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MARCH 4-6. 1992  AUBURN UNIVERSITY. USA

A COMPARISON OF MEMBRANE, VACUUM, AND FLUID LOADED SPHERICAL SHELL MODELS
WITH EXACT RESULTS

Cleon E. Dean
Naval Oceanographic and Atmospheric Research Laboratory
Numerical Modeling Division, Building 1100
Stennis Space Center, MS 39529-5004
USA

ABSTRACT

A new set of spherical shell theories is presented with differing degrees of physicality, varying from a
simple membrane model up to a fluid loaded shell theory that includes translational motion, rotary inertia, and
transverse shearing-stress. Numerical results from these theories are compared with exact results from
clastodynamic theory. The motivation of this study is to overcome the limitations of both modal analysis
approaches and of the somewhat more general Extended Boundary Condition (EBC) method due to Waterman,
sometimes called the T-matrix method. The sphencal shell is studied with an eye towards generalizing the results
obtained to spheroids. The aim of the present research is to yield a better understanding of the scattering event by
employing more general and more physical shell theories.

INTRODUCTION

So-called "shell theories” simplify the calculations of the motion of thin elastic shells by making
assumptions about the scatterer and its movements. We use the standard assumptions of shell theory as
formulated by A. E. H. Love [1] and which are as follows: first the thickness of a shell is small compared with the
smallest radius of curvature of the shell; second the displacement is small in comparison with the shell thickness;
third the transverse normal stress acting on planes parallel to the shell middle surface is negligible; and finally the
fibers of the shell noral to the middle surface remain so after deformation and are themselves not subject to
clongation. These assumptions are used in the development of a shell theory for an elastic spherical shell in the

spirit of Timoshenko-Mindlin[2,3] plate theory.
DERIVATION OF THE EQUATIONS OF MOTION

In spherical shells membrane stresses (proportional to 3) predominate over flexural stresses (proportional to
B*) where

ﬁ = _l_ﬁ 1
Viza M
We differ from the standard derivation for the sphere [4] by retaining all terms of order S%in both the kinetic and

potential energy parts of the Lagrangian and by considering the resonance frequencies for the fluid loaded case to
be complex. We note that this level of approximation will allow us to include the effects of rotary incrtia and shear

disgonion in our shell theory, as well as damping by fluid loading. The parameter f itself is proportional to the
radius of gyration of a differential element of the shell and arises from integration through the thickness of the
:hc}l in a radial direction. We will use an implicit harmonic time variation of the form exp(~iar). We begin our
dc.nvation by considering a u,v,w axis system on the middle surface of a spherical shell of radius a (measured to
mid-shell) with thickness 4, as shown in Fig. 1.
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Fig. 1. --- Spherical shell showing coordinates used. The i, v, w - coordinate system is somewhere on the mid-
surface.

The Lagrangian, L, is

L=T-V+W, ) .

where T is the kinetic energy, V is the potential energy, and W is the work due to the pressure at the surface,
The kinetic energy is given by

hd

1 (asenpprz | . ¢
T= EP'J; J; ‘[_Mz(u,2 +W?)(a + x)*sin 6dxd6d¢, 3 %

where the surface displacements are taken to be linear as in Timoshenko-Mindlin plate theory:
X ow

X
TPV L 1.4
Y (+a)“ adé

The motion of the spherical shell is axisymmetric since the sound field is torsionless. Thus there is no motion
the v-direction. Substitution of Egs. (4) and (5) into Eq. (3) yields, after integration over x and &, 2

'y R o 0.2 Ko R ow kK R MW K :
T= +—+ W = 2=+ Y= H—— + =N——)* + (— + ha’)w’)d6, Ok
7p,J, SnBl(gp o+ S+ ha' il =2+ DNSE M + TNGEY 4 (4 ha' il NdB,

or, in terms of S,
2 (" Py 2 .2 4 1.8“' . 2 a“’z 2 . 29.: ;
T = npha L [(1L.8B* +68% +1)i* - (3.68+6B )u;o-ﬂl.sﬂ +p )(35) +(B* +1)w?]sin 640,

where the first and last terms in square brackets in Eq. (7) are associated with linear translational kinetic _.. Y
and the middle two terms are associated with rotational kinetic energies of an element of the shell.
The potential energy of the shell is

1 ¢e=paspan2 .
V= EL Jo I_m(a,.e,, +0,,€,,)(x + a)’ sin 8dxd6d¢,
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where the nonvanishing components of the strain are

1{ou \ x{ou I'w
=] = | = 9
Eor a(ae+w)+a’(ae ae’)‘ )
and
£, = %(c010u+ w)+fz—cot O(u - g“—o) (10)

and where the nonzero stress components are

1_Vz(f:,,,,+w:”), (1)

and

E
0"=m(€"+VEOO), (12)

where E is Young's modulus. By substitution the potential energy becomes

A 2 >
V=%L‘f"f ”[ E _1__(((1+’)‘9“-5‘9—W+w’)+(cme[(1+§)u—:—%]+wr

o Jan) 1 v (x +a)? ;8—9 a 06?
2
+2v{cot 9[(l+§)u—§%]+w][(l+§)3—;-§‘%+ w])}(xw)’ sin 6dxd9, (13)

which after integration is

) V= lnE\’:’ Jo'((w-c»g—;)’ +(w+ucot8)’ + 2v(w+§—;)(w+ucote)
2 2
+BY %‘)— - 39':')%0:’ Ou - r;—;:;')’ +2vcot 8(u --3—‘;)(% - ge—‘;’)])sm 646. (14)

Terms in the potential energy proportional to B are due to bending stresses.
And finally, the work done by the pressure of the surrounding fluid on the spherical shell is given by

W= 27ta’L‘p_wsin 8dse, (15)

where p, is the pressure at the surface.

.. A Lagrangian density must be used instead of the Lagrangian since the integration along the polar angle is
intnnsic to the problem. The Lagrangian density is
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L = np,ha®((1 + 64* + 1.88)i* — (68* +3.68* )u o+ (B +1.88* )(
+(1+ﬁ‘)v‘v’]sin9-—’£i((w -——)’ +(w+ucot9)’ +2v(w+a—)(w+ucot 0)
1-v 26 a6
+2ma’p wsin 6, (16)

with corresponding differential equations of motion

oodL_ddL_diL
" du  dOdu, dioy,

and

0o2L_doL doL d JL & IL
ow  dOow, diow, dOdiow, dO* owe

where subscripts denote differentiation of the variable with respect to the subscript.
By substitution of Eqgs. (17) and (18) into (16) we obtain

Iw

d%u du
(i+p )[——+cot —=~(v+cot )u] -f'— —ﬁ cotf—;

26* 26

+H(1+ V) + (v +cot? 9)]2“’--“—2((1.8[3‘ +68%+ 1)3—2--(1 88° + 3/32)—1
98 ¢ o 000> "

and

(1-vHa’ 2 9°u 2 ﬁf___ , 2 2
,——-—Eh =p 36’+2ﬂ cotea fa+ w1+ 8%+ f%cot 6)]

+cotO[(2 - v+cot! B> -1+ V)Ju - B’-aF—Zﬁ’ zea—
2
+ﬂ’(l+ v+ cot 6)—a—~—p cot8(2 - v +cot? 0)%-2(1+ Vw
J 32
- 18 2 - 2
+4 [( B +36%) Soor (1.88* +3[3)cot(9a2

’
+(1.86* + %) +(1L.8* + B1) s cot 6 — (B + ”F‘

89232 832

These differential equations of motion (19) and (20) have solutions of the form

wm=SU.a-n )"’d

as0

and

w(n) = Z-,W.P.(n).

az0
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where 1 =cos8 and P,(1)) are the Legendre polynomials of the first kind of order n. When the differential
cqua(ions of motion (19) and (20) are expanded in tenms of Eqgs. (21) and (22). we obtain a st of linear equations

in terms of U, and W,, whose determinant must vanish. We shall consider iwo cases: wih and without fluid
loading.

The_vacuum case
The vacuum case is the simpier problem that occurs when the spherical shell is surrounded by a vacuum

such that there is no damping. Thus. the pressure atthe surface vanishes: p, = 0. The set of lincar equations the
expansion cocflicients must satisfy are

0= [ A+63°+1L8B) =1+ Bt + [ GR + 188" )= 5 =1+ vt (23
and

0= =2 [(x =BT —L8B + 1+ VIl 410 +257 + LR =21+ vy = fIaA, W, (24

where Q=wa/c,, x=v+Ai -l and A, =nn+1). Inorder for Egs. (23) and (24) to be satisfied
simultaneously with a non-trivial solution the determinant of the system must vanish:

0=0%+ 60 + 1.80*)1+ 287 + L8 +Q(3B7 + L8BHYA (N -3)F" - L8B +1+ v]
—[2(1+ v+ BIRA, N+ 687 + 188 ) = (1+ BN+ 287 +1.85™)

+O+BHK20+ W+ BRA 1= A [k =3)F - L8B* +1+ v)(f7 + 1+ v). (25)

Since there are no damping terms, the shell vibrates theoretically forever.  Thus, the nomalized frequency

Q can be taken to be real. Equation (25) is quadratic in €. thus we expect twa real roots to (25) and thus two
modes for the motion of the shell. They are the symmetric and antisymmetric Lamb modes.

The fluid loaded case
The fluid loaded case requires that we consider a modal expansion of the surface pressure in terms of the

specific acoustic impedance z,. In its most general form this is

p(a.6.9)=3 Y 2 W_Pr(cosB)cosmo, (26)
ax0mz0
where -
= ph_(ka) (27)

P kay

The specific acoustic impedance 2, can be splitinto real and imaginary pans:

:A =rn—iwmn' (28)
where
ih (ka)
r, = pcReq—"——>, 29
p °{ h;(ka)} (29)
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and

m, = £ 1] k)| (30) -
w hl(ka)
For the case of axisymmetric motion we are considering, the surface pressure is
%
P.(6) ==Y 2,W,F.(cos ). (31) §
a=0 '
or by substitution,
p.(6) = = (—iwW,r, - @*W,m,)P,(cos6). (32)

a=0

Use of Eq. (32) in our set of differential equations of motion (19) and (20) yields the following set of linear
equations for the expansion coefficients in the case of a fluid loaded spherical sheil:

0 ={Q*A+6B8%+1.88*)—(1+ Bk, +[Q* (3B +1.88*) - Bk - (1 + VIW,, (33)
and :
0=-A((K=-3)-18B* +1+ VIU, HQ* (A + a+2B* +1.88*) - 21+ v)+ Qiy - B'xA,1W,,  (34)]
where
m, ~
a= E (?
and
ar ;
= 3f
ares “

Again the determinant of Egs. (33) and (34) must vanish. However, in this instance the value of  must be take
to be complex; the resonances have a width that depends on the damping. The result of setting this determinantX
zero is ]

0=0Q%1+652+1.88*)1+a+25* +1.88%)
+Q%y(1+ 657 +1.88*) +Q*{(3B* + 1884, [(x ~3)B* —1.88* +1+ V]
~[2(1+ V) + B4, K1+ 682 +1.88%) = (1+ BA)x(1 + a + 287 + 1.88*)) +Q[—iy(1 + B)x]

+(1+BH)x2(0+ v)+ B2xA, ) - A [(x = 3)B? ~1.8B* +1+ v}(B2 +1+ V). _ '

Equation (37) has at least four complex roots. From work with an exact modal solution to the p: obleny
expect two roots to be associated with the symmetric and antisymmetric modes of the shell. We expect the 2K
two roots to be associated with a water-bomne pseudo-Stoneley wave. -3

CONCLUSIONS
The next step is to plot the roots of Egs. (25) and (37) to compare the resonances predicted by these %
with those given by exact modal expansion solutions. By suppressing a and y, the model associated /"'

(37) reverts to the vacuum case model associated with Eq. (25). Similarly suppression of factors of § in BE
will result in a reversion to a previously derived solution (Junger and Feit, 1986). We may then rank (he
different models according to their degree of physicality and compare their results for various relauvg
thicknesses against each other and against the exact results of the modal expansion mode]. We may also €0
the limitations of each of the models including the exact solution, as well as those of shell models in generay
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By setting the values of & and 7 in Eq. (37) 10 zero, we revert the shell theory model to one without fluid

joading. Similarly, by setting 3 to zero as well, the model reverts to a membrane mode!l. These models, fluid
joaded, vacuo case, and membrane, are successively less physically sophisticated and give successively less good
comparison with exact (modal expansion) results. Starting with the least sophisticated model, we see in Fig. 2
thick spherical steel shell dilatational (symmetric) and flexural (antisymmetric) mode resonances calculated by the
membrane model. Here and in the succeeding figures thick means A/a =0.1; thin means h/a=0.01. The shel!

material is a generic steel with density p, = 7.7 umes that of water, shear velocityv, = 3.24 kmy/s, and longitudinal
velocity v, = 5.95 kmv/s. The surrounding fluid is taken to be water with density p = 1000 kg/m3 and sound

velocityc, = 1.4825 kmy/s. The symmetric mode shows a good comparison between exact and shell theory

redictions, but the antisymmetric shell theory results for this approximation compare poorly with the exact
flexural results. Note that some symmclg‘ic mode resonances were not found by our cxact_lhcory algonithm. In
Fig. 3 we see thin spherical steel shell dilatational (symmetric) and flexural (antisymmetric) mode resonances
calculated by the membrane model. Again there is good comparison between dilatational {(symmetric) mode
resonances calculated by the two methods, except for the first couple of resonances. Only a few exact flexural
resonances were picked up by our algorithm. And again the shell theory flexural (antisymmetric) mode
resonances show the do not asymptote properly with increasing order. In Fig. 4 we have thick spherical steel
shell dilatational (symmestric) and flexural (antisymmetric) mode resonances calculated by shell theory without
fluid loading (vacuum). As in the membrane model the shell theory and exact calculations compare well for the
dilatational (symmetric) mode resonances. In contrast with the membrane model, however, the exact and shell
theory calculations for this model show much better agreement for the flexural (amisymmcmc) modc'rcso'nanccs.
This model does not include fluid loading, but does include the effects of shear distortion and rotary inertia. The
vacuum shell theory flexural mode resonances do not asymptote for large size parameter ka to the exact results,
nowever. In Fig. 5 we see thin spherical sieel shell dilatational (symmetric) and flexural (antisy'mmetric) mode

- resonances caiculated by shell theory without fluid loading (vacuum). As in the membrane model the shell theory

and exact calculations compare well for the dilatational (symmetric) mode resonances except for the first couple of
resonances. This vacuum model does not have fluid loading, and has insufficient damping for the first two
dilatational (symmetric) mode resonances. Again, the flexural (symmetric) mode resonances show roughly the
correct behavior, but it is not possible to tell what the asymptotic value of the phase velocity would be for large
size paramneter on this scale. Next in Fig. 6 we have a plot of thick spherical steel shell dilatational (symmetric)
and flexural (antisymmetric) mode resonances calculated by shell theory with fluid loading. As in the vacuum
case as well as for the membrane model, the dilatational (symmetric) mode resonances compare well for exact and
shell theory methods. The flexural (antisymmetric) mode resonances, as calculated by shell theory with fluid
Joading, do not appear to have the correct asymptotic limit for large size parameter, although they do exhibit
roughly the correct behavior for lower values of ka. Finally, in Fig. 7 we see thin spherical steel shell dilatational
(symmetric) and flexural (antisymmetric) mode resonances calculated by shell theory with fluid loading. The
exact and shell theory calculations agree well for the dilatational (symmetric) resonances and exhibit a marked
improvement for the first several shell theory symmetric mode resonances. This is due to the inclusion of fluid
loading in the model. The flexural (antisymmetric) mode resonances show the appropriate behavior on this rather
limited size parameter scale.
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