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FLUID-STRUCTURE INTERACTION USING RETARDED

POTENTIAL AND ABAQUS

INTRODUCTION

Transient analysis of coupled systems is in general a difficult and demanding problem. Even

with curent levels of computing, a good deal of improvement is still required to efficiently analyze

many real world problems. In this paper, we will be concerned with coupled, fluid-structure inter-

action problems, in particular, with submerged structures subjected to weak shock waves. We be-

gin first with a brief review of the transient analysis of structures using finite element methods

(FEM). This is followed by a discussion of the merits of various approaches for discretizing the

fluid media, including boundary element methods (BEM) and the retarded potential (RP) ap-

proach.

Transient analysis of linear and nonlinear structures using the finite element method has de-

veloped to a very sophisticated lev-l, see for instance [1-3,22]. Finite difference operators are typ-

ically employed for the time domain and can be grouped into either explicit or implicit methods.

Explicit techniques do not require the forming and factoring of a global stiffness matrix but do have

stability and accuracy concerns which severly restrict the size of the time steps. They are primarily

applicable to wave propagation analyses, and have been very efficiently implemented on some vec-

tor machines. In addition, explicit approaches hold much promise for coarse grain parallel process-

ing environments. Unconditionally stable implicit operators, such as the trapezoidal and Hilber-

Hughes rules [ 1-3], have been widely applied for structural dynamics types of linear and nonlinear

analyses in which the time interval of concern is typically much longer than in wave propagation

type problems. Implicit methods can employ much larger time steps , but require the formuation

and factoring of a global stiffness matrix. This is very costly and even prohibitive especially for
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large nonlinear structural problems where the stiffness matrix must be repeatedly formed and fac-

tored. Explicit [implicit methods in which pan of the structure is treated as explicit and part as im-

plicit have also been developed but they too have similar restrictions.

Overall the transient FEM analysis of especially large, nonlinear transient structures remains

a difficult and expensive process. Explicit and implicit methods both have advantages and disad-

vantages which can greatly restrict their efficiency - even on the largest present day supercomput-

e"s.

For transient fluid-structure interaction problems, FEM is the obvious choice for discretization

of the structure, which may respond in a linear or nonlinear manner. In the fluid media, which is

typically approximated as an acoustic media, several choices exist for discretization [21 ]. The han-

dling of the interface between the fluid and the structure can also be quite involved. Typically, due

to efficency considerations, the coupled system is solved in a staggered fashion [17].

The treatment of the fluid media is motivated by the fact that the analyst is concerned primarily

with the response of the structure and what effect the fluid has upon it. Thus additional approxima-

tions in the fluid realm can be introduced . Two approaches are evident. The first is domain dis-

cretization with techniques such as finite element, finite difference or finite volume. Of these, FEM

seems to have been been the most popular. The discretization of the fluid domain with finite ele-

ments, however, represents a costly approach that can also introduce further approximations. To

achieve a suitable level of accuracy, a large number of elements and degrees of freedom needs to

be included particularly for 3D problems, and typically implicit methods must be applied. Thus

even with staggered solutions, this can be a very costly if not prohibitive approach. With domain

methods such as FEM, the modeling of infinite boundary conditions raises significant difficulties.

Silent boundary conditions [3] have been applied with some success. However, general purpose

infinite type finite elements [22] for transient problems are not available.

The second approach for the fluid media is the use of boundary element methods (BEM) - see

[4]. The introduction of BEM, while elimimating the need to discretize the domain of the fluid, car-

ries with it an assumption of homogeneity. Thus thermal variations, cavitation, etc. can not be eas-

ily dealt with if at all. The retarded potential method represents an exact formulation of the transient

BEM problem [4,7,15,16,19]. However, difficulties especially with storage have greatly limited its
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more widespread application. The doubly asynhpotic approximation (DAA), represents an approx-

imation to the RP method and has been widely employed for modeling the transient fluid media -

see for instance [5,6,9,11,12]. In [10], DAA was coupled with a finite element capability that mod-

els cavitation in the fluid. In general, however, there is significant concern over DAA accuracy es-

pecially for highly transient, nonlinear applications of fairly long durations. DAA correctly

calculates the fluid loading at early and late time. In the intermediate time region or for the radia-

tion by the structure vibrations in the intermediate frequency range, DAA's accuracy is suspect.

DAA2 [12] represents a generalization of DAA with some improved accuracy in the intermediate

frequency range.

Overall, the solution of transient fluid-structure interaction problems is certainly not at a fully

satisfactory level. A great deal of work remains to develop efficient, accurate techniques for this

very important class of problems.

In what follows, we first discuss the retard potential formulation and then its coupling to the

nonlinear finite element code ABAQUS for the solution of submerged structures subjected to weak

shock waves.

FORMULATION

Consider a submerged structure subjected to an incident pressure wave. We assume that the

fluid media can be approximated as an ideal compressible medium in linear wave motion (acoustic

fluid). The incident wave pi"impinges on the structure and is scattered to create pSCa. In addition,

the structure's response initiates a radiation pressure p ad in the surrounding fluid. The total pres-

sure pis then represented as:
P = PinC + sca + pd ()

The boundary condition on the "wetted" surface of the structure can be written as [ 15]

aP= -pa, (2)

where g is the unit normal into the structure; p is the fluid density; and a is the normal acceleration

of the structure. The retarded potential integral is the solution of the linear wave equation,

V2 p =.al (3)

subject to the boundary conditions of eq. (2). In eq. (3), c is the sonic velocity in the fluid.
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A discussion of the retarded potential equation and its discretized approximation as applied to

submerged structures can be found in [15,16,19). The form of the equation for the calculation of

the total pressure pon the "wetted" surface of the structure subjected to a continuous incident pres-

sure field pi"C is as follows:

p (s, t) = 2pinC (, t) - - ) (a dS') (4)

+

(_L) (P X., ) + I aR)

in which

t'=t- R/c (5)

R = IIs- 'll (6)

and where t' is the retarded time; X is the position of the observation point on the surface; x'is the

location of an integration point on the surface; R is the distance between the observation point and

the integration point; and a' represents the surface normal direction at the integration point orien-

tated away from the fluid.

IMPLEMENTATION

For computational purposes, eq. (4) is discretized in a boundary element sense and linked to

the structural analysis code ABAQUS to form the program ABAQUS-RP. The structure will be

allowed to respond in a linear or nonlinear fashion. The surface pressure field is approximated by

subdividing the surface into K zones or elements of constant pressure. These constant boundary

elements coincide with the "wetted" surface of the structure which is discretized with ABAQUS 8

node quadratic shell elements (SRS). Thus the boundary elements although constant in the pressure

are quadratic in terms of the geometry [20]. Figure I indicates a 8 node ABAQUS shell element

(such as the S8R) and the corresponding boundary element divided into subzones. The pressures

on the fluid "wetted" surface are discretized in time to coincide with the time steps of ABAQUS.

Prior to conducting the time history computation, a matrix of influence coefficents must be calcu-

lated for the BEM grid which expresses the relations of current pressures on past pressure, and past

and present accelerations.
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Each zone or boundary element k is subdivided into a mesh of subzones 1. This subdivision

permits accurate numerical integration of the geometric influence coefficients as well as determi-

nation of the time delayed pressures and accelerations from each proceeding time step. For the pur-

pose of measuring the distance between the integration point I and the observation pointj (thereby

the time retardation), pointj is located at the center of each boundary element. The integration point

i is located at the center of subzone I within boundary element k. When the observation point j is

within the zone k being integrated, R can go to zero, and singular integration techniques must be

employed - see [16,19J.

The time step dt is assumed to be constant, and the current time can then be expressed as:

t = m. dt. (7)

The retardation time between points j and I (within zone k) is expressed as t'jkI and follows from

eq. (5). In general t'jkL will not be a multiple of dt and may be expressed as:

ttjkl = njkL + fjkl' (8)

where n is an integer and 0 y S 1. In eq. (4) p, ' and a can now be interpolated as follows:

pk(mdt-t') = (l-y)pm-n+Y•p-- (9)
apk

The term is typically expressed by a three point backward difference formula [15,16,19] and

we have employed this form. However in [13], Groenenboom indicates that this represents an ex-

plicit assumption and requires for stability that

dt > maxR (10)
C

Groenenboom [13] presents an implicit formulation of the retarded potential which requires a ma-

trix inversion.

The retarded potential integral eq. (4) can be discretized and arranged into the form [15,16,19]:

M kff •f0 M-i1 I• x~ -k m-i
p7 = 2(Pjnc)m - ± A7 .a' - (11)l i l i ffi

2tkmli=O k=11=0

where

maxR.t maxR.tS= + 1 = +3. (12)
cdt +cdt
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The terms Aij and Bij depend only on geometry and are computed and stored prior to calculating

the pressure. Since the pressure p•' on the right side of eq. (11) are not yet known, a convergence

criteria that implies that a disturbance from one zone cannot affect any other zone in less than one

time step is enforced, Bk. = 0 forall j *.

Equation (11) represents the response of the fluid media on the "wetted" surface of the struc-

ture. Both the current pressures p7 and current structural accelerations a' are unknown, and must

be determined. The fluid pressure represents a loading term on the governing FEM equations of

the structure. The coupled equations for the fluid-structure interaction can be solved by elimination

of one field variable, in a fully coupled sense (solve both sets of equations simultaneously), or as

is done in this paper in a staggered fashion [17] - which is much more efficient. With a staggered

approach the current pressures pj in eq. (11) are solved using matrix multiplications of past pres-

sures and accelerations, and current acceleration estimates obtained from the structural equations.

The solution of the pressures p7 thus requires storage of a large number of pressures and acceler-

ations at previous time steps. Therein lies the difficulty that has handicapped the application of the

retarded potential approach.

The following staggered scheme is employed in this paper:

1. Apply (pýc)O at m =

2. Solve the FEM equations and calculate a1

3. m-=-m+1

4. From eq. (11) calculate p7

5. Apply pj to the FEM equations and calculate aT + 1

6. If the maximum time step is reached, stop.

7. Goto 3.
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We note that in using a staggered approach, a phenomenmon known in control theory as dead

time feedback can arise (17]. In ( 18], Tamnm stabilized the solution for a combined retarded poten-

tial - FEM technique by simply eliminating the added step of time delay in the structural acceler-

ation values relative to the fluid pressures. This approach was effective because of the rather minor

influence of the current accelerations on the current pressures at the observation point j - see [18]

for further details. In this paper, therefore, we have included this feature.

APPLICATION

A retarded potential (RP) capability has been coupled to the ABAQUS program, through the

DLOAD user written subroutine, to form ABAQUS - RP. The initial implemention, which is the

subject of this paper, has been in a MICRO-VAX 3600 environment. The fluid-structure interac-

tion problems investigated, therefore, have been relatively small in size and coarse in the time step-

ping, and serve only to validate the overall capability. An important feature in the ABAQUS - RP

program is the Hiber-Hughes implicit time operator with controllable numerical damping [1]. Pre-

vious experience [15,19] has shown that some numerical damping has helped stabilize the fluid

response. In addition, a variable time stepping capability has been included in the RP program.

However, it has proven to be unstable with the present adaptive time stepping algorithm employed

in ABAQUS [1]. Also to help minimize storage, the RP subprogram contains a capability to limit

how far back in time previous responses are stored. This is an important approximation especially

for longer time histories or larger structures, but our experience with it is limited.

To demonstrate the ABAQUS-RP program, consider Figure 2 in which an elastic sphere is

subjected to An incident step, plane wave along the x axis. An exact solution is presented in [ 14].

Figure 3 indicates the doubly symmetric ABAQUS model which consists of 54 S8R quadratic shell

elements (1] overlaid with constant pressure boundary elements. Due to symmetry only 1/4 of the

sphere is modeled. The radius of the sphere r is 1 m, while the thickness 2h is 0.02 m. The prop-

erties of the steel are: Young's modulus E = 2.0684 El I Pa, Poisson's ratio u = 0.3, and the mass

density p, = 7784.5 kg/m3 . The properties of the surrounding water are: the speed of sound c =

1461.2 m/sec and the mass density Pw = 999.6 kg/m 3. The magnitude of the incident wave is as-

sumed to be 14.0E6 Pa. The time step employed is di = 0.10 r/c.

7



Figure 4 compares the ABAQUS - RP predictions for the dimensionless displacement history

at 6 = 45 and 90 degrees with a closed form solution [14]. With the above dt, this model took ap-

proximately 8.5 hours to go 200 time steps on the MICRO-VAX. In general, the agreement is only

fair due probably to the coarseness of the time step and the grid, and also to the relatively high nu-

merical damping employed with the Hilber-Hughes operator ((x = 0.3 (1] was used). As discussed

earlier, the use of numerical damping can be an important consideration for the stability of the finite

element/retarded potential calculations. In addition, to simulate a step loading, as was done in [15],

a ramp loading with a rise time oft = .5 c/r was employed. We note also that in [15] the agreement

between NASTRAN - RP results and the closed form solution [14] tended to deteriorate at later

times.

In an effort to apply ABAQUS-RP to a nonlinear problem, the sphere is allowed to yield

(oyield = 345E6 Pa and perfect plasticity is assumed) and large displacements are considered. The

magnitude of the plane wave is reduced to 8.5E6 Pa (otherwise the sphere would collapse). The

displacement histories are are plotted in Figure 5. Comparisons to DAA predictions etc. are not

available so this problem represents only a demonstration of the nonlinear capability of the pro-

gram.

SUMMARY AND FUTURE DIRECTIONS

In this paper, we have presented a brief discussion concerning transient analysis of coupled

fluid-structure interaction systems. Motivated by the present state-of-the-art, an advanced retarded

potential capability has been coupled to the ABAQUS nonlincar finite element program to produce

ABAQUS-RP. This code, which is executed in a staggered fashion, is currently implemented in a

MICRO-VAX environment, and has been successfully applied to smaller degree of freedom (dot)

fluid-structure interaction problems.

Overall, the RP method offers significant advantages over both total FEM and FEM/DAA ap-

proaches. It has not been extensively investigated in the past due primarily to storage requirements.

We have demonstrated that it can be fairly efficiently implemented on a MICRO-VAX computer

and applied to nonlinear structures with a relatively small number of dof. Clearly, additional com-

puter runs are necessary to further study the selection of time steps, the use of numerical damping,
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and the overall question of stability. A more thorough investigation concerning stability, along the

lines of [17], is probably in order.

The remaining challenge is the implementation of ABAQUS-RP in a supercomputer (CRAY)

environment. This will greatly increase both the size of the problems that could be efficiently an-

alyzed and the length of the time history able to be considered. In addition, finer time steps can be

used. Because the retarded potential capability is coupled to ABAQUS through a user written sub-

routine, however, this will handicap our ability to streamline the storage and retrieval of past vari-

ables [7]. We would also like to implement a capability with adaptive time stepping similar to (8]

and this may be difficult. ABAQUS's adaptive time stepping algorithm often "jumps" around un-

necessarily, and especially with expansions can destablize the fluid. In addition, ABAQUS's im-

plicit time stepping approach is based on a costly full Newton formulation.

9



Subzone

Fluid

structure

S8R Shell Element RP Constant Boundary Element

Figure 1.Quadratic ABAQUS shell element overlaid by a constant RP boundary element.

11111111 1Ii~ I. LIsClIDe WAVE
FLUID MEDIUM

2h

SPHERICAL SHELL

Figure 2. Elastic sphere subject to an incident, step, plane wave.
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Figure 3. Sphere modeled with S8R ABAQUS shell elements.
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Figure 4. Shell deflection 8 in the x direction,_classical solution.

........ ABAQUS - RP (elastic sphere).
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Figure 5. Shell deflection 8 in the x direction, ABAQUS - RP

results (elastic-plastic sphere).
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