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Chapter 1. Introduction

1.1 Liquid Crystal Theory

Liquid crystals (LCs) were first observed in 1888 by

Friedrich Reinitzer. The liquid crystalline state, lying

between the crystalline and the isotropic liquid states of

matter, offers a broad range of applications where its

anisotropic but liquid properties can be exploited for

sensing the environment. The weak forces between LC

molecules are easily disturbed by various external effects

producing marked changes in its optical properties such as

reflection, transmission, dichroism, birefringence and

color.1 Application of mechanical stress, for example, will

reorient the LC structure and, thereby, change its

birefringent property; this characteristic makes these

materials ideal shear sensors.

Conventional, non-LC methods of studying boundary layer

behavior such as oil films or Preston tubes are either

difficult to interpret or only provide local measurements of

shear stress. 2 In 1968, Enrique J. Klein introduced the use

of LC in aerodynamic testing3 and, despite some drawbacks,

it has proven a very promising boundary layer sensor.4,5

In LC shear-sensing, the observed reflection spectra

are also difficult to interpret. Adding to the problem, the
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thickness of the LC film during the testing is difficult to

maintain due to the hydrodynamic and kinetic effects caused

by the applied shear. Finally, current LC sensors are

relatively slow compared to the rapidly changing flow

patterns.
4 ,5

D.S. Parmar of NASA Langley is working on the

interpretation and response time problem by measuring the

change in birefringence and working with ferroelectric LCs 4;

the hydrodynamic flow, however, remains a problem. One

possible solution is to attach these LC structures to a

matrix which inhibits their movement while still allowing

them to retain their high degree of orientation and

sensitivity, i.e., liquid crystal polymers.

1.2 Liquid Crystal Polymers (LCPs)

LCPs are high molar mass materials which exhibit liquid

crystalline behavior. Although most of the recent interest

in LCP materials are due to its inherent physical properties

including high strength and stiffness over a broad range of

temperature, there is also great interest in the material

for its potential in the fields of application currently

using low molar mass LCs.
6

LCPs can be tailored for the best combination of

properties deriving from the anisotropic behavior of LCs and
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the polymer-specific characteristics of macromolecules. Two

basically different types of LCPs are conceivable: the

mesogenic groups form the polymer main chain (main chain

LCPs), or the mesogenic groups are attached as side chains

to the monomer unit of the polymer backbone (side chain

LCPs) (Fig. 1). This study will focus on the latter since

they offer field effects and optical properties more similar

to low molar mass LCs.
7

1.3 Polarized Fluorescence

Optical anisotropy, such as birefringence and

dichroism, of oriented polymers has been utilized for the

measurement of molecular orientation. Another method

involves the use of the polarized fluorescence emitted from

probes dispersed within the polymer. This method provides

greater insight into the distribution of molecular

orientations labeled by the probe molecules. Polarized

fluorescence can measure not only the static orientation of

the molecule but also any dynamic process such as

reorientation.8 ,9 ,10 It becomes possible to observe a

polymer orientation transformation process, e.g., LCP

structural deformation due to shear application.

Helmut Ringsdorf has successfully attached dyes to

LCPs, thereby, creating liquid crystal copolymers (LCCs)
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S - Polymer main chain

Flexible spacer

Mesogenic unit

Figure 1. Schematic structure of side chain LCP; flexible
spacers decouple the orientation of mesogenic side groups
from any polymer main chain effects

- Dye unit
I I

- Polymer backbone

Flexible spacer

Mesogenic unit

Figure 2. Schematic structure of LCC with dye and mesogenic
side groups
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with dyes and mesogens as side groups (Fig. 2). Results

showed no drastic change in liquid crystalline behavior at

low dye concentrations.11 ,12 Although these studies

involved the use of dichroic and pleochroic dyes to improve

the LCC optical display, it should also be possible to

covalently attach fluorescent dyes and use them as probes to

study the LCC orientation.

1.4 Research Objectives

The long range goal of this research is the development

of a method to map the shear stress distribution on the

surface of an airfoil. This thesis is an initial concept

study to determine the feasibility of LCPs as shear sensors.

The study aimed to meet the following objectives:

1. Syntheses and surface application of LCPs as film

coatings for shear-sensing.

2. Construction of a testing apparatus for current and

future shear-sensing coating studies.

3. Development of a methodology to observe and measure the

optical birefringent response from the LCP coatings.

4. Confirmation of the shear-sensing concept from the

optical response of the LCP films due to applied shear.



Chapter 2. Side Chain Liquid Crystal Polymer

LCPs are a new class of thermoplastics providing an

outstanding balance of properties for high performance

applications. Due to its high molecular orientation, the

material is characterized by high stiffness and strength,

broad chemical resistance and thermal stability.1 3
,14

However, for this research application, the LCP needed to

show a liquid crystalline phase at low temperatures; the

glass phase transition (Tg) must be low, and the liquid

crystalline phase needed to cover the aerodynamic testing

range.

2.1 Variation in Phase Transition (Tg)

T is the lower temperature limit of the liquid

crystalline phase; it is the phase transition temperature

from a crystalline (solid) to a liquid crystalline phase.

Transition from the liquid crystalline to an isotropic

liquid phase occurs at the clearing temperature, Ti.15

The T of most LCPs is too high to prepare and observe

a stable liquid crystalline phase. Finkelman and Ringsdorf

have noted factors which influence phase behavior of LCPs.

Lowering of T is possible by attaching the mesogenic groups
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to a flexible backbone 16 ,17 and/or by reducing the

interaction between the mesogenic side groups through the

introduction of additional spacers in the main

chain.17,18,19

2.2 Polyacrylic and Polysiloxanic LCPs

Helmut Ringsdorf was successful in synthesizing a

polyacrylic LCP with low Tg, -100C.11 The LCP was prepared

by free radical polymerization of the mesogenic monomer,

6-acryloyl oxyhexyl 4-(trans-4-propylcyclohexyl)benzoate.

As mentioned earlier, he then went on to synthesize

copolymers of mesogenic and dye monomers which still

retained a relatively low T. 11,12 This should prove

particularly important in the proposed follow-on studies on

polarized fluorescence where fluorescent dyes are covalently

attached to the LCP (section 5.2).

However, this research focused on polysiloxanic LCPs.

The synthesis and characterization, initially investigated

by Heino Finkelman16 ,18 and continued by Ringsdorf19 ,

involved polymer modification of the poly(dimethylsiloxane-

co-hydrogenmethylsiloxane) (PDMSHMS) polymer. The LCP is

prepared by a polyhydrosilation reaction of the polymer with

a terminal alkenic mesogenic side chain, in this case, 4-(3-

butenyloxy)benzoic acid 4'-methoxyphenyl ester (Fig. 3).
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For a degree of polymerization (dp) of 120 (X+Y=120) and an

X:Y ratio of 1:1 (X=Y=60), this LCP has a smectic liquid

crystalline phase of -60C to 500C. 18 For this research the

LCPs synthesized also had dps of 120 but X:Y ratios of only

2.5:1 or 2:1 making them less viscous films with even lower

TgS.
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Chapter 3. Experimental

The mesogenic side chain alkenes used in this research,

4-(3-butenyloxy)benzoic acid 4'-methoxyphenyl ester, were

prepared by Frinton Laboratories, Inc. using standard

methods published in the literature.16 ,18

The PDMSHMS polymers were provided by Wacker Silicones

Corporation. Crosslinker 525 is a pure PDMSHMS polymer with

a dp of 120 and an X:Y ratio of 2.5:1.20 Silicone Fluid

X-63 is a formulated product with a dp of 120, an X:Y ratio

of 2:1 and a 1.4% methylvinylsiloxane polymer unit within

the polymer chain. It also has an octamethylcyclotetra-

siloxane component in the polymer solution at 5 ppm. 20 LCPs

synthesized with Crosslinker 525 and Silicone Fluid X-63

are, henceforth, designated LCP 525 and LCP X-63,

respectively (Fig. 4).

3.1 LCP 525 Synthesis

To a mixture of PDMSHMS (Crosslinker 525, 0.91 g) and a

10% molar excess of the side chain alkene (1.1 g) in

tetrahydrofuran (THF, 5 ml), H2PtCl6 catalyst was added at

100 ppm. The solution was heated under reflux for 18.5

hours at 550 C. After complete addition (disappearance of
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CH 3  CH 3

Si - O - Si -- O 0I I
CH3  86 7H2)4 - 0 coo 0 oCH3134

LCP 525

I CH3 CH 3

Si - Si- 0I I
CH 3  86 (CH 2)7CH 3 34

Poly(dimet hylsiloxane-co-met hyloctenylsiloxane) polymer

ICH3 - CH 3  
ICH3

*~Si - 0-Si-( __ - 0

LCH 3 J7 (CH2 )4 - 0 -1 -coo OCH3 J3 L CH=CH 2 J2

LCP X-63

Figure 4. Structural diagrams of the synthesized side chain
polymers
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the Si-H absorption peak at 2158 cm-1 , Figs. 5 and 6), the

LCP was isolated by precipitation with methanol. The LCP

precipitant was then purified over night by soxhlet

extraction using a methanol solvent.

3.2 Octenyl Polysiloxane Synthesis

To verify the inherence of shear response behavior only

to side chain LCPs, a control side chain polymer was also

synthesized. Addition of 1-octene to the polysiloxane (1 g

PDMSHMS, 1.02 g 1-octene) was cirried out in the same

procedure as the LCP 52j synthesis. The final product was a

poly(dimethylsiloxane-co-methyloctenylsiloxane) polymer with

the same dp and X:Y ratio as LCP 525 (Fig. 4).

3.3 LCP X-63 Synthesis

This polymer was synthesized to determine the

relationship between LCP shear response and its viscosity.

LCP X-63, with a lower X:Y ratio, should prove more viscous

than LCP 525; there is less spacing between the mesogenic

side chains inducing more interaction and, thereby, higher

viscosity.
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Addition of the side chain alkene (1.01 g) to the

PDMSHMS (Silicone Fluid X-63, 0.72 g) in 10 ml THF was

initially carried out in the same procedure as the LCP 525

synthesis. However, gel byproducts formed during reflux.

This was most likely due to a hydrosilation crosslinking of

the polymer through the methylvinylsiloxane unit. The

addition reaction also did not go forward completely; a

residual Si-H absorption remained in the IR spectrum and did

not diminish on further heating (Figs. 7, 8 and 9). After

19.5 hours of reflux, 1-octene was added to mop up the

remaining Si-H and the solution was left to reflux for

another 4.5 hours. Previous studies have revealed no

differences in physical properties for polymers made with

and without l-octene.2 1 After complete addition (Fig. 10),

the LCP in solution was separated from the gel byproducts.

The LCP was then isolated and purified by repeated

precipitation with methanol.

3.4 Instrumentation

The testing apparatus is shown schematically in

Fig. 11. The light source is a 150 watt Xenon arc lamp

(Model 6137, Oriel Corp.). The focusing lenses (focal

lengths 2.7 and 3) are adjusted to collimate the light

through the crossed polarizers (03 FPG 007, Melles
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100.00
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I i

2161.6

4000 3500 3000 2500 2000 100 1000 C b 00

92/05/22 08:14
1 CDOO 4 cSte"'. 40CM--I
reflu. 13.5 h,.

Figure 8. IR spectrum after 13.5 hours reflux; LCP X-63
synthesis

100.00
ST

4000 3500 3000 2500 2000 1500 1000 to 500

92/05/R2 14:28

!Cp"3 , sclns. 4 0c-I
%flux .g.5 '.

Figure 9. IR spectrum after 19.5 hours reflux; LCP X-63
synthesis
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Griot), sample plate and video camera. Neutral density

filters are added to prevent light saturation of the video

camera. The camera is a Sony XC-77RR CCD video camera

system fitted with a 50 mm television lens (Cosmicar, focal

length 1.4) and a 20 mm extension for close-up work. Video

images are captured and processed in an Apple Macintosh IIx

computer using the IPLab Scientific Image Processing

software (Signal Analytics Corp.).

3.4 Testing Procedure

The purified LCP is redissolved in THF in different

percent weight ratios. The LCP solution is spray-coated on

a flat glass surface and left to dry. The dried sample

plate is placed between crossed polarizers and illuminated.

Nitrogen gas from a cylinder is blown horizontally over the

plate surface (henceforth designated as a "wind-on"

condition). Being birefringent, the LCP will affect the

optical polarization of the incident light. Any molecular

reorientation of the LCP due to the applied shear can be

observed optically by monitoring the change in polarization

of the transmitted light.

The amount of shear stress applied on the surface could

not really be quantified with this experimental setup;

however, a calibration setup is possible and suggested as a
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follow-on study (section 5.2). The initial flow pressure

from the cylinder is approximately 15 psi but drastically

increases as it flows through the compressed pipette nozzle.

Applied shear is also dependent on the nozzle placement

relative to the plate surface.

Video images of a "wind-on" and a "wind-off" conditions

are captured and processed. The difference between the

images is analyzed and any change correlates to the change

in polarization caused by the LCP coating response to the

applied shear. A signal-to-noise (S/N) ratio is then

calculated using the gray scale values in the image

difference. Another "wind-off" image is taken after the

shear application. The difference between the two "wind-

off" images correlates to a permanent reorientation/

deformation of the LCP coating due to the applied shear.

Any deformation is detrimental to future calibration of

shear response; this would be similar to the spectral

interpretation problem of low molar mass LCs due to

thinning.



Chapter 4. Results and Discussion

4.1 Infrared (IR) Spectra

IR spectroscopy was the analytical method selected for

monitoring the polyhydrosilation reaction and confirming the

structure of the different polymer materials. Each material

was dissolved in THF in similar percent weight ratios. The

IR spectra were taken with a Perkin Elmer Model 1600 FT-IR

Spectrophotome*- . Assignment of the absorption peaks were

based on t1> -naracteristic bond vibrations of linear

polysilcxanes. 22 ,23

4.1.1 PDMSHMS Polymer (Crosslinker 525)

The IR spectrum of the unreacted polysiloxane polymer

(Fig. 12) confirms its structure. The broad peak around

3420 cm-1 is an H20 impurity. As it turns out, the

impurities present in all the polymer solutions came from

the stock THF solvent; this is fully explained in section

4.1.4. The peaks around 2900 cm- 1 are due to the asymmetric

and symmetric C-H stretches. The sharp peak at 2157 cm- 1 is

the distinctive Si-H stretch peak. This peak is used to

monitor the polyhydrosilation reaction during the LCP
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synthesis. The peaks at 1460 cm- I and around 1365 cm-I are

due to the CH3 asymmetric and symmetric bending,

respectively. The sharp peak at 1261 cm-1 is the Si-CH3

rock. The broad peaks around 1020 cm- I and 804 cm- I are

from the Si-O stretch and Si-C stretch, respectively.

4.1.2 LCP 525

Addition of the LC side chain to the Crosslinker 525

polymer gives a somewhat similar IR spectrum (Fig. 13). The

bigger and broader O-H stretch peak is most likely due to

water retention during the reflux and methanol residuals

from the soxhlet extraction. The Si-H peak at 2157 cm- I has

disappeared, confirming complete hydrosilation. In addition

to the same peaks present in the polysiloxane spectra, the

LCP spectra also shows an aromatic ring stretch pair at 1606

cm- I and 1511 cm-1 . The C-0 stretch also occurs in pair at

1197 cm-1 and 1166 cm-I . The strong peak at 1735 cm-1 is

due to the C=O stretch and an impurity which is explained in

section 4.1.4. These peaks confirm the addition of the LC

side chain to the polysiloxane polymer.
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4.1.3 Octenyl Polysiloxane

The octenyl polysiloxane spectrum (Fig. 14) is very

similar to the LCP 525 spectrum. Like the LCP spectrum, the

Si-H peak is also not present. However, unlike the LCP

spectrum, the aromatic ring stretch and the C-O stretch

peaks from the LC side chain are not present.

4.1.4 THF Solvents

There were two distinct, unassigned peaks present in

all the polymer spectra so far. After confirming that these

were not decomposition products of the synthesis, and since

these peaks were initially present in the unreacted

polysiloxane polymer spectrum, the impurities were deduced

to come from the solvent. The spectrum of the stock THF

solvent (Fig. 15) supports this; the solvent was

contaminated with a carbonyl-containing compound showing a

peak at 1726 cm- 1 , and the peak around 1968 cm- 1 is most

probably an inhibitor added to prevent peroxide formation in

the THF.

A new stock THF solvent was opened and used for the LCP

X-63 synthesis. The new solvent still shows a peak at 1968

cm-1 (Fig. 16).
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4.1.5 PDMSHMS Polymer (Silicone Fluid X-63)

The IR spectrum of the unreacted Silicone Fluid X-63

(Fig. 17) shows the C-H stretches around 2900 cm-1 , Si-H

stretch at 2162 cm- 1 , the CH3 bending peaks at 1458 cm- 1 and

1364 cm-1 , Si-CH 3 rock at 1261 cm- 1 , Si-O stretch around

1072 cm- 1 and Si-C stretch at 804 cm- I .

4.1.6 LCP X-63

The IR spectrum of LCP X-63 (Fig. 18) confirms the

addition of the LC side chain to the PDMSHMS polymer. Watr -'

and methanol residuals are again present around 3480 cm-1 .

The Si-H absorption peak at 2162 cm- 1 has disappeared. In

addition, the LCP spectrum also shows a C=O stretch at 1736

cm- 1, an aromatic ring stretch pair at 1606 cm- 1 and 1509

cm- 1 , and the C-O stretch pair around 1180 cm-1 . The

absorption peak at 1967 cm-1 is from the solvent impurity

(Fig. 16).

4.2 LCP 525 Films

Shear test was done on two film coatings of different

thickness. Film thickness was based on the percent weight
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of LCP dissolved in the solvent assuming other variables

(e.g., amount sprayed, spraying procedure, etc.) were

constant.

4.2.1 3.6% Weight LCP 525 Film

For this test, a 2.0 OD neutral density filter was used

to prevent light saturation of the camera. Video images of

the "wind-off" and "wind-on" conditions were captured as

depicted in Figs. 19 and 20, respectively. The wind was

blown from left to right. Even though the changes in the

raw images are visually undetectable, Fig. 21 shows a

difference between the two images; this is the film response

due to the applied shear.

Since the background of the two images are similar, the

difference between the two image backgrounds would have a

gray scale value close to zero, in this case a random noise

equal to 0 +2. Since negative numbers lie outside the range

of pixel data values (0 to 255), the IPLab software invokes

a wrapping feature which process these negative numbers

around to become high values, i.e, the new value is equal to

the negative number plus 256.24 This creates the speckled

pattern of the background random noise. In areas where

there was a shear response, the image difference value is

positive, albeit a low value, creating a consistent dark



33

Figure 19. 3.6% weight LCP 525 film "wind-off" image

Figure 20. 3.6% weight LCP 525 film "wind-on" image
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Figure 21. 3.6% weight LCP 525 film shear response; image
difference between the "wind-off" and "wind-on" condition
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area image. The S/N ratio for this particular film was 5.

The bright spots were the nonuniform bumps on the film

which showed greater reorientation response to the applied

shear.

Another "wind-off" image was taken, and Fig. 22 shows

the difference between the two "wind-off" conditions. There

is a slight film deformation, and it is centered around a

bump on the film.

Fig. 23 is another image difference due to shear

applied. This time wind flowed from slightly lower left to

upper right of the plate. The shear response S/N ratio was

4.

4.2.2 4.8% Weight LCP 525 Film

The neutral density filter was scaled down to 0.8 OD

and the polarizers slightly uncrossed to increase the

transmitted light and, thereby, improve the image signal.

The LCP showed a similar response with the slightly thicker

film coating. Figs. 24 and 25 are the "wind-off" and "wind-

on" condition images, respectively. Image difference in

Fig. 26 shows the film's shear response; the S/N ratio

increased significantly to 13.5 (27/2).

As observed, the image response comes out bright, vice

the dark image response of the 3.6% weight film (Fig. 21).
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Figure 22. 3.6% weight LCP 525 film deformation due to
applied shear; image difference between two "wind-off"
conditions, one before and one after shear application
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Figure 23. 3.6% weight LCP 525 film shear response; 2nd
test; image difference between a "wind-off" and "wind-on"
condition
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Figure 24. 4.8% weight LCP 525 film "wind-off" image

Figure 25. 4.8% weight LCP 525 film "wind-on" image
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Figure 26. 4.8% weight LCP 525 film shear response; image
difference between the "wind-off" and "wind-on" condition
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Figure 27. 4.8% weight LCP 525 film deformation due to
applied shear; image difference between two "wind-off"
conditions, one before and one after shear application
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This phenomenon is not really due to film thickness but more

due to the uncrossing of the polarizers and the orientation

of the LCP relative to the incident polarized light.

Depending on the orientation, the transmitted light becomes

brighter or darker upon LCP reorientation when the shear is

applied. The image difference in Fig. 27 still shows slight

deformation around the nonuniformity on the film.

4.3 Octenyl Polysiloxane Film

A 5.1% weight octenyl polysiloxane coating control was

tested to determine if the shear-sensing response is

inherent only in side chain LCPs and not just any side chain

polymer. 1-octene was chosen because it is similar in

length to the LC side chain.

The neutral density filters were left at 0.8 OD with

the polarizers slightly uncrossed; light saturation occurred

at the bottom of the images. Figs. 28 and 29 are the "wind-

off" and "wind-on" images, respectively; the wind was blown

from left to right. Fig. 30 is the image difference when

shear was applied. As observed, there is no shear response

pattern; the image, however, shows deformation around the

nonuniformity on the film. Another "wind-off" image was

taken, and Fig. 31 is an image difference between the two

"wind-off" conditions. There is no difference between



42

.................. ............

Figure 28. Octenyl polysiloxane film "wind-off" image

Figure 29. Octenyl polysiloxane film "wind-on" image
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Figure 30. Octenyl polysiloxane film shear response; image
difference between the "wind-off" and "wind-on" condition;
film shows deformation around the nonuniformity
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Figure 31. Octenyl polysiloxane film deformation due to
applied shear; image difference between two "wind-off"
conditions, one before and one after shear application; film
shows the same deformation
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Figure 32. Octenyl polysiloxane film 2nd "wind-on" image;
film deforms from increased shear application

Figure 33. Octenyl polysiloxane film complete deformation
due to applied shear; image difference between two "wind-
off" conditions, one before and one after shear application
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this and the previous image difference; this confirms

permanent film deformation due to the applied shear.

The jet nozzle was moved in slightly closer to the

plate surface to possibly induce some reorientation

response. The film was totally deformed (Figs. 32 and 33);

the octenyl polysiloxane coating is not nearly as rigid as

the LCP coating.

4.4 LCP X-63 Films

Shear test was done on two 5.2% weight LCP X-63 film

coatings. This LCP coating dried to a rougher and more

nonuniform surface than the LCP 525 films. This was due to

minute amounts of gel byproducts sprayed-on along with the

LCP. One of the LCP plates was heated to 850 C (i.e., above

Ti) for about 30 minutes with the intent of smoothing out

the coating and possibly aligning the LCP orientation upon

cooling.

4.4.1 Untreated LCP X-63 Film

The neutral density filters were left at 0.8 OD with

the polarizers fully crossed. Figs. 34 and 35 are the

"wind-off" and "wind-on" images, respectively; the wind was
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Figure 34. Untreated LCP X-63 film "wind-off" image

Figure 35. Untreated LCP X-63 film "wind-on" image
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Figure 36. Untreated LCP X-63 film shear response; image
difference between the "wind-off" and "wind-on" condition
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Figure 37. Untreated LCP X-63 film deformation due to
applied shear; image difference between two "wind-off"
conditions, one before and one after shear application
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blown from left to right. Image difference in Fig. 36 shows

the film's shear response; the S/N ratio was 6.5. Another

"wind-off" image was taken, and Fig. 37 shows the difference

between the two "wind-off" conditions. The image shows

slight deformation again around the nonuniformity on the

film.

4.4.2 Heat-treated LCP X-63 Film

Figs. 38 and 39 are the "wind-off" and "wind-on"

images, respectively; the wind was blown from left to bottom

right. The image difference in Fig. 40 shows significant

improvement in film response compared to the untreated LCP

X-63 film; the S/N ratio increased to 11. Fig. 41 still

shows slight deformation due to the applied shear.
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Figure 38. Heat-treated LCP X-63 film "wind-off" image

Figure 39. Heat-treated LCP X-63 film "wind-on" image
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Figure 40. Heat-treated LCP X-63 film shear response; image
difference between the "wind-off" and "wind-on" condition
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Figure 41. Heat-treated LCP X-63 film deformation due to
applied shear; image difference between two "wind-off"
conditions, one before and one after shear application



Chapter 5. Conclusion

5.1 Summary of Results

This thesis extends on earlier research on side chain

LCPs with low T s for a novel application; the study

determined the feasibility of using these materials as

aerodynamic shear sensors. Different materials were

synthesized, spray-coated, treated and tested for their

shear-sensing potential.

Although the shear stress applied on the plates was

never quantified in this study, the variables for shear

application between tests were kept constant as much as

possible. The following summarizes the empirical

observations of the tests:

1. LCP coatings respond to applied shear. Shear stress

produce marked changes in the LCP optical properties,

specifically birefringence, and this can be exploited to

sense and possibly measure the applied shear.

2. The shear-sensing response is inherent only in LCPs,

vice any side chain polymer. The optical behavior observed

derives from the mesogenic side chain and partially from the

polymer main chain.

3. The noticeable improvement in 4.8% weight LCP 525 film

shear response may be due to the increase in film thickness,
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but is more likely due to an increase in the incident light

illuminating the film. Improved shear responses were also

noted on the LCP X-63 films where the neutral density filter

was scaled down to 0.8 OD.

4. Heat-treatment significantly improved LCP shear

response. This is most likely due to a realignment of the

LCP orientation, especially in cases where nonuniformity in

the surface might induce lesser LCP orientation.

5. Finally, although not really quantified, film shear

response is related to its viscosity. At similar film

thickness, the more viscous LCP X-63 film was less

responsive than the LCP 525 film. Although there is also

the contribution from the large nonuniformity in the LCP

X-63 film, higher viscosity induce lesser mesogenic

reorientation during shear application which equates to a

lesser film response.

5.2 Follow-on Studies

This research merely initiated birefringence study of

applied shear on LCP coatings and determined the feasibility

of such measurements. Considerably more development work

are needed to bring this method into general use:

1. The shear stress applied needs quantitation to calibrate

the LCP film response. One option is to construct a
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Poiseuille flow channel as depicted in Fig. 42. In this

setup, shear applied on the sample plate is determined from

the channel height, the pressure gradient and the position

in the plate. 25 ,26 The next option is to calibrate in a

wind tunnel test and compare the results to data taken with

current wing shear sensors.

3. Slight film deformation due to the applied shear

occurred even with the more viscous LCP X-63. Synthesizing

with an even more viscous polymer main chain, e.g., an X:Y

ratio of 1;1, might solve this problem. Another option is

to work with polyacrylates which are less flexible than

polysiloxanes but can still be synthesized to LCPs with low

T S.11 However, the study should consider the trade-off

between viscosity and film shear response.

4. Once an appropriate LCP is selected, the next step is to

attach fluorescent probes into the polymer to possibly

increase signal response. For the current LCPs, one

possible probe is Acrylodan (A-433, Molecular Probes, Inc.)

(Fig. 43). This dye is quite suitable because it is similar

in structure to the mesogenic side group, thereby,

preventing any large disorientation of the mesogens. The

dye also includes the terminal double bond required for LCC

copolymerization. The study should look at low dye

concentrations to limit the change in liquid crystalline

behavior11 ,12 and prevent fluorescence autoquenching. The

study should also determine the LCC's possible sensitivity
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to temperature and susceptibility to oxygen quenching.

This thesis was limited by the time constraints of the

AFIT master's program. Most of the data results taken were

more qualitative in nature. However, the study did confirm

the feasibility of measuring shear stress using LCP

coatings. Follow-on studies should concentrate on

developing this method for practical use in aerodynamic

testing.
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