images.

(2) Preprocessing of acoustic signals: A neural network model for preprocessing of
an acoustic source generates a representation of pitch as a spatial pattern that emerges from
a type of neural harmonic sieve.

(3) Adaptive pattern recognition and categorization: Unsupervised learning:
A new analog adaptive resonance model (Fuzzy ART) incorporates computations from fuzzy
set theory into the binary ART 1 model. When used as part of a larger architecture for
supervised learning, Fuzzy ART enables the user to interpret vectors of learned adaptive
weights as if-then rules, thus defining a self-organizing expert system.

(4) Adaptive pattern recognition and prediction: Supervised learning: The
Fuzzy ARTMAP architecture carries out incremental supervised learning of recognition cat-
egories and multidimensional maps in response to arbitrary sequences of analog or binary
vectors. A Minimax Learning Rule conjointly minimizes predictive error and maximizes
code compression, thereby optimally shaping recognition categories to the statistics of the
input environment. Benchmark studies affirm Fuzzy ARTMAP’s power compared to alter-
native models from machine learning, genetic algorithms, and neural networks, including
application domains such as large database analysis. Another system (NEXsT) uses VLSI

switching theory to design neural networks with a minimum number of if-then rules for
binary supervised learning problems.

(5) Temporal patterns, working memory, and 3-D object recognition: Working
memory neural networks, called Sustained Temporal Order REcurrent §STORE) models,
encode the invariant temporal order of sequential events, with repeated or non-repeated
items, in a manner that is stable under incremental learning conditions.

(6) Adaptive timing: A new network circuit models adaptive timing of recognition
and reinforcement learning. The model is closely linked to circuits in the hippocampus.

(7) Adaptive control: A model of sensory-motor control shows how outflow eye move-
ment commands can be transformed by two stages of opponent processing into a head-
centered spatial representation of 3-D target position. Opponent processing is again a key
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element in an analysis of arm movement data. Related model properties are used in an
application to optimal control of machine set-up scheduling.

These and related projects, including model development, analysis, simulation, and com-
parisons with behavioral and neural data, are described below.

The contract provided partial summer salary for the two Principal Investigators and
supported four Research Assistants, all of whom are PhD students in the Boston University
Department of Cognitive and Neural Systems.




1. PREPROCESSING OF VISUAL FORM AND MOTION SIGNALS

(A) Why Do Parallel Cortical Systems Exist for the Perception of Static Form
and Moving Form?

This project analyses computational properties that clarify why the parallel cortical systems
V1-V2, V1~ MT,and V1 — V2 — MT exist for the perceptual processing of static visual
forms and moving visual forms. A symmetry principle, called FM Symmetry, is predicted
to govern the development of these parallel cortical systems by computing all possible ways
of symmetrically gating sustained cells with transient cells and organizing these sustained-
transient cells into opponent pairs of on-cells and off-cells whose output signals are insensitive
to direction-of-contrast. This symmetric organization explains how the static form system
(Static BCS) generates emergent boundary segmentations whose outputs are insensitive to
direction-of-contrast and insensitive to direction-of-motion, whereas the motion form system
(Motion BCS) generates emergent boundary segmentations whose outputs are insensitive
to direction-of-contrast but sensitive to direction-of-motion. FM Symmetry clarifies why
the geometries of static and motion form perception differ; for example, why the opposite
orientation of vertical is horizontal (90°), but the opposite direction of up is down (180°).
Opposite orientations and directions are embedded in gated dipole opponent processes that
are capable of antagonistic rebound. Negative afterimages, such as the MacKay and water-
fall illusions, are hereby explained, as are aftereffects of long-range apparent motion. These
antagonistic rebounds help to control a dynamic balance between complementary perceptual
states of resonance and reset. Resonance cooperatively links features into emergent boundary
segmentations via positive feedback in a CC Loop, and reset terminates a resonance when
the image changes, thereby preventing massive smearing of percepts. These complemen-
tary preattentive states of resonance and reset are related to analogous states that govern
attentive feature integration, learning, and memory search in Adaptive Resonance Theory.
The mechanism used in the V1 — MT system to generate a wave of apparent motion be-
tween discrete flashes may also be used in other cortical systems to generate spatial shifts
of attention. The theory suggests how the V1 — V2 — MT cortical stream helps to com-
pute moving-form-in-depth and how long-range apparent motion of illusory contours occurs.
These results collectively argue against vision theories that espouse independent processing
modules. Instead, specialized subsystems interact to overcome computational uncertainties
and complementary deficiencies, to cooperatively bind features into context-sensitive reso-
nances, and to realize symmetry principles that are predicted to govern the development of
visual cortex. [35-58]

(B) Cortical Dynamics of Visual Motion Perception: Short-Range and Long-
Range Apparent Motion

The theory of biological motion perception is also used to explain classical and recent data
about short-range and long-range apparent motion percepts that have not yet been explained
by alternative models. These data inclrde beta motion; split motion; gamma motion and
reverse-contrast gamma motion; delta motion; visual inertia; the transition from group mo-
tion to element motion in response to a Ternus display as the interstimulus interval (ISI)
decreases; group motion in response to a reverse-contrast Ternus display even at short ISIs;
speed-up o?motion velocity as interflash distance increases or flash duration decreases; depen-
dence of the transition from element motion to group motion on stimulus duration and size;
various classical dependencies between flash duration, spatial separation, ISI, and motion
threshold known as Korte’s Laws; dependence of motion strength on stimulus orientation
and spatial frequency; short-range and long-range form-color interactions; and binocular
interactions of flashes to different eyes. [41, 42]




(C) A What-and-Where Neural Network for Invariant Image Preprocessing

The What-and-Where filter is a feedforward neural network for invariant image preprocess-
ing that represents the position, orientation, and size of an image figure (where it is) in a
multiplexed spatial map. This map is used to generate an invariant representation of the
figure that is insensitive to position, orientation, and size for purposes of pattern recogni-
tion (what it is). A multiscale array of oriented filters, followed by competition between
orientations and scales is used to define the Where filter. [14]

(D) Synchronized Oscillations during Cooperative Feature Linking in a Cortical
Model of Visual Perception

A neural network model of synchronized oscillator activity in visual cortex accounts for
recent neurophysiological findings that such synchronization may reflect global properties of
the stimulus. In these recent experiments, it was reported that synchronization of oscillatory
firing responses to moving bar stimuli occurred not only for nearby neurons, but also occurred
between neurons separated by several cortical columns (several mm of cortex) when these
neurons shared some receptive field preferences specific to the stimuli. These results were
obtained not only for single bar stimuli but also across two disconnected, but colinear, bars
moving in the same direction. Computer simulations of the synchronized oscillator obtain
these synchrony results across both single and double bar stimuli. For the double bar case,
synchronous oscillations are induced in the region between the bars, but no oscillations
are induced in the regions beyond the stimuli. These results were achieved with cellular
units that exhibit limit cycle oscillations for a robust range of input values, but which
approach an equilibrium state when undriven. Single and double bar synchronization of
these oscillators was achieved by different, but formally related, models of preattentive visual
boundary segmentation and attentive visual object recognition, as well as nearest-neighbor
and randomly coupled models. In preattentive visual segmentation, synchronous oscillations
may reflect the binding of local feature detectors into a globally coherent grouping. In
object recognition, synchronous oscillations may occur during an attentive resonant state
that triggers new learning. These modelling results support earlier theoretical predictions of
synchronous visual cortical oscillations and demonstrate the robustness of the mechanisms
capable of generating synchrony. [43-45]

(E) Processing of Synthetic Aperture Radar Images by the Boundary Contour
System and Feature Contour System

An improved Boundary Contour System (BCS) and Feature Contour System (FCS) neu-
ral network model of preattentive vision has been applied to two large images containing
range data gathered by a synthetic aperture radar (SAR) sensor. The goal of processing
is to make structures such as motor vehicles, road, or buildings more salient and more in-
terpretable to human observers than they are in the original imagery. Early processing by
shunting center-surround networks compresses signal dynamic range and performs local con-
trast enhancement. Susequent processing by filters sensitive to oriented contrast, including
short-range competition and long-range cooperation, segments the image into regions. Fi-
nally, a diffusive filling-in operation within the segmented regions produces coherent visible
structures. The combination of BCS and FCS helps to locate and enhance structure over
regions of many pixels, without the resulting blur characteristic of approaches based on low
spatial frequency filtering alone. [29]




2. PREPROCESSING OF ACOUSTIC SIGNALS

(A) A Neural Network for Synthesizing the Pitch of an Acoustic Source

A neural network model capable of generating a spatial representation of the pitch of an
acoustic source has been developed. Picch is one of several auditory percepts used by humans
to separate multiple sound sources in the environment from each other. The mndel provides
a neural instantiation of a type of “harmonic sieve.” It is capable of quantitatively simulating
a large body of psychoacoustical data, including new data on octave shift perception. [28]




-/

3. ADAPTIVE PATTERN RECOGNITION AND CATEGORIZATION: UN-
SUPERVISED LEARNING

(A) Fuzzy ART: Fast Stable Learning and Categorization of Analog Patterns by
an Adaptive Resonance System

A fuzzy Adaptive Resonance Theory (ART) model capable of rapid stable learning of recog-
nition categories in response to arbitrary sequences of analog or binary input patterns has
been developed. Fuzzy ART incorporates computations from fuzzy set theory into the ART 1
neural network, which learns to categorize only binary input patierns. The generalization to
learning both analog and binary input patterns is achieved by replacing appearances of the
intersection operator (n) in ART 1 by the MIN operator (A) of fuzzy set theory. The MIN
operator reduces to the intersection operator in the binary case. Category proliferation is
prevented by normalizing input vectors at a preprocessing stage. A normalization procedure
called complement coding leads to a symmetric theory in which the MIN operator (A) and
the MAX operator év) ot fuzzy set theory play complementary roles. Complement coding
uses on-cells and oft-cells to represent the input pattern, and preserves individual feature
amplitudes while normalizing the total on-cell/off-cell vector. Learning is stable because all
adaptive weights can only decrease in time. Decreasing weights correspond to increasing
sizes of category “boxes”. Smaller vigilance values lead to larger category boxes. Learning
stops when the input space is covered by boxes. With fast learning and a finite input set of
arbitrary size and composition, learning stabilizes after just one presentation of each input
pattern. A fast-commit slow-recode option combines fast learning with a forgetting rule that
buffers system memory against noise. Using this option, rare events can be rapidly learned,

yet previously learned memories are not rapidly erased in response to statistically unreliable
input fluctuations. [26, 27]
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4. ADAPTIVE PATTERN RECOGNITION AND PREDICTION: SUPER-
VISED LEARNING

(A) Fuzzy ARTMAP: A Neural Network Architecture for Incremental Super-
vised Learning of Analog Multidimensional Maps

A new neural network architecture carries out incremental supervised learning of recognition
categories and multidimensional maps in response to arbitrary sequences of analog or binary
input vectors. The architecture, called Fuzzy ARTMAP, achieves a synthesis of fuzzy logic
and Adaptive Resonance Theory (ART) neural networks by exploiting a close formal similar-
ity between the computations of fuzzy subsethood and ART category choice, resonance, and
learning. Fuzzy ARTMAP also realizes a new Minimax Learning Rule that conjointly mini-
mizes predictive error and maximizes code compression, or generalization. This is achieved
by a match tracking process that increases the ART vigilance parameter by the minimum
amount needed to correct a predictive error. As a result, the system automatically learns
a minimal number of recognition categories, or “hidden units”, to meet accuracy criteria.
Category proliferation is prevented by normalizing input vectors at a preprocessing stage.
A normalization procedure called complement coding leads to a symmetric theory in which
the AND operator (A) and the OR operator (v) of fuzzy logic play complementary roles.
Complement coding uses on-cells and off-cells to represent the input pattern, and preserves
individual feature amplitudes while normalizing the total on-cell/off-cell vector. Learning is
stable because all adaptive weights can only decrease in time. Decreasing weights correspond
to increasing sizes of category “boxes”. Smaller vigilance values lead to larger category boxes.
Improved prediction is achieved by training the system several times using different orderings
of the input set. This voting strategy can also be used to assign confidence estimates to com-
peting predictions given small, noisy, or incomplete training sets. Four classes of simulations
illustrate Fuzzy ARTMAP performance as compared to benchmark back propagation and
genetic algorithm systems. These simulations include (i) finding points inside vs. outside a
circle; (ii) learning to tell two spirals apart; (iii) incremental approximation of a piecewise
continuous function; and (iv) a letter recognition database. The Fuzzy ARTMAP system is
also compared to Salzberg’s NGE system and to Simpson’s FMMC system. {12, 15-18]

(B) Comparative Performance Measures of Fuzzy ARTMAP, Learned Vector
Quantization, and Back Propagation for Handwritten Character Recognition

A simulation study compares the performance of Fuzzy ARTMAP with that of Learned
Vector Quantization and Back Propagation on a handwritten character recognition task.
Training with Fuzzy ARTMAP to a fixed criterion used many fewer epochs. Voting with
Fuzzy ARTMAP yielded the highest recognition rates. [13]

(C) Construction of Neural Network Expert Systems using Switching Theory

This project introduces a new family of neural network architectures (NEXsT) that use
switching theory to construct and train minimal neural network classification expert sys-
tems. The primary i.asight that leads to the use of switching theory is that the problem of
minimizing the number of rules and the number of IF statements (z;ntecedents) per rule in
a neural network expert system can be recast into the problem of minimizing the number
of digital gates and the number of connections between digital gates in a Very Large Scale
Integrated (VLSI) circuit. Algorithms for minimizing the number of gates and the number
of connections between gates in VLSI circuits are used, with some modification, to gener-
ate minimal neural network classification expert systems. The minimal set of rules that
the neural network generates to perform a task are readily extractable from the network’s
weights and topology. Analysis and simulations on several databases illustrate the system'’s
performance. [48]
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5. TEMPORAL PATTERNS, WORKING MEMORY, AND 3-D OBJECT
RECOGNITION

(A) Working Memory Networks for Learning Temporal Order with Application
to 3-D Visual Object Recognition

Working memory neural networks, called Sustained Temporal Order REcurrent (STORE)
models, encode the invariant temporal order of sequential events in short-term memory
(STM). Inputs to the networks may be presented with widely differing growth rates, ampli-
tudes, durations, and interstimulus intervals without altering the stored STM representation.
The STORE temporal order code is designed to enable groupings of the stored events to be
stably learned and remembered in real time, even as new events perturb the system. Such
invariance and stability properties are needed in neural architectures which self-organize
learned codes for variable-rate speech perception, sensory-motor planning, or 3-D visual ob-
ject recognition. Using such a working memory, a self-organizing architecture for invariant
3-D visual object recognition is described. The new model is based on a model of Seibert
and Waxman, which builds a 3-D representation of an object from a temporally ordered
sequence of its 2-D aspect graphs. The new model, called an ARTSTORE model, consists
of the following cascade of processing modules: Invariant Preprocessor - ART 2 — STORE
Model — ART 2 — Outstar Network. [2, 3]

(B) Working Memories for Storage and Recall of Arbitrary Temporal Sequences

An extension of the STORE model encodes a working memory capable of storing and recall-
ing arbitrary temporal sequences of events, including repeated items. The memory encodes
the invariant temporal order of sequential events that may be presented at widely differing
speeds, durations, and interstimulus intervals. This temporal order code is designed to en-
able all possible groupings of sequential events to be stably learned and remembered in real
time, even as new events perturb the system. [4]
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6. ADAPTIVE TIMING

(A) A Neural Network Model of Adaptively Timed Reinforcement Learning and
Hippocampal Dynamics

A new neural network models adaptively timed reinforcement learning. The adaptive timing
circuit is suggested to exist in the hippocampus, and to involve convergence of dentate gran-
ule cells on CA3 pyramidal cells, and NMDA receptors. This circuit forms part of a model
neural system for the coordinated control of recognition learning, reinforcement learning,
and motor learning, whose properties clarify how an animal can learn to acquire a delayed
reward. Behavioral and neural data are summarized in support of each processing stage
of the system. The relevant anatomical sites are in thalamus, neocortex, hippocampus,
hypothalamus, amygdala, and cerebellum. Cerebellar influences on motor learning are dis-
tinguished from hippocampal influences on adaptive timing of reinforcement learning. The
model simulates how damage to the hippocampal formation disrupts adaptive timing, elimi-
nates attentional blocking, and causes symptoms of medial temporal amnesia. Properties of
learned expectations, attentional focussing, memory search, and orienting reactions to novel
events are used to analyse the blocking and amnesia data. The model also suggests how
normal acquisition of subcortical emotional conditioning can occur after cortical ablation,
even though extinction of emotional conditioning is retarded by cortical ablation. The model
simulates how increasing the duration of an unconditioned stimulus increases the amplitude
of emotional conditioning, but does not change adaptive timing; and how an increase in the
intensity of a conditioned stimulus “speeds up the clock,” but an increase in the intensity
of an unconditioned stimulus does not. Computer simulations of the model fit parametric
conditioning data, including a Weber law property and an inverted U property. Both pri-
mary and secondary adaptively timed conditioning are simulated, as are data concerning
conditioning using multiple interstimulus intervals (ISIs), gradually or abruptly changing
ISIs, partial reinforcement, and multiple stimuli that lead to time-averaging of responses.
Neurobiologically testable predictions are made to facilitate further tests of tie model. [39]
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7. ADAPTIVE CONTROL

(A) Neural Representations for Sensory-Motor Control: Head-Centered 3-D Tar-
get Positions from Opponent Eye Commands

This project describes how corollary discharges from outflow eye movement commands can
be transiormed by two stages of opponent neural processing into a head-centered represen-
tation of 3-D target position. This representation implicitly defines a cyclopean coordinate
system whose variables approximate the binocular vergence and spherical horizontal and
vertical angles with respect to the observer’s head. Various psychophysical data concerning
binocular distance perception and reaching behavior are clarified by this representation. The
representation provides a foundation for learning head-centered and body-centered invariant
representations of both foveated and non-foveated 3-D target positions. It also enables a
solution to be developed of the classical motor equivalence problem, whereby many different
joint configurations of a redundant manipulator can all be used to realize a desired trajectory
in 3-D space. {34

(B) Emergence of Tri-Phasic Muscle Activation from the Nonlinear Interactions
of Central and Spinal Neural Network Circuits

The origin of the tri-phasic burst pattern, observed in the EMGs of opponent muscles dur-
ing rapid self-terminated movements, has been controversial. Computer simulations show
that the pattern emerges from interactions between a central neural trajectory controller
(VITE circuit) and a peripheral neuromuscular force controller (FLETE circuit). Both neu-
ral models have been derived from simple functional constraints that have led to principled
explanations of a wide variety of behavioral and neurobiological data, including the genera-
tion of tri-phasic bursts. 5]

(C) Dynamic Programming for Optimal Control of Set-Up Scheduling with Neu-
ral Network Modifications

An optimal control soluation to change of machine set-up scheduling is demonstrated. The
model is based on dynamic programming average cost per stage value iteration as set forth
by Caramanis et al. for the 2D case. The difficulty with the optimal approach lies in
the explosive computational growth of the resulting solution. A method of reducing the
computational complexity is developed using ideas from biology and neural networks. A
real-time controller is described that uses a linear-log representation of state space, with
neural networks employed to fit cost surfaces. [1]
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