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SUMMARY Setting up and solving ballistic type rocket kinetic

equations in inertial coordinate systems with directions which do not

vary, it is possible not to consider dragging inertial or centrifugal

forces or coriolis inertial forces and set up inertial guidance on a

convenient and simple, quick and clear foundation. This is different

from what has been published in the past, where studies have been done

of various types of flight mechanics problems in coordinate systems

which turn, following along with the earth. We illucidate the

initial take off conditions as rockets leave the surface of the earth,

and analyze, in detail, the air or atmospheric effects associated with

air being pulled along by the gravity of the earth as it turns and the

treatment methods for aerodynamic forces on rockets moving in an

inertial space. W' derive a formula for calculating the geographical

location of movement parameters, used for rockets in inertial

coordinate systems, and a formula for dynamic coordinate system

movement parameters.

KEY TERMS Inertial Guidance, Coordinates, Flight Mechanics,

Kinetic Equation

As far as the literature (12,3,4)and publications associated

with the kinetics and kinematics of domectic and foreign studies of

lifting rockets and other similar types of spacecraft are concerned,

although all start out through classical mechanics, in the end,

however, they all infer the handling of aerodynamic forces in

coordinate systems which turn together along with the earth as well as

various similar types of forces and motion parameters. M-.reover, it

is necessary to consider centrifugal inertial forces anrd coriolis

inertial forces as well as other similar types of virtual forces.

Speaking in terms of the researchers who have handled guidance and

navigation systems for rockets and other similar types of spacecraft,

if one analyzes motion characteristics of inertial instruments, it

becomes even more complicated. In many years of research and

practical application, we took rocket kinetics problems and solved

them in an unmoving inertial space, obtaining satisfactory results.



I. SEVERAL COORDINATE SYSTEMS
[3 )

1. The Earth Centered Coordinate System EXe Ye ,Ze

The origin point E is placed at the geometrical center of the

earth. The EXe axis in the plane of the equator, from the center of

the earth E, points toward the point of intersection of the prime

meridian and the equator and is positive in direction. The EYe

axis, in the plane of the equator, is perpendicular to the EXe axis

and is positive in direction toward the outside. The EZe axis,

along the axis of the earth's autorotation; forms a clockwise

orthogonal coordinate system with EXe and EY . This is as shown

in Fig.l.

2. Guidance Coordinate System 00 X 0 ,Y0 Z0

The origin point 0 is the launch point of the rocket on the

earth's surface. The 0 0 X0 axis, within the horizontal plane that

passes through 0 , points toward the direction of the flight and is

positive. The included angle or angle of offset between it and the.

due north direction of the meridian group tangent is the azimuth

angle. The-Oo Y axis follows along a plumbline upward and is

positive. The 0 Z axis, in the horizontal plane that passes

through 0, forms a clockwise orthogonal coordinate system with

S0 X0 and 0 Yo. At the instant that the rocket leaves the

launch pad (time t=Osec), one takes the direction O0 XoY0 Zo is

pointing in inertial space and firmly fixes it invariable. It then

forms an inertial coordinate system. See Fig.l.

3. Launch Coordinate System or Dynamic Coordinate System OXYZ.

At the instant the rocket takes off (t=0 s), the origin points 0

and 00, the OX axis and 0 the OY axis and 0 0Y0 , and the

OZ axis and 00 Z0 , are all superimposed on each other. After the

rocket leaves the ground and takes off, OXYZ is firmly connected to

the surface of the earth. Moreover, it turns together with the earth.

See Fig.l.



4. Spacecraft Coordinate System 0 X Y ZI

The origin point 01 is positioned at the center of mass of the

rocket body. The 01X1 axis runs along the main axis of inertia of

the rocket, points toward the nose, and is positive. 01Z1, in the

secondary plane, is perpendicular to the X10 Y1 main plane of

symmetry. This is as shown in Fig.2.

X4

Fig.l The Relbtionships of Such Coordinate Systems as EXeYe e,
OXYZoand OXYZ 

e.

OX 0Z no0XYZ

Fig.2 The Relationship of 00XoYoZ o and 0IXIYz 1
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5. Airflow Coordinate System 0 2 X2 Y2Z 2

The origin point 02 is conincident with the center of mass of

the rocket body 01. The axis 0 2X2 is in line with the air flow

velocity vector Vd corresponding to the rocket The 02Y 2 axis,

in the main rocket plane X101 Y,, goes upward and is positive.

The 0 2Z 2 axis forms a clockwise rectangular coordinate system with

the 02X 2 and 0 2 Y2 axses. If one takes the 02X2Y2Z2
coordinate system and rotates it about the 0 2 Y2 axis through the

lateral slide angle /6 , and, again, rotates it about the O1z1
axis through the angle of attack a, then it is coincident with

O,X,Y,Z. See Fig.3.

Fig.3 'The Relationships of 01 ,Xl,Yl,Z1 and
02 'X 2 ',Y2 'Z 2

The unit vectors on the axses of each coordinate system are taken

as a unit 1, adding the corresponding coordinate system's lower corner

subscripts to express that. For example, 1ox loy, and 1oz are

the unit vectors of the guidance or inertial coordinate system

00X0 Y0Z0 on the three axses 0X 0, 0oYo , and 0 oZo

II. KINETIC EQUATIONS

Taking out the influences of other celestial bodies, one only
considers the effects of earth's gravity, G e . The high speed flow

of- combustion gases sprayed out by the rocket engines produces as an

effect the thrust vector FT on the rocket. Its magnitude is related

4



to the amount of mass consumed as fuel in a unit time G=dG/dt (kg/s),

the engine jet tube characteristics, and the height h at which the

rocket flies off the surface. Normally, this can be expressed
[1,2,3]as

FrO6-g..i&+S.P (-)P (2.1)

On the basis of the principles of momentum, the rocket's instantaneous

acceleration vector in the inertial coordinate system

OoXoYoZo, Vo=dVo/dt, satisfies the equation below

(t) . V,..F +G, (2.2)

Force vector F is the vector sum of thrust F_, control force FK,  32
and the pneumatic force Fq. ge=9.80665 (m/s and is the mass

conversion constant. Ib is the engine's specific .impulse.

Se (unclear) is-the engine combustion gas flow aperture area. P/Po

is the ratio of the gas pressure and the surface atmospheric pressure

P 0,which varies with the height h from which rockets fly off the

surface. If-one takes a certain vector, such as F, and uses a line

matrix to express it, its symbols and the vector symbols are the same.
TT

One then has F[(F XF YF Z]. The upper right superscript T

expresses transposed positions. FX, Fy, and F, are the

components of F on the OoX0 , 00 Y0 , and 0 Z axses. When
0 °T

using the acceleration of gravity g=[gxgyg I and comparative

force or perveived acceleration W=[WxWyWzI to express

equation (2.2), one obtains

+ g (2.3)

In this - *-nF. The force vector

F-Fr+Fx+Fi

(2.3.1)



The thrust force FT and control force F K are normally given in

cubic coordinate systems. Moreover, the aerodynamic force Q2 in the

gas flow coordinate system 02 X2 Y2 Z2 can be transformed into

0IXIYIZ1 and expressed. In this way, the comparative force

components on the main inertial 0X1 , 01 YI, and 01Z1
axses are respectively

Wx, (Frx+ Fxx +Qax) (2.4.1)

Wr,1 -c(Fr7 +Fxr +Qr) (2.4.2)

WZ,-L(Firs+Fax, +Q,z) ( 2.4.3 )

• ]T

The comparative force vector WI=[W lWyIWi. The

relationship between the unit vectors 10 and 11 of

00 X0 Y0 Z0 and 01 X1 YIZ1 can be used to link up or

associate the orthogonal transformation matrix D, which is nothing

else than

-I,=D.I, (2.5)

Because of this, the comparative force vector W in the guidance

coordinate system 0 X Y Z is capable of being aided by D1
using the comparative force vector in 01X1 Y1Z1 to express

as

Wi=LD•, (2.6)



Gauging or measurement assemblies used in the guidance and stability

systems of such types of carrier or delivery craft as rockets are, it

goes without saying, gyroscope stabilized platforms or sensitively

connected inertial assemblies. The various elelments of the orthogonal

transformation matrix D, dij (i=1,2,3, j=1,2,3), are all capable of

being arrived at. For example, in Fig.2, rotating the pitch angle Lr

around the axis 0Z o , and again, rotating the yaw angle Vraround

the transitional axis OY'I, and, finally, revolving the roll angle i-

around the axis 01X1, in that case, dij is then possible to make

use of to obtain the sine and cosine functions of Euler angles qC ,t-,

and V .

Taking rockets, when they act as rigid bodies, the Euler

equations for the revolved center of mass 01 are normally set up in

a cubic coordinate system 
[61:

J]Z-,; 1 + (, -r)COz --MI (2.7.1)

1r,,r+(Ux -1,)coxriz- Mir (2.7.2)

(2.7.3)

In the equations, JX, Jy, and JZ are the instantaneous momenta

of rotation of the rocket about the main axses of momentum XI ,

01Y I , and 0 1 ZI . M1 X, Miy, Miz are component moments of

force along the three axses discussed above. C lX' IX, °l1Z

are components of angular acceleration for rotation of the rocket

about 01X1, 01YI, and 01 ZI. The angular acceleration

vector is

Wi,--C 1x r 0,z)? (2.8)

This article only illucidates movements of the center of mass. It

does not discuss the kinetic equations for motions around center of

mass.
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III. INITIAL CONDITIONS AND AERODYMANIC FORCES

In-the inertial coordinate system 00X0Y0Z0 , as far as

study of the flight kinetics of-rockets and other similar carrier or

delivery vehicles is concerned, the most important thing is to

illucidate the methods of handling the effects of aerodynamic forces

with which the atmosphere acts on rockets in high speed flight as it

rotates along with the earth, and, on the foundation of discussions

with fellow workers, in conjunction with the carrying out of

theoretical analysis, to obtain correct solutions.

Observed in inertial space, rockets, before they take off, rotate

together along with the earth. They are dragged along by the force of

the earth's gravity and connected firmly to the surface of the earth.

However, they already possess a drawing or centrifugal linear

acceleration. This velocity vector Voo is the initial velocity

taking off from earth under the effect of the thrust of the engines.

The magnitude of V is determined by the vertical distance of the

launch point 00 from the earth's axis of autorotation. In the same

way, the atmosphere, which wraps around the earth, is also pulled

firmly by the force of the earth's gravity and follows the earth in

its rotation. Obsbrved from inertial space, this atmosphere also

possesses similar linear acceleration.

Looking from the revolving earth, the rocket, before it takes

off, is not moving. The atmosphere is stationary. The rocket's

movement velocity relative to the atmosphere is zero. As a result of

this, there are no aerodymanic or pneumatic force effects on the

stationary rocket. This is saying nothing else than that, if, when

one calculates the magnitude of the effects of aerodynamic or

pneumatic forces on the rocket in inertial space, it is necessary to

take the dragging or centrifugal velocity associated with the rocket

rotating along with the earth and the velocity of the atmosphere

moving together with the earth and subtract them from each other, one

obtains the rocket's velocity relative to atmospheric movements as

zero, making the aerodymanic forces borne by the rocket, when it is

erect on the launch pad and has not taken off yet, to be zero. If one

takes the initial absolute velocity Voo of the rocket before it

takes off, as observed in inertial space, and takes it as the movement

velocity relative to the atmoshere, calculating out the effects of

8



pneumatic forces on the rocket, in that case, the rocket erected on

the launch pad will just be pushed over onto the ground. However,

this does not correspond to the facts.

After the rocket, under the effects of thrust FT, leaves the

launch pad and takes off, the absolute velocity of the motion in

inertial space gets greater and greater. The height of the separation

from the earth's surface is also able to continuously increase. The

magnitude of the aerodynamic forces that it exerts at a given point P

separated from the center of the earth E is also determined by the

velocity of the atmosphere corresponding to its being pulled around by

the earth. It is only in the inertial space 0XoYOZ ° that, ag

far as the rocket's velocity relative to the atmosphere is concerned,

it is appropriate to use this relative air flow velocity to calculate

the effects of pneumenatic or aerodynmaic forces on the rocket.

The components of the earth's atuorotational velocity vector L0

e on the various individual axses of the inertial or guidance

coordinate system OX O YZ O are:

Ox ca. - cos B.. eogAe . x (3.1.2)

O2r= a,"- sin B.o= ,by
(3.1.2)

z , . ( - co B,. sin A.) = bZ (3.1.3)

In these, B0 is the geographical latitude of the rocket launch point

OO. A0 is the azimuth angle of 0OX O. In 0 XoYoZ O ,

the absolute velocity of the air at the place P(R) where the rocket is

located is nothing else than the dragging or centrifugal velocity

V e * It can be expressed as

7-x=x Or D,
'Rx R, Rz (3.2)



The magnitude of the radius vector from the point P toward the center

T

of the ea-th, R=[RxRyR,] , is

R=_1 (X,+R~x)' +(Y'+R~r)' +(Z,+R,z) ( 3.3 )

In this, R I[Rox, Roy, ROZI T is the radius vector toward the

center of the earth for the initial location of the rocket 00 in

OXoYoZ O. From the origin point 00 , the position vector

pointing toward P is g =[XoYoZo I T .

Given initial conditions, that is to say, the instant of rocket

take off is t=Osec and the location relative to the OX 0 YoZ0

system is zero, that is, Xo=Yo=Zo=0 and R=P4, the initial

velocity V00 is nothing else than the dragging or centrifugal

velocity of point 00, that is, 34

V,,- ,I ,,-Vo ,-,( 3.4 )

In this way, the variable coefficient differential equltion (2.3) is

then capable of using numerical value methods for its solution. The

absolute velocity of the rocket V0 at a certain instant as well as

the position 9 and R can all be obtained.

The rocket's velocity relative to the motion of the earth is also

nothing else than the motion velocity Vd relative to the atmosphere

and is the difference between the absolute velocity VO and the

dragging or centrifugal velocity V
e (unclear)

Vd-V,_V (3.5)

The aerodynamic drag force Xq and the relative velocity Vd are

mutually opposite in direction, that is, they are mutually opposite to

the direction of 0 2 X2 . The areodynamic or pneumatic lift (normal

pneumatic lift) Y is positive in the direction along 02 Y2 . Theq
lateral pneumatic force Zq is opposite in direction to 02 Z2 .
They are respectively used in the several forms set out below for

calculations /0



Xq, -Cx.q. Sc (3.6)

Yr-IC; ",q'Sc'-a ( 3.7 )

Z,--C;.q.$c. (3.8)

In this, Cx, Ca, and CA
y z(unclear) are, respectively, the

aerodymanic or pneumatic drag coefficient of the rocket, the

aerodynamic lift coefficient, and the aerodynamic or pneumatic

laterally directed force coefficient. As far as impact pressure is

concerned, one uses the form

I

q=-P" (3.9)

to calculate it. The air density . changes along with changes in the

height h of-the rocket as it flies off the surface. SC is the

reference cross section surface area.

From Fig.3 one can see that the airflow coordinate system

O2 X2 Y2 Z2 goes through a rotation through the lateral slide

angle/B and the angle of attack a to arrive at 01X1 Y1 ZI. The

transformation between the unit vectors of the two coordinate systems

uses the matrix E and is expressed as

1,--*'I, (3.10)

Obviously, E is a third order orthogonal matrix. Its various elements

are functions of a andi:

eit et, CosipCgl~ca Sina -Sinflcce 1

E={en~t C:: e::j.Lc08 flia c08a sinflsinaf (3.11)
es, e, e,, sin8 0 cose "

'i



The angle of attack a and the lateral slide angle are calculated by

the use of the formulae set out below:

a- sin '(-V,,/V,) (3.12)

,0- sin V.. /-/I Vf tV,, )(3.13)

In the cubic coordinate system 0 1XYIZI, the relative velocity

VI[V X V(yVZ]T is obtained by Vd in the OXoXZ O

system going through transformation. It is capable of being expressed

as

V,-DrVd (3.13)

Obviously, V 1 = Vd are invariant. As far as the aerodynamic or1 d T
pneumatic force Q2 =[Xq Y qZ q] in the airflow coordinate

system 02 X2 Y2 Z2 is concerned, it is possible to make use of

the matrix E to transform it into the cubic coordinate system

01X1 Y 1Zi , that is,

Q,-E'Q, (3.14)

Control force vectors F K are always given in the

01X1 Y1 Z 1 coordinate system. Practically speaking, their
handling is different because of different types of servomechanisms.

Up to now, we have already, in OIX 1 YIZI, completely obtained

the thrust force FIT, the aerodynamic or pneumatic force Q0, and
the control force FK. It is possible, from equations (2.4) and
(2.6), to calculate out the comparative forces for changes over time,

W and Wt(l).

When one takes the earth to be acting as a revolving, symmetrical

ellipsoid sphere, it is possible to only give consideration to the
gravitaional force potential's second degree harmonic coefficient J
quantity [5 ]. The components of the gravitational acceleration g,
which the rocket receives pointing toward the vicinity of the center
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of the earth and which are in directions along 0, OoY , and

o Z are: 35

R [(3.15)
(-X.Y,Z)

In this, the constant of gravitational force is

gC Rl-- IM , (3.16)

RC is the earth's equatorial radius. gc is the acceleration of

gravity on the equator. The vertical distance that the rocket's real

time position P(R) is off the plane of the equator is

Cb (X,.+R,) + bv(Y,+Rr) +bs.(Z.+R,,) (3.20)

Thq point P's geocentric latitude Cx is calculated from the

equation

R (3.21)

2b vsin(4x in gv does not exist in OXYZ when .one is studying the

motion equations for the center of mass of rockets.

The application of the various expressions set out above is a

condition for the complete solution of the kinetic equation (2.3). It

is then possible to precisely determine, in changing situations, such

motion parameters as the absolute velocity V and the position R or
0

IV. KINETIC EQUATIONS FOR THE UNPOWERED SECTION

As far as the rocket or its released nose cone is concerned, in

13



the section of the flight after the propulsion system is shut off and

there are no thrust force effects or attitude angle controls, it is

possible to take them to be acting as a point mass or material point

particle. It is not necessary to consider the angle of attack a or

the lateral slide angle / 4 The only aerodynamic force there is is

drag. Moreover, it is opposite in direction to Vd,

X, -C.,.q.S, (4.1)

The comparative force is

W= 2G (4.2)

In this, C xt, S t , and Gt are, respectively, the nose cone's

aerodynamic drag coefficient, reference cross section surface area,

and its mass. Taking Wb and analyzing it along the three axses of
bI

the inertial coordinate system 0XYo Zo, one' then has kinetic

equations similar to (2.3);

V"= -W6-Fd +9g (4.3.1)

pea+, (4.3.3)

V*.,- - W" -- +g

In this, the form expressing the acceleration of gravity

g=[gXg g zIT is the same as (3.15). The initial conditions for
equation (4.3) are the motion parameters V0 (tf) and (tf) for the

instant when the thrust stops or the instant tf when the nose cone and

the rocket separate.



In situations in which the flight of the nose cone reentering the

atmosphere has attitude angle controls, the aerodynamic force Q2
contains the drag force Xa , the lift force Yq, and the lateral

force Z . It is necessary to make use of the handling methods of

3. Moreover, one must do transformations into the coordinate system

'for example, 05 X 5Y 5Z 5 ) firmly connected to the "horse's head"

cone. After solving Euler equations similar to (2.7), one obtains the

transformation matrix D. In this way, the aerodynamic or pneumatic

relative forces are also capable of being accurately handled in
0O0XoYo0Z o"

V. MOTION PARAMETERS OF THE REVOLVING EARTH

The preceding several sections studied methods of handling

aerodynamic forces in inertial space and the problems of solving

kinetic equations. However, are the results in line with solutions of

kinetic 'equations in the dynamic coordinate system OXYZ?. In using

transform methods, from V =[V V V T and =
T o ox oy oz 36[X Y oZ , one obtains dynamic coordinate system motion

parameters, and, in conjunction with that, after one makes a

comparison, one, then, has naturally dispelled misgivings. Refering to

Fig.I, going through the transformations described below, it is

possible to search out the relationship between OoXoYoZO and

OXYZ.

The first step is to rotate 0 X Y Z counterclockwise in

a positive direction around 0Yo an azimuth angle A forming

00 X 'YoZo' The tangent line 00 N associated with the

meridian line of 0oX ' and the point 00 is duplicated and points

north. 00 Z0 ', within the horizontal plane at point 00, is

perpendicular to the meridian plane and points east.

The second step is to rotate 0 X 'Y Z O counterclockwise
around 00 Za an angle equal to the latitude B forming

0 X 0'Y 'Z '. 0 Y ' is parallel to the plane of the

equator. OoXo'' is parallel to the earth's axis of autorotation

EZ

• • •em



The third step is, in a situation in which the three axses of

0 X ''Y 'Z ' are maintained in an unchanging direction, to

take 00 and translate it to the center of the earth E forming

''EX ' 11Y ndZ I

The fourth step is to take EX0'1Y 0 Z0 and rotate it

counterclockwise through an angle &e t around EX0 '', causing

X ''EY ' to rotate into the meridian plane of point 0.

The fifth, sixth, and seventh steps are, respectively, the

inverse processes of the first, second, and third steps. Finally, one

then takes 0 0X0Y0Z0 and transforms it to a position

duplicating OXYZ. Moreover, one obtains the transformation matrix B.

It has already been demonstrated that the matrix B is orthogonal. The

inverse matrix B and the transformed position matrix BT are

equal,

[b,, b,, b, 1

B = b,, b,. 6,3 (5.1)
b,, b,, b,,3

This is capable of being written to become the equation below:

B=B4 + COr,t(- B ) + sin,.tB, (5.2)

In the equation, I is a third order unit matrix. B4 and B5 are

also both third order matrices: b,b, b ,, 6 ,6,

B,- b6b, b,b, bb,

Lb,b, b,b, b ~b. (5.3)

o b.-b y
Lb 0 -b.

- b , b. 0 (5 4 )



The relative velocity V in the dynamic coordinate system (JXYZ is

calculated from the equation

V-B.Vd (5.5)

In this, Vd=[1v V VITis the relative velocity expressed
d dxdy dz

by the use of (3.5) in 0XoYoZO . The relative location

=[XYZ T in OXYZ is also capable of being expressed by the use of
matrix B as

li- B. R- R,
(5.6)

The magnitude r of the distance from the center of the earth r of the

current position P of the rocket is

r- (X + R..)'+ (Y+ R.,) I+ (Z+ R..' (5.7)

Obviously, the invariant inequalities V2=V2d=V2 Iand

r 2=R 2 are all established. Because of this, it is accurate to
make use of the height h = R-R1 by which the rocket leaves the

surface of the earth in the inertial coordinate system
00X0 Y0 Z0 to handle the atmospheric constants (O//o and
P/Po0

The expressions (5.5) and (5.6) for the velocity V and the

position '77 in the dynamic coordinate system OXYZ, arrived at from

going through transformations of the parameters Vd and . in the
inertial space 0 X YoZo, are important results. They clearly

show that, in 00 X0 Y0 Z0 , solving kinetic equetions is capable

of satisfying various types of requirements. For example, during
rocket test flights, ground optical transit theodolites, radar, or

other similar tracking and measuring equipment requires V and 17 to act
as a reference basis. In these two types of coordinate system, the

results from simultaneously solving rocket kinetic equations clearly

demonstrate the accuracy of (5.5) and (5.6), verifying, in the

coordinate system 0 X Yo Z, that solving the rocket kinetic

equations is correct.
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VI. GEOGRAPHICAL COORDINATE COEFFICIENTS 37

As far as the geographical latitude B 1 and the geographical

longitude / of the position P for the current location of the rocket

at the instant t is concerned, it is also possible to make use of the

position R in 0XoYoZO to accurately calculate it out.

Refering to Fig.1, the geographical latitude cf x can be obtained

from

sin =CIR
(6.1)

In this, R is the distance of the point P from the center of the earth

E. C is the vertical height of the point P off the plane of the

equator. The geographical latitude is

B1( -')) (6.2)

In reality, this only has meaning on the s-rface of the earth.

However, cPx has significance everywhere. The line connecting the

center of the earth E and P intersects with the surface of the earth

at point P', In such a case, the distance of the point P' from the

center of the earth is

R' = R. ,/ -e l l I, -e'.ccx~s2V (6.3)

As far as the rocket's reaching point P in space at the current

instant t is concerned, in terms of the take off point O0's inertial

space span or tensile angle, Jl(unclear) is the voyage or course

angle. Using the numerical product of the two vectors from the points

00 and P pointing toward the center of the earth E, it is expressed

as

It= COS- [-& + X#R.+Ye,+ZsRos (6.4)



After going through the time t at the earth's prime meridian, in

inertial space, it turns from EX e ' to EX e , that is, about the axis

of autorotation of the earth, EZe turns through the angle Co et.

In the same way, OXYZ also, from the originally duplicate location at

00X0 Y0 Z0 , rotates through the same angle O et. From Fig.l,

one can see that the difference in longitude of the point P relative

to point 0 in inertial space is

((6.5)

On the spherical surface triangle EO QP', respectively making use of

cosine theorems and sine theorems, it is possible to solve for an

expression for geographical longitude /. From the cosine theorem of

the course or angle of travel Jl(unclear)' one has

C01=0 E9. sin(_Eq 8. (6.6)

Because of this, one obtains the formula to calculate the geographical

longitude k of the rocket's current position P

coo(A-A.+ J)= (c J, sin ),..sinq.)/(cos).,.cosv.) (6.7)

In this, A 0 is the latitude of the Oopoint at the instant of the
rocket's take off, t = 0 sec. In order to accurately determine the

quadrant of X , on the same spherical surface triangle EO QP', one

makes use of the cosine theorem. It is then possible to solve the

expression sin (A- 0 + Q et). From Fig.l, it is possible to

see that \ is also the actual geographical longitude of the origin0

point 0 of the dynamic coordinate system OXYZ. The geographical

longitude of initiation points or origins 0 and 0, xc = B0

In this,



i-a,.sin2B. (6.8)

This is perpendicular deviation. However,

a -(R.-R)/R. (6.9)

is the rate of flattening of the earth. Re and R. are,

respectively, the equatorial radius and the polar radius of the earth.

The azimuth angle of the current position P is

(6.10)

In this, f1 is the angle of offset or deviation relative to the main

plane of the flight X0YoZ0 for the current time position of the

rocket P, that is, the included angle between 0 P and X0 0oP o.

Obviously,

m sin (X+R.)'+(Z+R..) (6.11)

From this, it is possible to obtain a precise determinatinon of the 38

quadrant of A.
CONCLUSIONS

The practical realization of the study and design of the inertial

guidance systems of our carrier rockets clearly demonstrates that, in

the inertial coordinate system 0XoYoZo , which is illucidated

by this article, the solutions of rocket kinetics and the derivations

of various individual formulae are correct. This is particularly true

for the motion parameters V and 71 as well as geographical coordinates

B and X and is completely in line with the results obtained in the

dynamic coordinate system OXYZ from solving kinetic equations.
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Making use of the inverse matrix B =B , taking carrier

rockets' actual flight course track parameters and transforming them

into 0Xo Yo Z, the carrying out of checks and tests on the

errors of inertial instrumentation and the anal'ysis of other errors in

guidance systems must, of necessity, be feasible.

There are a number of representative works1 '2'3'4 and treatises

which, in the dynamic coordinate system OXYZ, which rotates following

the earth, set up and solve kinetic equations of rock4ts, handle

various types of problems associated with flight force mechanics,

calculate aerodynamic forces with relative ease, make observations and

measurements as well as tracking rocket motions without the need for

transformations. With regard to the extreme importance of motions and

errors associated with the study of carrier rocket inertial guidance

systems in inertial space as well as inertial instrumentation, the

methods studied in this article have value. In-particular, writing

them down into an article is convenient for use as a reference. In

conjunction with that, they have been even more deeply discussed with

coworkers.

In the process of the studies in this article, we were aided by

Li Zhentao,:Wang Guangmin, and other'similar comrades. We have opted

for the use of several formulae associated with rocket kinetic

equations set-up by them in the OXYZ system. We wish to express our

sincere thanks-to them!
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