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Abstract

Optimizing compilers can produce very efficient code but incur a high compilation cost. Because
interactions between arbitrary points in a program are possible, global compiler optimizations are
inherently expensive and in general there is no easy way to partition the data processed during global
compiler optimizations into .ndependent components.

This thesis explores how program structure can be used to provide a basis for the parallelization for global
compiler optimizations. T'vo concepts to obtain data parallelism in global compiler optimizations are
described. The first concept uses program structure explicitly for the parallelization. demonstrated by the
parallelization of interval analysis of global data flow equations. The second concept consists of using
program structure analytically to establish data partitioning points. The effectiveness of this concept is
demonstrated in the parallelization of global register allocation via optimal coloring of a graph denoting
register conflicts, an NP complete problem. A model for global register allocation in which program
structure is used to analyze a register conflict graph is presented. The purpose of this analysis is to detect
clique separators that partition a conflict graph into independert components that can be colored
independently and combined to an overall coloring by renaming. Properties of live ranges in loops and
conditionals are linked to characteristics of the conflict graph. If cerain restrictions are met by the live
ranges that occur in conditionals and loops, the register conflict graph can be transformed to an equivalent
interval graph. Interval register conflict graphs are desirable because they can be colored optimally in
polynomial time and because all clique separators of an interval graph can be located systematically. The
experimental evaluation of my method shows that in many cases the entire conflict graph or large portions
thereof can be mapped to equivalent interval graphs. Consequently, in such conflict graphs almost all
clique separators can be detected which makes it easy to partition the conflict graph into components that
can be processed independently. The knowledge about interval portions of register conflict graph can be
used both as a platform for the parallelization of global register allocation and to improve sequential

register coloring algorithms. -
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Chapter 1

Introduction

Optimizing compilers can product y efficient code but incv. a high compilation cost. To hide the
details of complicated architectuzes .. -m ihe Lsear anu .t the same time ke advantage ¢f a machine’s
processing power, compilers for such machines must optimize extensively. Compiler optimizations consist
of machine independent optimizations that are useful for every backend and machine dependent
optimizations tailored to specific architectures. Global compiler optimizations are inherently expensive
because they potentially depend on the flow of data in any part of a program. The name suggests that
optimizing compilers produce optimal code, and given a specific input program and a specific machine,
theoretically it is possible to produce optimal code. In practice however, optimal code can hardly be
achieved. The reason is that a number of individual global compiler optimizations are NP complete, so
finding an optimal solution for one such optimization can require exponential compilation time. In
addition, corrpiler optimizations interact with each other and therefore optimization times are non trivial
even when the resulting code is not optimal. For some optimizing compilers, compilation times measured
in hours are not unusual [GrossZobel 89]. This is not surprising when one considers the hard problems that
must be solved for example by a compiler for pipelined machines [Lam 88], machines with complicated
memory organizations or vectorized machines [Sites 78a, Sites 78b, KuckKuhnEtAl 81]. The trend
towards high compilation times is even more evident in compilers for MIMD machines: compilers for
MIMD machines must generate efficient code for a number of (potentially different) processors.
Ultimately, compilers will be one of the major bottienecks in the software development cycle.

1.1. Motivation

The focus of this thesis is to investigate parailel frameworks for global compiler optimizaiions. We chose
to investigate the parallelization of global compiler optimizations for two reasons. The initial motivation
was the need to speedup compilation. In most optimizing compilers, global uptimizations and code
generation account for most of the compilation time, so o speedup the compilation process most
effectively, the parallelization of global optimizations and code generation must be considered. Unlike
code generation, most global optimizations are independent of the target machine, so their parallelization
can be incorporated into any optimizing compiler.

The second motivation was to study the interactions between program structure and the characteristics of
global optimization problems. In a mathematical sense, many global optimization problems are NP
complete. One reason why some global optimization problems are so hard to solve is that the data for such



optim’ zations is processed independently of the input program. One example of such an optimization is
global .egister allocation: a widely used approach to global register allocation is based on graph coloring.
For 2 given input program, a graph denoting register conflicts is constructed and an optimal assignment of
registers to live ranges in the program is equivalent to an optimal coloring of this graph. Finding a parallel
framework in which it is possible to partition thi, graph into independent components that can be colored
inaividually is hard when only the graph is considered. In this thesis, we examine whether knowledge
about the structure of the ir .t program can be used to detect locality in the data processed in global
compiler optimizations that can be used to detect data parallelism.

1.2. Paradigms for parallelism

The parallelization of an algorithm is useful only if certain conditions are met. First, given the solutior. « f
sequential algorithm for a problem, the solution of the parallel algorithm for the same problem must be at
least as good as the sequential solution. In other words, for the purpcse of this thesis we do not acept
decrease of the quality of the parallel solution in return for parallel speedup. Second, it must be ensured
that partial results can be combined to a global result without compromising the quality of the global result.
If for instance the solutions for small components are optimal, we require that the combination of the
individual optimal solutions results in an overall optimal solution. Third, the re-combination of partial
results to an overall result must be fast enough such that parallel speedup is not offset by the post
processing time required for re-combination.

1.3. Benefits of data parallelism

The research for the paralleiization of a given problem consists of developing an algorithm that partitions
the data into components that can be processed independently. The parallelization of a given problem
requires the careful analysis of the problem; in many cases this leads to a better understanding of the
problem itself which can lead to an improvement of sequential algorithms as well. Partitioning the data
intc independent components has advantages for both parallel and sequential implementations, because
smaller subcomponents of the input are processed independently.

Divide and conquer:

Given polynomial running time for a sequential algorithm, partitioning the data into independent smaller
subcomponents allows the reduction of the overall running time even when the algorithm runs sequentially.
Because polynomial running time (at least O(n?) where n is the size of the input) grows non-linearly with
increasing problem size, solving smaller problems is cheaper than solving larger problems. This advantage
becomes even more apparent when NP complete problems are considered: dividing a problem into smaller
components has the result that without increasing the overall running time, more effort can be spent to find
a good solution for the individual components; this means that expensive heuristics or even exhaustive
search can be applied if the subproblems can be made small enough.



Parallel speedup:

Given the points at which the data can be partitioned, the parallel speedup depends on several factors:

1. An upper bound for the theoretical parallel speedup: The maximal number of processors that
can operate concurrently for a given problem is an upper bound for the theoretical parailcl

speedup.

2. Upper bounds for the observed parallel speedup: For a given parallelization, the wtal
sequential processing time divided by the maximal processing time of the parallel tasks is an
upper bound for the maximal perallel speedup that can be observed. Both the amount of
communication between concurrent processes, the time to setup the parallel execution and the
postprocessing time limit the actual observed pirallel speedup. Systems overhead such as bus
contention, scheduling overhead, parallel startzxp time etc. are problem independent factors
that limit the observed parallel speedup.

A successful parallelization of an algorithm therefore consists of two parts, the data partitioning of the input
and the parallelization itself.

1.4. Data parallelism based on program structure

Global compiler optimizations are inherently hard to parallelize because potential interactions between
any two parts of the input program are possible. Due to these interactions, the data that must be processed
in global optimizations is highly interconnected and there is no simple way to detect data partitioning
points. The research focus of this thesis is to establish the role of program structure for the partitioning of
data that is processed i global compiler optimizations. We are more interested in developing frameworks
in which data partitionings can be found in a methodic way, and the thesis claim is that this method to find
data parallelism is based on the structure of the input program.

1.4.1. Two types of global compiler optimizations

We distinguish between two types of global compiler optimizations: structured and unstructured
compiler optinuzations. In structured global compiler optimizations the basic blocks of a program are
processed in a particular order that is based on the parse tree of the input program. Examples of structured
compiler optimizations are optimizations that operate based on a program’s loop structure such as
vectorization and software pipelining and al! data flow problems. Data flow problems can be srived in
polynomial time, and there exist several algorithms that take advantage of locality of the data in loops: the
partial results for an inner loop need not be recomputed for the data flow analysis of the enclosing loop.
Note that in ihis type of optimization algorithms, backtracking across loop boundaries is usually not
applied.

The difference between unstructured and structured optimizations is that in unstructured optimizations the
order in which the data of the isiput program is processed is independent of the parse tree. In general data
partitioning based on the parse tree of the input program docs not yield independent components. In global
register allocation, an example of an unstructured global compiler optimization, it is generally not the case
that the partial solution for an inner loop can be incorporated into the solution of the enclosing loop without
re-computation. The lack of easily detectable data locality greatly infiuences possible parallelizations of



such a problem. The challenge for such optimization is to find a model that permits us to incorporate
enough knowledge about the specific problem instance such that data partitioning points can be found,
though usually not at locations that coincide with loop or conditional entries and exits.

1.5. Two representative optimizations

To assess how much parallel frameworks for global compiler optimizations depend on program structure,
we develop parallel frameworks for both a structured and an unstructured gloval compiler optimization.
We concentrate on interval analysis of gicbal data flow problems and on global register allocation as
representatives for both classes. This choice was guided by the generality of both optimizations; both are
machine independent and important optimizations used in a number of optimizing compilers.

1.%.1. Parallel interval analysis of data flow equations

Interval analysis provides a structured framework for all global data flow prcblems. The purpose of
global data flow analysis is to collect information about the flow of data for every basic block in a program.
Global data flow analysis is prerequisite for all global compiler optimizations. Some optimizations like for
instance dead code removal or common subexpression elimination change the data flow information and
therefore global data flow analysis must be carried out several times during global optimizations. A
parallelization of interval analysis can be expanded to a pa allelization of all flow problems.

Data parallelism based on explicit program structure

In global data flow analysis, locality of data is given explicitly by the loop structure of a program.
Interval analysis is a method in which the data flow information is gathered on a per-loop basis, starting
with the innermost loops. The data flow information for an inner loop need not be re-computed for the data
flow information of the enclosing loop so in other words, interval analysis does not require backtracking.
The loop structure of the program is the basis for the data partitioning for our parallelization of interval
analysis. Because data locality is given explicitly by the loop structure, our parallelization of interval
analysis is straightforward. We evaluate our approach by a parallel impiementation and present our
measurements of the parallel speedup over a standard sequential implementation.

1.5.2. Data partitioning in global register allocation

Global register allocation is the problem of mapping variables and temporary variables created by
compiler optimizations to registers efficiently. Because access times to registers are considerably lower
than access times to memory, it is desirable to kecp as many variables as possible in registers during
program execution. Registers are a scarce resource on every computer architecture, therefore the number
of registers is usually no sufficient to hold all variables of an input program. Optimal global register
alloction is mathematically equivalent to finding an optimal coloring for an arbitrary graph and therefore
NP complete, but there are certain types of graphs for which am optimal coloring can be found in



polynomial time. Interval graphs can be colored optimally in linear time and are particularly important in
the context of parallel giobal register allocation via graph coloring for twc reasons. First, many register
conflict graphs contain portions that are interval graphs, and second, it is easy to partition interval graphs
into clique connected components that can be colored independently. An overall coloring of clique
connected components can be obtained by renaming only; re-computing partial results is not necessary

[Tarjan 85].

While for interval analysis data locality is given in a natural way by the loop structure of the input
program, finding a data partitioning for global register allocation is not straightforward. The focus of the
thesis research in parallel global register is the development of a structured model for data partitioning
based on clique separators in the register conflict graph. Knowledge about program structure is used to
detect interval portions of the register conflict graph in which clique separators can be found
systematically. Non-interval portions of the register conflict graph are manipulated such that the derived
graph is an interval graph. Once ihe interval portions of a register conflict graph are known, partitioning
the conflict graph via clique separators and the parallelization are straightforward.

The evaluation of our method to detect clique separators in register conflict graphs focusses on
determining whether the model is powerful enough to detect enough clique separators in the register
conflict graphs of real programs.

1.6. Approaches to parallel compilation

The coarsest level of parallelism in compilation is parallel system building. Prerequisite for parallel
system building is separate compilation. A system that consists of several modules is composed to a runfile
at link time - each moule can be compiled in parallel before linking. Optimistic make [BubZwaen 92], a
system that distributes the compilation of individual modules applies this level of parallelism.

The compiler used in parallel system building is still sequential - the next level of parallelism in
compilation is to turn a sequential compiler into a parallel program. The coarsest units of parallelism are
procedures and functions. If procedures and functions are to be compiled independently, inter procedural
optimizations have to be curtailed. This type of parallelization has been studied before [Frankel
83, GrossZobel 89); it requires the compiler driver to dispatch the (sequential) compilation of each function
or procedure. This approach is very successful when inter procedural optimizations are curtailed because
then there are no dependencies between individua! parallel tasks. Note that the core of the compiler still
runs sequentially.

The next level of parallelism is achieved by compiling units that are smaller than procedures in parallel.
Many research efforts focus on parallel parsing [Bochm 87, Klein 90, Fischer 75), the compilation phase
that is formally best understood. Both the parallel compiler developed at the University of Toronto
[Seshadri et al 88)] and the parallel compiler described in [Vandevoorde 88] are examples of parallel one
pass compilers. The input program is divided into components during parsing, and each component is
processed independently through code generation. This method works well in practice for non-optimizing



compilers or compilers that apply local optimizations only. For global optimizations, interactions between
any parts of a program must be considered. Partitioning the input program at parsing time makes it hard to
predict the communication traffic between the components during the global optimization phase, so
potential parallel speedup is offset by interactions between the components during global optimizations.

To date, the parallelization of global optimizations has received little attention. Some efforts have
conentrated on the parallelization of global data flow analysis [LeeMarloweRyder 91, GuptaPollockSoffa
90], and approaches to perform global register allocation hierarchically or incrementally are indirectly
related to detecting data parallelism in the problem [GupSofSte 89, CallahanKoblenz 91].

What distinguishes this thesis from other approaches to the parallelization of global compiler
optimizations is the development of models that relate program structure to data parallelism. Main
cont=*-tion of this thesis is the development of a structured model for detecting data parallelism in global
register allocation. The novelty of the approach taken in the thesis is that program structure is used
systematically rather than heuristically. The analysis of boundary conditions between components that are
processed independently ensures that partial results are combined without compromising optimality of the
overall result.

1.6.1. Organization of the thesis

The remainder of this thesis is organized as follows. Our model of compilation anc Lasic definitions are
given in Chapter 2. The parallelization of interval analysis and the evaluation of a parallel implementation
are presented in Chapter 3. The bulk of the thesis is devoted to the model for structured global register
allocation. Terminology and basic definitions of the model are given in Chapter 4. In Chapter 5 we
demonstrate technigues that allow us to detect which portions of a register conflict graph are interval
graphs. Manipulations that can change a non-interval register conflict graph into an interval register
conflict graph are introduced in Chapter 6. The evaluation of the model for structured global register
allocation is given in Chapter 7, and we conclude by discussing the contributions in Chapter 8.



Chapter 2
Background

Goal of this thesis is to investigate methods to parallelize global compiler optimizations. We restrict our
irput programs to well struciured programs built from a set of compound programming constructs. In this
chapter we introduce our model of compilation, and then give definitions of compound programming
constructs and well structured programs. The definitions given in this chapter will be used throughout the
remainder of the thesis.

2.1. A model for compilation

A compiler consists of one or several phases, some of which are formally better understood than others.
Before going into detail about the problems of parallel optimization, we present an "abstract” model of
compilation. This abstract model contains all important compilation phases and illustrates the
dependencies between the phases. A compiler implementation consists of a combination of the phases in
the abstract model. An enumeration of the phases in our compilation model is listed below.

Parsing and semantic checking
Derive the syntax tree from the input and check for syntactic and semantic errors in the

program.
Intermediate code generation

Derive the intermediate language representation of the program from the syntax tree.
Partition the program into basic blocks and construct the program flow graph.

Local data flow analysis
Perform data flow analysis within the basic blocks of the program. Local data flow
analysis is necessary to perform local optimizations.

Local optimizations Perform optimizations within basic blocks.

Global data flow analysis
Compute inforraz.don about the flow of data in the entire program, i.c. across basic
block boundaries.

Global optimizations
Optimize the code across basic block isider the flow of control of the entire
program. Global optimizations inclu dural optimizations.

Code generation  Generate code from the (possibly opt .ermediate language representation and
convert the intermediate language represeniation into assembly code.

Assembly Produce machine code from assembly code; perform peephole optimizations.

Figure 2-1 gives a view of the compilation model. In this figure, the boxes represent compilation phases,
and arcs between the boxes depict data dependencies between the phases. Every compilation starts with
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parsing and
semantic
checking

 J

intermediate
code generation

local data flow
analysis

local
optimizations

code generation

:

code assembly

Figure 2-1: The compilation model
parsing and intermediate language generation. Non-optimizing compilers enter code generation directly
after parsing and semantic checking. Data flow analysis and optimization occur after intermediate code
generation and before code generation. Optimizing compilers can be classified in one pass compilers and
multiple pass compilers. One pass compilers perform each stage of the compilation exactly once while
multiple pass compilers loop through the optimization phases several times, each time performing more
optimizations.

The shaded are of Figure 2-1 depicts the parts of the compilation process that are the research focus of the
thesis.
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2.2. Input model

In out compilation model, global optimizations succeed the intermediate code generation phase, so the
input program has been divided into basic blocks and the program flow graph has been constructed. In
other words, the input to the global optimization phase are flow graphs constructed from the input program.
Throughcut this thesis, the smallest unit of parallelism is a basic block, defined as follows:

Definition 1: (Basic block) A hasic block consists of a nonempty set of instructions i,,...J, such
that no instruction i€ {i}sespy} is @ jump instruction. The last instuction i, can be but need not
be a jump instruction. The first instruction i; can but need not be the target of a jump instruction.

Note that our definition of basic blocks differs from the most commonly used definition of basic blocks
where the first instruction is always the target of a jump instruction and the last instruction is always a jump
instruction.

Before we give our definition of a well structured flow grapt. we define individual programming
constructs that occur in well structured flow graphs.

Note that every basic block consists of a straight line code sequence, and that basic blocks can consist of
as few as one instruction. Because we do not require that the last instruction of a basic block be a jump
instructicn, we define straight line code in terms of basic block sequences.

Definition 2: (Straight line code) Straight line code is a directed graph consisting of basic
blocks by,...,b,, such that all b€ (b,,....b,} are connected and each b;e {b;,....b,) has exactly one
incoming and one outgoing edge.

Definition 3: (Loop) A loop is a directed graph consisting of a loop head &, a loop exit e and a
loop body. The loop body can consist of straight line code, a conditional branch or a loop. A
cycle in the loop contains A iff it contains e.

Figure 2-2 shows some examples of loops. The lefumost construct is a nested loop, the loop in the middle
consists of a single basic block, and the rightmost loop consists of a conditional statement.

oo

Ch_uue—-:r
o

Figure 2-2: Examples of loop constructs

Definition 4: (Conditional branch) A conditional branch is a directed graph consisting of a
split node, a join node and a set of branch clauses. A branch clause consists of either straight line
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code, a loop or a branch. No computations are performed in either the split or the join node.
Each branch clause contains a node s such that there is an edge from the split node to s. Each
branch clause contains a node e such that there is an edge from e to the join node.

The split node and the joirn node are "imaginatory” basic blocks in which no computation takes place.
Given a node n in a flow graph that has more thar one outgoing edges that are not backedges, we insert 2
new node s and an edge from n to s; all forward edg.s uriginating at n originate from the newly introduced
node s. Given a node m in a flow graph that has more than one incoming edges that are not backedges, we
insert the join node j, re-direct all forward edges that go into m into j and insert an edge from j to m.
Becanse no computations are performed in s and j, the data flow information does not change for any basic
block in the original flow graph. We will use the split and join node to distinguish between live ranges of
variables that occur in conditionals in cur model for global register allocation.

Figure 2-3 shows a conditional branch with split node B0’, join node B8’ and two branch clauses. The
first branch clause consists of a conditional branch consisting of BI, B2, B3 and B4 with inserted split and
join node BI’ and B4, the second branch clause consists of a loop, formed by B5, B6 and B7. The split and
join nodes have been inserted into the original flow graph; this is indicated by representing them as circles.

B0

Figure 2-3: A conditional branch

Note that our defirition of conditional branches requires one unique split node S and one unique join node
J per conditional. The pair <S.J> uniquely identifies a conditional. Note that the number of branch clauses
is unlimited. Thus, a case statement is just an example of a conditional branch.

We now give the formal definition of a well structured flow graph.
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Definition 5: (Well structured flow graph) A well structured flow graph is a directed graph
consisting of basic blocks and a set of edges, such that

1. There exists one unique basic block called the program entry which dominates all other
basic blocks in the flow graph.

2. There exists one unique basic block called the program exit which has no ov*soing
edges

3. The graph derived from the flow graph by removing the program entry and the program
exit and all edges incident to those nodes consists of a sequence of pieces of straight line
code, loops and conditional branches.

2.3. Chapter summmary

We have introduced our model of compilation and defined our input model for global optimization. We
restrict our input to well structured flow graphs that consist of straight line code, loops and conditionals.
Throughout the thesis, we refer to the definitions given in this chapter whenever one of those terms is used.
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Chapter 3
Parallel Interval Analysis

In this chapter, we describe the development of a parallel framework for global data flow analysis.
Global data flow analysis is a prerequisite for all global compiler optimizations. The purpose of global data
flow analysis is to coliect iaformation about the flow of data for every basic block in a program flow graph.
Given a program flow gr sh with n basic blocks, the time complexity of solving a global data flow problem
is O(n?). From a theoretical standpoint this is small; the reason why global data flow analysis can account
for a considerable portion of the overall compilation time is that global data flow problems must be solved
many times in the course of global optimization.

Interval analysis is a framework for global data flow analysis in which the basic blocks of a program are
processed in a particular order. The reason why interval analysis is a good candidate for parallelization is
that the data processed during interval analysis can be partitioned into independent pieces in a natural way.
The data flow information for non-nested loops can be computed independently and embedded into an
overall result without backtracking. This leads to a straightforward parallelization of interval analysis: the
loop structure of the program dictates the partitioning of the data for the parallelization. A number of
global optimizations that op=rate on loops of a program fit into the same parallel framework; one example
is loop vectorization. To assess the effectiveness of this simple parallelization we implemented parallel
interval analysis for the solution of a data flow equation and measured the parallel speedup for a set of
benchmark functions.

After a brief introduction of interval analysis, we describe our paralle] framework for interval analysis
and its implementation. We discuss approximations to the optimal parallel speedup and conclude the
chapter with the description of our implementation and the presentation of measurements of the observed
speedup for a benchmark of functions.

3.1. Introduction to global data flow analysis

The purpose of global data flow analysis is to compute global information about variables and
expressions in a program. Global data flow problems are formally well understood, and there exist a
number of different frameworks for the computation of data flow information. The most common
techniques for global data flow analysis are discussed in [Kennedy 81]. In this section we give a brief
introduction to data flow analysis and interval analysis. We illustrate our introduction with an example of a
data flow problem.
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Data flow analysis problems can be divided into two classes:

Class 1 Given a basic block b in the flow graph, what can happen before control reaches b, that
is, what definitions can affect computations at b.
Class 2 Given a basic block b in the program, what can happen after control leaves b, that is,

what uses of expressions can be affected by computations at b.

Class 1 problems are known as forward flow problems, class 2 problems are called backward flow
problems. An example of a class 1 problem is availability analysis, a typical class 2 problem is liveness
analysis.

Global data flow problems can be formulated as a set of data flow equations. The core of global data
flow analysis is to find solutions for those equations.

The simplest approach to data flow analysis is to iterate through the nodes of the flow graph applying the
appropriate equations until no changes take place. If the number of nodes in the flow graph is n, the
iterative al Jorithm requires O(n?) steps for the entire computation [Aho 84].

Interval analysis is a method to solve data flow equations that takes advantage of the locality of the flow
information in loops. Interval analysis consists of two passes. In Pass 1 of interval analysis, local
information for each basic block is determined in a form suitable for solving the equations. Once the local
properties of all basic blocks are known, the sccond pass determines the interactions with other basic
blocks. After Pass 2 is finished, we know how each basic block is affected by the instructions of every
other basic block.

3.2. Interval analysis: background

Interval analysis operates on regions or intervals of a flow graph in a specific order. Intervals capture
loops in a flow graph, more formally:

Definition 1: (/nterval) Given a flow graph G with basic blocks B, an interval in G is defined to
be a set of basic blocks 7 B with the following properties:

e There is a node he I, called the head of I, which is contained in every path from a block
outside 7 to a block within /. In other words, / is a single entry region.

e ] is connected.
o I - { h} is cycle-free; i.e., all cycles within / must contain A.

The order in which nodes are added to an interval I is called interval order. The interval order is
significant, in that if nodes of I are processed in interval order, a particular node will be treated only after
all its predecessors have been processed.

Intervals correspond to loops in the program. The intervals of the original flow graph represent the
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innermost loops. The graph derived from a flow graph G by replacing the set of nodes that form an interval
by one node representing the interval is called a derived flow graph of G. .dore formally:

Definition 2: (Derived flow graph) Given a flow graph G with iritial node n,, the derived flow
graph I(G) is the following graph:
1. The nodes of I(G) are the intervals found by interval partition of G.

2. If J and K are two intervals, there is an edge from J to K in /(G) if and only if there exist
nodes n;€ J and n € K such that n, is a successor of #;in G.

3. The initial node of /(G) is the interval including n,,.

Given a node & in a flow graph G, the interval 7 for A is built by adding all basic blocks of G not in /
whose predecessors are already in the interval /; the detailed algorithm is given in Figure 3-1.

Inpwt: The specified head A.
Outpwt: max_interval(h]
begin
I := {h};
while 3xe (S{I}-f) such that Pfx] c I
do
I := {h}:
od;
max_interval(h) := I;
end

Figure 3-1: Algorithm to coastruct the maximum interval for a given head

Figure 3-2 shows a flow graph - the shaded areas depict the initial partition into interval<. Note how each
individual loop is vaptured in one interval.

Interval partition is repeated until the derived graph consists of only one single node, called the limit flow
graph. We call the sequence of graphs derived by repeated interval partition that starts with a flow graph G
the derived sequence of G.

Irreducible flow graphs

Flow graphs, for which a limit flow graph that consists of only one node does not exist, are called
irreducible. Flow graphs, whose limit flow graph consists of only one single node, are called reducible.
Flow graphs of we!' structured programs are always reducible, and there are techniques for changing
irreducible flow graphs into reducible flow graphs [Aho 84). For the purpose of this thesis we assume well
structured programs, hence we do not address the irreducibility of flow graphs in the remainder of this
chapter.

Definition 3: (Derived sequence of a flow graph): Given a flow graph G, the sequence of
graphs (Gg,Gy,-.-,G,,) is called the derived sequence for G if

oG = GO
° Gj is derived by interval partition from Gj- 1 Vje (1,..m}
® G, is the limit flow graph for G,
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Figure 3-2: A flow graph and its initial interval partition

first derived graph

limit flow graph

Figure 3-3: Sequence of derived graphs

Figure 3-3 shows the derived seq<nce for the flow graph depicted in Figure 3-2. The shaded regions of
the flow graph graph shown in Figure 3-2 depict the intervals after the first interval partition, which are the
nodes of the first derived flow graph. The second generation of interval partition yields the limit flow

graph.

Interval partition gives rise to a two-pass algorithm for data flow analysis. In the following, the method is
discussed as it applies to an availability system.
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3.2.1. Availability analysis

An expression e is said to be available at a basic block b in the program if it has been computed before
control reaches b, and none of its operands have been destroyed between its computation and b. Local
availability means availability within one basic block, global availability means availability within the
entire flow graph.

An expression e is redundant at point p if e is available on all paths that lead to p. Availability is one of
the key problems in program optimization because it allows to identify redundant expressions which may
be eliminated from the program.

We now introduce an availability system that was developed by Morel and Renvoise [MorelRenvoise 81].
We first explain the local properties of basic blocks which are needed to solve the availability system.
Up-transparency UTRANSP

A block is said to be up-transparent for an expression if the block does not contain any
modification of the operands of the expression, or if the first modification of an

operand of the expression occurring in the block is preceded by a computation of the
expression.

Down-transparency DTRANSP
A block is said to be down-transparent for an expression if the block does not contain
any modification of the operands of the expression, or if the last modification of an
operand of the expression occurring in the block is followed by a computation of the
expression.

Local availability COMP
An expression e is said to be locally available in a block i if there is at least one
computation of the expression in the block {, and if the instructions appearing in the
block after the last computation of the expression do not modify e’s operands.

We will use AVIN; to denote global availability upon entry of block i and AVOUT; to denote global
availability upon exiz from block i. Further, boolean conjunctions are denoted @ and H , disjunctions + and
3" respectively. In the following, let B denote the set of all basic blocks.

In this notation, an expression is available on entry to a block if it is available on exit from each
predecessor of the block. An expression is available on exit from a block if it is locally available, or if it is
available on entry to the block and down-transparent in this block. This leads to the following set of
equations for global availability:

AVOUT=COMP #DTRANSP »AVIN,
AVINE] |ic preayAVOUT;ic B

3.2.2. Pass 1 of interval analysis

During the first pass, local quantities COMP, DTRANSP and UTRANSP are computed for larger and
larger regions of the program. The algorithm /1 depicted in Figure 3-4 computes COMP, DTRANSP and
UTRANSP for an interval from their values for blocks in the interval. If Gy, G, ... , G, is the derived
sequence of flow graph G = G, Pass 1 consists of applying algorithm /1 to each interval in G, then to each
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Input: an interval [ with head h

COMP_, DTRANSP and UTRANSP, for each x € I
Qutpwut: COMP, DTRANSP, and UTRANSP,
Miscellaneous: Succ(x) are the successors of x
Method:

begin

COMP=COMP,;

DTRANSP =DTRANSP, ;

UTRANSP =UTRANSP,;

for all xel-{h} do
for all ye Succ(x) do

COMP,:(COMPIoWRANSPx)-rCOMP’
od;
od;
for all xel-{h} do
DTRANSP =

(DTRANSP,+UTRANSP,)0DT RANSP‘
UTRANSP =
T RANSP,ODTRANSP,HUT RANSP‘
od;
end

Figure 3-4: Algorithm /]

interval in G,, and so on. When G, , is reached, COMP, DTRANSP and UTRANSP will have been
computed for each node in the derived sequence of graphs.

3.2.3. Pass 2 of interval analysis

= === ==

Input: an interval [ with head h
Owpuat: AVIN and AVOUT for all members of
Miscellaneous: Pred(x) are predecessors of x
Method:
begin

for all xe Iin interval order, starting with the head h do

AVIN, x=l-[j € Pred(x) AVCUT;"
AVOUT =COMP +DTRANSP sAVIN ;

od;
end

Figure 3-5: Algorithm /2

During the second pass, AVIN and AVOUT are computed for smaller and smaller regions of the program.
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If x* denotes the single node in G,,, Pass 2 begins with the assignment AVIN,- = TRUE. The remaind.r of
the pass consists of repeated application of algorithm /2 shown in Figure 3-5, which computes AVIN and
AVOUT for each node in an interval I, given correct AVIN and AVOUT sets for the entry to / and to each
successor J of I. I2 is applied first to the interval of G,,, then to the intervals of G, , and so on until AVIN
and AVOUT have been computed for every node in the original graph G.

3.3. Parallel interval analysis

The key idea in our parallelization of interval analysis is that disjoint intervals contain disjoint sets of
basic blocks and therefore may be treated independently. Another important observation is that an interval
', in the i-th derived flow graph depends only on a subset S of the basic blocks. Thus, not only the nodes of
the i-th derived graph G, but all nodes in G, G,, ..., G; independent of S may be processed in parallel with
interval 1.

Recall that during Pass 1 algorithm /1 is applied first to the nodes of the original flow graph, then to the
nodes of the first derived flow graph etc. Thus, the level of parallelism decreases as we progress through
the sequence of derived flow graphs. In Pass 2, algorithm /2 is first applied to the limit flow graph, then to
the previous derived flow graph etc. Therefore the level of parallelism ir: Pass 2 increases as we progress
through the (reversed) sequence of derived flow graphs.

The order in which the nodes of the derived sequence are processed corresponds to a postorder traversal
of a tree composed of the nodes in the graphs of the derived sequence, called complete interval tree.

Definition 4: (Complete interval tree) Given a program flow graph G and its derived sequence
(GGyesG ) » the complete interval tree of G is a tree with the following properties:

o The leaves of the tree are basic blocks.

¢ Every node in the tree corresponds to an interval in a graph in the derived sequence
{GyG oG )

o There is an edge from node J to node K iff the interval J of derived flow graph G,
contains the interval X of the previous derived flow graph G, ;.

o The root of the tree is G, the limit flow graph.

Eliminating redundant nodes from the s:ce

Figure 3-7 shows a complete interval tree in which each node n has an associated weight that equals the
number of leaf nodes in the subtree rooted by n. The weight of a node comresponding o an interval is
therefore the number of basic blocks in that interval. The intervals of the i+Ist derived flow graph are
composed of the nodes of the ith derived flow graph.

The sequence of the derived flow graphs reflects the loop structure of a program: the first derived flow
graph reflects the innermost loops, the second level loops that enclose the innermost loops etc. So the
weight of intervals containing the basic blocks that form loops increases with the index of the derived flow

graph.
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OV 0O OOO

Figure 3-6: Example complete interval tree

Figure 3-7: Weighted interval tree

Looking at our example in Figure 3-7, the associated weight of nodes in the leftmost branch of the tree
does not change until the root. Thus, in each iteration of building the derived flow graphs the intervals
represented by the leftmost nodes in the tree contain the same one basic block. Therefore, the data flow
information for these nodes does not change from one iteration to the next. This suggests the foliowing
elimination rule: Nodes of the i+1st derived flow graph that have only one child (i.e. whose weight is no
larger than the child’s weight) need not be reconsidered during the flow analysis pass and can be eliminated
from the complete interval tree. Figure 3-8 depicts the same complete interval tree after all nodes that do
not change the data flow analysis information have been eliminated. Eliminating redundant nodes from the
complete interval tree means to avoid unnecessary overhead of scheduling redundant nodes during

processing.

The complete interval tree is the basis of our parallelization of interval analysis. Algorithm /! is applied
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Figure 3-8: Interval tree after elimination

to the complete interval tree bottom up, starting at the leaves of the tree, computing the COMP, DTRANSP
and UTRANSP sets of the program for bigger and bigger regions of the flow graph. Upon completion of
algorithm /1, I2 computes the AVIN and the AVOUT sets of variables for smaller and smaller regions of the
program, starting at the root of the complete interval tree (which denotes the entire program) and ending at
the leaves of the tree.

The order in which algorithms /7 and /2 have to be applied to the nodes of the complete interval tree is
only restricted by the parent/child relations of the nodes. In Pass 1, a node J can only be processed after all
its successors have been processed. In Pass 2, a node J can only be processed after all its parent nodes have
been processed. Therefore, all nodes that are not ancestors or descendants of each other can be processed
independently. The execution of nodes that are in ancestor relationship must be synchronized.

3.4. A model to approximate the amount of parallelism in parallel interval analysis

Assuming that the processing times for each individual node are known, the minimal processing time for
a given complete interval tree is bounded by the longest path from the root to a leaf node, where the length
of a path is the sum of the processing times of its nodes, more formally:

Definition 5: (Length of a path in a complete interval tree) Given a complete interval tree T
with root R, nodes N and processing time #(n) for all nodes n€ N, let p be a path from a leaf node
to the root R consisting of N' ¢ N. Then, the length of p L(p) is defined as

Lp)= Y, «n)

neN

The formal definition of the minimal processing time is then:

Definition 6: (Minimal processing time for a complete interval tree) Given a compleie interval
tree T with root R, let P be the set of all paths from the leaf nodes of T to the root R. The minimal
processing time for T, t,,,,(T) is the length of the longest path among P:

tinT)=max(L(p)lp€ P)

The most efficient parallelization processes the tree in minimal time and utilizes all processing elements
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100% of the time. A tree structure as basis for parallelism does not permit 100% processor utilization if the
number of processing elements exceeds 1. The reason is that the root node can not be processed in parallel
with any other node, so all processors except one are idle when the root node is ready for processing.

The number of processors that can be used efficiently for processing a complete interval tree in minimal
time depends on the shape of the complete interval tree. Figu-e 3-9 shows complete interval trees of

different shapes.

Figure 3-9: Differently shaped complete interval trees

The three examples in Figure 3-9 represent the spectrum of shapes that complete interval trees can have.
The tree with the root labeled w is wide and flat. Recall that the leaf nodes of complete interval trees are
the basic blocks of the program. A program that results in a complete interval tree of that form contains no
loops. A program that consists of one deep nest of loops results in a complete interval tree that looks like
the example labeled / in Figure 3-9: the innermost loop is found at the bottom of the tree, basic blocks that
are parts of the enclosing loops are accumulated on the way from the bottom to the root. The tree labeled p
is a perfectly balanced binary tree, resulting from several independent loop nests in the program.

Intuitively trees that are wide and bushy can keep a large number of processors busy; trees that are long
and thin do not permit much parallelism. It is easy to determine the minimal processing time for a given
complete interval tree when the processing time for each node is known. Given an unlimited resource of
processors, every complete interval tree can be processed in minimal time. Given only a fixed number of
processors, it is hard to determine a priori whether a given tree can be processed in minimal ime. The
following paragraphs address the problem of establishing a lower bound for the number of processors
needed to process a complete interval tree in minimal time. A formal definition of this bound is given
below:

Definition 7: (Parallel efficiency of a complete interval tree) Given a complete interval ree T
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with minimal processing time ¢, , the parallel efficiency of T is the minimal number of
processors needed to process Tin ¢, .

The parallel efficiency of a complete interval tree T is a measure for the "amount” of parallelism in 7. If
the parallel efficiency for a complete interval tree T is known, the speedup observed in a paraliel
implementation can be analyzed appropriately. If for example the parallel efficiency of a complete interval
tree is p, and p’>p processors operate in parallel, there exists a schedule for executing the nodes in the
complete interval tree with p processors such that the speedup observed with p’ processors does not exceed
the speedup observed with p processors. The reason is that only p processors can be used efficiently, any
additional processor is bound to be idle a lot of the time.

We start the discussion by showing some properties of complete interval trees that allow us to establish
an upper bound on the parallel efficiency of a complete interval tree.

3.4.1. Properties of complete interval trees

Basic blocks and nodes in the complete interval tree are the smallest units processed in parallel. Before
we reason about the parallelism in the tree, we state some properties of complete interval trees for reducible
flow graphs. These properties permit to compute certain bounds for the width and the height of such trees.

Lemma 8: Given a complete interval tree T in which all redundant nodes have been eliminated
by the elimination rule, every node in T that is not a leaf node has at least 2 children.

Proof: Each node in the complete interval tree corresponds to either a basic block in the flow
graph of a program or to an interval in the flow graph. Basic blocks form leaf nodes in the tree
and have no children. By the elimination rule, nodes that correspond to intervals that consist of
only one node do not occur in T. Therefore, only intervals that consist of at least two nodes are
represented. By construction of complete interval trees, such nodes must have at least two
children.

Lemma 9: Given a complete interval tree T of a program flow graph G with n basic blocks, the
height of T is at most n.

Proof: Induction on n, the number of basic blocks. n=1I: A flow graph consisting of one basic
block is equivalent to the corresponding limit flow graph, therefore the complete interval tree
consists only of one node and has height 1. n->n+I: Under the assumption that T's height is at
most n let G' be the flow graph derived from G by adding a basic block b at an arbitrary location.
The corresponding interval tree T can differ from T as follows:

1. b is part of an inner loop, in which case the interval in G that corresponds to this loop
will consist of one more basic block - the height of T" equals the height of T

2. b starts a new interval and therefore T can have at most one more node - therefore the
height of T can be at most the height of T+1 = n+1

Lemma 10: Given a complete interval tree T of a program flow graph G with n basic blocks,
the number of nodes in T is at most 2n-1.

Proof: T is composed of basic blocks and nodes of the derived flow graphs. Each noce in a
derived flow graph has at least two children, otherwise it would be eliminated by the elimination
rule. In the worst case there can be at most one node in any derived flow graph per basic block -
again because of the elimination rule. Further, there must be at least one interval that contains
two basic blocks. If the number of basic blocks is n, the total number of interval nodes is
bounded by n-1, hence the total number of nodes in T is bounded by 2n-1.

During the processing of a complete interval tree T, only a subset of nodes are executable at any given
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time. In the beginning, only leaf nodes are executable; an inner node n in the complete interval iree
becomes executable once all the nodes in the subtree rooted at n have been processed. Before we compute
an upper bound on the number of nodes in a complete interval tree that can be executable simultaneously,
we give a formal definition for that quantity.

Definition 11: (PARSET of a tree) Given a complete interval tree T with minimal processing
time 1,,;,, let t<t, .. PARSET{(t) is the set of nodes in T that are executable at time 7.

Note that the size of the PARSET of a complete interval tree is independent of the number of processors.
In the next lemma, we state that the PARSET of a complete interval tree can not exceed a certain number.

Lemma 12: Given a complete interval tree T of a program flow graph with n basic blocks with
minimal processing time ¢,,;,, PARSET(T)<n.

Proof: Case 1: PARSET consists exclusively of basic blocks. In that case |PARSET(1)| is
certainly at most n.

Case 2: PARSET consists of both interval nodes and basic blocks. Let K be an arbitrary node in
PARSET(t). Key observation in the proof is that while X is processed, PARSET(t) can not contain
any node in X’s subtree or any node on the path from K to the root. Let PARSET(#) contain k,
basic blocks, k, nodes of the first derived flow graph, ..., k; nodes of the last derived flow graph.
By Lemmas 9 and 10, the number of nodes in the subtree of a node of the j-th derived flow graph
is at least 2 and the number of nodes along the path from that node is n—j. Thus the number of

nodes in PARSET{(1) contains at most (22— 1)~ 3 g (kX 2i+n~/)<n g.ed.

As a result of Lemma 12, our parallelization can keep at most n processors busy simultaneously if n is the
number of leaf nodes in the complete interval tree. There are cases in which the complete interval tree can
be processed in minimal time with fewer than n processors, where n is the number of leaf nodes of the
complete interval tree. This is illustrated in Figure 3-10. Under the simplifying assumption that every node

Figure 3-10: Minimal time with fewer processors than leaf nodes

requires the same processing time, the longest path from the root to a leaf node consists of nodes {1,3,5,7)
and therefore the minimal processing time for this tree is 4. The number of leaf nodes is 4, but the tree can
be processed in minimal time with just 2 processors; this is achieved by processing nodes (6,7}, then {45},
then {2,3} and finally the root, {1}. The parallel efficiency of that tree is 2; we will show in the following
sections that computing the parallel efficiency for a given interval tree is NP complete; we conclude our
theoretical analysis by computing upper and lower bounds for the parallel efficiency of complete interval
trees.
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3.4.2. Bounds on the parallel efficiency of complete interval trees

To be able to compute the parallel efficiency of a given interval tree, we must know the processing times
for all nodes. Usually, the processing times for different nodes in a realistic complete interval tree vary
considerably. In the following, we assume that for every node in the complete interval tree the computation
time is known.

The next lemma states that detsrmining the paralle] efficiency of an arbitrary complet2 interval tree is NP
complete. We will show this by reducing optimal binpacking [Garey, MR. and Johnson, D.S. 79] w
computing the parallei ~£liciency.

Lemma 13: Given an arbitrary complete interval tree T, it is NP complete to determine the
parallel efficiency of T.

Proof: Let {w;,...w,} be an arbitrary sequence of packets. The bin packing problem consists
of finding the mirimal number of bins with capacity ¢ that hold {w/,...,w,}. Given that sequence
of packets, we construct a complete interval tree as follows: the leaves of tree are basic blocks
(D) sbpsbpey ) such that the execution time for b;=w\Vi€ {1,...n] and the execution time for

b,,,=¢, such that c>wVie (1,..,n). The root of the complete interval tree consists of a node
with an arbitrary execution time, w,,,. The minimal execution time for that tree is then ¢+ w,,,,

and the parallel efficiency is equal to 1 + (the minimal number of bins of capacity ¢ needed to
pack {w,,...w,})). Hence, finding the parallel efficiency of arbitrary complete interval trees is NP
complete.

If the execution time for every node in a complete interval tree is known, the length of the longest path
from the root o a leaf node in the tree is also known. To process the complete interval tree in minimal
time, there is a deadline for every node at which that node must be scheduled. Given the execution time
and the deadline for every node, each node can be mapped to a 2 pple {¢,,f,} such that ¢, is the node’s
deadline and t,=1,+ the node’s execution time.

There are numerous ways to schedule the nodes in a complete interval tree such that the tree is processed
in minimal time. A schedule consists of a mapping of nodes of the complete interval tree to a tuple that
consists of processor and time, more formally:

Definition 14: (Schedule) Given a set of processors P, a complete interval tree with nodes N,
and rpinima] execution time ¢,,;., the function § with

S:Nx[04,,;,]1- (Px[01,;])
S(n)=(p.,)

such that n is executable at time ¢ and 1, <d(n), where d(n) is the Jeadline for node n is called a
schedule for T.

The simplest schedule that allows to process a complete interval tree in minimal time is obtained by
scheduling every node as soon as it is executable. Thus, all basic blocks are scheduled at the beginning,
each on a distinct processor. This leads to our first upper bound for the parallel efficicncy of a complete
interval tree, introduced in the next lemma.

Lemma 15: Given a complete interval tree T with b leaf nodes, the parallel efficiency of T is at
most b.

Proof: By Lemma 12, PARSET(f)<bVt. Therefore, given b processors, there is always a
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distinct processor for each executable node in T, and T can be processed in minimal time.
Therefore, b is an upper bound on the parallel efficiency of T.

It is easy to see that only for a complete interval tree T that is wide and flat, the number of leaf nodes is a
reasonable approximation of T"s parallel efficiency. For some trees, fewer processors are needed for
minimal processing time when every node is scheduled at its deadline, rather than when it is executable. In
such a schedule, the number of processors needed is equal to the number of nodes in the tree whose
execution interval overlaps.

Definition 16: (Execution interval of a node) Given a node n in a complete interval tree with
deadline ¢, and execution time f,, we say that we say that [1,t,+1,] is the execution interval of n.

“emma 17: Given a complete interval tree T with nodes N, the parallel efficiency of T is
bounded by the largest subset S N such that the execution intervals of the nodes in S overlap.

Proof: Suppose that the size of the largest subset SN is p, but the parallel efficiency of T is
p’>p. If every node in T is scheduled at its deadline, certainly T is processed in minimal time.
Hence, there is a schedule using p processors in which T can be processed in minimal time.
Hence, the paraliel efficiency of T is at most p - a contradiction.

We have seen that it is hard to predict how many parallel processors can be used efficiently, even if
implementation specific parameters are ignored. In a parallel implementation, system parameters can not
be ignored, and even if a complete interval tree has a large parallel efficiency, in reality only a number of
processors that is less than the paralle] efficiency can be used effectively. We have implemented parallel
interval analysis to assess how many processors can be used in parallel in practice.

3.5. Implementation: a test case

The goals of our implementation of parallel interval analysis were twofold. First, we wanted to assess the
suitability of a parallelization based on a program’s explicit loop structure. From the previous section it is
clear that optimal parallel speedup for paraliel interval analysis is hard to predict, even when system
parameters are ignored. Finding a perfect schedule to process a given complete interval tree in paraliel
requires expensive anaiysis. Finding such a good schedule does not pay off in practice if the theoretically
optimal speedup is cancelled by implementation and system parameters. Further, it is hard to predict the
processing time of individual nodes in a complete interval tree accurately. Therefore, the second goal of
our implementation was to assess whether # simple approach to scheduling the nodes of a complete interval
tree suffices in practice.

3.5.1. Implementation details

Our program for parallel interval analysis runs as C process under the Mach operating system on an
Encore Multimax system with 14 parallel processors [Multimax 88].

Even though our algorithm could be easily integrated into a production compiler, we wanted to study the
effects of parallel interval analysis in isolation. We chose to build an interface to a production compiler to
be able to obtain the flow graphs of real user programs without having to deal with the compiler’s front end
and back end.
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The GNU C compiler developed at the Free Software Foundation [Staliman 88) served as "host
compiler”. A switch in the GNU C compiler causes the RTL representation of an input program to be
written to a file. Reading the RTL representation from that file and re-constructing the program’s flow
graph makes our implementation completely modular: the basic blocks in the flow graph can be globally
optimized, and the optimized RTL represenation can be the input to the back end of the GNU C compiler
in a separate phase. We therefore can focus on the parallelization of interval analysis but are able to
combine our parallel implementation of interval analysis with (possibly parallelized) front ends and back
ends of compilers whose intermediate representation is RTL. The possibility to run parallel interval
analysis on any C program allows to assess the parallel performance for a realistic set of test cases.
Parallelism is expressed by means of the cthreads library [Cooper 88).

3.5.2. The scheduling algorithm

The central scheduling construct of the parallel optimizer is a ready queue: each node of the complete
interval tree that is ready to be processed is enqueued in the ready queue in arbitrary order. A two level
hierarchy of threads is active during Stage3:

Master thread The master thread has two functions: first, it sets up the ready queue (initially all leaves
of the complete interval tree are scheduled) and forks a fixed number of server threads.
Second, it is responsible for load balancing: the master thread enqueues the next node

of the ready queue in the data queue of the server thread with the currently lowest work
load.

Server threads The server threads, each with its private data queue, execute concurrently. A server
processes the nodes enqueuved in its data queue and enqueues new nodes into the ready
queue until it receives a :2rmination signal from the master thread. Each node contains
status information. Dependirz on that status information, the server applies either
algorithm I (Pass 1) or algorithm J2 (Pass 2) to the node. During Pass 1, the server
notifies the parent of the currently processed node about the completion of the child. If
all children have finished the server enqueues the parent in the ready queue. During
Pass 2, the server enqueues all children of the current node into the ready queue.

Each thread (the master thread and all server threads) runs on a separate processor. It should be noted
that the master thread is merely a setup and load balancing agent and does not process any nodes of the
complete interval tree. Therefore, the best possible speedup is n-1 for n threads.

3.6. Results

Recall that our goal was to investigate how useful parallelism based on explicit program structure is in
practice, so we measured the paralle]l speedup for the solution of only one data flow equation. Multiple
pass optimizing compilers have to solve numerous data flow equations while the shape of the program
remains the same. Fo a parallel implementation this means that a substantial part of the parallel overhead
is independent of the number of equations solved. For multiple equations, task management,
synchronization and scheduling efforts remain the same while the (sequential) work performed at the nodes
of the complete interval tree is increased. As a result, better speedup can be anticipated if more equations
are solved.
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We therefore did not attempt to implement a tool that performs exhaustive data flow analysis in parallel
but restricted our implementation to the zvailability system described in Section 2. By the previous
argument, if we can observe good speedup for that one equation, our approach to parallelizing interval
analysis can be successfully extended to global optimization problems that fit into the same framework.

3.6.1. The bencliuen n functions

The amount of parallelism in our implementation is determined by the shape of the complete interval tree
which depends mainly on the size of the flow graph and the loop structure of the input program. We
therefore used benchmark functions that differ in the number of basic blocks and contain nested loops, a
characteristic that is met by many scientific programs. We used a set of five C benchmark functions from
the scientific computing domain where the size of the flow graph varied between 30, 64, 176, 207 and 296
nodes (= basic blocks). In the following we will call those benchmark functions £y, fe4, £176, f207 2N f79¢-

3.6.2. Experiment description

We implemented both our parallelization and a standard implementation of sequenti~l interval analysis
based on the algorithm described in {Kennedy 81], orthogonal to the parall*i "aplementation. It therefore
provides a basis for a fair comparison with our implementation of parallel inii al analysis.

For all functions, we measured both the parallel and the sequential execution time. For the parallel
implementation, we varied the number of server threads (and therefore processors) between 2, 4, 6, 8 and
10. Recall that the master thread runs on a separate processor but is not involved in the work on the
compleie inte, val tree. So the number of processors varied between 3, 5, 7, 9 and 11 but the best possible
speedup varies between 2, 4, 6, 8 and 10. To ensure that all parallel processors are dedicated to parallel
interval analysis, we used the allocate_processor facility provided by the experimental Mach system
running on our Encore Multimax. This facility allows to allocate a fixed number of processors for a given
amount of time 1o a single user, possibly delaying the user until the system load allows the allocation. No
other user can use those processors during that time interval. This facility minimizes the interference with
other processes but does not eliminate it completely.

Each test was run multiple times. The numbers presented in this paper are the arithmetic mean of those
measurements. The deviations of the individual measurements are within 5% of the average.

3.6.3. Measurements

We measured the speedup of parallel interval analysis over a standard sequential implementation of
interval analysis. Before the server threads can start to execute in parallel, some setup work has to be

carried out:
1. Initialization of the ready queue with all basic blocks

2. Allocation of processors
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3. Forking of the server threads
In addition tc the setup time and the time actually spent processing the nodes of the complete interval tree,
the parallel execution iime of parallel interval analysis accounts for task scheduling, task synchronization
and load balancing. In the following, the total parallel execution time for parallel interval analysis is called
Totalpa,. We measured the paraliel setup time to perform steps 1.-3. and refer to it as OPa,. Note that in
our implcmentation, these steps are carried out sequentially; to speedup the setup time, steps 1., 2. and 3.
could be carried out in parallel.

Our sequential equation solver uses the standard interval analysis algorithm and requires some
implementation specific setup work before the tree nodes can be processed. In the following, this sewp
work of the sequential implementation is called O,,, and the total sequential time to perform Phase3 is

seq
called Totalmr

Since we implemented interval analysis for only one data flow equation, the amount of work performed at
each node of the complete interval tree is very small compared to a realistic optimizer. Therefore both the
sequential setup time O, . and the parallel setup time Opar account for an unrealistically large portion of

Toral_wq and Toralpa, respectively. To get a more accurate picture on the performance of our

parallelization, we looked for a fair method to factor out both O, and O,,, from the computation of the
parallel speedup.

On first sight it sounds plausible to subtract the parallel setup time O, from the total parallel execution
time Toralpa, and O,,, from Total,,, respectively and use the resulting times to compute the paraliel
speedup. However, the parallel sewp time is in general larger than the sequential setup time since it
includes inherently expensive parts like for example processor allocation in a time shared mult user
system. We therefore decided to account only for the sequential setup tme by subtracting O, g from both
Total,,,, and Toral”q and cbtain the speedup by dividing the two resulting numbers as shown in the
following equation:

Total O
el .
speedup= Towl —0,,,

In the next section, the speedup observed always refers to the speedup introduced in the previous equation.

3.6.4. Speedup over sequential interval analysis

We were able to observe parallel speedup for every berci:mark function. The speedup varied with the
size of the benchmark function. Figure 3-11 depicts the speedup for f;; and fg,. Recall that the best
possible speedup is at most p-1 if we use p processors in parallel, since one of the processors is dedicated to
the master thread. For both functions the speedup increases with increasing number of processors and
decreases again when the number of processors exceeds 7 - an indication that scheduling overhiead cancels
the paralle]l speedup for small functions. In general the observed speedup is disappointing even though it
increases for fo,. The situation changes drastically for f,, shown in Figi % 3-12. The speedup increases
almost linearly when the number of processors is small. We observe 5-fold speedup using 9 processors.
Adding more processors results in a decrease in performance.
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Figure 3-13 depicts the speedup for f,y; and f,g.. Adding basic blocks helps: functions f, and f,o¢
show almost linear speedup and for both functions we do not have a "local speedup maximum”, that is, the
speedup increases steadily wiih increasing number of processors.
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3.7. Discussion of the observed speedup

Our measurements show that for functions that are large enough, the speedup over sequential interval
analysis is considerable. These results are particularly encouraging considering the simplicity of our
implementation: the setup work is performed sequentially, the scheduling strategy is very simple, and we
were still able to observe up to 7-fold speedup using no more than 11 processors, one of which is dedicated
to load balancing and does not process any nodes of the complete interval tree. For all benchmark
functions, the optimal theoretical speedup is much higher than the observed speedup. For instance, a lower
bound of the parallel efficiency of the complete interval tree of our smallest example, f3,, was 10. In other
words, when communication cost and system overhead are ignored, the parallel speedup should increase
for each added processor up to 10 processors, and it should decrease when more than 10 processors execute
in parallel. The observed speedup depicted in Figure 3-11 shows that the observed speedup decreases when
more than 6 processors operale in parallel, so implementation and system overhead as well as
communication cost cancel parallel speedup w' en too many processors operate in parallel. We observed
the same phenomenon for our other benchmark functions and conclude that sophisticated methods to find a
good or even optimal schedule for the nodes in a complete interval tree does not increase the observed
speedup, and a simple scheduling strategy suffices for good practical results.

3.7.1. Possibilities to increase the speedup

There are two possibilities to increase the effectiveness of parallel interval analysis. First, vetter parallel
speedup can be expected when the size of e input functions is increased. Second, implementation and
system overhead decreases relative to the total execution time when the workload in the nodes of the
complete interval tree is increased.

One way 1o increase the size of program flow graphs is to use procedure inlining if a program consists of
many small functions. Thus, even when the size of the flow graphs is small, our approach can yield good
speedup when combined with inlining, an important optimization in its own right. Further, many functions
consist of more basic blocks than our benchmark functions, and for such large functions, better speedup can
be expected.

Since we only implemented the solution of one data flow equation, the amount of work performed at each
node of the complete interval tree smaller than in a typical global optimizer. Since the paralle] overhead of
parallel interval analysis is independent of the number of data flow equations even better speedup can be
expected if the number of equations solved is increased.

3.7.2. Application spectrum for parallel interval analysis

The intervals of a flow graph correspond to the loop structure of the program. Working on (independent)
intervals in parallel means that loops of the same lcop nesting level are treated in parallel. Other giobal
optimizations that allow to treat program loops on the same nesting level independently can be mappec into
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the same parallel framework. Examples are th- extension of interval analysis to handle arrays reported in

[GrossSteenkiste 90] and other methods for data dependence analysis used in vectorizing compilers. The
fact that we parallelized the solution of an availability system does not restrict our approach to just data
flow equations. Our measurements indicate that parallelism based on program structure can yield
significant speedup - independent of the specific optimization problem that is solved in parallel.

3.8. Related work

Other parallel algorithms for global data flow algorithms are reported in [LeeMarloweRyder 91} and
[GuptaPollockSoffa 90]. The parallel hybrid algorithm described in [LeeMarloweRyder 91] combines the
iterative technique with a structured method for data flow analysis. Maximal strongly connected
components in the flow graph are processed in parallel. The iterative method is used to compute local data
flow information for each component, and in a subsequent propagation phase global data flow information
is computed for each component. The communication between parallel processes in this approach is
greater than the communication required for parallel interval analysis. In the measurementy of the parallel
speedup, the number of processors that execute concurrently is varied between 2 and 8. The best parallel
speedup reported in that paper is less than 5.

Goal of the approach taken in [GuptaPollockSoffa 90] is to partition a program flow graph independently
of program structure. A program is decomposed into single-entry-single-exit regions that can be smaller
than intervals, therefore the size of the parallel tasks can be chosen more evenly. No implementation or
parallel speedups are reported. This method has the potential to create more parallelism in global data flow
analysis, but it is not clear whether this parallelism can be taken edvantage of in an implementation. Our
own measurements indicate that even the coarser grained parallelism in parallel interval analysis is
cancelled by system and implementation parameters when too many processors execute concurrently.

3.9. Chapter summary

Our parallelization of interval analysis is based on explicit program structure. Data locality is given by
the loop structure of the input program and can be exploited for the parallelization in a staightforward
manner. Basis of our parallel implementation is the complete interval tree which captures the interval
partitions of a program. It is NP complete to compute a lower bound on the number of processors needed
to process a given input program in minimal time, but we gave some simple approximations of this lower
bound. Our implementation used a very simple scheduling algorithm for the nodes in the complete interval
tree, and we were able to observe considerable parallel speedup. Due to system and implementation
overhead, the speedup declined when too many processors operated concurrently. In all cases the number
of processors for which the parallel speedup declined was smaller than a lower bound on the number of
processors needed to process a complete interval tree in minimal time. We conclude that a straightforward
parallelization based on the loop structure of a program works well in practice, and that complicated
scheduling algorithms or efforts to create finer grained parallelism do not result in increased observed

speedup.



Chapter 4

Global register allocation: background

4.1. Introduction

In the previous chapter we showed a simple parallelization of global data flow analysis that was based on
explicit program structure. Data locality was given by the loop structure of the input program and the
results for an inner loop could be embedded into the results for an enclosing loop without backtracking. A
number of global compiler optimizations do not fit into this framework because in general it is not possible
to embed a partial solution of one program construct into the enclosing loop or conditional without
backtracking. We call such compiler optimizations unstructured optimizations. An example of such an
optimization is global register allocation. Global register allocation is the problem of mapping variables
that live across basic block boundaries to machine registers. The problem of optimal global register
allocation is mathematically equivalent to the problem of finding an optimal coloring for an undirected
graph representiny register conflicts. Global register atlocation via graph coloring is used in a variety of
compilers. In general it is assumed that the graph denoting the register conflicts of a program is an
arbitrary graph. Finding an optimal coloring of arbitrary graphs is NP complete.

Given a fixed number of processors, it is very difficult to come up with a straightfcrward parallelization
of an NP complete problem. The research goal for the second part of this thesis is to investigate whether
knowledge about program structure can be used to implicitly guide the parallelization of global 1egister
allocation. In other we.  we examine whether the knowledge about program structure can be used to
analyze the graph that represents register conflicts such that points can be found at which the graph can be
partitioned into independent components. The partitioning of the conflict graph into independent
components is based on clique separators, first introduced in [Tarjan 85]. The problem is that for arbitrary
graphs it is very difficult to detect clique separators.

The first step of our research is to establish a connection between program structure and register conflict
graphs. We propose a model in which structural knowledge about a program is encoded in the register
conflict graph. We then use this knowledge to deduce characteristics of the partial register conflict graph
of individual loops and conditionals that are later used to detect clique separators in the conflict graph.

This chapter provides the background for our model. We first give some basic definitions and the
description of our input model. We then introduce the standard method for register allocation via graph
coloring, followed by an example of a conflict graph that can not be colored with the standard method. We
conclude the chapter by classifying the live ranges that occur in loops and conditionals.
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4.2. Global register allocation: basic definitions

Registers are a scarce resource on all modern computer architectures [Pat/Hen 90]. Optimizations like
common subexpression elimination, constant propagation etc. create temporaries that can be used most
efficiently if they reside in registers. Once a compiler has decided which variables and temporaries are to
be placed into registers, register allocation is the problem of mapping machine registers to variables and
temporaries such that runtime efficiency of the machine code is maximized. In general, variables and
temporaries are not used in every basic block of the program flow graph, but have local or global live
ranges.

Definition 1: (Local live range) A local live range of a variable v is a sequence of instructions
i}, ... d, such that i; is a definition of v, and i, is the last use of v before a re-definition of v.
Further, all instructions of that sequence occur in the same basic block.

In general global variables or temporaries created by global optimizations are live across basic block
boundaries. Global data flow analysis determines for each basic block b which variables and temporaries
are live at the entry to the basic block [Aho 84]. Similar to local live ranges that consist of sequences of
instructions, global live ranges consist of sets of basic blocks. Because the exact order of instructic.is
inside basic blocks is usually not known at the time of global register allocation, we assume that global live
ranges extend throughout the instructions of every basic block that is part of the live range. So in our
mode!, global live ranges start and stop at basic block boundaries. Our definition of a global live range is
based on the live range graph of a variable, defined below.

Definition 2: (Live range graph of a variable) Given the flow graph of a program consisting of
basic blocks B, the live range graph of variable a consists of vertices V an directed edges E. The
set of vertices of the live range graph is defined as ve V iff ve B and a is live in v. The edges of
the live range graph are defined as e=(v,v,) € E iff there is an edge from v, to v, in the flow
graph and any definition of a in v, is preceded by a use of a in v,.

The live range graph of a variable is the basis for our computation of live ranges:

Definition 3: (Live ranges of a variable) The live ranges of a variab'e g are the connected
components of the live range graph of a.

In other words, the live range of a variable is a contiguous set of basic blocks of the flow graph in which
the variable lives. A variable can have several independent live ranges. If variable a lives in basic blocks
b, and b,, and b, and b, are not part of the same live range, the variable can reside in different registers in
b, and b, respectively.

Figure 4-1 shows both a flow graph and the live range graph for variable a.

Variable a is live in basic blocks BI, B2, B4, BS, the split node and B6. The live range graph for a is
depicted to the right. Because there is a definition of a in B4 that is not preceded by a use of g, there is no
edge from B2 to B4 in the lave range graph. For the same reason, there is no edge between B4 and BS in the
live range graph. The connected components of the live range graph are {B!.BZ}, {B4}, {B5.B6}.
Therefore, a has three distinct live ranges. The live range that consists of B4 is a local live range, the other
two are global live ranges.
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Figure 4-1: Sample live range

Local live ranges and global live ranges are mapped to machine registers in different phases - local
register allocation and global register allocation respectively. Sometimes, local register allocation is
performed fairly late in the compilation process, because some instruction reordering inside basic blocks
might be done by the code scheduler. Further, some compilers assume dedicated registers for global live
ranges.

One major difference between local register allocation and global register allocation is that local register
allocation is performed for live ranges that consist of instructions that form straight line code. We will see
that optimal global register allocation can be solved efficiently for straight line code. Local register
allocation is often done at code selection time, and is in that case a non trivial task.

Because global live ranges consist of sets of basic blocks that may be part of loops or conditionals, the
register conflict graphs for global live ranges are more complex, and finding an optimal coloring for those
graphs is NP complete.

The research focus of this thesis is on global register allocation. Before we introduce our model of
structural global register allocation, we introduce register conflict graphs and the standard method for
global register allocation via graph coloring.
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4.2.1. Standard method for global register allocation by graph coloring

The standard method for global register allocation via graph coloring operates on the register conflict
graph. Given a flow graph and for each basic block in the flow graph the set of variables and tempo.aries
that are live in the basic block, the standard register conflict graph is defined as follows:

Definition 4: (Standard register conflict graph) A standard register conflict graph G=(V.E)
consists of vertices N and edges E. Each ne N comesponds to a global live range. Two vertices
n;, n, are connected by an edge e iff there is at least one basic block & such that b is part of both

live ranges n; and n,.

In other words, n; and n, may co-exist during program execution and hence must be placed in
different registers.

Definition 5: (Chromatic number of a graph) The chromatic number of a graph G is the
minimal number of cclors needed to color all nodes in G such that no two adjacent nodes have
the same color.

The most commonly used method to color register conflict graphs was introduced in [Chaitin 81] and
works as follows. Let k be the number of available machine registers and G be the register corflict graph.
A k-coloring of G based on the following observation: if G has a node n with less than k adjacent nodes, G
is k-colorable iff the graph G’ obtained by removing n and all edges incident on n is k-colorable. Thus, all
no-es of degree less than k are removed from G until G’ is empty or consists only of nodes with degree
greater than k. '

If G’ is not empty and no nodes can be removed from G’, the standard method assumes that no k-coloring
exists for G, and that therefore not all live ranges can reside in registers at all times. The basic idea to solve
this problem is to remove nodes from G’ and assume that the corresponding live ranges are stored in
memc  ather than registerr. The node removal process is repeated on the altered graph until a k-coloring
is found.

This alporithm is used for many implementations of global register allocation [HilLar 86, Wall
86, ChowHen 90). In the following we will refer to this coloring method as the node removal technigue.

4.2.2. Shortcomings of the node removal technique

In the standard node removal technique, the decision of which node is removed next is guided by the
number of outgoing edges. Two nodes n; and n, that are removed from the graph in sequence might
correspond to live ranges of rnrelated parts of the flow graph - the program structure does not play a role in
the overall coloring process. Further, there exist register conflict graphs that are k-colorable, but in which
each node has at least k neighbors, so the node removal technique is not able to produce a k-coloring. See
for instance the graph depicted in Figure 4-2.

Figure 4-2 shows a register conflict graph in which each node has at least 3 neighbors. Given the number
of available register is 3, the node removal technique decides that at least one of the nodes must be spilled
to memory. As shown in the Figure, a 3-coloring for the graph exists.



Figure 4-2: Example where standard method fails to come up with a
k-coloring

In our approach to global register allocation, we use knowledge about the program structure to guide the
register allocation process. We will see later that there are some cases in which the structural knowledge
encoded in the register conflict graph can be used to produce -colorings where the node removal technique
is unable to do so.

We now discuss our classification of live range as they occur in straight line code, loops and conditionals.
Based on these classifications, we show snme properties of register conflict graphs for each programming
construct in the following chapters.

4.2.3. Continuous and broken live ranges

We partition the live ranges of variables iato two groups: continuous and broken live ranges.

Definition 6: (Broken live range) Given a vanable v with live range / that consists of basic
blocks {b.....b,}, we say that [ is broken iff there are two basic blocks b; and b; both in (b,,....b,}
that meet the following condition: There is a backarc free path from b; to b; that contains a basic
block b, such that b, contains a definition of v and every use of v in b, is preceded by that
definition.

Definition 7: (Continuous live range) A live range is continuous iff it is not broken.

Examples of broken and a continuous live ranges are given in Figure 4-3. In the loop labeled A, variable v
lives in basic blocks 1,3 and 4. Because there is a backarc free path between blocks 1 and 3 and 3 contains
a definition of v, the live range for v is broken. The conditional labeled B also contains a broken live range
for variable v - there is a backarc free path from block 1 to block 3 and there is a definition of v in block 3.
Hence, the live range for v is broken. The live range of v depicted in the flow graph labeled C is
continuous. Even though the live range of v in the flow graph labeled D contains all basic blocks of that
flow graph it is a broken live range because the backarc free path between blocks 2 and 4 contains block 3
which contains a definition of v.

Intuitively, broken live ranges can contain "holes” - holes in a broken live range consist of basic blecks
that are not in the live range but "between” basic blocks that form the live range. More formally, the
definition of a hole is based on an undirected graph which we call hole graph.
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Figure 4-3: Examples of broken and continuous live ranges

Definition 8: (Hole graph of a live range) Given a flow graph F with basic blocks B and a live
range /, the hole graph of / is the graph induced by the set of nodes (B-!} and all edges of F
except F's backedges.

In other words, the hole graph of a live range / is derived from the flow graph by removing all basic blocks
that form /, all edges incident on basic blocks in / and all backarcs. The connected components of a hole
graph of a live range are called holes of that live range provided these connected components are "between”
basic blocks that are part of the live range. In other words, there must be a backarc free path from the live
range that leads into the hole, and there must be a backarc free path from the hole that leads into the live
range. More formally:

Definition 9: (Hole of ¢ live range) Given a flow graph F and a live range / consisting of basic
blocks {b,....b,}, leg H be the hole graph of .. A connected component c of H is called a hole of

1iff 3b, € c such that

1. 3b,€ {b.....b,} such that there is a backarc free path from b; 0 b,

2.3b;€ (by,....b,} such that there is a backarc free path from b, to b;
Figure 44 gives an example of a broken live range and its hole graph. In that example, the flow graph to
the left consists of a loop. Variabie a has a broken live range consisting of basic blocks (1,2,7,8}. The
hole graph is derived from the loop by removing those basic blocks and all backedges as well as edges to
and from {1,2,7.8}. The hole graph consists of one connected component. Hence, the live range for g has
only one hole, which consists of all basic blocks in the hole graph.

Some broken live ranges do not contain any holes - even though there is a re-definition in some basic
block that is part of the broken live range, the hofe graph of that live range can be empty. In that case, the
broken live range can be treated as if it were continuous. We call such live ranges continuous equivalent.
The live range depicted in the flow graph labeled D in Figure 4-3 is an example of a continuous equivalent
live range.

Definition 10: (Continuous equivalent live range) We say that a broken live range [ is
continuous equivalent iff / contains no holes.

One nice property of continuous equivalent live ranges is that for each continuous equivalent live range
there exists an equivalent continuous live range. What sounds like a play ¢ words will be formaily shown
in the next lemma.
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Figure 4-4: Hole graph and hole of a broken live range

Lemma 11: Given a register conflict graph G that contains a continuous equivalent live range !
for a variable v, let {b,,...,b,,} be the set of basic blocks that contain a definition of v that is not

preceded by a use of v in the same basic block. The live range does not change if a use of v is
inserted into every b;€ (b;,....b,,}.

Proof: Because ! contains no holes, no backarc free path between any two basic blocks in / can
contain a basic block that is not part of /. In particular, every path to a basic block that contains a
definition of v consists of basic blocks that lie entirely in /. Hence, adding a use of v at the top of
the basic blocks that define v is not going to change [

By adding uses of v to the defining blocks that are part of a contu:uous equivalent live range for variable
v, the broken live range is changed into a continuous live range. Hence, for the purpose of register
allocation, continuous equivalent live ranges can be turned into continuous live ranges by modifying the
program slightly. Like broken live ranges, continuous equivalent live ranges are caused by re-definitions in
loops or conditionals and it must be ensured that both parts of a continuous equivalent live range end up in
the same register. Hence changing a continuous equivalent live range into an equivalent continuous live
range has no influence on the subsequent graph coloring.

A program that consists entirely of straight line code can only contain continuous live ranges, stated
formally in the next lemma.

Lemma 12: Given a piece of straight line code consisting of basic blocks {b;,....b,}, let Ibe a
live range that consists of basic blocks that form a subset of {b;,...,b,}. Then, ! is continuous.

Proof: Given a piece of straight line code {b,,...,b,}, there is at most one path between any two
blocks b‘-.bje {by.....b,}. Given 2 live range ! for a variable v, we show by contradiction that [
must be continuous.

Let I be a broken live range for variable v consisting of basic blocks that form a subset of
{b4:...b,}. By definition of broken live ranges, there must be two basic blocks b; and bj that are
part of /, and there must be a path from b; to b; that contains a basic block &, that contains a
definition of v which is not preceded by a use of vin b,. By definition of live range graphs, there
can be no edge between b, and a basic block preceding b, Because the flow graph contains no
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brekarcs, b, can not be part of the same connected component as by, since b; must precede b
Because b, precedes b, bj can not be part of the same connected component as b; - a
contradiction. Therefore, / must be continuous.

By Lemma 12 we know that in well structured programs only loops and conditionals can contain re-
definitions that cause a hole in a live range. Holes in a live range for a variable v occur if several
definitions of v are used in the same basic block. A loop can contain a re-definition of a variable v at the
bottom of the loop that is used at the top of the loop. A hole that is caused by such a re-definition consists
of the basic blocks "between" the basic block that contains the use and the basic block that contains the
re-definition. An example of this situation is given in Figure 4-5. The figure shows both a nested loop and
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Figure 4-5: Hole caused by a re-definition inside a loop

the interval representation of the register conflict graph. The live range for variabie a contains a hole
consisting of basic blocks {3,4,5,6}. The hole of a is caused by a re-definition of a in basic block 7, which
is part of the innermost loop. Basic block 2, which uses that re-definition of a, is part of the outer loop, but
not of the inner loop. Basic blocks between the use and the re-definition are {3,4,5,6} - the basic blocks
that form the hole.

A conditional can contain one branch clause ¢ with a re-definition of a variable v with that is live in both
the split node and the join node of the conditional. Hence, there must be a definition of v in a basic block
that occurs on the path from the program entry to the split node and a use of v in a basic block b that is
dominated by the join node. Hence, both definitions of v in b and in the branch clause c are used outside
the conditional. An example of a conditional that contains a re-definition of such a live range is shown in
Figure 4-6.

The live range for variable g consists of basic blocks {1,2,5,6,7). The hole graph for g consists of basic
blocks 3 and 4 ard is depicted to the right. Because there is a backarc free path from basic block 2 (o basic
block 3 and there is a backarc free path from basic block 4 to basic block 7, blocks (3.4} constitute a hole
of the live range for g. That hole is caused by the re-definition of g in basic block 5 which is part of one
branch clause. Both definitions of g in basic blocks 1 and 5 are used in basic block 7.
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Conditional with BGLOBAL live range for g

Figure 4-6: Hole caused by re-definition of a variable with BGLOBAL live
range in a conditional

A hole of a live range can share basic blocks with more than one programming construct. In the example
depicted in Figure 4-6, the hole of variable g’s live range contains basic blocks (3,4} which are both part of
the loop consisting of basic blocks (3,4,5) and of the entire conditional. Given the live range for g,
{1,2,5,6,7), the fact that the basic blocks "between” 2 and 5 are missing makes {3,4) a hole. Looking at
the loop in isolation, the live range of g consists only of basic block 5 and therefore basic blocks 3 and 4 are
not recognized as a hole of g's live range. Considering the conditional in isolation (that is, basic blocks
{2,3.4,5,6,7)), the live range of g consists of basic blocks (2,5,6,7). Note that the hole of g’s live range
exists in the conditional, even when the rest of the flow graph is ignored. Hence, the hole of the live range
for g can be "linked" to the conditional but not the loop nested ir<ide the conditional.

The reason why we want to link a hole 10 a particular loop or conditional is that the exact position of the
hole in the program flow graph determines which simplifications can be carried out on the flow graph such
that the register conflict graph is unchanged by those simplifications.

Given the set of loops and conditionals in a well structured program that share basic blocks with a given
hole A for a broken live range /, we link 4 to the innermost programming construct that contains a subset of
! such that & is a hole of this subset. In our previous example (Figure 4-6), the conditional is the innermost
programming construct that contains a subset g’ of the live range for g such that g’ is broken and has the
same hole as g. Now more formally:

Definition 13: (Linking of a hole) Given a well structured flow graph F that contains a broken
live range /={(/|,..],} that contains a hole h={(h,,.h,}, let P be the set of loops and
conditionals in F such that each loop or conditional in P contains at least one basic block in
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(hy,....h,}. Forpe Pletl =inp, that is the intersection of the basic blocks that form p and . We
say that A is linked to p if
1. i is a hole oflp
2. for every loop or conditional p’ nested inside of p, his not a hole of p’.
In our example depicted in Figure 4-5, the hole of variable a is linked to the outer loop, and in the example
depicted in Figure 4-6, the hole of the live range for g is linked to the outer conditional.

4.3. Live ranges in loops

The intuitive background of our classification of live ranges in loops is the impact they have on register
conflict graphs for loops. We partition the live ranges in loops into backarc and forward live ranges

More formally:

Definition 14: (Forward live range) A global live range b,,...,b, of a variable v is called a
forward live range of a loop consisting of basic blocks {I,...J,,} iff

L. {bysub} Oyl } 2D

2. all paths from basic blocks bd‘f € (bysdy ) {ly5ed,, ) that contain a definition of v to
buse € (Bynenb }O (I, ) that use the definition in b, are backarc free.

The complement of forward live ranges are backarc live ranges, defined as follows:

Definition 1%: (Backarc live range) A global live range b,,....b, of a variable v is called a
backarc live range of a loop consisting of basic blocks {/,,...,l,,} iff

L by} Ol sy} 2D
2. at least one path from a basic block bd,f € (by,-b,}{l),e.d,,) that contains a

definition of v 10 b,,, € (bys...0,}N[l},..l,,} that uses the definition in bdef contains a
backarc.

Figure 4-7 depicts loop constructs with a forward live range and a backarc live range respectively. The
live range for a is a forward live range, because it is defined in B1, and there is no backarc on the path from
BI to B2, where ais used. The live range for b consisting of B1, B2, B3 is a backarc live range, because
both uses of b in Bl and B2 can only be reached via a backarc from the basic block that contains the
definution of 5. Note that the live range for b is continuous - it contains all basic blocks that form the loop.

The backarc live range depicted in Figure 4-8 is not continuous. The live range for ¢ consists of blocks
B4 and B1, and the path from the defining block B4 to the use in B] contains a backarc. Note that the loop
contains two more basic blocks, 82 and B3 that form a hole of the live range for c. Hence, the register for ¢
can be used for a different live range that consists of B2 and B3. The live range for ¢ contains a hole that
consists of basic blocks B2 and B3. Further, the hole in the live range is caused by a definition of ¢ in block
B4.

A third example of a backarc live range in a loop is depicted in Figure 4-9. In that example, variable c’s
live range consists of basic blocks {B1,82,84,85} - a broken live range. The hole of the live range for ¢ is
linked to the conditional with split node B2 and join node BS. Even though the live range for ¢ is broken,
we call it a Loop-continuous backarc live range, because the hole is not linked to the loop.
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Figure 4-8: Another backarc live range

Definition 16: (L.oop-continuous live range) A live range | of variable v ir a lcop L with head A
and exit e is called a loop-continuous live range iff there is po hoie  of { such that A is linked to
L.

Definition 17: (Loop-broken backarc live range) A backxc live range waat is not loop-
continuous is called a loop-broken backarc live range.

Figure 4-10 shows examples of loop-broken and loop continuous backarc live ranges.

The live range for variable ¢ depicted to the left consists of {B1,82,84}. Because the hole consisting of
B3 is linked to the outer loop, the live range for ¢ is a loop-broken live range. Adding B3 to the live range
for ¢ changes it into a loop-continuous live range, shown in the middle of Figure 4-10. The example
depicted to the right shows another example of a live range that is loop broken: the hole consisting of 52
and the join node is not entirely contained in the inner conditional. It is easy to see that a loop-broken live
range must be a backarc live range. A live range that contains a hole but is not loop-broken must be a
forward live range - the hole is linked to a loop or a conditional nested inside the loop.
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Figure 4-10: Examples of loop-broken and loop-continuous live ranges

The class of register conflict graphs for loops that contain broken live ranges contains arbitrary circular
arc graphs, for which optimal coloring is NP complete, whiza will be shown in Chapter 5. We will see that
only loops that contain broken live ranges can cause arbitrary register conflict graphs. This is not generally
the case for conditionals. The types of live ranges in conditional branches are discussed next.
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4.4. Live ranges in conditionals

We partition the live ranges that occur in conditionals into four classes, LOEN, LOEX, BLOCAL and
BGLOBAL. The basis for this classification is the presence or absence of the split and join node in the live
ranges. The intuitive reason for our classification is that it permits to detect dependencies between the
register conflict graphs of individual branch clauses.

If each live range in a conditional is "local” to one dist  branch clause, the conflict graphs for the
branch clauses wie independent. Therefore, for each 1 clanse the register conflict graph can be
colored independently. On the other hand, live ranges that contain the split or join node of a conditional are
shared by the register conflict graphs of individual branch clauses and they are no longer independent. We
will see in Chapter 5 that dependencies between the conflict graphs of individual branch clauses can lead to
overall conflict graphs that are hard to color optimally.

We formalize these characterizations and partition live ranges that occur in a branch construct into four

classes:

Definition 18: (LOEN live range) A live range is called a LOEN (Life On ENtry) live range in
a conditional with split node S and join node J iff it contains at least one basic block that is part of
a branch clause and S but not J.

Definition 19: (LOEX live range) A live range is called a LOEX (Live On EXit) live range in a
conditional with split node S and join node J iff it contains at least one basic block that is part of a
branch clause and J but not S.

Definition 20: (BGLOBAL live range) A live range is called a BGLOBAL live range in a
conditional with split node S and join node J iff it contains at least one basic block that is part of a
branch clause and both S and J.

Definition 21: (BLOCAL live range) A live range is called a BLOCAL live range in a
conditional with split node S and join node J iff it contains basic blocks of a branch clause but not
SorJ.

In the example depicted in Figure 4-11, g is BGLOBAL, a is LOEN, d is LOEX and both b and ¢ are
BLOCAL.

Analogous to our definition of loop-continuous and loop-broken live ranges, there are conditional-
continuous and conditional-broken live ranges. A conditional-continuous live range can have a hole that is
not linked to the conditional itself, but instead to a conditional or loop nested inside. This is depicted in
Figure 4-12,

The figure shows two nested conditionals. The outer conditional with split node 1 and join node 6
contains a BGLOBAL live range for v, which consists of {1,2,4,5,6). This live range is broken, and
contains a hole formed by block 3. This hole is caused by a re-definition of v in basic block 4, which is part
of the inner conditional with split node 2 and join node 5. Like for lcops, the live range for v is therefore
conditional continuous in the outer conditional, and conditional-broken in the inner conditional. A formal
definition follows.

Definition 22: (Conditional-continuous live range) A live range [ for a variable v with a hole A
is conditional-continuous in a conditional C with split node S and join node J iff there is no hole
h of I such that 4 is linked to C.

The complement to a conditional-continuous live range is a conditional broken live range.
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Figure 4-12: Conditional-continuous and conditional-broken live range

Definition 23: (Conditional-broken live range) A live range [ for a variable v is
conditional-broken in a conditional C iff it is not conditional-continuous in C.
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Note that a conditional-broken live range must be a BGLOBAL live range. Broken LOEN, LOEX or
BLOCAL live ranges in a conditional C must be conditional-continuous in C - holes in such live ranges
must be entirely contained in programming constructs nested inside C.

4.5. Chapter summary

We have classified the live ranges of well structured programs. Live ranges can be continuous or broken.
Live ranges in straight line code are all continuous, while conditionals and loops can contain re-definitions
that cause a live range to be broken. Loops can contain forward live ranges and backarc live ranges. Live
ranges in loops can be loop-continuous or loop-broken. Conditionals can contain BLOCAL, BGLOBAL,
LOEN and LOEX live ranges. A live range [ in a conditional can be conditional-continuous or conditional-
broken, depending on which programming construct causes a hole in /.

In the next chapters we show how this classification can be uced to analyze the shape of register conflict
graphs for loops and conditionals.
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Chapter 5§

Register conflict graphs for compound programming constructs

In this chapter we characterize properties of register conflict graphs of straight line code, loops and
conditional branches. The first part of this chapter is devoted to re-stating some properties of register
conflict graphs that have been established before [Gol 85, Fishburn 85, Bernstein et al 89]). We first
showing that register conflict graphs for straight iine code are interval graphs and show that the standard
node removal technique is able to produce an optimal coloring for interval graphs.

The class of register conflict graphs for loops and conditionals contain arbitrary circular arc graphs for
which finding an optimal coloring is NP complete. When certain restrictions are met by the live ranges that
occur in a conditional or a loop, the register conflict graph of that conditional or loop is equivalent to the
register conflict graph of straight line code. One contribution of our structured model for global register
allocation is that it enables us to establish such restrictions systematically. The bulk of this chapter is
devoted to the description of situations in which it is possible to produce an optimal coloring for register
conflict graphs of loops and conditionals in polynomial time. In particular we discuss cases in which it is
possible to simplify conditionais and loops without altering the register conflict graph. Goal is to create
straight line code that is equivalent to loops and conditionals for the purpose of register allocation. We will
see that the simplifications to obtain straight line code enable us to locate clique separators in the register
conflict graph.

5.1. Register conflict graphs for straight line code

We first turn our attention to register conflict graphs of straight line code. We show how the live ranges
in a register conflict graph for straight line code can be mapped to intervals on the real line. We then show
how the cliques in the register conflict graphs can be ordered to form a sequence of cliques, and use that to
show that the node removal technique is able to produce an optimal coloring in polynomial time.

We will show that register conflict graphs of straight line code are interval graphs by mapping every live
range in the flow graph of straight line code to an interval on the real line. The first step is to define a
monotonously increasing function f: (b;,...b,} =R as follows: fib)=i, i€ {1,..,n}). Note that f is both
monotonely increasing and bijective.

Definition 1: (Interval on the real line) An interval on the real line in,,n,),n; < n,, is a subset
of R such that n, € R and n, € R and V{xin,Sx$ny)xe [ny 1) and V{yly<n ) y€ [n).ny) and
Viyy>ny) ye (nyn,).
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Definition 2: (Interval graph) An interval graph is a graph whose vertices v can be represented
by intervals /, of the real line such that (wo vertices are adjacent if and only if the comresponding

intervals intersect.

Because the live ranges in straig™t line code are contiguous sets of basic blocks, we can map a straight
line live range [b‘-,....bj) :0 zn interval on the real line by the function g defired as follows:

g(b"v""bj) = U(b‘)ﬂbj)] =! [l,]].

Given a register conflict graph G for straight line code, there is an edge between two live ranges iff their
intersection is not empty. Let G’ be the graph derived from G by applying the function g to each node in
G. Then G’ is an interval graph, and a coloring for G’ can be used to color G as well. Interval graphs can
be colored optimally in polynomial time [Gavril 72] and hence an optimal giobal register allocation can be
found in polynomial time for straight line code.

Figure 5-1 demonstratzs how live ranges are mapped to intervals. Four live ranges, for variables g, b, ¢
and d are shown. The live range for a consists of basics blocks (B1,82,83,84,85,86,87,88} and is mapped
to the interval [1,8] etc. The real line is shown on to the left. The corresponding interval graph is shown to
the right of the figure.
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Figure 5-1: Register conflict graph for straight line code

One nice property of interval graphs is that it is easy to identify all the cliques they contain. In the next
section we will show how all cliques in an interval graph are identified and how an order on all cliqu: s is
defined.

Definition 3: (Clique) A clique in a graph is a subset of vertices such that every pair of distinct
vertices in that subset is connected by an edge.
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It is easy to see that each node in a clique in a register conflict graph must be colored with a different
color. The horizontal lines in the left part of Figure 5-1 are drawn at the end points of the intervals that
correspond to the live ranges. Live ranges that intersect the same horizontal line form a clique in the
corresponding interval graph. A new clique siarts at each end point of an interval, shown as horizontal
lines in Figure 5-1. In the following let n be the number of distinct live ranges. Then, the number of
pairwise distinct end points of intervals is at most 2n. This "sequence” of horizontal lines is the idea of
ordering the cliques in an interval graph, which is formalized in the next paragraphs.

We first give a slightly modified definition for cliques that allows us to map cliques to the endpoints of
the intervals corresponding to live ranges in the clique.
Definition 4: ([i jlclique) We say that a set of intervals S forms a [i,j] clique iff
L[ijlcs Vse§
2. 3se Ssuch that [i’j]is not a subset of s Vi'<ior

3. 3s€ Ssuch that [ij]is not a subset of s Vj'> .

In other words, [i,f] is the largest interval contained in every element of S.

In Figure 5-1, the interval [6,8] is contained in the intervals for live ranges a, b and ¢. Because the
interval of live range a ends at 8, and the interval of live range ¢ starts at 6, [6,8] is the maximal interval
contained in ail three live ranges. Hence, {a,b,c} is a [6,8] clique. The intervals for a and b both contain
[4,8]. Hence, {a,b] is a [4,8] clique.

We can now define an ordering on the [i,/] cliques of an interval graph as follows:
Definition S: (The .<. order for cliques) Let [1,.1,] and [t3,1,] be two intervals and ¢, be az;.5,]
clique and ¢, be a [1;.1,] clique. We say thatc) .<.c,ifft) <t5. If ;=1;, we say thatc; .=.c,.

Example: In Figure 5-1, {a,b) is a [4,8] clique, and {a/b,c) is a [69] clique. Hence, {ab} .<. {a.b.c).
The . <. order can be used io order sets of cliques, more formally:

Definition 6: (Clique sequence) Let clique clique,.....clique, be a list of ij cliques of an
interval graph. We say that this enumeration of cliques is a sequence of cliques iff
VkJe {1,..n) k<l —>clique,. < .clique,.

We have seen that register interference graphs for straight line code are interval graphs, because each live
range >an be mapped to an interval on the real line.

We will now show how we can obtain a sequence of cliques (Definition 6) from the interval graph that
denotes liv: “unge conflicts of straight line code. The idea of the construction of a clique sequence consists
of several parts. First, we construct a set S’ of ordered non-overlapping intervals from the start- and
endpoints of the live ranges such that S’ cuvers all intervals of live ranges. We call this an interval cover of
the live ranges. For each interval s€ §’, we determine the set of live ranges that overlap with s, called
cligues(s). This set of live ranges must form a clique, and we show that each such clique is a [¢,.1,] clique,
where s = [¢),1,]. We then show that since the elements ¢f S” are ordered, that if a live range s, starts at an
earlier basic block than a live range s, then clique(s,). < .clique(s,). Hence we have fcand a sequence of
cliques that covers all the cliques in an interval graph. Now more formally:
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Definition 7: (Interval cover) Let ([a;.b}....[a,,b,]}) be an ordered set of intervals, i.e.
Vie (1,..n-1) a;Sa;,;. The ordered set of intervals ([a'1b'),....[@ b’ )} s called an interval
cover of ([a;.b,],....[a,.b,]) iff

1. a’l = al

2.b,=b,

3. ViE [1.-..,’"‘_1] b‘ a"+l-1

4.Vje {1,..,m) 3 ie (1,...n) such that aj’=a‘-v bj'=b‘-

For an example, we turn again to Figure 5-1. The set of live ranges consists of four intervals: (18] =a,
[4,15] = b, [6,9] = ¢, [10,17] = d. The interval cover of those four live ranges consists of intervals
{[1,3][4,5](6,8](9.10](11,15](16,17]). It is easy to see that for each basic block b; that is part of a live
range, f{b,)=i occurs in exactly one of the intervals of the interval cover. Hence, the intervals of an interval
cover are non-overlapping.

Definition 8: (S-overlap clique of an interval; Given a set S of intervals and an interval [i/], the
S-overlap clique of [i,/] is defined as (s€ S | [ijl<s).

The overlap clique of interval [4,5] in Figure 5-1 consists of live ranges {a,b).
Lemma 9: Given the set S of live ranges in a straight line program with interval cover
{{a;By)sla,b,,)), i <j implies that
(S-overlap clique of [a;,b;]) <. (S-overlap clique of [aj,bj])
Proof: By definition of interval cover.

Lemma 10: Given the set § of live ranges in a straight line program, let {[a;,b].....[a,.b,]} be
the interval cover of S and let cligue; be the S-overlap clique of interval [a;,b;]. Then clique; isa

[a;.b;] clique.
Proof: By definition of overlap cliques, the live ranges that are members of the overlap cliques
must contain the interval [a;,b]. Hence, all live ranges in that clique contain this interval, and the

clique is thus a [a;,b ] clique.

Given an interval graph G, we can construct a sequence of cliques by first constructing the interval cover
for the nodes in G. The sequence of overlap cliques of the intervals in the interval cover is a sequence of
cliques, as in Definition 6. It remains to be shown that this sequence of cliques is exhaustive, ie. any
clique in an interval graph is contained in that sequence of cliques.

Theorem 11: Let {[a;,b,].....[a,.b,]) be the interval cover of the nodes of an interval graph G,
and let clique,....,clique, be the corresponding s¢..uence of overlap cliques. For each clique ¢ in
G Jatleastonei € (l,..,n) sich that ¢ is contained in clique;.

Proof: Given the members m;,....m,, of clique c, there must be at least one basic block b; that is
contained in each live range my, k€ (1,..,m}, otherwise ¢ would not be a clique. By construction
of interval covers, there is exactly one interval [a ,bp] € {la;.by)....[a, b,]) such that b; €
[ap.bp]. By Lemma 10, cliquep of interval [ap,bpf is an [ap,bp] clique, hence all live ranges
containing bJ arein cliqucp -q.ed.

Theorem 11 states that the cliques in an interval graph can be ordered to form a sequence of cliques.
Therefore it is easy to determine the size of the largest clique in an interval graph, and thus & colorability
can be determined in polynomial time. We will now show that the node removal technique colors any
interval graph optimally. Since we know the clique s>juence for an interval graph denoting register
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conflicts, it is easy to find the largest clique. If the largest clique is not larger than k, the node removal
technique will produce an optimal coloring in linear time. This is stated in the next theorem and lemma.

Theorem 12: Given an interval graph G in which the size of the largest clique is k, there exist
at least two nodes v; and v, in G that have at most k- neighbors inG.

Proof: Let clique,,....clique, be the clique sequence for G constructed from the interval cover
of G. Let clique; be the first clique in that sequence such that there is a node v that is in clique;
but not in clique;, Hence, for je [2,...,i],c!iquej_1ccliquej. Because the size of the largest
clique is &, cligue; can be at most of size k. Because v can only be a member of the cliques
(clique,,....clique;}, clique; has "accumulated” all clique members of (clique,.....clique; ;}, v can
have at most k-1 neighbors.

Let clique; <. cligue, be the last clique to which a new live range w is added, that is
Vke (j,..n-1} clique,,, cclique,. Hence, clique; is the largest clique in the subsequence

cliquej,clique ., J-iCligue,, and w is in each clique of that subsequence. Hence, w can not have

more than k-/ neighbors.

Lemma 13: Let G be an interva! graph in which the size of the largest clique is k. Then the
node removal technique introduced in [Chaitin 81) will determine & colorability of G.

Proof: By Theorem 12, there must be at least two nodes v and w in G with less than k
neighbors. Hence, both v and w can be removed. Let the graph G’ derived from G by removing
v and w. G’ is an interval graph in which the largest clique has at most k members, and hence
there are at least two more nodes in G’ that are removable. G’ is guaranteed tc get smaller after
each removal step, and eventually G’ is the empty graph - g.e.d.

We have shown that the standard node removal technique will determine a k-coloring for an interval
graph if there exists one. In general, the standard method fails to provide a k-coloring for graphs that are
non-interval graphs. In the course of this chapter we will discuss the shape of register conflict graphs as
they occur for complex programming constructs like loops and conditionals. We will see that register
conflict graphs for loops and conditionals can be arbitrary graphs. Even if a k-coloring exists for such
conflict graphs, the standard node removal technigue raight be unable to produce one. We will see that
there are cases in which structural analysis of register conflict graphs enables us to find k-colorings that are
not detected by the standard node removal technique. We first discuss aspects of register conflict graphs
for loops.

5.2. Straight line loops and circular arc \raphs

We first concentrate on register conflict graphs for loops that consist of loop entry entry, loop exit exit
and a loop body b that consists of straight line code. We will show that the class of register conflict graphs
for such simple loops contains arbitrary circular arc graphs, and that such graphs are therefore NP hard to

color optimally.

Figure 5-2 shows a loop that consists of a sequence of definition and use statements. Each definition or
use statement forms a basic block. The numbers of the basic blocks are shown to the right of each
statement. Thus the loop shown in Figure 5-2 consists of loop entry 1, loop exit 13 and the straight line
loop body (2,3,4,5,6,7,8,9,10,11,12}. The loop contains loop-continuous live ranges for b, c, d, e and f and
of one loop-broken live range for a, namely (12,13,1,2,3,4,5,6). Each loop-continuous live range of the
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loop can be mapped to an interval on the real line, since the loop body consists of straight line code. The
live range for b consists of basic blocks {8,9,10,11} and hence b is mapped to the interval (8,11]. Because
a's live range is a loop-broken live range, it consists of basic blocks that are not contiguous. By definition
of loop-broken live ranges, there is a definition of a whose next use can only be reacied via the loop’s
backarc. Hence, a's live range can not be mapped to a single interval. Instead, a’s live range consists ofa
set of intervals - one interval per contiguous set of basic blocks. In Figure 5-2, the live range for a
({12,13,1,2,3,4,5,6)) is mapped to two intervals, [12,13] and [1,6] respectively. The mapping of the live
ranges in the loop to intervals is shown to the right of the loop construct. Note that there is a dotted line
between the two intecvals that represent the live range a. This means that both intervals represent the same
live range. The dotted portion between the two parts of the live range for a corresponds to the hole in live
range a consisting of {7,8,9,10,11}.
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Figure 5-2: Register conflict graph for loop

A loop is usually executed many times, i.e. if the loop of Figure 5-2 were executed, the definition of a in
block 12 would be followed by blocks 13, and then 1, hence the execution sequence of the basic blocks that
form the live range for a is contiguous. Multiple executions of a loop can be expressed by a circle
consisting of the set of basic blocks that form a straight line loop. This is depicted in Figure 5-3. The basic
blocks that form the same loop as in Figure 5-2 are arranged along a circle. The execution order is
clockwise, hence basic block 13 is followed by basic block 1 etc. Given this representation of a loop, the
live ranges of the loop can be arranged around that circle. This is shown in Figure 54. The live ranges are
segments of the circle formed by the basic blocks of the loop. Hence, the live range for b consists of the
segment between basic blocks 8 and 11, and the live range for a is the (continuous) segment between 12
and 6.
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Figure 5-3: Loop exprassed as a circle of basic blocks
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Figure 5-4: Register conflict graph for loop

Definition 14: (Circular arc graph) A circular arc graph is a graph whose vertices can be
represented as segments of a circle such that two vertices are adjacent if and only if the
corresponding circle segments overlap.

It is easy to see that register conflict graphs for loops can be arbitrary circular arc graphs. Optimal
coloring of an arbitrary circular arc graph is NP complete [Garey, MR. and Johnson, D.S. 79). Since for
an arbitrary circular arc graph a loop can be constructed such that the live ranges of the ioop arranged on a
circle are equal to the vertices of the circular arc graphs, register conflict graphs for arbitrary loops are NP
hard to color.

In the next paragraphs, we discuss situations in which the register conflict graph of a loop L is
"independent” of the backarc in L.
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5.3. Simplifying loops for the purpose of global register allocation

We have seen in the previous section that the presence of a loop-broken live range was necessary to
construct a register conflict graph that is an arbitrary circular arc graph. At least one connected component
of the live range graph of a loop-broken live range must contain the backarc of the loop by definition of
loop-broken. Removing the backarc from a loop causes that connected component to be separated into two
unconnected pieces - the corresponding register conflict graph changes. We now show situations in which
the register conflict graph of a loop L is unaltered when the backarc is removed from L.

5.3.1. Removing the backarc in the absence of loop-broken live ranges

If all live ranges in a loop L are continuous, no live range can have any holes. The register conflict graph
of the program L’ derived from L by removing the backarc is identical to the register conflict graph of L.
Given a loop L with a loop body that consists of complex programming constructs, the backarc of L can
still be ignored, as long as all live ranges are loop-continuous in L. In other words, the backarc of a loop L
can be ignored for the purpose of global register allocation if L does not cause any holes in live ranges.
This is stated in the next Lemma.

Lemma 15: Given a loop L with loop head & and loop exit e that does not contain any
loop-broken live ranges and in which all continuous equivalent live ranges have been changed
into continuous live ranges by adding the appropriate instructions described in Lemma 11 in
Chapter 4, let L' be the flow graph derived from L by removing the edge from node e to node A
(the backarc). Then the register conflict graphs for L and L' are identical.

Proof: The set of live ranges in L’ is equal to the set of live ranges in the original loop L.
Otherwise, there would be a live range /'= {bj,---,b,,] in the derived loop L' but not in the original
loop L. This is only possible if ibl,...,bj] is part of a connected component in a variable v's live
range graph in L that contains L’s backarc, and removing the backarc causes a partition of that
connected component. Let {bl,...,bj_l,b-....,bn] be that connected component in v’s live range
graph in L. By definition of live range graphs, b; must confain a definition of v that is not
preceded by a use of v in bj, and removing L’s bacicarc disconnects {bl""'bj-l} and {bj....,b,,}.
Then, there must be a basic block b, € {b,,...,bj_,} that uses the definition in bj such that b, is
part of L but not part of any conditional or loop nested inside L. By prerequisite all broken live
ranges must contain a hole; if removing L's backarc causes a separation of a broken live range,
the hole of live range (b;,....b; l’bj”"’bn} must be linked to L - a contradiction because by

- . : ' .
prerequisite all live ringes in L are loop continuous.

Because the set of live ranges in both L and L' is identical, the set of edges between the live
ranges must be identical. Hence, the conflict graphs for L and L’ are identical - g.e.d.
The example shown in Figure 5-5 illustrates Lemma 15. The flow graph labeled F1 is a loop that contains
two loop-continuous live ranges, one for a and one for b respectively. The flow graph labeled F2 is derived
from F1 by removing the backarc. The conflict graph for FI is equal to the conflict graph for F2, and is
shown to the right.

As a consequence of Lemmia 15, the register conflict graph for a program that contains no conditionals
and in which all live ranges are continuous is equivalent to the register conflict graph of straight line code.

We have seen how the absence of loop-broken live ranges in a loop L enables us to simplify the flow
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det a; def a;
detb; def b;
use a; use a;
F1 F2 Conflict graph for F1 and F2

Figure 5-5: Register conflict graph for a loop with forward live ranges
graph by removing the backarc of L for the purpose of global register allocation. If there is a loop-broken
live range in a loop L, removing L’s backarc in general results in a different register conflict graph,
depirted in Figure 5-6. The loop depicted to the left has a loop-broken live range for g consisting of basic

use a; use &
def b; def b
detc; | 2 dotc; | 2
use b; use b
datd: g defd ?
use ¢; use ¢

4 4
def a; | defa;
use d used

Figure 5-6: Removing the backarc in the presence of loop-broken live ranges
blocks {1,4). The register conflict graph for that loop is depicted below. Removing the backarc partitions
the live range for a into two separate live ranges, (1) and (4) respectively. Tkis leads to an extra node for
a in the register conflict graph - one per live range. The register conflict graph for the flow graph to the
right is again shown below and differs from the register conflict graph of the original loop. In the next
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section, we discuss restrictions that must be met if the register conflict graph of a loop L is independent of
L’s backarc in the presence of loop-broken live ranges.

5.3.2. Removing the backarc in the presence of loop-broken live ranges

Given a loop L with a loop-broken live range v, v must contain a hole that is entirely contained in L. Note
that by definition of loop broken, the hole can not be entirely contained in any programming construct
nested inside L. We can therefore partition a loop-broken live range into two parts. The first part of the
live range consists of basic blocks in the top part of the loop and contains the loop entry, and the second
part of the live range consists of basic blocks in the bottom part of the loop and contains the loop exit. In
the following, we call those parts TOP and BOT. Before we give a formal definition of the TOP and BOT
parts of a loop-broken live range we demonstrate the concept with a few examples.

Figure 5-7 depicts a saiaple loop with one loop-broken live range for variable a, consisting of {1,2,7.8).
The live range has one hole consisting of {3.4,5,6). The live range is partitioned into the top part

a b
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Figure 5-7: TOP and BOT part of a loop-broken live range
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TOP={12) containing the loop entry and the bottom part BOT = {7,8) containing the loop exit. A more
complex example is shown in Figure 5-8. A complex loop is shown, consisting of loop head B0, loop exit
BS and a loop body that consists of a conditional. In that loop, a is a loop-broken live range; the BOT part
of a consists of {B2,84,B5) and the TOP part of a consists of {B0). Note that the definitions of a in basic
blocks B2 and B4 occur in different branch clauses. Therefore the basic blocks that form the BOT part of
the live range for a do not form straight line code. The BOT part of the live range for a consists of the
connected component of the live range graph for a that contains the loop exit. We are now ready to define
the TOP and BOT part of a loop-broken live range formally.



59

Figure 5-8: TOP and BOT part of a loop-broken live range in a
complex loop

Definition 16: (TOP ard EL [ set of a loop-broken live range) Given a loop-broken live range
for a variable v of a lcop L with loop head h and loop exit e and the live range graph for v,
TOP(v,L; consists of the basic biocks that form the connected component of v’s live range graph
that contains h. BOT(v,L) consists of the basic blocks that form the connected component of the
live range graph that contains e.

In the next paragraphs we will discuss situations that permit to eliminate the basic blocks that form the
TOP part or the BOT part from a loop broken live range without changing the register conflict graph.

Definition 17: (Definition starting the BOT part of a loop-broken live range) Given a loop-
broken live range for a variable x in a loop L, we say that a definition of x in basic block b, starts

BOT(xL)iff b e BOT(xL).

Example: in the loop depicted in Figure 5-8, basic blocks B2 and B4 both contain a definition of a and are
members of the set BOT(a,L). Hence, both definitions start the BOT part of the live range for a.

Given a loop L in which no loop-continuous live range contains a basic block that occurs in BOT(y,L) of a
loop-broken live range , it is easy to see that in the register conflict graph the "bottom part” of y can be
ignored in the loop, illustrated in Figure 5-9. In the loop depicted to the left, loop-broken live range a
consists of TOP part (1,2) and BOT part (6,7}. Neither loop-continuous live range b nor ¢ overlap with a
in basic blocks 7 or 8. The BOT part consisting of basic blocks 7 and 8 can be eliminated by removing a’s
definition in basic block 7 and the subsequent uses in the loop that are reachable on paths that do not
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Figure 5-9: Removing the bottom part of a loop-broken live range
contain the loop’s backarc. This is depicted to the right. For both loops the register conflict graphs are
shown below - they are identical.

Note that the removal of the definition that starts the BOT part of a’s live range does not alter the register
conflict graph even if there is a loop-continuous live range that contains basic blocks of boin the TOP part
and the BOT part of a. This is demonstrated in Figure 5-10. loop-continuous live range b contains basic
blocks from both the TOP part and the BOT part of a. Still the register conflict graph does not change
when the definition of a in basic block 7 is removed.

Given a loop L, removing definitions and uses that form the BOT part of a loop-broken live range [ is
equivalent to eliminating the entire BOT part of I. If we enforce that every live range that overlaps with the
TOP(l,L) of a loop-broken live range / also overlaps with BOT(/,L), then the entire BOT part of / can be
eliminated from / without altering the register conflict graph. These observations are formalized in the next
lemma.

Lemma 18: Given a flow graph F with register conflict graph G that contains a loop L
consisting of basic blocks {b,,...,,} with loop-broken live ranges [}.... 1, let IJ be derived from l;
by removing all basic blocks that are in BOT(lj,L) V je {1,..,m}, and let G’ be derived from G
by exchanging lj’ for lj‘v’je {1,...m). If every live range that contains a basic block of the BOT



61

detb, o ... g E deib; ......a E.

Voo v
use a, R P . use a, 2 ereeee i eeed s

’ \.--_‘jc: 3 ,: - d&l}c b Qe E

usgb; 4 ' - us&‘b; 4

' '
usec;, 5 = 1 - usec;, 5

'

usec 6 S usac: B *

(b) (&)
) ©)

Figure 5-10: loop-continuous live range overlapping with both the BOT and TOP
set of a loop-broken live range

set of a loop-broken live range also zontains at least one basic block of the TOP set of the same
live range, G and G’ are identical.

Proof: The nodes in G consist ¢/ nodes representing loop-broken live ranges and of nodes
representing loop-continuous live ranges. Every loop-continuous live range f that co-exists with
a loop-broken live range / contains ¢ither just basic blocks that occur in members of TOP(1.L) or
both basic blocks that occur in members of TOP(1,L) and basic blocks that occur in members of
BOT(I,L). Therefore the node representing f exists both in G and G’. Faurther, the set of edges
incident to the node for f must be identical in both G and G’ because if f co-exists with { in a basic
block occurring in a member of BOT(I,L), it must also co-exist with / in a basic block occurring
in a member of TOP(l,L) and therefore there must be an edge between fand ! in G'. Since all
other live ranges of L are unaltered, G and G’ are equal - g.e.d.

Note that Lemma 18 also holds if the terms BOT and TOP are exchanged. This is illustrated in Figure
5-11. The live ranges of a loop are depicted to the left; a is a loop-broken live range with TOP part (1,2}
and BOT part (7,8}. Live range b is the only loop-continuous live range adjacent o @, and it shares with
the live range for a only basic blocks that are in the BOT part of a. Removing the uses of a in basic blocks
1 and 2 eliminates the TOP part of a - the register conflict graph for both loops is identical and shown at the
bottom of the figure.

Lemma 19: Given a flow grapl F with register conflict graph G that contains a loop L
consisting of basic blocks (b;,....b,] with loop-broken live ranges I,,...J,, let /" be derived from /;
by removing all basic blocks that are in TOP(lj,L) Vv je (1,..,m}, and let G’ be derived from G
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Figure 5-11: Removing the TOP part of a loop-broken live range

J 3
set of a loop-broken live range also contains at least one basic block of the BOT set of the same

live range, G and G' are identical.

Proof: The nodes in G consist of nodes representing loop-broken live ranges and of nodes
representing loop-continuous live ranges. Every loop-continuous live range f that co-exists with
a loop-broken live range ! contains either just basic blocks that occur in members of BOT(l.L) or
both basic blocks that occur in members of BOT(!.L) and basic blocks that occur in members of
TOP(I,L). Therefore the node representing f exists both in G and G'. Further, the set of edges
incident to the node for f must be identical in both G and G’ because if f co-exists with / in a basic
block occurring in a member of TOP(1,L), it must also co-exist with / in a basic block occurring
in a member of BOT(I,L) and therefore there must be an edge between f and / in G'. Since all
other live ranges of L are unaltered, G and G’ are equal - g.e.d.

by exchanging ! for IJ-Vj € {1,...m}. If every live range that contains a basic block of the TOP

Note that the removal of basic blocks described in Lemmas 18 or 19 tumn loop-broken live ranges into
loop-continuous live ranges. If all loop-broken live ranges can be changed to loop-continuous live ranges,
the backarc of the loop can be removed without changing the register conflict graph of the loop (Lemma
15). By definition, both the TOP and the BOT part of a loop broken live range / in a loop L can contain
basic blocks outside the loop L. Because we enforce that every live range that overlaps with TOP(I,.L) also
overlaps with BOT(/,L), we can remove the loop backarc without changing the register conflict graph of the

entire program.
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All that was discussed in section 5.3.2 can be applied to conditional-broken live ranges: if all live ranges
that overlap with a conditional-broken live range b overlap with both the TOP and the BOT set of b, the
overall register conflict graph does not change when the TOP or the BOT part of b are removed. Hence, the
conditional-broken live range b has been changed into a conditional-continuous live range.

We have seen that in the absence of loop-broken live ranges, the backarc of a loop can be removed
without altering the register conflict graph. In other words, the flow graph that previously contained a loop
has been "straightened out” and now no longer contains that loop. The simplification of loops depends
merely on the absence of loop-broken live ranges. For conditionals, the absence of broken live ranges is
not enough to ensure a register conflict graph that is easy to color optimally. We will see that even if every
live range in a conditional is continuous, register conflict graphs for conditionals can be arbitrary graphs
that are hard to color optimally.

5.4. Register conflict graphs for conditionals

Throughout this section we assume that no loop that is part of a branch clause contains loop-broken live
ranges. Examining register conflict graphs for conditionals is more complex than for loops and straight line
code, because there is a larger variety of live range types, and there are alternative paths through the
branch.

Definition 20: (Path through a conditional branch) A path through a conditional branch with
split node s and join node j is a sequence of basic blocks {b,...b,} such that b,=s, b,=J,
Vie (1,..,n}, b; occurs in a branch clause and Vie {2....n}<b,_; b> is an edge in the flow graph
denoting the branch.

Examples for paths through the conditional branch depicted in Figure 5-12 are the sequences
{BO—B1— B3 — B4 — B8} and {B0O— B5-»B6—B7— B8}, eic.

Each path through a conditional branch consists of straight line code. While the register conflict graph
for one individual path can be colored optimally in isolation, it is in general not possible o combine
optimal colorings for individual paths to an optimal coloring for the entire conditional statement in
polynomial time. An exception are conditional branches in which each live range is BLOCAL, discussed
next.

5.4.1. Conditionals in which all live ranges are BLOCAL

Intuitively, the number of BGLOBAL, LOEN and LOEX live ranges in a conditional is a measure for the
degree of dependency between the register conflict graphs of the individual branch clauses. The reason is
that BGLOBAL, LOEN and LOEX live ranges might be shared between the register conflict graphs of
separate branch clauses. If each live range in a conditional is BLOTAL, the register conflict graphs for
individual branch clauses are completely independent. Therefore, conditionals in which all live ranges are
BLOCAL can be colored optimally by combining individual colorings for each branch clause. This is
formalized in the next theorem.
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Figure 5-12: Paths through a conditional

Theorem 21: Given a register conflict graph G of a conditional branch with split node s and
join node j, and a set of branch clauses c,.....c,, the chromatic number of G is equal to the

maximal chromatic number of G_j€ (1,..,n} if ali live ranges that occur in the conditional
branch are BLOCAL.

Proof: The conflict graph G for the entire conditional can be partitioned into the conflict graph
for the split node G, the conflict graph for the join node Gj, and a conflict graph for each branch
clause GC‘. Both G, and G; must be empty, because the conditional branch contains only

BLOCAL live ranges and no BLOCAL live range can contain s or j. For the same reason, there
can be no edge between the conflict graphs for the individual branch clauses. Hence,
G=U(Gc € (1,..,1}) and the chromatic number of G is equal to the maximal chromatic number

of the G - g.ed.

Note tha; Theorem 21 holds for nested conditionals, even if the inner conditionals do contain live ranges
that are not BLOCAL. As a consequence of Theorem 21, the register conflict graph of a conditional C with
split node S, join node J, and branch clauses c;,....c, in which all live ranges are BLOCAL is equivalent to
the register conflict graph of the flow graph derived from C by "linearizing” the branch clauses. Because
the register conflict graphs for the clauses are completely unrelated, the order in which the branch clauses
are linearized in the flow graph is irrelevant.

5.4.2. Conditionals and BGLOBAL live ranges

The presence of BGLOBAL live ranges in a conditional complicates things, because BGLOBAL live
ranges can be conditional-broken live ranges. A BGLOBAL live range for a variable v is conditional-
broken if there is a re-definition of v in some branch clause. An example of a continuous and a broken
BGLOBAL live range is given in Figure 5-13. The live range for variable a depicted to the left consists of
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Figure 5-13: Continuous and broken BGLCBAL live ranges
basic blocks {B0,B1,82,83 ,B4,85,86,87,88}, that is all basic blocks of the conditional branch. Hence, the
live range is a continuous BGLOBAL live range. The live range for a depicted to the right in figure 5-13
consists of basic blocks {B0,B1,82,83,84,85,87,88). B6 is not part of the live range for a, even though
there exists a path through the branch that contains B6. Hence, it is a broken BGLOBAL live range.

One more reason why BGLOBAL live ranges can make the register conflict graph of a conditional more
complex is because they introduce dependencies between the register conflict graphs of individual branch
clauses. In the next paragraphs we will see how the continuity of BGLOBAL live ranges determines how
hard it is to color register conflict graphs for conditionals that contain BLOCAL and BGLOBAL live ranges.

5.42.1. Continuous BGLOBAL live ranges in conflict graphs for conditionals

A continuous BGLOBAL live range for a variable v consists of all basic blocks that are on 2 path from the
split node to the join node of a branch. Therefore, a continuous BGLOBAL live range overlaps with every
other live range in the conditional. In the register conflict graph for a conditional branch, a node that
represents a continuous BGLOBAL live range is therefore adjacent to all other nodes.

Lemma 22: Given the register conflict graph G of a conditional that contains n continuous
BGLOBAL live ranges, let G’ be the graph derived from G by removing all n nodes that represent
continuous BGLOBAL live ranges. The chromatic number of G is equal to the chromatic number
of G’ +n.

Proof: Let ¢’ be the chromatic number of G’, and let each (c;,....c,,,} be the set of colors used

for the nodes in G'. Each continuous BGLOBAL live range is adjacent to each vertex in G’ and
hence must be colored with a color c € {cy,....c,,}. Since the number of BGLOBAL live ranges is

n, the chromatic number of G is therefore ¢’ +n.



66

As a consequence of Lemima 22 continuous BdLOBAL live ranges can be "ignored” during the coloring
process, because they require each a new color, regardless of the specific coloring found for the other nodes
in the conflict graph.

If all BGLOBAL live ranges are conditional-continuous, the branch clauses of a conditional can be
linearized for the purpose of register allocation if the conditional does not contain any LOEN or LOEX live
ranges. The reason is that all holes in BGLOBAL live ranges are contained inside an inner loop or
conditional and thus inside a branch clause. Note that conditional continuity is a weaker condition than
continuity.

Broken BGLOBAL live ranges can make register conflict graphs for conditionals arbitrarily hard to color:
like loop-broken live ranges, conditional-broken live ranges can cause arbitrary circular arc register conflict
graphs, discussed in the next paragraphs.

5.4.2.2. Conditionals and broken BGLOBAL live ranges

We show now that conditionals that consist of BLOCAL and arbitrary BGLOBAL live ranges produce
register conflict graphs that include arbitrary circular arc graphs, and are therefore NP hard to color.

Before we give a formal theorem, we go through an example that illustrates the point. Figure 5-14 shows
a conditional that contains a broken BGLOBAL live range for a.

The conditional consists of two branch clauses, one consisting of the single block 14, the other consisting
of 2 straight line segment {1,2,3,4,5,6,7,8,9,10,11,12,13}. The conditional contains one broken BGLOBAL
live range for variable a, corsisting of basic blocks (0,1,2,3,4,5,6,12,13,14,15}. The live range for a is
broken, because it does not contain all nodes along the path through the branch clause that starts with block
1.

Because each path through a conditional consists of straight line code, the live ranges of path
(0,12,3,4,5,6,7.8.9,10,11,12,13,15) can be mapped to intervals on the real line like live ranges of straight
line code. This is depicted to the right in Figure 5-14. The live range for a is mapped to two intervals,
[0,6] and [12,15], because a is not live in all basic blocks in the path. Because a’s live range is 3SGLOBAL,
the intervals [0,6] and [12,15] must be colared with the same color, indicated by a dotted arc between them.
Note that this register conflict graph is equivalent to that depicted for a loop in Figure 5-2. Hence, the class
of register conflict graphs for conditionals contains circular arc graphs. In the next theorem we show that
for an arbitrary circular arc graph, there is a conditional branch whose register conflict graph is equal to the
circular arc graph.

Theorem 23: Given an arbitrary circular arc graph C, there exists a conditional branch B that
contains only BLOCAL and broken BGLOBAL live ranges such that the register conflict graph for
Bisequalto C.

Proof: Let {[a,t.},.....[a,.b,]} be the segments of acircle. Suppose the circle is labeled with
the endpoints of the segments {cy,..¢,} such that Vie (1..m}3je {1,....n} such
matc,-=ajorc,-=bjand‘v’ie {1,..m=1}c;<Cppy-
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Figure 5-14: Mapping live ranges of one path to intervals

We construct a conditional with split node ¢, join node c,,,, and two branch clauses. The
newly introduced ¢, and c,,,, ; are chosen such that ¢y < ¢; and ¢, ; > €,

The first branch clause is empty, i.e. there is an edge from the split node to the join node. The
second branch clase consists of the straight line code segment {c,,....c,}.

Each circle segment in ([a,.b]......[a,.b,]} is mapped to a set of intervals on the real line as
foliows:

f([a,-,b,.])={[a;,b,-] ifa,<b
(8, mer)lcob)) ifa;2D;

The live ranges in our constructed branch are the intervals f{la;b]). If a;2b;, the circle
segment [a,,b;] is mapped to two intervi's, and both intervals are part of the same live range.
Because the split node ¢, and the yoin node c,,; are part cf that live range, it must be a
BGLOBAL live range. It is easy to see that the register conflict graph for this branch is equal to
the original circular arc graph - g.e.d.

The proof of 23 is best understood by an example. Figure 5-15 depicts a circular arc graph, with segments
a=[1.4],b=[3,5],c=[6,10],4=[7,8] and e=[9,2). We construct a conditional B such that the register conflict
graph for B is equal to the circular arc graph in Figure 5-15.

The circle is labeled {1,2,34,5,6,7.8.9,10},ie. ¢;=1andc, = 10. We choose cy=0andc,,,=11. The
results of the function f defined above are as follows:



Figure 5-15: An arbitrary circular arc graph

(a) A14)=[14]

(b) ABSD=133]

(c) f((6,10))=(6,10]

(d) A7.8D=[7.8]

(e) A09.21)=([9,11],{0.2])

We construct a conditional that consists of branch split node cy=0, join node ¢, ;=11 and one empty
branch clause, and a straight line branch clause consisting of basic blocks {1,2,3,4,5,6,7,8,9,10). The live
range for e is BGLOBAL, hence e is live at the split node and at the join node. All other live ranges are
BLOCAL. Figure 5-16 shows the conditional whose register conflict graph is the circular arc graph
depicted in Figure 5-15.

Note that e is a broken BGLOBAL live range - by Lemma 22 and Theorem 21 register conflict graphs of
conditionals that contain just BLOCAL live ranges and continuous BGLOBAL live ranges can be colored
optimally in polynomial time and hence can not be arbitrary circular arc graphs.

In the presence of LOEN and LOEX live ranges, register conflict graphs for conditionals can become very
complicated. We will see that even if all live ranges in a conditional are continuous, the presence of LOEN
and LOEX live ranges can cause an arbitrary register conflict graph. There is no easy solution to why
LOEN and LOEX live ranges cause arbitrary graphs - we therefore restrict ourselves to discussing situations
in which LOEN and LOEX live ranges do not cause arbitrary register conflict graphs. For the remainder of
this chapter, we assume that all live ranges in a conditionai are continuous, so that we can concentrate on
the influence of LOEN and LOEX live ranges.



Figure 5-16: Branch constructed from an arbitrary circular arc graph

5.4.3. Conditionals and " OEN/L OEX live ranges

By definition of LOEN live ranecs, all LOEN live ranges of a conditional centain the split node and
therefore co-exist d aring program ¢xecution. At the same time, all LOEX live ranges contain the join node.
Hence, =i LOF) live = ves anust reside in distinct registers and all LOEX live ranges must reside in
Ayt L soQIStErs.

It is easy 10 see that if all LOEN live ranges overlap with all LOEX live ranges, the corresponding nodes
must form a clique in the register conflict graph. By definition, LOEN and LOEX live ranges must all
overlap with BGLOBAL live ranges. If in addition a conditional C contains no BL.OCAL live ranges, each
LOEN and LOEX live range can be changed into a continuous BGLOBAL live range without changing the
register conflict graph. This is done as follows: all LOEN and LOEX live ranges are "padded” until they
contain all basic blocks that form C. Thus, the register conflict graphs for the individual branch clauses
share all nodes - the register conflict graph of an arbitrary branch clause is equal to the register conflict
graph of the entire conditional. Therefore, all but one branch clause can be eliminated from the flow graph
for the purpose of register allocation - the conditional can be "collapsed” into one arbitrary branch clause.

If the LOEN and LOEX live ranges of a conditional do not form a clique in the register conflict graph,
colors used for a LOEN live range a can be re-used for a LOEX live range b as long as there is no basic
block in which a and b co-exist.
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Definition 24: (Overlap set of a LOEN node) Given a conditional C, the overlap set of LOEN
live range a in C is the set of LOEX live ranges x;.%,.....x, in C such that there is at least one basic

block in which a and x;, i€ {1,...,n} co-exist

All LOEX live ranges in a live range a’s overlap set must be colored witk: colors that differ from a. At the
same time LOEN colors can be be re-used for LOEX live ranges not in the overlap set.

Figure 5-17 shows the register conflict graph of a conditional that consists only of LOEN and LOEX live
ranges. In that example, a,b,c and d are LOEN live ranges. The sei of LOEX live ranges consists of v,w.x,y

Figure 5-17: Register conflict graph consisting of LOEN/LOEX live ranges

and z. Live range a overlaps with LOEX live ranges w.x and z; b overlaps with y and v etc. By definition of
LOEN, the LOEN live ranges form a clique; the same is true for the LOEX live ranges. If a maximal
number of colors used to color the LOEN clique can be rz-used to color the LOEX clique, the coloring for
that conflict graph is optimal. The problem of re-using the maximal number of colors in the LOEX clique
can be mapped to the maximal matching problem for a bipartite graph.

Definition 25: (Matching in a graph) A matching in a graph G is an independent subset of its
edges, such that no two of the edges are adjacent. A maximal maiching of G is the largest
possible independent set of edges.

We construct a bipartite graph from the set of LOEN live ranges and LOEX live ranges as follows:
1. each live range corresponds to one unique node,

2. there is an edge between a LOEN live range a and each LOEX live range that is not in a’s
overlap set.

Figure 5-18 depicts the bipartite graph derived from the register conflict graph shown in Figure 5-17.

LOEN live range a overlaps with LOEX live ranges w,x,z. Therefore the LOEX nodes adjacent to g are
v,y. Itis easily seen that the graph is bipartite. A maximal matching of the LOEN nodes with LOEX live
ranges can be used to re-use colors of LOEN life ranges for LOEX live ranges safely. Finding an optimal
matching for the nodes of a bipartite graph can be done in polynomial time. An algorithm for optimal
bipartite matching can be found in [Smith §7].

The maximal matching of the derived bipartite graph is used to derive a coloring for the conflict graph as
follows: An arbitrary color is chosen for each LOEN live range and for each unmatched LOEX live range.
Matched nodes receive the color of their "matching”-partner. The detailed algorithm is given in Figure
5-19.
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00‘00

LOEN LOEX

Figure 5-18: Bipartite graph consisting of LOEN and LOEX live ranges

- —-- - -

Input: The LOEN and LOEX and BGLOBAL liv: ranges of a non nested branch
Owtput: An optimal coloring for those live ranges
Method:

for all LOEN live rangest do

deternmine the overlap set;

color each | with a distinct color;
od

G .= the empty graph;

for all LOEN live rangest do
for all LOEX liverangesx € overlap(l) do
add x and | G’s vertices if not yet in it;
add edge x> to G's edge set;
od
od

bipartite matching(G);
for all LOEX liverowgesx do
i x has been matched

then color X with the matched nodes color
else color x with a new color;

- —-—-—— - - - -——— -

Figure 5-19: Coloring a register conflict graph for a conditional that contains
only LOEN and LOEX live ranges

The restriction on the live ranges in a conditional that allows an opimal coloring can be relaxed by
allowing arbitrary BGLOBAL live ranges in addition to LOEN and LOEX live ranges. The idea behind this
relaxation is that BGLOBAL live ranges by definition contain both the split node and the join node,
regardless of whether they are continuous or broken. Hence, every BGLOBAL live range co-exists with
every LOEN live range in the split node, and with every LOEX live range in the join node. Therefore, the
registers assigned to BGLOBAL live ranges in a conditional must differ from the registers assigned to
LOEN and LOEX live ranges. This is all summarized in the next theorem.
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Theorem 26: Given a conditional that contains only LOEN, LOEX and BGLOBAL live ranges
and the corresponding register conflict graph G, an optimal coloring for G can be found in
polynomial time.

Proof: A coloring for the LOEN and LOEX live ranges can be found by algorithm 5-19. After
application of algorithm 5-19, a new color is chosen for every BGLOBAL live range, and the
overall coloring is optimal - g.e.d.

Note that the bipartite matching algorithm can no longer be used to find an optimal coloring in ihe
presence of BLOCAL live ranges because in each branch clause BLOCALS can be adjacent to an arbitrary
set of LOEN and LOEX live ranges. It is not possible to incorporate dependencies of BLOCALS into the
bipartite graph. We will see in the next section that under certain restrictions for LOEN and LOEX live
ranges it is possible to color register conflict graphs for conditional branches optimally in polynomial time,
even if a conditional contains a combination of BLOCAL and LOEN and LOEX live ranges.

5.4.4. Mixing LOEN and LOEX live ranges with BLOCAL live ranges

We have seen that register conflict graphs for straight line code are interval graphs. Interval graphs are
contained in the class of chordal graphs.

Definition 27: (Chord) Given a cycle i a graph {c;,....c,}, a chord in the cycle is an edge
between two non-consecutive members of the cycle.

An example of a cycle and chords in the cycle is shown in Figure 5-20. The cycle consists of nodes
(1,2,3,4,5,6,7,8); the chords are the dashed edges <2,7> and <I,5>.

Figure 5-20: Chords in a cycle

Chordal graphs are graphs that are "triangularizable”, more formally:

Definition 28: (Chordal graph) A graph G is chordal iff every cycle in G that consists of more
than 3 nodes has a chord.

Graphs GI and G2 depicted in Figure 5-21 are chordal because GI and G2 contain no chordless cycle
larger than 4. Note that graph G1 consists of a collection of “triangles”. Graph G3 is derived from GI by
adding an edge between nodes 7 and 2, and is no longer chordal because cycles (1,2,7,8} and (2,3,4,5,6,7)
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Figure 5-21: Examples of churdal and nonchordal graphs

are chordless. A nice property of chordal graphs is they can be colored optimally in polynomial time
[Gavril 72].

We will show that under certain restrictions for LOEN, BGLOBAL and LOEX live ranges, register conflict
graphs for conditionals are chordai. Before we formalize the restrictions in a theorem, we give some
intuitive reasons for chordality of register conflict graphs.

Given a conditional branch with n branch clauses, let G, be the register conilict graph for the i-th branch
clause. It is easy to see that if the register conflict graphs of two distinct branch clauses have nodes in
common, those nodes must be BGLOBAL, LOEN or LOEX live ranges. This is illustrated in Figure 5-22.

We see a conditional construct consisting of split and join nc-de and two branch clauses. The first branch
clause consists of basic blocks 1,2 and 3, the second branch clause consists of basic blocks 4,5,6 and 7.
The branch contains live ranges for 6 variables. Since each variable has one unique live range, we name
the live ranges after the variables. Live range n is a LOEN live range, and live range i is LOEX. The left
branch clause contains BLOCAL live range d, the right branch clause contains BLOCAL live ranges a,b and
c.

Figure 5-23 shows the register conflict graphs for the first oranch clause, labeled GI, the second branch
clause, labeled G2 and the register conflict graph of the entire conditional branch.



detb; | °
use a,
defd; | 2
use n;
defc; | ©
use b;
3 def x;

use d; l

use c:

& or

use x;

Figure 5-22: Conditional branch

o

Figure 5-23: Nonchordal register conflict graphs

Note that live ranges x and n occur in both GI and G2, but that in the first branch clause x and n co-exist:
this is not the case in the second branch clause. Hence, in G there is an edge between n and x, but not in
G2. The register conflict graph of the entire branch construct contains an edge between n and x, and the
graph contains a chordless cycle consisting of nodes {a,b,c,n.x}.
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Figure 5-24 shows the same conditional branch construct as in Figure 5-22, only now the live ranges n
and x overlap in both the firsi branch clause and the second branch clause.

defb; | 5
use a;
dotd; |2
use n
defc; 6
use b;
3 def x;

usen,
use c;

Figure 5-24: Conditional branch construct with chordal register conflict graph

This changes both the register conflict graph for the second branch clause, labeled G2 and the register
conflict graph for the eatire conditional branch as shown in Figure 5-25.

Note that the register conflict graph for the entire branch construct contains no longer a chordless cycle
that is larger than 3. In other words, the register conflict graph is chcidal. We formalize wae observations
about chordality of register conflict graphs for conditionals in a sequence of lemmas.

We now analyze types of live ranges that can be part of chordless cycles larger than 4. First, we show
that there must be at least one pair of non-overlapping LOEN/LC "X live ranges if a chordless cycle of size
larger than 4 consists only of BGLOBAL nodes.

Lemma 29: Given a register conflict graph G of a non-nested conditional that contains no
broken live ranges, let {c,,....c,} be a chordless cycle in G of 4 or more nodes, such that ; is

either a BGLOBAL, a LOEN or a LOEX live range for i€ {1,...n}. Then there must be at least
one LOEN live range c; and one LOEX live range ¢ such that ¢ is not in ¢;’s overlap set.

Proof: Suppose that the overlap set of every LOEN live range € {c,....c,} includes every
LOEX live range € {cy,...c,}. Then there is an edge between every LOEN live range
€ {¢},...C,) and every LOEX live range in € {€yseiC,y). Further, the LOEN live ranges form a
clique as do the LOEX live ranges. By definition, all BGLOBAL live ranges overlap with every
member in the cycle. Hence, the nodes in {cy,...,c,} form a clique and therefore cannot form a
chordless cycle that is larger than 3. Hence, there must be at least one LOEN live range c; and
one LOEX life range ¢; such that ¢; is notin ¢;’s overlap set - g.e.d.
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Figure 5-25: Chordal register conflict graphs

A chordless cycle of size 4 or larger can not consist of live ranges that are BLOCAL, stated in the next
lemma.

Lemma 30: Given a register conflict graph G of a non-nested conditional that contains no
broken live ranges, let {c,,....c,} be a chordless cycle in G of 4 or more nodes. Then there must
be at least two nodes in the cycle that are not BLOCAL in every branch.

Proof: Suppose that all nodes in (c;,....c,} are BLOCAL. By definition, BLOCAL live ranges
contain neither a split node nor a join node. Consequently, any BLOCAL live ranges that are
connected must be part of straight line code that contains no split or join nodes. Register conflict

graphs of straight line code are interval graphs and hence can not contain a chordless cycle that is
larger than 3.

There must be at least two nodes in the cycle that ~re not BLOCAL, for suppose there is only
one node ¢, in {c,,...,.c,} that is not BLOCAL. Because there exist no edges between BLOCAL
nodes i lifferent branch clauses, there must be a chordless cycle of size 4 or larger that consists
of ¢, and nodes that are BLOCAL and all part of the same branch clause. This is not possible,
because the subgraph formed by ¢ and BLOCAL live ranges of one branch clause is an interval
graph and can not contain a chordless cycle larger than 3 - g.e.d.

Via Lemmas 29 and 30 we can now show that every chordless cycle in a register conflict graph of a
non-nested conditional branch must contain at least one pair LOEN/LOEX live ranges x and y for which
there is a branch clause in which x and y de not co-exist.

Theorem 31: Given a register conflict graph G of a non-nested conditional branch that contains
no broken BGLOBAL live ranges, let {c;,....c,} be a chordless cycle in G of 4 or more nodes that
contains BLOCAL live ranges. Then there must be at least one LOEN live range x and one LOEX
live range y such that there is at least one branch clause in which x and y do not co-exist.

Prosf: By Lemma 30 there must be at least two members of (c;,....c,} that are not BLOCAL.
Let x and y be two arbitrary members of the cycle that are not BLOCAL.

If x and y are both continuous BGLOBAL live ranges, they co-exist in every branch clause by
definition. Hence, x and y must be either LOEN or LOEX.
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We will now assume that all LOEN and LOEX live range overlap in every branch clause. Then
there can be at most two LOEN or LOEX live ranges in the cycle, because by our assumption
more than two LOEN or LOEX live ranges must contribute a chord to the cycle. Hence the cycle
contains (x,y,¢;,...€,_,} and all ¢;€ {c,,....c,_,} must be BLOCAL live ranges. This is depicted
in Figure 5-26. Live ranges x and y are non-BLOCAL, and live ranges I.....6 are BLOCAL.

(3)
G—&

Figure 5-26: Chordless cycle with local live ranges 1,2,3,4,5,6

Because there are no edges between BLOCAL live ranges of distinct branch clauses, all the ¢; in
the cycle must be part of the same branch clause. By our assumption, » and y overlap in every
branch clause. Because no ¢;€ {Cy,...C,_p) contains a split or join node, all ¢;€ {c;,...c,} must
occur in straight line code. But then the cycle can not be larger than 3.

©

It remains to be shown that x and y cannot be both LOEN or both LOEX. We will show that for
the LOEN case - the LOEX case is similar.

Assume the cycle looks as above (depicted in Figure 5-26), and that both x and y are LOEN live
ranges. We have shown that all ¢; must be in the same branch clause and that x and y can not
overlap in the branch clause in which live ranges c;.....c, , occur. By definition, if x and y do not
overlap in the branch clause containing c;.....C, . either x or y can not be adjacent to any of
Cije (1,.n-2)- BuUt there can only be a cycle if both x and y are adjacent to members of
{€1ssC,2) 1n the same branch clause - a contradiction. Hence, x and y can not both be LOEN.
By the same arguments, x and y can not both be LOEX. As a result, x and y must be a
LOEN[LOEX pair - q.e.d.

Theorem 31 states that if there exists a chordless cycle that is larger than 3 in a register conflict graph for
a non-nested conditional branch that contains no broken BGLOBAL live ranges, there must be at least one
pair of LOEN and LOEX live ranges x and y such that there is a branch clause in which x and y do not
co-exist. It is easy to check if LOEN and LOEX live ranges co-exist in every branch clause, and if they all
do, we can show that the register conflict graphs of such branches are chordal, stated in the following
Lemma:

Lemma 32: Let G denote the register conflict graph of a non-nested conditional that contains
no broken live ranges and in which all LOEN variables and all LOEX variables co-exist in every
branch clause. Then G is a chordal graph and an optimal coloring for G can be found in
polynomial time.

Proof: Since all LOEN and LOEX live ranges co-exist in every branch clause, the register
conflict graph can not contain a chordless cycle larger than 3. Therefore, G is a chordal graph.
See [Gavril 72] for an algorithm that produces an optimal coloring for chordal graphs g.e.d.
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5.5. Chapter summary

We have started with the fact that register conflict graphs for straight line code are interval graphs, for
which an optimal coloring can be found in polynomial time. We showed how the cliques in an interval
graph can be ordered to form a ".<.” sequence of cliques, and used the construction to prove that the
standard node removal technique can color interval graphs optimally. The significance of finding the
sequence of cliques in an interval graph is that each one of those cliques can be used as a separator clique.

We examined the register conflict graphs for loops and conditionals. Register conflict graphs for loops
with arbitrary live ranges contain the class of circular arc graphs, and are thus NP hard to color optimally.
If a loop consists only of continuous backarc live ranges, the register conflict graph of the loop is
equivalent to the register conflict graph to the flow graph derived from the loop by removing the backarc
live range.

Register conflict graphs for conditionals are more complex. s have seen that optimal colorings can be

found for conflict graphs of conditionals with the following properties:
1. The live ranges in the conditional are either continuous BGLOBAL live ranges or BLOCAL
live ranges w.r.t. each branch that contains them.

2. The conditional contains no BLOCAL live ranges.

3. Every pair of LOEN live range x and LOEX live range y co-exist in every branch clause and
there are no broken BGLOBAL live ranges.

The motivation for examining situations in which loops can be "linearized" by removing the loop backarc
and conditionals can be "linearized" or collapsed by ignoring or linearizing individual branch clauses is that
these flow graph simplifications turn a complex flow graph into a "straightened out” flow graph that
contains more straight line code sequences. Hence, more sequences more separator cliques can be found in
the register conflict graphs. Each of those simplifications can only be carried out when the live ranges of
the loop/conditional are "well behaved" and form a nice register conflict graph.

When these simplifications can not be carried out, it is possible that the register conflict graph is not an
interval graph. In the next chapter we will discuss a technique called "node merging” with which a
non-interval register conflict graph can be changed into an interval register conflict graph in some cases.
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Chapter 6

Transformations on register conflict graphs

In the previous chapter we described situations that allow to simplify the flow graph for the purpose of
register allocation without altering the register conflict graph. The flow graph can be simplified by
removing backarcs from loops and sequentializing or collapsing conditionals. The purpose of
transformations on flow graphs is to detect portions of the register conflict graphs that are interval graphs or
chordal graphs. If those portions are known, it is easy to partition program flow graphs inio clique
connected components - the basis for parallelizing global register allocation.

In this chapter, we deal with loops and conditionals that can not be simplified to equivalent straight line
code. For such programs, register conflict graphs are usually not interval graphs. Our approach to register
allocation is based on mapping non-interval register conflict graphs to interval register conflict graphs.
Interval register conflict graphs are desirable for two reasons. First, they can be colored optimally in
polynomial time. Second, clique separators are easy to locate in interval graphs. Clique separated portions
of a register conflict graph can be colored individually and combined to an overall coloring by renaming
only.

In our model, there are two sources of non-interval register conflict graphs: broken live ranges and
unrestricted combinations of LOEN and LOEX live ranges in conditionals. If holes in live ranges can be
"stuffed" with live ranges that "fit" into the holes, a broken live range can be transformed into a continuous
one. We demonstrate situations in which broken live ranges can be transformed into continuous live ranges
by a technique we call node merging. Node merging can also be applied to the nodes of the register
conflict graphs of different branch clauses of the same conditional: given a conditional C with branch
clauses ¢ and ¢’, it sometimes is possible to encode the register conflict graph of branch clause c into the
register conflict graph of a different branch clause ¢’. A coloring of the register conflict graph for ¢’ can be
mapped directly onto the register conflict graph for ¢ - hence, during register aliocation it suffices to color
only the graph ifor ¢’. If the conflict graphs for all branch clauses can be "reduced” to that of one single
branch clause, the resulting conflict graph is much simpler and in some cases can even be colored optimally
in polynomial time.

We first show how node merging can be applied to eliminate holes from broken live ranges. The second
part of this chapter is devoted to the applicaticn of node merging to simplify register conflict graphs of
conditionals.
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6.1. The effect of holes in broken live ranges

Eliminating holes from broken live ranges means eliminating one source for non-interval register conflict
graphs. The easiest way to ehminate a hole 4 from a broken live range v is to add all the blocks that form A
to v. There are cases in which this increases the chromatic number of the register conflict graph
unnecessarily, an example of which is given in Figure 6-1. The left side of the figure shows a broken and a

1 comoeeramcnmes 1 commedemcnnorner
P I G 2] b,
d d
3 3
4 4
5 5
6 6
) S yv— 7 cemeofromsemenma
I - P
® ©
Original conflict graph Conflict graph after padding

Figure 6-1: Padding a hole of a broken live range

continuous live range. Live range a consists of basic blocks {1,2,7,8) and contains a hole consisting of
{3,4,5,6), live range d consists of basic blocks {3,4,5,6). The register conflict graph is shown to the right -
there is no edge between the nodes for a and d and the conflict graph is 1-colorable. If the live range ofais
padded to contain the basic blocks that form the hole {3,4,5,6}, the node for d can no longer be colored
with the same color as the node for a - padding a causes an edge between nodes a and d, depicted on the
right side of Figure 6-1 - the resulting conflict graph is no longer 1-colorable. The chromatic number of the
register conflict graph increases because d is a live range that consists only of basic blocks that "fit’ into the
hole of live range a. Hence, padding a with the basic blocks that form the hole excludes the color used for
a from the colors that can be used for d. Had there been no live range that fits into a’s hole, padding a with
the blocks that form the hole would have not altered the register conflict graph. This is formalized in the
next lemma,

Lemma 1: Given a flow graph with basic blocks B, live ranges L and register conflict graph G,
let ! be a broken live range with hole . If there is no live range range v such that v consists of a
subset of the basic blocks that form 4, then adding A to I does not change G.

Proof: Let G' be derived from G by adding h to . We prove by contradiction that G and G’
must be equal, so we assume that G and G’ differ. Because the set of nodes in G is equal to the
set of nodes in G’ except for /, the set of edges not incident or ! must be equal as well. Clearly,
the number of edges incident on ! in G must be less than or equal than the number of edges
incident on I’ =Uh because ! consists of a subset of /. Suppose there is a node v such that there
is an edge between v and I’ in G’ but no edge between v and ! in G. Then, v must contain basic
blocks that occur in h. By prerequisite, v must then also contain basic blocks that occur in /, s
there must be an edge between v and ! in G - a contradictioni.

As a consequence of Lemma 1, only a hole h for which there exists live ranges that "fits” into 4 can canse a
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non-interval register conflict graph. An example of a such nor-interval register conflict graph is given in
Figure 6-2. The live range for g is broken and contains hole {3,4,5,6]. The live range for ¢ consists of

1 [ b

2

3

RSN 0
T &
1

Figure 6-2: A broken live range and a non-interval register conflict graph

basic blocks (3,4,5,6), and hence is a fit for the hole of the live range for a. The register conflict graph is
shown to the right - it consists of a chordless cycle of size 4 and is therefore not an interval graph.

We will show that certain types of live ranges that fit into a hole of a broken live range can be used for
padding that hole without penalty with regard 10 the chromatic number of the conflict graph. The definition
of such live ranges is given below.

Definition 2: (Fit for a hole) Given a flow graph consisting of basic blocks B with register
conflict graph G, let I be a broken live range such that & is a hole of /. We say that a live range p
is a fit for A iff p is continuous and pN(B - h)=D.

Figure 6-3 shows broken live range a with hole A= {3.4,5,6} and a few examples of live ranges, some of
which fit into h. The live range b is a fit for h, because b is continuous and consists of basic blocks that are

1

2

3

7

&

Figure 6-3: Fits fora hole

all contained in 4. Because c is not a continuous live range, it is no fit for &, even though the basic blocks
that form ¢, {3,5,6) are a subset of the basic blocks that form the hole. Because d contains basic blocks
outside the hole, d is not a fit for 4.
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6.2. Eliminating holes via node merging

Node merging is a technique to enforce that two non-adjacent nodes in the register conflict graph are
colored identically before an actual coloring is produced. Given a conflict graph G with two nodes v; and
v,, v, and v, are merged by climinating node v from G and adding all edges incident on v, to the edges
incident on v,. Under certain restrictions we can ensure that node merging changes a non-interval register
conflict graph into an interval graph.

Node merging can be used to eliminate holes from broken live ranges. Given a broken live range : with a
hole 4 and another live range p that is a fit for the hole 4, there can not be an edge between / and p. Hence,
it is possible to color / and p with identical colors. Chosing the same color for two separate live ranges can
be viewed as "melting"” the two livs raztzes into one - the live range ! is changed into /' by adding the basic
blocks contained in p. If padding ! with p results in continuity of I’, there is one less broken live range to
worry about. We will discuss cases in which there are several fits for the same hole or in which several
merge operations are necessary 0 eliminate one hole. We use node merging only if we can ensure that the
chromatic pumber of G' derived from the original conflict graph G by live range merging is not larger than
the chromatic number of G. Note that « coloring for the conflict graph derived by node merging can be
dirsctly mapped, to the original conflict graph. In the next paragraphs we introduce restrictions that must be
met by live ranges that fit into a hole such that the chromatic number of the conflict graph derived by node
merging is equal to the chromatic number of the original conflict graph.

62.1. Perfect matches for holes

Figure 6-4 gives ar example of a conflict graph that contains a broken live range a and two fits for its
hole, ¢ and d respectively. The original non-interval register conflict graph is shown top right. The register
conflict graph uerived by merging a and d is depicted bottom left. It is an interval graph, and contains two
3cliques. Henc:, 3 colors aie needed to color the register conflict graph when d is merged with a.
Merging a with ¢ yields the interval graph depic ted bottom right. It is easy to see that 2 colors are
sufficient s color that graph. This example illus' rates that deciding which live range to use for merging
with a broker !ive range caii ¥ nontrivial.

In some cases the choice of the candidate for  ging with a broken live range is irrelevant, depicted in
Figure 6-5. The Uroken live range a contains a nole consisting of {3,4,5,6}. Both c and d can be used to
pad the hole. The original regisier conslict graph is shown wop right, merging a with ¢ and merging a with
d yields the two register onflict graphs depicted at the bottom of the figure - they are identical. Note also
that all three conflict graphs are 3-colorsble, in other words, no merge operation causes an increase of the
chromatic number of the oovived giopohs. " ~ason why the choice of ¢ or d for merging with a is
irrelevant is that the live ranges that - 1 4 =ith ¢ and 4 form a clique in the register conflict graph,
consisting of nodes {c,d.b,e}. We call nides like ¢ and d perfect maiches for the hole in a.

A live range that fits into a hole 4 may itself contain a hole hg,. Therefore, live ranges that fit into Ay fit
into k as well, In that situation, the sequence in which 4 and hﬁ, are padded can determine whether or not A
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Figure 6-4: Different conflict graphs for different merge operations

or hg, can be eliminated via node merging. Our goal is to keep node merging to eliminate holes simple, so
we avoid this problem by requiring continuity of a perfect match for a hole. To ensure that interactions of
perfect matches with other live ranges remain "local” to the hole, we enforce that every live range that
overlaps with a perfect match but not with the broken live range must also be a fit for the hole. To avoid
backtracking when a fit for a hole is chosen for node merging, we require that the adjacency lists of two
overlapping fits for a hole are identical. After this motivation, we can define perfect matches formally. In
the following, let adj(m) denote the sei of live ranges that overlap with a live range m.

Definition 3: (Perfect match for a hole) Given a register conflict graph G, we say that a live
range m is a perfect match for a hole 4 in a broken live range ! iff

l.misafitforh

2. if x€ adj(m)~ {adj()adj(m)) then x is a fit for A

3. if x€ adj(m) and x is a fit for h then (adj(x)-m) = (adj(m)—x}
Examples of perfect matches are given in Figure 66. Live range a is kioi 2/ ax! contains a iislo
h=(3.4,5,6,7}. Because b,c and d form a clique, and both b and ¢ are {us .or 2 ool & and ¢ arc (evfec
matches for 4 - for the same reason, e is a perfect ma:ch for .

Perfect matches have a number of desirable properties tha' &!'ox to 2iL. iz hobs from P oken sive
ranges without paying the penalty of needing additicnal colors to < x the drzived condlicd g {e first
property of a perfect match p for a hole A of a broken live: .wee f i at p ad [ can be d while
maintaining the chromatic number of the origina conflict graph *» “c desive” ¢ ooflict ziaph.

Lemma 4: Given a register conflict graph G with broken five range | with hole » 22« a live
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Figure 6-6: Perfect matches for a hole

range p such that p is a perfect maich for A, let G’ be the conflict graph derived from G by
merging the nodes / and p. Then, the chromatic number of G’ is equal to the chromatic number
of G.

Proof: We show that the chromatic number of the two graphs are the same because a coloring
for G’ can be mapped to G and a coloring of G can be used to produce a valid coloring of G’
without adding any colors.

Case 1: mapping a coloring of G’ onto G: Let pul denote the node derived by merging live
ranges p and /. A valid coloring for G’ can be expanded into a valid coloring for G by using the
color used for pul in G’ for both p and / in G and by copying the colors for all other nodes in G’
to the corresponding nodes in G.
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Case 2: mapping a coloring for G onto G': Let c, denote the color used for a live range x in a
coloring of G. To map a coloring of G to G', we first change the coloring of G such that p is
colored with ¢, If there is a live range x€ {adj(p)nadj(/)}, then c ¢ {c,,cp], so aliering the color
for p to c; has no influence on x. Given a live range x& {adj(p)- {adj(p)nadj(])}} such that
c,=¢p, coloring p with ¢, is not possible without changing the color for x. By prerequisite
{adj(x)-p)=(adj(p)—x) . Therefore, y#pe adj(x)—>cy¢c . Hence, x can be colored with Cp
Therefore, the color for p can be changed to ¢, and the coloring of the nodes in adj(p) can be
adjusted by exchanging ¢; and ¢p - in other words, the number of colors is not increased by
coloring p and / identically. Once ! and p are colored identically, merging nodes / and p can be
performed without adjusting coloring - therefore, the chromatic numbers of G and G’ must be
equal.

Given a purfect match p for a hole h of a broken live range ! and a live range x that is a fit for 4 such that
x€ adj(p), 1t is easy to see that x is also a perfect match for 4 and that it is imrelevant whether x or p is
chosen for merging with { - in the example shown in Figure 6-5, the derived register conflict graphs for
merging ¢ with / and d with ! are equivalent.

The next property of perfect matches is that the order in which perfect matches of the same hole  are
merged is irrelevant - the remaining perfect maiches are perfect matches of the holes of the newly derived
merged live range. Before we formalize this in the next lemma, we go through an example. Figure 6-7
shows a broken live range a with perfect matches b, ¢ and e. Because the adjacency set of b and ¢ are

a+b
1 1
2 2
b ¢ [
3 3
4 4
5 5
6 [
7 7
8 8

Figure 6-7: Sequences of perfect matches

equal, it is irrelevant which of the two is chosen to be merged with a, so we chose b. The picture to the
right shows the same set of live ranges, except a and b have been merged into one live range now. Because
¢ was adjacent to b before, ¢ is now adjacent to the newly derived live range aub and can no longer be a
perfect match. The original hole of live range a has now shrunk to the basic blocks {6,7}, and e is still a
perfect match for the newly derived hole.

Lemma 5: Given a flow graph with basic blocks B and register conflict graph G with broken
live range ! with hole  and live ranges p and p’ that are both perfect matches for k, let /Up be the
live range derived from merging ! and p. If p'n(lup)=0, then p’ is a perfect match for the
remaining part of the hole " k of the live range derived by merging / and p.

Proof: To show that p’ is a perfect match for JUp, we first must show that p’ is a fit for a hole
in live range IUp. Because p’ is a perfect match for h, p’nB—h=0. Because p'n(lup)=0, lup
must have a hole 4’ such that p’ is a fit for &’. A live range x€ (adj(p)— adj(lup)) must be a fit
for i’ as well, because by prerequisite x is continuous.
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It remains to be shown that {adj(p")—x) = {adj(x)-p')Vx € adj(p")such thatxfits h’. A live
range xe {adj(p’)—adj(})) can not be adjacent to p, because all fits of A adjacent to p share the
same adjacency list, but p' is not adjacent to p by prerequisite. Therefore, either
x € adj(lyorx € adj(p’). Thus merging p and ! does not affect the fits of A’ that are adjacent to P,
and by prerequisite {adj(p)—x) = {adj(x)-p’). Hence, p’ isa perfect match fori'.

Lemma 5 states that the order in which which perfect matches are merged wiln a broken live range does
not matter at all - the graph derived by node merging with perfect matches is identical for all choices of
perfect matches. In other words, no search is necessary to choose a live range for node merging; node
merging is kept simple and inexpensive. Once all perfect matches are used up and the hole is filled, the
derived conflict graph is still equivalent to the original conflict graph.

6.2.2. Imperfect matches and breaks

The restrictions that must be met by perfect matches were chosen such that the choice which perfect
match was merged with a broken live range did not matter at all. In other words, merging of a broken live
range with perfect maiches for its holes can be done blindly. If we are willing to use more expensive
algorithms to choose live ranges for padding holes, we can relax the restrictions that must be met by fits for
a hole and still guarantee that the chromatic number of the derived conflict graph does not increase.

The motivation for our next definition is to chose the "largest” fit for a hole. Given a hole A and some fits
for h, an imperfect match m for A is a fit whose adjacency list adj(m) includes the adjacency Tists of all fits
in adj(m). More formally:

Definition 6: (Imperfect match for a hole) Given a register conflict graph G, we say that a live
range m is an imperfect match for a hole 4 in a broken live range / iff

l.misafitfor h
2. If xe adj(m)-adj(l) then x is a fit for A
3.If pe (xixis a fit for k) then adj(p)adj()) < adj(m)nadj(l)

An example of an imperfect match is depicted in Figure 6-8. Live range a contains a hole and live
ranges ¢, d and e are fits for that hole. The set of nodes adjacent to a consists of (bf}. Because c is
adjacent to both b and f, ¢ is an imperfect match for a’s hole. Neither d nor e are imperfect matches for a’s
hole.

Similar to Lemma 4, we can show that the graph derived by merging a broken live range with an
impexrfect match has the same chromatic number as the original graph.

Lemma 7: Given a flow graph with basic blocks B, register conflict graph G and a broken live
range [ with hole A, let p be an imperfect match for 4, and let G’ be the conflict graph derived
from G by merging p and /. Then, the chromatic numbers of G and G’ are identical.

Proof: It is easy to see that any coloring for G’ can be expanded into a coloring for G without
using additional colors. Given a coloring of G, let ¢, denote the color for live range x ina
coloring for G. Let (p;....p,] be the live ranges that are fits for h. If
x € adj(p)nadj(l) e (1,..n), then ¢, & {cp,c,], hence x is unaffected by changing the color of p
o ¢, Therefore, the only nodes affected by changing p's color to ¢; are {p;....p,). BY
prerequisite, no p;€ {p,....p,) is adjacent to /, therefore c and ¢, can be exchanged among
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Figure 6-8: An imperfect match for a hole

(py»-p,)- Hence, a coloring of G can be used to produce a coloring of G’ without introducing
new colors - the chromatic numbers of both graphs are identical.

Imperfect matches do not have the nice properties of perfect matches. For example, given an imperfect
match m for a hole h of a broken live range /, merging m and ! might not fill up A completely. It is not
guaranteed that the remaining hole can be padded with the remaining live ranges. Imperfect maiches are
uscful however if they are "large” enough to fill the entire hole. In the example depicted in Figure 6-8, the
imperfect match c fills the entire hole of live range a. The fact that ¢ is an imperfect match allows us to
deduce that by merging ¢ and a the entire hole can be eliminated without increasing the number of colors
needed to color the derived register conflict graph.

The reason why broken live ranges can create register conflict graphs that contain chordless cycles of size
4 or larger is that all fits for a hole 4 are interdependent - the color chosen for a live range f that is a fit for a
hole A sometimes influences the choices of colors for all other fits for A. Since we are forced to use the
sams color for the TOP and the BOT part of a broken live range, chordless cycles are introduced in a
register conflict graph. The motivation for the next definition is to determine basic blocks inside a hole 2
that partition the fits for A into independent sets. If there is such a basic block, the fact that we inust color
TOP and BOT parts of a broken live range identically has less impact.

So rather than restricting live ranges that are fits for a hole, we now define restrictions on the hole itse!f.
We will show later that holes that meet these restrictions can be padded by their fits without compromising
optimality of the overall coloring.

If there is a basic block & that is not contained in any fit for the hole, then b can be used to partition the
fits for the hole into two sets: the fits that consist of basic blocks that consist of basic blocks that precede b
ang those that consist of basic blocks that succeed b. If in addition the only live ranges that contain b must
also contain all basic blocks of the hole, no dependencies exist between the fits in those two sets. We will
show that the absence of dependencies can be exploited to eliminate the hole. We first give a formal
definition of a break in a hole.

Definition 8: (Break in a hole) Given a register conflict graph G with a broken live range / that
contains a straight line hole k= (h,,...,,}, we say that h;€ {h;,...,h,} is a break for h iff every
live range that contains h; contains (k;,...,4,}, i.e. all basic blocks that form the hole.
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Figure 6-9 gives an example of a break in a hole. Live range a contains a hole consisting of basic blocks

f

o
L A

[ A4

7

8
Figure 6-9: Break of a hole

{3,4,5,6,7). Basic block 6 is a break for that hole - the only live range that contains 6 is f which contains
basic blocks of both the TOP and the BOT part of a - {1,2} and {8} respectively. The set of fits for the
hole consists of {b,c.d.e}. The break partitions the live ranges that are fits for the hole into two
independent sets - one "above" the break, {b.c.d} and one "below" the break, {e}.

A break in a hole is desirable; the intuitive reason is that the live ranges that are fits for that hole can be
partitioned into two independent subsets via the basic block that is the break. The live ranges in one of the
subsets can only be adjacent to the TOP ot BOT part of the broken live range, but not both. Therefore, both
parts can be colored independently and combined by renaming. This is stated in the next lemma.

Lemma 9: Given a flow graph F with register conflict graph G such that there exists a
backarcfree path that contains a/l basic blocks in F, let ! be a broken live range that contains one
hole h with break b,. If all live ranges in G except / are continuous, G can be cclored optimally
in polynomial time.

The proof of Lemma 9 consists of three parts. In the first part we show that the flow graph F can be
simplified to a flow graph F* that is equivalent for the purpose of register allocation. In the second part of
the proof, we consider only the portion of F’ that consists of the loop or conditional that causes the hole,
called F'’, and show how to color the conflict graph G'* for F'' optimally in polynomial time. The third
part of the proof Jdeals with extending the coloring for G’ to a coloring for the original register conflict
graph.  As we go through the proof, we will illustrate our steps by examples. During the proof, we assume
that the hole containing the break is caused by a loop. The case in which the hole is caused by a
conditional can be shown analogously.

Proof: Part 1: constructing F': W.1.0.g. assume that the hole A is caused by a loop L with loop
head a and loop exit . Let F’ be the graph derived from F by removing the following edges:

1. all backarcs except that of L

2. all edges rom the split node of a conditional C to the join node of C.
By Lemma 15 the register conflict graph of F is equal to the original register conflict graph G.

Part 2: constructing G': Let b;,....b, be the set of basic blocks that form the hole h, and let F*’
be the subgraph induced by {by,b;,...0,.0,,1}, Where by is b,’s predecessor in F', and b,,,, is
b,’s successor in F'. Becausc [ is the only broken live range, b, € {b)s.sb,}, and both
byandb,,, € l. G’ consists of those live ranges in F’ that do not contain the break by, in other
words live ranges that contain z subset of the following basic blocks: {bg,....0,,,,1} = (;}-
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The construction of G' is depicted in Figure 6-10. On the left side of that figure the original
conflict graph G is shown. The broken live range is a, and the "straight line" hole of a consists of
basic blocks {5,6,7,8.9}. Basic block 8 forms a break in the conflic’ craph. G is shown on the
right side of Figure 6-10 - a now consist only of basic blocks {4,10j, e two blocks that "define"
the hole. Only live ranges that either fit into the hole or that contain either 4 or 10 2’ included in
G.
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Figure 6-10: Gand G’

Because b, is a break in h, no live range in G’ contains &, Then, G’ can be partitioned into two
subgraphs, G, induced by those live ranges that consist of basic blocks among the "first half" of
h, {bgs--b;;} and G, induced by the live ranges that consist of basic blocks in the second half of
B, {Byy1s--Dpyy). The construction of G; and G, is depicted in Figure 6-11. Note that both G,

a b c
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Figure 6-11: G,and G,

and G, contain a part of the broken live range I, b, and b, ; respectively. Because (bg,....b;}
and {b,, ,..b,,;) both form straight line code and no live range in G, and G, contains holes, G,
and G, must be interval graphs. Hence, both G, and G, can be colored optimally in polynomial
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time. Let cypp be the color used to color the part of ! consisting of by in G and cpgy the color
used to color the part of / consisting of b, , in G,. An optimal coloring for G' can be derived
from the colorings for G, and G, by exchanging cr,p and cgor in G,. Implicitly, A can be
eliminated by padding A with all live ranges in G’ that are colored with cy,p and merging the
appropriate live ranges with [ in G’. After those merge operations, [ is equivalent to a continuous
live range.

Part 3: deriving a coloring for the original register conflict graph: Deriving a coloring for the
original register conflict graph G is now straightforward. First, we add to G every live range v
that contains b,. Because b, is a break, v must overlap with every live range in G’, hence a new
color must be used for v.

This is depicted in Figure 6-12. In our example, we must add the live range d. Because all

a g c ¢

4
®

5

~
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10
Figure 6-12: Adding live ranges that contain the break

remaining live ranges of G are continuous and the original program is equivalent 10 straight line
code, the live ranges that contain b, must form a clique that separates G’ from the "top part” of G.
Likewise, the live ranges that contain b, , must form a clique that separates G’ from the "bottom

third" of G. The two clique separators are shown in Figure 6-13. Hence, the optimality of the
coloring for G’ is maintained when an overall coloring is derived from individual optimal
colorings of the top part of G, G* and the bottom part of G - g.e.d.

Note that if ihere exists a break in a straight line hole, no restrictions must be met by live ranges that are
fits for the hole. The prerequisites of Lemma 9 may seem strict; note though that when register conflict
graphs are simplified hierarchically, programming constructs that are nested inside the basic blocks that
form a hole will have been processed by the time the hole is treated. Theicfore our techniques to collapse
or sequentialize branch clauses and to eliminate holes nested inside have already been applied, with the
effect that the enclosing hole can be viewed as if it were a straight line hole for the purpose of register
allocation.
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6.3. Node merging and conditionals

In the previous chapter we showed that register conflict graphs in which all backarc and BGLOBAL live
ranges are continuous, and in which all LOEN and LOEX live ranges overlap in each branch sibling, are
interval graphs and can be colored optimally in polynomial time.

For the remainder of this chapter we assume that a conditional branch contains no conditional broken live
ranges. Even in the absence of broken live ranges, there are cases of conditionals that have register conflict
graphs that are k colorable, but not interval graphs. In the following sections we examine types of register
conflict graphs fo. ~onditionals that are not interval graphs and therefore in general can not be colored
optimally by the node removal technique. We discuss how node merging can be used to simplify register
conflict graphs for conditional branches, and how in some cases node m¢-¢.ng can change a non-interval
register conflict graph for a conditional into an interval graph.

6.3.1. Merging of E; related nodes

Figure 6-14 depicts an example of a conditional with a register conflict graph for which the node removal
technique is unable to produce a 2-coloring. The conditional branch congists of the split and join noie, and
two branch clauses, {B1:B2} and {B3;B4} respectively. Variable a is live at the split node and dead at the
join node, hence a is a LOEN live range in that branch. Variable d is live at the jin node, anc dead at the
split node, hence d is defined inside the branch clauses and a .7£Y five range. Varisbles b and ¢ are local
inside the branch clauses and are therefore BLOCAL live range©.
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Figure 6-14: Condiuonal branch with LOEN and LOEX live ranges and
conflict graph

The register conflict graph for the conditional branch is depicted to the right of the flow graph. The
register conflict graph for the conditional branch is 2-colorable and not recognized as such by the node
removal technique. Since b and ¢ are live in distinct branch clauses, the color chosen for node b is
independent of the color chosen for niode ¢ in the register conflict graph. A 2-coloring of the graph depends
on the colors chosen for b and ¢ - they must be identical. The knowledge that b and ¢ live only in distinct
branch clauses can be used to determine that it is safe to color & and ¢ with the same color. Like in register
conflict graphs for loops, nodes in register conflict graph for conditional branches can be merged as long as
it is safe to do so. This is depicted in the bottom right of Figure 6-14. The reason why & and ¢ could be
safely merged into one single node is that they are both adjacent to exactly the same set of nodes in the
register conflict graph, a and d.

Definition 10: (The E, relation) Given the register conflict graph G of a conditional branch C,
let ¢, and c, be two live ranges that are BLOCAL w.r.t. C. We say that ¢; and c, are E; related

iff ¢, and ¢, occur in different branch clauses and adj(c,)=adj(c,).

It is easy to see that two BLOCAL nodes that are E; related < »n be colored identically and thus merged
into one node. The idea behind merging E, related nodes is to re-use the same color in different branch
clauses for BLOCAL live ranges that are by definition local to one branch clause. The graph G’ derived
from the original register conflic: graph G by merging two E, related nodes x and y is equivalent to the
register conflict graph of a conditional branch in which all instructions that use or define the variable with
live range x (or y) are eliminated.
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Figure 6-15: Register conflict graph of branch derived from Figure
6-14 by eliminating definitions and uses of variable ¢

An example is depicted in Figure 6-15. The live ranges for b and c¢ are E, related, and merged in the
original register conflict graph (Figure 6-14). The branch depicted in Figure 6-15 is identical to that in
Figure 6-14, except that the definition of ¢ in block B3 and the use of ¢ in block B4 have been removed.
The register conflict graph is shown to the right and is identical to the register conflict graph containing the
merge node depicted in Figure 6-14.

The observation that one of two E| related live ranges can be eliminated both from the register conflict
graph and from the program without compromising a k-coloring of the register conflict graph is formalized
in the next lemma.

Lemma 11: Given a register conflict graph G of a conditional branch B that contains two E;
related BLOCAL live ranges x and y, let G’ be the register conflict graph derived form G by
merging th2 nodes representing x and y. Then, the chromatic numbers of G’ and G are equal.

Proof: W.Lo.g. assume that the candidate for removal is x. The graph derived from G by
elimirating the node x and all edges incident on x is equal to G’. Therefore a coloring for G can
be directly mapped onto G’, omitting the color used for x. Because adj(x)=adj(y), the color used
for y can be used for the merge node (x,y). It is easy to see how a coloring for G’ can be mapped
onto G: the color used for (x,y) is used for both x and y in G. Therefore, the chromatic numbers
of G and G’ must be equal.

Note that eliminating node x from the register conflict graph G in Lemma 11 is equivalent to removing all
instructions that define or use the variable v with live range x from the conditional. This is possible
because x is a BLOCAL live range, and does not extend beyond the split or the join node of the conditional.

Since two E related nodes are adjacent to the exactly same set of edges in the register conflict graph, the
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number of edges incident on the merge node is equal to the number of edges incident to the individual
nodes that were merged. For each other node in the original graph, the number o. incident edges is either
the same or decreases. In other words, node merging of E, related nodes always simplifies the register
conflict graphs.

In the example depicted in Figure 6-14, merging of E, related nodes turns the original register conflict
graph into an interval graph. The reason is that every BLOC.AL node is E; related to a BLOCAL node in
every other branch clause. As a consequence, all BLOCAL live ranges can be merged with their E; partners
in one unique branch clause. In the example depicted in Figure 6-15, the instructions that form live range ¢
in the original branch depicted in Figure 6-14 are removed. Now, there exists only one branch clause that
contains BLOCAL live ranges - all others contain only LOEN, LOEX or BGLOBAL live ranges.

The fact that all BLOCAL nodes can be eliminated by node merging does not necessarily mean that the
graph derived by all merge operations is an interval graph. This is depicted in Figure 6-16. The live ranges
of a conditional branch that consists of 3 straight line branch clauses are shown. For readability, we show
only the live ranges rather than the entire flow graph.

Clause 1 Clause 2 Clause 3
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Original conflict graph Conflict graph, a and b merged
Figure 6-16: Non-int2rval register conflict graph after merging all
BLOCAL live ranges

The branch contains one LOEN live range x;, two LOEX live ranges x, and x; and two BLOCAL live
ranges, a and b respectively. (Note that x;, x, and x; occur in each branch clause, all occurrences form one
single live range). I ive ranges a and b are E, related - both are adjacent io x; and x,, and can theicfore be
merged in the register conflict graph. The original register conflict graph is depicted to the bottom left, the
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conflict graph resulting from merging a and b is shown bottom right. Even though all BLOCAL live ranges
are merged into a single live range, the resuliing conflict graph is not an interval graph, because x; overlaps
with x; in clause 3, but not in clause 1 or 2, where the BLOCAL live raniges occur.

To ensure an interval conflict graph, in addition to requiring that all BLOCAL live ranges can be merged
into one unique branch clause it is needed that the subgraph formed by the LOEN and LOEX live ranges in
each individual branch clause is identical. Figure 6-17 depicts LOEN live range x; and LOEX live ranges
x, and x; in different branch clauses. Note that this example is identical to the example shown in Figure
6-16 with all BLOCAL live ranges removed. The register conflict graphs for the individual branch clauses

Clause 1 Clause 2 Clause 3

x1
9

o——-0%

——a,

join node

@ —f——sl
®

Conflict graphs

Figure 6-17: Register conflict graphs formed by LOEN and LOEX live
ranges in individual branch clauses

are shown below the corresponding branch clause. Note that the graph in clause 3 differs from the graphs
in clauses 1 and 2.

If the register conflict graphs formed by LOEN and LOEX live ranges are identical in each branch clause,
merging E, related live ranges a and b is equal to the register conflict graph of clause 1, shown in Figure
6-18. Since clause 1 consists of straight line code, the register conflict graph obtained by node mergirg is

an interval graph. We formalize this in the next lemma.

Lemma 12: Let G be the register conflict graph of a conditional B with branch clauses
€}:CmiCps SUCh that B contains no broken BGLOBAL live ranges, the register conflict graphs
formed by the LOEN and LOEX live ranges are identical in each branch clause, and for each
BLOCAL live range be ¢; 3 b'e cVij€ (1,...n] such that b and b’ are E, related. Then the
graph G’ derived from G by merging all BLOCAL live ranges with a node representing a live
range in one unique branch clause is equivalent 1 the register conflict graph of that branch clause
in isolation.
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Figure 6-18: Interval register conflict graph after merging all BLOCAL
live ranges

Proof: By Lemma 11, G’ is equal to the register conflict graph of the conditional B by
removing all instructions that form live ranges represented by nodes that are merged. Further, the
register conflict graphs for the LOEN and LOEX live ranges are identical in each individual
branch clause - hence the register conflict graph for the branch clause to which all BLOCAL live
ranges have been merged is equal to G’ - q.e.d.

In the next section we show how the strict E ; relation can be relaxed in a way that still allows to use node
merging to systematically simplify register conflict graphs of conditional branches.

6.3.2. Merging of E, related nodes

The E, relation is very restrictive. Nodes that are E, related must be BLOCAL wr.t a branch B. By
definition two £ related nodes must be adjacent to the exactly same set of nodes - hence, those nodes can
not be BLOCAL in the same corditional C. We can relax the E; relation by allowing adjacency to other
(restricted) BLOCAL nodes, but still require that the set of adjacent nodes that are LOEN, LOEX or
BGLOBAL be identical. More formally:

Definition 13: Given a conditional B, let x and y be two live ranges that are BLOCAL w.r.t. B,
such that x and y occur in different branch clauses. We say that x and y are E, related iff

¢ All BLOCAL live ranges adjacent to x have the same adjacency lists:
Vx € {adj(x)N\BLOCAL(B)} : adj(x)- x=adj(x)~x’
o All BLOCAL live ranges adjacent to y have the same adjacency lists:
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vy € (adj(y)NBLOCAL(B)} : adj(y") - y=adj0) -y’

o The set of non-BLOCAL live ranges adjacent 1o x is equal to the set of non-BLOCAL live
ranges adjacent to y:

adj(x)NG = adj(y)NG, where G=LOEN(BYULOEX(BYUBGLOBAL(B)

Note that E, related nodes are also E, related. Figure 6-19 shows the live ranges in the branch clanses of
a conditional branch, consisting of LOEN live range x,, LOEX live range x, and BLOCAL live ranges
aa’.a”bandb’. Liveranges a,a’ and a”’ are E, related to live ranges b and b’

Clause 1 Clause 2

1

']

split node

join node

Conflict graph
Figure 6-19: E, related nodes

If in a conditional branch all BLOCAL live ranges of one branch clause are E, related to a BLOCAL live
range in every other branch clause, we can show by arguments similar to those used in Lemma 12 that
merging all E, related nodes results in a graph that is equivalent to the register conflict graph of one single
branch clause - given that the register conflict zraphs formed by LOEN and LOEX live ranges are identical
in each individual branch clause.

Things are a bit more complicated, because Lemma 11 does not hold for two E, related nodes. This is
demonstrated in Figure 6-20. Nodes a and b of th:¢ original conditional shown in Figure 6-19 are merged
into one single node, and the resulting graph is depicted to the bottom. Unlike for E; related nodes, the
graph obtained by merging a and b is not equivalent to the register conflict graph of thé conditional in
which live range b has been removed. The conditional branch in which live range b has been removed is
shown top left (Figure 6-27). The register conflict graph for that conditional branch is depicted top right,
and differs fiom the graph at the bottom.
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Clause 1 Clauy:. 2

Merging a and b in original regisier confiict graph

Figure 6-20: Difference between removing live range b and merging it with a in original conflict graph

The reason why Lemma 11 does not work for E, related nodes is that E, related nodes can be adjacent to
other BLOCAL live ranges within the same branch clause. Merging two E, related nodes n, and n, causes
(by symmetry) n, to move to a different branch clause. Other BLOCAL live ranges adjacent to £, are now
adjacent to the merged node consisting of (n.n,), and therefore an edge is introduced between BLOCAL
nodes of different branch clauses. In the example depicted in Figure 6-20, the node that contains g and b is
adjacent to the node b’ - the merge node "belongs” to clause 1 and b’ belongs to clause 2. If however all
BLOCAL live ranges in the clique formed by E, related nodes are merged, wie resulting graph is equivalent
to the conflict graph of a branch in which all members of the clique have been removed, shown in Figure
6-21. The conditional branch in which both b and b’ have been removed is shown to the top left, and the
corresponding register conflict graph is shown to the right. This conflict graph is identical to the graph
obtained from the original register conflict graph by merging all BLOCAL members of the clique that
contains b in clause 2 with their E, partners of clause 1.

In the example we used in Figure 6-21, nodes b and b’ were merged with their E, partners in clause 1.
Since the number of BLOCAL live ranges adjacent to g is larger than the number of BLOCAL live ranges
adjacent to b, there were enough nodes in clause 1 such that each BLOCAL node adjacent to b could be
merged. This is not the case if we wished to merge the other way around: merging threz live ranges a.a’
and @'’ with two live ranges b and b’ does not work - and the trick by mapping the resulting graph to the
register conflict graph of one branch clause does not work either. This is Aepicted in Figure 6-22.
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Figure 6-21: Merging all clique members of one branch clause

The conditional branch in which live ranges a and @’ have been removed is shown to the top left, and the
corresponding register conflict graph to the top right. Note that the register conflict graph differs from the
graph derived by merging a and b and @' and b’ - the adjacency of @'' with the merge nodes is lost if live
ranges a and @’ are simply removed. We can avoid this problem by adding a dummy live range d that
consists of the same basic blocks as b. Note that adding the dummy live range d to the registe~ conflict
graph is equivalent to duplicating every definition and use of the variable with live rany.: b by the ¢efinition
or use of a dummy variable. Hence, we have constructed a new conditional B' suck that the regisisr
conflict graph for B’ is identical to the graph obtained from the original register conflict graph by merging
a and o’ with b and b’ respectively. This is shown in Figure £-23,

Lemma 14: Given a conditional C with conflict graph G that consists of branch clauses c,....c,
such that the graph induced by the conflict graph of an individual branch clause c; and the LOEN
and LOEX live ranges is identical for each c;€ {cy,....c,}, let vand v’ be two BLOCAL live ranges
of different branch clauses c; and c; such that v and v’ are E, related. The chromatic numbers of
G’ derived from G by merging v and v’ are identical.

Proof: Clearly, a valid coloring for G’ can be easily extended to a valid coloring for G by
directly mapping the colors of all nodes to the same nodes in G and by mapping the color of the
merged node (v,) to both v and v'. Given a coloring for G, we obtain a coloring for G’ by
enforcing the same color for v and v'. Let col, and col,, be the colors used for v and v’
respectively. Because every LOEN, LOEX or BGLOBAL live range that is adjacent to v is also
adjacent to v’, no global live range is colored with col, or col,,. Let x be a BLOCAL live range
adjacent to v. By definition of the E, relation, all BLOCAL live ranges adjacent to v have
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Figure 6-22: Merging larger clique of one branch clause with smaller clique of
other branch clause
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Figure 6-23: Merging larger cLique of one branch clause with smaller clique of
other branch clause



101

identical adjacency sets. Hence, the colors col, and col,. can be exchanged in the live ranges that
are adjacent to v - no new colors are needed.

Note that if all BLOCAL live ranges can be merged with BLOCAL live ranges of one unique branch
clause, the derived register conflict graph is equivalent to the register conflict graph of just one branch
clause. Consequently, E; and E, related merging can be used to collapse several branct «auses into one -
in the case of non-nested conditionals, this leads to straight line code and hence to . uiterval register
conflict graph.

6.4. Chapter summary

We have seen that node merging can be applied to broken live ranges and to BLOCAL live ranges of
conditionals. In some cases it is even possible to change a non-interval register conflict graph into an
interval graph via node merging. Because the node removal technique is in general unable to produce a k
coloring for k-colorable non-interval graph, there are cases of register conflict graphs for which the node
removal introduces spill code that can be avoided altogether by node merging. Even in cases where it is
not possible to eliminate all non-chordal cycies in the register conflict graph, node merging always results
in a simpler register conflict graph.

The advantages of encoding structural knowledge in register conflict graphs are twofold. First, the
performance of the node removal technique can be provably enhanced by nodc merging. Second, structural
analysis permits to partition the register conflict graph into disjoint subgraphs that can be colored
individually and the colorings of the individual parts can be joined to an overall coloring by renaming.
Both aspects of structural knowledge in register conflict graphs are the focus of an experimental evaluation
of our model for register conflict graphs, and is discussed in the next chapter.
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Chapter 7

Structured Global Register Allocation in Practice:
Development of a Parallel Framework

Developing a parallel framework for global register allocation required the analysis of register conflict
graph. We have shown that this is possible within our structured model described in the previous chapters.
Initially motivated by paraliclization, we find that our model and our analytical methods lead to a more
thorough understanding of sequential global register allocation; once the location of clique separators is
known, the parallelization of global register allocation comes naturally, almost as a "byproduct” of our
analysis. The success of the parallelization depends on the knowledge collected by our method. In this
chapter, we therefare concentrare on the evaluation of our method.

Our method is best described as analysis of register conflict graphs prior to the assignment of specific
registers to live ranges in the conflict graph. The pur—use of this analysis is to map a register conflict graph
to an equivalent interval graph and, if this is not possible, to identify which portinns of a register conflict
graph are "responsible” for an overall non-interval register conflict graph. Mapping a register conflict
graph to an equivalent interval graph is done via mapping a well structured flow graph to a straight line
flow graph that is equivalent for the purpose of global register allocation. By Theorem 11 of Chapter 5, the
straight line sequence of basic blocks can be used to enumerate all cliques in the register conflict graph in
the .<. order described in Chapter S.

Interval register conflict graphs are desirable for three main reasons, First, in an interval graph all clique
separators can be found in polynomial time. Second, interval graphs can be colored optimally in
polynomial time. Third, by enumerating all cliques of an interval graph in the .<. order it is possible to
identify regions of the conflict graph that require spilling: given k registers, live ranges that occur in cliques
that are larger than k must be considered for spilling to memory or for splitting. The important fact is that
this is known before the actual coloring.

The success of our method depends on how often our transformations of flow graphs and conflict graphs
are applicable to real programs and on the number of separator cliques that can be located. If large portions
of a register conflict graph can be mapped to equivalent interval graphs, we can locate a large number of
separator cliques. Knowledge about separator cliques is the basis for parallelizing global register allocation
but is particularly well suited to improve sequential register ailocation.

Given the knowledge about the location of clique separators, the register conflict graph can be partitioned
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into clique connected components that are either interval graphs or non-interval graphs. In that partition,
the non-interval graphs are formed by live ranges that occur in Zonditionals that could not be collapsed or
linearized, or by live ranges that contain basic blocks that occur in a %ole of a broken live range that could
not be eliminated. In other words, our structured method enables us to concentrate on small porticias of the
register conflict graph that are "responsible” for an overall non-interval register conflict graph. Because
such hot spots in a register conflict graph typically consist only of a small subset of the live ranges,
expensive heuristics or even exhaustive search can be used to find an overall good or optimal coloring.
Isolating regions of the register conflict graph in which spilling is necessary is useful because more
knowledge can be used in spilling heuristics. Further, the register conflict graph can be partitioned
hierarchically via clique separators. Clique separated critical portions of the register conflict graph can be
colored independently and combined with the remaining conflict graph without compromising optimality
of the individual coloring.

To evaluate the performance of our method for analyzing and partitioning register conflict graphs for well
structured programs, we implemented our techniques and measured its performance on a set of t enchmark
kemels. In this chapter, we present our implementation and report the results of our evaluation.

7.1. Evaluation of our method

Our method pre-processes the register conflict graph so that the subsequent register coloring can use the
knowledge gathered during the analysis and operates on a simplified register conflict graph. To evaluate
our method for practical purposes, we have to assess how applicable our flow graph and register conflict
graph transformations are for real flow graphs. The transfocmations of our method achieve three goals:

¢ The simplification of a structured program into a piece of straight line code that is equivalent
for the purpose of register allocation

» The simplification of a non-interval register conflict graph to an equivalent interval graph
* The detection of separator cliques for the parallelization of global register allocation

Transformations of flow graphs and conflict graphs:

In the previous chapters we have developed a set of restrictions that must be met by the live ranges of a
program if our simplifications can be carried out without compromising optimality of global register
allocation. The first goal of an experimental evaluation of our method is to determine how often this set of
restrictions is met by real programs. For programs that can not be reduced to straight line code for the
purpose of register allocation, we determine the size of the portions that could not be reduced to straight
line code.

Parallelization:

Given the results of our graph transformations, we can identify separator cliques in the register conflict
graph. We demonstrate the potential for parallelization by measuring the size of the ordered sequences of

separator cliques in the register conflict graph of each benchmark kemnel. We discuss the tradeoffs between
choosing small separator cliques and creating parallel tasks of even sizes.
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7.1.1. Implementation

Registers are a scarce resource on every computer architecture [Pat/Hen 90]. The need of registers is
further increased by global optimizations that introduce temporaries that have to reside in registers.
Conflict graphs for globally optimized programs are in general much more complicated than conflict
graphs produced by compilers that do not employ global optimizations. For this reason we chose as input
to our program intermediate code prodaced by an optimizing compiler. The C compiler for the IWARP
machine fits this category and was used to produce the input to our conflict graph analyzer. The goal of our
implementation was to evaluate two aspects of the method. First, to determine if the restrictions that permit
an interval register conflict graph are met by realistic user programs, and second to assess the effectiveness
of a parallelization of global register allocation based on clique separators.

The gist of our method is the analysis of register conflict graph, and our techniques aim for the
~mplification of register conflict graphs. To assess how often such simplifications could be carried out on
the flow- and conflict graphs of realistic programs, it was sufficient to run our analysis "off line", and we
did not incorporate our register allocator into the backend of the IWARP compiler.

Our implementation consists of 3 phases. Phase 1 is the "setup” phase, and consists of extracting the
parse tree, the register conflict graph and the live ranges of variables from the input program in
intermediate form. The analysis and simplification of the register conflict graph are performed during
Phase 2. Phase 3 conducts the data partitioning for the parallelization of global register allocation. This
includes determining the clique separators and the computation of the accumui~ied live ranges per basic
block. Figure 7-1 gives an overview of the parts of our implementation. Because they form the gist of our
implementation, we describe Phase 2 and Phase 3 in more detail in the next paragraphs.

7.1.2. Simplifying the conflict graph

The input to Phase 2 of the algorithm is the parse tree of a program, along with the live ranges and the
register conflict graph. Note that each loop or conditional in the flow graph is represented by a node in the
parse tree. Innermost constructs are the leaves of the tree, while the successors of the root of the parse tree
represent the outermost programming constructs. The purpose of Phase 2 is to determine which basic
blocks belong to conditionals or loops that could not be simplified to straight line code, called prohibited
blocks. The nodes in the parse tree are processed in post order. The restrictions that are tested in our
implementation were chosen such that every ode in the parse tree must be processed exactly once. Hence
our algorithm does not involve backtracking and runs in polynomial time. The detailed algorithm for Phase
2 is given in Figure 7-2.

At the end of Phase 2, every basic block that is not among prohibited blocks is part of straight line code,
sometimes derived by removing backarcs from loops and by the sequenti_ization or the collapsing of
conditionals. Hence, all live ranges that contain a block not in prohihited blocks form a clique that
separates the conflict graph into two disjoint pieces. Phase 3 consists oi computing the separator cliques
for all but the prohibited basic blocks and the partitioning of the flow graph into clique separated
components. The actions of Phase 3 are outlined in the algorithm given in Figure 7-3.
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contflict graph o
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Figure 7-1: Phases of the structured global register allocator

In the evaluation of our method, we first concentrate on the effects of Phase 2, and analyze the
parallelization in Phase 3 separately.

7.2. Input data

We measured the performance of our method for 33 benchmark kemels. The benchmark for our
evaluation consists of the following functions:
1. The Livermore kemels [McMahon 86)
2. The larger exampivcs of the Numerical Recipes collection [Press et al 88]
3. A collection of programs from the WARF merleau, et al. 88, Kung 88]

Because our method requires well structured we had to modify the original code slightly in
some cases. Both the Livermore kernels (original implementation language: FORTRAN) and some WARP
applications (original implementation language: w2) were translated to C, all other functions of the testsuite
were readily available in C. It should be noted that the programming style of the Numerical Recipes in C is
similar to FORTRAN coding style. We included a graph manipulation problem (blocks) that was very
carefully handoptimized in C: pointers and address arithmstic were used excessively and the programmer
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Input: Parse tree, live ranges and conflict graph of a well structured program

Output: prohibited blocks, a set of basic blocks that may not be used for the compwation of
clique separators and a simplified conflict graph

Method:

prohibited blocks := O;
for allnodes n inthe parse tree in post order do ({

if n isaconditional {

compute LOEN, LOEX, BGLOBAL, BLOCAL
determine conditional continuous live ranges;
eliminate holes from conditional broken live ranges;
prohibited blocks += uneliminated holes;

if conditional can not be linearized or collapsed {
prohibited blocks += blocks that form conditional;

}

} else {
determine loop continuous live ranges;
eliminate holes from loop broken live ranges;
prohibited blocks += uneliminated holes;

}

}
Figure 7-2: Outline of Phase 2
Input: Simplified flow graph and prohibited blocks

for each basic block b s(b), the set of forward successors of b

Output: A partitioning of the register conflict graph
Micthod:
for all basic blocksb ¢ {prohibited blocks} do {
separator(b)=WIN(s)),s € s(b),

}
partition graph based on separator cliques and partial graph sizes;

Figure 7-3: Outline of Phase 3
determined which variables were assigned to registezs. We included this function to assess the shape of
register conflict graphs of applications that are programmed in "typical” C style.

We chose the Livermore loops because they represent a standard benchmark of kemnels that are used in
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many scientific applications [PayHen 90]. While the Livermore kemels consist only of a collection of
small kernels, we chose them because they are used by a large number of scientific applications. The same
is true for the Numerical Recipes collection, and our selection of kemels from the Numerical Recipes
collection was guided by their complexity: we choze the largest procedures from that collection of

prograims.

The set of applications from the WARP libra'y consist of applications that consist of "real” programs
instead of just kernels, and are (or were) in ust on the WARP and IWARP machines. Both the Livermore
loops and the examples from the W .RP library represent scientific programs that are well suited for a
globally optimizing compiler. QOur graph manipulation program was chosen as an example of a non-
numerical program, and in addition was carefully hand optimized. Such programs are usually hard to
optimize by a compiler.

The histograms depicted in Figures 74 through 7-12 summarize some characteristics of our benchmark
kemels. Figures 7-4, 7-5 and 7-6 depict the number of basic blocks, the number of live ranges and the
nesting depth of the flow graph for the Livermore kemels. The same information for the numerical recipes
is shown in Figures 7-7, 7-8 and 7-9, and for the WARP examples in "igures 7-10, 7-11 and 7-12.
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Figure 7-4: Livermore loops: basic blocks

For most benchmark functions, the number of live ranges is higher than the number of basic blocks. One
example for which the number of live ranges is significantly smaller than the number of basic blocks is
block, a graph manipulation program, very carefully hand optimized in C. The program contains 35 global
variables, while the total number of live ranges is only 46. Because the number of basic blocks in that
program is so much larger (126), it can be concluded that the "lack” of live ranges is due to the absence of
temporaries after global optimizations. This is not surprising because hand optimized C programs that
contain many pointers make it hard for a global optimizer to identify common subexpressions.
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Figure 7-5: Livermore loops: number of live ranges
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Figure 7-6: Livermore loops: nesting depth

7.3. Mapping register conflict graphs to interval graphs: evaluating Phase 2

Phase 2 of our method consists of applying transformations to a flow graph and a register conflict graph
such that the original register conflict graph can be mapped to an equivalent interval graph. Mapping a
register conflict graph to an equivalent interval register conflict graph can only be achieved if the following
conditions are met:

1. All holes in broken live ranges can be padded,
2. All conditionals can be either collapsed or linearized.
We showed in Chapter 6 that we are able to pad holes optimally in polynomial time if they contain breaks,
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Figure 7-8: Numerical recipes: number of live ranges
or if holes can be padded entirely with perfect or imperfect matches. As a "reward” for successful node
merging of all broken live ranges in a loop, the backarc of that loop can be eliminated from the flow graph
without affecting the register conflict graph. Similarly, conditionals with only one nonempty branch clause
can be simplified by removing the link from the split node to the join node if all holes that occur in the
conditional can be eliminated. Therefore the simplification of conditionals with only one nonempty branch
clause is equivalent to successful hole elimination.

Conditionals with multiple nonempty branch clauses - unlike those with only one nonempty branch clause
- can cause non-interval register conflict graphs even if all live ranges are contiruous. Thus, in our
evaluation of the simplifications of conditionals, only those that contain at least two nonempty branch
clauses must be considered.
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Figure 7-9: Numerical recipes: nesting depth
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Figure 7-10: WARP examples: basic blocks

73.1. Holes and node merging in conflict graphs

Holes and node merging to pad holes is the focus of our first set of measurements. For each program, we
counted the total number of holes in all live ranges and the successful attempts to pad those holes under one

of our restrictions. The results for our benchmark kemels whose conflict graphs contained broken live
ranges are summarized in Table 7-1.

The column labeled holes contains the total number of holes of all live ranges in the register conflict
graph. The column labeled padded contains the number of holes that could be eliminated without node
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Figure 7-11: WARP examples: number of live ranges
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Figure 7-12: WARP examples: nesting depth

Holes Padded Merged Remaining
K20 1 1 none
ludecmp 1 1 none
svdcmp 20 9 9 2
backprop 2 2 none
block 2 2 none

Table 7-1: Node merging to eliminate holes
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merging because no fits existed for these holes and the column labeled merged depicts the number of holes
that were eliminated via node merging. The last column labeled ‘emaining contains the number of hcles
that could not be eliminated by our method.

7.3.2. Discussion of the results for hole elimination

Of our 33 benchmark kemels, 5 had register conflict graphs with broken live ranges. Of the Livermore
loops, only the register conflict graph of Kemel 20 contained a broken live range with one single hole that
could be padded without node merging. Ameng the other programs, a few examples of the Numerical
Recipes collection and of the WARP library contained broken live ranges. For al! functions except svdcmp
(single value decomposition), the holes could be padded without node merging. Single value
decomposition is a fairly complicated example of the Numerical Recipe collection. The number of broken
live ranges is 11, and the total number of holes is 20, 9 of which co.ld be padded without node merging,
and 9 of which could be eliminated via node merging. The large number of broken live ranges in svdcmp is
caused by frequent re-definitions of variables that occur in conditionals. Our results indicate that for small
kemels such as the Livermore loops, broken live ranges do not pose great problems. More complex
programs such as the WARP and Numerical Recipes examples can contain holes, and in most cases our
methods to pad holes with or without node merging are successful. In our examples, only two holes could
not be padded with our method, and both occurred in svdcmp.

7.3.3. Sequentializing and collapsing conditionals

Our second set of measurements was conducted to examine how frequently conditionals could be
linearized or collapsed. It was shown earlier that conditionals that consist of only one nonempty branch
clause can be treated like straight line code provided all live ranges that occur in such conditionals are
continuous. Hence, successful hole elimination is sufficient to find equivalent straight linc code for the
purpose of rcgiste