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Preface

The following report is a written version of an abstract "Coordinates in Differential

Geodesy" which was presented on August 23, 1991 at the XX General Assembly of the

International Association of Geodesy in Vienna, Austria. The proceedings of the sessions

on "General Theory and Methodology", Section IV were not published by the meeting and

this report represents a slightly amplified version of my oral presentation.

The abstract addresses the various roles of coordinates in theoretical geodesy:

determinative coordinates in classical geodesy, descriptive coordinates in the

Marussi-Hotine formulation of differential geodesy, and finally our new notion of

permissible coordinates in a reformulation of the Marussi-Hotine theory.
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"COORDINATES IN DIFFERENTIAL GEODESY"

Joseph Zund

Summary:

This report is a written version of an abstract presented in August 1991, at the XX

General Assembly of the International Association of Geodesy in Vienna. It concerns the

various roles played by coordinates in differential geodesy, and proposes a new approach

which offers the promise of significantly extending the ideas of Marussi and Hotine.
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1. Introductin

Differential geodesy is concerned with the application of differential-geometric

techniques to the curves and surfaces which occur in geodesy. It was originally devised

by Antonio Marussi and Martin Hotine to give a three-dimensional formulation of

geodesy, and to clarify its conceptual foundations, e.g. to avoid the ab initio dependence

.-..of- its fundamental variables on a particular ellipsoidal reference system. In effect,

Marussi and Hotine sought a reformulation of classical geodesy which would re-establish

it as a branch of mathematical physics. Marussi laid down the basic mathematical and

physical requirements of the theory (the Marussi conditions), he discovered the tensor of

gravity gradients (the Marussi tensor), and introduced his local astronomical coordinate

system; while Hotine gave a comprehensive presentation of the theory in his treatise

(Hotine, 1969). The seminal source material which clearly indicates their ideas is

contained in the monographs (Marussi, 1985) and (Hotine, 1991).

A basic problem in differential geodesy - a problem which it inherits from

differential geometry -- is the selection of appropriate local coordinate/reference systems.

Such a selection is dependent on both mathematical and physical considerations, and since

Hotine made an ambitious attempt to solve it in his treatise, it is called the Hotine

Problem, (Zund, 1990). This problem is unsolved, and indeed it appears as difficult to

properly pose as it is to solve it in practice. This abstract may be regarded as a progress

report on our attempts to understand and properly formulate the Hotine Problem. This has

required a re-thinking of the role of coordinates in differential geodesy and is based on the

observation that logically such systems fall into two general classes which we call

determinative and descriptive coordinates, respectively. Hence, coordinates belonging to

different classes do nt have the same properties and questions posed for one class need

not be meaningful for the other class. In the following, for brevity we denote by xr

(r = 1, 2, 3) an arbitrary coordinate system which may belong to either class.



2. Determinative Coordinates

Determinative coordinates are familiar from classical geodesy where they play an

active role in the determination of the geopotential N as a solution of the Modified

Laplace equation in a rotating system:

AN = -2•2 (1)

w-ere A is the 3-dimensional Laplace operator and 9 is the (constant) angular velocity

of the Earth. In (1) the unknown function N is a dependent variable, and the chosen xr

are independent variables. The choice of the xr directly affects the prospects of solving

(1) for N. In effect, N, is as general, or special, as the coordinates employed in

determining it. An immediate concern in solving (1), or for that matter any of the partial

diff6rential equations occurring in classical geodesy, is whether the solutions are

susceptible of a meaningful geometrical/physical interpretation. This is dramatically

illustrated by the formal general solution of the Laplace equation

AN = 0 (2)

in a Cartesian coordinate system yr = (x, y, z):

N = f(ax + by + cz),

where f is an arbitrary smooth function and a, b, c are arbitrary complex constants

subject to the condition

a2 + b2 + c2 = 0.

This solution is global, since yr is a global coordinate system on 3-dimensional

Euclidean space E3, however it has no immediate geometrical/physical significance.

3. Descriptive Coordinates

In differential geodesy as conceived by Marussi and Hotine, the function N is

assumed to be known, and the analysis is then directed to describing the geometry and

physics of the given geopotential field. In this case the xr play a passive role whose only

purpose is a descriptive one; hence such xr may be called descriptive coordinates. Then

(1) becomes an identity, or as one might more appropriately say when concerned with
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describing the geometry and physics of the N-field, a consistency equation which c'uples

N with the geometric/physical properties of the field. This geometry is formulated in

terms of a 3-dimensional reference system, called a vectorial 3-leg, whose first and second

vectors are associated with tangents to the equipotential surfaces, while the third vector is

normal to these surfaces and consequently tangent to their plumblines. The dual reference

system is a Pfaffilan 3-leg and hence, the entire situation can be described in

differential-geometric language without the a priori selection of a particular local

coordinate system. Indeed, by use of the leg calculus, one resolves all quantities along the

leg systems and so the principal variables/quantities appearing in the theory are

coordinate-free. Since these quantities depend only on the choice of the 3-leg system they

are-called leg coefficients. The term leg is a literal translation of the German word Bein

and was introduced by the Viennese geometers Duschek and Mayer (1930). It has been

frequently emp!oyed in mathematical/theoretical physics, e.g. in general relativity, and

more recently Grafarend (1986) has suggested its use in differential geodesy.

For example, it can be shown that (1) is replaced by the Bruns equation

N/3/3- 2HN/3 = -2@2 (3)

where '"T denotes a leg (directional) derivative along the plumbline, and H is the mean

curvature of the equipotential surfaces. Upon introducing the local gravity i= N/3 (in

Hotine notation), the above equation becomes

#83 2H z = -2F2 (4)

which specifies the change in gravity along the plumblines. Equation (4) is a consistency

requirement which the components of the third leg vector vr, H, and F must satisfy. If,

as Hotine does throughout his treatise, one imposes the Marussi Ansatz x3 := N with

1 2(x , x ) being local surface parameters on the equipotential surfaces, then (4) reduces to

merely

v3/3" 2Hv3 = -26 2 . (5)
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Thus, the distinction between dependent and independent coordinate variables is blurred,

and the components of the leg variables ), X v become the basic variables. The local

coordinates xr are related to the contravariant components of the leg variables by the leg

differential equations

x/ 1 r:=Ar, xr :=pr, xr/> =vr. (6)

The full set of leg equations, which constitute the consistency requirements describing

how the physical quantities N, a and w are coupled to the leg coefficients defining the

geometry of the N-field, are called the Hotine-Marussi equations (although not all of these

equations explicitly appear in their work, since neither of them employed more than a

rudimentary versicn of the leg calculus). The unknown contravariant/covariant

components of the leg vectors may be chosen as desired whenever they satisfy the

Hotine-Marussi equations.

4. Hotine's Descriptive Coordinate Systems

In his treatise, Hotine endeavored to solve the Hotine Problem, i.e. construct local

coordinate systems subject to the general requirements of the Marussi Conditions (which

he did not formally state or endorse). Based on the Marussi Ansatz he proposed a

hierarchy of five systems:

(4 0, N)-system (Chapters 12, 13, 14);

(x, x 2, N) normal-system (Chapter 15);

triply-orthogonal system (Chapter 16);

(40, d.)-system (Chapter 17);

symmetrical ("o0, f)-systems (Chapter 18).

The triply-orthogonal system may be discarded by virtue of the falsity of the Hotine

Conjecture (see Zund and Moore, 1987), and it turns out that the (x 0, i)-systems are

highly restrictive and can simply be regarded as specializations of the (ak 0, N) and

(xI, x2, N) normal-systems. The (o4 0, N)-system is essentially the local astronomical

system of Marussi, while the (x , x 2, N) normal-system is entirely due to Hotine. Both
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of these systems can be characterized in terms of the contravariant components of the leg

vectors as follows:

r=( ., 0) ir,=U IM2 O);

with

=V (v,2, A ) in the (ax. 0, N)-system,

-r= (0, 0, a) in the (xI, x2 , N) normal-system.

The (, •, N) and (x1 , x2, N) normal-systems are quite different and the former may be

regarded as a specialization of the latter, but not conversely. It is possible to develop both

from a more general notion which I call the sistema finale, or F-system. Using this system

it can then be shown that the Marussi Ansatz involves no loss of generality since under a

local coordinate tansformation xr r, one may choose
0 xI x i~ x2, i 3 =F

with the subsequent ad hoc identification of the arbitrary smooth function F with the

geopotential N. Thus, the more general F-system provides a basic framework which

includes both the (No, 0, N) and (x I, x2, N) normal-systems as limiting cases. It might

be noted that in a sense for descriptive systems, the question of the generality of the

systems is a moot issue: a chosen xr lacks generality only to the extent that they fail to

provide a description, which is convenient, or otherwise, of a particular

geometrical/physical field property.

Thus, the Marussi-Hotine approach to differential geodesy essentially contains two

descriptive local coordinate systems, which as noted above are structurally different. For

example, the (a%, , N)-system is applicable only to a single equipotential surface, viz it is

'frozen' on the surface. More precisely, if one considers a family I of such surfaces then

one can choose the longitude and latitude, i.e. (oai 0), as local surface parameters on any

surface S of 1, then one can take the same (ow 0) as surface parameters on a

neighboring equipotential surface only when

(i) S is a developable surface, or

(ii) the congruence r of plumblines of S are straight lines.
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Both (i) and (ii) are severe restrictions: (i) requires that the Gaussian curvature K of S

is zero, so typically S would be a cylinder, cone, etc. in contrast to our expectations of

K > 0 for a sphere, spheroid or ellipsoid; (ii) requires that the curvature x of the

plumblines vanish so r is a linear congruence, hence S could be a sphere but not a

spheroid or an ellipsoid! Hotine was aware of (ii), and devised his i.ozenithal

differentiation (see Chapter 14, of (Hotine, 1969)) to work around it. However, in view of

(i) such a manuever is of dubious value. The frozen character of the (", 0, N)-system is

an especially heavy impediment in Hotine's work since many of his calculations in the

treatise are given in this system. or one step away from it. The (x 1, x2 , N)

normal-system was explicitly constructed to provide a local coordinate system for which

1 2
(xl, x2) can be taken as local parameters on the surfaces of Y. in such a manner that

(x1, x2) do not change along r. The notion of such a system is intuitively appealing and

seems to have originated with Hotine, but is not a standard piece of Gaussian differential

geometry. The centerpieces of his theory are his varictional equations which prescribe

how the intrinsic and extrinsic properties of the surfaces of I vary along F. These

equations are undeniably elegant and a real tribute to Hotine's ingenuity. However, it is

not clear whether they lead to useful results. For example, they give no clue as to what

the (x , x 2) are, or how to choose them, or even whether a non-trivial pair of such

parameters exist. Indeed, the variational equations are very complicated and appear to be

integrable in closed form only when X reduces to a family of concentric spheres, i.e. F

is a linear congruence. This need not be a serious defect, since the proper role of these

equations is that of consistency, not determining, equations; however, by merely

appending them to the Hotine-Marussi equations one greatly increases the complexity and

1 2the number of these equations. Thus, neither the (w, ), N) nor the (•,, x , N)

normal-system is truly satisfactory, or really workaNe. Both arc heavily restricted, and it

is possible that the more general (xi, x2, N)-system as derived crom our F-system theory

will prove more successful. What is clear is that -- at present -- we do not possess a really

non-trivial solhtion of the Hotine Problem.
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The purely determinative/descriptive role of the xr is extreme: in classical

geodesy the geometric content of the theory may be difficult to determine and often

appears to be contrived, while in differential geodesy -- in the Marussi-Hotine formulation

-- one is faced with devising a natural description of the properties of the geopotential

field. Both approaches may be termed 'extractive' theories where one is, in effect,

.challenged to extract the geometry from a physical situation. These formulations are

perfectly valid and workable, but neither is completely satisfying. Perhaps this is what

Hotine sensed but did not put his finger on, when in (Hotine, 1965) he wrote:

"Tor some time I have had an uncomfortable feeling that there is

something missing, either in the classical theory of gravitation itself, or in

the mathematical handling of it."

5. Permissible Coordinate Systems

Quite distinct from the Marussi-Hotine descriptive approach one may consider the

situation in differential geodesy from an alternate more robust viewpoint. We call this a

permissible viewpoint in which one specifies certain of the dynamical and geometric

quantities, e.g. the leg coefficients: .41, 42' /1, -1' Y2- O 2' a e, of Hotine (1969) and

Zund (1990), and then asks whether the Hotine-Marussi equations are compatible with this

choice. In this case, one now seeks the geopotential function N subject to certain

dynamical/geometric conditions and (3), or (4), is no longer an identity but a

determinative equation and the solution of this equation must be consistent with the full

set of Hotine-Marussi equations which include the Lamd equations for the flatness of E3 .

Depending on the prescribed conditions some of these Lamd equations may be identities

while others are non-trivial determining equations for the unspecified leg coefficients. For

example, one might seek a solution for N in which K:= d142 - >0 and

I + ý2> 0, i"e. one having equipotential surfaces of non-negative Gaussian

curvature and curved plumblines, subject to certain non-zero components of the 3-leg

vectors A, p, and v. Given such a specification either the Hotine Problem is solvable or
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insolvable, and both situations are interesting. Relative to the former, one has constructed

a geopotential field having certain prescribed dynamical/geometric properties; while in the

latter case, assuming that the resulting Hotine-Marussi system of equations are tractable,

one may show that the prescribed conditions are inconsistent or that the conditions are

inadequate, i.e. not sufficiently specified, to permit a solution. Obviously the former case

is the most interesting, but the latter is valuable in that it may indicate how the Hotine

Problem should (or should not) be formulated. This approach is said to be permissible,

since it involves exhibiting only those solutions of N and the unspecified leg coefficients

which are permitted by the assumed dynamical/geometric conditions. The final step of

such a procedure would be to solve (6) for the resulting permissible coordinates xr. Such

a methodology would be an active rather than a passive, or 'extractive', approach to

differential geodesy, and could lead to a more robust and vigorous formulation of the

geometric aspects of theoretical geodesy.

Thus, we believe that differential geodesy is a live and vibrant theory, a theory

which may well step beyond the goals set for it by the visionary efforts of Marussi and

Hotine. Relative to it and its prospects for the future I would concur with the famous

comment of Sir Winston Churchill:

"Now this is not the end. It is not even the beginning of the end. But it

is, perhaps, the end of the beginning."
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