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MIXING REGIMES IN A SPATIALLY CONFINED, TWO-DIMENSIONAL,
SUPERSONIC SHEAR LAYER

Introduction

The successful design of propulsive engines for hypersonic vehicles requires accurate pre-
diction of the mixing and combustion efficiency in high-speed flows. In order to achieve
this predictive capability, we need an improved understanding of the dominant processes.
One way to obtain this understanding when there are many complex interacting physical
processes and the interactions are highly nonlinear is to use numerical methods to simu-
late the flow, a use to which simulations are well suited in the sense that they can extend
the theoretical analyses of idealized systems and the processes evaluated can usually be
included or not in a controlled manner. However, now we are now faced with the situation
where the simulations are not only being used to study the fundamental processes, but are
also being used to evaluate and design supersonic and hypersonic propulsion systems, even
thought there remain a number of questions concerning the simulations and the effects of
various physical processes that are not completely understood. In this paper, we address
certain fundamental physical questions about the effects of viscosity, molecular diffusion,
and compressibility through the evolution of a high-speed mixing layer.

Since the Brown and Roshko! observations, many experimental studies have confirmed
the existence of large-scale coherent structures in mixing layers for both high and low
Reynolds numbers. These structures arise initislly from the Kelvin-Helmholtz instabilities
and they move downstream within the layer with a convective velocity U.. Bogdanoff?
and Roshko and Papamoshou® have given approximations of this velocity based on the
assumption that there is a stagnation point in the center of each coherent structure and
that the flow comes to rest isentropically at the stagnation point. When the ratio of specific
heats v is identical for each gas, Roshko and Papamoshou conclude that the relative Mach
numbers, M., and M,,, between the structures and each stream must be equal. That is,

U.-U -
M., = M,=M., with M, = —‘a——’- and M, = Uza U°, (1)
1 2

where a, and a; are the speeds of sound for the streams 1 and 2, respectively. This analysis

allows us to evaluate U,,
_ (a1Uz + a2lh)

Y= Tt @

The quantities M. and U, are useful for characterizing the flow properties and will be used
throughout this paper.

There has been a large body of experimental work describing these structures since

the early work of Brown and Roshko. Papamoschou and Roshko® showed the effects of

Manuscript approved May 21, 1992. 1




qpmpn‘ssil)ility on the growth of the shear layer, and receutly, Dimotakis* summarized
experiments on the entrainment process and structure in subsonic shear layers. Other
important recent experiments aimed at isolating the effects of compressibility on the flow
structures have been performed by Clemens et al.%, who showed that there did not appear
to be any organized structures forming for M. more than 0.6, and Samimy and Elliot®
who showed that the mixing level decreases when M. increases. Whereas the experiments
by Dahm et al.” have focused on the structure of mixing in incompressible liquid jets, the
small-scale structures that they see might be a general property of fully developed mixing

layers.

There are two different theoretical approaches to studying the development of a mixing
layer between two parallel isobaric streams with differing velocities. One is to consider the
spatially evolving mixing layer, which considers the problem in the laboratory frame of
reference and observes the growth of the shear layer from the initial point of interaction
up to the outflow boundary. The second approach is the temporally evolving mixing layer,
which is an attempt to consider the system in a frame of reference moving with the large-
scale structures considers the boundary conditions as periodic. The spatially evolving
problem is in fact the more physically realistic problem although it has the difficultly of

requiring the specification of inflow and outflow boundary conditions.

There have been a number of theoretical stability analyses and concommitant numer-
ical simulations of both spatially and temporally evolving shear layers. Metcalfe et al.®
focussed on the incompressible mixing layer. Ragab and Wu® and Jackson and Grosch!®
have shown that for high M,. there are several unstable modes and three-dimensional modes
become important. Numerical simulations have used spectral and vortex methods, mostly
for incompressible flows, and finite-difference and finite-volume methods for incompressible
and incompressible flows. Using spectral methods, Riley and Metcalfe!! have performed
low Reynolds number direct numerical simulations of incompressible flows, and McMurtry
et al.!? have considered the effects of heat-release on the large-scale structures. Sandham
and Reynolds'® have considered two-dimensional and three-dimensional stability analysis
and compared these to simulations, as have Lele'* and Ragab and Sheen.!® Lele has con-
sidered both temporally and spatially evolving flows where the same species is on both
sides of the mixing layer. Using vortex-dynamics methods, Soteriou et al.'® considered the
effects of density gradients. Ragab and Sheen'® used a high-order finite-volume method
to compute the growth rates of unstable modes of a supersonic shear layer, and they have
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compared these to the predictions of linear stability theory. In addition, they have com-

pared the resuits of large-eddy simulations to direct numerical simulations and examined
the effects of the numerical diffusion on the spectrum. Guirguis et al.!” and Farouk et
al.'® have studied spatially evolving mixing layers for equal pressure, underexpanded, and
overexpanded systems.

In this paper, we focus on the mixing of streams of hydrogen and oxygen, so that we
are studying the features of a high-speed, compressible shear between two gases of very
different densities and thermophysical properties. These simulations use correct, unscaled
values of the physical diffusion parameters such as viscosity, thermal conduction, and molec-
ular diffusion, and thus allow us to evaluate the effects of these on a variety of diagnostic
parameters of the flow. For example, we have parametrically varied the size or presence
of various diffusion effects, the compressibility through the convective Mach number, and
the absolute size of the system. To eliminate some of the physical complexity inherent in
simulating inflow and outflow boundary conditions, we confine this study to a bounded,
temporally evolving mixing layer. With this approach, we can examine the growth and de-
cay of the mixing process and we can also point out the effects of various physical processes

and approximations.

Physical and Numerical Model

General Formulation
We solve the time-dependent, two-dimensional, compressible, Navier-Stokes equations for a
multispecies gas, including the effects of molecular diffusion and thermal conduction. The

balance equations for the densities, momentum, and energy are

% = V- (V) 3)

% - —V'(ﬂ(V)-V'(nivdi) 1 = l,...,N,, (4)
.‘?g = —V.(pw)-V-P, (5)

%E = —-V-(Ev)-V-(v-P)-V-q, (6)

where n; is the number density for the species i. The mass fraction of species i is Y;, defined
by
n = = )




where W, is the molecular weight, and the total number density is
_ _ A
N = Z ng = z‘: -u—/'- . (8)

We assume an ideal-gas equation of state,

Ro

P=pW

T, 9

where the molecular weight of the mixture is given by

1 Y:
WS .~ W (10)
The auxiliary equation for pressure P and heat conductive flux q are
P = PN.T)T+ 2pm(V ) T = fml(99) + (V)] (11)
and
qQ = =AmVT +pY_hiYiva: . (12)
The specific enthalpy h; can be written as
T
hi =/ Cp. dT + hi, , (13)
0

where C,, and h;, are the specific heat at constant pressure and heat of formation of species
i, respectively. We neglect the radiative fluxes and the Soret and Dufour effects (thermal
diffusion), which can be justified because radiative fluxes for hydrogen gases are negligible

and the temperature gradients remain small.

Diffusion Model

The diffusion velocities vq4; are solutions of the following system of equations (see, for

example, Oran and Boris!?),

vt = ¥ 2wy v+ -1 (). (19
J

where, for each species i, X, is the mole fraction, vg4, the diffusion velocity, and D;; the
diffusivity of the species i into the species j.

These diffusion velocities must obey to the condition of mass conservation such that
Y Yiva=o0. (15)
i
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-Here, we approximate the solution of the system of equations (14) and (15) by a gradient
law, as proposed by Coffee and Heimerl,?°

L

m ) m 1-Y,
X.-Di VX, D

T X%/Dy 16)

Vo = -
Then we correct these velocities in order to insure the mass conservation, equation (15),
Ve = -Zyjod, (17)
j

and

Vai = Vi +ve. (18)

This approximation becomes rigorously correct in the binary case.
The mixture thermal conductivity A, and viscosity y,, are computed from the con-
ductivity \; and molecular viscosity u; of the individual gases. The {A;} , {u:}, and binary

diffusion coefficients { D;;} are expressed as polynomial functions of the temperature.!®

Numerical Integration

The convection is solved using a standard Flux-Corrected Transport (FCT) algorithm,
LCPFCT.?! This is a nonlinear, monotone algorithm that is fourth-order accurate in phase.
The integration is carried out by a two-step predictor-corrector procedure with, successively,
a diffusive and anti-diffusive step. The first step modifies the linear properties of a high-
order algorithm by adding diffusion during convective transport to prevent dispersive ripples
from arising. The added diffusion 1s removed in an antidiffusion step. The result is that
the calculations maintain ihe high order of accuracy without requiring artificial viscosity to
stabilize them. The algorithm has been tested and used extensively in the last fifteen years
(see, for example, bibliography Reference 19) to predict a wide variety of flows. Recently it
bas been used to investigate unstable spatially evolving supersonic flows.!”"'® and compared
computations to the results of comparisons of growth rates of linear instabilities!® to those
predicted by linear stability analyses.!®

The physical diffusion terms are solved in conservative finite-volume form by second-
order centered algorithms.?? More specifically, we use the values of the diffusive fluxes
at the interfaces between the grid nodes. Their expressions are obtained from first-order
centered approximations of the primary variables.!® An overall global timestep At is chosen

by evaluating a stability criterion for each type of term and then selecting the minimum of
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these for At. During a computational timestep At, each process is integrated for the time

interval At using the most recent values of the variables.'?

The Model Problems

Here we define two problems. The first is a one-dimensional problem used to obtain self-
consistent initial conditions across the shear layer. The solution of this problemn provides

self-consistent initial conditions for the second problem, the two-dimensional shear layer.

The One-Dimensional Problem

Starting from a step profile for each variable in the y direction, we compute the evolution of
a mixing layer between two gases by solving the full set of equations (3) - (6), and assuming

that there are no variations along the x direction,

B
5 =0 (19)

Here ¢ represents p, pv, {n;}, and E. The boundaries at the bottom and the top of the
domain are open, which means that 8p/8y = 0 when y = £ H. These boundary conditions
aﬁa used to avoid the reflection of the transient waves generated as the singular initial
condition equilibrates. The solution shows how the pressure equilibrates in the vertical
direction and thus provides self-consistent initial conditions for the fluid and individual

species profiles.
The Two-Dimensional Problem

The two-dimensional computational domain, shown schematically in Figure 1, consists of
a rectangle of length L and height H = L/2. The left and right boundaries are periodic,
which means that ¢(0,y) = ¢(L,y), and the bottom and top boundaries are slip wall
conditions, pv, = 0 and 8y¢/3y = G where p = {p, pv:,{n;}, E} at y =0 and y = H. The
computational cell size is always kept uniform in the z and y directions and are in the range
Az = Ay = (2.5 - 10) x 10~% m, so that the timesteps are in the range (2 — 8) x 10~3 pus.
A typical computation described below requires about 10,000 timesteps. For each case, we
evaluated the effects of viscosity and diffusion by comparing the solutions of the complete
set of equations (3) — (6) (referred to as NS+) that contain heat conduction, molecular
diffusion, convection, and viscosity, to the Euler solutions obtained from solving only the

convective transport equations.




~ Mixing and Flow Diagnostics

A well known feature of homogenous incompressible turbulence is the energy cascade from
the large scales to the small scales (Taylor or Kolmogorov) where the convective energy is
converted to internal energy. In three dimensions, this transfer is accomplished by stretching
of the vorticity field, w = V x v, a property that appears from the term in the vorticity
equations of the form (w - V)v. For two-dimensions, the vorticity is no longer subject to
this effect and becomes a conservative variable. The early works of Batchelor® and more
recently Lesieur®* showed that for the two-dimensional case, we may use the enstrophy, w?,
to describe the flow. This variable has properties similar to vorticity for three-dimensional
turbulence, that is, there is a cascade process, independent of the viscosity, to higher
wavenumbers where the enstrophy is dissipated.

In order to examine the global intensity of the flow, we define a parameter M, such

M, = (Z‘wl‘f;)* (20)

where < > indicates the average taken on the computational domain. In the particular case

that

of an incompressible, homogeneous flow, Batchelor showed that M, is a linear function of
time.

The mixing of the different gases can be described in terms of the area S™ of the
computational domain where the fraction of both gases is neither exactly zero nor exactly
one. We can estimate the value of S™ from the mass fraction, Y;, or mole fraction, X;. For

example, for a binary mixture,

ST = 4//Y, Yadzdy = 4//}" (1 - Y1)dzdy (21)

S¥ = 4//1(1 Xadzdy = 4//)(1 (1 -— X1)dzdy , (22)

where Y(1 — Y) and X(1 — X) reach a maximum value when the mixture is completely
mixed, that is, when the mass fractions Y; = Y, = 0.5 or the mole fractions X; = Xz = 0.5.
We consider both spatial averages of these quantites over the computational domain and
the instantaneous contours. It is useful to define two global paramaters, Mx and My, such

that

S¥ 5
My = 23X
Stot Y Stot

where Sy, is the total surface of the entire computational domain, L x H. These parameters

Mx = (23)

evolve between the values 0 and 1.




~ We can determine the final composition of the mixture obtained from two streams of
sbecies 1 and 2 when the time elapsed is long enough to obtain a homogeneous scalar field.
The two-dimensional domain does not have any external inflow or outflow and therefore the
integrated value of a conservative variable [ [y drdy is constant. Applying this condition

for ny and ny gives the final values n{° and ng°,

1
ne = En‘,’ and n® = %ng, (24)
which gives
oo __ oo __ 0o _ W, oo _ W,

X7?° = X3 =05 and Y®° = Wi T Wy Y;>° = Wi W) (25)

This allows us to assess the theoretical limits of M and M¢°,

W W,

oo _ o _ M

MZ =1 and My 4(W| W (26)

where for the hydrogen and oxygen mixture considered, M§° = 0.22. Finally, the quantity
Mgy is defined as
Moy = < VY, VY4, >, (27)

which is related to the dissipation of scalar energy in the computational domain.

The One-Dimensional Problem

When there is only one species present, there is a closed-form similarity solution that de-
scribes the steady-state one-dimensional, incompressible solution across the shear layer.
Thus a two-dimensional computation may be intialized with this solution for a finite-
thickness shear layer. Because such a closed-form initialization does not exist for a com-
pressible, multispecies problem, it was necessary to develop a procedure for finding finite-

thickness, one-dimensional profiles for multispecies problems.

One-Dimensional Validation

First consider a one-dimensional shear layer in the incompressible flow regime (that is,
the low Mach number regime), in which the are two streams with the same molecular
weight, denoted 1 and 2 . This configuration may be described by a self-similar solution
that can be obtained by solving equations (3) — (5) for the mass, the number densities,

and the momentum. Moreover, under the previous assumption of constant density and
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~with equation (19), the condition of zero gradient in the longitudinal direction, the mass

conservation equation is reduced to v, = 0. Then equations (4) and (5) can be written

Bv: _ d’v Y, »?Y,
— = -3 —_— == Dyy -t .
E) ay2 ) it 12 dyz (2%)
where v = umm/p. We solve this equation by introducing a similarity variable,
I .
n = 7ot (29)
which leads to
e Mdy, Y2 = — e~ g 30
vy - v AR I " (30

where S; = v/Dy,. This expression allows us to compute the evolution of the parameter

M_ as a function of time. The final result is
1
~ (1) . (31)

Figures 2a and 2b shows the numerically computed, instantaneous, one-dimensional
profiles of ny, and v, for a problem in which M. = 0.01. The initial profiles of the
variables are step functions across the shear line and the computati:ns show that in time,
the solutions approach a steady value. Figures 2c and d, which compare the analytical
solution to these profiles collapsed as a function of 1, shows that the numerical solution is
self-similar and that there is reasonable agreement between the incompressible theory and

the computed results for a low-velocity, compressible flow problem.

One-Dimensional Mixing Layer
Now consider a one-dimensional problem where one stream is molecular hydrogen and the
other is molecular oxygen. The problem is initialized with a discontinuity in all the physical
variables between the two streams of opposite Mach number, except for the temperature,
which is constant across the streams. We are interested in obtaining the self-consistent
steady-state solution to use to initialize the two-dimensional problem.

Figure 3, which shows several instantaneous profiles of ny, and v, as functions of y and
n (equation (29)) for a case where M, = 0.6, shows that the solution is still self-similar, as
is the case for the incompressible one-dimensional shear layer. This self-similarity is charac-
teristic of flows such as mixing layers that do not have any particular length scale.!® Fig-

ure 4 shows how this mixing layer develops in time for the parameters, Yy,(1 — Yy,),

9




Xy, (1 = Xy,). Mx, and My. When the interface decays, Afy remains at its maximum
value in the well mixed regious while My falls as quickly as ¥y,. The temporal evolution
of < Mx > is monotonic, but < My > increases to a maximum and then decreases when
the interface decays. Note that M, (not shown here) evolves as t!/4 as predicted by the
analytical solution, equation (31) and, as the interface decays, the evolution of M_ becomes

linear.

The Two-Dimensional Problem

In the two-dimensional studies of a mixing layer that develops between a stream of hydrogen
and oxygen at the same initial pressure and temperature, the initial unperturbed conditions
are taken from the one-dimensional calculations. The instability is initiated by perturbing
the finite-thickness layer by superimposing a set of harmonic and subharmonic disturbances

on the initial pressure field Py,
P = Pyx |1+ a cos(f2r) +0.5 a cos (%—x)] (32)

with a = 0.05exp(—y?/62), where §, is the initial thickness of the layer and Q = 27/A
specifies the harmonic perturbation. A perturbation similar to this for intializing an in-
compressible mixing layer was used by Metcalfe et al.® In the calculations presented below,
we have chosen 6, and the instability wavelength such that 6,/L = 1/50 and A/L = 1/4.

Dimensionless Numbers and Characteristic Scales

A significant feature of this flow is the wide range of its energy spectrum. The largest scales
may be characterized by a length [ and a velocity U, and the smallest dissipative scales may
be characterized by a length n and velocity u. If we assume that there is an equilibrium
between the convection and the dissipation of energy, we can compare the large and small
scales. This assumption means that the characteristic time t. of the transport of energy by
the large eddies is equal to the times ¢, and t4 of its dissipation by viscosity or diffusion,

tc =t, = t4, where
l

U (33)

te =

and )
1
te = y— and tg = —. (34)
€t cy

Here ¢, is the dissipation of kinetic energy, k = 1 < U? >, and ey is the dissipation of

scalar energy, § < Y2 >, which may be written as
It e  _ M
€ = ; <S'S"> = F (35)
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“and

‘ D

ey = D<VY'VY' > = 7z (36)
§

where 1y is the mixing scale, S is the tensor of deformation,
§ = g(v V)= |(VV) + (VV)T]

and 7 = n/u. Note that the prime indicates fluctuation of the variable.

Defining the Kolmogorov scale 7, as that scale where the molecular viscosity transforms
the kinetic energy into heat (that is, the scale at which the Reynolds number is of order
unity, Rex = pm u/p ~ 1), gives

UL

T = Re‘-gh ] (37)

where Re = plU /u is the Reynolds number of the large scale.

In the same way, the equilibrium condition allows us to evaluate 7y,
r _ p-t, (38)

where P. is the Peclet number such that P, = [U/D = S.Re and S. = u/pD is the
Schmidt number. When S, = 1, ny is the Taylor scale.

Tables 1 and 2 show relevant coefficients, dimensionless numbers, and characteristic
scales for the hydrogen-oxygen problem we are considering for a temperature of 500 K
and static pressure of 3.5 x 10* Pa. The Prandtl, Schmidt, and Lewis numbers are cal-
culated from Pr = uCp/A, Sc = pu/pD, Le = Sc/Pr, respectively. The values of [ and
U characterizing the largest scales are taken as | ~ H where H is the system size and
U ~ (Uz - U;) = Mc(ay + az2), respectively. The Reynolds number of the large scale is then
Re = pUl/u ~ |p1a)/u1 + p2a2/p2)McH. The Kolmogorov scale n;. and mixing scale ny
are evaluated using equations (37) and (38).

Discussion and Analysis of Mixing Regimes

Figure 5 shows the evolution of four global parameters, the quantities Mx, My, M,,, and
Mgy evaluated during the course of a two-dimensional calculation for the base case of
convective Mach number M, = 0.6 for the full NS+ calculation. They are shown as a
function of a dimensionless time defined by dividing the real time t by an estimate to of

the convective time scale t., where

H

ar i H/AU . (39)

to =
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Note that we begin the computation with a thickness 6, such that 6,/H = 1/25, and we
keep this ratio constant for all of the computations. Therefore, the convective time scales

based on either §; or H are equivalent.

The shapes of the curves of Mx and Afy are similar to those obtained in the one-
dimensional calculation, but the mixing is enhanced by at least two orders of magnitude
due to convection. The My and Mgy show that there are three stages in the mixing
procedure. In the initial growth stage, a laminar growth stage extending to about t/t ~ 2,
the large structures grow as a consequence of the initial perturbation on the flowfield. The
large vortices roll up and grow almost independently of each other. In the first mixing
stage extending to about t/to ~ 5, which we call the convective-mixing stage, the vortices
begin to interact with each other and convective mixing dominates. Mixing occurs as these
structures merge and grow and the interfaces between the oxygen and hydrogen stretch
and deform. The generation of stretched interfaces corresponds to a sharp growth in the
intensity of the scalar dissipation Mgy. Finally, there is the stage that occurs when the
widths of the interfaces reach the order of magnitude of 7y and they are destroyed by
molecular diffusion. The Mypy drops very quickly, My relaxes to its asymptotic value
(0.22) shown in equation (26), and M,, linearly increases, as predicted for homogeneous
turbulence.

Figure 6 shows a series of instantaneous profiles of the mole fraction of hydrogen, Yy,
during the evolution of the mixing layer. In particular, we note the apparent change from a
very regular structure to the extremely mixed structure at the end of the computation. At
time ¢4 in Figure 6, we see the shear layer expanding towards the lighter fluid on the bottom,
an effect noted in the subsonic computations.'® In most previous subsonic, two-dimensional
shear-layer computations and most short-duration three-dimensional simulations, we have
not seen the breakdown to the diffusive-mixing regime, but only continued merging and
growth of the initial structure. In this highly compressible, supersonic shear flow with wall
boundaries, we are able to see this regime due to the perturbations on the large structure
causing intense fluctuations and subsequent breakdown. This was also noted in spatially

evolving simulations of highly compressible flows.!”:18

The Eflects of Viscosity and Molecular Diffusion

One way to understand the effects of viscosity and diffusion is by considering diagnostics

such as those shown in Figure 7 which compares the evolution of My when the Reynolds
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-and Peclet numbers are finite (NS+ computation) or quasi-infinite (Euler compmatidn),
The results shown are for a case with for M. = 0.6. From this computation and similar tests
using other parameters, we found that the transition between the two mixing stages does
not depend on whether or not we include the viscosity or the diffusion and this transition
occurs at the same dimensionless time, indicating that it is only a function of the large-scale
convection. There is a significant difference in the diffusive-mixing regime and the full NS+
calculation reaches the final homogeneous state much faster than the inviscid calculation.
The local scalar energy dissipation during the diffusive-mixing stage, shown in Figure 8,
confirms the existence the layer-like structure of these mixing interfaces and shows that the
viscosity and diffusion control mixing in this regime. This kind of observation has been
made previously for scalar measurements in incompressible jets.”

In order to isolate and examine the effects of molecular diffusion, we compare three
NS+ calculations at the same Reynolds number but with different values of Peclet number.
The molecular diffusion is turned off completely, the actual, physical values of diffusion
coefficients were used (as in the previous computations), or the physical values were multi-
plied by two. The result of the comparison is presented in Figure 9. The first observation is
that the enstrophy parameter is not much affected by varying the diffusion when viscosity
is kept constant. There are some phase differences, but the trends are the same. In the
laminar stage, the molecular mixing is affected strongly by the diffusion and increases as
the diffusion is increased. The initial conditions of the convective-mixing stage are thus
determined by the result at the end of the laminar stage, but the convective-mixing process
itself is so strong that it erases the memory of the initial condition. However, the final
stage is the one in which diffusion is most important and determines the dissipation rate.

It helps now to consider two parameters, the mean length of an interface in the domain,

l;, and mean width of a structure in the domain, §;, which we can estimate from

6:l;
My = — 40
X Stot ( )
and
li
Mgy = 5 (41)

which assumes that VYy, ~ 1/6;. Figure 10 shows how the quantities I; and §; behave as
the diffusion coefficients are varied and so provide more understanding of the differences in
the diffusion-coefficient comparisons. Note that §; does not change much until the diffusive-

mixing stage where there is a large increase in width of the structure for the highest diffusion
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coeflicient. During the diffusive mixing stage, the destruction of the large scales is controlled

by the amount of molecular diffusion, determined by the diffusion coeflicient.

The Eflect of Compressibility

We have performed computations for a range of convective Mach numbers and compared
the evolution of the global parameters as a function of dimensionless time, t/to. Here the
difficulty is to compare the mixing efficiency in a common reference frame for the different
cases because the spatial growth of the mixing layer is a function of both the temporal
growth of the structures and their mean convective speed, U.. If we assume that the slow
stream always has the same velocity U, and that U, can be set to zero, we note from

equations (1) and (2) that

U. 1
M, = = to ~ — .
a and ¢{o 7 (42)

Thus for each of the diagnostics, which we designate here as F, where F = M, Myy, Mx,

and My dF  (dF\ (1 dF
&~ (7))~ (@) )

Figure 11 shows these diagnostics for several convective Mach number as a function
of t/tg. For the two lowest values of M., 0.3 and 0.6, the mixing efficiencies are very
close. As M, increases, there is a delay in the onset of the convective-mixing regime, as
shown in My and Myy. This can be understood by noting that an increase in M. changes
the amplification rates of the first excited modes'®. A further increase in M, results in a
decrease in the efficiency of mixing, as shown for 0.9 and especially notable for 1.2. The
growth of Mx is reduced by over a factor of two by increasing M. from 0.6 to 1.2, which
shows a well known trend of compressibility. The experimental reduction factor is even
larger for a supersonic single-species mixing layer, almost a factor of four.2® Previous
numerical results'®:?4 that used the thickness of the vorticity to characterize the mixing
efficiency (a parameter which is similar to Mx), show the same trends. Figure 12, the
instantaneous pressure and Yy, (1 — Yy,) for the computation with M. = 1.2, shows the
presence of shocks in the thin vortex layer. At these higher values of M., the structure not
only shows the main mode, but also the growth of high-frequency secondary modes.® This
behavior is characteristic of supersonic convective Mach numbers and explains many of the

small structures seen in the spatial simulations.'”!®
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~ The Effect of Conlining Boundaries

We first consider the effects of the finite size and periodicity of the computational domain
by comparing computations for the same value of M. and Az, but with varying values of
L (and therefore H). The right and left boundaries of the computations are still periodic,
but the absolute size of the perturbing wavelength is the same, so that there are more
wavelengths in the larger domain and fewer in the smaller. We now examine to what

extent we can say that the smaller computation is a “piece” of the larger one.

The boundary condition seems to affect the convective mixing more than the diffusive
mixing. Figure 13 shows the instantaneous scalar dissipation in the diffusive-mixing regime
two cases, one with L = 1 cm and the second with L = 0.5 cm. The width and density of
the structures are very similar. We also find that the absolute time to transition between
the diffusive-mixing and convective-mixing stages increases with the size of the system, but
normalized time in terms of o does not vary.

However, there are effects of the confinement and periodicity on the flow that can be
observed in the very late evolution of the flow when the mixture is almost homogeneous.
Figure 14 shows that the periodicity and boundaries force the flow at acoustic frequencies
typical of a confined chamber, shown in the graph of M,,. The instantaneous contours
marked 1, 2, and 3 are taken from those time marked similarly on the graph and show
the flow at different time in its periodicity. Increased M, indicates increased dissipation of
large vortices by viscosity. The fluctuations in M,, superimposed on this general trend of
increasing value, indicate oscillations between two quasi-stable states. One state is one large
vortex, as shown in the Figure 16-1. This structure is broken up and the system reaches
another stable state of several smaller vortices through the effects of the boundaries, as
shown in Figure 16-3. The acoustic effects of boundaries for fast, subsonic, confined flows

has been discussed extensively.?

The Dissipation Scale in the Diffusive-Mixing Regime

Because there are several dissipative processes present (viscosity, molecular diffusion, ther-
mal conduction), it is important to determine what scales have to be resolved to simulate
molecular mixing. To address this, we performed a series of computations where we suc-
cessivly decreased the minimum dissipation scales computed by increasing the numerical
resolution. The smallest scale present can be estimated as three times Az for algorithms

such as FCT. Therefore, in a series of computations we kept the value of M. and L constant
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and changed the number of computational cells in each direction while keeping the initial
t'l.lickness 64 the same.

The global mixing quantities showed that the duratious of the laminar and mixing
regimes do not change as the resolution is changed. In particular, we observed that the
transition between the laminar growth and convective-mixing regime always occurred at
the same normalized time. Some differences were observed for the two measurements of
the mixing intensity, M,, and Mvy, in that the level of mixing is underestimated when the
resolution is too low. However, for resolution on the order of 1y and up to factors of at least
thirty greater than n,, the mixing diagnostics Mx and My converge quickly and show no
significant changes as resolution increases: the mixing efficiency is computed to within 10%
of what would be obtained by resolving every scale down to nx. These tests are discussed
in more depth in detailed discussions of the numerical issues in the computations.?® This
numerical result for two-dimensional mixig tends to confirm experimental observations3%-3!
indicating that the thickness of mixing layers in turbulent flows are on the order of the

Taylor scale, that is, ny.

Summary and Conclusion

In this paper, we examined the evolution of a two-dimensional, supersonic, confined shear
layer with molecular hydrogen gas on one side and molecular oxygen gas on the other. The
purpose of these simulations was to examine the importance of various diffusion processes
(viscosity, thermal conduction, and molecular diffusion) on the mixing process, and to
determine the extent to which compressibility affects the development of the layer. To look
at these questions, we solved the full set of time-dependent Navier-Stokes equations with
thermal conduction and molecular diffusion in addition to convection and viscosity.

The first problem encountered was how to initialize such a two-dimensional shear
layer. Whereas there is an analytic similarity solution that gives the initial conditions for
an incompressible shear layer with the same material on either side, there was no such
solution for the highly compressible shear layer between different gases. Our approach
was to solve an equivalent one-dimensional problem that was allowed to go to steady state
and use this to initialize the two-dimensional problem. In a series of such one-dimensional
tests, we first considered a low-velocity shear layer between the same materials and for
which there was an initial discontinuity in the density and velocity, but the pressure and

temperature were constant across the shear layer. As this problem evolved, it reached
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a steady level corresponding to a similarity solution describing the system variablos; a
property previously noted by Sandham and Reynolds'? for the case of a shear layer with
the same material in both streams. Then the initial conditions for the two-dimensional
problem were obtained by extending this approach to high-velocity flows between different
streams of materials, including the effects of molecular diffusion and thermal conduction. A
new result of this work is that these conditions also produce converged, self-similar solutions
for finite-thickness compressible shear layers between different density gases.

A notable result of the simulations of two-dimensional, supersonic flow (M, = 0.6 and

higher) was the distinct appearance of three very different regimes in the flow:

1. The initially unstable laminar stage in which the structures grow as a consequence of
the initial perturbation, but appear very ordered.

2. The convective-mixing regime, in which the vortices begin to interact with each other
and mixing occurs as these structures merge and grow, is the entrainment stage.

3. The diffusive-mixing regime in which the large structures break down and molecular

diffusion dominates.

The existence as well as selected global and local properties of these regimes was
clarified by comparing various instantaneous and global averages of a number of system
variables. For example, while the instantaneous contours of Yy, (for example, Figure 6) or
X u, provide a qualitative description of the difference in the regimes, the global averages
of Yn,(1—Yy,) or X, (1—-Xp,) as a function of time (for example, Figures 5 or 9) provide
a more quantitative measure. Specifically, My and Myy peak near the transition from the
convective-mixing to diffusive-mixing stages, but Mx increases monotonically. In addition,
the duration of the diffusive-mixing and convective-mixing regimes were comparable or
the flows studies. The transition between the two mixing stages does not depend on the
Reynolds or the Peclet numbers and this transition occurs at the same dimensionless time
for all three cases, indicating that it is only a function of the large-scale convection time
scale, to = H/AU.

For a better understanding of the effects of diffusion in these various regimes, we varied
the strength of binary diffusion parametrically by comparing cases in which it was turned
off completely, kept at its physical value, and doubled. These tests showed that through
the initial laminar stage, the properties are strongly affected by diffusion, and it is the end
of this stage that sets the initial conditions for the convective-mixing stage. However, the

convective-mixing process itself is very strong, and quickly erases any memory of its initial
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conditions. In the final, diffusive-mixing stage, diffusion dominates the mixing process by
dissipating the scalar energy through thin, turbulent layers whose width is on the order of
the Taylor microscale. Thus we find that the diffusion effects are of primary importance in

the first and last stages, and relatively important in the convective mixing stage.

One result of these computations is that they agree with the recently proposed idea
that it may not be necessary to resolve all scales down to the Kolmogorov scale to describe

7.3031  The analysis of experiments by Miller and Dimotakis®®

the final mixing process.
suggested that the resolution requirement for looking at local mixing properties is about 25
time the Kolmogorov scale. In our numerical computations, a similar trend can be seen and
explained by observing that the molecular mixing is achieved through mixing layers whase
thickness 6; is on the order of the Taylor scale and an order of magnitude larger than the
Kolmogorov or Batchelor scales. In addition, we have effects of other physically diffusive
processes (in addition to viscosity and convection) that could have an effect. However,
the exact determination of mixing intensity requires us to compute the total density I; of
small-scale mixing structures and therefore to resolve the entire spectrum.

Earlier studies of of spatially evolving two-dimensional compressible shear layers!”
indicated that for such supersonic flows, the system passed through the convective-mixing
stage and quickly evolved into small scales that would be a diffusive-mixing stage. The
presence or location of bounding side walls changed only the time of transition, not the
fact that transition occurred. To examine the specific effect of compressibility on the mixing
process, we parametrically varied the convective Mach number in the range 0.3 to 1.2. The
result is that the three regimes are always present in the transition process, irrespective of
the value of the convective Mach number. However, in terms of the reduced time, which
is inherently a function of M., the onset of the convective-mixing regime is delayed as M,
is increased. This effect may be attributed to the changes in the amplification rates of the
first excited modes.!® Here we also see the well known effect of compressibility that the
mixing efficiency is greatly decreased as M. becomes large.

Finally, we examined the effects of system size on the time of transition from the
convective-mixing to the diffusive-mixing stages. Here we considered a larger system with
the same boundary conditions and initial perturbation at the same wavelength. Our con-
clusions were that the absolute time of transition increased, but the normalized time ¢
remained essentially the same. This result is consistent with the previous results that

showed that the transition always occurs in compressible flows, but the wall does, to some
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~extent, effect the timing.'” In addition, the presence of boundaries (the confinement and
'periodicity) can have a decided effect on the very late-time evolution of the system, when
the mixture is almost homogeneous, by forcing the flow at acoustic frequencies typical of
the chamber. It is sensitivity to the acoustic perturbations which is likely to be the key
to understanding the instability that leads to the transition from convective to diffusive
mixing.

There are several important as yet unstudied aspects of the types of flows that are
described above. The first is how the general and specific results shown here change for a
three-dimensional problem. To answer this, we are currently conducting equivalent simu-
lations in three dimensions. These are by nature much more expensive and so we are using
the results from the simulations presented here as a guide. Another major problem we
have begun to address is the effect of chemical-energy release. Hydrogen and oxygen are
highly reactive and perhaps too explosive to be practical for such a problem. However, we
are now examining the effects of hydrogen-air reaction and mixing in such these idealized

layers and in viatiated axisymmetric jets.?8

Acknowledgments
This work is funded by the Office of Naval Research through the Naval Research Laboratory,
Société Européenne de Propulsion (Vernon, France) and by Air Force Office of Scientific
Research. The authors would like to acknowledge the conversations and help from Drs.
J.P. Boris, G Patnaik, K. Kailasanath, D.L. Book, F.F. Grinstein, M. Lefebvre, and R.
Dahlburg.

19




References

¢ On leave from ONERA and sponsored by Société Européenne de Propulsion, France.

! G.L. Brown and A. Roshko, “On density effects and large structures in turbulent mixing
layers,” J. Fluid Mech. 64, 775, 1974.

2 D.W. Bogdanoff, “Compressibility effects in turbulent shear layers,” AIAA J. 21, 926
(1983).

3 D. Papamoschou, and A. Roshko, “Observations of supersonic free shear layers,” AIAA
Paper 86-0162, American Institute of Aeronautics and Astronautics, Washington, DC, 1986.
4 P.E. Dimotakis, AIAA Paper 89-0262, “Turbulent free shear layer mixing,” American
Institute of Aeronautics and Astronautics, Washington, DC, 1989.

8 N.T. Clemens, M.G. Mungal, T. Berger, and U. Vandsburger, AIAA Paper 90-0500,
“Visualization of the structure of the turbulent mixing layer under compressible conditions,”
American Institute of Aeronautics and Astronautics, Washington, DC, 1990.

¢ M. Samimy and G.S. Elliot, “Effects of the compressibility on the struce of free shear
layer,” AIAA Paper 88-3054, American Institute of Aeronautics and Astronautics, Wash-
ington, DC, 1988.

7 W.J.A. Dahm and K.A. Buch, “High resolution three-dimensional spatio-temporal mea-
surements of the conserved scalar field in turbulent shear flows,” in Turbulent Shear Flows,
vol. 7, Springer (New York), 1991.

8 R.W. Metcalfe, S.A. Orszag, M.E. Brachet, S. Menon and J.J. Riley, “Secondary insta-
bility of a temporally growing mixing layer,” J. Fluid Mech. 184 207 (1987).

9 S.A. Ragab and J.L. Wu, “Instabilities of supersonic shear flows,” AIAA Paper 90-0712,
American Institute of Aeronautics and Astronautics, Washington, DC, 1990.

10 T.L. Jackson and C.E. Grosch, “Absolute/convective instabilities and the convective
Mach number in a compressible mixing layer,” ICASE Report 89-3, NASA Langley Re-
search Center, Langley, VA, 1989.

11 3.J. Riley and R.W. Metcalfe, “Direct numerical simulation of a perturd turbulent mixing
layer,” AIAA Paper 80-0274, American Institute of Aeronautics and Astronautics, Wash-
ington, DC, 1980.

12 p A. McMurtry, J.J. Riley, and R.W. Metcalfe, “Effects of heat release in the large-scale
structure in turbulent mixing layers,” J. of Fluid Mech. 199 297 (1989).

13 N.D. Sandham and W.C. Reynolds, “A numerical investigation of the compressible
mixing layer,” Stanford University Report TF-45, Department of Mechanical Engineering,

20




Stanford, CA, 1989.

4 S.K. Lele, "Direct numerical simulation of compressible free shear flows", AIAA Paper
89-0374, American Institute of Aeronautics and Astronautics, Washington, DC, 1989,

13 S.A. Ragab and S. Sheen, Large-eddy simulation of a mixing layer, AIAA Paper 91-0233,
American Institute of Aeronautics and Astronautics, Washington, DC,1991.

18 M.C. Soteriou, O.M. Knio, and A.F. Ghoniem, “Manipulation of the growth rate of a
variable density, spatially developing mixing layer via external modulation,” AIAA Paper
91-0081, American Institute of Aeronautics and Astronautics, Washington, DC, 1991.

7 R. Guirguis, F.F. Grinstein, K. Kailasanath, E.S. Oran, J.P. Boris, and T.R. Young,
“Mixing enhancement in supersonic shear layers,” AIAA Paper 87-0373, American [nstitute
of Aeronautics and Astronautics, Washington, 1987.

18 B. Farouk, E.S. Oran, and K. Kailasanath, “Numerical simulations of the structure
of supersonic shear layers” Phys. Fluids A 3, 2786-2798 (1991); also NRL Memorandum
Report 6667, Naval Research Laboratory, Washington, DC, 203, 1990.

19 Oran, E.S., and J.P. Boris, Numerical Simulation of Reactive Flow, Elsevier, 1987.

20 T.P. Coffee, J.M. Heimerl, “Transport algorithms for premixed laminar steady-state
flames,” Combust. Flame 43, 273 (1981).

2! J.P. Boris and D.L. Book, “Solution of convective equations by the method of Flux-
Corrected Transport,” Meth. Comput. Phys. 16, 85 (1976).

2 G. Patnaik, K.J. Laskey, K. Kailasanath, E.S. Oran, and T.A. Brun, “FLIC - A Nu-
merical, Two-Dimensional Flame Model,” NRL Memorandum Report 6555, Navl Research
Laboratory, Washington, DC, 1989.

23 G.K. Batchelor, “Computation of the energy spectrum in homogeneous two-dimensional
turbulence,” Phys. Fluids, Supplement II, 233 (1969).

24 M. Lesieur, C. Staquet, P. Le Roy, P., and P. Compte, “The mixing layer and its
coherence examined from the point of view of two-dimensional turbulence,” J. Fluid Mech.
192, 511 (1988).

25 J.E. Broadwell and R.E. Breidenthal, “A simple model of mixing and chemical reaction
in a turbulent shear layer,” J. Fluid Mech. 125, 397 (1982).

26 Koochesfahani, M.M., and P.E. Dimotakis, J. Fluid Mech., 170, 83-112, 1986.

26 M.M. Koochesfahani and P.E. Dimotakis, “Mixing and chemical reactions in turbulent
liquid mixing layers,” J. Fluid Mech. 170, 83 (1986).

27 J.P. Boris, On large eddy simulation using subgrid turbulence models, in Whither Tur-

21




hulence? or Turbulence at the Crossroads, Lecture Notes in Physics No. 357, pp. 334, ed.
J.L. Lumley, Springer, NY, 1990.
28 p_Vuillermoz, E.S. Oran and K. Kailasanath, “Effect of Damkohler number on a super-
sonic reactive mixing layer,” P. Vuillermoz, E.S. Oran and K. Kailasanath, AIAA Paper
92-0337, American Institute of Aeronautics and Astronautics, 1991; also “The effect of
energy release on a supersonic reactive mixing layer,” to appear, Proceedings of the 24th
Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA,
1992.
29 P. Vuillermoz and E.S. Oran, Resolution requirements for computing compressible mixing
layers, in preparation.
30 pL. Miller and P.E. Dimotakis, “Stochastic geometric properties of scalar interfaces in
turbulent jets,” Phys. Fluids A 3, 168 (1991).

31 J.E. Broadwell, “Large-scale structures and molecular mixing,” Phys. Fluids A 3,
1193, 1991.

22




Tables

Table 1. Coefficients for Hy/O; mixture (T = 500 K, P = 3.5 x 10* Pa)

XHa )(o2 Hm /\m D|2 Pr Sc Le
1.0 0.0 124 x 1075 0260 5.13x10"% 0.696 1436 2.065
0.0 1.0 298 x 10-5 0.042 5.13x10~* 0.638 0.215 0.338
Table 2. Estimations of Kolmogorov and mixing scales
l(m) M. Re Nk (m) Ny (m)
5x10-3 0.6 1.85 x 10* 3.1x10°8 3.7x10"%
5x10°3 1.2 3.70 x 10* 1.9 x 10~¢ 26x10°°
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Figure 2. Computed and analytic similarity solutions for the one-dimensional mixing layer, M, =
0.01, with hydrogen on both sides. Computed solutions for a) Number density of
hydrogen, ny, and b) longitudinal velocity v. as a function of the vertical coordinate
y at successive times. Comparison of computed solutions (collapsed on the similarity
variable ) and analytic solutions for c¢) ny, and d) v; as a function of the vertical

coordinate y.
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Figure 3. Computed one-dimensional solution for the hydrogen-oxygen mixing layer at successive
times for M. = 0.6. a) Number density of hydrogen, ny, and b) longitudinal velocity
v, both as a function of the vertical coordinate y. c) and d) Collapsed profiles of the

variables shown in a) and b) as a function of the similarity variable 7.
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Figure 4. Computed mixing diagnostics for the one-dimensional hydrogen-oxygen shear layer at
selected times as a function of vertical coordinate y at four selected times ranging
from ¢; (close to t = 0) to late time, t4. a) Longitudinal velocity v;, and b) number
density of hydrogen, ny,. Resolution tests showing the computed evolution of the
global mixing parameters for the one-dimensional hydrogen-oxygen shear layer for
four different resolutions and fixed system size. On each figure, curves marked “1”
correspond to N; = 20, Az = 10.0 x 1075 m, “2” to N, = 40, Az = 5.0 x 10~° m,
“3" to Ny = 80, Az = 2.5 x 10~% m, and “4” to N, = 160, Az = 1.25 x 10~° m. ¢)
Mx (equations (21)-(23)), and d) My (equations (21)-(23)). Time is normalized by
to =0.5L/AU.

27




-

" vl & ke "

4 6 8 10

t/tg

12 14

16 18

12

Figure 5. Global diagnostic parameters as a function of time for the two-dimensional hydrogen-

s 6 8 10
t/ty

oxygen shear layer computed with the NS+ equations (equations (3)-(18)) for M, =
0.6, grid 200 x 100, and Az = 5.0x10~% m. a) Mx, b) My, c) M., and Myy (equation

(27)).

12 14

16 18

28

Mgy

14

16

18

24
22]
20}
18}
16}
14}
12|
1o}

O N o O O

A

8 10
t/t,

12

14

16

18




29

Figure 6. Instantaneous contours of Yy, for a sequence of six times for the computation described

in Figure 5.
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Figure 8. Instantancous contours of the scalar energy dissipation, (VYy,)? for the Euler and

NSt calculations with Az = 2.5 x 1075 m. Note that the palette is logarithmic.
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200 x 100 grid.
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