
AD-A254 554
ill

Program Structure as a Basis for the
Parallelization of Global Compiler Optimizations

Angelika Zobel

May 15,1992

CMU-CS-92-137

School of Computer Science

Carnegie Mellon University

Pittsburgh. Pa 15213-3890
S

DT1C
ELFXTF/
AUG 17.1992

submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science at Carnegie Mellon University
CLEARED

I^STRBUfiON STATEMENT A) ^

Approrwl for puWk ratawy ,j
Dtotiftmttoc Unlixah«!

iCÄflClN

jUL 201992 4

-,1 ■■;;-, i Hi! :,;;lv1 01 INIM^MAIWN
;-,l : ."1.1 V r.t'V'tW lO-'l [i ! '•!

i

RCVIEW OF THIS MATERIAL DOES NOT IMPLY
DEPARTMENT OF DEFENSE INDORSEMENT OE
1 ACTUAL ACCURACf OR OPINION,^-'

© 1992 by Angelika Zobel

The lews and conclusions contained in this document are those of the author and should not be interpreted
3J. . ^ifisenting the official policies, either expressed or implied, of the Defense Advanced Research
P ^wvts Agency, the Intold Corporation or the U.S. government This thesis was supported in part by the
Defense Advanced Research Projects Agency, Information Science and Technology Office, under the title
"Research on Parallel Computing," ARP^-OraeTNo. 733ürWDritsfunushed in connection with this
research is provided und- prime c^Htfact>ffiAg72:90-C-0035 issued by DARPA/CMO to Carnegie
Mellon University and under its subcontract. No. 3349lip5lJ792 with Networics Systems Corporation.

92 Ö
U28

V^3 »H 7 luvp
92-22843

fZ- 3/"

.V *

Keywords: parallel compilation, parallel algorithms, machine independent compiler optimizations

School of Computer Science

DOCTORAL THESIS
in the field of

Computer Science

Program Structure as a Basis for the
Parallelization of Global Compiler Optimizations

ANGELIKA ZOBEL

Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

ACCEPTED:

T^^f
JOR PROFESSOR

DEAN

sji4 ÜL

^//s/f^

DATE

DATE

APPROVED:

1*~-A
PROVOST

3 JI^,, im
DATE

Abstract

Optimizing compilers can produce very efficient code but incur a high compilation cost. Because
interactions between arbitrary points in a program are possible, global compiler optimizations are
inherently expensive and in general there is no easy way to partition the data processed during global
compiler optimizations into independent components.

This thesis explores how program structure can be used to provide a basis for the parallelization for global
compiler optimizations. Two concepts to obtain data parallelism in global compiler optimizations are
described. The first concept uses program structure explicitly for the parallelization. demonstrated by the
parallelization of interval analysis of global data flow equations. The second concept consists of using
program structure analytically to establish data partitioning points. The effectiveness of this concept is
demonstrated in the parallelization of global register allocation via optimal coloring of a graph denoting
register conflicts, an NP complete problem. A model for global register allocation in which program
structure is used to analyze a register conflict graph is presented. The purpose of this analysis is to detect
clique separators that partition a conflict graph into independent components that can be colored
independendy and combined to an overall coloring by renaming. Properties of live ranges in loops and
conditionals are linked to characteristics of the conflict graph. If certain restrictions are met by the live
ranges that occur in conditionals and loops, the register conflict graph can be transformed to an equivalent
interval graph. Interval register conflict graphs are desirable because they can be colored optimally in
polynomial time and because all clique separators of an interval graph can be located systematically. The
experimental evaluation of my method shows that in many cases the entire conflict graph or large portions
thereof can be mapped to equivalent interval graphs. Consequently, in such conflict graphs almost all
clique separators can be detected which makes it easy to partition the conflict graph into components that
can be processed independently. The knowledge about interval portions of register conflict graph can be
used both as a platform for the parallelization of global register allocation and to improve sequential
register coloring algorithms.

DTIC QUALITY INSPECTED 8

Accession For

GP.A&I
TAB

NT IS
DTIC
Unannounced
Justification—

^
n
G

By
Distribution/

Availability Codes

Avail and/or
Special

Acknowledgements

I would like to thank everyone who has helped me along this long and enjoyable path. Thomas Gross has

provided much support, technical feedback and constructive suggestions throughout my career as a

graduate student. I am particularly grateful for his continuous encouragement and the weekly discussions

during tto; course of my thesis work. I would like to thank Mario Barbacci for invaluable discussions and

suppciL Peter Steenkiste has spent many hours of techical discussions with me. I would also like to thank

David Wortman for serving as extern reader on my thesis committee. Thanks to Chang-Hsin Chang for

providing me with the interface to the IWARP compiler, and thanks to David Applegate for his continuous

support during the six years we shared the same office. I wruld also like to express my appreciation to all

those that have made CMU SCS such an enjoyable community, and most of all I would like to thank

Sharon Burks for her guidance and help throughout the years. I am grateful to Bernd for encourageing me

when I needed it and to my father and mother, for the care and support they have given me through all the

years. I dedicate this thesis to them.

Table of Contents

1. Introduction 3
1.1. Motivation 3
12. Paradigms for parallelism 4

13. Benefits of data parallelism 4

1.4. Data parallelism based on program structure 5
1 Al. Two types of global compiler optimizations 5

1.5. Two representative optimizations 6
1.5.1. Parallel interval analysis of data flow eqiutions 6
1S2. Data partitioning in global register allocation 6

1.6. Approaches to parallel compilation 7
1.6.1. Organization of the thesis 8

2. Background 9
2.1. A model for compilation 9
22. Input model H
23. Chapter summary 13

3. Parallel Interval Analysis 14
3.1. Introduction to global data flow analysis 14
32. Interval analysis: background 15

32.1. Availability analysis I8

322. Pass 1 of interval analysis 18
323. Pass 2 of interval analysis I9

3.3. Parallel interval analysis 20
3.4. A model to approximate the amount of parallelism in parallel interval analysis 22

3.4.1. Properties of complete interval trees 24
3.42. Bounds on the parallel efficiency of complete interval trees 26

3.5. Implementation: a test case 27
3.5.1. Implementation details 27

3.5.2. The scheduling algorithm 28
3.6. Results 28

3.6.1. The benchmark functions 29

3.6.2. Experiment description 29
3.6.3. Measurements 29

3.6.4. Speedup over sequential interval analysis 30
3.7. Discussion of the observed speedup 32

3.7.1. Possibilities to increase the speedup 32
3.72. Application spectrum for parallel interval analysis 32

3A. Related work 33
3.9. Chapter summary 33

4. Global register allocation: background 34
4.1. Introduction 34

u

42. Global register allocation: basic definitions 35
42.1. Standard method for global register allocation by graph coloring 37
422. Shortcomings of the node removal technique 37
423. Continuous and broken live ranges 38

4-3. Live ranges in loops 43
4.4. Live ranges in conditionals 46
4.5. Chapter summary 48

5. Register conflict graphs for compound programming constructs 49
5.1. Register conflict graphs for straight line code 49
52. Straight line loops and circular arc graphs 53
5.3. Simplifying loops for the purpose of global register allocation 56

5-3.1. Removing the backarc in the absence of loop-broken live ranges 56
522. Removing the backarc in tb; presence of loop-broken live ranges 58

5.4. Register conflict graphs for conditionals 63
5.4.1. Conditionals in which all Uve ranges are »LOCAL 63
5.4 J. Conditionals and BGLOBAL live ranges 64

5.4.2.1. Continuous BGLOBAL live ranges in conflict graphs for conditionals 65
5.4.22. Conditionals and broken BGLOBAL live ranges 66

543. Conditionals and LO£MLO£^ live ranges 69
5.4.4. Mixing WEN and LOEX live ranges with BLOCAL live ranges 72

5.5. Chapter summary 78
6. Transformations on register conflict graphs 79

6.1. The effect of holes in broken live ranges 80
62. Eliminating holes via node merging 82

6.2.1. Perfect matches for holes 82
622. Imperfect matches and breaks 86

63. Node merging and conditionals 91
63.1. Merging of £, related nodes 91
63.2. Merging of E2 related nodes 96

6.4. Chapter summary 101
7. Structured Global Register Allocation in Practice: Development of a 102

Parallel Framework
7.1. Evaluation of our method 103

7.1.1. Implemeniation 104
7.13. Simplifying the conflict graph 104

12. Input data 105
73. Mapping register conflict graphs to interval graphs: evaluating Phase 2 108

73.1. Holes and node merging in conflict graphs 110
733. Discussion of the results for hole elimination 112
733. Sequentializing and collapsing conditionals 112
73.4. Disr ossion of the results for conditional simplification 114
733. Combining the results for graph transformations 114
73.6. Discussion of graph transformation results 115
73.7. Parallelization based on clique separators IK
73.8. Method of parallelization: an example 11~

7.4. Parallelization based on clique separators: evaluation of Phase 3 119
7.4.1. Tradeoffs between parallelization strategies 123

7.5. Related work 126
73.1. Chapter summary 127

8. Conclusions 128
8.1. Parallel interval analysis 128

U)

8.2. Global register allocation 129

8 J.l. Evaluation of the model ^3l)

$22. Parallel global register allocation HO
S3. Future work I30

8.3.1. Explicit use of program structure: extensions 131
8.3.2. Global register allocation: future directions 131

IV

List of Figures

Figure 2-1: The compilation model 10
Figure 2-2: Examples of loop constructs 11
Figure 2-3: A conditional branch I2

Figure 3-1: Algorithm to construct the maximum interval for a given head 16
Figure 3-2: A flow graph and its initial interval partition 17
Figure 3-3: Sequence of derived graphs 17
Figure3-4: Algorithm// I9

Figure 3-5: Algorithm/2 1?
Figure 3-6: Example comp'ete interval tree 21
Figure 3-7: Weighted interval tree 21
Figure 3-8: Interval tree after elimination 22
Figure 3-9: Differently shaped complete interval trees 23
Figure 3-10: Minimal time with fewer processors than leaf nodes 25
Figure 3-11: Speedup for small functions 31
Figure 3-12: Speedup for medium function 31
Figure 3-13: Speedup for large functions 31
Figure 4-1: Sample live range 36
Figure 4-2: Example where standard method fails to come up with a ^-coloring 38
Figure 4-3: Examples of broken and continuous live ranges 39
Figure 4-4: Hole graph and hole ofa broken live range 40
Figure 4-5: Hole caused by a re-definition inside a loop 41
Figure 4-6: Hole caused by redefinition of a variable with BGLOBAL live range 42

in a conditional
Figure 4-7: Examples of backarc and forward live ranges 44
Figure 4-8: Another backarc live range 44
Figure 4-9: A continuous backarc live range 45
Figure 4-10: Examples of loop-broken and loop-continuous live ranges 45
Figure 4-11: Types of live ranges in a conditional 47
Figure 4-12: Conditional-continuous and conditional-broken live range 47
Figure 5-1: Register conflict graph for straight line code 50
Figure 5-2: Register conflict graph for loop 54
Figure 5-3: Loop expressed as a circle of basic blocks 55
Figure 5-4: Register conflict graph for loop 55
Figure 5-5: Register conflict graph for a loop with forward live ranges 57
Figure 5-6: Removing the backarc in the presence of loop-broken live ranges 57
Figure 5-7: TOP and ÄOT part of a loop-broken live range 58
Figure 5-8: TO/* and AOF part of a loop-broken live range in a complex loop 59
Figure 5-9: Removing the bottom part of a loop-broken live range 60
Figure 5-10: loop-continuous live range overlapping with both the BOT and TOP 61

set of a loop-broken live range
Figure 5-11: Removing the TOP part of a loop-broken live range 62

Figure 5-12: ' ths through a conditional
Figure 5-13: ' itinuous and broken ^GLOBAL live ranges
Figure 5-14: ping live ranges of one path to intervals
Figure 5-15: ^ arbitrary circular arc graph
Figure 5-16: Branch constructed from an arbitrary circular arc graph
Figure 5-17: Register conflict graph consisting ofLOEN/LOEX live ranges
Figure 5-18: Bipartite graph consisting of WEN and LOEX live ranges
Figure 5-19: Coloring a register conflict graph for a conditional that contains

only WEN and LOEX live ranges
Figure 5-20: Chords in a cycle
Figure 5-21: Examples of chorda! and nonchordal graphs
Figure 5-22: Conditional branch
Figure 5-23: Nonchordal register conflict graphs
Figure 5-24: Conditional br anch construct with chorda! register conflict graph
Figure 5-25: Chorda! r wier conflict graphs
Figure 5-26: Chordless ^de with local live ranges 1,2,3,4,5,6
Figure 6-1: Padding a hole of a broken live range
Figure 6-2: A broken live range and a non-interval register conflict graph
Figure 6-3: Fits for a hole
Figure 6-4: Different conflict graphs for different merge operations
Figure 6-5: Equal register conflict graphs for different merge operations
Figure 6-6: Perfect matches for a hole
Figure 6-7: Sequences of perfect matches
Figure 6-8: An imperfect match for a hole
Figure 6-9: Break of a hole
Figure 6-10; GandG'
Figure 6-11: GiandG2
Figure 6-12: Adding live ranges that contain the break
Figure 6-13: Clique separators to remaining conflict graph
Figure 6-14: Conditional branch with WEN and WEX live ranges and conflict

graph
Figure 6-15: Register conflict graph of branch derived from Figure 6-14 by

eliminating definitions and uses of variable c
Figure 6-16: Non-interval register conflict graph after merging all BLOC AL live

ranges
Figure 6-17: Register conflict graphs formed by WEN and WEX live ranges in

individual branch clauses
Figure 6-18: Interval register conflict graph after merging all BLOC AL live

ranges
Figure 6-19: l?2 related nodes
Figure 6-20: Difference between removing live range b and merging it with a in

original conflict graph
Figure 6-21: Merging all clique members of one branch clause
Figure 6-22: Merging larger clique of one branch clause with smaller clique of

other branch clause
Figure 6-23: Merging larger clique of one branch clause with smaller clique of

other branch clause
Figure 7-1: Phases of the structured global register allocator
Figure 7-2: Outline of Phase 2
Figure 7-3: Outline of Phase 3
Figure 7-4: Livermore loops: basic blocks

64
65
67
68
69
70
71
71

72
73
74
74
75
76
77
80
81
81
83
84
84
85
87
88
89
89
90
91
92

93

94

95

96

97
98

99
100

100

105
106
106
107

VI

Figure 7-5:
Figure 7-6:
Figure 7-7:
Figure 7-8:
Figure 7-9:
Figure 7-10
Figure 7-11
Figure 7-12
Figure 7-13
Figure 7-14
Figure 7-15
Figure 7-16
Figure 7-17
Figure 7-18
Figure 7-19
Figure 7-20
Figure 7-21
Figure 7-22
Figure 7-23
Figure 7-24
Figure 7-25
Figure 7-26

Figure 7-27

Livermore loops: number of live ranges
Livermore loops: nesting depth
Numerical recipes: basic blocks
Numerical recipes: number of live ranges
Numerical recipes: nesting depth

WARP examples: basic blocks
WARP examples: number of live ranges
WARP examples: nesting depth
Simplification of conditionals in Livermore loops
Simplification of conditionals in Numerical Recipes examples
Simplification of conditionals in WARP and praph programs
Chromatic numbers: Livermore loops
Chromatic numbers: Numerical Recipes
Chromatic numbers: WARP and graph programs
Farallelization via clique separators
Chosing a small separator clique
Separator cliques and accumulated live ranges for svdcmp
Separator cliques and accumulated live ranges for back
Separator cliques and accumulated live ranges for filtering
Separator cliques and accumulated live ranges for select
Separator cliques and accumulated live ranges for jacobi
Separator cliques and accumulated live ranges for Livermore
Kernel 15
Separator cliques and accumulated live ranges for Livermore
Kernel 22

108
108
109
109
110
110
111
111
113
113
114
115
115
116
118
119
120
121
122
123
124
125

126

vu

List of Tables

Table 7-1: Node merging to eliminate holes HI

Chapter 1

Introduction

Optimizing compilers can produa Ty efficient code but incu» a high compilation cost To hide the

details of complicated architectures ^sm ikf use* ant .t the same time take advantage cf a machine's

processing power, compilers for such machines must optimize extensively. Compiler optimizations consist

of machine independent optimizations that are useful for every backend and machine dependent

optimizations tailored to specific architectures. Global compiler optimizations are inherently expensive

because they potentially depend on the flow of data in any part of a program. The name suggests that

optimizing compilers produce optimal code, and given a specific input program and a specific machine,

theoretically it is possible to produce optimal code. In practice however, optimal code can hardly be

achieved. The reason is that a number of individual global compiler optimizations are NP complete, so

finding an optimal solution for one such optimization can require exponential compilation time. In

addition, corrpiler optimizations interact with each other and therefore optimization times are non trivial

even when the resulting code is not optimal. For some optimizing compilers, compilation times measured

in hours are not unusual [GrossZobel 89]. This is not surprising when one considers the hard problems that

must be solved for example by a compiler for pipelined machines [Lam 88], machines with complicated

memory organizations or vectorized machines [Sites 78a, Sites 78b, KuckKuhnEtAl 81]. The trend

towards high compilation times is even more evident in compilers for MIMD machines: compilers for

MIMD machines must generate efficient code for a number of (potentially different) processors.

Ultimately, compilers will be one of the major bottlenecks in the software development cycle.

1.1. Motivation

The focus of this thesis is to investigate parallel frameworks for global compiler optimizations. We chose

to investigate the parallelization of global compiler optimizations for two reasons. The initial motivation

was the need to speedup compilation. In most optimizing compilers, global optimizations and code

generation account for most of the compilation time, so 10 speedup the compilation process most

effectively, the parallelization of global optimizations and code generation must be considered. Unlike

code generation, most global optimizations are independent of the target machine, so their parallelization

can be incorporated into any optimizing compiler.

The second motivation was to study the interactions between program structure and the characteristics of

global optimization problems. In a mathematical sense, many global optimization problems are NP

complete. One reason why some global optimization problems are so hard to solve is that the data for such

optimf lations is processed independently of the input program. One example of such an optimization is

global register allocation: a widely used approach to global register allocation is based on graph coloring.

For ? given input program, a graph denoting register conflicts is constructed and an optimal assignment of

registers to live ranges in the program is equivalent to an optimal coloring of this graph. Finding a parallel

firamework in which it is possible to partition thi, ^raph into independent components that can be colored

individually is hard when only the graph is considered. In this thesis, we examine whether knowledge

about the structure of the ir^ut program can be used to detect locality in the data processed in global

compiler optimizations that can be used to detect data parallelism.

1.2. Paradigms for parallelism

The parallel ization of an algorithm is useful only if certain conditions are met First, given the solution (f

sequential algorithm for a problem, the solution of the parallel algorithm for the same problem must be at

least as good as the sequential solution. In other words, for the purpose of this thesis we do not L'cept

decrease of the quality of the parallel solution in return for parallel speedup. Second, it must be ensured

that partial results can be combined to a global result without compromising the quality of the global result

If for instance the solutions for small components are optimal, we require that the combination of the

individual optimal solutions results in an overall optimal solution. Third, the re-combinatioii of partial

results to an overall result must be fast enough such that parallel speedup is not offset by the post

processing time required for re-combination.

1J. Benefits of data parallelism

The research for the paralleiization of a given problem consists of developing an algorithm that partitions

the data into components that can be processed independenüy. The paralleiization of a given problem

requires the careful analysis of the problem; in many cases this leads to a better understanding of the

problem itself which can lead to an improvement of sequential algorithms as well. Partitioning the data

into independent components has advantages for both parallel and sequential implementations, because

smaller subcomponents of the input are processed independently.

Divide and conquer:

Given polynomial running time for a sequential algorithm, partitioning the data into independent smaller

subcomponents allows the reduction of the overall running time even when the algorithm runs sequentially.

Because polynomial running time (at least Oin2) where n is the size of the input) grows non-lincariy with

increasing problem size, solving smaller problems is cheaper than solving larger problems. This advantage

becomes even more apparent when NP complete problems are considered; dividing a problem into smaller

components has the result that without increasing the overall running time, more effort can be spent to find

a good solution for the individual components; this means that expensive heuristics or even exhaustive

search can be applied if the subproblems can be made small enough.

Firallel speedup:

Given the points at which the data can be partitioned, the parallel speedup depends on several factors:
1. An upper bound for the theoretical parallel speedup: The maximal number of processors that

can operate concurrently for a given problem is an upper bound for the theoretical parailcl
speedup.

2. Upper bounds for the observed parallel speedup: For a given parallelization, the total
sequential processing time divided by the maximal processing time of the parallel tasks is an
upper bound for the maximal parallel speedup that can be observed. Both the amount of
communication between concurrent processes, rtre time to setup the parallel execution and the
postprocessing time limit the actual observed pirallel speedup. Systems overhead such as bus
contention, scheduling overhead, parallel startjp time etc. are problem independent factors
that limit the observed parallel speedup.

A successful parallelization of an algorithm therefore consists of two parts, the data partitioning of the input

and the parallelization itself.

1.4. Data parallelism based on program structure

Global compiler optimizations are inherently hard to parallelize because potential interactions between

any two parts of the input program are possible. Due to these interactions, the data that must be processed

in global optimizations is highly interconnected and there is no simple way to detect data partitioning

points. The research focus of this thesis is to establish the role of program structure for the partitioning of

data that is processed ii? global compiler optimizations. We are more interested in developing firameworks

in which data partitionings can be found in a methodic way, and the thesis claim is that this method to find

data parallelism is based on the structure of the input program.

1.4.1. Two types of global compiler optimizations

We distinguish between two types of global compiler optimizations: structured and unstructured

compiler optiniizations. In structured global compiler optimizations the basic blocks of a program are

processed in a particular order that is based on the parse tree of the input program. Examples of structured

compiler optimizations arc optimizations that operate based on a program's loop structure such as

vectorization and software pipelining and all data flow problems. Data flow problems can be skived in

polynomial time, and there exist several algorithms that take advantage of locality of the data in loops: the

partial results for an inner loop need not be recomputed for the data flow analysis of the enclosing loop.

Note that in this type of optimization algorithms, backtracking across loop boundaries is usually not

applied.

The difference between unstructured and structured optimizations is that in unstructured optimizations the

order in which the data of the input program is processed is independent of the parse tree. In general data

partitioning based on the parse tree of the input program does not yield independent components. In global

register allocation, an example of an unstructured global compiler optimization, it is generally not the case

that the partial solution for an inner loop can be incorporated into the sohttion of the enclosing loop without

re-computation. The lack of easily detectable data locality greatly influences possible parallelizations of

such a problem. The challenge for such optimization is to find a model that permits us to incorporate

enough knowledge about the specific problem instance such that data partitioning points can be found,

though usually not at locations that coincide with loop or conditional entries and exits.

1.5. Two representative optimizations

To assess how much parallel frameworks for global compiler optimizations depend on program structure,

we develop parallel frameworks for both a structured and an unstructured glooal compiler optimization.

We concentrate on interval analysis of global data flow problems and on global register allocation as

representatives for both classes. This choice was guided by the generality of both optimizations; both are

machine independent and important optimizations used in a number of optimizing compilers.

Lf.l. Parallel interval analysis of data flow equations

Interval analysis provides a structured framework for all global data flow problems. The purpose of

global data flow analysis is to collect information about the flow of data for every basic block in a program.

Global data flow analysis is prerequisite for all global compiler optimizations. Some optimizations like for

instance dead code removal or common subexpression elimination change the data flow information and

therefore global data flow analysis must be carried out several times during global optimizations. A

parallelization of interval analysis can be expanded to a pa» allelizauon of all flow problems.

Data parallelism based on explicit program structure

In global data flow analysis, locality of data is given explicitly by the loop structure of a program.

Interval analysis is a method in which the data flow information is gathered on a per-loop basis, starting

with the innermost loops. The data flow information for an inner loop need not be re-computed for the data

flow information of the enclosing loop so in other words, interval analysis does not require backtracking.

The loop structure of the program is the basis for the data partitioning for our parallelization of interval

analysis. Because data locality is given explicitly by the loop structure, our parallelization of interval

analysis is straightforward. We evaluate our approach by a parallel implementation and present our

measurements of the parallel speedup over a standard sequential implementation

1.5.2. Data partitioning in global register allocation

Global register allocation is the problem of mapping variables and temporary variables created by

compiler optimizations to registers efficiently. Because access times to registers are considerably lower

than access times to memory, it is desirable to keep as many variables as possible in registers during

pngram execution. Registers are a scarce resource on every computer architecture, therefore the number

of registers is usually no sufficient to hold all variables of an input program. Optimal global register

alloction is mathematically equivalent to finding an optimal coloring for an arbitrary graph and therefore

NP complete, but there are certain types of graphs for which am optimal coloring can be found in

polynomial time. Interval graphs can be colored optimally in linear time and are particularly important in

the context of parallel global register allocation via graph coloring for twc reasons. First, many register

conflict graphs contain portions that are interval graphs, and second, it is easy to partition interval graphs

into clique connected components that can be colored independently. An overall coloring of clique

connected components can be obtained by renaming only; re-computing partial results is not necessary

[Tarjan 85].

While for interval analysis data locality is given in a natural way by the loop structure of the input

program, finding a data partitioning for global register allocation is not straightforward. The focus of the

thesis research in parallel global register is the development of a structured model for data partitioning

based on clique separators in the register conflict graph. Knowledge about program structure is used to

detect interval portions of the register conflict graph in which clique separators can be found

systematically. Non-inferval portions of the register conflict graph are manipulated such that the derived

graph is an interval graph. Once ihe interval portions of a register conflict graph are known, partitioning

the conflict graph via clique separators and the parallelization are straightforward.

The evaluation of our method to detect clique separators in register conflict graphs focusses on

determining whether the model is powerful enough to detect enough clique separators in the register

conflict graphs of real programs.

1.6. Approaches to parallel compilation

The coarsest level of parallelism in compilation is parallel system building. Prerequisite for parallel

system building is separate compilation. A system that consists of several modules is composed to a runfile

at link time - each moule can be compiled in parallel before linking. Optimistic make [BubZwaen 92], a

system that distributes the compilation of individual modules applies this level of parallelism.

The compiler used in parallel system building is still sequential - the next level of parallelism in

compilation is to turn a sequential compiler into a parallel program. The coarsest units of parallelism are

procedures and functions. If procedures and functions are to be compiled independently, inter procedural

optimizations have to be curtailed. This type of parallelization has been studied before [Frankel

83, GrossZobel 89]; it requires the compiler driver to dispatch the (sequential) compilation of each function

or procedure. This approach is very successful when inter procedural optimizations are curtailed because

then there are no dependencies between individual parallel tasks. Note that the core of the compiler still

runs sequentially.

The next level of parallelism is achieved by compiling units that are smaller than procedures in parallel.

Many research efforts focus on parallel parsing [Boehm 87, Klein 90, Fischer 75], the compilation phase

that is formally best understood. Both the parallel compiler developed at the University of Toronto

[Seshadri et al 88] and the parallel compiler described in [Vandevoorde 88] are examples of parallel one

pass compilers. The input program is divided into components during parsing, and each component is

processed independently through code generation. This method works well in practice for non-optimizing

compilers or compilers that apply local optimizations only. For global optimizations, interactions between

any parts of a program must be considered. Partitioning the input program at parsing time makes it hard to

predict the communication traffic between the components during the global optimization phase, so

potential parallel speedup is offset by interactions between the components during global optimizations.

To date, the parallelization of global optimizations has received little attention. Some efforts have

conentrated on the parallelization of global data flow analysis [LeeMarloweRyder 91, GuptaPollockSoffa

90], and approaches to perform global register allocation hierarchically or incrementally are indirectly

related to detecting data parallelism in the problem [GupSofSte 89, CallahanKoblenz 91].

What distinguishes this thesis from other approaches to the parallelization of global compiler

optimizations is the development of models that relate program structure to data parallelism. Main

conH'-'tion of this thesis is the development of a structured model for detecting data parallelism in global

register allocation. The novelty of the approach taken in the thesis is that program structure is used

systematically rather than heuristically. The analysis of boundary conditions between components that are

processed independently ensures that partial results are combined without compromising optimahty of the

overall result

1.6.1. Organization of the thesis

The remainder of this thesis is organized as follows. Our model of compilation and uasic definitions are

given in Chapter 2. The parallelization of interval analysis and the evaluation of a parallel implementation

are presented in Chapter 3. The bulk of the thesis is devoted to the model for structured global register

allocation. Terminology and basic definitions of the model are given in Chapter 4. In Chapter 5 we

demonstrate techniques that allow us to detect which portions of a register conflict graph are interval

graphs. Manipulations that can change a non-interval register conflict graph into an interval register

conflict graph are introduced in Chapter 6. The evaluation of the model for structured global register

allocation is given in Chapter 7, and we conclude by discussing the contributions in Chapter 8.

Chapter 2

Background

Goal of this thesis is to investigate methods to parallelize global compiler optimizations. We restrict our

input programs to well structured programs built firom a set of compound programming constructs. In this

chapter we introduce our model of compilation, and then give definitions of compound programming

constructs and well structured programs. The definitions given in this chapter will be used throughout the

remainder of the thesis.

2.1. A model for compilation

A compiler consists of one or several phases, some of which are formally better understood than others.

Before going into detail about the problems of parallel optimization, we present an "abstract" model of

compilation. This abstract model contains all important compilation phases and illustrates the

dependencies between the phases. A compiler implementation consists of a combination of the phases in

the abstract model. An enumeration of the phases in our compilation model is listed below.

Parsing and semantic checking
Derive the syntax tree firom the input and check for syntactic and semantic errors in the
program.

Intermediate code generation
Derive the intermediate language representation of the program from the syntax tree.
Partition the program into basic blocks and construct the program flow graph.

Local dataflow analysis
Perform data flow analysis within the basic blocks of the program. L-ocal data flow
analysis is necessary to perform local optimizations.

Local optimizations Perform optimizations within basic blocks.

Global dataflow analysis
Compute infün^tion about the flow of data in the entire program, i.e. across basic
block boundaries.

Global optimizations
Optimize the code across basic block isider the flow of control of the entire
program. Global optimizations inch dutal optimizations.

Code generation Generate code firom the (possibly opL .iennediate language representation and
convert the intermediate language representation into assembly code.

Assembly Produce machine code firom assembly code; perform peephole optimizations.

Figure 2-1 gives a view of the compilation model. In this figure, the boxes represent compilation phases,

and arcs between the boxes depict data dependencies between the phases. Every compilation starts with

10

parsing and
semantic
checking

intermediate
code generation

local data flow
analysis

local
optimizations

Figure 2-1: The compilation model

parsing uid intermediate language generation. Non-optimizing compilers enter code generation directly

after parsing and semantic checking. Data flow analysis and optimization occur after intermediate code

generation and before code generation. Optimizing compilers can be classified in one pass compilers and

multiple pass compilers. One pass compilers perform each stage of the compilation exactly once while

multiple pass compilers loop through the optimization phases several times, each time performing more

optimizations.

The shaded are of Figure 2-1 depicts the parts of the compilation process that are the research focus of the

thesis.

11

2.2. Input model

In out compilation model, global optimizations succeed the intermediate code generation phase, so the

input program has been divided into basic blocks and the program flow graph has been constructed. In

other words, the input to the global optimization phase are flow graphs constructed from the input program.

Throughout this thesis, the smallest unit of parallelism is a basic block, defined as follows:
Definition 1: (Basic block) A basic block consists of a nonempty set of instructions il,...4H such

that no instruction L e {jj^i} is a jump instructii m. The last instuction in can be but need not
be a jump instruction. The first instruction ^ can but need not be the target of a jump instruction.

Note that our definition of basic blocks differs from the most commonly used definition of basic blocks

where the first instruction is always the target of a jump instruction and the last instruction is always a jump

instruction.

Before we give our definition of a well structured flow grapK we define individual programming

constructs that occur in well structured flow graphs.

Note that every basic block consists of a strtight line code sequence, and that basic blocks can consist of

as few as one instruction. Because we do not require that the last instruction of a basic block be a jump

instruction, we define straight line code in terms of basic block sequences.
Definition 2: (Straight line code) Straight line code is a directed graph consisting of basic

blocks bj,...^ such that all ft(6 [b^...^} are connected and each b^ [bi,...JbH] has exactly one
incoming and one outgoing edge.

Definition 3: (Loop) A loop is a directed graph consisting of a loop head h, a loop exit e and a
loop body. The loop body can consist of straight line code, a conditional branch or a loop. A
cycle in the loop contains A iff it contains e.

Figure 2-2 shows some examples of loops. The leftmost construct is a nested loop, the loop in the middle

consists of a single basic block, and the rightmost loop consists of a conditional statement

Figure 2-2: Examples of loop constructs

Definition 4: (Conditional branch) A conditional branch is a directed graph consisting of a
split node, a join node and a set of branch clauses. A branch clause consists of either straight line

12

code, a loop or a branch. No computations are performed in either the split or the join node.
Each branch clause contains a node s such that there is an edge from the split node to s. Each
branch clause contains a node e such that there is an edge from e to the join node.

The split node and the join node are "imaginatory" basic blocks in which no computation takes place.

Given a node n in a flow graph that has more than one outgoing edges that are not backedges, we insert £

new node 5 and an edge from n to r, all forward edges originating at n originate from the newly introduced

node s. Given a node m in a flow graph that has more than one incoming edges that are not backedges, we

insert the join node j, re-direct all forward edges that go into m into ; and insert an edge from ; to m.

Because no computations are performed in s and;, the data flow information does not change for any basic

block in the original flow graph. We will use the split and join node to distinguish between li"e ranges of

variables that occur in conditionals in our model for global register allocation.

Figure 2-3 shows a conditional branch with split node 50', join node B8' and two branch clauses. The

first branch clause consists of a conditional branch consisting ofBl,B2,B3and B4 with inserted split and
joinnodeß/' and 54', the second branch clause consists ofa loop, formed by 55,56 and B7. Thesplitand

join nodes have been insmed into the original flow graph; this is indicated by representing them as circles.

BO

Figure 2-3: A conditional branch

Note that our defmition of conditional branches requires one unique split node S and one unique join node

/ per conditional The pair <SJ> uniquely identifies a conditional. Note that the number of branch clauses

is unlimited. Thus, a case statement is just an example of a conditional branch.

We now give the formal definition of a well structured flow graph.

13

Definition 5: (Well structured flow graph) A well stnicturcd flow graph is a directed graph
consisting of basic blocks and a set of edges, such that

1. There exists one unique basic block called the program entry which dominates all other
basic blocks in the flow graph.

2. There exists one unique basic block called the program exit which has no Outgoing
edges

3. The graph derived firom the flow graph by removing the program entry and the program
exit and all edges incident to those nodes consists of a sequence of pieces of straight line
code, loops and conditional branches.

23. Chapter summary

We have introduced our model of compilation and defined our input model for global optimization. We

restrict our input to well structured flow graphs that consist of straight line code, loops and conditionals.

Throughout the thesis, we refer to the definitions given in this chapter whenever ont of those terms is used.

14

Chapter 3

Parallel Interval Analysis

In this chapter, we describe the development of a parallel framework for global data flow analysis.

Global data flow analysi > is a prerequisite for all global compiler optimizations. The purpose of global data

flow analysis is to collect information about the flow of data for every basic block in a program flow graph.

Given a program flow grsyh with n basic blocks, the time complexity of solving a global data flow problem

is 0{n2). From a theoretical standpoint this is small; the reason why global data flow analysis can account

for a considerable portion of the overall compilation time is that global data flow problems must be solved

many times in the course of global optimization.

Interval analysis is a framework for global data flow analysis in which the basic blocks of a program are

processed in a particular order. The reason why interval analysis is a good candidate for parallelization is

that the data processed during interval analysis can be partitioned into independent pieces in a natural way.

The data flow information for non-nested loops can be computed independently and embedded into an

overall result without backtracking. This leads to a strai^itforward parallelization of interval analysis: the

loop structure of the program dictates the partitioning of the data for the parallelization. A number of

global optimizations that opTste on loops of a program fit into the same parallel framework; one example

is loop vcctorization. To assess the effectiveness of this simple parallelization we implemented parallel

interval analysis for the solution of a data flow equation and measured the parallel speedup for a set of

benchmark functions.

After a brief introduction of interval analysis, we describe our parallel framework for interval analysis

and its implementation. We discuss approximations to the optimal parallel speedup and conclude the

chapter with the description of our implementation and the presentation of measurements of the observed

speedup for a benchmark of functions.

3.1. Introduction to global data flow analysis

The purpose of global data flow analysis is to compute global information about variables and

expressions in a program. Global data flow problems are formally well understood, and there exist a

number of different frameworks for the computation of data flow information. The most common

techniques for global data flow analysis are discussed in [Kennedy 81]. In this section we give a brief

introduction to data flow analysis and interval analysis. We illustrate oar introduction with an example of a

data flow problem.

15

Data flow analysis problems can be divided into two classes:

Class 1 Given a basic block & in the flow graph, what can happen before control reaches b, that
is. what definitions can affect computations at b.

Class 2 Given a basic block ft in the program, what can happen after control leaves b, that is,
what uses of expressions can be affected by computations at b.

Class 1 problems are known as forward flow problems, class 2 problems are called backward flow

problems. An example of a class 1 problem is availability analysis, a typical class 2 problem is liveness

analysis.

Global data flow problems can be formulated as a set of data flow equations. The core of global data

flow analysis is to find solutions for those equations.

The simplest approach to data flow analysis is to iterate through the nodes of the flow graph applying the

appropriate equations until no changes take place. If the number of nodes in the flow graph is n, the

iterative aljorithm requires Oin2) steps for the entire computation [Aho 84].

Interval analysis is a method to solve data flow equations that takes advantage of the locality of the flow

information in loops. Interval analysis consists of two passes. In Pass 1 of interval analysis, local

information for each basic block is determined in a form suitable for solving the equations. Once the local

properties of all basic blocks are known, the second pass determines the interactions with other basic

blocks. After Pass 2 is finished, we know how each basic block is affected by the instructions of every

other basic block.

3.2. Interval analysis: background

IntCTval analysis operates on regions or intervals of a flow graph in a specific order. Intervals capture

loops in a flow graph, more formally:

Definition 1: (Interval) Given a flow graph G with basic blocks B, an interval in G is defined to
be a set of basic blocks /c-0 with the following properties:

• There is a node he I, called the head of /, which is contained in every path from a block
outside / to a block within /. In other words, / is a single entry region.

• / is connected.

• /- {A) is cycle-free; i.e., all cycles within / must contain h.

The order in which nodes are added to an interval I is called interval order. The interval order is

significant, in that if nodes of I are processed in interval order, a particular node will be treated only after

all its predecessors have been processed.

Intervals correspond to loops in the program. The intervals of the original flow graph represent the

16

innermost loops. The graph derived from a flow graph G by replacing the set of nodes that form an interval

by one node representing the interval is called a derived flow graph of G. dore formally:
Definition 2: (Derived flow graph) Given a flow graph G with initial node n0, the derived flow

graph /(G) is the following graph:
1. The nodes of/(G) are the intervals found by interval partition of G.

2. If / and AT are two intervals, there is an edge from / to A" in /(G) if and only if there exist
nodes n e / and nte /T such that nA is a successor of iij in G.

3. The initial node of/(G) is the interval including n0.

Given a node /i in a flow graph G, the interval / for A is built by adding all basic blocks of G not in /

whose predecessors are already in the interval /; the detailed algorithm is given in Figure 3-1.

Input: The specified head h.
Output: maxjntervalfh]
begin

I := ih);
while 3xe (SM-f) such that P[z] c /

do
/ := {A};

od;
maxjntervalfh) :•= /;

end

Figure 3-1: Algorithm to construct the maximum interval foe a given head

Figure 3-2 shows a flow graph - the shaded areas depict the initial partition into interval«. Note how each

individual loop is captured in one interval.

Interval partition is repeated until the derived graph consists of only one single node, called the limit flow

graph. We call the sequence of graphs derived by repeated interval partition that starts with a flow graph G

the derived sequence of G.

Irreducible flow graphs

Flow graphs, for which a limit flow graph that consists of only one node does not exist, are called

irreducible. Flow graphs, whose limit flow graph consists of only wie single node, are called reducible.

Flow graphs of we'' structured programs are always reducible, and there are techniques for changing

irreducible flow graphs into reducible flow graphs [Aho 84]. For the purpose of this thesis we assume well

structured programs, hence we do not address the irrcducibility of flow graphs in the remainder of this

chapter.
Definition 3: (Derived sequence of a flow graph): Given a flow graph G, the sequence of

graphs iG0,Gv...,Gm) is called the derived sequence for G if

• G = G0

• G- is derived by interval partition from G;.y V/e [l,...jn}

• Gm is the limit flow graph for G0

17

Figure 3-2: A flow graph and its initial interval partition

first derived graph

limit flow graph

Figure 3-3: Sequence of doived graphs

Figure 3-3 shows the derived seq-rnce for the flow graph depicted in Figure 3-2. The shaded regions of

the flow graph graph shown in Figure 3-2 depict the intervals after the first interval partition, which are the

nodes of the first derived flow graph. The second generation of interval partition yields the limit flow

graph.

Interval partition gives rise to a two-pass algorithm for data flow analysis. In the following, the method is

discussed as it applies to an availability system.

18

32.1. Availability analysis

An expression e is said to be available at a basic block * in the program if it has been computed before

control reaches b, and none of its operands have been destroyed between its computation and b. Local

availability means availability within one basic block, global availability means availability within the

entire flow graph.

An expression e is redundant at point p if c is available on all paths that lead to p. Availability is one of

the key problems in program optimization because it allows to identify redundant expressions which may

be eliminated from the program.

We now introduce an availability system that was developed by Morel and Renvoise [MorelRenvoise 81].

We first explain the local properties of basic blocks which are needed to solve the availability system.

Up-transparency UTRANSP
A block is said to be up-transparent for an expression if the block does not contain any
modification of the operands of the expression, or if the first modification of an
operand of the expression occurring in the block is preceded by a computation of the
expression.

Down-transparency DTRANSP
A block is said to be down-transparent for an expression if the block does not contain
any modification of the operands of the expression, or if the last modification of an
operand of the expression occurring in the block is followed by a computation of the
expression.

Local availability COMP
An expression e is said to be locally available in a block i if there is at least one
computation of the expression in the block i, and if the instructions appearing in the
block after the last computation of the expression do not modify e's operands.

We will use AVINi to denote global availability upon entry of block i and AVOUTi to denote global

availability upon exit from block i. Further, boolean conjunctions are denoted • and fj, disjunctions + and

2^ respectively. In the following, let B denote the set of all basic blocks.

In this notation, an expression is available on entry to a block if it is available on exit from each

predecessor of the block. An expression is available on exit from a block if it is locally available, or if it is

available on entry to the block and down-transparent in this block. This leads to the following set of

equations for global availability:

AVOUT=COMP ^DTRANSP •AVINi

3-2.2. Pass 1 of interval analysis

During the first pass, local quantities COMP, DTRANSP and UTRANSP are computed for larger and

larger regions of the program. The algorithm II depicted in Figure 3-4 computes COMP, DTRANSP and

UTRANSP for an interval from their values for blocks in the interval. If G0, Gj, ... , Gm is the derived

sequence of flow graph G = G0, Pass 1 consists of applying algorithm II to each interval in G0, then to each

19

Input an interval I with head h
COUP,,DTRANSPtand VTRANSPJor eachxe I

Oulpm: COMPp DTRANSP, and UTRANSP,

Miscellaneous: Smx(x) are the successors ofx

Method:

begin

COMPi*COMPh;
UTRANSPf=DmANSPk;
UTRANSPf=UTRANSPk;

for all x€/-{*) do
for all ye Succ{x) do

COMP^COMP^UTRANSPi)*COMP}

od;
od;
for all xel-lh] do

DTRANSPj*

od;

(DTRANSP,+UTRANSP^DTRANSP,
'ANSP/*
(UTRANSPfDTRANSP ^UTRANSPt

UTRANSP^

end

Figure3-4: Algorithm//

interval in G,. and so on. When G., is reached. COMP, DTRANSP and UTRANSP will have been

computed for each node in the derived sequence of graphs.

32.3. Pass 2 of interval analysis

Input: an interval I with head h

Output: AVIN and AVOUTfor all members of I

Miscellaneous: Pred(x) are predecessors ofx

Method:

begin
for all xe I in interval order, starting with the head h do

AVW.-H. Predix)^^
AVOUT =COMP*DTRANSP »AWN±

od;
end

Figure 3-5: Algorithm 72

During the second pass, AVIN and AVOUT are computed for smaller and smaller regions of the program.

20

If x* denotes the single node in Gm, Pass 2 begins with the assignment AVINX' = TRUE. The remainder of

the pass consists of repeated application of algorithm 12 shown in Figure 3-5, which computes AVIN and

AVOUT for each node in an interval /, given correct AVIN and AVOUT sets for the entry to / and to each

successor / of /. 12 is applied first to the interval of Gm, then to the intervals of Gm.; and so on until AVIN

and AVOUT have been computed for every node in the original graph G.

33. Parallel interval analysis

The key idea in our parallelization of interval analysis is that disjoint intervals contain disjoint sets of

basic blocks and therefore may be treated independently. Another important observation is that an interval

/ in the i-th derived flow graph depends only on a subset S of the basic blocks. Thus, not only the nodes of

the i-th derived graph G, but all nodes in G0, Gj G, independent of 5 may be processed in parallel with

interval /.

Recall that during Pass 1 algorithm II is applied first to the nodes of the original flow graph, then to the

nodes of the first derived flow graph etc. Thus, the level of parallelism decreases as we progress through

the sequence of derived flow graphs. In Pass 2, algorithm 12 is first applied to the limit flow graph, then to

the previous derived flow graph etc. Therefore the level of parallelism in Pass 2 increases as we progress

through the (reversed) sequence of derived flow graphs.

The order in which the nodes of the derived sequence are processed corresponds to a postorder traversal

of a tree composed of the nodes in the graphs of the derived sequence, calltd complete interval tree.

Definition 4: (Complete interval tree) Given a program flow graph G and its derived sequence
[G0,Gi^'.,Gm], the complete interval tree of G is a tree with the following properties:

• The leaves of the tree are basic blocks.

• Every node in the tree corresponds to an interval in a graph in the derived sequence
{Go.Gp.-.GJ.

• There is an edge from node / to node AT iff the interval J of derived flow graph Gm

contains the interval K of the previous derived flow graph Gm.7.

• The root of the tree is Gm, the limit flow graph.

Eliminating redundant nodes from the tree

Figure 3-7 shows a complete interval tree in which each node n has an associated weight that equals the

number of leaf nodes in the subtree rooted by n. The weight of a node corresponding to an interval is

therefore the number of basic blocks in that interval The intervals of the i+7st derived flow graph are

composed of the nodes of the ith derived flow graph.

The sequence of the derived flow graphs reflects the loop structure of a program: the first derived flow

graph reflects the innermost loops, the second level loops that enclose the innermost loops etc. So the

weight of intervals containing the basic blocks that form loops increases with the index of the derived flow

graph.

21

Figure 3-6: Example complete interval tree

Figure 3-7: Weighted interval tree

Looking at our example in Figure 3-7, the associated weight of nodes in the leftmost branch of the tree

does not change until the root. Thus, in each iteration of building the derived flow graphs the intervals

represented by the leftmost nodes in the tree contain the same one basic block. Therefore, the data flow

information for these nodes does not change from one iteration to the next This suggests the following

elimination rule: Nodes of the i+ist derived flow graph that have only one child (i.e. whose weight is no

largo- than the child's weight) need not be reconsidered during the flow analysis pass and can be eliminated

from the complete interval tree. Figure 3-8 depicts the same complete interval tree after all nodes that do

not change the data flow analysis information have been eliminated. Eliminating redundant nodes from the

complete interval tree means to avoid unnecessary overhead of scheduling redundant nodes during

processing.

The complete interval tree is the basis of our parallelizatjon of interval analysis. Algorithm II is applied

22

Figure 3-8: Interval tree after elimination

to the complete interval tree bottom up, starting at the leaves of the tree, computing the COMP, DTRANSP

and UTRANSP sets of the program for bigger and bigger regions of the flow graph. Upon completion of

algorithm 11,12 computes the AVIN and the AVOUT sets of variables for smaller and smaller regions of the

program, starting at the root of the complete interval tree (which denotes the entire program) and ending at

the leaves of the tree.

The order in which algorithms II and 12 have to be applied to the nodes of the complete interval tree is

only restricted by the parent/child relations of the nodes. In Pass 1, a node / can only be processed after all

its successors have been processed. In Pass 2, a node / can only be processed after all its parent nodes have

been processed. Therefore, all nodes that are not ancestors or descendants of each other can be processed

independemly. The execution of nodes that are in ancestor relationship must be synchronized.

3.4. A model to approximate the amount of parallelism in parallel interval analysis

Assuming that the processing times for each individual node are known, the minimal processing time for

a given complete interval tree is bounded by the longest path firom the root to a leaf node, where the length

of a path is the sum of the processing times of its nodes, more formally:

Definition 5: (Length of a path in a complete interval tree) Given a complete interval tree T
with root R, nodes ^V and processing time t(n) for all nodes n e N, let p be a path firom a leaf node
to the root R consisting of W cN. Then, the length of p L(p) is defined as

L(P)= X Kn)

The formal definition of the minimal processing time is then:

Definition 6: (Minimal processing time for a complete interval tree) Given a complete interval
tree Twith root/?, let/* be the set of all paths from the leaf nodes of T" to the rootÄ. The minimal
processing time for T, t^T) is the length of the longest path among P:

tmin(n='rua[L(p)]pe P)

The most efficient parallelization processes the tree in minimal time and utilizes all processing elements

23

100% of the time. A tree structure as basis for parallelism does not permit 100% processor utilization if the

number of processing elements exceeds 1. The reason is that the root node can not be processed in parallel

with any other node, so all processors except one are idle when the root node is ready for processing.

The number of processors that can be used efficiently for processing a complete interval tree in minimal

time depends on the shape of the complete interval tree. Rgire 3-9 shows complete interval trees of

different shapes

Figure 3-9: Differently shaped complete interval trees

The three examples in Figure 3-9 represent the spectrum of shapes that complete interval trees can have.

The tree with the root labeled w is wide and flat Recall that the leaf nodes of complete interval trees are

the basic blocks of the program. A program that results in a complete interval tree of that form contains no

loops. A program that consists of one deep nest of loops results in a complete interval tree that looks like

the example labeled / in Figure 3-9: the innermost loop is found at the bottom of the tree, basic blocks that

are parts of the enclosing loops are accumulated on the way from the bottom to the root. The tree labeled p

is a perfectly balanced binary tree, resulting from several independent loop nests in the program.

Intuitively trees that arc wide and bushy can keep a large number of processors busy; trees that are long

and thin do not permit much parallelism. It is easy to determine the minimal processing time for a given

complete interval tree when the processing time for each node is known. Given an unlimited resource of

processors, every complete interval tree can be processed in minimal time. Given only a fixed number of

processors, it is hard to determine a priori whether a given tree can be processed in minimal time. The

following paragraphs address the problem of establishing a lower bound for the number of processors

needed to process a complete interval tree in minimal time. A formal definition of this bound is given

below:
Definition 7: (Parallel efficiency of a complete interval tree) Given a complete interval tree T

24

with minimal processing time t^, the parallel efficiency of T is the minimal number of
processors needed to process T in tmül.

The parallel efficiency of a complete interval tree 7 is a measure for the "amount" of parallelism in T. If

the parallel efficiency for a complete interval tree 7 is known, the speedup observed in a parallel

implementation can be analyzed appropriately. If for example the parallel efficiency of a complete interval

tree is p, and p'>p processors operate in parallel, there exists a schedule for executing the nodes in the

complete interval tree with p processors such that the speedup observed with p' processors does not exceed

the speedup observed with p processors. The reason is that only p processors can be used efficiently, any

additional processor is bound to be idle a lot of the time.

We start the discussion by showing some properties of complete interval trees that allow us to establish

an upper bound on the parallel efficiency of a complete interval tree.

3.4.1. Properties of complete interval trees

Basic blocks and nodes in the complete interval tree are the smallest units processed in parallel. Before

we reason about the parallelism in the tree, we state some properties of complete interval trees to rtducibk

flow graphs. These properties permit to compute certain bounds to the width and the height of such trees.

Lemma 8: Given a complete interval tree T in which all redundant nodes have been eliminated
by the elimination rule, every node in T that is not a leaf node has at least 2 children.

Proof: Each node in the complete interval tree corresponds to either a basic block in the flow
graph of a program or to an interval in the flow graph. Basic blocks form leaf nodes in the tree
and have no children. By the elimination rule, nodes that correspond to intervals that consist of
only one node do not occur in T. Therefore, only intervals that consist of at least two nodes are
represented. By construction erf complete interval trees, such nodes must have at least two
children.

Lemma 9: Given a complete interval tree 7 of a program flow graph G with n basic blocks, the
height of 7 is at most n.

Proof: Induction on n, the number of basic blocks. n=7: A flow graph consisting of one basic
block is equivalent to the corresponding limit flow graph, therefore the complete interval tree
consists only of one node and has height 1. n->n+7: Under the assumption that 7*s height is at
most n let G' be the flow graph derived from G by adding a basic block 6 at an arbitrary location.
The corresponding interval tree 7 can differ firom 7 as follows:

1. bis part of an inner loop, in which case the interval in G that corresponds to this loop
will consist of one more basic block - the height of T equals the height of 7

2. b starts a new interval and therefore T can have at most one more node - therefore the
height of r can be at most the height of 7+1 = «+1

Lemma 10: Given a complete interval tree 7 of a program flow graph G with n basic blocks,
the number of nodes in 7 is at most 2A- 1.

Proof: 7 is composed of basic blocks and nodes of the derived flow graphs. Each node in a
derived flow graph has at least two children, otherwise it would be eliminated by the elimination
rule. In die worst case there can be at most one node in any derived flow graph per basic block -
again because of the elimination rule. Further, there must be at least one interval that contains
two basic blocks. If the number of basic blocks is n, die total number of interval nodes is
bounded by n-1, hence the total number of nodes in 7 is bounded by 2«-7.

During the processing of a complete interval tree 7, only a subset of nodes are executable at any given

25

time. In the beginning, only leaf nodes are executable; an inner node n in the complete interval tree

becomes executable once all the nodes in the subtree rooted at n have been processed. Before we compute

an upper bound on the number of nodes in a complete interval tree that can be executable simultaneously,

we give a formal definition for that quantity.
Definition 11: (PAUSET of a tree) Given a complete interval tree T with minimal processing

time /_,,, let / < t-m. PARSETU) is the set of nodes in T that are executable at time t. pun' min ' '

Note that the size of the PAUSET of a complete interval tree is independent of the number of processors.

In the next lemma, we state that the PAUSET of a complete interval tree can not exceed a certain number.

Lemma 12: Given a complete interval tree 7" of a program flow graph with n basic blocks with
minimal processing time t^, PARSET(T)<n.

Proof: Case 1: PAUSET consists exclusively of basic blocks. In that case \PARSET(t)\ is
certainly at most n.

Case 2: PARSET consists of both interval nodes and basic blocks. Let AT be an arbitrary node in
PARSETU). Key observation in the proof is that while K is processed, PARSET(t) can not contain
any node in K's subtree or any node on the path from AT to the root Let PARSET(t) contain kj
basic blocks, fy nodes of the first derived flow graph *, nodes of the last derived flow graph.
By Lemmas 9 and 10, the number of nodes in the subtree of a node of rhtj-th derived flow graph
is at least 2i and the number of nodes along the path from that node is n-j. Thus the number of
nodes in PARSET(t) contains at most (2/i -1) - Xjso (*i *2i+n-j)£n q.e.d.

As a result of Lemma 12, our parallelization can keep at most n processors busy simultaneously if n is the

number of leaf nodes in the complete interval tree. There are cases in which the complete interval tree can

be processed in minimal time with fewer than n processors, where n is the number of leaf nodes of the

complete interval tree. This is illustrated in Figure 3-10. Under the simplifying assumption that every node

Figure 3-10: Minimal time with fewer processors than leaf nodes

requires the same processing time, the longest path from the root to a leaf node consists of nodes (1,3,5,7]

and therefore the minimal processing time for this tree is 4. The number of leaf nodes is 4, but the tree can

be processed in minimal time with just 2 processors; this is achieved by processing nodes {6,7}, then (4,5),

then {2,3) and finally the root, {1). The parallel efficiency of that tree is 2; we will show in the following

sections that computing the parallel efficiency for a given interval tree is NP complete; we conclude our

theoretical analysis by computing upper and lower bounds for the parallel efficiency of complete interval

trees.

26

3.42. Bounds on the parallel efficiency of complete interval trees

To be able to compute the parallel efficiency of a given interval tree, we must know the processing times

for all nodes. Usually, the processing times far different nodes in a realistic complete interval tree vary

considerably. In the following, we assume that for every node in the complete interval tree the computation

time is known.

The next lemma states that dersrmining the parallel efficiency of an arbitrary compJet? interval tree is NP

complete. We will show this by reducing optimal binpacking [Garey, MR. and Johnson, D.S. 79] to

computing the paralle. efficiency.
Lemma 13: Given an arbitrary complete interval tree 7", it is NP complete to determine the

parallel efficiency of T.
Proof: Let [w^^wj be an arbitrary sequence of packets. The bin packing problem consists

of finding the minimal number of bins with capacity c that hold [w^...^]. Given that sequence
of packets, we construct a complete interval tree as follows: the leaves of tree are basic blocks
[by b^n+i) such that the execution time for b^w-tfie {!,...,/») and the execution time for
bH+1=c, such that on^V/e {!,...,/»). The root of the complete interval tree consists of a node
with an arbitrary execution time, w^. The minimal execution time for that tree is then c+warb,
and the parallel efficiency is equal to 1 + (the minimal number of bins of capacity c needed to
pack {wj wj). Hence, finding the parallel efficiency of arbitrary complete interval trees is NP
complete.

If the execution time for every node in a complete interval tree is known, the length of the longest path

from the root to a leaf node in the tree is also known. To process the complete interval tree in minimal

time, there is a deadline for every node at which that node must be scheduled. Given the execution time

and the deadline for every node, each node can be mapped to a 2 tryit [t^) such that tj is the node's

deadline and k"*! + the node's execution time.

There are numerous ways to schedule the nodes in a complete interval tree such that the tree is processed

in minimal time. A schedule consists of a mapping of nodes of the complete interval tree to a tuple that

consists of processor and time, more formally:
Definition 14: (Schedule) Given a set of processors P, a complete interval tree with nodes N,

and minimal execution time tmin, the function 5 with

such that n is executable at time / and tH£d(n), where d(n) is the deadline for node n is called a
schedule for T.

The simplest schedule that allows to process a complete interval tree in minimal time is obtained by

scheduling every node as soon as it is executable. Thus, all basic blocks are scheduled at the beginning,

each on a distinct processor. This leads to our first upper bound for the parallel efficiency of a complete

interval tree, introduced in the next lemma.
Lemma 15: Given a complete interval tree T with * leaf nodes, the parallel efficiency of 7" is at

most 6.

Proof: By Lemma 12, PARSET(t)£bVt. Therefore, given b processors, there is always a

27

distinct processor for each executable node in 7, and 7" can be processed in minimal time.
Therefore, ö is an upper bound on the parallel efficiency of T.

It is easy to see that only for a complete interval tree T that is wide and flat, the number of leaf nodes is a

reasonable approximation of Ts parallel efficiency. For some trees, fewer processors are needed for

minimal processing time when every node is scheduled at its deadline, rather than when it is executable. In

such a schedule, the number of processors needed is equal to the number of nodes in the tree whose

execution interval overlaps.
Definition 16: (Execution interval of a node) Given a node n in a complete interval tree with

deadline td and execution time te, we say that we say that t^+^l »s the execution interval of n.
Lemma 17: Given a complete interval tree T with nodes N, the parallel efficiency of 7" is

bounded by the largest subset S^N such that the execution intervals of the nodes in 5 overlap.

Proof: Suppose that the size of the largest subset ScNisp, but the parallel efficiency of r is
p'>p. If every node in I" is scheduled at its deadline, certainly T is processed in minimal time.
Hence, there is a schedule using p processors in which T can be processed in minimal time.
Hence, the parallel efficiency of T is at most p - a contradiction.

We have seen that it is hard to predict how many parallel processors can be used efficiently, even if

implementation specific parameters are ignored. In a parallel implementation, system parameters can not

be ignored, and even if a complete interval tree has a large parallel efficiency, in reality only a number of

processors that is less than the parallel efficiency can be used effectively. We have implemented parallel

intervd analysis to assess how many processors can be used in parallel in practice.

3.5. Implementation: a test case

The goals of our implementation of parallel interval analysis were twofold. First, we wanted to assess the

suitability of a parallelization based on a program's explicit loop structure. From the previous section it is

clear that optimal parallel speedup for parallel interval analysis is hard to predict, even when system

parameters are ignored. Finding a perfect schedule to process a given complete interval tree in parallel

requires expensive analysis. Finding such a good schedule does not pay off in practice if the theoretically

optimal speedup is cancelled by implementation and system parameters. Further, it is hard to predict the

processing time of individual nodes in a complete interval tree accurately. Therefore, the second goal of

our implementation was to assess whether gt simple approach to scheduling the nodes of a complete interval

tree suffices in practice.

3.5.1. Implementation details

Our program for parallel interval analysis runs as C process under the Mach operating system on an

Encore Multimax system with 14 parallel processors [Multimax 88].

Even though our algorithm could be easily integrated into a production compiler, we wanted to study the

effects of parallel interval analysis in isolation. We chose to build an interface to a production compiler to

be able to obtain the flow graphs of real user programs without having to deal with the compiler's front end

and back end.

28

The GNU C compiler developed at the Free Software Foundation [Stallman 88] served as "host

compiler". A switch in the GNU C compiler causes the RTL representation of an input program to be

written to a file. Reading the RTL representation from that file and re-constructing the program's flow

graph makes our implementation completely modular the basic blocks in the flow graph can be globally

optimized, and the optimized RTL representation can be the input to the back end of dhe GNU C compiler

in a separate phase. We therefore can focus on the parallelization of interval analysis but are able to

combine our parallel implementation of interval analysis with (possibly parallelized) front ends and back

ends of compilers whose intermediate representation is RTL. The possibility to run parallel interval

analysis on any C program allows to assess the parallel performance for a realistic set of test cases.

Parallelism is expressed by means of the cthreads library [Cooper 88].

3.5.2. The scheduling algorithm

The central scheduling construct of the parallel optimizer is a ready queue: each node of the complete

interval tree that is ready to be processed is enqueued in the ready queue in arbitrary order. A two level

hierarchy of threads is active during StageS:

Master thread The master thread has two functions: first, it sets up the ready queue (initially all leaves
of the complete interval tree are scheduled) and forks a fixed number of server threads.
Second, it is responsible for load balancing: the master thread enqueues the next node
of the ready queue in the data queue of the server thread with the currently lowest work
load.

Server threads The server threads, each with its private data queue, execute concurrently. A server
processes the nodes enqueued in its data queue and enqueues new nodes into the ready
queue until it receives a lirmiikAtion signal from the master thread. Each node contains
status information. Depending on that status information, the server applies either
algorithm II (Pass 1) or algorithm 12 (Pass 2) to the node. During Pass 1, the server
notifies the parent of the currently processed node about the completion of the child. If
all children have finished the server enqueues the parent in the ready queue. During
Pass 2, the server enqueues all children of the current node into the ready queue.

Each thread (the master thread and all server threads) runs on a separate processor. It should be noted

that the master thread is merely a setup and load balancing agent and does not process any nodes of the

complete interval tree. Therefore, the best possible speedup is n-1 for n threads.

3.6. Results

Recall that our goal was to investigate how useful parallelism based on explicit program structure is in

practice, so we measured the parallel speedup for the solution of only one data flow equation. Multiple

pass optimizing compilers have to solve numerous data flow equations while the shape of the program

remains the same. Fo a parallel implementation this means that a substantial part of the parallel overhead

is independent of the number of equations solved. For multiple equations, task management,

synchronization and scheduling efforts remain the same while the (sequential) work performed at the nodes

of the complete interval tree is increased. As a result, better speedup can be anticipated if more equations

are solved.

29

We therefore did not attempt to implement a tool that perfonns exhaustive data flow analysis in parallel

but restricted our implementation to the availability system described in Section 2. By the previous

argument, if we can obsejve good speedup for that one equation, our approach to parallelizing interval

analysis can be successfully extended to global optimization problems that fit into the same framework.

3.6.1. The bendiuuu k functions

The amount of parallelism in our implementation is determined by the shape of the complete interval tree

which depends mainly on the size of the flow graph and the loop structure of the input program. We

therefore used benchmaric functions that differ in the number of basic blocks and contain nested loops, a

characteristic that is met by many scientific programs. We used a set of five C benchmark functions from

the scientific computing domain where the size of the flow graph varied between 30,64,176,207 and 2%

nodes (= basic blocks). In the following we will call those benchmark functions fjQ, fM, f176, f^ and f296.

3.6.2. Experiment description

Wc implemented both our parallelization and a standard implementation of sequential interval analysis

based on the algorithm described in [Kennedy 81], orthogonal to the paralW nplementation. It therefore

provides a basis for a fair comparison with our implementation of parallel inur. al analysis.

For all functions, we measured both the parallel and the sequential execution time. For the parallel

implementation, we varied the number of server threads (and therefore processors) between 2, 4, 6, 8 and

10. Recall that the master thread runs on a separate processor but is not involved in the work on the

complete interval tree. So the number of processors varied between 3, 5, 7, 9 and 11 but the best possible

speedup varies between 2,4, 6, 8 and 10. To ensure that all parallel processors are dedicated to parallel

interval analysis, we used the aUocatc_processor facility provided by the experimental Mach system

running on our Encore Multimax. This facility allows to allocate a fixed number of processors for a given

amount of time to a single user, possibly delaying the user until the system load allows the allocation. No

other user can use those processors during that time interval. This facility minimizes the interference with

other processes but does not eliminate it completely.

Each test was run multiple times. The numbers presented in this paper are the arithmetic mean of those

measurements. The deviations of the individual measurements are within 5% of the average.

3.6 J. Measurements

We measured the speedup of parallel interval analysis over a standard sequential implementation of

interval analysis. Before the server threads can start to execute in parallel, some setup work has to be

carried out
1. Initialization of the ready queue with all basic blocks

2. Allocation of processors

30

3. Forking of the server threads

In addition tc the setup time and the time actually spent processing the nodes of the complete interval tree,

the parallel execution time of parallel interval analysis accounts for task scheduling, task synchronization

and load balancing. In the following, the total parallel execution time for parallel interval analysis is called

Total . We measured the parallel setup time to perform steps 1.-3. and refer to it as 0^,.. Note that in

our implementation, these steps are carried out sequentially; to speedup the setup time, steps 1., 2. and 3.

could be curried out in parallel.

Our sequential equation solver uses the standard interval analysis algorithm and requires some

implementation specific setup work before the tree nodes can be processed. In the foUowing, this setup

work of the sequential implementation is called 0 and the total sequential time to perform Phase3 is

called Totalseq.

Since we implemented interval analysis for only one data flow equation, the amount of work performed at

each node of the complete interval tree is very small compared to a realistic optimizer. Therefore both the

sequential setup time 0... and the parallel setup time O.- account for an unrealistically large portion of

Total and Total respectively. To get a more accurate picture cm the performance of our

parallelization, we looked for a fair method to factor out both 0„r and Osai from the computation of the

parallel speedup.

On first sight it sounds plausible to subtract the parallel setup time Opar from the total parallel execution

time Totaler and 0 from Total respectively and use the resulting times to compute the parallel

speedup. However, the parallel setup time is in general larger than the sequential setup time since it

includes inherently expensive parts like for example processor allocation in a time shared multi user

system. We therefore decided to account only for the sequential setup time by subtracting Osjq from both

TotalBar and Total... and obtain the speedup by dividing the two resulting numbers as shown in the
par 9€ff

following equation:
Toiai -0

speedup==7:

In the next section, the speedup observed always refers to the speedup introduced in the previous equation.

3.6.4. Speedup over sequential interval analysis

We were able to observe parallel speedup for every ber ' mark function. The speedup varied with the

size of the benchmark function. Figure 3-11 depicts the speedup for f^ and f^. Recall that the best

possible speedup is at most p-i if we use /7 processors in parallel, since one of the processors is dedicated to

the master thread. For both functions the speedup increases with increasing number of processors and

decreases again when the number of processors exceeds 7 - an indication that scheduling overhead cancels

the parallel speedup for small functions. In general the observed speedup is disappointing even though it

increases for f^. The situation changes drastically for f176 shown in Figt -e 3-12. The speedup increases

almost linearly when the number of processors is small. We observe 5-fold speedup using 9 processors.

Adding more processors results in a decrease in performance.

31

a
3

1 a

I
V a

09

ben possible speedup

3 4 S 6 7 8 9 10 11 12
Number of processors

Figure 3-11: Speedup for small functions

best passible speedup

n76

6 7 8 9 10 11 12
Number of processors

Figure 3-12: Speedup for medium function

oest possible speedup

3 4 S 6 7 8 9 10 11 12
Number of threads

Figure 3-13: Speedup for large functions

Figure 3-13 depicts the speedup for f^ and f^. Adding basic blocks helps: functions fjgy and f296

show almost linear speedup and for both functions we do not have a "local speedup maximum", that is, the

speedup increases steadily with increasing number of processors.

32

3.7. Discussion of the observed speedup

Our measurements show that for functions that are large enough, the speedup over sequential interval

analysis is considerable. These results are particularly encouraging considering the simplicity of our

implementation: the setup woric is performed sequentially, the scheduling strategy is very simple, and we

were still able to observe up to 7-fold speedup using no more than 11 processors, one of which is dedicated

to load balancing and does not process any nodes of the complete interval tree. For all benchmark

functions, the optimal theoretical speedup is much higher than the observed speedup. For instance, a lower

bound of the parallel efficiency of the complete interval tree of our smallest example,/30, was 10. In other

words, when communication cost and system overhead are ignored, the parallel speedup should increase

for each added processor up to 10 processors, and it should decrease when more «han 10 processors execute

in parallel. The observed speedup depicted in Figure 3-11 shows that the observed speedup decreases when

more than 6 processors operate in parallel, so implementation and system overhead as well as

communication cost cancel parallel speedup w' en too many processors operate in parallel. We observed

the same phenomenon for our other benchmark functions and conclude that sophisticated methods to find a

good or even optimal schedule for the nodes in a complete interval tree does not increase the observed

speedup, and a simple scheduling strategy suffices foe good practical results.

3.7.1. Possibilities to increase the speedup

There are two possibilities to increase the effectiveness of parallel interval analysis. First, better parallel

speedup can be expected when the size of Uie input functions is increased. Second, implementation and

system overhead decreases relative to the total execution time when the workload in the nodes of the

complete interval tree is increased.

One way to increase the size of program flow graphs is to use procedure inlining if a program consists of

many small functions. Thus, even when the size of the flow graphs is small, our approach can yield good

speedup when combined with inlining, an important optimization in its own right. Further, many functions

consist of more basic blocks than our benchmark functions, and for such large functions, better speedup can

be expected.

Since we only implemented the solution of one data flow equation, the amount of work performed at each

node of the complete interval tree smaller than in a typical global optimizer. Since the parallel overhead of

parallel interval analysis is independent of the number of data flow equations even better speedup can be

expected if the number of equations solved is increased.

3.7.2. Application spectrum for parallel interval analysis

The intervals of a flow graph correspond to the loop stnicture of the program. Working on (independent)

intervals in parallel means that loops of the same loop nesting level are treated in parallel. Other global

optimizations that allow to treat program loops on the same nesting level independently can be mapped into

33

the same parallel framework. Examples are tlv; extension of interval analysis to handle arrays reported in

[GrossSteenkiste 90] and other methods for data dependence analysis used in vectorizing compilers. The

fact that we parallelized the solution of an availability system does not restrict our approach to just data

flow equations. Our measurements indicate that parallelism based on program structure can yiek1

significant speedup - independent of the specific optimization problem that is solved in parallel.

3.8. Related work

Other parallel algorithms for global data flow algorithms are reported in [LeeMarloweRyder 91] and

[GuptaPollockSoffa 90]. The parallel hybrid algorithm described in [LeeMarloweRyder 91] combines the

iterative technique with a structured method for data flow analysis. Maximal strongly connected

components in the flow graph are processed in parallel The iterative method is used to compute local data

flow information for each component, and in a subsequent propagation phase global data flow information

is computed for each component The communication between parallel processes in this approach is

greater than the communication required for parallel interval analysis. In the measurements of the parallel

speedup, the number of processors that execute concurrently is varied between 2 and 8. The best parallel

speedup reported in that paper is less than S.

Goal of the approach taken in [GuptaPollockSoffa 90] is to partition a program flow graph independendy

of program structure. A program is decomposed into single-entry-single-exit regions that can be smaller

than intervals, therefore the size of the parallel tasks can be chosen more evenly. No implementation or

parallel speedups are reported. This method has the potential to create more parallelism in global data flow

analysis, but it is not clear whether this parallelism can be taken advantage of in an implementation. Our

own measurements indicate that even the coarser grained parallelism in parallel interval analysis is

cancelled by system and implementation parameters when too many processors execute concurrenüy.

3.9. Chapter summary

Our parallelization of interval analysis is based on explicit program structure. Data locality is given by

the loop structure of the input program and can be exploited for the parallelization in a straightforward

manner. Basis of our parallel implementation is the complete interval tree which captures the interval

partitions of a program. It is NP complete to compute a lower bound on the number of processors needed

to process a given input program in minimal time, but we gave some simple approximations of this lower

bound. Our implementation used a very simple scheduling algorithm for the nodes in the complete interval

tree, and wc were able to observe considerable parallel speedup. Due to system and implementation

overhead, the speedup declined when too many processors operated concurrenüy. In all cases the number

of processors for which the parallel speedup declined was smaller than a lower bound on the number of

processors needed to process a complete interval tree in minimal time. We conclude that a straightforward

parallelization based on the loop structure of a program works well in practice, and that complicated

scheduling algorithms or efforts to create finer grained parallelism do not result in increased observed

speedup.

34

Chapter 4

Global register allocation: background

4.1. Introduction

In the previous chapter we showed a simple paraUelization of global data flow analysis that was based on

explicit program structure. Data locality was given by the loop structure of the input program and the

results for an inner loop could be embedded into the results for an enclosing loop without backtracking. A

number of global compiler optimizations do not fit into this framework because in general it is not possible

to embed a partial solution of one program construct into the enclosing loop or conditional without

backtracking. We call such compiler optimizations unstructured optimizations. An example of such an

optimization is global register allocation. Global register allocation is the problem of napping variables

that live across basic block boundaries to machine registers. The problem of optimal global register

allocation is mathematically equivalent to the problem of finding an optimal coloring for an undirected

graph representing register conflicts. Global register allocation via graph coloring is used in a variety of

compilers. In general it is assumed that the graph denoting die register conflicts of a program is an

arbitrary graph. Finding an optimal coloring of arbitrary graphs is NP complete.

Given a fixed number of processors, it is very difficult to come up with a straightforward parallelization

of an NP complete problem. The research goal for the second part of this thesis is to investigate whether

knowledge about program structure can be used to implicitly guide the parallelization of global register

allocation. In other wo we examine whether the knowledge about program structure can be used to

analyze the graph that represents register conflicts such that points can be found at which the graph can be

partitioned into independent components. The partitioning of the conflict graph into independent

components is based on clique separators, first introduced in [Tarjan 85]. The problem is that for arbitrary

graphs it is very difficult to detect clique separators.

The first step of our research is to establish a connection between program structure and register conflict

graphs. We propose a model in which structural knowledge about a program is encoded in the register

conflict graph. We thai use this knowledge to deduce characteristics of the partial register conflict graph

of individual loops and conditionals that are later used to detect clique separators in the conflict graph.

This chapter provides the background for our model. We first give some basic definitions and the

description of our input model We then introduce the standard method for register allocation via graph

coloring, followed by an example of a conflict graph that can not be colored with the standard method. We

conclude the chapter by classifying the live ranges that occur in loops and conditionals.

35

42. Global register allocation: basic definitions

Registers are a scarce resource on all modem computer architectures [Pat/Hen 90]. Optimizations like

common subexpression elimination, constant propagation etc. create temporaries that can be used most

efficiently if they reside in registers. Once a compiler has decided which variables and temporaries are to

be placed into registers, register allocation is the problem of mapping machine registers to variables and

temporaries such that runtime efficiency of the machine code is maximized. In general, variables and

temporaries are not used in every bask block of the program flow graph, but have local or global live

ranges.
Definition 1: (Local live range) A local live range of a variable v is a sequence of instructions

ij,... 4n such that ij is a definition of v, and »„ is the last use of v before a re-definition of v.
Further, all instructions of that sequence occur in the same basic block.

In general global variables or temporaries created by global optimizations are live across basic block

boundaries. Global data flow analysis determines for each basic block b which variables and temporaries

are live at the entry to the basic block [Aho 84]. Similar to local live ranges that consist of sequences of

instructions, global live ranges consist of sets of basic blocks. Because the exact order of instructicis

inside basic blocks is usually not known at the time of global register allocation, we assume that global live

ranges extend throughout the instructions of every basic block that is part of the live range. So in our

model, global live ranges start and stop at basic block boundaries. Our definition of a global live range is

based on the live range graph of a variable, defined below.

Definition 2: (Live range graph of a variable) Given the flow graph of a program consisting of
basic blocks B, the live range graph of variable a consists of vertices V and directed edges £. The
set of vertices of the live range gr^)h is defined asveViffvei* and a is live in v. The edges of
the live range graph are defined as e=(yx,v£e. E iff there is an edge from v, to v2 in the flow
graph and any definition of a in v2 is preceded by a use of a in V;.

The live range graph of a variable is the basis for our computation of live ranges:

Definition 3: (Live ranges of a variable) The live ranges of a variab'e a are the connected
components of the live range graph of a.

In other words, the live range of a variable is a contiguous set of basic blocks of the flow graph in which

the variable lives. A variable can have several independent live ranges. If variable a lives in basic blocks

bj and fr2, and fy and ^ are not part of the same live range, the variable can reside in different registers in

b1 and 62 respectively.

Figure 4-1 shows both a flow graph and the live range graph for variable a.

Variable a is live in basic blocks Bl, B2, 84, B5, the split node and B6. The live range graph for a is

depicted to the right Because there is a definition of a in B4 that is not preceded by a use of a, there is no

edge from B2 to B4 in the live range graph. For the same reason, there is no edge between 84 and 85 in the

live range graph. The connected components of the live range graph are {81 $2), {84}, {8536}.

Therefore, a has three distinct live ranges. The live range that consists of 54 is a local live range, the other

two are global live ranges.

36

B2

B1 data:

/
-A

\
UM a; B3 B2 Bi

B4

B5

Be

Figure 4-1: Sample live range

Local live ranges and global live ranges are mapped to machine registers in different phases - local

register allocation and global register allocation respectively. Sometimes, local register allocation is

performed fairly late in the compilation process, because some instruction reordering inside basic blocks

might be done by the code scheduler. Further, some compilers assume dedicated registers for global live

ranges.

One major difference between local register allocation and global register allocation is that local register

allocation is performed fa live ranges that consist of instructions that form straight line code. We will see

that optimal global register allocation can be solved efficiently for straight line code. Local register

allocation is often done at code selection time, and is in that case a non trivial task.

Because global live ranges consist of sets of basic blocks that may be part of loops or conditionals, the

register conflict graphs for global live ranges are more complex, and finding an optimal coloring for those

graphs is NP complete.

TTie research focus of this thesis is on global register allocation. Before we introduce our model of

structural global register allocation, we introduce register conflict graphs and the standard method for

global register allocation via graph coloring.

37

42.1. Standard method for global register allocation by graph coloring

The standard method for global register allocation via graph coloring operates on the register conflict

graph. Given a flow graph and for each basic block in the flow graph the set of variables and temporaries

that are live in the basic block, the standard register conflict graph is defined as follows:
Definition 4: (Standard register conflict graph) A standard register conflict graph G=(V£)

consists of vertices N and edges E. Each n e A' corresponds to a global live range. Two vertices
n;, /^ are connected by an edge e iff there is at least one basic block b such that b is part of both
live ranges n, and n2.

In other words, nj and n2 may co-exist during program execution and hence must be placed in
different registers.

Definition 5: (Chromatic number of a graph) The chromatic number of a graph G is the
minimal number of colors needed to color all nodes in G such that no two adjacent nodes have
the same color.

The most commonly used method to color register conflict graphs was introduced in [Chaitin 81] and

works as follows. Let it be the number of available machine registers and G be the register conflict graph.

A it-coloring of G based on the following observation: if G has a node n with less than k adjacent nodes, G

is A-colorable iff the graph G' obtained by removing n and all edges incident on n is /fe-colorable. Thus, all

nctes of degree less than k are removed from G until G' is empty or consists only of nodes with degree

greater than jt

If G' is not empty and no nodes can be removed from G', the standard method assumes that no it-coloring

exists few G, and that therefore not all live ranges can reside in registers at all times. The basic idea to solve

this problem is to remove nodes from G' and assume that the corresponding live ranges are stored in

memo ather than register-. The node removal process is repeated on the altered graph until a ^-coloring

is found.

This algorithm is used for many implementations of global register allocation [KilLar 86, Wall

86, ChowHen 90]. In the following we will refer to this coloring method as the node removal technique.

42.1. Shortcomings of the node removal technique

In the standard node removal technique, the decision of which node is removed next is guided by the

number of outgoing edges. Two nodes n. and n2 that are removed from the graph in sequence might

correspond to live ranges of unrelated parts of the flow graph - the program structure does not play a role in

the overall coloring process. Further, there exist register conflict graphs that are it-colorable, but in which

each node has at least k neighbors, so the node removal technique is not able to produce a ^-coloring. See

for instance the graph depicted in Figure 4-2.

Figure 4-2 shows a register conflict graph in which each node has at least 3 neighbors. Given the number

of available register is 3, the node removal technique decides that at least one of the nodes must be spilled

to memory. As shown in the Figure, a 3-coloring for the graph exists.

38

Figure 4-2: Example where standard method fails to come up with a
it-coloring

In our approach to global register allocation, we use knowledge about the program structure to guide the

register allocation process. We will see later that there arc some cases in which the structural knowledge

encoded in the register conflict graph can be used to produce ^-colorings where the node removal technique

is unable to do so.

We now discuss our classification of live range as they occur in straight line code, loops and conditionals.

Based on these classifications, we show some properties of register conflict graphs for each programming

construct in the following chapters.

423. Continuous and broken live ranges

We partition the live ranges of variables Lito two groups: continuous and broken live ranges.
Definition 6: (Broken live range) Given a vaiiable v with live range / that consists of basic

blocks {bj.-.jbj, we say that / is broken iff there are two basic blocks ^ and £; both in [bx,...j>n)
that meet the following condition: There is a backarc free path from ft, to bj that contains a basic
block bk such that bk contains a definition of v and every use of v in ftA is preceded by that
definition.

Definition 7: (Continuous live range) A live range is continuous iff it is not broken.

Examples of broken and a continuous live ranges are given in Figure 4-3. In the loop labeled A, variable v

lives in basic blocks 1,3 and 4. Because there is a backarc free path between blocks 1 and 3 and 3 contains

a definition of v, the live range for v is broken. The conditional labeled B also contains a broken live range

for variable v - there is a backarc free path from block 1 to block 3 and there is a definition of v in block 3.

Hence, the live range for v is broken. The live range of v depicted in the flow graph labeled C is

continuous. Even though the live range of v in the flow graph labeled D contains all basic blocks of that

flow graph it is a broken live range because the backarc free path between blocks 2 and 4 contains block 3

which contains a definition of v.

Intuitively, broken live ranges can contain "holes" - holes in a broken live range consist of basic blocks

that are not in the live range but "between" basic blocks that form the live range. More formally, the

definition of a hole is based on an undirected graph which we call hole graph.

39

dafv;

uwv:

Figure 4-3: Examples of broken and continuous live ranges

Definition 8: (Hole graph of a live range) Given a flow graph F with basic blocks B and a live
range /, the hole graph of / is the graph induced by the set of nodes [B-l] and all edges of F
except F's backedges.

In other words, the hole graph of a live range / is derived from the flow graph by removing all basic blocks

that form /, all edges incident on basic blocks in / and all backarcs. The connected components of a hole

graph of a live range are called holes of that live range provided these connected components are "between"

basic blocks that are part of the live range. In other words, there must be a backarc free path from the live

range that leads into the hole, and there must be a backarc free path from the hole that leads into the live

range. More formally:
Definition 9: (Hole of a live range) Given a flow graph f and a live range / consisting of basic

blocks {frj ,...>„), leu W be the hole graph of /. A connected component c of // is called a hole of
/ iff B^€c such that

1.3^6 [bv...JbH] such that there is a backarc free path from bi to bc

2.3bj e [bv...J)H} such that there is a backarc free path from bc to bj

Figure 4-4 gives an example of a broken live range and its hole graph. In that example, the flow graph to

the left consists of a loop. Variable a has a broken live range consisting of basic blocks (1,2,7,8}. The

hole graph is derived from the loop by removing those basic blocks and all backedges as well as edges to

and from {1,2,7.8}. The hole graph consists of one connected component. Hence, the live range for a has

only one hole, which consists of all basic blocks in the hole graph.

Some broken live ranges do not contain any holes - even though there is a re-definition in some basic

block that is part of the broken live range, the hole graph of that live range can be empty. In that case, the

broken live range can be treated as if it were continuous. We call such live ranges continuous equivalent.

The live range depicted in the flow graph labeled D in Figure 4-3 is an example of a continuous equivalent

live range.

Definition 10: (Continuous equivalent live range) We say that a broken live range / is
continuous equivalent iff I contains no holes.

One nice property of continuous equivalent live ranges is that for each continuous equivalent live range

there exists an equivalent continuous live range. What sounds like a play oi" words will be formally shown

in the next lemma.

40

Mol« graph of a

Figure 4-4: Hole graph and hole of a broken live range

Lemma 11: Given a register conflict graph G that contains a continuous equivalent live range /
for a variable v, let [bv...J>m] be the set of basic blocks that contain a definition of v that is not
preceded by a use of v in the same basic block. The live range does not change if a use of v is
inserted into every fye [b^ bm].

Proof: Because / contains no holes, no backarc free path between any two basic blocks in / can
contain a basic block that is not part of I. In particular, every path to a basic block that contains a
definition of v consists of basic blocks that lie entirely in /. Hence, adding a use of v at the top of
the basic blocks that define v is not going to change /.

By adding uses of v to the defining blocks that are part of a contujuous equivalent live range for variable

v, the broken live range is changed into a continuous live range. Hence, for the purpose of register

allocation, continuous equivalent live ranges can be turned into continuous live ranges by modifying the

program slightly. Like broken live ranges continuous equivalent live ranges are caused by re-definitions in

loops or conditionals and it must be ensured that both parts of a continuous equivalent live range end up in

the same register. Hence changing a continuous equivalent live range into an equivalent continuous live

range has no influence on the subsequent graph coloring.

A program that consists entirely of «traight line code can only contain continuous live ranges, stated

formally in the next lemma.

Lemma 12: Given a piece of straight line code consisting of basic blocks {bv...j7n], let / be a
live range that consists of basic blocks that form a subset of [b^,..^]. Then, / is continuous.

Proof: Given a piece of straight line code [bv...J)n], there is at most one path between any two
blocks bfye {dj,...,£j. Given a live range / for a variable v, we show by contradiction that /
must be continuous.

Let / be a broken live range for variable v consisting of basic blocks that form a subset of
{6j,...^n). By definition of broken live ranges, there must be two basic blocks bi and bj that are
pan of /, and there must be a path from ^ to ft that contains a basic block bk that contains a
definition of v which is not preceded by a use of v in 64. By definition of live range graphs, there
can be no edge between bk and a basic block preceding bk. Because the flow graph contains no

41

brckarcs, ft4 can not be part of the same connected component as ft,, since ft, must precede b^
Because bk precedes ft, ft can not be part of the same connected component as ft,- - a
contradiction. Therefore, / must be continuous.

By Lemma 12 we know that in well structured programs only loops and conditionals can contain re-

definitions that cause a hole in a live range. Holes in a live range for a variable v occur if several

definitions of v are used in the same basic block. A loop can contain a re-definition of a variable v at the

bottom of the loop that is used at the top of the loop. A hole that is caused by such a re-definition consists

of the basic blocks "between" the bask block that contains the use and the basic block that contains the

re-definition. An example of this situation is given in Figure 4-5. The figure shows both a nested loop and

Figi- re 4-5: Hole caused by a re-definition inside a loop

the interval representation of the register conflict graph. The live range for variable a contains a hole

consisting of basic blocks {3,4,5,6}. The hole of a is caused by a re-definition of a in basic block 7, which

is part of the innermost loop. Basic block 2, which uses that re-definition of a, is part of the outer loop, but

not of the inner loop. Basic blocks between the use and the re-definition are {3,4,5,6) - the basic blocks

that form the hole.

A conditional can contain one branch clause c with a re-definition of a variable v with that is live in both

the split node and the join node of the conditional. Hence, there must be a definition of v in a basic block

that occurs on the path from the program entry to the split node and a use of v in a basic block ft that is

dominated by the join node. Hence, both definitions of v in ft and in the branch clause c are used outside

the conditional. An example of a conditional that contains a re-definition of such a live range is shown in

Figure 4-6.

The live range for variable g consists of basic blocks {1,2,5,6,7). The hole graph for g consists of basic

blocks 3 and 4 and is depicted to the right. Because there is a backarc free path from basic block 2 to basic

block 3 and there is a backarc free path from basic block 4 to basic block 7, blocks {3,4) constitute a hole

of the live range for g. That hole is caused by the re-definition of ^ in basic block 5 which is part of one

branch clause. Both definitions of g in basic blocks 1 and 5 are used in basic block 7.

42

1 dafg;

2

/ V
^

f 3

■

4 6

I v defg:

\ J\ y
7 utag;

o
hole graph for g

Conditional with BGLOBAL Irve range for g

Figure 4-6: Hole caused by re-definition of a variable with BCLOBAL live
range in a conditional

A hole of a live range can share basic blocks with more than one programming construct In the example

depicted in Figure 4-6, the hole of variable g's live range contains basic blocks {3,4} which are both part of

the loop consisting of basic blocks (3,4,5) and of the entire conditional. Given the live range for g,

(1,2,5,6,7), the fact that the basic blocks "between" 2 and 5 are missing makes (3,4) a hole. Looking at

the loop in isolation, the live range of g consists only of basic block 5 and therefore basic blocks 3 and 4 are

not recognized as a hole of g's live range. Coasidering the conditional in isolation (that is, basic blocks

{23,4,5.6.7)), the live range of g consists of basic blocks (2,5,6,7). Note that the hole of ^'s live range

exists in the conditional, even when the rest of the flow graph is ignored. Hence, the hole of the live range

for ^ can be "linked" to the conditional but not the loop nested ii ''de the conditional.

The reason why wc want to link a hole to a particular loop or conditional is that the exact position of the

hole in the program flow graph determines which simplifications can be carried out on the flow graph such

that the register conflict graph is unchanged by those simplifications.

Given the set of loops and conditionals in a well structured program that share basic blocks with a given

hole h for a broken live range /, we link A to the innermost programming construct that contains a subset of

/ such that his a hole of this subset. In our previous example (Figure 4-6), the conditional is the innermost

programming construct that contains s subset g' of the live range for g such that g' is broken and has the

same hole as g. Now more formally:

Definition 13: (Linking of a hole) Given a well structured flow graph F that contains a broken
live range /=(/,,...,/„) that contains a hole h={hv...Jih], let P be the set of loops and
conditionals in F such that each loop or conditional in F contains at least one basic block in

43

IAJ,...^). For pe Pitt I =/np, that is the intersection of the basic blocks that form p and/. We
say that h is linked top iff

1. n is a hole of /

2. for every loop or conditional p' nested inside of p, ä is not a hole ofp'.

In our example depicted in Figure 4-5, the hole of variable, a is linked to the outer loop, and in the example

depicted in Figure 4-6, the hole of the live range for g is linked to the outer conditional.

43. Live ranges in loops

The intuitive background of our classification of live ranges in loops is the impact they have on register

conflict graphs for loops. We partition the live ranges in loops into backarc and forward live range?

More formally:

Definition 14: (Forward live range) A global live range bj bn of a variable v is called a
forward live range of a loop consisting of basic blocks {/p..,/,,,) iff

UV-AWi 'J*0
2. all paths from basic blocks b^ e [bv...JbH}n[ll,..JM] that contain a definition of v to

buse e {V-AiWi—'U that use the definition in ft^are backarc free.

The complement of forward live ranges are backarc live ranges, defined as follows:

Definition 15: (Backarc live range) A global live range bj bn of a variable v is called a
backarc live range of a loop consisting of basic blocks {/1,.-.,/OT) iff

MV-Wi 'm)*®
2. at least one path from a basic block b^ € {bl,...J)n]n[l1,..Jm] that contains a

definition of v to b^ e [b^.M^ni^ IJ that uses the definition in ^contains a
backarc.

Figure 4-7 depicts loop constructs with a forward live range and a backarc live range respectively. The

live range for a is a forward live range, because it is defined in Bi, and there is no backarc on the path from

Bl to B2, whore a is used. The live range for b consisting ofBl, B2, Ä5 is a backarc live range, because

both uses of b in Bl and B2 can only be reached via a backarc from the basic block that contains die

definition of b. Note that the live range for b is continuous - it contains all basic blocks that form the loop.

The backarc live range depicted in Figure 4-8 is not continuous. The live range for c consists of blocks

ß4 and Bi, and the path from the defining block S4 to the use in fii contains a backarc. Note that the loop

contains two more basic blocks, B2 and B3 that form a hole of the live range for c. Hence, the register for c

can be used for a different live range that consists of B2 and B3. The live range for c contains a hole that

consists of basic blocks B2 and B3. Further, the hole in the live range is caused by a definition of c in block

B4.

A third example of a backarc live range in a loop is depicted in Figure 4-9. In that example, variable c's

live range consists of basic blocks [Blß2ß4ß5) - a broken live range. The hole of the live range for c is

linked to the conditional with split node B2 and join node B5. Even though the live range for c is broken,

we call it a Loop-continuous backarc live range, because the hole is not linked to the loop.

44

Figure 4-7: Examples of backarc and torwrd live ranges

deic;

B3

B4

Figure 4-8: Another backarc live range

DefinitioD 16: (I/Mp-continuous live range) A live range / of variable v if» a loop L with head h
and exit e is called a loop-continuous live range iff there is no hole h of / such that h is linked to
L.

Definition 17: (Loop-broken backarc live range) A backat: live range tia» is not loop
continuous is called a loop-broken backarc live range.

Figure 4-10 shows examples of loop-broken and loop continuous backarc live ranges.

The live range for variable c depicted to the left consists of {51,02,84}. Because the hole consisting of

B3 is linked to the outer loop, the live range for c is a loop-broken live range. Adding B3 to the live range

for c changes it into a loop-continuous live range, shown in the middle of Figure 4-10. The example

depicted to the right shows another example of a live range that is loop broken: the hole consisting of B2

and the join node is not entirely contained in the inner conditional. It is easy to see that a loop-broken live

range must be a backarc live range. A live range that contains a hole but is not loop-broken must be a

forward live range - the hole is linked to a loop or a conditional nested inside the loop.

45

Figure 4-9: A continuous backarc live range

B3

dsfc;

83

dafc;

Figure 4-10: Examples of loop-broken and loop-continuous live ranges

The class of register conflict graphs for loops that contain broken live ranges contains arbitrary circular

arc graphs, for which optimal coloring is NP complete, whicii will be shown in Chapter 5. We will see that

only loops that contain broken live ranges can cause arbitrary register conflict graphs. This is not generally

the case for conditionals. The types of live ranges in conditional branches are discussed next.

46

4.4. Live ranges in conditionals

We partition the live ranges that occur in conditionals into four classes, LOEN, LOEX, BLOCAL and

BGLOBAL. The basis for this classification is the presence or absence of the split and join node in the live

ranges. The intuitive reason for our classification is that it permits to detect dependencies between the

register conflict graphs of individual branch clauses.

If each live range in a conditional is "local" to one di«^ branch clause, the conflict graphs for the

branch clauses aie independent. Therefore, for each i clause the register conflict graph can be

colored independently. On the other hand, live ranges that contain the split or join node of a conditional are

shared by the register conflict graphs of individual branch clauses and they are no longer independent. We

will see in Chapter 5 that dependencies between the conflict graphs of individual branch clauses can lead to

overall conflict graphs that are hard to color optimally.

We formalize these characterizations and partition live ranges that occur in a branch construct into four

classes:
Definition 18: (LOEN live range) A live range is called a LOEN (Life On ENtry) live range in

a conditional with split node 5 and join node J iff it contains at least one basic block that is part of
a branch clause and £ but not J.

Definition 19: (LOEX live range) A live range is called a LOEX (Live On EXit) live range in a
conditional with split node S and join node J iff it contains at least one basic block that is part of a
branch clause and J but not S.

Definition 20: (BGLOBAL live range) A live range is called a BGLOBAL live range in a
conditional with split node S and join node J iff it contains at least one basic block that, is part of a
branch clause and both S and /.

Definition 21: (BLOCAL live range) A live range is called a BLOCAL live range in a
conditional with split node S and join node J iff it contains basic blocks of a branch clause but not
SorJ.

In the example depicted in Figure 4-11, ^ is BGLOBAL, a is LOEN, d is LOEX and both ft and c are

BLOCAL.

Analogous to our definition of loop-continuous and loop-broken live ranges, there are conditional-

continuous and conditional-broken live ranges. A conditional-continuous live range can have a hole that is

not linked to the conditional itself, but instead to a conditional or loop nested inside. This is depicted in

Figure 4-12.

The figure shows two nested conditionals. The outer conditional with split node 1 and join node 6

contains a BGLOBAL live range for v, which consists of {1,2,4,5,6). This live range is broken, and

contains a hole formed by block 3. This hole is caused by a re-definition of v in basic block 4, which is part

of the inner conditional with split node 2 and join node 5. Like for loops, the live range for v is therefore

conditional continuous in the outer conditional, and conditional-broken in the inner conditional. A formal

definition follows.
Definition 22: (Conditional-continuous live range) A live range / for a variable v with a hole h

is conditional-continuous in a conditional C with split node S and join node J iff there is no hole
h of / such that h is linked to C.

The complement to a conditional-continuous live range is a conditional broken live range.

47

Conditional branch

Figure 4-11: Types of live ranges in a conditional

usev;

Figure 4-12: Conditional-continuous and conditional-broken live range

Definition 23: (Conditional-broken live range) A live range / for a variable v is
conditional-broken in a conditional C iff it is not conditional-continuous in C.

48

Note that a conditional-broken live range must be a BGLOBAL live range. Broken LOEN, LOEX or

BLOCAL live ranges in a conditional C must be conditional-continuous in C - holes in such live ranges

must be entirely contained in programming constructs nested inside C.

4.5. Chapter summary

We have classified the live ranges of well structured programs. Live ranges can be continuous or broken.

Live ranges in straight line code are all continuous, while conditionals and loops can contain re-defmitions

that cause a live range to be broken. Loops can contain forward live ranges and backarc live ranges. Live

ranges in loops can be loop-continuous or loop-broken. Conditionals can contain BLOCAL, BGLOBAL,

LOEN and LOEX live ranges. A live range / in a conditional can be conditional-continuous or conditional-

broken, depending on which programming construct causes a hole in /.

In the next chapters we show how this classification can be used to analyze the shape of register conflict

graphs for loops and conditionals.

49

Chapter 5

Register conflict graphs for compound programming constructs

In this chapter we characterize properties of register conflict graphs of straight line code, loops and

conditional branches. The first part of this chapter is devoted to re-stating some properties of register

conflict graphs that have been established before [Gol 85, Fishbum 85, Bernstein et al 89]. We first

showing that register conflict graphs for straight line code are interval graphs and show that the standard

node removal technique is able to produce an optimal coloring for interval graphs.

Tbe class of register conflict graphs for loops and conditionals contain arbitrary circular arc graphs for

which finding an optimal coloring is NP complete. When certain restrictions are met by the live ranges that

occur in a conditional or a loop, the register conflict graph of that conditional or loop is equivalent to the

register conflict graph of straight line code. One contribution of our structured model for global register

allocation is that it enables us to establish such restrictions systematically. The bulk of this chapter is

devoted to the description of situations in which it is possible to produce an optimal coloring for register

conflict graphs of loops and conditionals in polynomial time. In particular we discuss cases in which it is

possible to simplify conditionals and loops without altering the register conflict graph. Goal is to create

straight line code that is equivalent to loops and conditionals for the purpose of register allocation. We will

see that the simplifications to obtain straight line code enable us to locate clique separators in the register

conflict graph.

5.1. Register conflict graphs for straight line code

We first tum our attention to register conflict graphs of straight line code. We show how the live ranges

in a register conflict graph for straight line code can be mapped to intervals on the real line. We then show

how the cliques in the register conflict graphs can be ordered to form a sequence of cliques, and use that to

show that the node removal technique is able to produce an optimal coloring in polynomial time.

We will show that register conflict graphs of strai^it line code are interval graphs by mapping every live

range in the flow graph of straight line code to an interval on the real line. The first step is to define a

monotonously increasing function/: [b^...^} -»R as follows: J[b^4, ie {l,..,n). Note that/is both

monotonely increasing and bijective.

Definition 1: (Interval on the real line) An interval on the real line [nj^jij < n2, is a subset
of R such that n^ R and «je R and Vfxln^j^n^xe [n^] and V{y|y<n1) ye [nj.nj and

V{y|y>n2) y« [n,^].

50

Definition 2: (Interval graph) An interval graph is a graph whose vertices v can be represented
by intervals /„ of the real line such that two vertices are adjacent if and only if the corresponding
intervals intersect

Because the live ranges :n scaig-t line code are contiguous sets of basic blocks, we can map a straight

line live range [b^..Jbj] :o an interval on the real line by the function g defined as follows:

gib; bJ) = [f{bl)Abß] = [ij].

Given a register conflict graph G for straight line code, there is an edge between two live ranges iff their

intersection is not empty. Let C be the graph derived from G by app^g the function g to each node in

G. Then G' is an interval graph, and a coloring for G' can be used to color G as well. Interval graphs can

be colored optimally in polynomial time [Gavril 72] and hence an optimal global register allocation can be

found in polynomial time for straight line code.

Figure 5-1 demonstrates how live ranges are mapped to intervals. Four live ranges, for variables a, b, c

and d arc shown. The live range for a consists of basics blocks [Blß2ß3ß4JB5ß6ß7ß8] and is mapped

to the interval [1,8] etc. The real line is shown on to the left The corresponding interval graph is shown to

the right of the figure.

I

i ■

2

3

4 ■

5

6

7

8

9

10 •

11

12

13

14

15 •

16

17 ■

 bl

b
■•-— M

- -9— i£

•■4-1— be

■be

b10

 *-— b15
V

bi7

Interval graph

Livs rangat

Figure 5-1: Register conflict graph for straight line code

One nice property of interval graphs is that it is easy to identify all the cliques they contain. In the next

section we will show how all cliques in an interval graph are identified and how an order on all cliqu s is

defined.
Definition 3: (Clique) A clique in a graph is a subset of vertices such that every pair of distinct

vertices in that subset is connected by an edge.

51

It is easy to sec that each node in a clique in a register conflict graph must be colored with a different

color. The horizontal lines in the left part of Figure 5-1 are drawn at the end points of the intervals that

correspond to the live ranges. Live ranges that intersect the same horizontal line form a clique in the

corresponding interval graph. A new clique starts at each end point of an interval, shown as horizontal

lines in Figure 5-1. In the following let n be the number of distinct live ranges. Then, the number of

pairwise distinct end points of intervals is at most 2n. This "sequence" of horizontal lines is the idea of

ordering the cliques in an interval graph, which is formalized in the next paragraphs.

We first give a slightly modified definition for cliques that allows us to map cliques to the. endpoints of

the intervals corresponding to live ranges in the clique.

Definition 4: {[ij]clique) We say that a set of intervals S forms a [ij] clique iff

l.UJlQS VseS

2.3seS such that [i'j] is not a subset of s VJ' < i ex

2.3seS such that [if] is not a subset of s V/ >j.

In other words, [ij] is the largest interval contained in every element of 5.

In Figure 5-1, the interval [6,8] is contained in the intervals for live ranges a, b and c. Because the

interval of live range a ends at 8, and the interval of live range c starts at 6, [6,8] is the maximal interval

contained in all three live ranges. Hence, [aj>,c] is a [6,8] clique. The intervals for a and & both contain

[4,8]. Hence, {a^} is a [4,8] clique.

We can now define an ordering on the [ij] cliques of an interval graph as follows:

Definition 5: (The .<. order for cliques) Let [tj.^] and [t3.t4] be two intervals and c7 be a ltj.t2]
clique and c2 be a [t3,t4] c lique. We say that c; .<. c2 iff fj < ty If fj = «3, we say that c7 .=. c2.

Example: In Figure 5-1, [aj>] is a [4,8] clique, and {a,M is a [6,9] clique. Hence, {c^} .<. {a,b,c}.

The. <. order can be used to order stts of cliques, more fonnally:

Definition 6: (Clique sequence) Let clique 1,clique2,...,cliqueH be a list of ij cliques of an
interval graph. We say that this enumeration of cliques is a sequence of cliques iff
Vit,/e [l,...^i) k<l -^cliquek.^.cliquel.

We have seen that register interference graphs for straight line code are interval graphs, because each live

range ;an be mapped to an interval on the real line.

We will now show how we can obtain a sequence of cliques (Definition 6) from the interval graph that

denotes liv: ange conflicts of straight line code. The idea of the construction of a clique sequence consists

of several pans. First, we construct a set 5' of ordered non-overlapping intervals from the start- and

endpoints of the live ranges such that S' covers all intervals of live ranges. We call this an interval cover of

the live ranges. For each interval j€ S', we determine the set of live ranges that overlap with s, called

cliques(s). This set of live ranges must form a clique, and we show that each such clique is a UJ,t2] clique,

where s = [tjfy]. We then show that since the elements of S' are ordered, that if a live range Sj starts at an

earlier basic block than a live range s2 then clique{sd.<.clique^. Hence we have fcand a sequence of

cliques that covers all the cliques in an interval graph. Now more formally:

52

Definition 7: (Interval cover) Let [[alJ)l],...,[all,bH\} be an ordered set of intervals, i.e.
Vie {l,....rt-l) a^a^. The ordered set of intervals {[a'^'i] [a'm^'m]) is called an jn/crva/
cover of [[a^i],.:.^^]) iff

l.a'^a,

2-b' =bn

3.Vi6{l..../»-l) bi aM-l

4.y/e {l....^n) 3 ie (1....^) such that a/^v^'^.

For an example, we turn again to Figure 5-1. The set of live ranges consists of four intervals: [1,8] = a,

[4,15] ■ b, [6,9] = c, [10,17] = d. Tbe interval cover of those four live ranges consists of intervals

([1,3][4,5][6,8][9.10][11,15][16,17]). It is easy to see that for each basic block ft, that is part of a live

range.A*i)=» occurs in exactly one of the intervals of the interval cover. Hence, the intervals of an interval

cover are non-overlapping.
Definition 8: (S-overlap clique of an interval) Given a set 5 of intervals and an interval [ij], the

S-overiap clique of [ij] is defined as (j€ S | [ij] cs).

The overlap clique of interval [4,5] in Figure 5-1 consists of live ranges [aj>].
Lemma 9: Given the set S of live ranges in a straight line program with interval cover

[[a^l.-.la^J), i <j implies that
(S-overlap clique of [a^bj]) .<. (S-overlap clique of fybj])

Proof: By definition of interval cover.
Lemma 10: Given the set S of live ranges in a straight line program, let [[alJt>i]^..,[anJ)n]] be

the interval cover of 5 and let c/i^u«, be the 5-overlap clique of interval [a^]. Then cliquei is a
[a,^ clique.

Proof: By definition of overlap cliques, the live ranges that are members of the overlap cliques
must contain the interval [a,,*»,]. Hence, all live ranges in that clique contain this interval, and the
clique is thus a [a,^] clique.

Given an interval graph G, we can construct a sequence of cliques by first constructing the interval cover

for the nodes in G. The sequence of overlap cliques of the intervals in the interval cover is a sequence of

cliques, as in Definition 6. It remains to be shown that this sequence of cliques is exhaustive, i.e. any

clique in an interval graph is contained in that sequence of cliques.
Theorem 11: Let {[OJ^J] [aHJ)H]) be the interval cover of the nodes of an interval graph G,

and let cliquej cliqueH be the corresponding st-^ence of overlap cliques. For each clique c in
G 3 at least one i e {l,...ji] s;di that c is contained in clique^

Proof: Given the members m1,....mm of clique c, there must be at least one basic block bj that is
contained in each live range m^ke. {1 ,..,m), otherwise c would not be a clique. By construction
of interval covers, there is exactly one interval [aj>^ e {[a^!] [a„ &„]} such that bj e
[a J)X By Lemma 10, cliqiiep of interval [api>$ is an [apJb^ clique, hence all live ranges
containing bj are in clique - q.e.d.

Theorem 11 states that the cliques in an interval graph can be ordered to form a sequence of cliques.

Therefore it is easy to determine the size of the largest clique in an interval graph, and thus k colorability

can be determined in polynomial time. We will now show that the node removal technique colors any

interval graph optimally. Since we know the clique s'^uence for an interval graph denoting register

53

conflicts, it is easy to find the largest clique. If the largest clique is not larger than k, the node removal

technique will produce an optimal coloring in linear time. This is stated in the next theorem and lemma.

Theorem 12: Given an interval graph G in which the size of the largest clique is k, there exist
at least two nodes v, and v2 in G that have at most k-1 neighbors in G.

Proof: Let cliquej,...,cliquen be the clique sequence for G constructed from the interval cover
of G. Let cliquei be the first cr que in that sequence such that there is a node v that is in clique^j
but not in clique^ Hence, for je [l^.J],clique^ ccliquej. Because the size of the largest
clique is k, cliquei can be at most of size k. Because v can only be a member of the cliques
[cliquel clique^, clique, has "accumulated" all clique members of [cliquej clique^}, v can
have at most k-1 neighbors.

Let clique .<. cliqueH be the last clique to which a new live range w is added, that is
Vte [j,..ji-\] clique^cclique^ Hence, cliquej is the largest clique in the subsequence
cliquej,cliquej+] cliquen, and w is in each clique of that subsequence. Hence, w can not have
more than k-l neighbors.

Lemma 13: Let G be an interval graph in which the size of the largest clique is k. Then the
node removal technique introduced in [Chaitin 81] will determine k colorability of G.

Proof: By Theorem 12, there must be at least two nodes v and w in G with less than k
neighbors. Hence, both v and w can be removed. Let the graph G' derived from G by removing
v and w. G' is an interval graph in which the largest clique has at most k members, and hence
there are at least two more nodes in G' that are removable. G' is guaranteed to get smaller after
each removal step, and eventually G' is the empty graph - q.e.d.

We have shown that the standard node removal technique will determine a ^-coloring for an interval

graph if there exists one. In general, the standard method fails to provide a it-coloring for graphs that are

non-interval graphs. In the course of this chapter we will discuss the shape of register conflict graphs as

they occur for complex programming constructs like loops and conditionals. We will see that register

conflict graphs for loops and conditionals can be arbitrary graphs. Even if a A-coloring exists for such

conflict graphs, the standard node removal technique might be unable to produce one. We will see that

there are cases in which structural analysis of register conflict graphs enables us to find ^-colorings that are

not detected by the standard node removal technique. We first discuss aspects of register conflict graphs

for loops.

5.2. Straight line loops and circular arc graphs

We first concentrate on register conflict graphs for loops that consist of loop entry entry, loop exit exit

and a loop body b that consists of straight line code. We will show that the class of register conflict graphs

for such simple loops contains arbitrary circular arc graphs, and that such graphs are therefore NP hard to

color optimally.

Figure 5-2 shows a loop that consists of a sequence of definition and use statements. Each definition or

use statement forms a basic block. The numbers of the basic blocks are shown to the right of each

statement. Thus die loop shown in Figure 5-2 consists of loop entry 1, loop exit 13 and the straight line

loop body {2,3,4,5,6,7,8,9,10,11,12}. The loop contains loop-continuous live ranges for b. c, d, e and/and

of one loop-broken live range for a, namely {12,13,1,2,3,4,5,6). Each loop-continuous live range of the

54

loop can be mapped to an interval on the real line, since the loop body consists of straight line code. The

live range for b consists of basic blocks {8,9,10.11) and hence b is mapped to the interval [8,11]. Because

a's live range is a loop-broken live range, it consists of basic blocks that are not contiguous. By definition

of loop-broken live ranges, there is a definition of a whose next use can only be readied via the loop's

backarc. Hence, a's live range can not be mapped to a single interval. Instead, a's live range consists of a

set of intervals - one interval per contiguous set of basic blocks. In Figure 5-2, the live range for a

({12,13,1,2,3,4,5,6)) is mapped to two intervals. [12,13] and [1,6] respectively. The mapping of the live

ranges in the loop to intervals is shown to the right of the loop construct Note that there is a dotted line

between the two intervals that represent the live range a. This means that both intervals represent the same

live range. The dotted portion between the two parts of the live range for a corresponds to the hole in live

range a consisting of {7,8.9.10.11).

Figure 5-2: Register conflict graph for loop

A loop is usually executed many times, i.e. if the loop of Figure 5-2 were executed, the definition of a in

block 12 would be followed by blocks 13. and then 1. hence the execution sequence of the basic blocks that

form the live range for a is contiguous. Multiple executions of a loop can be expressed by a circle

consisting of the set of basic blocks that form a straight line loop. This is depicted in Figure 5-3. The basic

blocks that form the same loop as in Figure 5-2 are arranged along a circle. The execution order is

clockwise, hence basic block 13 is followed by basic block 1 etc. Given this representation of a loop, the

live ranges of the loop can be arranged around that circle. This is shown in Figure 5-4. The live ranges are

segments of the circle formed by the basic blocks of the loop. Hence, the live range for b consists of the

segment between basic blocks 8 and 11, and the live range for a is the (continuous) segment between 12

and 6.

55

Figure 5-3: Loop expressed as a circle of basic blocks

Circular arc graph

Figure 5-4: Register conflict graph for loop

Definition 14: (Circular arc graph) A circular arc graph is a graph whose vertices can be
represented as segments of a circle such that two vertices are adjacent if and only if the
corresponding circle segments overlap.

It is easy to see that register conflict graphs for loops can be arbitrary circular arc graphs. Optimal

coloring of an arbitrary circular arc graph is NP complete [Garey, M.R. and Johnson, D.S. 79]. Since for

an arbitrary circular arc graph a loop can be constructed such that the live ranges of the loop arranged on a

circle are equal to the vertices of the circular arc graphs, register conflict graphs for arbitrary loops are NP

hard to color.

In the next paragraphs, we discuss situations in which the register conflict graph of a loop L is

"independent'' of the backarc in L.

56

S3. Simplifying loops for the purpose of global register allocation

We have seen in the previous section that the presence of a loop-broken live range was necessary to

construct a register conflict graph that is an arbitrary circular arc graph. At least one connected component

of the live range graph of a loop-broken live range must contain the backarc of the loop by definition of

loop-broken. Removing the backarc from a loop causes that connected component to be separated into two

unconnected pieces - the corresponding register conflict graph changes. We now show situations in which

the register conflict graph of a loop L is unaltered when the backarc is removed from L.

53.1. Removing the backarc in the absence of loop-broken live ranges

If all live ranges in a loop L are continuous, no live range can have any holes. The register conflict graph

of the program L' derived from L by removing the backarc is identical to the register conflict graph of L.

Given a loop L with a loop body that consists of complex programming constructs, the backarc of L can

still be ignored, as long as all live ranges are loop-continuous in L. In other words, the backarc of a loop L

can be ignored for the purpose of global register allocation if L does not cause any holes in live ranges.

This is stated in the next Lemma.
Lemma 15: Given a loop L with loop head A and loop exit e that does not contain any

loop-broken live ranges and in which all continuous equivalent live ranges have been changed
into continuous live ranges by adding the appropriate instructions described in Lemma 11 in
Chapter 4, let L' be the flow graph derived from L by removing the edge from node e to node h
(the backarc). Then the register conflict graphs for L and L' are identical.

Proof: The set of live ranges in L' is equal to the set of live ranges in the original loop L.
Otherwise, there would be a live range /'= [bj,...J>n] in the derived loop L' but not in the original
loop L. This is only possible if l^,...^.] is part of a connected component in a variable v's live
range graph in L that contains L's backarc, and removing the backarc causes a partition of that
connected component Let [b^.-.M^Jfj,...^] be that connected component in v's live range
graph in L. By definition of live range graphs, b: must contain a definition of v that is not
preceded by a use of v in bj, and removing L's backarc disconnects [b^.-.J}^} and [bj bn}.
Then, there must be a basic block bu e [b^.-Jf^] that uses the definition in bj such that &„ is
part of! but not part of any conditional or loop nested inside L By prerequisite all broken live
ranges must contain a hole; if removing L's backarc causes a separation of a broken live range,
the hole of live ranee [bv...Jbj_iJ>j„..J>n] must be linked to L - a contradiction because by
prerequisite all live ranges in L are loop continuous.

Because the set of live ranges in both L and L' is identical, the set of edges between the live
ranges must be identical. Hence, the conflict graphs for L and L' are identical - q.e.d.

The example shown in Figure 5-5 illustrates Lemma 15. The flow graph labeled Fl is a loop that contains

two loop-continuous live ranges, one {or a and one for b respectively. The flow graph labeled F2 is derived

from Fl by removing the backarc. The conflict graph for Fl is equal to the conflict graph for F2, and is

shown to the right

As a consequence of Lemma 15, the register conflict graph for a program that contains no conditionals

and in which all live ranges are continuous is equivalent to the register conflict graph of straight line code.

We have seen how the absence of loop-broken live ranges in a loop L enables us to simplify the flow

57

d«ta: (tot a;

1 1
dsfb: (tofb;

UM a:

UM b: uMb; Q-Q
F1 F2 Conflict (jraph for F1 and F2

Figure 5-5: Register conflict graph for a loop with forward live ranges

graph by removing the backarc of L for the purpose of global register allocation. If there is a loop-broken

live range in a loop L, removing L's backarc in general results in a different register conflict graph,

depicted in Figure 5-6. The loop depicted to the left has a loop-broken live range for a consisting of basic

\ CT

UM a;
de!b;

1 use a;
defb:

ctotc;
UM b;

2 defc;
UMb;

I
cUfd;
UMC;

3
defd;
UMC;

1

de
UK

a;
»d

4
defa:
used

Figure 5-6: Removing the backarc in the presence of loop-broken live ranges

blocks {1,4). The register conflict graph for that loop is depicted below. Removing the backarc partitions

the live range for a into two separate live ranges, {1) and (4) respectively. This leads to an extra node for

a in the register conflict graph - one pa- live range. The register conflict graph for the flow graph to the

right is again shown below and differs from the register conflict graph of the original loop. In the next

58

section, we discuss restrictions that must be met if the register conflict graph of a loop L is independent of

L's backarc in the presence of loop-broken live ranges.

5.3.2. Removing the backarc in the presence of loop-broken live ranges

Given a loop L with a loop-broken live range v, v must contain a hole that is entirely contained in L. Note

that by definition of loop broken, the hole can not be entirely contained in any programming construct

nested inside L. We can therefore partition a loop-broken live range into two parts. The first part of the

live range consists of basic blocks in the top part of the loop and contains the loop entry, and the second

part of the live range consists of basic blocks in the bottom part of the loop and contains the loop exit In

the following, we call those parts TOP and BOT. Before we give a formal definition of the TOP and BOT

parts of a loop-broken live range we demonstrate the concept with a few examples.

Figure 5-7 depicts a sample loop with one loop-broken live range for variable a, consisting of (1,2,7,8).

The live range has one hole consisting of {3,4,5,6}. The live range is partitioned into the top part

Figure 5-7: TOP and 507" part of a loop-broken live range

T0P=[12} containing the loop entry and the bottom part BOT= {7,8) containing the loop exit A more

complex example is shown in Figure 5-8. A complex loop is shown, consisting of loop head BO, loop exit

B5 and a loop body that consists of a conditional. In that loop, a is a loop-broken live range; the BOT part

of a consists of (B2,ß4,ß5) and the TOP part of a consists of [BO]. Note that the definitions of a in basic

blocks B2 and B4 occur in different branch clauses. Therefore the basic blocks that form the BOT part of

the live range for a do not form straight line code. The BOT part of the live range for a consists of the

connected component of the live range graph for a that contains the loop exit We are now ready to define

the TOP and BOT part of a loop-broken live range formally.

59

Figure 5-8: TOP and BOT pan of a loop-broken live range in a
complex loop

Definition 16: (TOP and BLf set of a loop-broken live range) Given a loop-broken live range
for a variable v of a Icrp I with loop head h and loop exit e and the live range graph for v,
TOP{v^) consists of the basic blocks that form the connected component of v's live range graph
that contains h. BOT{vD consists of the basic blocks that form the connected component of the
live range graph that contains e.

In the next paragraphs we will discuss situations that permit to eliminate the basic blocks that form the

TOP part or the SOT part from a loop broken live range without changing the register conflict graph.

Definition 17: (Definition starting the SOT part of a loop-broken live range) Given a loop-
broken live range for a variable jcin a loop L, we say that a definition of x in basic block bx starts
BOT(xJJ) iff bxe BOT(xJJ.

Example: in the loop depicted in Figure 5-8, basic blocks B2 and B4 both contain a definition of a and are

members of the set BOT(aJL). Hence, both definitions start the BOT part of the live range for a.

Given a loop L sn which no loop-continuous live range contains a basic block that occurs in BOTiyX) of a

loop-broken live range y, it is easy to see that in the register conflict graph the "bottom part" of y can be

ignored in the loop, illustrated in figure 5-9. In the loop depicted to the left, loop-broken live range a

consists of TOP part {1,2) and BOT part (6,7). Neither loop-continuous live range b nor c overlap with a

in basic blocks 7 or 8. The BOT part consisting of basic blocks 7 and 8 can be eliminated by removing a's

definition in basic block 7 and the subsequent uses in the loop that are reachable on paths that do not

60

Figure 5-9: Removing the bottom part of a loop-broken live range

contain the loop's backarc. This is depicted to the right For both loops the register conflict graphs are

shown below - they are identical.

Note that the removal of the definition that starts the BOT part of ö'S live range does not alter the register

conflict graph even if there is a loop-continuous live range that contains basic blocks of both the TOP part

and the BOT part of a. This is demonstrated in Figure 5-10. loop-continuous live range b contains basic

blocks from both the TOP part and the BOT part of a. Still the register conflict graph does not change

when the definition of a in basic block 7 is removed.

Given a loop L, removing definitions and uses that form the BOT part of a loop-broken live range / is

equivalent to eliminating the entire BOT part of /. If we enforce that every live range that overlaps with the

TOPHX) of a loop-broken live range / also overlaps with BOT(l£), then the entire BOT part of / can be

eliminated from / without altering the register conflict graph. These observations are formalized in the next

lemma.
Lemma 18: Given a flow graph F with register conflict graph G that contains a loop L

consisting of basic blocks [h.,...Jt>H] with loop-broken live ranges fy,. ./„. let /' be derived from /
by removing all basic blocks that are in BOTQjD V ;e {!,...,/«), and let G' be derived from G
by exchanging /' for /V/'e {l,...,m). If every live range that contains a basic block of the BOT

61

Figure 5-10: loop-continuous live range overlapping with both the BOT and TOP
set of a loop-broken live range

set of a loop-broken live range abo csmtains at least one basic block of the TOP set of the same
live range, G and C are identical.

Proof: The nodes in G consist of nodes representing loop-broken live ranges and of nodes
representing loop-continuous live ranges. Every loop-continuous live range/that co-exists with
a loop-broken live range / contains either just basic blocks that occur in members of TOP (ID or
both basic blocks that occur in members of TOP(IJL) and basic blocks that occur in members of
BOT(lD- Therefore the node representing/exists both in G and C. Further, the set of edges
incident to the node for/must be identical in both G and G' because if/co-exists with / in a basic
block occurring in a member of BOT(IL), it must also co-exist with / in a basic block occurring
in a member of TOP(lD and therefore there must be an edge between/and / in G'. Since all
other live ranges of L are unaltered, G and G' are equal - q.e.d.

Note that Lemma 18 also holds if the terms BOT and TOP are exchanged. This is illustrated in Figure

5-11. The live ranges of a loop are depicted to the left; a is a loop-broken live range with TOP part {1,2}

and BOT part {7,8}. Live range 6 is the only loop-continuous live range adjacent to a, and it shares with

the live range for a only basic blocks that are in the BOT part of a. Removing the uses of a in basic blocks

1 and 2 eliminates the TOP part of a - the register conflict graph for both loops is identical and shown at the

bottom of the figure.
Lemma 19: Given a flow graph F with register conflict graph G that contains a loop L

consisting of basic blocks [bx,...pn) with loop-broken live ranges /, lH, let /.■' be derived from /^
by removing all basic blocks that are in TOPQjJL) V ;6 {!,...,«), and let G' be derived from G

62

1

2

3

4

5

6

7

8

C

.j.

■

I

1

2

3

4

5

6
a

^ ...^k ■■•■•■■■•■ ■•<

Figure 5-11: Removing the TOP part of a loop-brcken live range

by exchanging /:' lot l.Vje [l,.,.^n). If every live range that contains a basic block of the TOP
set of a loop-broken live range also contains at least one basic block of the BOT set of the same
live range, G and G' are identical.

Proof: The nodes in G consist of nodes representing loop-broken live ranges and of nodes
representing loop-continuous live ranges. Every loop-continuous live range/that co-exists with
a loop-broken live range / contains either just basic blocks that occur in members of BOT(l.L) or
both basic blocks that occur in members of BOT(l^) and basic blocks that occur in members of
TOPUL). Therefore the node representing/exists both in G and G'. Further, the set of edges
incident to the node for/must be identical in both G and G' because if/co-exists with / in a basic
block occurring in a member of TOPdJLh it must also co-exist with / in a basic block occurring
in a member of BOT(lJ*) and therefore there must be an edge between / and / in G". Since all
other live ranges of L arc unaltered, G and G' arc equal - q.e.d.

Note that the removal of basic blocks described in Lemmas 18 or 19 turn loop-broken live ranges into

loop-continuous live ranges. If all loop-broken live ranges can be changed to loop-continuous live ranges,

the backarc of the loop can be removed without changing the register conflict graph of the loop (Lemma

15). By definition, both the TOP and the BOT part of a loop broken live range / in a loop L can contain

basic blocks outside L%e loop L. Because we enforce that every live range that overlaps with TOPQl) also

overlaps with BOT{l±\ we can remove the loop backarc without changing the register conflict graph of the

entire program.

63

All that was discussed in section 5.3.2 can be applied to conditional-broken live ranges: if all live ranges

that overlap with a conditional-broken live range b overlap with both the TOP and the BOT set of b, the

overall register conflict graph does not change when the TOP or the ßOr part of 6 are removed. Hence, the

conditional-broken live range b has been changed into a conditional-continuous live range.

We have seen that in the absence of loop-broken live ranges, the backarc of a loop can be removed

without altering the register conflict graph. In other words, the flow graph that previously contained a loop

has been "straightened out" and now no longer contains that loop. The simplification of loops depends

merely on the absence of loop-broken live ranges. For conditionals, the absence of broken live ranges is

not enough to ensure a register conflict graph that is easy to color optimally. We will see that even if every

live range in a conditional is continuous, register conflict graphs for conditionals can be arbitrary graphs

that are hard to color optimally.

5.4. Register conflict graphs for conditionals

Throughout this section we assume that no loop that is part of a branch clause contains loop-broken live

ranges. Examining register conflict graphs for conditionals is more complex than for loops and straight line

code, because there is a larger variety of live range types, and there are alternative paths through the

branch.
Definition 20: (Path through a conditional branch) A path through a conditional branch wi!h

split node s and join node y is a sequence of basic blocks [bv...jbj such that bx=s, bn=j,
Vie {l,...,n), fe, occurs in a branch clause and Vie {2,.../i}<6w^/> is an edge in the flow graph
denoting the branch.

Examples for paths through the conditional branch depicted in Figure 5-12 arc the sequences

{BO-»Bl->B3-»BA-»B8} and {BO-*55->Ä6-»F7-»58}, etc.

Each path through a conditional branch consists of straight line code. While the register conflict graph

for one individual path can be colored optimally in isolation, it is in general not possible to combine

optimal colorings for individual paths to an optimal coloring for the entire conditional statement in

polynomial time. An exception are conditional branches in which each live range is BLOCAL, discussed

next.

5.4.1. Conditionals in which all live ranges xn BLOCAL

Intuitively, the number of BGLOBAL, LOEN and LOEX live ranges in a conditional is a measure to the

degree of dependency between the register conflict graphs of the individual branch clauses. The reason is

that BGLOBAL, LOEN and LOEX live ranges might be shared between the register conflict graphs of

separate branch clauses. If each live range in a conditional is BLOCAL, the register conflict graphs for

individual branch clauses are completely independent Therefore, conditionals in which all live ranges are

BLOCAL can be colored optimally by combining individual colorings for each branch clause. This is

formalized in the next theorem.

64

Figure 5-12: Paths through a conditional

Theorem 21: Given a register conflict graph G of a conditional branch with split node s and
join node ;, and a set of branch clauses c; cn, the chromatic numb« of G is equal to the
maximal chromatic number of Ge4e {l,...,n) if all live ranges that occur in the conditional

branch are BLOC AL.
Proof: The conflict graph G for the entire conditional can be partitioned into the conflict graph

for the split node G,, the conflict graph fat the join node G;, and a conflict graph for each branch
clause G/-. Both G, and G. must be empty, because the conditional branch contains wily
BLOCAL live ranges and no BLOCAL live range can contain s ory. For the same reason, there
can be no edge between the conflict graphs for the individual branch clauses. Hence,
G=u(Gc ,j e {1,...,«}) and the chromatic number of G is equal to the maximal chromatic number

of theGc -<7.e.d.

Note that Theorem 21 holds for nested conditionals, even if the inner conditionals do contain live ranges

that are not BLOCAL. As a consequence of Theorem 21, the register conflict graph of a conditional C with

split node S, join node J, and branch clauses cl cn in which all live ranges are BLOCAL is equivalent to

the register conflict graph of the flow graph derived from C by "linearizing" the branch clauses. Because

the register conflict graphs for the clauses are completely unrelated, the order in which the branch clauses

are linearized in the flow graph is irrelevant.

5.4J. Conditionals and BGLOBAL live ranges

The presence of BGLOBAL live ranges in a conditional compücates things, because BGLOBAL live

ranges can be conditional-broken live ranges. A BGLOBAL live range for a variable v is conditional-

broken if there is a re-definition of v in some branch clause. An example of a continuous and a broken

BGLOBAL live range is given in Figure 5-13. The live range for variable a depicted to the left consists of

65

Continuous BGLOBAL range Broken BGLOBAL range

Figure 5-13: Continuous and broken BGLOBAL live ranges

basic blocks {50^132^3^4^5^6^738}, that is all basic blocks of the conditional branch. Hence, the

live range is a continuous BGLOBAL live range. The live range for a depicted to the right in figure 5-13

consists of basic blocks {B0ßlß2ß3ß4£5ßlßS]. B6 is not part of the live range foe a, even though

there exists a path through the branch that contains B6. Hence, it is a broken BGLOBAL live range.

One more reason why BGLOBAL live ranges can make the register conflict graph of a conditional more

complex is because they introduce dependencies between the register conflict graphs of individual branch

clauses. In the next paragraphs we will see how the continuity of BGLOBAL live ranges determines how

hard it is to color register conflict graphs for conditionals that contain BLOCAL and BGLOBAL live ranges.

5.4.2.1. Continuous BGLOBAL live ranges in conflict graphs for conditionals

A continuous BGLOBAL live range for a variable v consists of all basic blocks that are on a path from the

split node to the join node of a branch. Therefore, a continuous BGLOBAL live range overlaps with every

other live range in the conditional In the register conflict graph for a conditional branch, a node that

represents a continuous BGLOBAL live range is therefore adjacent to all other nodes.

Lemma 22: Given the register conflict graph G of a conditional that contains n continuous
BGLOBAL live ranges, let G' be the graph derived from G by removing all n nodes that represent
continuous BGLOBAL live ranges. The chromatic number of G is equal to the chromatic number
of G' +«.

Proof: Let c" be the chromatic number of G", and let each [c^-xj be the set of colors used
for the nodes in G'. Each continuous BGLOBAL live range is adjacent to each vertex in G" and
hence must be colored with a color ct {cl cm). Since die number of BGLOBAL live ranges is
n, the chromatic number of G is therefore c' +n.

66

As a consequence of Lemma 22 continuous BGLOBAL live ranges can be "ignored" during the coloring

process, because they require each a new color, regardless of the specific coloring found for the other nodes

in the conflict graph.

If all BGLOBAL live ranges arc conditional-continuous, the branch clauses of a conditional can be

linearized for the purpose of register allocation if the conditional does not contain any LOEN at LOEX live

ranges. The reason is that all holes in BGLOBAL live ranges are contained inside an inner loop or

conditional and thus inside a branch clause. Note that conditional continuity is a weaker condition than

continuity.

Broken BGLOBAL live ranges can make register conflict graphs for conditionals arbitrarily hard to color

like loop-broken live ranges, conditional-broken live ranges can cause arbitrary circular arc register conflict

graphs, discussed in the next paragraphs.

5.4.2.2. Conditionals and broken BGLOBAL live ranges

We show now that conditionals that consist of BLOCAL and arbitrary BGLOBAL live ranges produce

register conflict graphs that include arbitrary circular arc graphs, and are therefore NP hard to color.

Before we give a formal theorem, we go through an example that illustrates the point. Figure 5-14 shows

a conditional that contains a broken BGLOBAL live range for a.

The conditional consists of two branch clauses, one consisting of the single block 14, the other consisting

of a straight line segment {1,2,3,4,5,6.7,8,9,10,11.12,13). The conditional contains one broken BGLOBAL

üvc range for variable a. consisting of basic blocks {0,1,2.3.4.5,6,12.13,14.15}. The live range for a is

broken, because it does not contain all nodes along the path through the branch clause that starts with block

1.

Because each path through a conditional consists of straight line code, the live ranges of path

{0.1,2,3,4,5,6,7,8,9,10,11,12,13,15} can be mapped to intervals on the real line like live ranges of straight

line code. This is depicted to the right in Figure 5-14. The live range for a is mapped to two intervals,

{0,6] and {12,15], because a is not live in all basic blocks in the path. Because a's live range is BGLOBAL,

the intervals {0,6] and {12,15] must be colored with the same color, indicated by a dotted arc between them.

Note that this register conflict graph is equivalent to that depicted for a loop in Figure 5-2. Hence, the class

of register conflict graphs for conditionals contains circular arc graphs. In the next theorem we show that

few an arbitrary circular arc graph, there is a conditional branch whose register conflict graph is equal to the

circular arc graph.

Theorem 23: Given an arbitrary circular arc graph C. there exists a conditional branch B that
contains only BLOCAL and broken BGLOBAL live ranges such that the register conflict graph for
B is equal to C.

Proof: Let [[al£i],....,[aHJfn]} be the segments of a circle. Suppose the circle is labeled with
the endpoints of the segments {c,....^} such that Vie {l...^i)3/€ {l..../i}such
thatc—flyOrc.— ^andVje [l^jn-^c^c^.

67

dafa: | 0

*>^ f-
us« a; 1

1
dafe; 2

/ utae: 3

/ 4
/ (toft; 4

1
utaf; 5

1
UM a; 6

/ i
dafc; 7

. i 1
|uMa h< (tofb; e

v ♦
\ UMC: 9

\
<tofd:

*
10

\ usab; 11

4
dafa:

1
12

used; 13
r

luMI n.—- - 15

II
I

—i—«

Figure 5-14: Mapping live ranges of one path to intervals

We construct a conditional with split node c0, join node cOT+; and two branch clauses. The
newly introduced c0 and cOT+y are chosen such that c0 < Cj and cm+1 > cm.

The first branch clause is empty, i.e. there is an edge from the split node to the join node. The
second branch clavse consists of the straight line code segment {Cj.-.-.c,,,).

Each circle segment in {[o^] ,[aHJ>n]) is mapped to a set of intervals on the real line as
follows:

The live ranges in our constructed branch are the intervals fda^,]). If 0,^6,, the circle
segment [a^] is mapped to two intern's, and both intervals are part of the same live range.
Because the split node c0 and the join node cm+/ are part cf that live range, it must be a
BGLOBAL live range. It is easy to see that the register conflict graph for this branch is equal to
the original circular arc graph - q.e.d.

The proof of 23 is best understood by an example. Figure 5-15 depicts a circular arc graph, with segments

a=[l,4]^=[3^],c=[6,10]4=[7,8]andtf=[9^j. We construct a conditional B such that the register conflict

graph for B is equal to the circular arc graph in Figure 5-15.

The circle is labeled {1,2,3.4.5.6,7,8,9,10), Le. c; = 1 and <:„, = 10. We choose c0=0 and cm+l = 11. The

results of the function/defined above are as follows:

68

(a)

(b)

(c)

(d)

(e)

Figure 5-15: An arbitrary circular arc graph

y([1.4])=[1.4]

/([3.5])=[3^]
/([6.10])=[6.10]

A[7.8])»t7Ä

A[92])=([9,n],[02])

We construct a conditional that consists of branch split node c0=0, join node cm+1 = 11 and one empty

branch clause, and a straight line branch clause consisting of basic blocks {1,2,3,4,5,6,7,8,9,10}. The live

range for e is BGLOBAL, hence e is live at the split node and at the join node. All other live ranges are

BLOCAL. Figure 5-16 shows the conditional whose register conflict graph is the circular arc graph

depicted in Figure S-1S.

Note that e is a broken BGLOBAL live range - by Lemma 22 and Theorem 21 register conflict graphs of

conditionals that contain just BLOCAL live ranges and continuous BGLOBAL live ranges can be colored

optimally in polynomial time and hence can not be arbitrary circular arc graphs.

In the presence olLOEN and LOEX live ranges, register conflict graphs for conditionals can become very

complicated. We will see that even if all live ranges in a conditional are continuous, the presence ofLOEN

and LOEX live ranges can cause an arbitrary register conflict graph. There is no easy solution to why

LOEN and LOEX live ranges cause arbitrary graphs - we therefore restrict ourselves to discussing situations

in which LOEN and LOEX live ranges do not cause arbitrary register conflict graphs. For the remainder of

this chapter, we assume that all live ranges in a conditional are continuous, so that we can concentrate on

the influence ofLOEN and LOEX live ranges.

69

UM

1
e; 0

date: i

1
UM«; 2

*
defb; 3

i
usea; 4

\
useb; 5

*
dsfc; 6

i
dafd; 7

♦
used, 8

*
(tefe. 9

1
UMC;

IC

i r X

UM«;
11

Figure 5-16: Bidiich constructed from an arbitrary circular arc graph

5.4.3. Conditionals and LOENHOEX live ranges

By definition of LOEN live ran «;£<;, all LOEN livt ranges of a conditional contain the split node and

therefore co-exist d iring prograir' execution. At the same time, all WEX live ranges contain the join node.

Hence, i^l Wfh livs -a es must reside in distinct registers and all WEX live ranges must reside in

'üsjjflci registers.

It is easy to see that if all LOEN live ranges overlap with all WEX. live ranges, the corresponding nodes

miust form a clique in the register conflict graph. By definition, WEN and WEX live ranges must all

overlap with BGWBAL live ranges. If in addition a conditional C contains no BWCAL live ranges, each

WEN and WEX live range can be changed into a continuous BGWBAL live range without changing the

register conflict graph. This is done as follows: all WEN and WEX live ranges are "padded" until they

contain all basic blocks that form C. Thus, the register conflict graphs for the individual branch clauses

share all nodes - the register conflict graph of an arbitrary branch clause is equal to the register conflict

graph of the entire conditional. Therefore, all but one branch clause can be eliminated from the flow graph

for the purpose of register allocation - the conditional can be "collapsed" into one arbitrary branch clause.

If the WEN and WEX live ranges of a conditional do not form a clique in the register conflict graph,

colors used for a WEN live range a can be re-used for a WEX live range b as long as there is no basic

block in which a and 6 co-exist.

70

Definition 24: (Overlap set of a LOEN node) Given a conditional C, the overlap set of LOEN
live range a in C is the set o(LOEX live ranges J:; jc2.... j:„ in C such that there is at least one basic
block in which a and x,-, /e {l,...,/i) co-exist

All LOEX live ranges in a live range a's overlap set must be colored with colors that differ from a. At the

same time LOEN colors can be be re-used for LOEX live ranges not in the overlap set.

Figure 5-17 shows the register conflict graph of a conditional that consists only of LOEN and LOEX live

ranges. In that example, a.b.c and d are LOEN live ranges. The set of LOEX live ranges consists of v,wjc,y

LOEN

LOEX

Figure 5-17: Register conflict graph consisting ofLOEN/LOEX live ranges

and z. Live range a overlaps with LOEX live ranges wjc and z; b overlaps with y and v etc. By definition of

LOEN, the LOEN live ranges form a clique; the same is true for the LOEX live ranges. If a maximal

number of colors used to color the LOEN clique can be re-used to color the LOEX clique, the coloring for

that conflict graph is optimal. The problem of re-using the maximal number of colors in the LOEX clique

can be mapped to the maximal matching problem for a bipartite graph.

Definition 25: (Matching in a graph) A matching in a graph G is an independent subset of its
edges, such that no two of the edges are adjacent A maximal matching of G is the largest
possible independent set of edges..

We construct a bipartite graph from the set of LOEN live ranges and LOEX live ranges as follows:

1. each live range corresponds to one unique node,

2. there is an edge between a LOEN live range a and each LOEX live range that is not in a's
ova-lap set

Figure 5-18 depicts the bipartite graph derived from the register conflict graph shown in Figure 5-17.

LOEN live range a overlaps with LOEX live ranges w.xjc. Therefore the LOEX nodes adjacent to a are

v,y. It is easily seen that the graph is bipartite. A maximal matching of the LOEN nodes with LOEX live

ranges can be used to re-use colors of LOEN life ranges for LOEX live ranges safely. Finding an optimal

matching for the nodes of a bipartite graph can be done in polynomial time. An algorithm for optimal

bipartite matching can be found in [Smith 87].

The maximal matching of the derived bipartite graph is used to derive a coloring for the conflict graph as

follows: An arbitrary color is chosen for each LOEN live range and for each unmatched LOEX live range.

Matched nodes receive the color of their "matching',-partner. The detailed algorithm is given in Figure

5-19.

71

LOEN LOEX

Figure 5-18: Bipartite graph consisting of LOEN and LOEX live ranges

Input: The LOES and LOEX and BGLOBAL livi ranges of a non nested branch

Output: An optimal coloring for those live ranges

Method:

for all LOES live ranges I do
datarmlM tb« ovarlap ••t,
color «aeh I «Itb a distinct color;

od

G :• the empty graph;

for all LOEN live ranges I do
for all LOEX live ranges x t overlap(l) do

add x and I G's vertices if not yet in it;
add edge <l^o to G's edge set;

od
od

bipartite nn»tching(G);

for all LOEX live r^esx do
tt j has been matched
then color x with tb« m»tch«d nodaa color
etoe color z «Itb a n«w color;

Figure 5-19: Cotoring a register conflict graph for a conditional that contains
only LOEN and LOEX live ranges

The restriction on the live ranges in a conditional that allows an optimal coloring can be relaxed by

allowing arbitrary BGLOBAL live ranges in addition to LOEN and LOEX live ranges. The idea behind this

relaxation is that BGLOBAL live ranges by definition contain both the split node and the join node,

regardless of whether they are continuous or broken. Hence, every BGLOBAL live range co-exists with

every LOEN live range in the split node, and with every LOEX live range in the join node. Therefore, the

registers assigned to BGLOBAL live ranges in a conditional must differ from the registers assigned to

LOEN and LOEX live ranges. This is all summarized in the next theorem.

72

Theorem 26: Given a conditional that contains only LOEN, LOEX and BGLOBAL live ranges
and the corresponding register conflict graph G, an optimal coloring for G can be found in
polynomial time.

Proof: A coloring for the LOEN and LOEX live ranges can be found by algorithm 5-19. After
application of algorithm 5-19, a new color is chosen for every BGLOBAL live range, and the
overall coloring is optimal - q.e.d.

Note that the bipartite matching algorithm can no longer be used to find an optimal coloring in the

presence of BLOCAL live ranges because in each branch clause BLOCALS can be adjacent to an arbitrary

set of LOEN and LOEX live ranges. It is not possible to incorporate dependencies of BLOCALS into the

bipartite graph. We will see in the next section that under certain restrictions for LOEN and LOEX live

ranges it is possible to color register conflict graphs for conditional branches optimally in polynomial tone,

even if a conditional contains a combination of BLOCAL and LOEN and LOEX live ranges.

5.4.4. Mixing LOEN and LOEX live ranges with BLOCAL live ranges

We have seen that register conflict graphs for straight line code are interval graphs. Interval graphs are

contained in the class of chordal graphs.
Definition 27: (Chord) Given a cycle u» a graph {ci,...^B}, a chord in the cycle is an edge

between two non-consecutive members of the cycle.

An example of a cycle and chords in the cycle is shown in Figure 5-20. The cycle consists of nodes

(1,2,3,4,5.6,7,8); the chords are the dashed edges <2>7> and <1,5>.

Figure 5-20: Chords in a cycle

Chordal graphs are graphs that are "triangularizable", more formally:
Definition 28: (Chordal graph) A graph G is chordal iff every cycle in G that consists of more

than 3 nodes has a chord.

Graphs Gl and G2 depicted in Figure 5-21 are chordal because Gl and G2 contain no chordless cycle

larger than 4. Note that graph Gl consists of a collection of "triangles". Graph GJ is derived from Gl by

adding an edge between nodes 7 and 2, and is no longer chordal because cycles {1,2,7,8) and (23,4,5,6,7)

73

Gi G2

G3

Figure 5-21: Examples of chordal and nonchordal graphs

are chordless. A nice property of chordal graphs is they can be colored optimally in polynomial time

[Gavril72].

We will show that under certain restrictions for WEN, BGLOBAL and LOEX live ranges, register conflict

graphs for conditionals are chordal. Before we formalize the restrictions in a theorem, we give some

intuitive reasons for chordality of register conflict graphs.

Given a conditional branch with n branch clauses, let G, be the register conflict graph for the i-th branch

clause. It is easy to see that if the register conflict graphs of two distinct branch clauses have nodes in

common, those nodes must be BGLOBAL, WEN or WEX live ranges. This is illustrated in Figure 5-22.

We see a conditional construct consisting of split and join node and two branch clauses. The first branch

clause consists of basic Mocks 1,2 and 3, the second branch clause consists of basic blocks 4,5,6 and 7.

The branch contains live ranges for 6 variables. Since each variable has one unique live range, we name

the live ranges after the variables. Live range n is a WEN live range, and live range x is LOEX. The left

branch clause contains BWCAL live range d, the right branch clause contains BLOCAL live ranges a,b and

c.

Figure 5-23 shows the register conflict graphs for the first branch clause, labeled Gi, the second branch

clause, labeled G2 and the register conflict graph of the entire conditional branch.

74

/

defn;

split

\
N

/ dafa:
usan;

dafx;

1

defb;
UM a;

defd- 2
usan;

defc;
usab;
dafx; 3

used:

\
usoc;

|P join

UMX;

Figure 5-22: Conditional branch

G2 I

Figure 5-23: Nonchordal registCT conflict graphs

Note that live ranges x and n occur in both Gl and G2, but that in the first branch clause x and n co-exisc

this is not the case in the second branch clause. Hence, in Gl there is an edge between n and x, but not in

G2. The register conflict graph of the entire branch construct contains an edge between n and x, and the

graph contains a chordless cycle consisting of nodes [aj?,cjir*} •

75

Figure 5-24 shows the same conditional branch construct as in Figure 5-22. only now the live ranges n

and x overlap in both the first branch clause and the second branch clause.

detn;

/

^
split

\
\

dafcu

defx;

1

1

dafb;
UM a:

dafd:
use n,

2

1

r^
date;
useb:
defx:

usad; i
\ usen;

ussc;

Kl§ join

use«;

Figure 5-24: Conditional branch construct with chordal register conflict graph

This changes both the register conflict graph for the second branch clause, labeled G2 and the register

conflict graph for the entire conditional branch as shown in Figure 5-25.

Note that the register conflict graph for the entire branch construct contains no longer a chordless cycle

that is larger than 3. In other words, the register conflict graph is chctdal. We formalize jie observations

about chordality of register conflict graphs for conditionals in a sequence of lemmas.

We now analyze types of live ranges that can be part of chordless cycles larger than 4. First, we show

that there must be at least one pair of non-overlapping LOEN/LC*X live ranges if a chordless cycle of size

larger than 4 consists only ofBGLOBAL nodes.

Lemma 29: Given a register conflict graph G of a non-nested conditional that contains no
broken live ranges, let {cj,...^} be a chordless cycle in G of 4 or more nodes, such that c, is
either a BGLOBAL, a WEN or a LOEX live range for je {l,...,/i}. Then there must be at least
one LOEN live range c, and one LOEX live range c.- such that c, is nor in c/s overlap set

Proof: Suppose that the overlap set of every LOEN live range € [c^..fiH] includes every
LOEX live range 6 {cj,...^„). Then there is an edge between every LOEN live range
e {cp...,^} and every LOEX live range in e {cj,...,^). Further, the LOEN live ranges form a
clique as do the LOEX live ranges. By definition, all BGLOBAL live ranges overlap with every
member in the cycle. Hence, the nodes in {cj,...,cB) form a clique and therefore cannot form a
chordless cycle that is larger than 3. Hence, there must be at least one LOEN live range c, and
one LOEX life range C: such that c, is not in c/s overlap set - q.e.d.

76

• 31

Figure 5-25: Chordal register conflict graphs

A chordless cycle of size 4 or larger can not consist of live ranges that are BLOCAL, stated in the next

lemma.
Lemma 30: Given a register conflict graph G of a non-nested conditional that contains no

broken live ranges, let {Ci,...,cB} be a chordless cycle in G of 4 or more nodes. Then there must
be at least two nodes in the cycle that are not BLOCAL in every branch.

Proof: Suppose that all nodes in {cj,...,cj are BLOCAL. By definition, BLOCAL live ranges
contain neither a split node nor a join node. Consequently, any BLOCAL live ranges that are
connected must be part of straight line code that contains no split or join nodes. Register conflict
graphs of straight line code are interval graphs and hence can not contain a chordless cycle that is
larger than 3.

There must be at least two nodes in the cycle that pre not BLOCAL, for suppose there is only
one node c in {cj ,...,<:„) that is not BLOCAL. Because there exist no edges between BLOCAL
nodes k lifferent branch clauses, there must be a chordless cycle of size 4 or larger that consists
of c ami nodes that are BLOCAL and all part of the same blanch clause. This is not possible,
because the subgraph formed by c and BLOCAL live ranges of one branch clause is an interval
graph and can not contain a chordless cycle larger than 3 - q.e.d.

Via Lemmas 29 and 30 we can now show that every chordless cycle in a register conflict graph of a

non-nested conditional branch must contain at least one pair LOEN/LOEX live ranges x and y for which

there is a branch clause in which x and y do not co-exist

Theorem 31: Given a register conflict graph G of a non-nested conditional branch that contains
no broken BGLOBAL live ranges, let {clr..,cn} be a chordless cycle in G of 4 or more nodes that
contains BLOCAL live ranges. Then there must be at least one LOEN live range x and one LOEX
live range y such that there is at least one branch clause in which x and y do not co-exist

Proof: By Lemma 30 there must be at least two members of {cj,...^,,} that are not BLOCAL.
Let x and y be two arbitrary members of the cycle that are not BLOCAL.

If x and y are both continuous BGLOBAL live ranges, they co-exist in every branch clause by
definition. Hence, x and .y must be either LOEN or LOEX.

77

We will now assume that all WEN and LOEX live range overlap in every branch clause. Then
there can be at most two LOEN or LOEX live ranges in the cycle, because by our assumption
more than two LOEN or LOEK live ranges must contribute a chord to the cycle. Hence the cycle
contains {xo^i«-..^) and all c,e {cp.-.c^) must be BLOCAL live ranges. This is depicted
in Figure 5-26. Live ranges x and y are naa-BLOCAL, and live ranges 1 6 are BLOCAL.

Figure 5-26: Chordless cycle with local live ranges 1,23,4,5,6

Because there are no edges between BLOCAL live ranges of distinct branch clauses, all the ci in
the cycle must be part of die same branch clause. By our assumption, r and y overlap in every
branch clause. Because no c^e {cj,...^} contains a split or join node, all <:,£ {c1,..^2J must

occur in straight line code. But then the cycle can not be larger than 3.

It remains to be shown that x and y cannot be both LOEN or both LOEX. We will show that for
theLOEN case - the LOEX case is similar.

Assume the cycle looks as above (depicted in Figure 5-26), and that both x and y are LOEN live
ranges. We have shown that all c,- must be in the same branch clause and that x and y can not
overlap in the branch clause in which live ranges Cj c^ occur. By definition, if x and y do not
overlap in the branch clause containing Cy,...,^, either x or y can not be adjacent to any of
c € (i ji-2)- But !heirc can only ** a cycle ^^ * a™1 ? a16 adjacent to members of
{c, c^lj) in the same branch clause - a contradiction. Hence, x and y can not both be LOEN.
By the same arguments, x and y can not both be LOEX. As a result, x and y must be a
LOEN/LOEXpaii-q.e.d.

Theorem 31 states that if there exists a chordless cycle that is larger than 5 in a register conflict graph for
a non-nested conditional branch that contains no broken BGLOBAL live ranges, there must be at least one
pair of LOEN and LOEX live ranges x and y such that there is a branch clause in which x and y do not
co-exist It is easy to check if LOEN and LOEX live ranges co-exist in every branch clause, and if they all
do, we can show that the register conflict graphs of such branches are chordal, stated in the following
Lemma:

Lemma 32: Let G denote the register conflict graph of a non-nested conditional that contains
no broken live ranges and in which all LOEN variables and all LOEX variables co-exist in every
branch clause. Then G is a chordal graph and an optimal coloring for G can be found in
polynomial time.

Proof: Since all LOEN and LOEX live ranges co-cxist in every branch clause, the register
conflict graph can not contain a chordless cycle larger than 3. Therefore, G is a chordal graph.
Sec tGavril 72] for an algorithm that produces an optimal coloring for chordal graphs q.e.d.

78

53. Chapter summary

We have started with the fact that register conflict graphs for straight line code are interval graphs, for

which an optimal coloring can be found in polynomial time. We showed how the cliques in an interval

graph can be ordered to form a ".<." sequence of cliques, and used the construction to prove that the

standard node removal technique can color interval graphs optimally. The significance of finding the

sequence of cliques in an interval graph is that each one of those cliques can be used as a separata- clique.

We examined the register conflict graphs for loops and conditionals. Register conflict graphs for loops

with arbitrary live ranges contain the class of circular arc graphs, and are thus NP hard to color optimally.

If a loop consists only of continuous backarc live ranges, the register conflict graph of the loop is

equivalent to the register conflict graph to the flow graph derived from the loop by removing the backarc

live range.

Register conflict graphs for conditionals are more complex. Ws 'lave seen that optimal colorings can be

found for conflict graphs of conditionals with the following properties:
1. The live ranges in the conditional are either continuous BGLOBAL live ranges or BLOC AL

live ranges WJ-.L each branch that contains them.

2. The conditional contains no BLOCAL live ranges.

3. Every pair of LOEN live range x and LOEX live range y co-exist in every branch clause and
there are no broken BGLOBAL live ranges.

The motivation for examining situations in which loops can be "linearized" by removing the loop backarc

and conditionals can be "linearized" or collapsed by ignoring or linearizing individual branch clauses is that

these flow graph simplifications turn a complex flow graph into a "straightened out" flow graph that

contains more straight line code sequences. Hence, more sequences more separata- cliques can be found in

the register conflict graphs. Each of those simplifications can oily be carried out when the live ranges of

the loop/conditional are "well behaved" and form a nice register conflict graph.

When these simplifications can not be carried out, it is possible that the register conflict graph is not an

interval graph. In the next chapter we will discuss a technique called "node merging" with which a

non-interval register conflict graph can be changed into an interval register conflict graph in some cases.

79

Chapter 6

Transformations on register conflict graphs

In the previous chapter we described situations that allow to simplify the flow graph for the purpose of

register allocation without altering the register conflict graph. The flow graph can be simplified by

removing backarcs from loops and sequentializing or collapsing conditionals. The purpose of

transformations on flow graphs is to detect portions of the register conflict graphs that are interval graphs or

chordal graphs. If those portions are known, it is easy to partition program flow graphs into clique

connected components - the basis for parallelizing global register allocation.

In this chapter, we deal with loops and conditionals that can not be simplified to equivalent straight line

code. For such programs, register conflict graphs are usually not interval graphs. Our approach to register

allocation is based on mapping non-interval register conflict graphs to interval register conflict graphs.

Interval register conflict graphs are desirable for two reasons. First, they can be colored optimally in

polynomial time. Second, clique separators are easy to locate in interval graphs. Clique separated portions

of a register conflict graph can be colored individually and combined to an overall coloring by renaming

only.

In our model, there are two sources of non-interval register conflict graphs: broken live ranges and

unrestricted combinations of WEN and LOEX live ranges in conditionals. If holes in live ranges can be

"stuffed" with live ranges that "fit" into the holes, a broken live range can be transformed into a continuous

one. We demonstrate situations in which broken live ranges can be transformed into continuous live ranges

by a technique we call node merging. Node merging can also be applied to the nodes of the register

conflict graphs of different branch clauses of the same conditional: given a conditional C with branch

clauses c and c', it sometimes is possible to encode the register conflict graph of branch clause c into the

register conflict graph of a different branch clause c'. A coloring of the register conflict graph for c' can be

mapped directly onto the register conflict graph for c - hence, during register allocation it suffices to color

only the graph for c'. If the conflict graphs for all branch clauses can be "reduced" to that of one single

branch clause, the resulting conflict graph is much simpler and in some cases can even be colored optimally

in polynomial time.

We first show how node merging can be applied to eliminate holes from broken live ranges. The second

part of this chapter is devoted to the application of node merging to simplify register conflict graphs of

conditionals.

80

6.1. The effect of holes in broken live ranges

Eliminating holes from broken live ranges means eliminating one source for non-interval register conflict

graphs. The easiest way to eliminate a hole h from a broken live range v is to add all the blocks that form h

to v. There are cases in which this increases the chromatic number of the register conflict graph

unnecessarily, an example of which is given in Figure 6-1. The left side of the figure shows a broken and a

1

2

3

4

5 4-

6 -

7 -

8

a

«

3

4

5

d
—-♦-

 -

6.._..._._!..

7

a —, i

0 0 (t^-<D
Original conflict graph Conflict graph after padding

Figure 6-1: Padding a hole of a broken live range

continuous live range. Live range a consists of basic blocks {1,2,7,8) and contains a hole consisting of

(3,4,5,6), live range d consists of basic blocks {3,4,5,6}. The register conflict graph is shown to the right -

there is no edge between the nodes for a and d and the conflict graph is 1-colorable. If the live range of a is

padded to contain the basic blocks that form the hole {3,4,5,6), the node for d can no longer be colored

with the same color as the node for a - padding a causes an edge between nodes a and d, depicted on the

right side of Figure 6-1 - the resulting conflia graph is no longer 1-colorable. The chromatic number of the

register conflict graph increases because d is a live range that consists only of basic blocks that "fit" into the

hole of live range a. Hence, padding a with the basic blocks that form the hole excludes the color used for

a from the colors that can be used for d. Had there been no live range that fits into a's hole, padding a with

the blocks that form the hole would have not altered the register conflict graph. This is formalized in the

next lemma.
Lemma 1: Given a flow graph with basic blocks B, live ranges L and register conflict graph G,

let / be a broken live range with hole A. If there is no live range range v such that v consists of a
subset of the basic blocks that form h, then adding h to / does not change G.

Proof: Let G' be derived from G by adding A to /. We prove by contradiction that G and G'
must be equal, so we assume that G and G' differ. Because the set of nodes in G is equal to the
set of nodes in G' except for I, the set of edges not incident or / must be equal as well. Clearly,
the number of edges incident on / in G must be less than or equal than the number of edges
incident on /'=/uA because / consists of a subset of /'. Suppose there is a node v such that there
is an edge between v and /' in G' but no edge between v and / in G. Then, v must contain basic
blocks that occur in A. By prerequisite, v must then also contain basic blocks that occur in /, so
there must be an edge between v and / in G - a contradiction.

As a consequence of Lemma 1, only a hole A for which there exists live ranges that "fits" into A can cause a

81

non-interval register conflict graph. An example of a such non-interval register conflict graph is given in

Figure 6-2. The live range for a is broken and contains hole {3.4,5,6}. The live range for c consists of

b

:i:

Figure 6-2: A broken live range and a non-interval register conflict graph

basic blocks (3,4,5,6), and hence is a fit for the hole of the live range for a. The register conflict graph is

shown to the right - it consists of a chordless cycle of size 4 and is therefore not an interval graph.

We will show that certain types of live ranges that fit into a hole of a broken live range can be used for

padding that hole without penalty with regard to the chromatic number of the conflict graph. The definition

of such live ranges is given below.
Definition 2: (Fit for a hole) Given a flow graph consisting of basic blocks B with register

conflict graph G, let / be a broken live range such that A is a hole of /. We say that a live range p
is a fit for A iff p is continuous and pn(B - A)=0.

Figure 6-3 shows broken live range a with hole h= {3,4,5,6} and a few examples of live ranges, some of

which fit into h. The live range & is a fit for h, because b is continuous and consists of basic blocks that are

1 ■——< >._._ ,

2

3

4

►

) (
c

>—■■

5

6 .._^

)

—

IZI
Figure 6-3: Fits for a hole

all contained in h. Because c is not a continuous live range, it is no fit for k, even though the basic blocks

that form c. {3,5,6} are a subset of the basic blocks that form the hole. Because d contains basic blocks

outside the hole, d is not a fit for h.

82

6.2. Eliminating holes via node merging

Node merging is a technique to enforce that two non-adjacent nodes in the register conflict graph are

colored identically before an actual coloring is produced. Given a conflict graph G with two nodes v; and

vj. v; and v2 are merged by eliminating node v; from G and adding all edges incident on v; to the edges

incident on v2. Under certain restrictions we can ensure that node merging changes a non-interval register

conflict graph into an interval graph.

Node merging can be used to eliminate holes from broken live ranges. Given a broken live range I with a

hole h and another live range p that is a fit for the hole h, there can not be an edge between / and p. Hence,

It is possible to color / and p with identical colors. Chosing the same color for two separate live ranges can

be viewed as "melting" the two live rar^es into one - the live range / is changed into /' by adding the basic

blocks contained in p. If padding / with p results in continuity of /', there is one less broken live range to

worry about We will discuss cases in which there are several fits for the same hole or in which several

merge operations are necessary to eliminate one hole. We use node merging only if we can ensure that the

chromatic number of G' derived from the original conflict graph G by live range merging is not larger than

the chromatic number of G. Note that u. coloring for the conflict graph derived by node merging can be

Hrectly mapped to the original conflict graph. In the next paragraphs we introduce restrictions that must be

met by IK'e raages that fit into a hole such that the chromatic number of the conflict graph derived by node

merging is equal to the chromatic number of the original conflict graph.

6X1, Perfect matches for holes

Figure 6-4 gives ar example of a conflict graph that contains a broken live range a and two fits for its

hole, c and d respectively. The original non-interval register conflict graph is shown top right The register

conflict graph acrived by merging a and d is depicted bottom left. It is an interval graph, and contains two

3-cliques. Henc^, 3 colors aie needed to color the register conflict graph when d is merged with a.

Merging a with c yields the interval graph depif ted bottom right It is easy to see that 2 colors arc

sufficiem m color that graph. This example illus'rates that deciding which live range to use for merging

with a broken 5've range CM H nontrivial.

In some cases tk choice cf the candidate (at ging with a broken live range is irrelevant, depicted in

Figure 6-5. The Ixcfcm live range a contains a nole consisting of {3,4,5,6}. Both c and d can be used to

pad the hole. The original register conflict graph is shown top right; merging a with c and merging a with

d yields the two registar »nflict graphs depicted at the bottom of the figure - they are identical. Note also

that all three conflict grafts arc 3-colorable, in other words, no merge operation causes an increase of the

chromatic number of She i&üiived guphs- '.V rason why the choice of c or d for merging with a is

irrelevant is that the live rasfes that rap ?-idi c and d form a clique in the register conflict graph,

consisting of nodes [c4Jt},e]. We call note like c and dperfect matches for the hole in a.

A live range that fits into a hole h may itself contain a hole hß. Therefore, live ranges that fit into hß fit

into h as well. In that situation, the sequence in which h and h^ arc padded can determine whether or not h

83

:a
a

I
6 -

7 -

S ~*
Original conflict graph

Merging aandd Margingaandc

Figure 6-4: Different amflict graphs for different merge operations

or A^ can be eliminated via node merging. Our goal is to keep node merging to eliminate holes simple, so

we avoid this problem by requiring continuity of a perfect match for a hole. To ensure that interactions of

perfect matches with other live ranges remain "local" to the hole, we enforce that every live range that

overlaps with a perfect match but not with the broken live range must also be a fit for the hole. To avoid

backtracking when a fit for a hole is chosen for node merging, we require that the adjacency lists of two

overlapping fits for a hole are identical. After this motivation, we can define perfect matches formally. In

the following, let adj{m) denote the sei of live ranges that overlap with a live range m.

Definition 3: (Perfect match for a hole) Given a register conflict graph G, we say that a live
range m is a perfect match for a hole A in a broken live range / iff

1. m is a fit for A

2. if xe adj(m)- [adj{[)rvidj{m)} then .r is a fit for A

3. if x e adj(m) and JC is a fit for h then {adj(x) - m} = {adjim) - x]

Examples of perfect matches are given in Figure 6-6. Live range a is ho? ^ «ad contains a Jste

A= {3.4,5,6,7). Because b.c and d form a clique, and both fr and c ave hm .or >. wth ^ and u arc <; tea

matches for h - for the same reason, e is a perfect maxh for h

Perfect matches have a number of desirable properties tl'-fc »I'w to dLühsre 'nl- s from f •okv« irve

ranges without paying the penalty of needing additiuiaJ colors to enkt ihn d~n-<^ coiJiic. fr" foe firs;

property of a perfect match p for a hole /i of a brokun live iWe i r it p aid icmht vl wn>le

maintaining the chromatic numb«- of the origiiuJ conflict graph if- 'it dej've.' n-rSki ^aph.

Lemma 4: Given a register conflict graph G with broken Uve ran^t I with hole h ^d a live

84

;ö
3 „i.™^

4 _i—-l—fH i

5

6

Original conflict graph

Merging • and d Merging a and c

Figure 6-5: Equal register conflict graphs for different merge operations

d

Figure 6-6: Perfect matches for a hole

range p such that p is a perfect match for h, let G' be die conflict graph derived from G by
merging the nodes / and p. Then, the chromatic number of G' is equal to the chromatic number
ofG.

Proof: We show that the chromatic number of the two graphs are the same because a coloring
for G' can be mapped to G and a coloring of G can be used to produce a valid coloring of G'
without adding any colors.

Case 1: mapping a coloring ofG' onto G: Let pul denote the node derived by merging live
ranges p and /. A valid coloring for G' can be expanded into a valid coloring for G by using the
color used for put in G' for both p and / in G and by copying the colors for all other nodes in G'
to the corresponding nodes in G.

85

Case 2: mapping a coloring for G onto G': Let cT denote the color used for a live range x in a
coloring of G. To map a coloring of G to G', we first change the coloring of G such that p is
colored with cl. If there is a live range ;t€ [adHp)radj(t)], then c,« (c,,^), so altering the color
for /? to c, has no influence on x. Given a live range xe [adj(p)- [adj(p)nadj(l)]] such that
cx=c,, coloring p with cl is not possible without changing the color for x. By prerequisite
{adjix)-p] = [adj(p)~x) . ThCTefore,y*pe ad/W-^^^c . Hence, x can be colored with cp.
Therefore, the color for p can be changed to c; and the coloring of the nodes in adj(p) can be
adjusted by exchanging C; and c_ - in other words, the number of colors is not increased by
coloring p and / identicaUy. Once / and p are colored identically, merging nodes / and p can be
performed without adjusting coloring - therefore, the chromatic numbers of G and G' must be
equal.

Given a perfect match p for a hole A of a broken live range / and a live range x that is a fit for h such that

xe adj(p), it is easy to see that x is also a perfect match for A and that it is irrelevant whether x or p is

chosen for merging with / - in the example shown in Figure 6-5, the derived register conflict graphs for

merging c with / and d with / are equivalent

The next property of perfect matches is that the order in which perfect matches of the same hole h are

merged is irrelevant - the remaining perfect matches are perfect matches of the holes of the newly derived

merged live range. Before we formalize this in the next lemma, we go through an example. Figure 6-7

shows a broken live range a with perfect matches b, c and e. Because the adjacency set of ö and c are

1 ■■■■■■& ■■■■■••«

2 ♦■

i b c 3 J .*-

..-Li .-
2

5 ♦"

6 -j 1 - 6 1 ♦

7 J X- i— 7 i ♦•—

c

Figure 6-7: Sequences of perfect matches

equal, it is irrelevant which of the two is chosen to be merged with a, so we chose b. The picture to the

right shows the same set of live ranges, except a and b have been merged into one live range now. Because

c was adjacent to b before, c is now adjacent to the newly derived live range aub and can no longer be a

perfect match. The original hole of live range a has now shrunk to the basic blocks {6,7}, and e is still a

perfect match for the newly derived hole.
Lemma 5: Given a flow graph with basic blocks B and register conflict graph G with broken

live range / with hole h and live ranges p and p' that are both perfect matches for h, let /up be the
live range derived from merging / and p. If p'n(/up)=0, then p' is a perfect match for the
remaining part of the hole A' c A of the live range derived by merging / and p.

Proof: To show that p' is a perfect match for /up, we first must show that p' is a fit for a hole
in live range /up. Because p' is a perfect match for A, p'nB - A=0. Because p'n(/up)=0, /up
must have a bole A' such that p' is a fit for A'. A live range xe (adjip^-adjilup)) must be a fit
for A' as well, because by prerequisite x is continuous.

86

It remains to be shown that {adj(p')-x} = (ady(x)-p')Vx6 adjip^such thatxfits h'. A live
range xe [adjip^-adjil)] can not be adjacent to p, because all fits of Ä adjacent to p share the
same adjacency list, but p' is not adjacent to p by prerequisite. Therefore, either
x e adjil) orx e adjd/). Thus merging p and / does not affect the fits of h' that are adjacent to p',
and by prerequisite [adjQft-x} = [adj(x)-p'). Hence, /?• is a perfect match for h'.

Lemma 5 states that the order in which which perfect matches are merged wiln a broken live range does

not matter at all - the graph derived by node merging with perfect matches is identical for all choices of

perfect matches. In other words, no search is necessary to choose a live range for node merging; node

merging is kept simple and inexpensive. Once all perfect matches are used up and the hole is filled, the

derived conflict graph is still equivalent to the original conflict graph.

6.2.2. Imperfect matches and breaks

The restrictions that must be met by perfect matches were chosen such that the choice which perfect

match was merged with a broken live range did not matter at all. In other words, merging of a broken live

range with perfect matches for its holes can be done blindly. If we are willing to use more expensive

algorithms to choose live ranges for padding holes, we can relax the restrictions that must be met by fits for

a hole and still guarantee that the chromatic number of the derived conflict graph does not increase.

The motivation for our next definition is to chose the "largest" fit for a hole. Given a hole h and some fits

for h, an imperfect match m for A is a fit whose adjacency list adj{m) includes the adjacency lists of all fits

inadjim). More formally:
Definition 6: (Imperfect match for a hole) Given a register conflict graph G, we say that a live

range m is an imperfect match for a hole ä in a broken live range / iff
1. m is a fit for A

2. If x e adj(m) - adj(l) then x is a fit for A

3.Ifp€ {xlxisafitforA}toencuij(p)nadjil)Qadjim)n{*dj(t)

An example of an imperfect match is depicted in Figure 6-8. Live range a contains a hole and live

ranges c, d and e are fits for that hole. The set of nodes adjacent to a consists of [bf). Because c is

adjacent to both b and/, c is an imperfect match for a's hole. Neither d nor e are imperfect matches for a's

hole.

Similar to Lemma 4, we can show that the graph derived by merging a broken live range with an

imperfect match has the same chromatic number as the original graph.
Lemma 7: Given a flow graph with basic blocks B, register conflict graph G and a broken live

range / with hole A, let p be an imperfect match for A, and let G' be the conflict graph derived
from G by merging p and /. Then, die chromatic numbers of G and G* are identical.

Proof: It is easy to see that any coloring for G' can be expanded into a coloring for G without
using additional colors. Given a coloring of G, let cx denote the color for live range x in a
coloring for G. Let [Pi,...j>H} be the live ranges that are fits for h. If
xe adj(pl)nadj(,l)4e {l,...,n), fhen cx« {c^}, hence x is unaffected by changing the color of p
to c,. Therefore, the only nodes affected by changing p's color to ^ are {pv...pn]. By
prerequisite, no p^ [p^-pj is adjacent to /, therefore cp and c, can be exchanged among

87

1b

c d

iz:
Figure 6-8: An imperfect match for a hole

(pj,.../»,,}. Hence, a coloring of G can be used to produce a coloring of G' without introducing
new colors - the chromatic numbers of both graphs are identical.

Imperfect matches do not have the nice properties of perfect matches. For example, given an imperfect

match m for a hole A of a broken live range /. merging m and / might not fill up /i completely. It is not

guaranteed that the remaining hole can be padded with the remaining live ranges. Imperfect matches are

useful however if they are "large" enough to fill the entire hole. In the example depicted in Figure 6-8, the

imperfect match c fills the entire hole of live range a. The fact that c is an imperfect match allows us to

deduce that by merging c and a the entire hole can be eliminated without increasing the number of colors

needed to color the derived register conflict graph.

The reason why broken live ranges can create register conflict graphs that contain chordless cycles of size

4 or larger is that all fits for a hole h are interdependent - the color chosen for a live range/ that is a fit for a

hole h sometimes influences the choices of colors for all other fits for h. Since we are forced to use the

sams color for the TOP and the BOT part of a broken live range, chordless cycles are introduced in a

register conflict graph. The motivation for the next definition is to determine basic blocks inside a hole h

that partition the fits for h into independent sets. If there is such a basic block, the fact that we must color

TOP and BOT parts of a broken live range identically has less impact

So rather than restricting live ranges that are fits for a hole, we now define restrictions on the hole itsetf.

We will show later that holes that meet these restrictions can be padded by their fits without compromising

optimality of the overall coloring.

If there is a basic block b that is not contained in any fit for die hole, then & can be used to partition the

fits for the hole into two sets: the fits that consist of basic blocks that consist of basic blocks that precede b

and those that consist of basic blocks that succeed 6. If in addition the only live ranges that contain b must

also contain a// basic blocks of the hole, no dependencies exist between the fits in those two sets. We will

show that the absence of dependencies can be exploited to eliminate the hole. We first give a formal

definition of a break in a hole.

Definition 8: (Break in a hole) Given a register conflict graph G with a broken live range / that
contains a straight line hole h= [h^Ji,,], we say that ft,-e {Aj,...^) is a break for h iff every
live nge that contains A, contains {Aj,...,AR}, i.e. all basic Mocks that form the hole.

88

Figure 6-9 gives an example of a break in a hole. Live range a contains a hole consisting of basic blocks

d

:i
4 —

Figure 6-9: Break of a hole

(3,4,5,6,7). Basic block 6 is a break for that hole - the only live range that contains 6 is/which contains

basic blocks of both the TOP and the BOT part of a - (1,2) and {8} respectively. The set of fits for the

hole consists of [bj/i*). The break partitions the live ranges that are fits for the hole into two

independent sets - one "above" the break, [b,cJ} and one "below" the break, [e).

A break in a hole is desirable; the intuitive reason is that the live ranges that are fits for that hole can be

partitioned into two independent subsets via the basic block that is the break. The live ranges in one of the

subsets can only be adjacent to the TOP or BOT part of the broken live range, but not both. Therefore, both

parts can be colored independently and combined by renaming. This Is stated in the next lemma.
Lemma 9: Given a flow graph F with register conflict graph G such that there exists a

backarcfree path that contains all basic blocks in F, let / be a broken live range that contains one
hole A with break 6^ If all live ranges in G except / are continuous, G can be colored optimally
in polynomial time.

The proof of Lemma 9 consists of three parts. In the first part we show that the flow graph F can be

simplified to a flow graph F* that is equivalent for the purpose of register allocation. In the second part of

the proof, we consider only the portion of F' that consists of the loop or conditional that causes the hole,

called F", and show how to color the conflict graph G" for F" optimally in polynomial time. The third

part of the proof deals with extending the coloring for G" to a coloring for the original register conflict

graph. As we go through the proof, we will illustrate our steps by examples. During the proof, we assume

that the hole containing the break is caused by a loop. The case in which the hole is caused by a

conditional can be shown analogously.
Proof: Part 1: constructing F': Wlo.g. assume that the hole h is caused by a loop L with loop

head a and loop exit«. Let F' be the graph derived from F by removing the following edges:
1. all backaics except that of L

2. all edges from the split node of a conditional C to the join node of C.
By Lemma 15 the register conflict graph of F' is equal to the original register conflict graph G.

Part 2: constructing G': Let b1,...J>H be the set of basic blocks that form the hole h, and let F''
be the subgraph induced by {&oA'"AiA*i)' wberc bo is Vs predecessor in F', and bH+] is
ft^'s successor in F'. Because / is the only broken live range, bke [bv...J>n], and both
fegandd^! e /. G' consists of those live ranges in F' that do not contain the break b^ in other
words live ranges that contain a subset of the following basic blocks: [b0,...Jbm^l) - {^} •

89

The construction of C is depicted in Figure 6-10. On the left side of that figure the original
conflict graph G is shown. The broken live range is a, and the "straight line" hole of a consists of
basic blocks {5.6,7,8,9). Basic block 8 forms a break in the conflic Taph. G' is shown on the
right side of Figure 6-10 - a now consist only of basic blocks (4,10), ue two blocks that "define"
the hole. Only live ranges that either fit into the hole or that contain either 4 or 10 a' e included in
G'.

a b

Original conflict graph G G'

Figure 6-10: GandG'

Because 6t is a break in h, no live range in G' contains b^. Then, C can be partitioned into two
subgraphs, Gi induced by those live ranges that consist of basic blocks among the "first half' of
h, {bQ,...^^] and G2 induced by the live ranges that consist of basic blocks in the second half of
h, {bk+l,...J>Hti). The construction of Gy and G2 is depicted in Figure 6-11. Note that both C;

 a b < ...»

i

6 1-—
1

7 - 4--
i

f

>..-—

G2 9 . 1 j

Figure 6-11: G^and G2

and G2 contain a part of the broken live range /, b0 and bn^] respectively. Because (fy),...,^.!}
and {64+!,-AH.!) both form straight line code and no live range in G; and G2 contains holes, G7

and G2 must be interval graphs. Hence, both G; and G2 can be colored optimally in polynomial

90

time. Let cT0P be the color used to color the part of / consisting of b0 in G7 and cBOT the color
used to color the part of / consisting of bm+1 in G2. An optimal coloring for G' can be derived
from the colorings for G; and Gj by exchanging cTOp and cBOT in G2. Implicitly, A can be
eliminated by padding h with all live ranges in G' that are colored with cTOp and merging the
appropriate live ranges with / in G'. After those merge operations, / is equivalent to a continuous
live range.

Part 3: deriving a coloring for the original register conflict graph: Deriving a coloring for the
original register conflict graph G is now straightforward. First, we add to G' every live range v
that contains b^ Because ftt is a break, v must overlap with every live range in G', hence a new
color must be used for v.

Tliis is depicted in Figure 6-12. In our example, we must add the live range d. Because all

c ci

:
!

6 .—.j-

._»—-4.—»

i V ■■
g j. ». ^

10 ♦ ■•—< >•

Figure 6-12: Adding live ranges that contain the break

remaining live ranges of G are continuous and the original program is equivalent to straight line
code, the live ranges that contain b0 must form a clique that separates G' from the "top part" of G.
Likewise, the live ranges that contain ftn+7 must form a clique that separates G' from the "bottom
third" of G. The two clique separators are shown in Figure 6-13. Hence, the optimality of the
coloring for G' is maintained when an overall coloring is derived from individual optimal
colorings of the top part of G, G' and the bottom part of G - q.e.d.

Note that if there exists a break in a straight line hole, no restrictions must be met by live ranges that are

fits for the hole. The prerequisites of Lemma 9 may seem strict; note though that when registei conflict

graphs are simplified hierarchically, programming constructs that are nested inside the basic blocks that

form a hole will have been processed by the time the hole is treated. Thacfore our techniques to collapse

or sequentialize branch clauses and to eliminate holes nested inside have already been applied, with the

effect that the enclosing hole can be viewed as if it were a straight line hole for the purpose of register

allocation.

91

in

6 —J-

d
HI

- J) Clique separator

7

8

9

10

11

12

Figure 6-13: Clique separators to remaining conflict graph

63. Node merging and conditionals

In the previous chapter we showed that register conflict graphs in which all backarc and BGLOBAL live

ranges are continuous, and in which all LOEN and LOEX live ranges overlap in each branch sibling, are

interval graphs and can be colored optimally in polynomial time.

For the remainder of this chapter we assume that a conditional branch contains no conditional broken live

ranges. Even in the absence of broken live ranges, there are cases of conditionals that have register conflict

graphs that are it colorable, but not interval graphs. In the following sections we examine types of register

conflict graphs foi Konditionals that are not interval graphs and therefore in general can not be colored

optimally by the node removal technique. We discuss how node merging can be used to simplify register

conflict graphs for conditional branches, and how in some cases node merging can change a non-interval

register conflict graph for a conditional into an interval graph.

63.1. Merging of £, related nodes

Figure 6-14 depicts an example of a conditional with a register conflict graph for which the node removal

technique is unable to produce a 2-coloring. The conditional branch consists of the split and join node, and

two braiich clauses, {Blfi2} and {B3;B4} respectively. Variable a is live at the split node and dead at the

join node, hence a is a LOEN live range in that branch. Variable d I* live at the join node, m6 dead at the

split node, hence d is defined inside the branch clauses and a IDE* live range. Variables b ami c arc local

inside the branch clauses and are thereforeBLÖC4L live ranges,

92

Conditional iyanch

Conflict graph

Merging nodes b and c

Figure 6-14: Condidonal branch with LOEN and LOEX live ranges and
conflict graph

The register conflict graph for the conditional branch is depicted to the right of the flow graph. The

register conflict graph for the conditional branch is 2-colorable and not recognized as such by the node

removal technique. Since b and c are live in distinct branch clauses, the color chosen for node b is

independent of the color chosen for node c in the register conflict graph. A 2-coloring of the graph depends

on the colors chosen for b and c - they must be identical. The knowledge that 6 and c live only in distinct

branch clauses can be used to determine that it is safe to color b and c with the same color. Like in register

conflict graphs for loops, nodes in register conflict graph for conditional branches can be merged as long as

it is safe to do so. This is depicted in the bottom right of Figure 6-14. The reason why 6 and c could be

safely merged into one single node is that they are both adjacent to exactly the same set of nodes in the

register conflict graph, a and d.

Definition 10: (The El relation) Given the register conflict graph G of a conditional branch C,
let c; and c2 be two live ranges that are BLOCAL WJ.L C. We say that c, and c2 are Ej related
iff Cj and c2 occur in different branch clauses and aäj(cl)=adjic^.

It is easy to see that two BLOCAL nodes that are Ej related nan be colored identically and thus merged

into one node. The idea behind merging Ej related nodes is to re-use the same color in different branch

clauses for BLOCAL live ranges that are by definition local to one branch clause. The graph G' derived

from the original register conflict graph G by merging two E1 related nodes .x and y is equivalent to the

register conflict graph of a conditional branch in which all instructions that use or define the variable with

live range .t (or y) are eliminated.

93

Conflict graph

Conditional branch

Figure 6-15: Register conflict graph of branch derived from Figure
6-14 by eliminating definitions and uses of variable c

An example is depicted in Figure 6-15. The live ranges for b and c are Ey related, and merged in the

original register conflict graph (Figure 6-14). The branch depicted in Figure 6-15 is identical to that in

Figure 6-14, except that the definition erf c in block B3 and the use of c in block B4 have been removed.

The register conflict graph is shown to the right and is identical to the register conflict graph containing the

merge node depicted in Figure 6-14.

The observation that one of two E1 related live ranges can be eliminated both from the register conflict

graph and from the program without compromising a it-coloring of the register conflict graph is formalized

in the next lemma.
Lemma 11: Given a register conflict graph G of a conditional branch b that contains two £;

related BLOCAL live ranges JC and y, let G' be the register conflict graph derived form G by
merging th; nodes representing x and y. Then, the chromatic numbers of G' and G are equal.

Proof: W.l.o.g. assume that the candidate for removal is x. The graph derived from G by
eliminating the node x and all edges incident on x is equal to G'. Therefore a coloring for G can
be directly mapped onto G', omitting the color used for x. Because adj(x)=adj(y), the color used
tor >• can be used for the merge node (x,y). It is easy to see how a coloring for G' can be mapped
onto G: the color used for Ocy) is used for both x and y in G. Therefore, the chromatic numbers
of G and G' must be equal.

Note that eliminating node x from the register conflict graph G in Lemma 11 is equivalent to removing all

instructions that define or use the variable v with live range x from the conditional. This is possible

because x is a BLOCAL live range, and does not extend beyond the split or the join node of the conditional.

Since two £, related nodes are adjacent to the exactly same set of edges in the register conflict graph, the

94

number of edges incident on the merge node is equal to the number of edges incident to the individual

nodes that were merged. For each other node in the original graph, t'tie number oi incident edges is either

the same or decreases. In other words, node merging of Ej related nodes always simplifies the register

conflict graphs.

In the example depicted in Figure 6-14, merging of Ej related nodes turns the original register conflict

graph into an interval graph. The reason is that every BLOC.iL node is Ej related to a BLOC AL node in

every other branch clause. As a consequence, all BLOCAL live ranges can be merged with their £; partners

in one unique branch clause. In the example depicted in Figure 6-15, the instructions that form live range c

in the original branch depicted in Figure 6-14 are removed. Now, there exists only one branch clause that

contains BLOCAL live ranges - all others contain only LOEN, LOEX or BGLOBAL live ranges.

The fact that all BLOCAL nodes can be eliminated by node merging does not necessarily mean that the

graph derived by all merge operations is an interval graph. This is depicted in Figure 6-16. The live ranges

of a conditional branch that consists of 3 straight line branch clauses are shown. For readability, we show

only the live ranges rather than the entire flow graph.

Clause 1 Glaus« 2 Clause 3

«1

x2

xl

x2

x3 : x3

xl split nod«

x3

join nod«

Of iginai conflict graph Conflict graph, a and b merged

Figure 6-16: Non-interval register conflict graph after merging all
BLOCAL live ranges

The branch contains one LOEN live range Xj, two LOEX live ranges J^ and x3 and two BLOCAL live

ranges, a and b respectively. (Note that Xj. x? anc' x3 occur in each branch clause, all occurrences form one

single live range). Live ranges a and 6 are £, related - both are adjacent io Xj and j(2, and can therefore be

merged in the register conflict graph. The original register conflict graph is depicted to the bottom left, the

95

conflict graph resulting firom merging a and 6 is shown bottom right Even though all BLOCAL live ranges

are merged into a single live range, the resulting conflict graph is not an interval graph, because Xj overlaps

with x3 in clause 3, but not in clause 1 or 2, where the BLOCAL live ranges occur.

To ensure an interval conflict graph, in addition to requiring that all BLOCAL live ranges can be merged

into one unique branch clause it is needed that the subgraph formed by the LOEN and LOEX live ranges in

each individual branch clause is identical. Figure 6-17 depicts LOEN live range Xj and LOEX live ranges

Xj and fj in different branch clauses. Note that this example is identical to the example shown in Figure

6-16 with all BLOCAL live ranges removed. The register conflict graphs for the individual branch clauses

Glaus« 1 Clause 2 Clause 3

x1

0

x1 «1 split node

x2

* * join node

Conflict graphs

Figure 6-17: Register conflict graphs formed by LOEN and LOEX live
ranges in individual branch clauses

are shown below the corresponding branch clause. Note that the graph in clause 3 differs from the graphs

in clauses 1 and 2.

If the register conflict graphs formed by LOEN and LOEX live ranges are identical in each branch clause,

merging £7 related live ranges a and 6 is equal to the register conflict graph of clause 1, shown in Figure

6-18. Since clause 1 consists of straight line code, the register conflict graph obtained by node merging is

an interval graph. We formalize this in the next lemma.
Lemma 12: Let G be the register conflict graph of a conditional B with branch clauses

c7,c2 cB, such that B contains no broken BGLOBAL live ranges, the register conflict graphs
formed by the LOEN and LOEX live ranges are identical in each branch clause, and for each
BLOCAL live range free, 3 ft'e CyViV'e {l,...,nj such that b and V are £; related. Then the
graph G' derived from G by merging all BLOCAL live ranges with a node representing a live
range in one unique branch clause is equivalent to the register conflict graph of that branch clause
in isolation.

96

Clause 1 Cl8us«2 Clauses

V

x3 i

x1

b
II x3

x 1 split nod«

x3

join nod«

Original conflict graph Conflict graph, a and b merged

Figure 6-18: Interval register conflict graph after merging all BLOC AL
live ranges

Proof: By Lemma 11, G' is equal to the register conflict graph of the conditional B by
removing all instructions that form live ranges represented by nodes that are merged. Further, the
register conflict graphs for the LOEN and LOEX live ranges are identical in each individual
branch clause - hence the register conflict graph for the branch clause to which all BLOC AL live
ranges have been merged is equal to G' - q.e.d

In the next section we show how the strict El relation can be relaxed in a way that still allows to use node

merging to systematically simplify register conflict graphs of conditional branches.

6.3.2. Merging of £2 related nodes

The Ej relation is very restrictive. Nodes that are El related must be BLOCAL WJ.L a branch B. By

definition two E1 related nodes must be adjacent to the exactly same set of nodes - hence, those nodes can

not be BLOCAL in the same conditional C. We can relax the E1 relation by allowing adjacency to other

(restricted) BLOCAL nodes, but still require that the set of adjacent nodes that are LOEN, LOEX or

SGLOA4L be identical. More formally:

Dermition 13: Given a conditional fi, let x and y be two live ranges that are BLOCAL WJ.L B,
such that x and y occur in different branch clauses. We say that x and y are £2 related iff

• All BLOCAL live ranges adjacent to x have the same adjacency lists:

V/e [adHxy&LOCAUB)] :«#0O-x=a#(.x)-x'

• All BLOCAL live ranges adjacent to y have the same adjacency lists:

97

V/g [adj(y)nBLOCAL(B)} :adj(yr)-y=adj(y)~y'

• The set of non-BLOCAL live ranges adjacent to x is equal to the set of non-BLOCAL live
ranges adjacent to y:

adj(x)r\G=adj(y)^G,v/hatG=LOEN(B)uLOEX{B)uBGLOBAL(B)

Note that Ej related nodes are also £2 related. Figure 6-19 shows the live ranges in the branch clauses of

a conditional branch, consisting of LOEN live range x;. LOEX live range % and BLOCAL live ranges

a,a'A" J> and b'. Live ranges a^j' and o" are f^ related to live ranges b and b'.

Clause 1 Glaus« 2

xl xl split node

join node

Conflict graph

Figure 6-19: £2 related nodes

If in a conditional branch all BLOCAL live ranges of one branch clause are E2 related to a BLOCAL live

range in every other branch clause, we can show by arguments similar to those used in Lemma 12 that

merging all E2 related nodes results in a graph that is equivalent to the register conflict graph of one single

branch clause - given that the register conflict graphs formed by LOEN and LOEX live ranges are identical

in each individual branch clause.

Things are a bit more complicated, because Lc«na 11 does not hold for two £2 related nodes. This is

demonstrated in Figure 6-20. Nodes a and 6 of the original conditional shown in Figure 6-19 arc merged

into one single node, and the resulting graph is depicted to the bottom. Unlike for E} related nodes, the

graph obtained by merging a and 6 is not equivalent to the register conflict graph of the conditional in

which live range b has been removed. The conditional branch in which live range b has been removed is

shown top left (Figure 6-20). The register conflict graph for that conditional branch is depicted top right,

and differs fiom the graph at the bottom.

98

Clause 1 Cteuso 2

split xl ti

x2

jo^n

x2

Ramoving live range b: branch and conflict graph

Merging a and b in original register conflict graph

Figure 6-20: Difference between removing live range b and merging it with a in original conflict graph

The reason why Lemma 11 does not work for E2 related nodes is that E2 related nodes can be adjacent to

other BLOCAL live ranges within the same branch clause. Merging two £2 related nodes n; and n2 causes

(by symmetry) r^ to move to a different branch clause. Other BLOCAL live ranges adjacent to n2 are now

adjacent to the merged node consisting of («i^), and therefore an edge is introduced between BLOCAL

nodes of different branch clauses. In the example depicted in Figure 6-20, the node that contains a and Ms

adjacent to the node b' - the merge node "belongs" to clause 1 and b' belongs to clause 2. If however all

BLOCAL live ranges in the clique formed by E2 related nodes are merged, ^ie resulting graph is equivalent

to the conflict graph of a branch in which all members of the clique have been removed, shown in Figure

6-21. The conditional branch in which both b and b' have been removed is shown to the top left, and the

corresponding register conflict graph is shown to the right This conflict graph is identical to the graph

obtained from the original register conflict graph by merging all BLOCAL members of the clique that

contains b in clause 2 with their E2 partners of clause 1.

In the example we used in Figure 6-21, nodes b and b' were merged with their £2 partners in clause 1.

Since the number of BLOCAL live ranges adjacent to a is larger than the number of BLOCAL live ranges

adjacent to b, there were enough nodes in clause 1 such that each BLOCAL node adjacent to b could be

merged. This is not the case if we wished to merge the other way around: merging thrr^ live ranges aji'

and a" with two live ranges b and b' does not work - and the trick by mapping the resulting graph to the

register conflict graph of one branch clause does not work either. This is depicted in Figure 6-22.

99

Claus« 1 Clause 2

split »I x1

x2 x2

RemoM.ig live ranges u and b': register conflict graph

Merging a,b and a".b' in original register conflict graph

Figure 6-21: Merging all clique members of one branch clause

The conditional branch in which live ranges a and a' have been removed is shown to the lop left, and the

corresponding register conflict graph to the top right. Note that the register conflict graph differs from the

graph derived by merging a and b and a' and b' - the adjacency of a'' with the merge nodes is lost if live

ranges a and a' are simply removed. We can avoid this problem by adding a dummy live range d that

consists of the same basic blocks as b. Note that adding the dummy live range d to the registe- conflict

graph is equivalent to duplicating every definition and use of the variable with live rang«; b by the definition

or use of a dummy variable. Hence, we have constructed a new conditional B' such that the regif ■ -r

conflict graph for B' is identical to the graph obtained from the original register conflict graph by merging

a and a' with b and b' respectively. This is shown in Figure 6-23.

Lesima 14: Given a conditional C with conflict graph G that consists of branch clauses cl,...^n

such that the graph induced by the conflict graph of an individual branch clause c,- and the LOEN
and LOEX live ranges is identical for each ci e {c^..^}, let v and v' be two BLOCAL live ranges
of different branch clauses Cj and c such that v and v' are E2 related. The chromatic numbers of
G' derived from G by merging v and v' are identical

Proof: Clearly, a valid coloring for C can be easily extended to a valid coloring for G by
directly mapping the colors of all nodes to the same nodes in G and by mapping the color of the
merged node (v.v') to both v and v'. Given a coloring for G, we obtain a coloring for G' by
enforcing the same color fen- v and v*. Let colv and co!v. be the colors used for v and v'
respectively. Because every LOEN, LOEX or BGLOBAL live range that is adjacent to v is also
adjacent to v', no global live range is colored with colv or colv.. Let x be a BLOCAL live range
adjacent to v. By definition of the E2 relation, all BLOCAL live ranges adjacent to v have

100

Claus« 1 Clause 2

x1 XI

x2

split nod«

x2

join nod«

Conflict graph

Figure 6-22: Merging larger clique of one branch clause with smaller clique of
other branch clause

Claus« 1 Claus« 2

Kl

x2

x1
split nod«

ba"

x2

mod« Conflict graph

G.aph denvsd from original conflict graph by merging

Figure 6-23: Merging larger clique of one branch clause with smaller clique of
other branch clause

101

identical adjacency sets. Hence, the colors colv and colv- can be exchanged in the live ranges that
are adjacent to v - no new colors are needed

Note that if all BLOCAL live ranges can be merged with BLOCAL live ranges of one unique branch

clause, the derived register conflict graph is equivalent to the register conflict graph of just one branch

clause. Consequently. Ej and E^ related merging can be used to collapse several brand clauses into one -

in the case of non-nested conditionals, this leads to straight line code and hence to a. interval register

conflict graph.

6.4. Chapter summary

We have seen that node merging can be applied to broken live ranges and to BLOCAL live ranges of

conditionals. In some cases it is even possible to change a non-interval register conflict graph into an

interval graph via node merging. Because the node removal technique is in general unable to produce a k

coloring for ifc-colorable non-interval graph, there are cases of register conflict graphs for which the node

removal introduces spill code that can be avoided altogether by node merging. Even in cases where it is

not possible to eliminate all non-chordal cycies in the register conflict graph, node merging always results

in a simpler register conflict graph.

The advantages of encoding structural knowledge in register conflict graphs are twofold. First, the

performance of the node removal technique can be provably enhanced by node merging. Second, structural

analysis permits to partition the register conflict graph into disjoint subgraphs that can be colored

individually and the colorings of the individual parts can be joined to an overall coloring by renaming.

Both aspects of structural knowledge in register conflict graphs are the focus of an experimental evaluation

of our model for register conflict graphs, and is discussed in the next chapter.

102

Chapter 7

Structured Global Register Allocation m Practice:
Development of a Parallel Framework

Developing a parallel framework for global register allocation required the analysis of register conflict

graph. We have shown that this is possible within our structured model described in the previous chapters.

Initially motivated by paralklization, we find that our model and our analytical methods lead to a more

thorough understanding of sequential global register allocation; once the location of clique separators is

known, the parallelization of global register allocation comes naturally, almost as a "byproduct" of our

analysis. The success of the parallelization depends on the knowledge collected by our method. In this

chapter, we therefore concentrate on the evaluation of our method.

Our method is best described as analysis of register conflict graphs prior to the assignment of specific

registers to live ranges in the conflict graph. The pur-ose of this analysis is to map a register conflict graph

to an equivalent interval graph and, if this is not possible, to identify which portions of a register conflict

graph are "responsible" for an overall non-interval register conflict graph. Mapping a register conflict

graph to an equivalent interval graph is done via mapping a well structured flow graph to a straight line

flow graph that is equivalent for the purpose of global register allocation. By Theorem 11 of Chapter S, the

straight line sequence of basic blocks can be used to enumerate all cliques in the register conflict graph in

the .<. order described in Chapter 5.

Interval registet conflict graphs are desirable for three main reasons. First, in an interval graph all clique

separators can be found in polynomial time. Second, interval graphs can be colored optimally in

polynomial time. Third, by enumerating all cliques of an interval graph in the .<. order it is possible to

identify regions of the conflict graph that require spilling: given k registers, live ranges that occur in cliques

that are larger than k must be considered for spilling to memory or for splitting. The important fact is that

this is known before die actual coloring.

The success of our method depends on how often our transformations of flow graphs and conflict graphs

are applicable to real programs and on the number of separator cliques that can be located. If large portions

of a register conflict graph can be mapped to equivalent interval graphs, we can locate a large number of

separata' cliques. Knowledge about separator cliques is the basis for parallelizing global register allocation

but is particularly well suited to improve sequential register allocation.

Given the knowledge about the location of clique separators, die register conflict graph can be partitioned

103

into clique connected components that are either interval graphs or non-interval graphs. In that partition,

the non-interval graphs are farmed by live ranges that occur in conditionals that could not be collapsed or

linearized, or by live ranges that contain basic blocks that occur in a hole of a broken live range that could

not be eliminated. In other words, our structured method enables us to concentrate on small portions of the

register conflict graph that are "responsible" for an overall non-interval register conflict graph. Because

such hot spots in a register conflict graph typically consist only of a small subset of the live ranges,

expensive heuristics or even exhaustive search can be used to find an overall good or optimal coloring.

Isolating regions of the register conflict graph in which spilling is necessary is useful because more

knowledge can be used in spilling heuristics. Further, the register conflict graph can be partitioned

hierarchically via clique separators. Clique separated critical portions of the register conflict graph can be

colored independently and combined with the remaining conflict graph without compromising optimality

of the individual coloring.

To evaluate the performance of our method for analyzing and partitioning register conflict graphs for well

structured programs, we implemented our techniques and measured its performance on a set of t enchmark

kernels. In this chapter, we present our implementation and report the results of our evaluation.

7.1. Evaluation of our method

Our method pre-processes the register conflict graph so that the subsequent register coloring can use the

knowledge gathered during the analysis and operates on a simplified register conflict graph. To evaluate

our method for practical purposes, we have to assess how applicable our flow graph and register conflict

graph transformations are for real flow graphs. The transformations of our method achieve three goals:

• The simplification of a structured program into a piece of straight line code that is equivalent
for the purpose of register allocation

• The simplification of a non-interval register conflict graph to an equivalent interval graph

• The detection of separator cliques for the parallelization of global register allocation

Transformations of flow graphs and conßct graphs:

In the previous chapters we have developed a set of restrictions that must be met by the live ranges of a

program if our simplifications can be carried out without compromising optimality of global register

allocation. The first goal of an experimental evaluation of our method is to determine how often this set of

restrictions is met by real programs. For programs that can not be reduced to straight line code for the

purpose of register allocation, we determine the size of the portions that could not be reduced to straight

line code.

Paralletization:

Given the results of our graph transformations, we can identify separator cliques in the register conflict

graph. We demonstrate the potential for parallelization by measuring the size of the ordered sequences of

separator cliques in the register conflict graph of each benchmark kernel. We discuss the tradeoffs between

choosing small separata- cliques and creating parallel tasks of even sizes.

104

7.1.1. Implementation

Registers are a scarce resource on every computer architecture [Pat/Hen 90]. The need of registers is

further increased by global optimizations that introduce temporaries that have to reside in registers.

Conflict graphs for globally optimized programs are in general much more complicated than conflict

graphs produced by compilers that do not employ global optimizations. For this reason we chose as input

to our program intermediate code produced by an optimizing compiler. The C compiler for the IWARP

machine fits this category and was used to produce the input to our conflict graph analyzer. The goal of our

implementation was to evaluate two aspects of the method. First, to determine if the restrictions that permit

an interval register conflict graph are met by realistic user programs, and second to assess the effectiveness

of a paraUelization of global register allocation based on clique separators.

The gist of our method is the analysis of register conflict graph, and our techniques aim for the

amplification of register conflict graphs. To assess bow often such simplifications could be carried out on

the flow- and conflict graphs of realistic programs, it was sufficient to run our analysis "off line", and we

did not incorporate our register allocator into the backend of the IWARP compiler.

Our implementation consists of 3 phases. Phase 1 is the "setup" phase, and consists of extracting the

parse tree, the register conflict graph and the live ranges of variables from the input program in

intermediate form. The analysis and simplification of the register conflict graph are performed during

Phase 2. Phase 3 conducts the data partitioning for the paraUelization of global register allocation. This

includes determining the clique separators and the computation of the accumr sd live ranges per basic

block. Figure 7-1 gives an overview of the parts of our implementation. Because they form the gist of our

implementation, we describe Phase 2 and Phase 3 in more detail in the next paragraphs.

7.1.2. Simplifying the conflict graph

The input to Phase 2 of the algorithm is the parse tree of a program, along with the live ranges and the

register conflict graph. Note that each loop or conditional in the flow graph is represented by a node in the

parse tree. Innermost constructs are the leaves of the tree, while the successors of the root of the parse tree

represent the outermost programming constructs. The purpose of Phase 2 is to determine which basic

blocks belong to conditionals or loops that could not be simplified to straight line code, called prohibited

blocks. The nodes in the parse tree are processed in post order. The restrictions that are tested in our

implementation were chosen such that every ode in the parse tree must be processed exactly once. Hence

our algorithm does not involve backtracking and runs in polynomial time. The detailed algorithm for Phase

2 is given in Figure 7-2.

At the end of Phase 2, every basic block that is not among prohibited blocks is part of straight line code,

sometimes derived by removing backarcs from loops and by the sequentLaization or the collapsing of

conditionals. Hence, all live ranges that contain a block not in prohibited blocks form a clique that

separates die conflict graph into two disjoint pieces. Phase 3 consists of computing the separator cliques

for all but the prohibited basic blocks and the partitioning of the flow graph into clique separated

components. The actions of Phase 3 are outlined in the algorithm given in Figure 7-3.

105

iWARP compiler
front end and
global optimizer

Phase 1

Phase 2

Phases

Figure 7-1: Phases of the structured global register allocator

In the evaluation of our method, we first concentrate on the effects of Phase 2, and analyze the

parallelization in Phase 3 separately.

7.2. Input data

We measured the performance of our method for 33 benchmark kernels. The benchmark for our

evaluation consists of the following functions:
1. The Livemiore kernels [McMahon 86]

2. The larger examples of the Numerical Recipes collection [Press et al 88]

3. A collection of programs from the WARP merleau, et al. 88, Kung 88]

Because our method requires well structured we had to modify the original code slightly in

some cases. Both the Livermore kernels (original implementation language: FORTRAN) and some WARP

applications (original Implementation language: W2) were translated to C, all other functions of the testsuite

were readily available in C. It should be noted that the programming style of the Numerical Recipes in C is

similar to FORTRAN coding style. We included a graph manipulation problem (blocks) that was very

carefully handoptimized in C: pointers and address arithmetic were used excessively and the programmer

106

Input: Parse tree, live ranges and conßct graph of a well structured program

Output: prohibited blocks, a set cf basic blocks that may not be used for the computation of
clique separators and a simplified conflict graph

Method:

prohibited blocks := 0:
for all nodes n in the parse tree in post order do (

If n is a conditional {

compute LOEN. LOEX. BGLOBAL, BLOCAL
determine conditional continuous live ranges;
eliminate holes from conditional broken live ranges;
prohibited blocks +■ uneliminated holes;

if conditional cxm not be linearized or collapsed {
prohibited blocks +■ blocks that form conditional;

)
) else (

determine loop continuous live ranges;
eliminate holes from loop broken live ranges;
prohibited blocks += uneliminated holes;

Figure 7-2: Outline of Phase 2

Input: Simplified flow graph and prohibited blocks
for each basic block b s(h), the set of forward successors ofh

Output: A partitioning of the register conßct graph

Method:

for all basic blocks b e {prohibited blocks} do {

separator^) = U(/?V(J)) ^ e j(b);

I

partition graph based on separator cliques and partial graph sizes;

Figure 7-3: Outline of Phase 3

determined which variables were assigned to registers. We included this function to assess the shape of

register conflict graphs of applications that are programmed in "typical" C style.

We chose the Livermore loops because they represent a standard benchmark of kernels that are used in

107

many scientific applications [Pat/Hen 90]. While the Livermore kernels consist only of a collection of

small kernels, we chose them because Ihey are used by a large number of scientific applications. The same

is true for the Numerical Recipes collection, and our selection of kernels from the Numerical Recipes

collection was guided by their complexity: we chose the largest procedures from that collection of

programs.

The set of applications from the WARP libra y consist of applications that consist of "real" programs

instead of just kernels, and are (or were) in ust on the WARP and IWARP machines. Both the Livermore

loops and the examples from the v, .R? library represent scientific programs that are well suited for a

globally optimizing compiler. Our graph manipulation program was chosen as an example of a non-

numerical program, and in addition was carefully hand optimized. Such programs are usually hard to

optimize by a compiler.

The histograms depicted in Figures 7-4 through 7-12 summarize some characteristics of our benchmark

kernels. Figures 7-4, 7-5 and 7-6 depict the number of basic blocks, the number of live ranges and the

nesting depth of the flow graph for the Livermore kernels. The same information for the numerical recipes

is shown in Figures 7-7,7-8 and 7-9, and for the WARP examples in "igures 7-10,7-11 and 7-12.

"90r

3

1801-
oa

70

60

50

40

30-

20

10 mmm lii I
Figure 7-4: Livermore loops: basic blocks

For most benchmark functions, the number of live ranges is higher than the number of basic blocks. One

example for which the number of live ranges is significantly smaller than the number of basic blocks is

block, a graph manipulation program, very carefully hand optimized in C. The program contains 35 global

variables, while the total number of live ranges is only 46. Because the number of basic blocks in that

program is so much larger (126), it can be concluded that the "lack" of live ranges is due to the absence of

temporaries after global optimizations. This is not surprising because hand optimized C programs that

contain many pointers make it hard for a global optimizer to identify common subexpressions.

108

KlDDIAVttnXM DE10EllK12E13Cl<IK15K16K17CllClfDSK21

Figure 7-5: Livermore loops: number of live ranges

K1E1DE4X5E<E7DK> k.lCllKUKUEMKUK16C17XltU»K»K21 K22C4

Figure 7-6: Livermore loops: nesting depth

73. Mapping register conflict graphs to interval graphs: evaluating Phase 2

Phase 2 of our method consists of applying transformations to a flow graph and a register conflict graph

such that the original register conflict graph can be mapped to an equivalent interval graph. Mapping a

register conflict graph to an equivalent interval register conflict graph can only be achieved if the following

conditions are met:
1. All holes in broken live ranges can be padded,

2. All conditionals can be either collapsed or linearized.

We showed in Chapter 6 that we are able to pad holes optimally in polynomial time if they contain breaks.

109

1200

I180
160

140

120

100

80

60

40 "

20
fit bdmc ebnhe» ludcmp gma ivdanp jicobi

Figure 7-7: Numerical recipes: basic blocks

fit bdmc elmb» ludcmp gmn «vdanp jacobi

Figure 7-8: Numerical recipes: number of live ranges

or if holes can be padded entirely with perfect or imperfect matches. As a "reward" for successful node

merging of all broken live ranges in a loop, the backarc of that loop can be eliminated from the flow graph

without affecting the register conflict graph. Similarly, conditionals with only one nonempty branch clause

can be simplified by removing the link from the split node to the join node if all holes that occur in the

conditional can be eliminated. Therefore the simplification of conditionals with only one nonempty branch

clause is equivalent to successful hole elimination.

Conditionals with multiple nonempty branch clauses - unlike those with only one nonempty branch clause

- can cause non-interval register conflict graphs even if all live ranges are continuous. Thus, in our

evaluation of the simplifications of conditionals, only those that contain at least two nonempty branch

clauses must be considered.

110

fft bdanc efanha ladcmp gum ivdcmp jacobi

Figure 7-9: Numerical recipes: nesting depth

backprop fitaenog ieic«_btnds block

Figure 7-10: WARP examples: basic blocks

7.3.1. Holes and node merging in conflict graphs

Holes and node merging to pad holes is the focus of our first set of measurements. For each program, we

counted the total number of holes in all live ranges and the successful attempts to pad those holes under one

of our restrictions. The results for our benchmark kernels whose conflict graphs contained broken live

ranges are summarized in Table 7-1.

The column labeled holes contains the total number of holes of all live ranges in the register conflict

graph. The column labeled padded contains the number of holes that could be eliminated without node

Ill

btckpnp filtering lelectjMndi block

Figure 7-1.1: WARP examples: number of live ranges

bukprop filwring «elect _b«n<ii block

Figure 7-12: WARP examples: nesting depth

Holes Padded Merged Remaining

K20

ludemp

svdemp

backprop

block

1 1
1 1

20 9

2 2

2 2

none

none

2

none

none

Table 7-1: Node merging to eliminate holes

112

merging because no fits existed for fliese holes and the column labels merged depicts the number of holes

that were eliminated via node merging. The last column labeled emaining contains the number of holes

that could not be eliminated by our method.

13.1. Discussion of the results for hole elimination

Of our 33 benchmark kernels, 5 had register conflict graphs with broken live ranges. Of the Livermore

loops, only the register conflict graph of Kernel 20 contained a broken live range with one single hole that

could be padded without node merging. Among the other programs, a few examples of the Numerical

Recipes collection and of the WARP library contained broken live ranges. For al! functions except svdcmp

(single value decomposition), the holes could be padded without node merging. Single value

decomposition is a fairly complicated example of the Numerical Recipe collection. The number of broken

live ranges is 11, and the total number of holes is 20,9 of which coild be padded without node merging,

and 9 of which could be eliminated via node merging. The large numb« of broken live ranges in svdcmp is

caused by frequent re-definitions of variables that occur in conditionals. Our results indicate that for small

kernels such as the Livermore loops, broken live ranges do not pose great problems. More complex

programs such as the WARP and Numerical Recipes examples can contain holes, and in most cases our

methods to pad holes with or without node merging are successful. In our examples, only two holes could

not be padded with our method, and both occurred in svdcmp.

733. Sequentializing and collapsing conditionals

Our second set of measurements was conducted to examine how frequently conditionals could be

linearized or collapsed. It was shown earlier that conditionals that consist of only one nonempty branch

clause can be treated like straight line code provided all live ranges that occur in such conditionals are

continuous. Hence, successful hole elimination is sufficient to find equivalent straight line code for the

purpose of register allocation for such conditionals. Only conditionals with multiple nonempty branch

clauses must be analyzed for simplification by sequentializing or collapsing.

The histograms shown in Figures 7-13, 7-14 and 7-15 summarize our results for sequentializing and

collapsing conditionals. Each benchmark kernel that contained conditionals with at least 2 non-empty

branch clauses is described by two bars. The left bar (shaded in grey) depicts the number of conditionals

with at least' nonempty branch clauses. The right bar consists of a bottom and a top part

The bottom part depicts the number of conditionals that could be linearized because they contained only

BLOCAL live ranges or because BLOCAL live ranges were absent and all LOEN and LOEX live ranges

formed cliques.

The top part depicts the number of conditionals that could be collapsed into just one path through the

conditional because all BLOCAL live ranges of all branch clauses were Ej or £2 related to BLOCAL live

ranges in a different branch clause. Condition^ tic» are collapsed must contain a combination of LOEN

113

and/or LOEX. live ranges with BLOCAL live ranges. If only one branch clause contains BLOCAL live

ranges, no node merging takes place. If both branch clauses contain BLOCAL live ranges, the conditional

can only be collapsed if the BLOCAL live ranges of both clauses are £, or £2 related and have been merged

in the conflict graph. E2 related merging occurred in two of our examples: Livermore kernels IS (2 merge

operations) and 17 (1 merge operation). In all other cases, only one of the branch clauses contained

BLOCAL live ranges and no node merging took place in the conflict graph.

KtS K1« K17 K20 K22

Figure 7-13: Simplification of conditionals in Livermore loops

Figure 7-14: Simplification of conditionals in Numerical Recipes examples

114

Figure 7-15: Simplification of conditionals in WARP and graph programs

7.3.4. Discussion of the results for conditional simplification

Every conditional in the programs of our testsuite could be linearized or collapsed. The number of

linearized conditionals is much greater than the number of collapsed conditionals. In most cases, this was

due to the absence of BLOCAL live ranges. For those conditionals that were collapsed, node merging

occurred only in two cases (Uvermore kernels IS and 17). The number of merge operations was small

compared to the total number of live ranges in these programs. Interestingly, outer conditionals whose

branch clauses consist of complicated nested structures were always sequentializable. Typically, large

conditionals that are sequentializable contain no WEN or LOEK live ranges, so the BLOCAL live ranges in

each branch clause are independent In both cases that required node merging to collapse conditionals, one

branch clause consisted of a long straight line structure while the second branch clause consisted of a short

piece of straight line code consisting of only one basic block.

7.3.5. Combining the results for graph transformations

We conclude the first part of our evaluation by summarizing the overall result of our transformations. Of

the 33 functions in our benchmark, 24 had interval conflict graphs and no node in those conflict graphs was

altered (by adding to the set of basic blocks that form a live range) or merged. The conflict graphs ^f 9

benchmark kernels were transformed such that the resulting conflict graph was an interval graph. Such

transformations included padding erf holes and eliminating basic blocks from live ranges because branch

clauses disappeared due to collapsing. There was only one function, svdemp, whose conflict graph could

not be transformed into an interval graph by our technique. The conflict graph contained 2 hot spots, one

consisting of 4 and one of 13 live ranges. The remaining portions of the conflict graph (total number of

original nodes: 205) were detected as interval graphs or transformed into interval graphs. The chromatic

numbers of the conflict graphs of our benchmark kernels are summarized in Figures 7-16,7-17 and 7-18.

115

K1K2K3K4KSK»K7(W XS KIOKI* Kli KI3K14K1S Kt(K17KUK1*K20K21 K22 K24

Figure 7-16: Chromatic numbers: Livermore loops

:::

Figure 7-17: Chromatic numbers: Numerical Recipes

7 J.6. Discussion of graph transformation results

We have seen that in all but (Hie cases the register conflict graphs of our programs could be simplified to

interval register conflict graphs. The chromatic numbers of the graphs were largest for the more

complicated examples in our testsuite. Single value decomposition (svdcmp) was the only program that

had "hot spots" in the register conflict graph, that is there were two portions in the register conflict graph

that could not be simplified to interval graphs for the purpose of global register allocation. The number of

basic blocks in those portions (23) is small compared to the total number of basic blocks in that program

(195). Further, the set of live ranges that fit into those portions was small, so exhaustive search for that

116

Figure 7-18: Chromatic numbers: WARP and graph programs

subgraph of the conflict graph is feasible. Interestingly, the chromatic number of one of the hot spots

dominated the chromatic number of the clique separated components of the remaining conflict graph. So

exhaustive search of a small component of the register conflict graph enabled us to optimize the overall

chromatic number.

All except one conflict graph of our benchmark functions were mapped to an equivalent interval graph by

our method. The one non-interval conflict graph contained only one small non-interval section, such that

most of the conflict graph could be mapped to equivalent interval graphs. The number of clique separators

found in each register conflict graph is bounded by the number of basic blocks that could be transformed

into straight line code for the purpose of register allocation. For svdcmp, 85% of all basic blocks and for all

other benchmark kernels, a// basic blocks could be transformed to straight line code, so at least 83% of all

clique separators were located for svdcmp. For all other kernels, our method was able to locate all clique

separators. In the second part of this chapter we show how clique separators are used to partition a register

conflict graph into independent components.

73.7. Parallelization based on clique separators

The parallelization of global register allocation is useful if optimal global register allocation is expensive.

Given k registers and a it-colorable interval register conflict graph, an optimal assignment of registers can

be found in linear time. In that case, significant parallel speedup for global register allocation can not be

expected because the overhead of parallel task management and re-combination of individual results would

cancel any speedup over sequential register allocation.

Optimal global register allocation is expensive if the register conflict graph is not an interval graph and if

the register conflict graph is not ^-colorable, and live ranges must be split or spilled to memory. By our

analysis, the non-interval graph portion of practical register conflict graphs can be restricted to relatively

small subgraphs.

117

Arbitrary register conflict graphs

Exponential coloring algorithms are feared for a reason: suppose we have an upper bound of k colors

needed to color an arbitrary graph with IS nodes, but would like to find an optimal coloring, possibly

reducing the number of registers. In this scenario, exhaustive search requires inspecting ^1S different

combinations - for)fc=S, the number of combinations is several billions. In reality, exhaustive search need

not be so prohibitively expensive, because large quantities of combinations can be pruned from the search

space. It is very difficult to make an accurate prediction of the time it takes to produce an optimal coloring

of an arbitrary graph.

Spilling

If the chromatic number of an arbitrary or interval register conflict graph exceeds the number of available

registers, spilling and/or live range splitting must be applied. Good spilling is crucial to the execution time

of a program, and optimal spilling is NP complete even for straight line code, and therefore for interval

register conflict graphs. Because good spilling decisions can be expensive, a parallelization based on

clique separators is likely to achieve good parallel speedup. It is a disadvantage that the optimality of

spilling decisions for individual portions of the register conflict graph can not always be maintained when

clique connected components are combined

It is difficult to predict the complexity of global register allocation in the presence of spilling or non-

interval register conflict graphs. The reason is that heuristic* for good spilling or good colorings of

non-interval portions can be arbitrarily expensive. In our benchmark the chromatic numbers of the register

conflict graphs range between 8 and 59. The number of registers in most current computer architectures is

insufficient for a number of our conflict graphs. Depending on the spilling heuristics employed, the

running time of global register allocation can be large for the register conflict graphs of our benchmark.

7.3.8. Method of parallelization: an example

The parallelization of global register allocation via clique separators is best explained by example. Figure

7-19 depicts an interval register conflict graph and its partition into two subgraphs via a clique separator.

The graph labeled "conflict graph" depict? she conflict graph of the entire program that consists of basic

blocks {1,23,4,5,6,7,8,9,10). The set of live ranges consists of [aj)fi4#f\ ■ The chromatic number of the

conflict graph is 3. Because the program consists of straight line code, every basic block can be chosen to

find a separator clique. The box drawn around basic block 5 and across the live ranges that contain block 5

depicts the separator clique based on 5. Block 5 is contained by live ranges [bfi4]- Therefore, [bj:4]

form a clique that partitions the conflict graph into two independent components, the top and bottom part

depicted below the original conflict graph Both the top part and the bottom part can be colored

independently, as long as the separator clique is colored in both parts. The colorings of both parts can be

combined by adjusting the colors used for the live ranges in the separator clique, namely [b,c4]- The

number of live ranges whose coloring must be adjusted depends on the number of live ranges colored with

the colors used for b,c and d.

118

1 H
b

-ii.—

4 c. ..d.
Ic.. _. . , rr-y |3 _H "" ' j

6
7. — .,

•

a J

9 (>._.

ia H

conflict graph

t

c d

Is— —f-^ 1
•

6
7 : +::
8

9 ::1.
ia—

Bottom part

Figure 7-19: Paralleiization via clique separators

Note that in a parallel implementation based on clique separators, the nodes of each separator clique must

be colored twice, which is not necessary in a sequential implementation. So the parallel algorithm does

more "work" than the sequential algorithm. In our example, the size of the separator clique is 3. Given two

parallel processors, 3 extra coioring steps must be performed plus the re-naming during post processing.

Because the size of the separator clique is equal to the chromatic number of the conflict graph, every live

range in the conflict graph must be re-colored, if none of the colors for the elements of the separator clique

match. Had we chosen a separator clique that is smaller, both the redundant work and the number of

re-coloring steps would be smaller, depicted in Figure 7-20. The conflict graph is identical to that depicted

in the previous figure, but this time the separator is chosen based on block 4. The new separator clique

consists only of {b}, and given an indec<ndent coloring for both parts separated by [b], at most one live

range must be re-named when the two colorings are combined.

This example demonstrates that the size of a separator clique determines both the amount of redundant

work spent in parallel register allocation and the post-processing time. In the nest section we present

measurements of separator cliques for some of our benchmark kernels.

119

i -

2-

3-

IZ

i
5 FgT~

.9
(A | e.

8-

10

conflict graph

E3
Top part

7
8

10.

Bottom part

Figure 7-20: Chosing a small separator clique

7.4. Parallelization based on clique separators: evaluation of Phase 3

Our method transforms a flow graph to a straight line sequence of basic blocks that are equivalent for the

purpose of register allocation. By Theorem 11 of Chapter S, this sequence of basic blocks can be used to

compute an ordered sequence of cliques in the conflict graph, each of which is also a clique separator. The

parallelization consists of partitioning the register conflict graph via these clique separators.

In interval conflict graphs, the processing time for the parallel tasks is correlated to the number of live

ranges in each subtask. So if it is possible to divide the conflict graphs such that the clique connected

components contain an equal number of nodes, and in addition the clique separators at those points are not

too large, parallelism based on clique separators is intuitively successful We present measurements of both

the separator clique sequences and the distribution of live ranges for some examples of our benchmark

kernels in Figures 7-21, 7-22, 7-23, 7-24, 7-25, 7-26 and 7-27. The x-axis depicts the basic blocks in the

flow graph, the y-axis depicts the number of live ranges as a percentage of the total number of live ranges

in the conflict graph. For each basic block that is not marked prohibited by our method, the bottom line

depicts the size of the separator cliques as percentage of the total number of live ranges, and the top line

120

depicts the accumulative number of live ranges. If for example the value of the bottom line for basic block

10 is IS, the value of the top line 45, then the size of the separator clique is 15% of the total number of live

ranges and 45% of all live ranges start at block 10 or earlier.

The results for svdcmp are depicted in Figure 7-21. The total set of live ranges is distributed relatively

evenly over the set of straight line basic blocks. At every basic block, the size of the separator cliques is

only a small percentage of the total number of live ranges. Between individual separator cliques, there are

relatively large differences. Note that at three basic blocks, 67,92 and 124 the size of the separator clique

is very small. These basic blocks coincide with loop exits in the program. Basic blocks for which the size

of the separator clique is not shown are the prohibited blocks among which our method is unable to find

separator cliques.

-100

£ 90

80

70

60

50

40

30

20

10

| ;l"

• • • •p •ccumu
size of «ep»r»lor clique
lited live n^gei

"■■„i}-\

1 •
i

■

i

 i
i

 L...
i

 |- r
• ••

 4L j

i ."

• ■ .
i' :

; i
• ••"

.„ t ••■»-'■ 1

...

■ ••

• •
• • * •

■"

! ;
 -t -

1 z^A, <Y?
 i— i—i—i Ht

20 40 60 80 100 120 140 160 180 200
Basic blocks

Figure 7-21: Separator cliques and accumulated live ranges for svdcmp

We demonstrate the use of the information depicted in Figure 7-21 for the parallelization of global

register allocation by an example. Suppose we wish to parallelize global register allocation for svdcmp

with 3 processors, such that each processor processes an equally large component of the conflict graph.

The live ranges must be partitioned into 3 sets, each consisting of 33% of the conflict graph. The clique

that separates the first 33% of the conflict graph is found at basic block 60, the next component consists of

all live ranges between basic blocks 60 and 130 (where 66% of the live ranges have been accumulated) and

the last component consists of the live ranges between basic blocks 130 and 195. Obviously only basic

121

blocks for which the separator clique exists (i.e. non-prohibited blocks found in Phase 2 of our algorithm)

can be used to partition the live ranges.

Figure 7-22 shows the same data for the backpropagation algorithm of the WARP library. The line

depicting the accumulated live ranges rises very steeply for the first few basic blocks, and then climbs

almost linearly. This is due to a relatively large number of global variables in that program. The size of the

separator cliques is very even throughout die program, but compared to the total number of live ranges

noticeably higher than for svdcmp. Again, this can be explained with the number of global variables that

remain live throughout the program, so they are part of every separate»- clique. The code for that program

is typical "spaghetti code", a long sequence of not too complex programming constructs.

a 100

i
ft 90

80

70

60

50

40

30

20

10

relidve tat, ct icpnita: jebque
iccutnnlated live range« I

.Tvrv -/NA^-rn-A-ZSTUjuuSj^y^^^

50 100 150 200 250 300
Basic blocks

Figure 7-22: Separator cliques and accumulated live ranges for back

Our next example is the frequency domain filtering routine, depicted in Figure 7-23. The size of the

separator cliques varies greatly throughout the program, and remains high for the last set of basic blocks

that follow block 48. The variations in the separator cliques can be explained with the structural

complexity of the program. Note that around basic block 48, almost 100% of the live ranges have been

accumulated. The persistently large separator cliques for the same portion of the program indicate

computation involving a large set of variables. The frequency of small separator cliques in the first pan of

the program together with a relatively linear increase of the accumulated live ranges indicate that the

conflict graph can be parallelized successfully.

122

-100

S, 90

80

70

60

50

40

30

20

10

reUave ate pf tepauar clique
icctsnulued live angn

♦•••lr"*v^"*

60 70
Basic blocks

Figure 7-23: Separator cliques and accumulated live ranges for filtering

TY» filtering routine is inlined in the select kernel shown in Fifedre 7-24. This is reflected in the shape of

both the accumulated live range curve and the separator clique curve: between basic blocks 20 and 80, the

shapes of both curves are almost identical to the curves of Figure 7-23. Note that overall the size of the

separator cliques is much larger in relation to the total number of live ranges than for the frequency domain

filtering routine in isolation. This is due to variables local to select, that remain live throughout the inlined

code for frequency domain filtering.

Our next example is ttejacobi kernel in Figure 7-25. The size of the separator cliques is very irregular,

again caused by the structural complexity of the program. In the second half of the flow graph, starting at

basic block 31, the size of the separator clique is very large in relation to the total number of live ranges.

Small cliques occur only at the beginning of the program. This example shows the tradeoff between

finding parallel tasks of equal size and the size of the separator cliques. If the size of the separator cliques

is the main factor for the parallelization. the size of the parallel tasks must be very uneven - on the other

hand equally sized parallel tasks can only be obtained by partitioning via lai ge separator cliques.

As our last two programs we picked the two most complex Livermore kernels. Kernel 15 and Kernel 22.

The data for Kernel 15 is shown in Figure 7-26, and the structure of the code is reflected in the size of the

separator cliques: die kernel consists of two separate loops, each of which performs computations on

variables local to each loop. The size of the separator cliques is large in the basic blocks that occur inside

123

-100

I
ft 90

80

70

60

50

40-

30

20 ••

10"

rdjtive tize of tcptniar clique
«tcumuUted live nnges

^/S/TVy/Uvwf l.f^Aj/ \,

20 40 60 80 100 120
Basic blocks

Figure 7-24: Separator cliques and accumulated live ranges for select

the loops, and the separator clique of basic block 49 that partitions the first loop from the second is

extremely small This indicates that the register conflict graph can be partitioned into two almost

completely independent parts, each of which contains about 50% of the live ranges.

The dafa for Livermorc Kernel 22 is depicted in Figure 7-27. The shapes of both the accumulated live

ranges curve and the separator clique curve are typical for single loops: almost all live ranges are

accumulated within the first few basic blocks, and almost all variables live throughout the loop, indicated

by the large size of the separator cliques for the basic blocks that form the loop body, blocks 5 through 53.

Because the bulk uf live ranges start in the same basic block (note the steep ascend of the accumulated live

range curve at basic block 5), it is not possible to partition the conflict graph into two subgraphs that

contain equally many nodes - in addition to very large separator cliques. Hence, the parallelization of

global register allocation for such graphs is useless.

7.4.1. Tradeoffs between parallelization strategies

The conflict graph of our single value decomposition program (Figure 7-21) has properties that make it

easy to partition. First, the accumulated live range curve rises almost linearly with increasing bas;c block

numbers. This means that it is easy to partition the register conflict graph into chunks of even size. The

size of the separator cliques is fairly even, and, more importantly, a relatively small fraction (about 10%) of

124

-100

ö- 90

60 70
Basic blocks

Figure 7-25: Separate»' cliques and accumulated live ranges for jacobi

the total number of live ranges. Using iO processors to process this conflict graph in parallel means that

the size of the separaten- clique is equal to die number of nodes in the partial conflict graphs; hence the

number of processors that can be used effectively is smaller than 10.

Even though the conflict graph of our baclqpropagation program has similar characteristics, the size of the

separator cliques is much larger in relation to the total number of live ranges (ca. 25%). Distributing global

register allocation for this kernel across 4 processors means that for each component of the conflict graph

the size of the separator clique is equal to the number of nodes - so only fewer than 4 processors can be

used effectively in parallel The large size of the separator cliques is a consequence of a large number of

global variables that remain live throughout the program.

Our frequency domain filtering program produces a conflict graph in which the varying sizes of the

separator cliques can not be ignored during the partioning. About 40% of the separator cliques are very

small, whereas the other 60% of the separator cliques are very large compared to the total number of nodes

in die conflict graph. A simple partition based merely on graph size might not yield good speedup. This

phenomenon is tai. n to the extreme in the example depicted in Figure 7-26 - only a few clique separators

are small enough to make paraUelization of global register allocation worthwhile. Only two clique

separators (at basic blocks 49,50) partition die conflict graph into large enough chunks so that the maximal

task size becomes sufficiently small.

125

«100

§
8
ft 90

80

70

60

50

40

30

20

10

reluivt nze of Kptätar cbque
accumtlued live migei

80 90
Basic blocks

Figure 7-26: Separator cliques and accumulated live ranges for Livermore Kernel 15

To summarize our observations, good parallel speedup can only be expected when the size of the

separator clique is significantly smaller than the number of nodes in the partial conflict graphs. Our

measurements indicate that for small kernels this is hardly achieved Our single value decomposition

kernel is one of the longest kernels in our testsuite, and the number of global variables is small. The

relation of the separator clique size to the total number of live ranges is favorable, and we conclude that for

longer programs, more parallelism can be found in global register allocation.

While procedure inlining increases the size of individual functions, our experience is that the size of the

separator clique grows with the context of the inlining functions: live ranges of the inlining functions

co-exist with the live ranges of the inlined function, thereby increasing the size of the separator clique. One

possibility to overcome this problem is to reduce the size of the separator clique by splitting live ranges of

the inlining procedure.

126

... 100 a I
£ 90

80

70

60

50

40

30

20

10

:■;•;".■■-■;•»

icUtivi nze of icptiilor clique
KcamMiMj live ranges

50 60
Basic blocks

Figure 7-27: Separator cliques and accumulated live ranges for Livermore Kernel 22

7.5. Related work

Global register allocatsoii is based on the conflict graph that denotes the register conflicts of the entire

program. In some implementations of global register allocation via graph coloring, the entire regis^r

conflict graph is built before the coloring process starts. By assigning priorities to variables based on

where in the program they occur, the program structure implicitly guides the order in which variables are

assigned to registers. Different implementations differ mainly in the heuristics that are used to decide

which variables to spül to memory if there are not enough available registers [ChowHen 90, Briggs et al

89, Bernstein et al 89].

Other approaches to global register allocation use program structure more exolicitly. In the research

reported in [GupSofSte 89], the register conflict graph is built and colored separately for each path through

the flow graph. The goal is to build and color a register conflict graph incrementally, motivated by space

problecns when the entire conflict graph is kepi in memory. Since only one straight line path through the

flow graph is considered at a time, the register conflict graph is assumed to be an interval graph and hence

clique separators are used for data partitioning. When the colorings it conflict graphs of individual paths

are combined, move instructions are used to adjust colorings. We see two problems with this approach:

First, even though straight line paths are considered individually, the presence of broken live ranges does

127

not ensure that the conflict graphs for these paths are really interval graphs. As a result, a clique found in

the register conflict graph of one path might not even be a sepa -ator clique ibr the conflit: graph of one

individual path through the flow graph. Second, when ms colorings of Lhc paths through a cord'tionai a

merged, there is no mechanism to enforce that BGLOBAL or LOEX live ranges arc colored identical ? and

colorings must be adjusted by introducing unnecessary spill and move instructions.

A strictly hierarchical approach to global register allocation via graph roloring is tepor&l i*

[CallahanKoblenz 91]: register conflict graphs are built and colored based on the parse nee of the pK/jnin».

The motivation is to concentrate on the register conflict graphs of critical potions of the input program, ta

example innermost loops. An overall coloring is derived by combining individual colorings; coloring.' thai

do not match are adjusted by spill and move instructions that can be avoided with the method presented in

this thesis. The trace scheduling compiler described in [FreuRut r)] uses a similar ar>proach, though

register allocation is performed hand in hand with the code scheduler.

Common to all approaches is their heuristic nature. If parts of the register conflict graph are colored

separately, the overall coloring is derived by inserting cleanup operations like move instructions if the two

individually colored pieces do not fit together Even if individual pieces can be colored opumai'y

optimality of the overall coloring is in general not preserved when colorings are combined.

7.5.1. Chapter summary

Our method was very successful for our benchmark kernels. Every conditional could be t%<sfonned into

equivalent straight line code, in most cases without node merging. Broken live ranges occurred in several

programs, and the number of broken live ranges was related to the structural complexity of the program^. la

all but two cases (both in the same program), holes could be eliminated. Consequently, all except o%

kernel could be n ipped to a straight line flow graph that was equivalent for the purpose of global register

allocation, and th resulting conflict graph was an interval graph. Only for one kernel an interval register

conflict graph cc aid not be found. For that kernel, we identified a small subset of nodes in the register

conflict graph that induced non-interval portions in the conflict graph.

Because it is difficult to predict the sequential execution time for a non-interval graph or for a graph in

which nodes must be spilled to memory, the parallel speedup can not be assessed accurately. Our

measurements of separator clique sizes demonstrates that our method finds enough clique separators such

that a variety of strategies can be applied to parallelize global register allocation.

128

Chapter 8

Conclusions

Program structure plays an important role for the parallelization of global compiler optimizations. We

distinguish between structured and unstructured compiler optimizations. In structured compiler

optimizations, data locality is given by explicit program structure: results for non-nested programming

constructs can be combined to an overall result without backtracking. In unstructured compiler

optimizations, there is no easy way to rartition the data into independent components. Data partitioning is

based on chüracteristics of the underlyuig data structure, and program structure is used implicitly to deduce

those characteristics.

In this thesis, we developed parallel frameworks for interval analysis and global register allocation,

representing a structured and an unstructured optimization respectively. The thesis demonstrates that for

both types of compiler optimizations, program structure plays a key role in finding a data partitioning.

8.1. Parallel interval analysis

In interval analysis, the basic blocks of a program flow graph are processed in an order that is given by

the loop structure of the input program. This leads to a natural partitioning of the data for parallelization:

the data flow information of loops that are not nested within each other can be computed independently and

combined to form an overall result without backtracking. Our parallelization of interval analysis is based

on a tree called the complete interval tree that captures the loop structure of the input program. Each node

in that tree is a task in the parallel implementation of interval analysis, and all nodes in that tree that are nor

descendants or predecessors of each other can be processed in parallel.

The goal of our implementation of parallel interval analysis was to assess the number of parallel

processors that can operate effectively for a given complete interval tree. When the execution time for each

parallel task is known beforehand, the minimal time to process the complete interval tree is equal to the

length of the longest path from the root of the tree to a leaf node. Given the minimal processing time for a

complete interval tree 7*. we developed a low»- bound for the minimal number of processors needed to

process T in minimal time (finding the minimal number of processors is NP complete).

Our parallelization of interval analysis is extremely simple, and one drawback is that the data partitioning

depends directly on the loop structure of the input program. Hence, the size of the parallel tasks is

pre-determined by the loop structure, and there is no flexibility when the parallel tasks are of uneven sizes.

In some cases this can lead to the lack of parallelism when a complete interval tree is processed.

129

Our implementation shows that in practice potential parallel speedup decreases when the number of

processors used is too large; in all cases the number of processors that could be used effectively in practice

was significantly smaller than the minimal number of processors needed to process the complete interval

tree in minimal time. In other words, due to system overhead the theoretically optimal speedup could not

be achieved. We conclude that finer grained parallelism in which more processors can be used in oarallel

does not result in better observed speedup, and that our simple approach to the parallelization of global data

flow analysis works well in practice.

8.2. Global register allocation

While for parallel interval analysis the division of the problem in parallel tasks is explicitly given by the

loop structure of the input program, the role of program structure in the parallelization of global register

allocation is very different In global register allocation, program structure is used to guide the analysis of

the register conflict graph, which must be partitioned for parallel processing. Goal of this analysis is to

locate clique separators in the conflict graph, and we achieve this by determining portions of the register

conflict grapn that are interval graphs.

We used the feet that register conflict graphs for straight line code are interval graphs, so in a well

structured program the only source for non-interval portions of the register conflict graph are conditionals

and loops. When certain restrictions are met by the live ranges that occur in conditionals or loops, we can

infer that the corresponding portion of the register conflict graph is an interval graph. Even when »hose

restrictions are not met by the live ranges of a loop or a conditional, there are situations in which we can

create an interval register conflict graph via node merging.

To characterize live ranges that are responsible for non-interval register conflict graphs, we developed a

structured model for global register allocation in which knowledge about program structure is encoded in

the live ranges of the input program. Given this knowledge in a register conflict graph, the conflict graph is

analyzed in a structured way, one loop or conditional at a time.

Our model provides a basis that permits us to improve register allocation, both for sequential and parallel

implementations. The advantages of our method for sequential register allocation are as follows:
1. Interval portions of the register conflict graph are detected and can be colored optimally in

linear time.

2. Clique separators can be found systematically in interval portions of "he register conflict
graph. Clique separated components of the register conflict graph can be colored
independently and combined to an overall coloring in linear time without compromising the
quality of the overall solution. Being able to partition a register conflict graph into small
components means that the overall running time can be reduced.

3. All cliques in inurval graphs can be enumerated. The size of the cliques in interval portions
of register conflict graphs is known. Only live ranges that are members of cliques that are
larger than the number of registers must be considered for spilling. In most cases, live ranges
that must be considered for spilling are only a subset of all live ranges of the input program,
and this subset is known before the coloring process. This is a definite advantage over
standard methods for spilling in which all live ranges that are still part of the register conflict
graph must be considered for spilling indiscriminately.

130

4. In general finding an optimal coloring for a non-interval portion of the register conflict graph
is NP complete. Our measurements indicate that such portions usually consist of only small
parts of a register conflict graph, so using expensive heuristics or even exhaustive search for
the coloring such portions need not be prohibitively expensive. Non-interval portions of the
register conflict graph are clique separated from the interval portions, so good (or optimal)
colorings for non-interval portions or; be incorporated into an overall coloring in linear time.

5. The knowledge about clique separators is useful for hierarchical register allocation: crucial
portions of the register conflict graph (example: portions that correspond to innermost loops
of the flow graph) can be colored separately and combined with the overall coloring in a
systematic and structured way.

82.1. Evaluation of the model

Goal of our implementation was to evaluate how often restrictions that enable us to detect or create

interval register conflict graphs are met by the live ranges of realistic programs. Our model is sufficient for

the analysis of register conflict graphs when we are able to detect large interval portions and many clique

separators. Our measurements show that for most input programs our method is able to detect interval

register conflict graphs and therefore a large number of clique separators.

822. Parallel global register allocation

Given the knowledge about the location of clique separators in a register conflict graph, the

parallelization of global register allocation is straightforward. A partitioning of a register conflict graph

that allows good parallel speedup must have the following characteristics:
• The size of the graph portions that are processed in parallel must be equal.

• The size of the separator cliques must be small to decrease the re-combination cost.

Our results indicate that for small kernels, the size of the separator cliques is so large that only very few

(2-4) processors could be used efficiently in parallel. For larger kernels the size of the separator cliques

tended to be small in relation to the total number of nodes in the conflict graphs and therefore the number

of processors that -i be used in parallel effectively is a hole larger. The abundance of separator cliques

allows a variety of strategies for the parallelization.

8.3. Future work

We examined the correlation between program structure and global compiler optimizations under two

different aspects. First, the explicit use of program structure for the parallelization of compiler

optimizations that operate based on a program's loop structure. The effectiveness of this approach was

shown for interval analysis, and the implementation of parallel interval analysis of only one data flow

equation showed potential for speedup in practice. Second, the implicit use of program structure for the

analysis of data structures processed in less structured optimizations which leads to a subsequent

parallelization. By developing a structural model for global register allocation we showed that this concept

works well.

131

8.3.1. Explicit use of program structure: extensions

Our wok in parallel interval analysis can be deepened in two aspects. First, it is important to examine
the correlation between program structure and the best possible speedup in detail. Ideally this work should
lead to a simple model that permits us to predict the expected parallel speedup for a given input program.
This is particularly important for practical implementations of parallel compilers: the automatic
parallelization of such optimizations is only successful when the amount of parallelism and therefore the
number of processors that can operate effectively in parallel can be predicted accurately and quickly.

Second, it would be interesting to evaluate the approach for optimizations that fit into the same
framework as parallel interval analysis but are more complex. Examples are loop vectorization and
software pipelining: non-nested loops can be treated in parallel, and the amount of work that must be
performed in each parallel task is larger than the amount of work required to perform bit vector

intersections in data flow analysis.

8.3.2. Global register allocation: future directions

We showed that our concept of using program structure for the parallelization of unstructured
optimizations works well for global register allocation but there are few optimizations that fit into the
specific framework of graph coloring. Our structured model for global register allocation serves as a basis
for the improvement of spilling and splitting heuristics for global registc. allocation. This aspect of our
model can only be evaluated when it is incorporated into the backend of a compiler.

Because of the importance of inter procedural optimizations, it would be interesting to extend the model
to handle inter procedural register allocation. Like for loops and conditionals, this involves the
development of boundary conditions for procedure calls. Further, the model can be adapted to handle
register hierarchies and register conventions. One example of a register convention is the use of specific

registers for parameters.

In general we believe that for well structured programs, compiler optimizations that are reduced to NP
complete problems can be improved when knowledge about program structure is used when that NP
complete problem is solved. For global register allocation the thesis demonstrated that this is possible.

132

References

[Aho86] Aho.A.V., Sethi. R.,Ullinan,J.D.
Compilers: Principles, Techniques, and Tools.
Addison-Wesley Publishing Company, Reading, Massachusetts, 1986.

[Bernstein et al 89]
Bernstein, D., Goldin, D.Q., Golumbic, M.C.. Krawczyk, H., Mansour, Y., Nahshon, I.
Pinter, R.
Spill Code Minimization Techniques for Optimizing Compilers.
In Proceedings of the ACM SIGPLAN1989 Conference on Programming Language

Design and Implementation, pages 258-263. ACM SIGPLAN, June, 1989.

[Boehm 87] Boehm, H. J., and Zwaenepoel, W.
Parallel Attribute Grammar Evaluation.
In 7th Intl. Conf. on Distributed Computing Systems. IEEE, Berlin, September, 1987.
Earlier published as Rice Tech. Report 86-39.

[Briggs et al 89] Briggs, P.. Cooper, K,D.. Kennedy, K., Torczon, L.
Coloring Heuristics for Register Allocation.
In Proceedings of the ACM SIGi 'LAN 1989 Conference on Programming Language

Design and Implementation, pages 275-284. ACM SIGPLAN, June, 1989.

[BubZwaen 92] Bubenik, R., Zwaenepoel, W.
Optimistic Make.
IEEE Transactions on Computers 41(2):207 - 217, Ftebruary, 1992.

[CallahanKoblenz 91]
Callahan, D., Koblenz. B.
Register Allocation via Hierarchical Graph Coloring.
In Proceedings of the ACM SIGPLAN 1991 Conference on Programming Language

Design and Implementation, pages 192-203. ACM SIGPLAN, June, 1991.

[Chaitin 81] Chaitin, GJ., Auslander, M.A., Chandra, A.K., Cocke, J., Hopkins, ME., Markstein,
P.W.
Register Allocation by Coloring.
Research Report 8395. IBM Watson Research Center. 1981.

[ChowHen 90] Chow, F.C., Hennessy, J.L.
The Priority-Based Coloring Approach to Register Allocation.
ACM Transactions on Programming Languages and Systems 12(4):501-536, October,

1990.

[Cooper 88] Cooper, E.E.. Draves. RP.
C Threads.
Technical Report, Carnegie Mellon University. June. 1988.

Fischer 75] Fischer. C. N.
On Parsing Context Free Languages in Parallel Environments.
PhD thesis, Cornell University, 1975.

[Fishbum 85] Fishbum, P.C.
Interval Graphs and Interval Orders.
Discrete Mathematics (55): 135-149,1985.

[Frankel 83] Frankel, J. L.
The Architecture of Closely-Coupled Distributed Computers and their Language

Processors.
PhD thesis, Harvard University, 1983.

133

[FreuRut 91] Freudenberger, S.M., Ruttenberg, J.C.
Phase Ordering of Register Allocation and Instruction Scheduling.
In Code Generation - Concepts, Tools, Techniques. Springer, May, 1991.
to appear.

[Garey, M.R. and Johnson, D.S. 79]
Garey, MR. and Johnson, D.S.
Computers and Intractability: A Guide to the Theory of NP-Completeness.
W.H. Freeman. San Francisco, 1979.

[Gavril 72] Gavril, F.
Algorithms for Minimum Coloring, Maximum Clique, Minimum Covering by Cliques,

and Maximum Independent Set of a Chordal Graph.
SIAMJ. Computing 1(2):180-187,1972.

[Gol 85] Gdumbic, M.C.
Interval Graphs and Related Topics.
Discrete Mathematics (55): 113-243,1985.

[GrossSteenldste 90]
Gross, T.. Steenldste, P.
Structured Dataflow Analysis for Arrays and its Use in an Optimizing Compiler.
Software-Practice and Experience 20(2), February, 1990.

[GrossZobel 89] Gross, T.R., Zobel, A., Zolg, M..
Parallel Compilation for a Parallel Machine.
In Proceedings of the ACM SIGPLAN1989 Conference on Programming Language

Design and Implementation, pages 91-100. ACM SIGPLAN, June, 1989.

[GupSofSte 89] Gupta, R., Soffa, Mi., Steele, T.
Register Allocation Via Clique Separators.
In Proceedings of the ACM SIGPLAN 1989 Conference on Programming Language

Design and Implementation, pages 264-274. ACM SIGPLAN, June, 1989.

[GuptaPollockSoffa 90]
Gupta, R., Pollock, L., Soffa, Mi.
Parallelizing Data Flow Analysis.
In Proceedings of the First Workshop on Parallel Compilation. May, 1990.

[HilLar86] Laras, J.R., Hilfinger, P.N.
Register Allocation in the SPUR Lisp Compiler.
In Proceedings of the ACM SIGPLAN '86 Symposium on Compiler Construction, pages

255-263. ACM SIGPLAN, June, 1986.

[Kennedy 81] Kennedy, K.
A Survey of Data Flow Analysis Techniques.
In Muchnkk, S. S. and Jones, N. D. (editors). Program Flc M Analysis, chapter 1, pages

1-54. Prentice-Hall, New Jersey, 1981.

[Klein 90] Klein, E.
Attribute Evaluation in Parallel.
In Proceedings of the First Workshop on Parallel Compilation. May, 1990.

[KuckKuhnEtAl 81]
Kuck, D. J., Kuhn R. H., Padua, D. A., Leasure. B., and Wolfe, M..
Dependence Graphs and Compiler Optimizations.
In Conference Record of the 8th Annual ACM Symposium on Programming Languages,

pages 207-218. ACM, Williamsbuig, January, 1981.

134

[Kung88] Kung,H.T.
Warp Experience: We Can Map Computations onto a Parallel Computer Efficiently.
In Conference Proceedings of 1988 International Conference on Supercomputing, pages

668-675. ACM. St. Malo. France. July, 1988.

[Lam 88] Lam, M.
Software Pipelining: An Effective Scheduling Technique for VLIW Machines.
In Proceedings of the ACM SIGPLAN '88 Coherence on Programming Language

Design and Implementation, pages 318-328. June, 1988.

[LceMarloweRyder 91]
Lee, Y.-F., Marlowe, TJ., Ryder, B.C.
Experiences with a Parallel Algorithm for Data Flow Analysis.
The Journal of Supercomputing 5(2):163-188, Oct, 1991.

[McMahon 86] McMahon, F. H.
The Livermore Fortran Kernels: A Computer Test cfthe Numerical Performance Range.
Technical Report UCRL-53745, University of California, Lawrence Livermore National

Laboratory, December, 1986.

[MorelRenvoise 81]
Morel, E. and Renvoise, C.
Interprocedural Elimination of Partial Redundancies.
In Muchnick, S. S. and Jones, N. D. (editors). Program Flow Analysis, chapter 6, pages

160-188. Prentice-Hall, New Jersey, 1981.

[Muldmax 88] Encore Computer Corporation.
Mulnmax Technical Summary.
Technical Report, Encore Computer Corporation,, 1988.

[Pat/Hen 90] J. L. Hennessy and D. A. Patterson.
Computer Architecture A Quantitative Approach.
Morgan Kaufman, 1990.

[Pomerleau,etal. 88]
Pomerleau, D. A., Gusciora, G. L., Tourctzky, D. S. and Kung, H. T.
Neural Network Simulation at Warp Speed: How We Got 17 Million Connections Per

Second.
In Submitted to the IEEE Second International Conf. on Neural Networks. April, 1988.

[Press et al 88] Press, WJL, Flannery, B J»., Teukolsky, S A., Vetterling, W.T.
Numerical Recipes inC- The Art of Scientific Computing.
Cambridge University Press, 1988.

[Seshadri et al 88] Seshadri, V., Wortman, D.B.. Junkin, M. D., Weber, S., Yu, CP., and Small, I..
Semantic Analysis in a Concurrent Compiler.
In Proceedings of the ACM SIGPLAN '88 Conference on Programming Language

Design and Implementation, pages 233-239. ACM SIGPLAN, June, 1988.

[Sites 78a] Sites, R.
Instruction Ordering for the Cray-1 Computer.
Technical Report 78-CS-023, University of California, San Diego, July, 1978.

[Sites 78b] Sites, Richard L.
CRAY-1 Register Allocation for Optimized Pascal.
Technical Report, University of California at San Diego, October, 1978.

[Smith 87] Harry F. Smith.
Data Structures Form and Function.
Harcourt Brace Jovanovich, 1987.

135

[Stallman 88] Stallman. R.
Internals of GCC
Cambridge. Mass. 1988.

[Tarjan 85] Tarjan, R£.
Decomposition by Clique Separators.
Discrete Math. 55:221-231.1985.

[Vandevoorde 88] Vandevoorde, M. T,
Parallel Compilation on a Tightly Coupled Multiprocessor.
Master's thesis. MIT. March. 1988.

[Wall 86] Wall, D. W.
Global Register Allocation at Link Tune.
In Proceedings of the ACM SIGPLAN '86 Symposium on Compiler Construction, pages

264-275. ACM SIGPLAN, June. 1986.

^ V
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not
to discriminate in admissions and employment on the basis of race, color, national ongin, sex or
handicap in violation ctTitls VI of the Civil Rights Act of 1964, Title IX of the Educational Arnendmenls
of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive
orders. In addition, Ca/negie Mellon University does not discriminate in admissions and employment
on the basis of religion, creed, ancestry, belief, age, veteran status or sexual orientation in violation
of any federal, state, or local laws or executive orders Inquiries concerning application of this policy
should be directed to the Provost, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA
15213, telephone (412) 268-6684 or the Vice President for Enrollment, Carnegie Mellon University,
•5000 Forbes Avenue, Pittsburgh, PA 15213, telephone (412) 268-2056

