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This pamphlet describes recommended techniques for producing and evaluating probability forecasts. It alsoincludes
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Chapter 1
INTRODUCTION

1-1. General. This pamphlet provides the standard
tools and techniques on probability forccasting. It is the
basic reference for self-study, and the primary source for

devebping local training programs.

a. Chapters 1-4 meet the specific needs of
forecasters and supervisors making and evaluating
subjective probability forecasts. Commanders and staff
members will find the information useful as a
comprehensive reference.

b. Chapters 5-7 address applications of
probabilities in decision making, and are designed
primarily for staff weather officers (SWOs) and staff
meteorologists. These chapters describe the more
complex aspects of decision theory and weather impact
indicators. Customers must have a good understanding
of the advantages of probability forecasts and how they
can enhance decision making, before specialized
applications are attempted.

1-2. References. Some prior knowledge of
probability theory and related mathematics is required
to understand the first four chapters of this volume. The
sections are arranged so that basic information is
presented first, to aid the transition into more technical
discussions. Use AWSTR 77-267, Guide for Applied
Climatology, if mcre mathematical background is
required. The references, identified by an asterisk in the
b’bliography (Attachment 1), are recommended for
every forecasting unit.

1-3. Terms/Definitions. Basic terms and
definitions are in Attachment 2. Review them now and
use them as references while reading the remainder of
this pamphlet. Do not be concerned initially about
acquiring a total understanding of all the terms; their
meaning will be clearer when they are seen in context
later in the pamphlet.

1-4. Types of Meteorological Probabilities. Three
types of probabilities are commonly used in meteorolgy
climatological, objective, and gubjective. Each type,
with typical applications, is described below. Note that
the term “probability forecast” in subsequent chapters
refers to the subjective forecast, unless otherwise noted.
However, many of the applications and evaluation
techniques discussed apply to all three types.

a. Climatological Probability. The probability
that an event will occur based on historical observations
or experimental data. AWSTR 77-287, Guide for Applied
Climatology, describes the most common methods of
obtaining climatological probabilities. Many of these
techniques can be applied directly at the unit level.
Others, which are more complicated or need extensive
data or data processing facilities require squadron,
wing, or USAFETAC assistance to apply. The Revised
Uniform Sumrnary of Surface Weather Observations

(RUSSWO) for each base contains many climavwological
probabilities.

Climatological probabilities are used primarily in
planning and design functions. They are also extremely
important as inputs to all forecasts, categorical and
probabilistic. Examples of some planning problems that
can be resolved by using climatological probabilities
follow.

Example 1. What is the probability of <1000 feet
ceiling and/or < 2 miles visibility at Base A in January?
NOTE: The RUSSWO gives the climatic frequency for
equal to or greater than those conditions.

Example 2. Base B can expect 12 days with 0.01
inch or more precipitation during March. What is the
probability of having no more than 6, 8, 10, 12, 14, 16
daye with 0.01 inch or more precipitation?

Example 3. What is the probability that Base C
will be above alternate minimums (ceiling 21000 feet
and visibility > 3miles), given that Base Dis below GCA
minimums (ceiling <200 feet and/or visibilitv <1/8
mile)?

Example 4. What is the probability that either
Base A or Base B, or both, will be above alternate
minimums, given that Base C is below minimums?

Example 5. An attack on a coastal installation is
being planned. Troops and equipment can be delivered
to the area by air, sea, or both. Given the critical weather
thresholds for each, what is the probability of success
considering weather constraints only? What is the
probability of success by sea, given that air delivery is
unfavorable?

b. Objective probability. The probability that an
event will occur using a fixed set of rules which produce
a unique and reproducible outcome. These rules are
derived by empirical or theo: = ~i means, or a
combination of both. Objective probability wchniques
are assuming increased importance in operational
forecasting., Three methods used by the National
Weather Service in automating their terminal forecasts
illustrate these techniques (Bocchieri, Crisci, et al, 1974).

Example 1. Single-station equations were
developed to predict the probability of maximum, and
minimum temperatures, sur\ ‘ wind, and cloud cover
uging only the weather observations at the local
terminal. More than 30 possible predictors were
screened and the best predictors combined into objective
prediction equations.

Example 2. Model Qutput Statistice (MOS) uses
statistical methods to complement the output of
numerical models. The technique matches observations
of local weather with output from numerical models.
Since numerical models do not directly predict the
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elements of more interest to a forecaster, the MOS
technique, in effect, determines the “weather related”
statistics of the numerical model. For instance, it could
give the probability of precipitation at a station for a
corresponding model prediction of 80% relative
humidity; or surface winds corresponding to a model
prediction of the 1000 mb geostrophic wind. Resultant
forecast equations are derived by statistical techniques.
In this way, the bias and inaccuracy of the numerical
model, as well as local climatology, can be incorporated
into the forecast system. MOS products are produced by
the NWS Techniques Development Laboratory (TDL)
and include forecasts of precipitation, temperature,
wind, clouds, ceiling, visibility, and thunderstorms.

Example 3. The third approach combines the
output from single-station equations, forecast output
from numerical models, and the MOS technique to form

AWSP 105-51 31 October 1978

predictors for another set of prediction equations. These
equations produce objective probability forecasts of
various weather elements which are equal to or better
than man-made forecasts in many instances, depending
upon the element and forecast period. Elements that
have been successfully forecast include maximum and
minimum temperatures, surface wind, cloud cover,
precipitation, ceiling, visibility, thunderstorms and
freezing precipitation.

c. Subjective probabnhty is the personal eatxmat«e
of the probability that a given event will occur. Unlike
climatological and objective probabilities, there are no
firm rules or techniques used in deriving a subjective
probability forecast. In practice, forecasters study the
available data as they would in preparing a
conventional forecast, and then subjectively assign a
probability value which reflects their confidence that
the event will occur.

®
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Chapter 2
WHY PROBABILITY FORECASTS?

2-1. General. This chapter discusses categorical and
probability forecasts and shows how probability
forecasts can enhance decision making.

2-2. Characteristics of Categorical Forecasts. A
categorical forecast specifies that a given weatherevent
will occur. The forecast can be for either a two category
event (e.g., rain or no rain), or for a multicategory event
(e.g., visibility 0 to 1/2 mile, 1/2 to 2 miles, 2 to 3 miles,
or greater than 3 miles). Categorical forecasts cause
several problems.

a. Unquantified Uncertainty. At times,
forecasters are certain that an event will occur. More
often, they are not. A forecaster making categorical
forecasts cannot mention other possible outcomes, or
express the degree of uncertainty in the forecast.
Uncertainty exists for several reasons.

(1) We cannot accurately describe the initial
state of the atmosphere. Observations are not available
for vast ocean and land areas. Our fixed observational
network provides a limited measurement, in time and
space, of many (but not all) weather variables. Surface
observations for specific points are not necessarily
representative of large areas, or of points between
reporting stations. The same is true of upper air
soundings. In addition, these measurements are
ascribed to the launch point even though the instrument
package might be many miles away as it rises. Finally,
the instruments used to measure atmospheric variables
have inherent inaccuracies.

(2) The output from our dynamic prediction
models is not perfect. These models often neglect
potentiallv significant atmospheric processes. This is
partially due to our imperfect knowledge of the physical
processes involved and how to model them. At times, it
results from our computers not being large or fast
enough to incorporate these complex processes into our

models.
(3) Even if atmospheric observations and

computer models were accurate, it is doubtful that
forecasters could always interpret these correctly and
consider local modifying effects to make perfect area or
point forecasts.

b. Limited Use in Decision Making. Categorical
forecasts are generally made for the event that is most
likely to occur (i.e, the category with the highest
probability). However, there are times when the possible
occurrence of certain unfavorable weather conditions is
imnortant to the customer, such as damaging hail or
strong winds. For these situations, forecasters tend to
intuitively use a much lower probability of occurrence
threshold (for example, 10%) to differentiate between a
yes/no categorical forecast. This threshold is usually
based on the forecast.r’s estimate of the impact of the
weather event on the customer’s misgion. Once the
forecaster determines that the probability of occurrence
exceeds his threshold, a categorical forecast is made
which implies certainty that the event will occur. Thus,
the forecaster assumes the role of decision maker. The
disadvantage is that the forecaster does not have
sufficient knowledge of all the operational factors that
should be considered in establishing the proper
probability threshold for making the decision. However,
since certainty ia implied, the customer should take

action. In actual practice, after categorical forecasts
have been issued, but before very important decisions
are made, a dialogue takes place between the forecaster
and decision maker. The decision maker tries to find out
how confident the forecaster really is about the chances
{probability) of the event actually occurring. The
preceding is an example of subjective decision making.
It is time consuming, requires that each case be handled
individually, has no set rules, and may not produce the
best decision. Categorical forecasts do not enhance
subjective decision making.

Objective decision making uses a set of rules or a
decision model to arrive at a decision. Given the same
initial conditions, the objective decision making process
will produce the same decision every time. Numerous
studies show that when categorical forecasts are used in
objective decision models, the long term benefit is less
than when decisions are based on probability forecasts.
(Murphy, 1977).

2-3. Characteristics of Probability Forecasts.
Probability forecasts reflect the forecaster’s perception
of the state-of-the-art for predicting a particular event,
given existing conditions.

a. Quantified Uncertainty. Probability forecasts
quantify uncertainty. They do not eliminate the causes
of uncertainty described in paragraph 2-2a; rather they
allow the forecaster to express all outcomes
quantitatively in probabilistic terms.

b. Optimum Use in Decision Making. Probability
forecasting does not change the skill or accuracy of the
forecasts, but by providing aquantitative assessment of
ali possibilities, does enhance decision making. Further,
the forecaster concentrates on what he does best,
forecasting the weather, leaving operational thresholds
and decisions to the customer. The following examples
illustrate typical applications of probability forecasts in
various types of decisions.

Example 1. A mission scheduled for base A can
use either base B or base C as an alternate. The
categorical forecasts for bases B and C are for above
minimum conditions. However, the base B forecastis for
55% probability of above minimums, while the base C
forecast is for 90% probability. By considering the
probability forecast, the decisionmaker can make a
better choice of an alternate if weatheris the only factor.

Example 2. During the first part of a training
period, a wing commander may use a 60% probability of
favorable weather as the threshold to make ‘“go”
decisions for flying training missions. Toward the end
of the period, however, the commander might change
the threshold probability to 40%, if training is behind
schedule, or to 70% if ahead of achedule.

Example 3. A C-130 wing commander must protect
base aircraft from winds greater than 35 knots. A
forecaster using categorical forecasts probably will not
issue a wind warning unless the probability of
occurrence is higher than the probability of
nonoccurrence, e.g., greater than 50%. However, the
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wing commander determines that the costs to protect
are small compared with the possible loss, and that
warnings are needed more often than this. Protective
action will be taken if the probability of occurrence is
greater than 30%.

Example 4. The same C-130 wing commander
decides that, with a C-5 on his base, to lower the
probability (and thus the risk) above which to take
protective action to 10%.

Example 8. Given a 50% probability of favorable
aerial refueling weather for an overseas training
deployment of fighters Tactical Air Command would
most likely delay the mission, or look for a refueling area
with a higher probability of favorable weather. In the
event of a contingency, however, a threshold probability
as low as 20% may trigger a “go” decision.

¢. Multiple Use. Probability forecasts allow more
than one customer to use the same forecast. Customers
on the same base have widely varying priorities,
mission urgencies, flying experier.ce, and aircraft with
different weather senasitivities, instrumentation, and
ordaance. With probability forecasts, they can weigh
these factors individually and act only when the
forecast probability exceeds their critical probability
threshold. Consider the following examples:

Example 1. An aero club might take protective
action when the probability of 30-knot winds exceeds
20%, but an F-4 wing might wait until the probability
exceeds 60%.

Example 2. The forecast for a base may be for
60% probability of below landing minimums. An HC-130
on a regcue mission to this base would probably “go.” A
student pilot planning a cross country solo in a T-37
certainly would not plan to Jand at this base.

d. Problems. Although probability forecasting
offers advantages, there are several potential problems
with implementing this program.

(1) When the National Weather Service(NWS)
started using probabilities in precipitation forecasts,
they encountered three main problems: forecaster
tendency to suppress uncertainty, customer lack of
understanding of what probabilty forecasts actually
mean, and objections to increased user/decisionmaker
workload (Kelly, 1976). Similar problems will
undoubtedly affect AWS efforts.

(2) Any new procedure causes an initial surge
in workload to train forecasters. New educational
programs must be devised. Probability forecasts require
the forecaster to consider all possible weather outcomes
and quantify the probability of occurrence of each.
Verification of probability forecasts also requires more
time and effort than verification of categorical
forecasts. This increased workload need not be very
large with proper training. Its extent depends on how
the forecasts are implemented. In some cases, a number
of customers or a variety of requirements can be
satisfied by one forecast, with only a small increase in
workload. The wide use of tailored probability forecasts
could result in a substantial increase in workload.

(3) A major problem is customer acceptance of
probability forecasts. Air Force decisionmakers are

#ﬁ—_
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generally concerned only with their next decision; the
quality of yesterday’s or tomorrow’s forecast does not
concern them today. The key to solving this problem is
convincing the customer of the benefits derived from
using probability forecasts (Chapter 5). However, the
fact that probability forecasts save money “in the long
run” may not sway some Air Force decisionmakers to
accept probability forecasts for all missions.

2-4. Reasons for Adoption.

a. Enhanced Use of Forecasting Services. If
decisionmakers had perfect categorical forecasts, their
decisions would be simple: select the course of action
which produces the best result. It is generally conceded
that we will not be able to predict weather events with
perfection in the foreseeable future. Further
improvements in accuracy will come in small
increments, as we refine existing techniques. Therefore,
we must look for better ways to enhance the use of our
existing prediction capability in the customer’s decision
making process. This is especially important, since our
weapons systems and tacticse are becoming more
weather sensitive, and the decision processes more
complicated.

b. Potential Cost Savings. Although use of
probability forecasts will not increase our forecasting
skill, their increased utility for decisionmaking can lead
to substantial resource savings.

Example 1. The Space and Missile Test Center
(SAMTEC) manages the Western Test Range, which
extends from the launch site at Vandenberg AFB,
California to the Indian Ocean. The weather is extemely
important when R&D ballistic missile launches are
planned, because of uprange, midrange, and downrange
weather constraints. Activation of all facilities and
sensors necessary to support such a complex launch
must begin several hours before scheduled launch time.
If the operation is scrubbed late in the count-down,
thousands of dollars (in some cases hundreds of
thousands) in range costs are expended with no payoff.
To avoid these costly “weather scrubs,” SAMTEC
began using probability forecasts for decisions to
activate the range and continue a count-down. The
probability forecasts were for specialized weather
criteria that was so climatologically rare that it seldom,
if ever, would have been forecast had categorical
forecasts been used. By using probability forecasts,
SAMTEC was alerted to those cases when the
probability of occurrence was significantly higher than
the climatological probability. Over a period of 14
months, SAMTEC documented a net savings of
$3,200,000 in range support costs by avoiding 18
unsuccessful count-downs. (Lyon and LeBlanc, 1976).

Example 2. A study of the United States
construction industry by Russo (1966) estimated that
the annual dollar loss to the construction industry due to
weather causes ranged from $3 to $10 billion. Using
techniques similar to those described in Chapter 5,
Russo determined that an annual savings of $0.5 to $10
billion was poasible, if probabilistic forecasta of critical
weather elements were provided to and used
appropriately by the industry. Skill levels existing at
that time were assumed. Russo also found that the
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maximum achievable savings, assuming 100%
accuracy of all short range forecasts (0-24 hours), was
only $300 million above that of probabilistic forecasts.

These examples illustrate how significant savings
are obtained by using probability forecasts in weather

2-3

sensitive decisions. Since weather affects almost every
facet of military operations, there is no reason why
similar savings cannot be achieved in this area as well.
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Chapter 3
HOW TO PREPARE PROBABILITY FORECASTS

3-1. General. The meteorological principles used to
prepare categorical forecasts also apply to probability
forecasting. Any forecaster capable of producing good
categorical forecasts can also produce good probability
forecasts by following a few simple guidelines. This
chapter describes how to prepare probability forecasts,
and offers suggestions for amending them.

3-2. Defining the Event. The forecast event must be
precisely defined and understood by both the customer
and the forecaster. The importance of this must not be
underestimated. Users will assign a variety of
interpretations to a single probability forecast if the
event is not precisely identified. Myers (1974) listed a
total of six different interpretations of the meaning
given to probability of precipitation (POP) forecasts by
the public.

(1) The probability that measurable rain (i.e.,
0.01 inch or more) will fall somewhere within the
forecast area sometime during the period covered by the
forecast:

(2) The probability that a general rain will
cover the entire area;

(3) The fraction of the forecast area that will
receive measurable rain in the forecast period;

(4) The fraction of the time interval during
which measurable rain falls;

(5) The probability that a traveler in the
forecast area will encounter rain during the forecast
period; and

(6) The probability that a specific point in the
forecast area will receive measurable rain sometime
during the forecast period. This is the official definition,
but even it is not clearly understood or sed by all
forecasters (Murphy and Winkler, 1974).

a. Tailoring Forecasts. Operations require
forecasts tailored to specific requirements. This means
the event must be defined in terms of a weather element
exceeding a certain threshold (amount, duration,
intensity, etc.). For example, the Base Civil Engineer
may require predictions of the most probable rainfall
amount, the number of hours during which a given
intensity of rainfall will occur, or the probability of tota!
rainfall exceeding a specified amount. To another
customer a 15% chance of freezing rain may be more
significant than an accompanying 70% chance of light
rain and 5% chance of sleet, all in a situation where the
total probability of precipitation is 90%. The important
point is that the event must be stated in terms of the
likelihood of the element exceeding a critical threshold.

b. Determination of Forecast Periode. The time
period is an important factor to consider when
preparing a probability forecast. For many cases the
forecaster will be confident that an event will occur, but
will be uncertain about the actual timing. Consider the
following example where a cold front with a well defined
rain band is approaching a base. The event to be
forecast is the occurrence of rain at the base any time
during a six hour forecast period.

The forecaster believes that there is a 100%
probability that rain will occur at the station and will

last only one or two hours. He is uncertain, however,
exactly when it will occur. If the time of occurrence is
centered around the dividing time between forecast
periods, three poseibilities exist: (1) all the rain may fall
during the first forecast period, (2) all of it may fall
during the second forecast period, or (3) it may rain
during both periods. In addition, if the midpoint of the
rain period is expected to be exactly on the dividing time
between forecasts periods, each of the three possibilities
i8 equally likely. Thus, there are two ont of three chances
(67% probability) that it will rain in the first period with
the same probability for the second period. Thus, the
100% probability of occurrence becomes 67% for each of
the fixed time periods (Hughes, 1965).

If we change the event to rain at the 6th hour of a
forecast period, the same three possibilities exist. In this
case, however, the probability of occurrence becomes
33% (one chance in three of rain occurring at the 6th
hour).

Conversely, if the forecaster is confident about the
timing of the event, and the duration is expected to ve
much less than the forecast period, it would be best to
assign various probabilities to increments of the
forecast period. For example, the probability of
precipitation for an eight hour period may be 60%, but
the probabilities for two hour increments of the forecast
period could be 50%, 30%, 20% and 10%, respectively.
Note that if the probability forecasts are made for
increments of the forecast period, the sum of the
probabilities may exceed a single probability forecast
for the entire forecast period, and may even exceed 100%,
since the events in this case are not mutually exclusive.

3-3. Precision of Probability Forecasts. Any
probability value from 0-100% can be used for
forecasting purpos=s, but the use of all integers between
0 and 100 implies more precision than actually exists.
The forecast increments should be as detailed as
required by the customer, but should not be more precise
than is justified by forecasting skill. Except for values
near the extremes, forecasters generally cannot
differentiate much finer than 10% probability
increments. However, for rare events, probability
increments must be small enough to allow forecasters to
select probability values on both sides of the climatic
frequency of the event. The size of the probability
increments will also affect forecast verification, since
for verification purposes it is desirable to group
probability forecasts into intervals which correspond to
the probability increments that will be used. For
information about how NWS selects probability
intervals, see Attachment 3.

3-4. Preparing the Forecast. The process of
analyzing meteorological data is essentially the same
when preparing either categorical or probability
forecasts. When preparing a categorical forecast, the
forecaster must predict the conditions most likely to
occur during the forecast period. However, for a
probability forecast, he quantifies the likelihood of a
specific, predefined event occuring during the forecast
period.
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The forecaster must consider such factors as the
climatic frequency of the ev:nt, the size of the forecast
area, and the expected timing and duration of the event.
When assessing the probabilities, the forecaster must
think in terms of groups of forecast situations and
compare the present meteorological conditions to those
experienced in the past.

For example, if a forecaster knows that a given
synoptic situation produced rain every time it occurred
in the past, and that the exact condition exists today,
then the forecast probability should be 100%. On the
other hand, another mevorological situation may have
produced rain on 6 out of 10 times in the forecaster’s past
experience. If similar conditions exist today, the
probability should be 60%.

a. Use of Long-Term Climatology. Climatology is
the starting point for every probability forecast. Over
the long term, the weighted average of the forecast
probabilities should equal the climatic probability of the
event (assuming no climatic change and that the
forecasts are reliable). A desired objective of probability
forecasting is to move individual probabilities away
from climatology. Climatic probabilities tell the
forecaster how frequently high and low probabilities
should be used (i.e., sharpness distribution). Consider
the RUSSWO climatology for Scott AFB given in Table
31

3-2

Table 3-1. Climatic Probabilities for TAF
Ceiling Categories for Scott AFB.,

Valid 1800Z Dec.

CATEGORY A B C D
PROBABILITY 00 10 21 .69

The climatic probabilities imply that most forecasts for
category A should be for probability values near zero.
Similar reasoning applies for category B. However, the
frequency of high forecast probability values would be
quite large for category D. If the forecasts for category D
were perfect, there would be 69 forecasts out of 100 with a
probability of 100%, and 31 out of 100 with a probability
of 0%. However, it is unrealistic to expect such sharpness
in most cases.

b. Use of Conditional Climatology (CC). For
ceiling and visibility forecasts, most units have CC
tables which provide a startirg point with built-in skill.
It is a challenge for most forecasters to surpass the
forecasting skill of these tables. There are several kinds
of CC tables (unstratified, stratified, etc.), but thereis no
one best kind for all situations.

(1) Conversion of CC categories to TAF
categories. One minor difficulty in using the older CC
tables is that the categories are not the same as those
presently used in TAFs. Table 3-2 shows how to convert
the probabilities in older CC tables to existing TAF
categories.
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Table 3-2. Six Hour CC Conversion Table
ENTER WITH: OBRTAIN:
EQUIVALFNT TAF CATEGORY
AND CC PROBABILITY
INITIAL CIG CIG/VSBY
CC CATEGORY |[CC CAT CC PROB LIMITS TAF CAT PROB
A 13 <200 A 13
B 13 >200<500
B 40
C 27 >500<1000
A
D 27 >1000<3000 C 27
E 7 >3000<10,000
D 20
F 13 >10,000
INITIAL VSBY
CC CATEGORY
J 13 <} A 13
K 8 >% <1
B 32
L 24 >1 <2
J
M 5 >2 <3 c 5
N 18 >3 <6
n 50
0 32 >6

(2) Example Using CC. The following
example shows how CC tables are used to prepare
probability forecasts. Consider a six hour forecast of the
four ceiling categories in the TAF for Scott AFB. The
forecast will be made by using the 0700 EST surface
charts (Figure 3-1) and will be valid for 1300 EST on 25
December. The surface chart for the previous day is
provided for continuity. Observations at map time are
written at the bottom of the charts. Arrows on the charts
point toward plotted observations for St Louis MO. The
long term climatic probabilities for the TAF categories
are: A - 0%, B - 10%, C - 21%, and D - 69%. Wind stratified
CC probabilities for this situation are as follows: A - 13%,
B - 40%, C - 27% and D - 20% (Note that the occurrence of
TAF categories are mutually exclusive events, so the
sum of the probabilities for TAF categories always equal
100%.) CC probabilitiee make a reasonably good
forecast. The forecaster must determine how much (if
any) the CC probabilities must be adjusted for the
particular situation. In this case CC indicates that the
probability of the initial category (A) remaining for six

hours is only 13%, and the most likely category to occur
is B. But since a cold front over Scott AFB is not an
average situation, and continuity suggests a clearing
trend after the frontal passage, one might expect the CC
values to be on the pessimistic side. Timing of the frontal
passage in this case is the major uncertainty. Rather
than assigning a probability of 100% to Category D, the
timing uncertainty can be accounted for by adjusting
the CC probabilities as follows: A - 0%, B - 5%, C - 15%,
and D - 80%. Other forecasters may have chosen
different values based on their experience and
confidence. Category D verified. In this example CC
indicated the trend, but since the clearing was caused by
a relatively unusual situation, CC was pessimistic and
overforecast categories B and C. CC probabilities must
be modified when the existing situation is not average.
Even then there should be a good reason for deviating.
This does not imply that the well-known biases of CC,
e.g., weakness in forecasting downtrends, should be
ignored. In summary, use CC tables as a starting point
for distributing probabilities, when more than two
categories are involved.
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Figure 3-1. Surface charts for preparing a forecast using conditional climatology.
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¢. Use of Objective Forecast Studies. Many local
forecast studies contain guidance already stated in
probabilistic terms (observed frequency). Other studies
may be converted for use in probatility forecasting. The
utility of these aida can be evaluated using techniques
described in Chapter 4.

d. Centralized Forecaster Aids. Centrally
produced probability forecasts, such as TDIL, MOS
forecasts are a valuable input to local forecasts, if
adjustments are made to account for known mode}
biases and recent observations. Rules for modifying
objective forecasts may be developed, but modifications
should not be made unless theye is good reason to do so.
The centralized forecasta are especially useful beyond
the 12 hour point. Experiences of the Central Region of
NWS indicate that their forecasters can successfully
improve upon portions of TDL MOS forecasts, but most
improvement occurs only during the firat 12 hours.
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3-85. Amending Probability Forecasts. Confidence
that the event will or will not occur increases as the lead
time in a probability forecast erodes. This change of
confidence means that amendment procedures must be
established. The first approach should be to avoid
amendment problems by issuing updates at prescribed
times. If this cannot be done, then establish rules which
specify amendment criteria. User requirements and the
type of forecast will determine the amendment criteria
for each case. The following amendment criteria might
apply.

a. Whenitappears thata TAF category other than
the one with the highest probability will verify.

b. When the forecast probability passes through
the customer’s critical probability in either direction.

¢. When the forecast probability changes by a
specified interval, for example if + 20%,
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Chapter 4
EVALUATION TECHNIQUES

4-1. General. The techniques for evaluating
probability forecasts are different and more complicated
than for categorical forecasts. However, the objectives
are the same: to determine how good the forecasts are
and to show how to improve them. Verification feedback
to those who prepare probability forecasts is a key
element in the evaluation process. It is also important
for the decision maker who receives probability
forecasts to review verification data periodically, since
the quality of the forecasts affects his thought process.
This chapter describes techniques for evaluating

probability forecasts and how to improve them.
Sharpness and reliability, two properties of probabxhty
forecasts, are discussed. Methods for measuring and
achieving good sharpness and reliability are shown.
The chapter concludes with a discussion of the Brier
probability score, a system for computing a single
number that reflects the overall goodness (sharpness
and reliability) of a set of probability forecasts. While
reading the chapter, keep in mind that the purpose is not
to impose all of the verification schemes shown, but to
show the methods that could be employed.

4-2. Sharpness and Reliability. In order to
evaluate a et of probability forecasts, one must consider
two properties: sharpnees and reliability. Sharpness is
the ability to “sort” all poesible events into an ordered
set of categories of likelihood of occurrence (e.g., rain or
no rain) (Sanders, 1963). Resolution is another term

FORECAST VERIFICATION

OCCUR- | # OF OBSVD
RENCES FCSTS FREQ
o
100
3 5 7 71%
Po
o4 0O 2 4 50 % 280
~ |
ot -
o a
83| 1 4 25% T 60
o o)
4 19
a a
23] 1 1 100 % “ 40
0 o
o 3]
S 8
AN I 6 17% S 20
o
o 0 9 0% 0
Totals Climo
10 31 32%
Figure 4~1.

sometimes used, but we prefer sharpness. Reliability is
the ability to “label” each category derived in the
sorting process with a specific likelihood, or probability
of occurrence (Sanders, 1963). For example, the
probability of rain is 65% (no rain - 35%).

a. Sharpness. Sharpness measures the degree of
certainty of probability forecasts. “Perfect” sharpness
occurs when all forecasts are for either 0% or 100%
probability of an event occurring. Categorical forecasts
have maximum certainty and, thus, have “perfect”
sharpness (categorical forecasts are a special case of
probability forecasts). “Zero” sharpness exists when all
forecasts are for the climatological probability of the
event. This is because the climatological probability (or
frequency of occurrence) is generally known, and a
forecaster with minimum certainty can always forecast
climatology. The objective of measuring sharpness,
therefore, is to determine a forecaster’s ability to move
the predicted probabilities away from the event’s
climatological frequency. It is important to note that the
measure of sharpness has nothing to do with the actual
occurrences of the event.

(1) Sharpness Diagrams. To measure
sharpness, determine how forecasts are distributed
throughout the range of probabilities (0-100%) with
respect to the climatological frequency. One methodis to
depict on a forecast distribution graph the number of
times each probability was used in the set of forecasts
being evaluated. Plotting the counts in the appropriate
probability interval results in a bar graph (Figure 4-1).

FORECAST DISTRIBUTION

1] 0o} 1} 1} 1] 11 O

1] 141 0] O

11 01 0| O

1

0| O] 1} O} 0} ©

01 0] 0] 0] oJ O] Of O] O

1 2 3 4 5 6 7 8 91011 12
Forecast Frequency

Legend: 1-Represents event occurrences

O-Represents nonoccurrences

Example Forecast Distribution Diagram (Sharpness).
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In this example, probability intervals of 20% were used;
for most operational forecasts, smaller intervals are
usually required. For verification, an observed event is
annotated by a “1” (an observed probability of 100%); an
event that did not occur is labeled with a “0” (an
observed probability of 0%) (Sanders, 1958). Forecast
frequency is the number of times each probability value
was forecast. After the number of forecasts in each
interval is plotted, bars can be drawn to highlight the
distribution. If the set of forecasts is very large, one can
compute the percentage of forecasts in each probability
interval and plot these percentages proportionally for
the forecast frequency. This diagram illustrates a
sharpness pattern one might obtain from an evaluation
of a series of 31 forecasts issued once daily for the
occurrence of a ceiling and/or visibility below 3000 feet
and/or 3 miles six hours later. This set of forecasts
exhibits a fairly good degree of sharpness, i.e., 16 of 31
forecasts were in either the 0 or 100% probability
intervals, with another 10in adjacentintervals (4in 80%
and 6 in 20%). Note that only one forecast was in the
interval (40%) closest to sample climatology (32%), i.e.,
zero sharpness was not a major problem. If these
forecasts had exhibited perfect sharpness, all would
have fallen in either the 0 or 100% intervals.
Additionally, if the forecasts were all perfectly accurate,
the forecast probabilities would have been distributed in
those two intervals in proportion to the number of
observed and not observed cases, i.e, all 10 event
occurrences would have been in the 100% interval, and

AWSP 105-51 31 October 1978
all 21 nonoccurrences in the 0% interval. This is exactly
what categorical “yes or no” forecasts attempt to do. In
fact, this and other discussions that follow indicate that
categorical forecasts are simply a special case of
probabilty forecasts.

(2) Typical Forecast Distributions. Since
sharpness is a measure of certainty, it is dependent on
forecasting skill. The shape of a forecast distribution
diagram also depends on the climatological frequency of
the event being forecast. These two relationships have
been modeled and are shown in Figure 4-2 (Boehm,
1976b). Skill in these examples is represented by the
correlation of forecast probabilities with verifying
observations and ranges from 0.2 (low skill) to 0.95 (high
skill). These graphs are the same type as the graph in
Figure 4-1, except the graph in Figure 4-1 was placed on
its side and the order of probability values reversed.
Notice the symmetry associated with distributions
having a climatological probability of 0.5, and the
skewness tendency as the climatological probability
decreases; i.e., the skewness varies in proportion to the
climatological frequency. Also, notice the high degree of
sharpness corresponding with high skill, and near zero
sharpness corresponding with low skill. Although these
distributions are theoretical models and assume perfect
reliability, they can be used as the ideal when
subjectively evaluating forecast distribution diagrams
for sharpness. Similar distributions for climatic
probabilities greater than 0.5 would be a mirror image of
those below 0.5.
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FORECAST CORRELATION
" LOW SKILL MODERATE SKILL HIGH SKILL
6 8 95

« Lan |
LLLLL

NOTE: 1. Graphs assume perfect reliability.

CLIMATOLOGICAL PROBABILITY

2. On individual graphs, abscissa is the forecast
probability (0-100%), and ordinate is the relative
frequency of forecasts.

3. Forecast correlation is the correlation between
forecast and observed events.

e Figure 4-2. Forecast distribution frequency graphs as a function
of forecasting skill and the climatological frequency
‘ of the event.
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b. Reliability. Reliability is a measure of a
forecaster’s ability to accurately assign probability
values. It reflects the degree that forecast probabilities
ressmble the observed frequency for each forecast
probability interval. For example, an event would occur
80% of the time for a series of perfectly reliable 80%
probability forecasts. Reliability does not measure skill,
since always forecasting the climatological probability
would be a perfectly reliable forecast (Sanders, 1963).
However, it is a measure of how well forecasters know
their skill limits. No single forecast can be judged as to
ita reliability; reliability can be evaluated only for a set
of forecasts. “Perfect”’ reliability occurs when forecast
probabilities are the same as observed frequencies for
each probability interval throughout the range of
probabilities (0-100%). “Zero” reliability occurs when all
forecasts are exactly wrong; i.e., all forecasts were for
values of either 0% or 100%, and the observed frequencies
were the opposite. Thus, only 0% or 100% probability
forecasts can be perfectly right or wrong. Intermediate
values are only partially right or wrong.

(1) Reliability Diagrams. To measure
reliability, graph the observed frequency for each
forecast probability interval against the forecast value.
Figure 4-3 is the reliability diagram that goes with the
forecast set presented in Figure 4-1.

(2) If forecasts are perfectly reliable, plots of
the observed frequency fall exuctly on the diagonal line,
commonly called the line of perfect reliability. Most
plotted values of observed frequency in Figure 4-3do not
fall on this line. Horizontal lines were drawn from the
diagonal to the plotted points to indicate their distance
from the line of perfect reliability. We know most of these
forecasts were not reliable, but now we must determine if
these deviations were significant. A simple test for
determining the significance of deviations from the line
of perfect reliability is either to add or to subtract “‘one”
from the number of events that occurred at the
probability interval under investigation. Add if the
plotted point is to the left of the diagonal; subtractifitis
to the right. Recompute the observed frequency. If the
line of perfect reliability falls between the actual and
test values, the deviation is not considered significant. If
the diagonal still is not reached, the deviation from
perfect reliability is significant, and forecast
performance needs improvement.

(a) To illustrate, consider forecast
performance at the 100% interval. Adding “one” to the
five occurrences raises the observed frequency to 86%
(6/7) which is still less than 100%; thus, this deviation
from perfect reliability is significant. Using this test for
the remaining probability intervals shows the
deviations at 80% and 60% are significant, and those at
40% and 20% insignificant.

(b) This test only tells us whether or not
the deviation from perfect reliability is important, when
there are a small number of occurrences involved. The
test gives no information about how good or how bad the
significant deviations are. This must be judged from the
impact of unreliable forecasts on operational missions.
Ndte, rare events will show large deviations, many of
which will be classed as insignificant by using this test.
Therefore, one should be cautious in applying this test
when the climatic frequency is very low.

¢. Over-underforecasting and Over-underconfi-
dence. There are four special cases of deviations from
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perfect reliability: overforecasting, underforecasting,
overconfidence, and underconfidence (Sanders, 1958).
These are illustrated in Figure 4-4. In each case,
deviations extend over all probability intervals and are
identified by the hatched areas.

(1) Qverforecasting results when a forecaster
uses probability values that are too high compared to
the observed frequency. All deviations on the same side
of the line of perfect reliability indicates a problem
exists, even if all of the deviations are not significant.

(2) Underforecasting occurs when the
probability values used are too low compared to the
observed frequency.

(3) Overconfidence results from trying to
achieve greater sharpness than is warranted by
forecasting skill. It is the excessive use of higher and
lower probability values on the respective sides of the
climatological frequency. This is very common with
experienced forecasters in their early attempts at
probability forecasting; it is considered to be a residual
effect of categorical forecasting.

(4) Underconfidence results from
understating the probability of occurrence of the event;
i.e., hedging the forecast away from the extremes (0%
and 100%) toward the climatological frequency. It is
characteristic of individuals who are overly cautious
and are not displaying their full forecasting abilities.

4-3. Controlling Sharpness and Reliability. The
objective in probability forecasting is to achieve the
optimum balance between sharpness and reliability.
Excessive sharpness will show up as bias in reliability
which can be corrected. However, an underestimate of
skill (inadequate sharpness) can unknowingly exist and
never bereflected in reliability measures (Hughes, 1965).
Therefore, forecasters must not be content with perfect
reliability. Remember that constant forecasts of the
climatological probability will be perfectly reliable in
the long run, but have zero sharpness and require no
skill. Initial efforts in probability forecasting must
concentrate on attaining acceptable reliability.
Experiences of NWS indicate. that forecasters can
quickly adjust their biases, given timely feedback
(Hughes, 1976a). Once the forecasts are consistently
reliable, emphasis should shifc voward maximizing
sharpness, and then continually strive for the proper
balance of the two.

a. Bias. The term “bias” is frequently used in
conjunction with the four characteristics of
over/underforecasting and over/underconfidence to
indicate the magnitude and direction of the tendency to
deviate from perfect reliability. A value of bias can be
determined for each forecast probability interval, as
well as for the entire set of furccasts overall. The former
is called interval bias; the latter, overall bias.

(1) Interval bias. Bias for each probability
interval is computed by subtracting the observed
frequency from the probability value of the
corresponding forecast interval (Hughes, 1976a). For
example, biases for the example given in Figure 4-3 are:
100-71% =+29%, 80-50% = +30%, 60-25% =+ 35%,=40
100% =-60%, 20-17% =3%, and 0-0% =0%. The sign of the
bias value indicates the type of bias, i.e., positive values
reflect overforecasting; negative values,
underforecasting. The magnitude of interval bias
indicates the percentage difference betweei. the




46

observed frequency and perfect reliability or, the
reliability error. The significance of interval bias
depends on the number of forecasts in each interval. A
large bias in only one interval containing a small
number of forecasts is not significant, unless adjacent
intervals have the same kind of bias. Further, small
biases that alternate in type (sign) with increasing or
decreasing probability are usually the result of
sampling error. However, a series of biases of the same
type, even for small values, indicates undesirable
trends.

(2) Overall bias. One method to make a quick
check for reliability errors in a set of forecasts is to
calculate the overall bias (B) by using the equation.

IP-0

where 0 is the total number of event occurrences in the
set of forecasts, N is the total number of forecasts made,
and P is the sum of all the probability values used in the
set. The latter can be computed by adding all individual
probability values, or by multiplying the probability
times the number of forecasts in each interval and then
adding (remember to use decimal values of probabilities
in all formulas). The latter method is recommended
because it is easier and quicker; Table 4-1 demonstrates
this computational method. Another equation for
overall bias is (Hughes, 1976b):

LP~-0 4-2)
B = 0

While both equations are proper, 4-1 is used here to be
compatible with the method used forinterval bias and to
place finite limits on the range of B encountered.

(a) The four examples shown depict the
relationship between interval bias and overall bias and
demonstrate how bias can be used to determine
reliability. For example, the set of forecasts with
overforecasting have a positive bias in all but one
interval, and an overall positive bias of .1 or 10%. Since
this is a pure case of overforecasting where all interval
biases are plus 10%, the obvious solution for achieving
perfect reliability would be to move the probability
values of all the forecasts down one interval. In other
words, the forecaster should be instructed to reduce
forecast probabilities by 10% in every interval for his
next set of forecasts. Underforecasting is exactly the
opposite problem. Here the forecaster should be told to
raise his probability values by 10% in future forecasts.
Overconfidence is a combination of over and
underforecasting. In this example, the forecasts were
10% too high above sample climatology (50 events/100
forecasts = 50%) and 10% too low below sample
climatology. To improve, the forecaster should reduce
his forecast probabilities above the climatological
probability by 10% and increase those below
climatology by 10%. Underconfidence is the opposite of
overconfidence and, when diagnosed, should be
corrected by making the opposite corrections as for the
overconfidence example. Refer back to Figure 4-4 to see

AWSP 108-51 31 October 1978

these reliability biases in graphical format.

(b) Absence of overall bias does not
necessarily mean the absence of reliability problems
(Hughes, 1976a). In Table 4-1, notice that overall bias for
both over and underconfidence is zero. This is because
overall bias is actually the weighted average of positive
and negative interval biases, which, in this example,
cancels values of equal but opposite sign. Therefore, a
forecaster should inspect interval bias as well as overall
bias, because large interval biases could exist even
though overall biasis zero. On the other hand, an overall
bias indicates a reliability problem, and the type of bias
(overforecasting or underforecasting).

b. Figure 4-5 shows additional examples of the use
of sharpness and reliability diagrams to evaluate
probability forecasts.

(1) In the first example (overforecasting), a
positive bias of 20% occurred in the 100% probability
interval. By using the significance test from para 4
2b(2), we see this is on the borderline for classification as
significant; i.e., the test value equals perfect reliability.
However, since this is the only interval with a deviation
from perfect reliability, one should seek to correct it. A
possible explanation is that the deviation occurred
because either forecast skill or the state-of-the-forecast-
art was exceeded. The forecasts were for 100%
probability, while the observed frequency was only 80%.
If an 80% probability had been assigned to these five
forecasts, they would have been perfectly reliable.
Consequently, the forecaster should be instructed to
avoid using 100% probabilities in future forecasts unless
heis certain. This forecaster should also be instructed to
improve sharpness, i.e., to try to better identify those
cases when high and low probabilities are justified.

(2) In the underforecasting example,
significance tests show that the deviation for the 80%
probability interval is significant, and deviations at the
other intervals are borderline. Even if all deviations
were classified as insignificant, the forecaster should be
concerned, because all the biases have the same sign. To
improve reliability, this forecaster should use a
probability value one interval higher in future forecasts.
Too many probabilities are being assigned in the middle
intervals. In summary, this problem is the inability to
recognize those cases when the threshold is met
(indicated by a “1” for verification purposes).

(3) The overconfidence example indicates that
forecasting skill was exceeded. Note that this forecaster
has a good sharpness pattern—25 of his 31 forecasts
were for 0% or 100%. The underconfidence example
indicates an understatement of forecast skill; most
forecast probabilities are grouped around climatology
(64%), i.e., sharpness is bad. The examples given in
Table 4-1 and Figure 4-5 were designed to show the
mechanics of using bias to improve reliability. In actual
practice, solutions will not be as clear. Sharpness and
reliability problems will be mixed, and sampling
problems (noise) can be quite large in small data
samples.
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Table 4-1.

AWSP 108-51

Using Bias Measures to Improve Reliability.

Definitions

P = Probability value for each interval

N = Number of forecasts for each interval

O = Number of event occurrences

81 October 1978

O/N = Observed frequency
P-0/N = Interval bias

OVERFORECASTING UNDERFORECASTING
P N PxN 0 0/N P-0/N P N PxN 0 0/N P-0/N
1.0] 20 20 |18 .9 +.1 1.0 © 0 - - -
.91 10 9 8 .8 +.1 .9] 10 9 10 |1.0 -.1
.8] 10 8 7 .7 +.1 .81 10 8 9 .9 -.1
.71 10 7 6 .6 +.1 .71 10 7 8 .8 -.1
.6 10 6 5 .5 +.1 .61 10 6 7 .7 -.1
.41 10 4 3 .3 +.1 4110 4 5 .5 -.1
.31 10 3 2 .2 +.1 3110 3 4 A -.1
.21 10 2 1 .1 +.1 .2] 10 2 3 .3 -.1
.1} 10 1 0 0 +.1 .1} 10 1 2 .2 -.1
.01 O 0 - - - .0} 20 0 2 .1 -.1
All 1100 60 ¢ 50 All 1100 40 50
Overall Bias B = é%i%g = +.10 Overall Bias B = gﬁi?o = ~.10
NOTE: Probability interval of .5 was omitted for simplicity.
OVERCONFIDENCE UNDERCONFIDENCE
P N PxN 0 O/N P-0/N P N PxN 0 0/N P-0/N
1.0] 20 20 18 .9 +.1 1.0p O 0 - - -
9] 15 13.5}| 12 .8 +.1 .9 4.5 1.00 -.10
.8] 10 8 7 .7 +.1 .81 10 8.0 .90 -.10
1 5 3.5] 3 .6 +.1 .71 20 |14.0 |16 .80 -.10
.6 0 0 - - 6] 15 9.0 |10 .67 -.07
4100 0 0 - - 41 15 6.0 5 .33 +.07
31 5 1.5] 2 4 -.1 .31 20 6.0 4 .20 +.10
.21 10 2 3 .3 ~-.1 .2] 10 2.0 1 .10 +.10
1§ 15 1.5]1 3 .2 -.1 ) 5 .5 0 .00 +.10
.0] 20 0 2 .1 =.1 0] O 0 - - -
Al111100 50 50 Al1{100 50 50
Overall Bias B = —5%',%9 = .00 Overall Bias B = 5({3500 = .00
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Examples of Over and Underforecasting and Over and Underconfidence.
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c. Establishing and Using Reliability Standards.
By using the principle that forecasting skill decreases
with increasing length of time (or lead time) of forecasts,
Hughes (1965, 1966, 1967b) has shown that this
reduction of skill also shrinks the useable range of
reliable probabilities available to the forecaster. The
illustration at the top of Figure 4-6 depicts this concept.
For forecasts with short lead time, it is usually possible
to use the full range of probability values 0 through 100%
and still achieve good reliability. However, as lead time
increases (and skill or state-of-the-art decreases) the
upper and lower limits of reliable forecasts shrink and
converge to the climatological probability. The exact
shape of the curves and the point at which they converge
to climatology will vary with the event, its climatic
frequency, the forecasting state-of-the-art for the event,
and with the individual’s skill.

(1) The three reliability diagrams at the
bottom of Figure 4-6 depict how the top diagram might
be derived (Hughes, 1965). First, standard reliability
diagrams are plotted for forecasts of the given event;
separate diagrams are plotted for selected lead times.
The next step is to identify the upper and lower limiis of
acceptable reliability. By using a standard agreeable to
the customer, determine the upper and lower forecast
probability values which separate the reliable and
unreliable areas on the diagram. In this example a bias
of greater than * 5% deviation from perfect reliability
was used to flag the unreliable areas. Horizontal lines
depicting upper and lower limits of reliability were
drawn at the forecast probability value above or below
which deviations exceeded the standard. The
probability values which separate the areas were plotted
on the top diagram at the appropriate }-.d time.
Smoothed upper and lower limit curves were then drawn
connecting the plotted points. In actual practice, most
units will not issue forecasts which have a lead ‘ime
extending out to the time where the upper and lower
limits converge. However, if such a diagram is required,
the right hand portion of the diagram may have to be
extrapolated. This type of diagram has the advantage of
showing the cut-off point beyond which no skill exists,
and when climatology should be used as the forecast.

(2) Consider a short range forecast for ceilings
below 5,000 feet with a lead time of one to three hours.
There would be many times that the forecaster would be
certain that the event would or would not occur;
consequently, probabilities of 0 to 100% could be used
reliably. Further, there are times when these values
could be used with much longer lead times. But, for
forecasts out to 24 to 36 hours, skill and reliability limits
would most likely be exceeded if probabilities of 0 and
100% were used frequently.

(3) Next, consider a forecast for a rare eent
such as tornadoes. There should be very few times that
forecasters would use 100% probability, and those times
most likely would ocrur only after a tornado has been
sighted or detected on radar. Use of high probabilities
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would decrease very rapidly with lead time and
converge to climatology (which is also extremely low in
this case) for a lead time of a few hours. Thus, oneseldom
uses high probabilities to forecast rare events. When
values larger than zero are used, they should not be
substantially greater than the climatological
probability except for very short lead times.

(4) The initial bias of almost every forecaster
inexperienced in probability forecasting is one of
overestimating the degree of skill possessed. Not fully
realizing their limits, forecasters generally use high and
low probabilities values too frequently especially for the
longer lead times, resulting in poor reliability. (Hughes,
1976d). Reliability diagrams with upper and lower limits
added to them can greatly aid in minimizing bias
problems by controlling the use of unreliable probability
values. In operational use, supervisors can instruct
forecasters not to use values outside acceptable limits
unless fully justified by a well organized and easily
predicted synoptic situation.

(5) The same information contained in
reliability diagrams can be derived by inspection of the
biases for each probability interval. Reliability limits
can then be obtained for each forecast event and each
time period. Limits derived from overall unit
performance are useful for briefing customers.
Reliability limits should be determined for new
forecasters to enable them to rapidly overcome their
biases. The larger the data base, the more reliable the
information will be. Individual reliability limits should
be reoxamined periodically since forecasting skill
-:10uid increase,

(6) Reliability limits will be required for each
forecast event. The standard used to determine upper
and lower limits of acceptable reliability should be
dictated by the effect of unreliable forecasts on the
operation in which they will be used. However, in the
apsence of reliability requirements from the customer, a
recommended standard is that the bias be within + 5%
of the forecast probability value. A unit’s standard
should apply to intermediate probability intervals as
well as the upper and lower limits. Finally, it may be
necessary for a unit to determine reliability limits for
each season.

(7) Similar procedures were used by one regio..
of NWS to establish a policy for their precipitation
probability forecasts. Forecasters were instructed not to
use probabilities beyond the limits listed in Table 4-2,
unless unusually favorable and well defined conditions
would justify their use. This guidance was provided
during their early experience in precipitation
probability forecasting and is still considered
reasonable for this event. These figures are based on
average precipitation climatological frequencies. In
drier parts of the country, both limits would be reduced
somewhat; in wetter areas, they would be increased
(Hughes, 1976a).
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Table 4-2,
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Limits for Reliable Precipitation

Probabilities (NWS).

Valid Period (Hrs)|Probability L. mits (%)

0-12
12-24
24-36

36-48

0-100

2-80

5-70

10-50

d. Evaluation Feedback. Timely feedback of
verification results is extremely important in
probability forecasting. Forecasters must know what
their problem areas are. This is especially true for
inexperienced forecasters just learning the procedures,
and for experienced forecasters producing forecasta for
a new event or a new station. In these cases, reliability is
initially erratic. Forecasters can generally achieve
acceptable reliability, if they are given timely
verification feedback (Hughes, 1965). As arough rule-of-
thumb, reasonably good reliability can be expected by
the time a forecaster has made 50 to 100 forecasts that
involve occurrences of an event. Once the ability to
maintain acceptable reliability has been achieved,
efforts should concentrate on improving sharpness.
Periodic feedback will still be required to insure the
proper balance between sharpness and reliability.

(1) The minimum data for evaluating
probability forecasts are: a table listing the probability
intervals used to verify the forecasts; the corresponding
number of forecasts, event occurrences, observed
frequency and bias for each interval; appropriatetotals,
and overall bias. Examples of these data were given in
Table 4-1. Verification results will be needed for each
forecast event, each category if the forecast is for more
than two categories (there are always at least two; e.g.,
rain or no rain or ceiling >or <1,000 ft), and for a
representative number of forecasts. This information
should be prepared for each forecaster and for the unit
overall. Monthly verification should be maintained to
identify trends. However, it may be necessary to
combine data (number of forecasts and number of event
occurrences by probability interval) for several months
in order to have enough cases for meaningful
evaluations.

(2) As an example, consider an evaluation of
the probability forecasts shown in Figure 4-3. This
diagram illustrates the reliability and sharpness one
might obtain from an evaluation of a set of 31 forecasts
issued once daily for the occurrence of flying weather
below 3000 ft and/or 3 miles.

(a) This set of forecasts exhibits a fairly
good degree of sharpness, i.e., 16 of 31 forecasts were in

either the 0 or 100% probability intervals with another
10 in adjacent intervals (4 in 80% and 6 in 20%). Note that
only one forecast was in the interval closest to sample
climatology (32%), i.e., zero sharpness was not a
problem. If these forecasts had exhibited perfect
sharpness, all would have fallen in either the 0 or 100%
intervals. Additionally, if the forecasts were all perfectly
accurate, the forecast probabilities would have been
distributed in those two intervals in proportion to the
number of observed and not observed cases; i.e., the 10
event occurrences would all be in the 100% interval and
all 21 nonoccurrences in the 0% interval.
(b) Thereliability deviations at 100%, 50%,
and 60% are significant. All forecast probabilities of 60%%
and greater were considerably larger than the observed
frequencies. In order to improve his reliability, the
forecaster should reduce all of his probability estimates
that are above 60% by 10% for his next series of forecasts.
(3) General performance and specific
problems can be more easily identified during initial
phases by studying forecast distribution and reliability
diagrams. All the data required to plot these diagrams
are contained in the recommended table. Once the
forecasters achieve proficiency in analyzing the data,
diagrams for individual forecasters could be eliminated.

4-4. Brier Probability Score (PS). The Brier
Probability Score is used to quantify the overall quality
of probability forecasts. Its advantages and
disadvantages are listed below, followed by the
paragraph in this pamphlet which addresses each one.
The advantages of using the Brier Score to evaluate a set
of probability forecast are: one number is given which
includes sharpness and reliability) (paragraph 4-4a); the
acore cannot be “played” (paragraph 4-4c); and the score
can be used to compare different forecast systems
(paragraph 4-4f).The disadvantages of the Brier Score
are: it does not indicate if a set of forecasts are bad due to
sharpness of reliability error (paragraph 4-4b); it is
affected by the event’s climatology (paragraph 4-4d); it
is affected by the number of event categories (paragraph
4-4d); and a score for “zero skill” cannot be computed
(paragraph 4-4e).

.
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a. Computation. The equation for computing the Brier Probability Score is (Panofsky and Brier, 1965):

-D. )2 (4-3)

where K is the number of categories (2 or more)
N is the number of forecasts being evaluated
R jj is the probability given for the i th forecast for the occurrence of category j weather
D jj equals one if category j occurred for the j th forecast, otherwise Djj = 0
PS is the Brier Score. A perfect score is 0.0. The worst possible score is 2.0.

For those unfamiliar with the mathematical symbology, Attachment 4 provides a complete explanation.This general
equation may be used to compute Brier Score for forecasts of a number of categories (K 2 2). For verification purposes,
an “observed” probability of either 1.0 (event occurred) or 0.0 (event did not occur) is assigned to D (Sanders, 1958).
Thus, the Brier Score is the average of the square of the differences between the forecast and “observed” probabilities.
Since the score ranges from 0 (perfect) to 2 (worst possible), another aid to understanding its meaning is to think of the
score in terms of penalty points; i.e., the worse the forecast, the larger the penalty (Hughes, 1965).

(1) If oneis concerned only with two categories (K = 2), the general equation can be greatly simplified. For a
two category forecast, the event either occurs or it doesn’t; e.g., rain or no rain. The probability that the event will not
occur equals one minus the probability that the event will occur. In the terminology used in the general Brier Score
equation, Rj2 = 1 -R j; and Djo = 1 - D j1 . Substituting in the general equation, we obtain the Brier Score
equation for forecasts containing only two categories:

N
i=1 1

where definitions are the same a8 in the general equation. This equation shows that the contribution to the Brier Score

from one category is exactly equal to the contribution of the other. Therefore, the Brier Score for a two category forecast

may be obtained by evaluating only a single category. It doesn’t matter which one. For example, consider a forecast for
90% probability of rain. By using equation 4-4, the Brier Score for that one forecast would be calculated as follows:

If it rained, R =.9, N=1, and Dj = 1; therefore,
PS = 2(91) 2 =02

If no rain occurred, D = 0; therefore,
PS= 2(90)2 =162

In the first case, the forecast was nearly completely right: 90% probability of rain and it occurred. The penalty for the
near miss was only 0.02. But in the second case, the error was large (nearly completely wrong). Here the forecast
probability was 90%, whereas the observed probability was 0%. Consequently, the penalty i =~ high - near the
maximum of 2.

(2) Rather than expanding the equation in traditional mathematical form and substituting values for the
variables, a table can be used to perform the computations very quickly and simply.

(a) Table 4-3 illustrates how the forecasts may be recorded and the Brier Score computed for a two category
forecast by using equation 4-4 directly. In actual practice, the columns labeled “Fcst%” and “Verification” could be
omitted, since they only show how the values in columns labeled “R ; ” and “D ", respectively, were derived. The last
column contains the penalties associated with each forecast. They are added, multiplied by 2 (since this is only one of
two categories), and averaged by dividing by the number of forecasts (20) to obtain the Brier Score for the entireset. The
overall bias shows underforecasting. Interval bias cannot be computed, unless the forecasts are grouped by interval.
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(b) The Brier Score for a four category
forecast is shown in Table 4-4. The unnecessary columns
used in Table 4-3 were eliminated to show the minimum
information required to compute the score. The last two
columns in each category are shown only to indicate
how a running account of the Brier Score may be
accomplished. “Penalty Sum” is the running total or
accumulated penalties and “PS 1, 2 3 4 ” is the

partial Brier Score for all forecasts (i). The total Brier
Score for all categories in the set is simply the sum of the
scores for each category.

(3) Ifdaily computations of the Brier Score are
not needed, the procedures can be shortened even more.
Although not as precise as using the equation directly,
forecast probabilities can be grouped into fixed intervals
as demonstrated earlier in the discussion of sharpness
and reliability (Table 4-1). In this case, the differences
between the forecast and “obeerved” probabilities (0 or
1) would be & set of constants. This feature allows one to
precompute and square all the possible differences
between the two probabilities and prepare a table of
partial Brier Scores (or penalty points). Such a table is
given in Attachment 5. The word “partial” is used
because penalties for all occurrences and
nonoccurrences must be added and then divided by the
number of forecasts involved to obtain the Brier Score
for the category being evaluated. If the forecast is for
two categories, multiply by two; otherwise, the Brier
Scores for all categories must be summed to obtain a
total score.

(a) Table 4-5illustrates how the data from
the first two columns of each category in Table 4-4 may
be grouped into probability intervals. Brier Scores were
computed by using data from Table A5-2 (Atch 5). In
each category, penalties for occurrences were extracted
first; then those for nonoccurrences were derived. The
values were added and the sum divided by the number of
forecasta (20) to obtain the Brier Score for each category.
A total Brier Score was found by summing values for the
four categories.

(b) Interval bias was added to make the
summary all inclusive. This summary includes all the
information needed to plot reliability and forecast
distribution diagrams for each category. Figure 4-7
shows the corresponding diagrams. The data used in
this series of tables and diagrams were chosen to
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represent results that might occur in evaluating ceiling
forecasts. Note how sparsity of data in some probability
intervals makes the evaluation difficult.

(4) Admittedly, the Brier Score could be based
on something other than sharpness and reliability. We
selected this partitioning because it provides us the
information we want.

(6) If a unit wants to automate Brier Score
computations, contact AWS/DNT for assistance.

b. Relationship of Brier Score to Sharpness and
Reliability. Figure 4-8 illustrates how the Brier Score
varies with forecast probability and observed
frequency. For any reasonable and likely reliability, the
range of the score is approximately 0 to 0.6 rather than 0
to 2.0. The system encourages reliability, since the
lowest score for any observed frequency is at the
equivalent forecast probability (i.e., perfect reliability).
Forecasts of 50% probability yield a poor score (.5)
regardless of the reliability, while the greatest penalties
for poor reliability are with very high and very low
forecast probabilities (Hughes, 1965). Although the
lowest scores are at zero observed frequency for forecast
probabilities below 50%, and at 100% observed frequency
for higher probabilities, sharpness is encouraged
because the best overall scores are found at the extremes
(Hughes, 1967a). Thus, the Brier Score provides a
combined measure of reliability and the ability to move
forecasts away from 50% probability (sharpness)
(Hughes, 1965). The fact that the focal point for
measuring sharpness is 50% probability, instead of
climatology, is a deficiency which must be considered
when interpreting the score. Examples showing penalty
points and overall Brier Scores for various
combinations of reliability and sharpness are
illustrated in Table 4-6.

(1) The first example shows a set of forecasts
with perfect reliability, but a constant number of
forecasts in each probability interval (poor sharpness).
Note how the penalties for occurrences and
nonoccurrences are reciprocals, and that the maximum
total penalty occurs at the center of the probability
intervals (50% probability was omitted intentionally to
simplify the next two examples). Since reliability is
perfect, the resultant Brier Score i« due solely to poor
sharpness.
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Table 4-5. Example Verification Summary for a Four Category Forecast.

FCST # FCST OCCURRENCES PROB NON OCCURRENCES PENALTY
PROB (n) (Dyy = 1) OBSVD INTERVAL SUM (013 = 0) SUM
(Ryy) FREQ BIAS n(R;;)
¢ |PENaLTY J ¥ PENALTY
1.0
.9
.8
.7
— .6
z .5
g 4 1 1 .36 1.00 -.60 0.4 0 0 .36
.3
s .2
.1 3 0 .00 .00 +.10 0.3 3 .03 03
.0 16 0 .00 .00 .00 0.0 16 .00 .00
TOTAL/AVE 20 1 .36 .05 0.7 19 .03 .39
BIAS (B}) Bp = (.7-1)/20 = -.015
PSy PS) = .39/20 = .02
1.0
.9
.8 3 2 08 67 +.13 2.4 1 64 72
~ .7
> .6
= .5 2 0 .00 .00 +.50 1.0 2 .50 .50
2| 4
2 .
g .3
© .2
.1 S 0 .00 .00 +.10 .S 5 .05 .05
.0 10 [ .00 .00 .00 .0 10 .00 .00
TOTAL/AVE 20 2 .08 .10 3.9 18 1.19 1.27
BIAS (By) gy ~ (3.9-21/20 = +.095
PS2 PSy = 1.27/20 = 064
1.0 1 1 .00 1.00 .00 1.0 0 .00 .00
.9
.8 3 2 .08 .67 +.13 2.4 1 .64 .72
- .7 1 0 .00 .00 +.70 .7 1 .49 .49
6
> .
% .5
8 4
] .3
3 .2 4 2 1.28 .50 -.30 .8 2 .08 1.36
.1 5 0 .00 .00 +.10 .5 5 .05 .05
.0 6 0 .00 .00 .00 .0 6 .00 . .00
TOTAL/AVE 20 5 1.36 .25 5.4 15 1.26 - 2.62
BIAS (B3) By = (5.4-5)/20 = +.02
PS3 PS3 = 2.62/20 = .131
1.0 6 6 .00 1.00 .00 6.0 0 .00 .00
.9 2 2 .02 1.00 -.10 1.8 0 .00 02
.8
- .7 2 2 .18 1.00 -.30 1.4 0 .00 .18
z .6
.5
g |
=S .3
3 .2 3 2 1.28 .67 -.47 .6 1 .04 1.32
1 2 0 .00 .00 +.10 .2 2 .02 .02
.0 5 0 .00 .00 .00 .0 5 .00 .00
TOTAL/AVE 20 12 1.48 .60 10.0 8 .06 1.54
BIAS (By) B, = (10-12)/20 = -.10
PS, PS4 = 1.54/20 = 077
PSall PS = PS] + P57 + PSy + PS, = .02 + .064 + .131 + .077 = .292
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Forecast Probability.

(2) The second example uses the forecasts in
the first example and makes them perfectly sharp by
lumping all probabilities above 50% in the 100% interval
and those below 50% in the 0% probability interval. This
result is a classic case of overconfidence. Note how the
penalties are still reciprocal and how the Brier Score
increases substantially only because of poor reliability.

(3) The third example demonstrates the
combined effect of poor sharpness and poor reliability.
Here, all the occurrences are evenly distributed in
intervals above 50% probability, with nonoccurrences
evenly distributed in .ntervals below 50%. This example
illustrates the point discussed in paragraph 4-4b. The
lowest (best) scores above 50% probability occur at 100%
observed frequency, while below 50% probability they

Brier Scores as a Function of Observed Frequency and

occur at zero observed frequency. Even though this
gives areasonably low Brier Score compared to the other
two examples, the score would have been zero had the
forecasts above 50% been assigned a probability of 100%,
and those below 50% called 0% probability. This
demonstrates how the Brier Score encourages
sharpness. If skill permits, the best scores are attained
when the extremes (0% or 100%) are used.

(4) The fourth example shows what the score
would be if the forecasts had zero sharpness, ie., a
constant forecast probability equal to the sample
climatological frequency. Such forecasts represent zero
skill, but are perfectly reliable if used over a lengthy
period.
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Table 4-6. Example Brier Scores for Various Combinations of Sharpness and
Reliability.
BRIER SCORE FOR POOR SHARPNESS AND PERFECT RELIABILITY
PROBA~ # OF OCCURRENCES OBSVD NONOCCURRENCES TOTAL
BILITY PCSTS NUMBER { PENALTY FREQ NUMBER | PENALTY PENALTY
1.0 10 10 .00 1.0 0 .00 .0
.9 10 9 .09 .9 1 .81 .9
.8 10 8 .32 .8 2 1.28 1.6
.7 10 7 .63 .7 3 1.47 2.1
.6 10 6 .96 .6 4 1.44 2.4
A 10 4 1.44 N 6 .96 2.4
.3 10 3 1.47 .3 7 .63 2.1
.2 10 2 1.28 .2 8 .32 1.6
.1 10 1 .81 .1 9 .09 .9
.0 10 0 .00 .0 10 .00 .0
TOTAL 100 50 7.00 .5 50 7.00 14.0
2 X 14
PS 100 = 0,28
BRIER SCORE FOR PERFECT SHARPNESS AND POOR RELIABILITY
1.0 50 40 0 .8 10 10 10
.0 50 10 10 .2 40 0 10
TOTAL 100 50 10 .5 50 10 20
2 X2
PS oo * 0,40
BRIER SCORE FOR POOR SHARPNESS AND POOR RELIABILITY
1.0 10 10 .0 1.0 0 .0 .0
.9 10 10 .1 1.0 0 .0 .1
.8 10 10 W4 1.0 4] .0 .4
.7 10 10 .9 1.0 0 .0 .9
.6 10 10 1.6 1.0 0 .0 1.6
.4 10 0 .0 .0 10 1.6 1.6
.3 10 0 .0 .0 10 .9 .9
.2 10 0 .0 .Q 10 .4 A
.1 10 0 .0 .0 10 .1 .1
.0 10 0 .0 .0 10 .0 .0
TOTAL 100 50 3.0 .5 50 3.0 6.0
Z2X6
PS = Yoo g.12
BRIER SCORE FOR ZERO SHARPNESS AND PERFECT RELIABILITY
5 ]— 100 J 50 ] 12.5 T .5 l 50 ' 12.5 25
2 X 25
Ps 100 .50
BRIER SCORE FOR ZERO RELIABILITY AND PERFECT SHARPNESS
1.0 50 0 .0 .0 50 50.0 50.0
50 50 50.0 100.0 0 .0 50.0
TOTAL 100 50 50.0 .5 50 50.0 100.0
2 X 100 _
PS = 100 2.00
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o
Table 4-7. Effect of Hedging on Brier Scores.
PROBA- # OF OCCURRENCES . OBSVD NONOCCURRENCES TOTAL
BILITY FCSTS NUMBER PENALTY FREQ NUMBER PENALTY PENALTY
1.0 .00 1.0 .00 .00
g .5 .50 .75 1.25
&
E‘ TOTAL 10 7 .50 .7 3 .75 1.25
-
PS = 1.25/10 = .250
1.0 .00 1.00 0 .00 .00
2 .5 .75 .50 .75 1.50
=
ﬁ TOTAL 11 8 .75 .73 3 .75 1.50
(3]
g PS = 2 X 1.5/11 = .273
1.0 6 6 .00 1.0 .00 .00
. .50 .75 1.25
é -
TOTA 11 8 .50 .7 3 .7 1.25
‘ PS = 1.25/11 = .227
1.0 10 10 .00 1.00 0 .00 .00
. 9 8 .08 .89 .81 .89
-l
s TOTAL 19 18 .08 .95 1 .81 .89
=
o]
PS = .89/19 = ,094
1.0 10 10 .00 1.00 0 .Ou .o
K 10 9 .09 .90 .81 .90
o
Pt
ﬁ TOTAL 20 19 .09 .95 1 .81 .90
] [
ﬁ PS = .9/20 = .090
1.0 11 11 .00 1.00 0 .00 .00
S 9 8 .08 .89 .81 .89
2
g TOTAL 20 19 .08 .95 1 .81 .89
2
PS = .89/20 = ,089
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(56) The last example depicts the opposite
effect. To have zero reliability, all forecasts must be
perfectly wrong, i.e., the event never occurs when the
forecast probability is 100% and the event always occurs
when the probability ie 0%. Since the forecasts must be
perfectly wrong, only 0 and 100% probabilities are
possible. Thus, the forecasts are also perfectly sharp.
Note that this is the only possible combination where
the Brier Score reaches its maximum (2).

¢. Hedging. A unique feature of the Brier Score is
that it is a strictly proper scoring rule, i.e., a forecaster
can maximize the expected score only by being
completely honest in assigning probability values
(Murphy, 1976b). This means that the Brier Score
penalizes forecasters who try to “artificially” improve
the reliability of their forecasts. Artifical improvement
might be attempted, for example, if a forecaster has a
particular interval in which the bias is positive
(overforecasting). The reliability of that interval can be
improved by calling a “sure case” (100% honest
probability) a lower probability value equal to that of the
unreliable interval.

(1) Table 4-7 illustrates two such -ases. In
each example, the initial verification represents the
situation just prior to a hedging attempt. The
“artificial” group illustrates the effect of placing the
“sure” occurrence in the unreliable interval. The
“honest” group shows the results that would be
obtained, if the “‘sure” occurrence were properly placed
in the 100% interval. In both instances, the “honest”
assessment yields the better Brier Score. Although the

AWSP 108-51

penalty for improved reliability will decrease or
disappear if hedging is used, the penalty for degraded
sharpness is greater and produces a net increase in the
score. Therefore, the only way to minimize the Brier
Score is to make the forecasts just as good as skill aliows,
i.e., as high as possible when the event occurs and as low
as possible when the event does not occur (Hughes,
1965).

d. Dependence of the Brier Score on Climatology
and Number of Forecast Categories. Brier Score varies
with the number of forecast categories and with the
climatological frequency. These effects are shown
below.

(1) The effect from the number of forecast
categories on the Brier Score is demonstrated by the
following example. Assume an equal climatological
probability of the event occurring in each of the
categories, i.e., for a two category system the event
occurs 50% of the time in both categories, for a three
category system the climatological probability is 33%
for each category, etc. The general Brier Score equation
can be modified and a zero skill Brier Score (PS 8 )

computed for any number of categories (K) involved.

(4-5)

1
PSZB:'I—E

Computed zero skill Brier Scores for a selected numnber
of forecast categories are shown in Table 4-8.

Table 4-8. Variation of Brier Scores for Zero Skill and Number of Categories.
NO OF CATEGORIES 2 3 4 5 6 . 0
CLIMATIC FREQ FOR

EACH CATEGORY 50% 33-1/3% 25% 20% 16-2/3% | ... 1/%
BRIER SCORE(PSZS) .50 .67 .75 .80 .83 .

~—
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Scores larger than these values indicate negative skill,
while lower values represent positive akill. Remember
the assumption made in calculating these zero skill
scores when attempting to apply them. An equal
distribution of climatic probabilities in each category is
not very common; and if the distribution is unequal, the
score for zero skill will change considerably. The
significance of Table 4-8 is that, for a given skill level,
one should expect Brier Scores for forecasts with a small
number of categories to be lower than scores for fore-
casts with a larger number of categories.

(2) The climatological effect on the Brier Score
can be seen intuitively by recalling that the score is the
average of the squares of the differences between
forecast and obeerved probabilities (paragraph 4-4a).
For an extremely rare event, zero or very low forecast
probabilities will be the general rule for any reasonable
range of skill (positive or negative). Likewise, most of
the observed frequencies will be zero. Consequently, the
differences betwen the two probabilities will usually be
small, and when squared and averaged, the resultant
score will be even smaller (ref Category 1 in Table 4-4).
The same reasoning applies to very frequent events
except that both probabilities are very high, with very
small differences. Thus, acceptable Brier Scores for
events with very low or very high climatic frequencies
will be much lower than for events with a frequency of
50%. Conversely, a large Brier Score (near 2) would
result only if a large number of high (low) probabilities
were forecast for rare (very frequent) events.

(3) The relationship between Brier Scores,
climatology, and correlation of forecasts and
observations for a two category system is depicted in
Table 4-9. Correlation, as used here, is an approximation
of forecasting skill where 0.99 reflects very high skill
and 0.0 reflects zero »kill. Note the small total variation
in Brier Scores going from high skill to zero skill for an
event with a climatic frequency of 1%, as opposed to the
corresponding large variation for an event with a
frequency of 50%. For the 1% event, 94% of the change in
Brier Score occurs in the correlation range of 0.6 to 0.99;
for the 50% event, 73% of the change is in thesamerange.
This is significant, because that is usually the range of
our forecasting skill. Now compare the maximum and
minimum scores for various climatic frequencies. For
example, the worst score for a 1% event is equal to the
beat score for an event with a climatic frequency of about
7% (interpolating). Hence, one must know the climatic
frequency of the event before making judgments of
forecasting skill. One can compute expected Brier Scores
for events with climatic frequencies greater than 50% by
using the complementary probability of the values
given in Table 4-9. Similar tables for greater than two
category forecasts are very complex due to the large
number of possible combinations of frequencies and
correlation.

e. Climatological Brier Scores. One cannot use the
Brier Score above to interpret forecasting skill. The
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minimum score (0.0) represents perfect forecasts
(positive skill); the maximum score (2.0) results from
forecasts that are perfectly wrong (negative skill), i.e.,
all 0% forecasts verify with 100% observed frequencies
and all 100% forecasts verify with 0% observed
frequencies. Problems in interpreting Brier Scores arise
because we do not know the value of the score for zero
skill (somewhere between 0.0 and 2.0). A score for zero
skill should be used to judge forecast performance.
Several suggestions for controls (zero skill forecasts)
with which to compare forecast performance are long-
term climatology, sample climatology, conditional
climatology, and TDL MOS forecasts. Methods for
computing Brier Scores for these controls are shown
below.

() IfC,,C2,C3,...,Caretherespective
climatological probabilities for categoreis 1,2,3,..., k,
then, in the absence of any forecasting skill, the best
values to choose for the forecast probability (R jj) in the
Brier Score equation will bethe long term climatological
probability (C j ) for all forecasts. This will minimize the
Brier Score over the long-term and allows one to
calculate a zero skill or climatological Brier Score (PS
(C)) as followe (Panofsky and Brier, 1965):

K
PS(C) = 1 - I > (46)
J L J J

The above equation gives the climatological Brier Score
for all categories combined. If climatological Brier
Scores for individual categories are desired, they would
be calculated by using the following relationship
(Hughes, 1965):

PS{C)y = Cy - C% 4-7)
As with regular Brier Scores, the sum of the scores for

individual categories equals the overall climatological
Brier Score:

K (4-8)
L PS(C)
j=1

PS(C) =

Equations 4-7 and 4-8 provide an alternate method for
computing overall climatologice.” ~ "~ Scores.

(a) Brier Scores for selected frequencies in

forecasts with two categories were shown in the column
for zero correlation (skill) of Table 4-9. To illusirate the
computational procedures for any number of categories,
assume that the long-term climatological frequencies
for the four category verification example given earlier
in Table 4-5 are as follows;
Category 1 - 2%, Category ¢ - 12%, Category 3 - 21%, and
Category 4 - 65%. Substituting these values in Equation
4-6, we obtain an overall climatological Brier Score as
follows:

PS(C) = 1 - ((.02)*+ (.12)? + (.21)2 +(.65)?) = 519
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Table 4-10.

4-28

Climatological Brier Scores by Category Using

Long-Term Climatology Compared with Actual
Scores (from Table 4-5).

CATEGORY COMPUTATIONS FOR PS(C) i ACTUAL SCORES (PS j)
1 PS(C); = .02 - (.02)2 = ,020 .020
2 PS(C), = .12 - (.12)%2 = ,106 .064
3 PS(C)s = .21 - (.21)%2 = .166 .131
4 PS(C)y = .65 - (.65)2 = ,227 .077
OVERALL | Using Eqn 4-8, PS(C) = .519 .292

By using equation 48, corresponding scores for
individual categories can be calculated as in Table 4-10:

These scores indicate that the forecasts exhibited
positive skill overall compared to climatology, because
the overall actual Brier Score (.292) was lower than the
climatological Brier Score (.519). Zero skill existed in
Category 1 and positive skill is evident in the others; i.e.,
actual scores are lower than the climatological scores.

(2) Difficulties may arise from using long-term
climatology as a control, because the observed
frequency of the event for the evaluation period
generally will be different from long-term climatology.
Another approach is to use sample climatology as the
control, i.e., the observed frequency of the event in the
evaluation period. This may not represent a true zero
skill, because the sample climatology would not be
known prior to issuing the forecasts (Hughes, 1965;
Glahn and Jorgensen, 1970). However, when long-term
climatology is not available, a Brier Score based on
sample climatology may be the best control.

(3) Another method for evaluating the quality
of a set of forecasts is to compare Brier Scores with
forecasts for the same event which have been produced
by other means. Brier Scores for conditional climatology
forecasts can be computed by using the procedures
described for ordinary forecasts (paragraph 4-4a). These
scores could then be used to determine if actual skill was
better than the skill of conditional climatology. Similar
comparisions could be made for any other like forecast,
e.g., TDL MOS, NWS probability of precipitation, etc.

f. Ratio Skill Score. A measure frequently used to

evaluate the skill in a set of probability forecasts is the
ratio skill score. This score is the percentage
improvement of the forecasts being evaluated over a
control which is assumed to represent zero skill. It
ranges from 100% for a perfect score (PS=0) to minus
§nﬁnity. Compared to the control, scores above zero
indicate positive skill; a score of zero indicates no skill;
scores below zero indicate negative skill.

(1) The ratio skill score (RSS) used to evaluate
the Brier Score (PS) for a set of probability forecasts
against the Brier Score (PS (C)) for long-term
climatology is computed by (Hughes, 1967a)

- (4-9a)
RSS (PS(C)) = {ES(C)-PsS
—Ps(C) 100%
or RSS (PS(C)) = (1-PS/PS(C)) 100% (4-9b)

Table 4-11 shows the ratio skill scores for the scores in
Table 4-9.

(2) Ratio skill score can be computed by
comparing any two sets of forecasts; e.g., man-made
forecasts, long-term climatology, sample climatology ,
conditional climatology, and TDL MOS forecasts. Enter
the Brier Scores for the two forecast systems being
compared into either equation 4-9a or 4-9b.

(3) If conditional climatology is available for
the event, the ratio skill score for conditional
climatology would be a good baseline for determing the
quality of a set of forecasts. The main advantage is that
the sample climatology is the same in both forecasts;
thus, the problems discussed in paragraph 4-4b are
eliminated.
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Table 4-11.
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Ratio Skill Scores (RSS/PS(C)) Corresponding to Expected

Brier Scores for Forecasts with Two Categories Shown in

Table 4-9. (Multiply by 100 to obtain percentages.)
CORRELATION

CLIMO
% 0 .1 .2 .5 .6 .7 .8 .9 .95 .99
1 .0 .0 .0 .0 .05 .05 .10 .20 .40 .55 .80
5 .0 .01 .01 .02 .04 { .07 .13 .20 .31 .48 .62 .83
10 .0 .01 .02 .03 061 .11 .16 .24 .36 .53 .66 .84
15 .0 .00 .02 .04 071 .12 .18 .27 .38 .55 .67 .85
20 .0 .00 .02 .04 .08] .13 .20 .29 .40 .57 .69 .86
25 .0 .01 .02 .05 .09} .14 .21 .30 .42 .58 .70 .86
30 .0 .01 .02 .05 .10 .15 .22 .31 .43 .59 .71 .87
35 .0 .01 .02 .05 101 .15 .23 .32 .43 .59 .71 .87
40 .0 .01 .03 .06 L1047 .16 .23 .32 .43 .60 .71 .87
45 .0 .01 .03 .06 .10] .16 .23 .33 .44 .60 .71 .87
50 .0 .01 .03 .06 L1041 .16 .23 .33 A4 .60 .72 .87

4-5. Summary. This chapter discussed two methods
for eveluating probability forecasts: sharpness and
reliability measures and the Brier Score.

a. Sharpness and reliability are evaluated either
by inspecting the verification statistics or by plotting
graphs. Detailed analyses permit the identification of
specific biases and provide clues for correcting
deviations from acceptable sharpness and reliability.
Interpretation of skill is simpler than with the Brier
Score. A disadvantage is that sharpness and reliability
measures do not provide a single number measure of
goodness; this makes it difficult to assess forecast
trends.

b. Since the Br'ar Score does not indicate skill
directly, it must be compared with the score of some
control, such as climatology of conditional climatology,

to obtain a measure of performance. If the ratio skill
score is used for the comparison, the single number
result makes it easy to evaluate forecast trends.
However, interpretation of the score is not simple, and
comparisons of scores must be made with caution. Other
disadvantages are that it requires a substantial amount
of computations and only indicates overall
performance.

c. Since both methods fulfill different needs, the
optimum evaluation effort would use both techniques.
The Brier Score indicates overall performance;
sharpness and reliability measures identify specific
forecast problems. If only one evaluation method is
used, the choice is to compute sharpness and reliability
measures.

—’
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Chapter 5
PROBABILITIES IN DECISION MAKING

5-1. Introduction. Although customers must make
their own decisions, forecasters and SWOs must also be
knowledgeable of their decision problems to properly
integrate weather support. We are the weather experts.
Recipients of our support are generally not well versed in
the use of information we can furnish (especially in
probabilistic form). Thus, we have an inherent
responsibility to furnish the guidance needed to use our
forecasts most effectively (Glahn, 1964). Since decision
theory is a complete field of study in itself, this section
will only introduce some of the simpler techniques
which can be applied to weather-related decision
problems. Specifically, it describes a general decision
matrix, illustrates applications of the simple cost-loss
model, defines critical probability, and demonstrates
methods for calculating the value of forecast
information.

5-2. General Decision Matrix. Many schemes are

used to aid the decision maker. Some of these apply to
situations where the outcome is known with complete
certainty. Others are effective in situations where we
know nothing about the outcome. Finally, some apply to
situations where we have only partial knowledge of
future events. The first of these situations does not
concern us; nor should the second. The third situation is
decision making under risk, and considers that one of
two or more future events may occur, each with a
specified probability. We can apply this last case to
meteorological situations in which the frequencies of the
various future weather states are estimated or predicted,
i.e., probability forecasts (Epstein, 1962). A matrix is the
most convenient method for summarizing all the
elements involved in weather decision problems. The
generalized form of a decision matrix which uses
expenses as a measure of value is shown in Table 5-1. It
can be used directly, or serve as the framework for
developing specialized models.

Table 5-1. General Expense Matrix (Murphy, 1976b).
STATES OF WEATHER
ACTIONS Wl cos Wn .o WN EXPECTED EXPENSE (E)
N
a e, € .e eIN E1 = E Pn €ln
n=1
N
a el €n .o &N Em = E Pn e n
n=1
N
ay M1 tte ©Mn . Vi) EM = n-E-l Pn “Mn
PROBA- P e P .o P
BILITY 1 n N

a. Explanation.

(1) In the general matrix, all possible courses
of action, strategies, or decision options under
consideration are listed in theleftcolumn,i.e.,a;...am..
apg(m=1,2,..M).

Under the states of weather, the notations,
Wi..Wn. .WN... (n=1,2,.,N), represent the various
weather thresholds which affect one or more courses of
action. For each action-state pair (am,Wp), there is a
corresponding consequence or outcome (eyn), which
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represents the expense for that course of action if that
state of weather occurs (Murphy, 1966). For example, if
action, ay, is implemented and if weather state, Wy,
occurs, the associated expense is e]].

(2) Each weather probability, Py, , corresponds
to a particular weather threshold or state of weather,
Wn. Pp represents the probability that the state of
weather, Wy, will occur. Additionally, the sum of all the
weather probabilities must equal one (Py + ... + Pp + ...
+Pn=1)

N (3) Given the expense associated with each
action-state pair and the probabilities of each state of
weather, the long-term expected expense (E) can be
calculated by using the equations in the right hand
column. The expected expense ie simply the weighted
average of the expenses associated with each
action-state pair, where the weights are the
corresponding weather probabilities. For example, the
expected expense for action, a}, would be computed as
follows:

AWSP 105-51 31 October 1978

Ej=Pje;; +..+Ppeipt*..+PNe (t:2))

If the decision maker wants to minimize expenses
(losses), his course of action is the one which yields the
smallest value for Epy (Murphy, 1976b), i.e., that course
of action which will cost the decision maker the least
amount over tl- long-term, provided that the
probabilities are rel.able.

b. Example. Consider the situation in which a
wing commander must decide between four ways to
protect his aircraft, when threatened by winds.

(1) Table 5-2 sets up the decision problem in
matrix form. Four wind thresholds are listed under the
states of weather. The model can help decide which
action to take, regardless of the cause of the threat. If the
wing commander wants to minimize expected costs, the
costs associated with each consequence (empn) must be
obtained and entered in the matrix. For example, we will
consider only two types of costs.

Table 5-2. Incomplete Cost Matrix for Protection Against Wind Damage.
STATES OF WEATHER
TIONS W1 = WIND | W2 = WIND W3 = WIND Wy = WIND EXPECTED

AC <30 kts | >30<50 kts | >50<65 kts | >65 kts | COSTS (£)
a; = No Protection
a, = Tie Down

3_= Hangar ‘

a, = Evacuate
PROBABILITY P1 = Pz = Pa = PL. =

(a) First, is the coet of taking each of the actions indicated. Assume that the figures given in Table 5-3
reflect the costs obtained from the customer. They include such factors as manpower required to tiedown, hangar, and
unhangar aircraft; and for evacuation, flying costs to and from the refuge base, TDY expenses, and non-routine costs
generated by action taken.

Table 53. Costs of Taking Protective Action (Thousands of Dollars)
l\CTION Wi W2 W3 Wy

a $ 0 $ 0 $ 0 $ 0

as 1

a; 4 4 4 4

a, 120 120 120 120

(b) The other costs would be the estimated costs or losses as a result of damage sustained when the
aircraft are not protected or when the protection is inadequate. Table 5-4 represents these costs. These figures would
also be supplied by the customer. 1

—

1AWSP 1782 provides guidance in computing cost figures. Standard cost factors are included in AFR 173-10, Vol I.
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Table 5-4. Potential Losses Due to Wind Damage (Thousands of Dollars)

lacrIon Wi W2 Ws W,
a1 $ 0 $300 $1500 $12000

| a 0 0 600 6000

| as 0 0 0 1500
au 0 0 0 0

The potential loss varies with the degree of protective action taken and the geverity of wind thresholds.

(c) To obtain the total costs or expenses associated with each consequence (empn) of the decision matrix,
the corresponding values in Tables 5-3 and 5-4 must be added. Table 5-56 shows the resultant matrix. It is now ready to
apply to a decision problem.

Table 5~5. Cost Matrix for Protection Against Wind Damage Prior to Use
(Thousands of Dollars)

STATES OF WEATHER

ACTION o W Wa e EXPECTED

<30 kts | >30 & <50 kts [>50 & <65 kts|>65 kts |COSTS (E)

ap = No Protection] ¢ o $300 $1500 $12,000 |E1 =
a, = Tie Down 1 1 601 6,001 |E2 =
a, = Hangar 4 4 4 1,504 |E3 =
a, = Evacuate 120 120 - 120 120 |Eu =
PROBABILITY P, = P, = P, = P, =

(d) Assume a hurricane threatens the installation, and the forecast probabilities for the different states

of weather 12 hours from now are as follows: P(W 1) =5%, P(W2) = 80%, P(W3)=10%, and P(W4)=5%. Expected costs (Epy)
are shown below:

Em = Plem‘ + Pze“lz + Paem3 + Puem“ (5~2)
E, = .05X0+ .8X 300+ .1X 1500+ .05 X 12,000 = $ 990
E; = .05X1+ .8X 1 +.1X 601 + .05X 6,001 = $361
Ey = .05X 4+ .8X 4 +.1X 4 + .05X 1,504 =287

E, = .05 X120+ .8 X 120 + .1 X 120 + .05 X 120 = $120
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After entering the probabilities and expected costs in their appropriate matrix positions, we obtain the final decision
matrix in Table 5-6.

Table 5-6. Final Cost Matrix for Protection Against Wind Damage (Thousands
of Dollars)
STATES OF WEATHER EXPECTED
ACTIONS W, W2 Wi Wy COSTS (E)
<30 kts | >30 & <50 kts |>50 & <65 kts}|>65 kts
a; = No Protection|$ 0 $ 300 $ 1,500 $12,100 $ 990
az = Tie Down 1 1 601 6,001 361
a; = Hangar 4 4 4 1,504 79
a, = Evaluate 120 120 120 120 120
PROBABILITY P, = .05{ P, = .80 P3 = .1 P, = .05

(e) The decision rule assumed earlier is that the preferred choice is the course of action which results in
the least expected cost. Thus, action ag (hangar the aircraft)is preferred for this set of probabilities. Various
combinations of probabilities yield different values of expected costs, and, thus, different decisions. However, when one
course of action affords total protection, such as evacuate (a4), the expected cost (E) of that action remains unchanged.

(2) Two key assumptions in this decision process are that the probabilities are reliable, and that the expected
costs are long-term averages. The effect of the latter assumption is shown by one of the computations for expected costs.
Computation of E+ shown under equation 5-2 above is repeated for illustration:

El=.05xo+.sxaoo+.1xxsoo+.osx12.ooo=:990 ©3

The first component of E | contributes nothing to the expected cost, because there is no potential loss (i.e., no damage
will occur as long as the winds are less than 30 knots). In the second component, the .8 means that 8 times out of 10
(reliable forecasts assumed) the winds will be within that threshold (Z 30& < 50 kts). On each of those eight occasions
the damage will amount to $300K with no damage on the other two days (total - $2400K). The average damage amount
is $2400K divided by 10 occasiuns or $240K which is .8 X 300. Similar reasoning applies to the remaining components.
Thus, if the forecasts are totally reliable (bias = 0), average costs will equal the expected costs in the long-term.
Otherwise, actual costs will differ in proportion to the net reliability error (bias).

(3) Notice that sharpness is not the main issue here. Intelligent decisions can still be made without a large
degree of sharpness. As long as the probabilities are reliable and do not cluster around the climatic frequency, they are
useful in decision making. However, credibility is soon loat, if discrimination between events (high and low
probabilities) does not approximate the state-of-the-art. The effect of reliability and sharpness on expected and actual

costs will be addressed later.

5-3. Utilities.

a. Background. Money (dollar value) is the most
common unit of value used to represent consequences of
decision actions (emn). However, as a unit of value,
money has one very serious deficiency. Since a decision
matrix is a model of the thought process of the decision
maker, monetary value frequently does not adequately
represent the importance that a decision maker assigns
to the consequences. Further, it is very difficult to assign
a monetary value to many types of consequences such as
loss of military readiness, political impact, loss of
prestige, loss of human life, and reduced combat
effectiveness. Thus, non-monetary considerations may,
and frequently do, influence the value a decision maker
places on particular outcomes (Murphy, 1976b).

b. Utility. The term “utility” is used as the unit of
value of consequences, when non-monetary factors are
involved. Utility is an all encompassing term which
reflects a decision maker’s true value (preference or
importance weight) associated with a given
consequence or outcome (Murphy, 1976b).

Utilities combine monetary factors such as costs, losses,
or profits with non-monetary factors like opportunity
loss, risk, or desirability, to form a dimensionless
number which represents the true value of the
consequence tc a decision maker. Thus, different
decision makers may have different utilities, and an
individual’s utilities may change, as factors which
influence the decisions vary.

c. Utility Matrices. A utility matrix takes thesame
form as the general expense matrix (Table 5-1). Theonly
difference is substituting utility value (ep,) for
expenses (emn) for each consequence, and expected
utility (U) for expected expense (E). Utility values are
either positive or negative. The objective is to maximize
positive utilies, such as profits or economic gain, and to
minimize negative utilities.

d. Transformation of an Expense Matrix into an
Equivalent Utility Matrix. There are a number of ways
to determine a customer’s utilities. A formal method, in
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terms of regret, is given in Attachment 6. Other
approaches will be described later. In general, if a
customer’s utilities are linearly related to the respective
expenses of the consequences, an expense matrix can be

5-8

transformed directly into an equivalent utility matrix
with an arbitrary scale ranging from 0 to 1. The
equation for performing the transformation is given by
(Murphy, 1976a):

where:
Umn = ©mn - oL/ (eM-ep)

(54)

Yn® the utility value equivalent to expense e mn (ranges 0 to 1).

emn > the expense (value) of the consequence being transformed.

ey, = expense value of the least preferred consequence.

)y = expense value of the most preferred consequence.

By using this transformation, the most preferred
consequence, eps(theone of least expense) takes on the
utility value, umn = 1 (the greatest utility). Likewise,
the least preferred consequences, ef, (the largest
expense), transforms to the utility value, Umnn=0 (the

least utility).

(1) Example. Table 5-7a is an abbreviated
form of the general expense matrix shown in Table 5-1.
We will use this table to demonstrate the transformation
technique deacribed above.

Table 5-7a. Abbreviated Expense
Matrix.
Lll ==5] ez =70 Je;3 = 85
21 = 5] ez22 = 50 Je2s = 90
31 = 151 e32 = 30 Jeas = 95

Table 5-7b. Abbreviated Equivalent -

Utility Matrix.

U1 = 1.0 Ujz2 = .25 U13 = .10
flu21 = .9 Juz22 = .45 Juz3 = .05
= .8 Juzs = .65 Jusz; = .00

31

From Table 57a we find that the most preferred
consequence (eps) is e1 1, and the least desired (ep)isegs.
In this example equation 5-4 takes the form:

Upmn = (€mn - 96)/(5-96) = (e, - 85)/-100  (5-5)
Substituting values for ey, we obtain the equivalent
utility values u,, . shown in Teble 5-7b.

(2) Such a transformation is useful for two
reasons. First, it assigns the highest utility value (1) to
the most preferred consequence, and places the decision
objective of maximizing utilities in a positive sense.
Second, it establishes a standard scale from 0 to 1 to
which the customer can better relate by using ratios to
confirm whether or not the equivalent utilities do in fact
reflect true preferences. If adjustments to the utilities are
required, this scale simplifies and expedites the
modifications. In fact, all utility matrices should be
checked before use to see if they reflect true preferences.

If not, the equivalent utilities should be modified, or
another approach used to develop true utilities.

5-4. Original Cost-Loss MoA=1. The literature on
probability forecasting frequentiy makes . “~~ence to
the “cost-loss” model. The cost-loss model is a very
simple and specialized case of the general decision
model given earlier. It provides a realistic description of
situations faced by many decision makers and is
extensively used by meteorologists and others in the
civilian community. This model was originally
developed to deacribe a situation where a decision maker
must decide whether or not to take protective action with
respect to some activity or operation based on an
uncertain forecast of adverse weather. However, it also
has other applications when only two courses of action
are under consideration. Following a format similar to
the general matrix, the original cost-loss model is
depicted in Table 5-8.




AWSP 108-51 31 October 1978

Table 5-8. Matrix for Original Cost-Loss Model
STATES OF WEATHER
ACTIONS Adverse Not Adverse EXPECTED COST (E)
a; = Protect Cost (C) Cost (C) E1=P;C+P2C = C
a2 = No Protection | Loss (L) 0 E2=P;L
PROBABILITY P P,

a. Terms. In this model, the cost of protection is
denoted by C. It is assumed that, when protective action
is taken, the resources are completely protected
against adverse weather. Thus, the cost of the two
consequences associated with the first course of action,
aj}, are each equal to C. The loss which results when no
protective action is taken and adverse weather occurs is
denoted by L. Finally, no cost or loss results when no
protection is taken and the weather is not adverse
therefore, the cost is zero (Murphy 1976a).

b. Explanation. Expected costs are calculated as
indicated. E1 = C since P; + P2 = 1. Now assume the
decision maker wants to select the action which
minimizes expected costs. A simple decision rule for this
situation is determined by equating the two expected
costs (E; and E2) and solving for the probability, P.
Thus, when P; = C/L (the cost-loss ratio), the expected
costs are equal. On the other hand, if P'; >C/L, the
expected cost is least for action, a 1 (protect). However,
for j<C/L, action, a 2 (no protection), yields the least
expected cost. This decision rule can be summarized as
follows (Murphy, 1976a):

Protect (a)) if P| >C/L
Indifferent (a; or ag) if P} = C/L (5-6)
No Protection (ag) if Py <C/L

To make economic sense, the ratio, C/L, must have a

total range between zero and unity. Consider, for
example, the possibility that C/L >1. In this case the
cost.of protection would exceed the loss and it would be
unedonomical to protect against adverse weather at all.
Similarly, negative values of C/L are economically
meaningless (Thompson and Brier, 1955).

c¢. Example. Assume that the base civil engineers
(BCE) finished pouring fresh concrete just before
quitting time. If any measurable amount of rainfall
occurs within the next 12 hours, they must refinish the
surface at a cost (loss) of $3000 (materials, plus labor).
However, a portable cover could be placed over the
concrete, at a cost of $450 in overtime pay. The most
economical course of action for this problem can be
determined very quickly by computing the cost-loss
ratio (C/L) and comparing it to the probability of
measurable rainfall. For this situation, C/L = 450/3000 =
.15. By using Eq 5-6, the concrete should be covered, if
the probability of measurable rainfall (P;) is greater
than 15%.

5-5. General Cost-Loss Model. The basic cost-lose
model assumes that protective action completely
eliminates losses due to adverse weather. However, in
many situations all resources cannot be protected; in
others, the protective actions available to the decision
maker may only reduce the losses. A more general
version of the costloss model which accounts for
unprotectable losses is shown in Table 5-9 (Murphy,
1976a,.

Table 5-9. Matrix for the Gemeral Cost-Loss Model.
STATES OF WEATHER
ACTION EXPECTED EXPENSES (E)
ADVERSE NOT ADVERSE
a; = Protect c+2 c Eir =C+ P L
az = No Protection L+2 0 Ex = P (L + 8)
PROBABILITY P P2

'
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a. Terminology. Terms arethesame as in the basic
model, except that unprotectable losses (1) have been
ipfluded. Thus, the total loss that could be incurred is L.
+X.

b. Explanation. By using the logic applied in the
original model, it follows that the expected costs are
equal when P; = C/L; thus, the decision rules for both
models are identical (ref equation 5-8). Consequently,
from a decision making standpoint, only the
protectable portion of the potential loss (L) needs to be
specified in each model (Murphy, 1976a). For example, if
this model were applied to a wind damage decision
situation, one would not need to include such
unprotectable items () as buildings, fixed towers,
fences, etc, unless they are afforded protection by the
action taken. But windows that are covered, antennas or
towers that are taken down, etc, in the threat of high
winds would be included in the potential loss (L).

5-7

Although this model offers no advantages over the other
in decision making roles, it does show how expected
costs would be computed when they are needed for value
analysis, etc. Note that neither of these models provides
a means for considering variable costs such as laborina
snow removal situation (Kernan, 1975).

5-8. Critical Probability. In the discussion of cost-
loss models, we derived a decision rule in which the cost-
loss ratio determined the probability threshold above
which protective action should be taken. Critical
probability as used in Air Weather Service is an
extension of the cost-loss ratio concept, in that it can be
applied to any two-by-two action-state decison matrix.

a. Derivation. Critical probability (Pc) may be
derived using the procedure of the cost-loss ratio and
given the consequences A, B, C, and D (in utility units)
from Tablee 5-10a & b below.

Table 5-10a.

Protection Matrix for Definition of Critical

Probability.
ACTION STATES OF WEATHER 'EXPECTED UTILITIES
Storm/Rain | No Storm/Rain (v)
kl = Protect A C U; = P;A + P,C
2 = No Protection B D Uz = P3B + P,D
LROBABILITY P; P,

Table 5-10b. Launch Matrix for Definition of Critical Probability

ACTION STATES OF WEATHER EXPECTED UTILITIES
Favorable Unfavorable (U)
la; = Go A C U; = P;A + P,C
E'NOGO B D Uz = P1B + P,D
[PROBAB ILITY Py P,
CD (5-7 . iys .
Po= =—=— and the negative utility (cost, loss expense, regret, etc)is
B+C-A-D minimized. It may be based on monetary value or other

The corresponding decision rule for a critical probability
is:

Act (ay) if P} >P,
Indifferent (al ora 2) ifPy =P, (65-8)
No Action (ap) if P} <P,
(1) Critical probability is the threshold or
breakeven probability above which it is cost effective for

a decision maker to take a specific action, i.e., the long-
term positive utility (value, payoff, etc) is maximized

measures of utility. Note that the critical probability
must be stated in terms of the weather event which
causes the action to be taken. This is a subtle, but
important, point and is the reason two different
examples are given. In the first matrix, action is taken
when unfavorable or adverse weather (storm, rain, etc)
threatens; in the second case, the action is associated
with favorable weather.

(2) Equation 5-7 reduces to Pc =C/L for the
original cost-loss model (see Table 5-8) because A = C,
B=L, and D =0 for the cost-loss model.

b. Matrix Example. Consider an airborne training
operation as depicted in the matrix of Table 5-11.
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Table 5-11. Airborne Training Matrix (Dollars)
ACTIONS STATES OF WEATHER Eg:gggg -
Favorable | Unfavorable
a, = Fly A=+41000 §{ C = -5700 E1=1000P1-5700P2
laz = Stand dom | B = -1200 | D = -1200 E2=-1200P:-1200P2
IPROBABILITY P, P,

(1) Definitions.

A is the benefit realized by the customer when the
weather is favorable and the mission goes. In this case,
the benefit leas operating costs is $1,000.

B is the cost (negative benefit) incurred if the customer
stands down and the weather is favorable -a lost
opportunity. A missed training day costs $1200 in
additional TDY funds.

C is the cost or loss if the customer takes action, but,
because of unfavorable weather, cannot accomplish the
mission (aborts). Each training mission is a three-hour
flight by a C-141. If the mission is aborted because of
unfavorable drop zone weather, the costs would be
$4,500 (3 hrs X $1500/hr) plus $1200 for another TDY
day (total = $5700).

D is a cost or benefit. If there is a cost for mission delay,
then it is a cost. If a delay has no cost, then the abort cost
can be saved and D is a cost avoidance benefit (correct
stand down). The customer considers this a delay cost of
$1200 in this example.

P is the probability that no weather factors (ceiling,
visibility, wind, hazards, etc) will cause mission
cancellation, abort, or failure from take-off to recovery.
This is called a tailored probability forecast. Recall that
P, + Py = 1 and therefore, Py = 1-P,.

(2) Explanation. Applying equation 5-5, the
critical probability for this example is:

p - 5700+1200 67

-1200 - 5700 - 1000 +1200

Thus, the decision rule (equation 5-6) for this decision
problem is:

Fly if Pl >.67
Indifferent if P; =.67

59

(6-10)

Standdown if P <.67

Referring to the matrix in Table 5-11, this means that
the expected expense (E) for each mission will equal
$1200 when the probability of favorable weather, Py=Pc
= ,67. As P) increases, E decreases, and Ey increases
because of the weights exerted by the probabilities in the
equation for expected expenses. The reverse occurs
when P] decreases.
(3) Transformation to Utilities. In the example

above, the critical probability of 67% results in a
significant number of missedopportunities. Suppose the
Army unit commander complained about the recent
number of cancellations due to weather, and stated that
it is essential for their airborne unit to complete 12
missions during the next 20 days. Also assume the
squadron commander of the C-141 unit that supports the
Army commander just received a notice that their fuel
supplies and TDY funds are low and must be conserved.
Faced with this situation, both commanders ask the
SWO to help work out a compromise in the cr..ical
probability used for making their launch decisions.

a. Applying the utility transformation equatioa (5-
3) to the expense matrix (Table 5-11), the SWO prepared
an equivalent matrix (Table 5-12) and showed it to the
squadron commander. The commander was appalled at
the importance weight indicated by the utility value(B =
.87) for a stand down with favorable weather (missed
opportunity). He was satisfied with the most preferred
(A = 1) and least preferred consequences (C =0), but the
other two did not reflect his true preferences in the
present situation. After discussion between the SWQO
and the two commanders, consequence B was adjusted
to a value of .1 because now this consequence was
considered nearly as undesirable as the least preferred
consequence. This action should significantly reduce
the number of missed opportunities and satisfy the
Army unit commander. Consequence D was also
adjusted to a lower valuc (.6). This has the effect of
slightly increasing the possibility of aborts. but the
squadron commander reasoned that they could save fuel
and TDY funds in the long run. The extra training
missions they were flying could be reduced since the
number of operational missions should increase.

‘
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Table 5-12. Airborne Training Equivalent Utility Matrix.
STATES OF WEATHER EXPECTED
ACTIONS
Favorable | Unfavorable UTILITIES (U)
a; = Fly A=1 cC=0 Uy = P
az = Stand down | B = .67 D= .67 Uz = .67
PROBABILITY P, P
Table 5-13. Modified Airborne Training Utility Matrix
STATES OF WEATHER | ExpRCTED
ACTIONS UTILITIES (U)
Favorable | Unfavorable
ay = Fly A=1 cC=0 U = P
az = Stand down |[B = .1 D .6 Uz = . 1P1+.6P>
PROBABILITY P P2

(b) With these adjustments in utilities
(Table 5-13), a modified critical probability is calculated.
0-.6 -

P.=
¢ .1+ 0-1.0-6

(6-11)

Therefore, the new decision rule becomes:
FlyifP; > 4
Indifferent if P} = 4 6-12)
Standdown if Py < .4

A

The squadron commander states that he is much more
comfortable with this rule because it reduces the number
of lost opportunities and should help satisfy the Army
unit commander’s needs.

c. Operational Verification by Using Critical
Probability (P;). Another way to help a customer choose
the proper critical probability value is to show the
operational verification that would result when
different probability values are used. By inspecting the
number of hits, successes, false alarm aborts, missed
opportunities, correct stand downs, etc, the customer
can readily assess the effect different critical probability
values would have on the operation. In fact, the
customer should be provided this information for the P,,
value chosen regardless of how it was selected.

(1) Preparaivon. Part A of Table 5-14 below
shows the type of verification resulte that would
normally be prepared for any set of probability
forecasts. Suppose these were in support of photo

reconnaissance operations where the weather threshold
over the target was 3/8 or less cloud cover below 10,000
feet for a specific period. To build a series of matrices
showing the number of successful launches, missed
opportunities, and aborts that could be expected for
various critical probabilities, you need to know the
number of forecasts and event occurrences that would
have resulted from using the different probabilities.
Part B or Table 5-14 shows these distributions. They
were obtained by cumulative summation of numbers
below, and equal to or above, the critical probability
value. Individual verification matrices were then
prepared using these values as shown in Table 5-15.
Procedures used to compute all the values given in this
table are described in Attachment 7.

(2) Interpretation of Table 515. By dividing
the forecasts into two probability groups (one equal to or
above a selected critical probability and the other
below), we have, in effect, created a special type of
tailored categorical “yes or no” forecasts. The dividing
threshold is the critical probability value rather than
the normal 50% probability. The matrices on the left side
of Table 515 show distributions of the forecasts and
occurrences/non-occurrences of the event that could be
expected for selected critical probabilities. Also shown
in the center and to the right are the overall percent
correct, post agreement, and prefigurance for the
forecasts in each matrix.

(a) Definition of terms. Tables 5-16a and b
translate the matrix values into commonly used
operational terms concerned with storm protection or
flying. Terms in the first table will be used to explain the
critical probability example.




5-10

AWSP 105-51 31 October 1878

Distributions of Forecasts and Event Occurrences for Selected
Critical Probabilities (Note:

NOtationS "a+ ,ll "C+d," "a,ll and

"¢" in Part B pertain to instructions given in Atch 7.)
PART A - FCST VERIFICATION PART B - CUMULATIVE SUMS
'FCST | TOTAL | TOTAL ¥ FOF | # OF  [|F OF OCCUR- | # OF OCCUR- |
PROB # OF OF OCCUR-~ FCSTS >P] FCSTS <P |RENCES >P RENCES <P
(P) | FcsTS | RENCES (atb) | (c+d) ON (c)
0 907 19 2208 0 312 0
2 185 9 1301 907 293 19
5 218 15 1116 1092 284 28
10 294 38 898 1310 269 43
20 165 32 604 1604 231 81
30 139 44 439 1769 199 113
40 103 41 300 1908 155 157
50 70 32 197 2011 114 198
60 57 28 127 2081 82 230
70 32 21 70 2138 54 258
80 16 13 38 2170 33 279
90 13 11 22 2186 20 292
100 9 9 9 2199 9 303
ALL 2208 312 2208 2208 312 312

(b) Selecting a Critical Probability. The
verification matrices show the customer the real effect a
chosen critical probability has on his operation. The
largest number of successful launches in Table 5-15 is
associated with the lowest critical probability (2%). This
P, also gives the smallest number of missed
opportunities; however, those desirable consequences
are obtained at the expense of an increase in thenumber
of aborts and a decrease in correct stand downs. In a
categorical sense, low critical probabilities result in
substantial overforecasting. Normally, only high
priority and urgent missions would justify such a low
critical probability. Such a low critical probability
might be well justified for a severe weather decision
problem. At the other extreme, a critical probability of
90% yields the lowest number of expected sorties and
largest number of missed opportunities. It also gives the
lowest nurber of aborts and the highest number of
correct stand downs. High risk missions (lives, money,
political embarrassment, eic) might use a critical
probability this large. If the operator stipulates that the
number of aborts should not exceed successful launches,
a critical probability of approximately 38% (interpo-
lating) would be chosen. Corresponding values of
percent correct, post agreement, and prefigurance are
included to illustrate the variations in percentages
rather than numbers, since some customers may desire
this kind of presentation as well.

d. Maerits of Using Critical Probabilities.

(1) The obvious advantage of using critical
probabilities in decision making is that they are pre-
determined by the decision maker and appropriate
action implemented whenever the critical probability
threshold is exceeded. Thus, some follow-on decisions
could be made without direct involvement by the
decision maker.

(2) Critical probabilities are determined in a
number of formal and informal ways. One method,
similar to that described, uses simulated forecast
distributions. This approach is described in Chapter 6.

(3) The use of monetary value is a good
starting point for determining critical probability.
However, if actual values are not available, rough
approximations are usually adequate. The accuracy of
the critical probability need not be any more than one-
half the value of the probability intervals used in
making the forecasts.

(4) Critical probabilities can be adjusted either
objectively or subjectively as priorities and other factors
that affect the decision change. For example, a wing
commander may establish a critical probability for use
when training missions are on schedule, but, if training
falls behind schedule, a lower value (depending upon the
number of missions needed and time remaining) could
be substituted.

'
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Table 5-15. oOperational Ver!fication of Celected Critical Probabilities
SEL POST AGREEMENT PREFIGURANCE
CRIT OVERALL (% Time Fcst Event | (% Time Obsvd Event
PROB OBSVD | FCST PROB (P) | TOTAL | % CORRECT Occurred) Correctly Fest)
P>2%7  p<2% P>2% p<2% P>22 P<2%
Yes 293 19 312 22.5 2.1 93.9 6.1
2% No 1008 888 1896 53.5 77.5 97.9 53.2 46.8
Total 1301 907 2208
>5% <5% >5% <5% >5% <5%
Yes 284 28 312 25.4 2.6 91.0 8.9
5% No 832 1064 1896 61.1 74.6 97.4 43.9 56.1
Total 1116 1092 2208
210t  <10% >10% <10% >10% <10%
Yes 269 43 312 30.0 3.3 86.2 13.8
10% No 629 1267 1896 69.6 70.0 96.7 33.2 66.8
Total 898 1310 2208
>20%  <20% >20% <20% >20% <20%
Yes 231 81 312 38.2 5.0 74.0 26.0
20% No 373 1523 1896 79.4 61.8 95.0 19.7 80.3
Total 604 1604 2208
>30%  <30% >30% <30% >30% <30%
Yes 199 113 312 45.3 6.4 63.8 36.2
30% No 240 1656 1896 84.0 54.7 93.6 12.7 87.3
Total 439 1769 2208
>40% <402 >40% <40% >40% <40%
Yes 155 157 312 51.7 8.2 49.7 50.3
40% No 145 1751 1896 86.3 48.3 91.8 7.6 92.4
Total 300 1908 2208
250%  <50% >50% <50% >50% <50%
Yes 114 198 312 57.9 9.8 36.5 63.5
50% No 83 1813 1896 87.3 42.1 90.2 4.4 95.6
Total 197 2011 2208
>60%  <60% >60% <60% >60% <60%
Yes 82 230 312 64.6 11.1 26.3 73.7
60% No 45 1851 1896 87.5 35.4 88.9 2.6 97.6
Total 127 2081 2208
>702  <70% >70% <70% >70% <70%
Yes 54 258 312 77.1 12.1 17.3 2.7
702 No 16 1880 1896 87.6 22.9 87.0 0.8 99.2
Total 70 2138 2208
>80% <807 >80% <807% >80% <80%
Yes 33 279 312 86.8 12.9 10.6 89.4
80% No 5 1891 1896 87.1 13.2 87.1 0.3 99,7
Total 8 2170 2208
>90% <902 >90% <907 >90% <90%
Yes 20 292 312 90.9 13.4 6.4 93.6
202 No 2 1894 1896 86.7 9.1 86.6 0.1 99.9
Total 22 2186 2208
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Operational Terms for Matrix Values Involving Flight

1
OBSVD FORECAST PROBABILITY o
Favorable Unfavorablc
Yes Successes, hits, or Lost or missed oppor-
successful launches. tunities.
No Wasted missions or Saved sorties or cor-
aborts. rect stand downs.

Table 5-16b.

Operational Terms for Matrix Values Involving Storm

Protection.
OBSVD FORECAST PROBABILITY
Storm No Storm
Yes Hits Unforecast events
No False alarms Correct no-storm fore-
casts

(5) If a customer is opposed to using
probability forecasts directly, critical probabilities
provide an alternate way of providing tailored
categorical forecasts. Rather than using 50% as the
threshold for deciding whether or not an event will
occur, the critical probability could serve as the
threshold. Thus, the resultant decisions will be more
cost-effective than conventional categorical forecastsin
the long-run.

e. Problems in Using Critical Probabilities.

(1) When the customer’s critical probability is
outside the limits within which reliable forecasts can be
rcasonably assured, the customer should be making
decisions Sased on climatology.

{2) Forecasters should not let the value of the
critical probabilities influence the value of their forecast
probabilities. There may be occasions when a customer
changes his critical probability without the forecaster’s

knowledge.

8-7. Value Analysis. '
a. Once a customer’s critical probability is

determined, yes/no decisions are made based on

whether or not the probability forecast exceeds this

critical probability. This is a type of categorical forecast

based on the critical probability. This is the optimum
forecast from the customer’s point of view. However,
this forecast may not be the most accurate forecast.
Table 5-156 is used to illustrate this point. Consider
overall percent correct as a measure of accuracy. Note
that a categorical forecast based on a critical probability
of 70% has the maximum overall percent correct value
(87.6%). If the customer’s critical probability for this
example was 70%, he would have received the most
accurate forecast. However, with a critical probability of
30%, the categorical forecasts would not have been as
accurate (84% overall percent correct). Therefore, the
optimum forecast (based on the critical probability) may
not be the most accurate forecast (Kernan, 1975).

b. Effect of Reliability and Sharpness. When the
concept of decision models was introduced, one of the
assumptions was that the forecasts are reliable;
otherwise, errors would occur in the expected costs
depending upon the magnitude of the net reliability. It
was also stated that, although sharpness is not the main
issue in these models, it is important. These effects are
illustrated as follows. Consider six sets of forecasts (110
forecasts/set) for a Jecision problem where rain affects
an operation as indicated in Table 5-17.

Table 5-17. Expected Cost Matrix for Rain Protection.

STATES OF WEATHER EXPECTED
FACTIONS Rain No Rain COSTS(E)
Protect $ 45 $ 45 E1=45P1+45P2=545
o Protection $100 0 E,=100P,
[PROBABILITY P, P,

.

k.
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Sinee.this example fits the cost-loss model, the critical probabiltiy = C/L = 45/100 = .45. The decision rule that would be
used is:
Protectif P, > .45
Indifferent if P 1= 45

No Protection ifl"1 < 45

Using this model, total costs incurred for each of the six sets of forecasts were calculated (Table 5-18).

Table 5-18. Effect of Sharpness and Reliability on Expected Costs
PERFECTLY RELIABLE MODERATELY RELIABLE
[PROBA-
BILITY # OF # OCCUR- 0BSVD ACTUAL ##OCCUR- OBSVD ACTUAL
(P) FCSTS(n RENCES (D) FREQ % COSTS(E) RENCES(D) FREQ COSTS (E)
LITTLE SHARPNESS
100 10 10 100 ¢ 450 9 90 $ 450
90 10 9 90 450 9 90 450
80 10 8 80 450 a 90 450
70 10 7 70 450 7 70 450
60 10 6 60 450 5 50 450
50 10 5 50 450 4 40 450
40 10 4 40 400 5 50 500
30 10 3 30 300 5 50 500
20 10 2 20 200 2 20 200
10 10 1 10 100 0 0
0 10 0 0 0 0 0
ALL 110 55 50 $3700 55 50 $3900
MODERATE SHARPNESS
100 30 30 100 $1350 25 83.. $1350
50 30 15 50 1350 20 66.7 1350
40 15 40 600 8 53.3 800
20 20 20 400 10.0 200
0 15 0 0 0 .0 0
ALL 110 55 i é§i~ $3700 55 55.0 $3700
PERFECT SHARPNESS
100 55 55 100 $2475 50 90.9 $2475
0 55 0 0 0 5 9. 500
ALL 110 55 50 $2475 55 50.0 $2975
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(1) These examples assume that a decision
was made (protect or no protection) for every forecast
(110) in each set using the decision rule above. Costs are
totals for each probability interval. For example, if there
were 10 forecasts in the interval and the decision cost
associated with each forecast was $45, then the total
cost was $450.

(2) Three sharpness patterns are shown to
illustrate the effect this attribute has on actual, versus
expected costs. For each sharpness example there is a
set of forecasts with perfect reliability and another
moderately reliable.

(3) In every case, the actual costs equal the
expected costs, whenever the forecast probability (P) is
greater than the cost-loss ratio (C/L = 45%). This is true
regardless of how reliable the forecasts are. The reason
is that the protection costs are fixed at $45 per decision
(forecast), and that cost is unchanged, whether the event
occurs or not.This is seen by inspecting the costs in all
six examples where P > 45%.

(4) We can examine the variatic.: of actual
costs due solely to sharpness by considering only the
data for perfectly reliable forecasts in Table 5-18. The
total actual cost was $3700 for perfectly reliable
forecasts with little sharpness, compared to a total
actual cost of $2475 for perfectly reliable forecasts with
perfect sharpness. A similar comparison can be made
for moderately reliable forecasts. If we compare the total
actual costs for perfectly and moderately reliable
forecast with the same degree of sharpness we see the
variation of actual costs due solely to reliability ($3700
vs $3900 for little sharpness). Overall, the total cost for
the moderately reliable forecasts is $200 more than the
actual/expected cost, $3700, for the perfectly reliable set.
The total number of occurrences of the event is the same
in both sets of forecasts, but the difference in costs exists
because the unreliable forecasts have two additional
event occurrences in the intervals below the critical
probability than indicated by perfect reliability.

(6) The moderately sharp, perfectly reliable
set of forecasts, when compared with the moderately
sharp, moderately reliable set, show no change in the
actual/expected cost from the perfectly reliable, little
sharpness set of forecasts. In this case, underfore-
casting in the 40% interval is offset by the
overforecasting in the 20% interval. Thereason the three
sets of forecasts cost the sameis that the distributions of
the number of forecasts and event occurrences above
and below the cost-loss ratio are identical. Thus,
differences in sharpness or reliability have no effect on
decision costs, unless they redistribute the forecasts and
occurrences acrose the cost-loss ratio.

(6) The last two sets of figures illustrate the
above point. The group on the left are perfect forecasts,
and represent the lowest possible cost the decision
maker could expect in conducting the operation. The
costs are lower, because the customer took protective
action only on those days when the event occurred, and
the damage loss was zero. Although the set on the right
was perfectly sharp, reliability errors increased the cost
due to damage. The cost, however, was still lower than
all others, except for perfect forecasts.
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(7) Summary. The conclusion from these
examples is that both sharpness and reliability affect
the decision costs. The extent to which they affect costs
depends upon the distribution of forecast and event
occurrences with respect to the critical probability (cost-
loss ratio).

c. Value of Weather Forecasts. The probability
forecasts and the models described enable one to
calculate the relative values of forecast information.

(1) Climatological forecasts. In the absence of
a forecast, the decision maker can always use the
climatological probability to determine the best course
of action. Using the expected cost matrix given earlierin
Table 5-17 and the sample climatology (Cj - 50%) from
Table 5-18 (55 occurrences/110 forecasts) the expected
cost (E(CLIM)) per decision for that operation is
calculated as follows:

E, (CLIM) =C - 845
Eg (CLIM) - L Py = $100 (.5) - $50 (5-13)
where P = Cj

Thus, by using only the climatological probability, the
customer would be better off to take protective action
each time a decision is made, since it results in the least
cost over the long-term. For other cases, calculation of
E1 (CLIM) and E2 (CLIM) can be accomplished by using
the generalized matrix described earlier in Table 5-10.
The total cost, ET(CLIM) for the set of forecasts in Table
5-18 which has little sharpness and perfect reliability is
calculated by multiplying the unit costs by the total
number of forecasts (N) where N = 110. The general
eguation follows.

. . 2
EqCLIM) = { NE 1CLIM) if Cj =P

N(E 5 (CLIM) it C;<P,

Where Cj = sample climatological probability

P = critical probability or cost-loss ratio, C/L
N = total number of forecasts in the set
Since Po=C/L = .45and Cj =.5, Cj 2P, the total cost is:

E1(CLIM) = N(E (CLIM))

(5-15)
Eq (CLIM) =$110 (45) = $4950

This is a significant savings over the cost that would
have occurred had protective action not been taken. By
using the other rule in equation 5-14, that cost would
have been $5500.

(2) Probability forecasts. Similar total costs
can be calculated for probability forecasts as illustrated
earlier in Table 5-18. For the set of forecasts which has
little sharpness and perfect reliability, the total cost is
E (PROB) = $3700.

(3) Categorical forecasts. The unit and total
costs can also be calculated based on categorical
forecasts. Procedures are identical to those used for
calculating costs for probability forecasts, with one
exception. Instead of using the critical probability to
transform the probability forecast into categorical
forecasts, 50% or some other realistic probability valueis
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used. Assuming a threshold of 50%, the total cost for the
set of forecasts in Table 518 (little sharpness and
perfectly reliable) is En. (CAT) = $3750.

(4) Perfect forecasts. Calculation of total costs
for perfect forecasts is also illustrated in Table 5-18 (set
which was perfectly sharp and perfectly reliable). That
cost is Ep (PERF) = $2475.

(5) Value Comparisons. The true value of
forecasts to the customer is found by comparing
expected costs associated with different forecasts to the
cost that would have been incurred if unly climatology
had been used to make the decision. This latter cost
represents the upper bound of the cost. The value of each
set of forecasts is the difference between the cost from
using that set and the cost from using climatology. The
lower bound is given by the cost from using perfect
forecasts.

V(PROB)= ET(CLIM) - ET(PROB) = 4950 - 3700 = $1250
V(CAT) = ET(CLIM) -ET(CAT) = 4950 - 3750 = $1200

V(PERF) = E1(CLIM) -E 7(PERF)= 4950 - 2475 = $2475
(5-15)

In many cases, monetary values will not be available for
computing expected costs. If utility values exist,
however, they can be used to indicate the expected
values.

(6) Summary. Murphy (1976e) performed an
empirical study of the relative value of climatology,
categorical, probabilistic, and perfect forecasts in the
cost-loss situation. He concluded that the expense
(value) associated with perfectly reliable probabilistic
forecasts is less (greater) than or equal to the expense
(value) associated with climatological and categorical
forecasts for all values of the cost-loss ratio, C/L.!
For unreliable probability forecasts, the expense (value)
may be greater (less) than the expense {(value) associated
with climatological and/or categorical forecasts for
some values of C/L. However, an examination of a
number of samples of unreliable probability forecasts
indicates that the first relationship (for reliable
forecasta) appears to hold true for most (if not all) values
of C/L, even for moderately unreliable forecasts.
Moreover, the study suggests that if the value of
unreliable probability forecasts i8 exceeded, it will be by
the value of categorical forecasts. Murphy finally
concludes that the value of the meteorological product
can be significantly increased if probability forecasts
for a variety of weather conditions are routinely
formulated and disseminated to decision makers,
including the general public.

8-8. Other Models. The preceding discussions
presented the most common and simple decision models
that have been successfully applied to meteorological
decision problems in the past. There are others, but they
are too difficult to be of value in this pamphlet. Brief
descriptions of other models follow, 8o you will know of
their existence and can avoid tackling unique decision
problems without the proper tools.

a. Tactical and Strategic Decision Model. Many
types of problems occur where decisions are made
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sequentially on the basis of a continuing flow of weather
information. A two-stage decision model could be
developed in which the decision maker must first makea
strategic decision regarding the amount of protection
that can be obtained and kept available for subsequent
use. This decision would be followed by a tactical
decision whether or not to employ a certain amount of
protection on a particular occasion (Murphy, 1976a).
This model could be applied where there are several
degrees or types of protective action. Consider the base
civil engineers (CE) and their snow removal plan. Not
only is the probability of snow important, but so is its
amount and intensity. In a situation where thereis a low
probability of a light to moderate accumulation, CE may
only check their equipment, sand, and salt supplies and
place a small force of workers on home alert. For a
higher probability of moderate accumulation, key
supervisors and a small work force may be recalled;
other workers may be placed on alert, equipment and
supplies may be positioned, and actual clearing started
only if snow has begun. On the other hand, a high
probability of heavy snow might mean total recall and
immediate commencement of clearing action (Nelson
and Winter, 1960).

b. Two-Way Call Model. This model is a variation
of the basic two-stage model in which there are two
separate courses of action available. The variation is
actually a hedging operation counsisting of adding a
third course of action, which is simply a delay until the
last minute in deciding between the first two actions.
Delaying the decision (action 3) adds cost, but when the
probability forecast is near the critical probability, the
third course of action, in some cases, is more cost
effective in the long run. This is especially true when
some of the resources can be used in either of the first two
actions. This particular model has possible applications
in launch decisions, severe weather protection, etc,
whenever the customer desires that provisions for last
minute decisions be built into the model (Nelson and
Winter, 1960). Note: The simpler two-stage model can
still be used with these same decisions, when the built-in
delay option is not required.

c. Linear Postponement Model. This model
involves decisions where there are two choices: to
attempt a job, or delay and accept a penalty. This model
is best described by assuming that the cost of
completing a job can be broken down into the following
three elements: the direct cost of doing the work, a fixed
cost or penalty charge for each day that elapses before
the job is complete, and an added loss incurred each day
the job is started, but unfavorable weather results
(Nelson and Winter, 1960). Construction decisions
readily fit this model, but it could also be applied to
training schedules and other types of decisions.

d. Postponement Model. This model is a variation
of the linear postponement model. Instead of having an
indefinite period of time in which to complete the job, the
decision maker must finish it by a given deadline, or else
incur a penalty. The penalty might be a full or partial
refund of any gross revenue paid the decision maker,
who is no longer required to complete the job. This case
would arise if completion of the job after the deadline
provided no value to the agency letting the contract. The

1Actually, E(PROB) = E(CLIM) only when C/L = 0 and 1; and E(PROB) = E(CAT) only when C/L equals the sample

climatology.
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penalty might also be the expected cost of eventually
completing the job, with no deadline, but with some
higher cost or penalty applying after the deadline, A
variety of other penalty com:binations might also be
used (Nelson and Winter, 1960). Applications of this
model are similar to the linear postponement model.
e. Summary. Models attempt to develop objective
rules which reproduce the decision maker’s thought
process. Consequently, the model chosen must be
matched to both the decision maker and the decision
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problem. In addition to the examples cited, there are
specific models designed for decision makers who are
inclined to take risks or for those who wish to avoid
risks. Unfortunately, there is little information
published on application of decision models to the many
military weather decision problems our customers face.
Thus, there will undoubtedly be situations where we will
have to develop or adapt models to handle unique
decision problems.
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Chapter 6

INTRODUCTION TO WEATHER IMPACT AND
MISSION SUCCESS INDICATORS

6-1. Introduction. In this chapter, we introduce the
concept of a Weather Impact Indicator (WII) and how it
is used to calculate a Mise’on Success Indicator (MSI).
The main forms of WIIs and how to construct them are
discussed. The different weather effect models used by
the customer are described, with the form of WII which
can be used to support each one as input to an MSI. The
calculation of MSIs is covered in some detail, including
some discussion of non-weather effects. While the
customer will calculate his MS], it is essential that the
staff weather officer have an intimate knowledge of the
mission and problems involved. This understanding
can be used to better tailor the support provided. A WII
may be produced by methods other than a forecast.
These different methods are discussed in the final
section.

6-2. Forms of WIIs. A WIlistheprobabilistic weather
input used to calculate an MSI. WIIs are tailored for
specific decisions. They can be calculated for an overall
mission, or for any particular stage of a mission, e.g.,
take-off, enroute, aerial refueling, weapons delivery, and
recovery.! There are two main forms of WII, a threshold
forecast and a continuous probability distribution.

a. Threshold Forecast. This is the dimplest of
the two forms. It is the probability that the weather will
exceed a particular threshold value (ceiling above 1500
feet, winds greater than 5 knots, temperature below
freezing, etc.), or that an event will or will not occur
(rain, thunderstorms, freezing rain, hail, etc.).

A categorical forecast is a special form of this type
forecast; one in which only probabilities of 100% or zero
are inferred. This is typical of our normal weather
support, but does not convey all of the information
possible. For example, consider some operation to take
place at 0930L. where wind in excess of 17 knots is a
critical factor (See Table 6-1.)

Note the categorical forecast, as might begivenona
terminal forecast. This says that wind gusts will exceed
17 knote during a time period covering the operation. We
still don’t know how often, especially near a particular
time, or how sure the forecaster is.

The general probability forecast represents the all-
purpose, area forecast available from a weather central.
The nature of such a generalized forecast - valid over an
area, an interval of time, and a different threshold -
degrades it's application to the specific operation.

A probability forecast tailored to the specific
threshold (17 knots), time (0930L), and location best
meets the customer’s requirements for decision making.
This is the threshold forecast form of WII.

Subjective threshold forecasts are relatively easy to
make. Given a weather element/threshold, the
forecaster examines the relevant observations,
analyees, forecasts, and climatology. Based on past
experience, the forecaster subjectively estimates the
probability of the weather exceeding the threshold. This
process is basic to every manual forecast, whether
expressed in categorical or probabilistic terms.

b. Continuous Probability Distribution.
Suppose a forecaster gives a 60% probability of winds
exceeding 15 knots for a particular weather situation.
This same forecaster is then asked for the probability of
winds greater than 20 knots for the same situation. Will
his probability forecast for this threshold be higher,
lower, or the same? What if the threshold is 25 knots, 50
knots, or 100 knots? The probability for exceeding a
higher threshold is less than that for any lower
threshold. Eventually, the probability for exceeding a
specific high wind speed becomes zero. Since the
probability for the wind speed being zero or greater is
100%, we see that there is a continuous distribution of
forecast probability versus the wind speed threshold. We
may present these distributions in two ways, as a
cumulative probability curve or as a probability density
curve.

(1) Cumulative probability curve. An
example of a cumulative probability curve is shown in
Figure 6-1. Each point on the curve gives the probability
for wind speed at or less than the value on the horizontal
axis. The probability for a wind speed of 15 knots or less
is shown by the dashed line as 40%. Cumulative
probabilities for other thresholds are found from the
curve in a similar manner. These curves may be
obtained through subjective or objective forecasts.

(a) Subjective forecasts. Cumulative
probability curves can be generated subjectively for any
continuous weather element - ceiling, visibility, wind
speed, temperature, etc. - for a location and forecast time.
A forecast for a single threshold represents one point on
the curve. Probability forecasts for a series of thresholds
of an element can be plotted on a graph similar to figure
6-1 and the points connected to form a “complete”
cumulative probability curve. Figure 6-1 was
constructed in this manner by using the threshold
forecasts: 0 kts - 0%; < 5 kts - 5%; «10kts - 15%; «15kts -
40%; <20 kts - 70%; s 25 kts - 85%; and &30 kts - 95%.

Several experiments have been conducted where
forecasters predict the cumulative probabilities for the
maximum and minimum temperature (Peterson,
Snapper, and Murphy, 1972; Murphy and Winkler,
1974b; Murphy and Winkler, 1975; Murphy and Winkler,
1977). In one approach, forecasts were made by
successive division of the temperature range into equal
probability ranges. A detailed discussion of this
procedure is given in Attachment 10. Another approach
tasked forecasters to assign probabilities that the
temperature maximum (minimum) would be within a
fixed temperature interval (5 or 9°F). These experimente
have shown that experienced forecasters can reliably
describe the uncertainty inherent in their temperature
forecasts. Further forecast experiments at the
Massachusetts Institute of Technology (Sanders, 1973;
Sanders, 1976) have shown that inexperienced students
can produce reasonable probability forecasts for
minimum temperature in ten intervals about the
climatic mean and six categories of precipitation
amounts for four consecutive 24-hour periods.

1Special techniques are required to compute the combined WII to account for the spatial and temporal correlations

of weather.
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Table 6-1. Forecast Examples. ‘/‘
CATEGORICAL GENERAL
FORECAST PROBABILITY WII
00-121L 00-12L 0930L
Wind Gust >15 Gust >17
10G20 80% 50%

Figure 6-1. Cumulative probability of wind speed.

1. Qu

CUMULATIVE PROBABILITY
'Y

¥ ¥
10 20 30 a0
WIND SPEED (knots)




SN

AWSP 105-51 31 October 1978

These subjective techniques can be applied in
predicting the probability diatribution for any
continuous meteorological variable - visibility, ceiling,
wind speed, etc. The main requirements, other than
basic knowledge, are practice and feedback of
verification results.

Uncertainty in a forecast increases with time. The
effect of this on a cumulative probability curve is shown
in Figure 6-2. Curve A represents the distribution for a

short range forecast. The curve indicates a high -

certainty for a wind speed near 17 knots. The cumulative

6-3

probability of curve A increases from about 20% at 15
knots to about 85% at 20 knots. Thus, the probability of
winds between 15 and 20 knots is about 656%. (85% - 20% =
65%) Curve B represents a medium range forecast. The
value of B increases more gradually than the value of A.
This indicates that the probability distribution is
broader, and the forecast less certain for any given
interval of speed. Curve C might be the cumulative
probability distribution for a long range forecast or for
climatology.

CUMULATIVE PROBABILITY

A—

B am an -

C oo o o

—t
20

v

T
30 40

WIND SPEED (knots)

’ Figure 6-2. Effect of time on uncertainty of the forecast.
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As uncertainty increases in a subjective forecast,
the distribution should approach the one for climatology
as a “no skill” base. Climatological cumulative
probability curves for many elements can be derived
from data in a RUSSWO. Table 6-2 gives the wind
speed frequency for all wind directions and weather
categories from the Ft Rucker RUSSWO for March,
1200-1400 LST. The cumulative frequencies are also
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given, and a plot of these is shown in Figure 6-3. The
probability of winds less than or equal to 15 knots from
Figure 6-3 is about 93%, thus giving a climatological
probability of 7% for mean winds greater than 15 knots.
Similar plots can be made using RUSSWO information
for ceiling, visibility, temperature, precipitation, and
sky cover for use as a base in constructing subjective
forecasts.

1.0

.8

CUMULATIVFE FREQUENCY

[r * ® o m e w e W e m s e e W - o-

]
20 30

WIND SPEED (knots)

Figure 6-3.
in Table 6-2.

Cumulative frequency plot for the data
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(b) Objective forecasts. Objective
methods may be used to construct the cumulative
probability distribution. One of the easiest ways is to use
data from the MOS bulletins. (See NWS Tech Procedures
Bulletin #217, 3 Nov 77, for category definitions and

bulletin format.) The MOS bulletin probabilities are

given to the nearest 10%, and may sum over all
categories to more or less than 100% at times due to
rounding. Some judgement must be exercised when
plotting the cumulative sums due to this rounding.
Figure 6-4 illustrates how three forecast ceiling
probability distributions from a MOS bulletin are
plotted in cumulative distribution form from category
boundaries of 200, 500, 1000, 3000, and 7500 feet.

Note how the forecast distributions in Figure 6-4
become less sharp as the length of the forecastincreases
and that, with time, they trend toward climatology, i.e.,
a high ceiling or no ceiling.

Other methods may use a subjective input for some
value which then determines an entire distribution by
objective means. One method developed by AWS/DN is
the Multi-Category Probability Variati. . Guide
algorithm. This algorithm produces the probability
distribution for all thresholds of a weather element,
given the length of the forecast, the climatological
distribution of the forecast element, and a forecast
probability for exceeding one threshold. Since this
method can prove quite useful, the use of it will be
covered briefly, with some examples of the output.

The examples shown are based on a six hour
forecast for Scott AFB, valid at 1800Z, in December. The
Scott AFB climatology for that time for the four AWS
ceiling categories and the length of the forecast are
required inputs to the program. Two methods of
obtaining forecasts are possible.

The first way to use the algorithm is to subjectively
predict the probability of exceeding a single threshold.
In Table 6-3a, the prediction was made for exceeding
category C, i.e., being in category D. For each value
entered in the column under D, the algorithm produced
all the entries for the ntaer categories. If 50% probability
is forecast n category D, then the probability for C is
44% and for B is 5%. Note that round-off causes thesums
to occasionally differ from 100%.

i'he second war to ase the algorithm is to rank the
weather situation aa to the degree that it favors “good”
weather. The ability to do this reliably is a function of
forecaster experience. Forecasters quickly learn to
recognize “‘bad” and “good” weather situations from
routine forecasting aids; in effect, developing a mental
file of map types associated with the expected weather
conditions for their area. > hen evaluating the current
situation, the forecuster mentally compares it with past
experience and, with a little thought and practice, ranks
it on a scale of 1 to 99, woret case to best case. Thisrank,
expressed as a percentage, is used as an input to the
algorithm.

Table 6-3b shows examples of the output for
different rank inputs. If the forecaster believed that the
situation was an average one with a rank of 50%, a 15%
probability for category C and an 85% probability for
category D would be read. The results should not be
surprising in view of the ceiling climatology and the
shortness of the forecast period (high skill). When longer
forecast periods are used, thus assuming lower skill, the
forecasts would converge toward climatology.
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Tables 6-3a and 6-3b are only two examples of the
use of the algorithm. We could use other elements; a
forecast for one time period can be used to also provide
the forecast for another time period; or an option is
available to “spread” a probability forecast to fi.nd the
forecast at nearby locations.

Tables based on this algorithm are availabie from
USAFETAC for use as forecast aids. The algorithm can
berun on a handheld calculator, even a rather small one.
The program can be obtained through AWS/DN.

(2) Probability density curve. The second
method of presenting a continuous probability
distribution is through a probability density curve. This
curve is directly related to the cumulative probability
curve; the probability density is the slope (derivative) of
the cumulative probability curve. An example is shown
in Figure 6-5. This curve is the plot of the slope, i.e.,
d(cumulative probability)/d(wind speed), of the curvein
Figure 6-1, plotted as a function of wind speed.

The total area under the curve in Figure 6-5 is 1.0,
or 100% probability. The maximum of the curve is at
about 15 knots. This is the “most probable” wind speed.
The probability that the speed will be less than or equal
to 15 knots is shown by the shaded area under the curve
to the left of the dashed vertical line at 15 knots. This is

e integral of the curve from 0 to 15 knots, ie., p =
;%'ds, where s is wind speed and B’ is the probability
ensity of wind speed. In this case it is 0.4 of the total
area, or 40%. Note that the threshold for 50% probabilty
does not necessarily coincide with the most probable
wind speed. As the threshold is increased, the area under
the curve to the right of the threshold decreases; thus,
the probability of exceeding the threshold decreases.

The degree of skill, or certainty, in a probability
density distribution is shown by the height of the peak
and the spread of the distribution. This is illustrated in
Figure 6-6. The three curves, A’, B, and C’, correspond to
A, B, and C in Figure 6-2. They are the derivatives of A,
B, and C, respectively. The total area under each of the
curves in Figure 6-6 is equal to 1.0. The most probable
wind speed for each curve is the same, 17 knots, but the
distributions are greatly different. This reflects the
uncertainty encountered as the length of the forecast
period increases.

The form of WII used will depend on the particular
need, or weather effect model, of the customer.
Cumulative probability curves are perhaps a more
natural way of expressing the probability distribution of
a weather element. Certainly they are more easily
determined by subjective methods. Simple threshold
forecasts are inherent in that distribution. Probability
density curves can be derived by graphically
differentiating the cumulative probability curve. What-
ever technique is used to formulate the forecast
probability distribution, such a distribution gives the
maximum amount of information about the expected
weather,

6-3. Weather Effect Models. The customer can
describe the effect of weather on an operation in one of
two ways - a simple threshold model where a particular
value of a weather parameter forms the decision point,
or a continuous function model where the effect of
weather varies with the value of the weather parameter.

a. Simple threshold model. Simple thresholds
are part of everyday weather support, and are
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Table 6-3a

Six Hour Ceiling Forecast for Scott AFB, Valid 18002
Multi-Category Probability Variation Guide

A B c D
52 48 0 0
1 75 23 1
0 66 31 2
0 51 44 5
0 36 54 10
0 21 59 20
0 13 57 30
0 8 52 40
0 5 44 50
0 3 37 60
0 2 28 70
0 1 19 80
0 0 10 a0
0 0 5 a5
0 0 1 99
0 0 0 100
Climatology: 0.3 10.5 20.7 68.5
Table 6-3b

Six Hour Ceiling Forecast for Scott AFB, Valid 18002
Multi-Category Probability Variation Guide

RANK A B c D
1 7 89 4 0

2 3 87 10 0

5 0 68 30 2
10 0 41 51 8
20 0 14 58 28
30 0 5 44 51
40 0 1 28 71
50 0 0 15 85
60 0 0 6 94
70 0 0 2 98
80 0 0 0 100
90 0 0 0 100
95 0 0 0 100
99 0 0 0 100

Climatology: 0.3 10.5 20.7 68.5

Rank is the degree, in percent, that the situation
favors higher categories.
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commonly used to define “go/no-go’’ decisions. For
example, VFR, PAR, VOR, and TACAN landing
minima are discrete ceiling and visibility values;
paradrop of personnel is conducted only if the winds are
less than 13 knots; and most aircraft have restrictions
based on fixed crosswind speeds and/or gust spreads
that “prevent” takeoff and landing.

Weather threshold values are often used to ensure a
high level of safety for a particular operation. Pilots are
given the level of training that enables them to safely
land their aircraft 99+% of the time when the
ceiling/visibility is greater than or equal to 200/1/2.
Highly experienced, skilled pilots, current in the
operation of their aircraft, may be able to land
successfully 75% of the time, with ceiling/visibility as
low as 100/1/8. However, from a safety and economics
standpoint, the 25% failure rate is unacceptable and the
200/1/2 threshold is established below which landings
are not made.

A simple threshold model is illustrated in Figure 6-7.
Note that the scale on the vertical axis has been omitted.
System effectiveness can be less than 100%, even in
perfect weather.

The WII needed by the customer to use this weather
effect model is a simple threshold forecast for the critical
weather event. The cumulative probability curve could
be used, since the particular threshold forecast needed is
just a point on the curve. This has the added advantage
of being able to support a customer with multiple
thresholds or several customers with different
thresholds with one forecast of the weather event.

b. Continuous function model. Simple
thresholds are not usually realistic descriptions of a
system’s weather sensitivities. Basing decisions on
weather being above or below a single threshold is more
a matter of establishing an identifiable limit for
conducting operations, rather than any sudden
degradation of the system capability when the
threshold is just exceeded.

A more general case is one where all goes well when
the weather is above one threshold, and complete
mission failure results when the weather is below
another threshold. Between the two thresholds, the
probability of mission success changes as a continuous
function of weather. This variation is illustrated in
Figure 6-8. Again, the absence of values on the vertical
scale is deliberate, since the system may have a
probability of success in perfect weather of less than
100%.

A simple threshold forecast form of WII cannot be
used to support this model. A continuous probability
distribution form of the WII must be used to describe the
weather forecast across the range where weather is a
factor in the auccess of the operation.

¢ Establishing weather effect models.
Reslistic continuous function (multiple threshold)
models are far more representative of systems
capabilities than simple threshold models. They are also
far more difficult to establish. Staffmets and SWOs
must work with their customers to determine the model
that best reflects system capabilities over all ranges of
weather conditions. Careful analysis of weapons
delivery results at tactical ranges, the fraction of cloud
cover on reconnaissance photos, successful refueling
hook-ups, paradrop injury rates, etc., as a function of
weather will help in establishing the weather effects for
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a system. The customer’s operations analysis,
evaluation, and planning staffs are good places to start
in conducting such analyses.

Several iterations may be required before the
customer validates the model for the system and/or
tactics. The models must be developed before the system
is employed in a conflict, if such employment is to be
optimal. Once developed, these models will also result in
increased effectiveness of weather support to routine
training and peacetime operations.

€-4, Mission Success Indicators. The WII
furnished to the customer is used, together with the
customer’s weather effect model, to calculate theimpact
of weather on a migsion. This then forms a part of the
Mission Success Indicator (MSI). An MSI is the
probability that a mission will succeed. MSIs may be
calculated for an entire mission, or for any stage of a
mission where a decision option exists. It incorporates
the impact of all factors that affect mission
accomplishment. These include weather elements, such
as ceiling, visibility, crosswind, etc., and non-weather
considerations, such as maintenance status, enemy
defenses, weapon aystem kill efficiency, tactics, target
type, etc.

Several examples wili be used in this section to
illustrate the use of a WiI ic calculate an MSI. The
examples will be presented considering only weather
effects, then some discussion will be given on how non-
weather factors enter into the decisions.

a. Weather effect only.

(1) Equipment paradrop example. A
critical piece of equipment, a radio for command and
control, is needed at a forward area. The wing
commander plans to paradrop the radio from a C-130 at
0930L. If the surface wind exceeds 17 knots, there is a
10% chance that the radio will be damaged. Using the
forecast WII in Table 6-1, what is the MSI for this simple
threshold model?

The probability of damage to the radio is the
conditional probablity of damage given winds in excess
of 17 knots (10%) times the probability of those winds
(50%). Thus, the probability of damageis 0.1 x 0.5 = 0.05,
or 5%. The probability of success is the probability that
the radio will be undamaged, or . . .05 = 0.95, or 95%.

Suppose that the following information was
available from a series of experiments on the
effectiveness of equipment packaging for paradrops:

Wind Damage
Speed <15 knots No damage.
15 < Speed %20 knots 10% chance.
20 < Speed <25 knots 40% chance.
25 <Speed £30 knots 70% chanrce.
Speed >30 knots 90Y% chanc-:.

This information is portrayed graphically in Figure 6-9.

We now have e distribution of probability of
damage as a function of wind speed. A simple wind
speed threshold forecast is obviously inadequate here.
We need a forecast covering the speed regime where we
are given a probability of damage. The cumulative
probability of wind speed given in Figure 6-1 is the WII
for this case.

Since the probability of damage i8 given in discrete
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Figure 6-7. Simple threshold weather effect model.
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Figure 6-8. Continuous function weather effect model.
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intervals, we must obtain the probability of wind speeds
in the same intervals. These probabilities are obtained
from Figure 6-1 using the differences in cumulative
probabilities as shown below:

Probability of speed %15 knots = 40%

Probability of 156« speed £20 knots = 70% - 40% = 30%,
Probability of 20 < speed s25 knots = 85% - 70% = 15%,
Probability of 25 < speed £30 knots = 95% - 85% = 10%,
Probability of speed >30 knots = 100% - 95% = 5%.

These probabilities are probability densities for each
speed interval.

The probability of the radio being damaged is found in
each interval just as it was for the simple threshold
model by multiplying the conditional probability for
damage for a wind speed interval by the probability of
winds in that interval. Thus, we obtain:

Probability of speed < 15 kts x Conditional probability of
damage (speed $15 kts) = 0.4 x 0.0 = 0.0, or 0%,

Probability of 15 <speed £20 kts x Conditional
probability of damage (15 < speed 20 kts) =0.3x 0.1 =
0.03, or 3%,

Probability of 20 4speed £25 kts x Conditional
probability of damage (20 <speed %25 kts) = 0.15x 0.4 =
0.06, or 6%,

Probability of 25<speed%30 kts x Conditional
probability of damage (25 <speed $30 kts) = 0.1 x 0.7 =
0.07, or 7%,

Probability of speed > 30 kts x Conditional probability
of damage (speed »30 kts) = 0.05 x 0.9 = 0.045, or 4.5%.

The probability of damage to the radio is the
summation of the pobability of damage for all speed
intervals, or 0.00 + 0.03 + 0.06 + 0.07 + 0.045 = 0.205, or
20.5%. This leads to an MSI of 1.0 - .205 = .795, or 79.5%,
under these conditions.

(2) Tactical photo reconnaissance
example. An RF-4 flying at 20,000 feet requires a cloud-
free environment between the aircraft and the target
area for successful photography. One operator may
define the critical weather threshold as 2/8 total cloud
cover below 20,000 feet, i.e., a simple threshold model
assuming mission failure if the threshold is exceeded. If
the operator receives a categorical forecast of more than
2/8 cloud cover below 20,000 feet, he must either cancel
the mission or ignore the forecast. Ideally, the decision
maker should know the likelihood of favorable weather
so that he may weigh the chance of success against
other factors.

There is no guarantee of success with 2/8, or less,
total cloud cover. The only cloud in the sky might be
right over the target. On the other hand, a break in an
almost complete overcast may be over the target,
allowing successful photography. Considering this, the
operator might better define the probability of
successful photography as a function of cloud cover as
in Figure &10.

AWSP 165-51 31 October 1978

The WII needed to support this weather effect model
is a continuous probability distribution for cloud cover
below 20,000 feet. The forecast distribution could be
determined from individual forecasts for each eighth of
cloud cover (with the constraint that the sum be exactly
1.0), or determined from a cumulative probability
distribution formulated in the manner shown in
Attachment 10. A forecast probability distribution is
shown in Table 6-4.

The WII shown here is effectively a probability
density function, which can be directly multiplied by the
conditional probability of “seeing” the target to obtain
the probability of successful photography. The
calculations are indicated in Table 6-4, with a resultant
MSI of 68%.

Note that the most probable coverageis 4/8 (30%). A
categorical forecast of this would be a “no go” for a
threshold of 2/8. A probability forecast for 2/8 or less
coverage would lead to an MSI of 30% (the sum of
probabilites for 0 - 2/8 cloud cover). If the critical MSI for
proceeding with the mission is between 30% and 68%, a
simple threshold forecast will result in cancellation
while the more realistic continuous model indicates the
mission should be executed.

(38) Airborne operation example. Routine
paratroop training jumps are only conducted when the
drop zone winds are less than 13 knots to minimize the
risk of injury. As speed increases, the probability of
injury increases dramatically, approaching 100% at
some high wind speed. The conditional probability of
landing uninjured versus wind speed can be represented
by a continuous curve like the one in Figure 6-11.

An airborne unitis given a mission to disrupt enemy
communications behind enemy lines and capture key
supply and transportation points. It is estimated thata
thousand men will be needed on the ground to
accomplish this. The importance of the mission is such
that it must go at a given time, even if the winds are
unfavorable.

The forecaster predicts the wind speed in the drop
zone will be about 15 knots. After careful assessment of
the weather situation, he derives the forecast
cumulative probability distribution of the wind speed
using the method of Attachment 10. The forecaster
predicts no chance for calm winds, and probabilities of
12.5, 25, 50, 75, 87.5, and 100% for wind speeds below 9,
12, 15, 18, 20, and 35 knots, respectively. These values
are plotted in Figure 6-11, and a smooth curve drawn
through them to complete the forecast distribution.

The forecast probability density distribution for the
wind speed is also shown in Figure 6-11. This
distribution was determined by graphically
differentiating the cumulative probability curve.

The MSI, based only on wind speed, is the integral of
the product of the forecast wind speed probability
density (P) and the conditional probability of landing
uninjured given the wind speed (PU) over all possible
values of wind speed. This integral is shown on Figure 6-
11. Since analytic expressions for P and PU are not
normally available, we must do the integration by
summation as we did in the previous example. These
results are presented in Table 6-5, with an MSI of 87%.

Given an MSI of 87%, or 87% probability of landing
uninjured, we need to calculate how many paratroopers
must be committed to the operation to give an expected
force on the ground which is as large as the required
1000 men. Dividing 1000 by .87, we find that 1150 men

\ .
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Figure 6-10. Conditional probability of a cloud-free line of
sight from 20,000 feet to the surface, given the
cloud cover below 20,000 feet.
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are needed. Allowing for some margin of error, and to
provide care for the injured, the commander may decide
to allocate 1200 paratroopers for the mission.

(4) Weapon selection example. A different
MSI may be computed for each decision option of a
single mission. An example of this occurs when several
targets are available, and a variety of tactics and
weapons, each with a different sensitivity to weather,
could be used against each one. In this situation, the
probability of success for each weapon type and tactic,
at each target, must be calculated.

A simple example of the possible variations of
weather impact on the destruction of five targets is
given in Table 6-6. The numbers are Wils tailored to the
weather sensitivity of each munition type and delivery
mode when a simple threshold weather effect model is
assumed. Considering only the weather effect on
success, these are also partial MSls. (If weather is the
only factor that affects the mission success, then these
are complete MSls.)

With no other considerations, the weapon and
delivery mode selection for each target is
straightforward. Simply pick the combination that
provides the highest probability of success, provided
that probability is greater than the critical probability
for flying the mission. For example, if only conventional
(visual) weapons are to be used, and 50% is the critical
probability, the mission would be flown against E-24, J-
14, and K-7, using a low delivery mode. No mission
would be flown against E-22 or K-27 because their MSl is
less than the critical value.

b. Non-weather factors. Obviously, weather is
only one of many factors that govern the decisions made
concerning a mission. These other factors affect the
critical probability required to execute the miasion; they
affect the actual MSI for the mission; and they may
cause decisions to be made that are contradictive to the
MSIs involved.

If the radio in the first exampleis damaged, can it be
replaced? How soon can it be replaced? Exactly how
important is the radio for the conduct of further
operations? These questions all affect what the critical
probability of success is for delivery of the radio. What
hostile actions may be expected? How large is the drop
zone? What is the terrain? These factors all affect the
MSI. What are the MSIs for other available delivery
modes—helicopter, ground vehicle, land a C-130, etc.?
This may cause another mode of delivery to be used.

In the reconnaissance example, enemy defenses
affect the loiter time and the probability of success. The
importance of the mission governs the critical
probability at which the mission will be attempted.

In weapons selection, the number of weapons of
different types on hand affects the decision of which
type to use. The MSI for one weapon type may be very
high against a certain target, but the high unit cost may
limit the use of it, except in special circumstances.

What if there are more targets than there are sorties
available? If they are all of equal importance, strike the
ones with the higheat MSI. If they are not of equal
importance, their relative value must be considered in
making the decision. Suppoee relative target values
were assigned in the weapon selection example of 2 for
E-22, 1 for E-24, 0.5 for J-14, 1.4 for K-7, and 3 for K-27,
where the larger values indicate greater importance.
These values can be used to weight the MSIs to select
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which targets to strike. If we multiply the respective
MSIs by the weight, we get 0.9 for E-22, 0.75 for E-24, 0.4
for J-14, 0.7 for K-7, and 0.75 for K-27. Now if only three
sorties were available, they should be flown against E-
22, E-24, and K-27. Note that a mission is not flown
against J-14, the one with the highest MSI, because of
it's relative importance.

The commander has many factors to consider when
trying to arrive at an optimal decision. A categorical
forecast must be interpreted in order to assess the true
impact of weather. Forecasters who work closely with
their customer may attempt to adjust their categorical
forecasts, according to their understanding of the
critical probability, in effect making misgsion decisions
without knowing all the facts. The WII eliminates the
need to interpret the forecast, allowing the commander,
whose job it is to know and assess all mission factors, to
make the best use of weather in planning and execution.

6-5. Categories of WIL. There are three categories of
WII: forecast, climatological, and simulated. Each is
designed for a specific purpose.

a. Forecast WII (FWII). The examples of Wlls
which have been presented in this chapter are of this
type. FWIls are normally used in the execution phase of
a mission. They are also used for short range planning.
when forecasts would be expected to have more skill
than climatology. FWIIg areproduced in several ways.

(1) Centralized facilities produce generalized
categorical weather products and guidance—surface,
upper air, and HWD analyses and progs, etc. Local
forecasters and SWOs combine these with more recent
observations and climatological aids te produce
subjective threshold forecasts and probability
distributions.

(2) General probability forecasts from
weather centrals—MOS bulletins, area forecasts, etc—
are tailored to specific customer needs by local
forecasters and SWQs.

(3) FWIls produced by weather centrals are
modified, as required, by local forecasters and SWOs
before providing them to decision makers.

(4) A weather central produces FWIIs and
perhaps even partial MSIg if the ci-«tomer requests them
(such as advanced CFPs, TERBS, ctc), and .. -nsuits
them directly to the decision maker in a tailored bulletin.

(5) Forecast probability distributions of
weather elements are transmitted from a weather
central to a customer’s computer, where they are used in
the production of MSIs. Advantages of this method are:
a great reduction in communication volume: the
weather information is unclassified; and complete,
automated tailoring with climatology, targets, times,
and non-weather factors to produce MSI. Within his own
computer the customer can fully incorporate weather
impacts to produce MSIs for all possible options; play as
many “What if?”’ games as he wishes, frag aircraft; plan
missions; and anticipate weather constraints on enemy
operations. Circumstances and the sophistication of
customer applications will dictate the method used to
produce FWIlas.

b. Climatological WII (CWII). Much of our
climatological information is already in probabilistic
form. Tailored climatological probabilities are routinely
provided to customers for planning, scheduling,
selecting areas and routes. SOCS/RUSSWO data is ideal
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for generating probabilities for simple thresholds or
probability  distributions for  continuous/multiple
thresholds.

¢. Simulated WII (SWII). SWIIs are used to show
the expected effect of weather on mission
accomplishment, attrition, and resource requirements.
SWIIs can be used by a customer to simulate MSIs, and
thus help determine the desirability of various force
structures, weapon systems, tactics, and force
distributions. SWI1ls are produced by a model which
simulates the variability of obeerved weather for a
climatic regime and the accuracy of weather forecasts.
Known time and space correlations of generated
observations are included in the model . The time decay
of forecasting skill is taken into account. SWIls allow
comparison of mission results based on, say, 12 hour
forecasts with those using 6-hour forecasts.

One type of SWII can be used to help the customer
determine the critical probability for go/mo-go
decisions. Critical probability can be determined
objectively if the relative utilities of the various mission
outcomes are known (see section 5-6). However, this is
rarely the case. But SWIIs help the decisionmaker use
his “gut feelings” on the desirability of mission
outcomes to select his critical probability. An example
will show how SWIIs meet this purpose.

Suppose a ~stomer needs a 12-hour probability
forecast for a critical weather threshold!. Climatological
records show this threshold is exceeded 40% of the time.

(1) What is the expected distribution of
probability forecasts for this event? A forecaster
making two-week forecaats for this event would always
predict a probability of 40%, the climatological
frequency. A forecaster making two-minute probability
forecasts would predict 0% probability nearly 60% of the
time (the threshold is not exceeded now). He would
predict 100% probability nearly 40% of the time (the
threshold is exceeded now). He would predict some
intermediate probability a very small fraction of the
time (the weather is very close to the threshold now, and
it could go either way in two minutes). Two weeks in
advance, the forecaster would almost never forecast a
0% or 100% probability for exceeding the threshold. Two
minutes in advance, the forecaster would rarely be so
uncertain that he would issue a 40% probability forecast.
Between these two extremes the relative frequencies of
the various probabilities given by the forecaster should
differ, depending on the length of the forecast. This
change in forecast frequency distribution with the
length of the forecast is shown in Figure 4-2. The second
row in this figure illustrates the frequency distribution
for probability forecasts for a threshold with a 40%
climatological expectation. The distribution in the
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leftmost column (0.2 correlation) of Figure 4-2 is about
equivalent to a three-day forecast. The distribution in
the rightmost column (0.95 correlation) of Figure 4-2 is
nearly that expected for a three-hour forecast. The
distribution for twelve-hour forecasts is close to that
shown in the fourth column (0.8 correlation). The
distribution for twelve-hour forecasts of a threshold
with a 0.4 climatological frequency is shown in the
original, continuous form as the curve labeled Vin
Figure 6-12. This distribution is based on an application
of the Transnormalized Regression Probability Model.
If a sufficient record is available, actual probability
forecast distributions for the threshold could also be
used, after some subjective smoothing and adjustments
for possible sampling error using Figure 4-2 as a guide.

(2) The frequency distribution takes the
sharpness (skill) of the probability forecasts into
account. The reliability of the probability forecasts must
also be included in the formulation of SWIlIs. The
assumption made is that the forecasts are perfectly
reliable. Actual reliability experience could be used.
However, forecasters can learn to make reliable
forecasts with practice, and try to eliminate personal
biases. Deviations from perfect reliability in onesample
of forecasts may be in the opposite direction for a
subsequent sample. Thus, perfect reliability is usually
the best assumption. Perfect reliability is indicated by
the curve O in Figure 6-12. Theratiod /{indi .tes the
fraction of the forecasts at each probabilityinv .~ - .he
threshold is exceeded. 6 is zero when the = - ast
probability is zero—the threshold is never excev.:d,
when the forecast probability is zero. At 100% forecast
probability the ) and § curves have the same value—
the threshold is always exceeded, when the forecast
probability is 100%. At intermediate probabilities, the J
curve lies at a distance from the horizontal axis to the |
curve, proportionate to the forecast probability. For
example, at 40% forecast probability, the 6 curve is 40%
of the value of the { curve. The § curve has a value 75%
of the | curve at a 75% forecast probability. Thus the 6
curve represents perfect reliability for the frequency
distribution of the probability forecasts.

(3) The @ curve separates the occasions when
the threshold is exceeded from thnse when it is not
exceeded. The area between the honizontal ...z and the
curve is the portion of the occasions (for all forecasts) in
which the threshold is exceeded. This area is 40% (the
climatological frequency) of the total area under the |
curve in this case. The area between the ® and ¥ curves
is the portion of the occasions for all forecasts, 60%,
when the threshold is not exceeded. Suppose that a
critical probability value of 40% is selected. This is
represented by the dashed vertical line in Figure 6-12.
The customer will always execute, if the forecast
probability exceeds this value. The entire area between
the curve and the horizontal axis to the left of the critical
probability line is the portion of the total number of
forecasts that will be less than the critical probability.
To the right of the critical probability line, it is the
portion of forecasts greater than the critical probability.
Together, thei and Ocurves and the critical probability

The discussion will address the probability for exceeding a given weather threeho{d - 1000’ ceiling, 3 miles visibility,
etc. It applies equally to the occurrence/non-occurrence of a yes/no event, e.g., rainfall, thunderstorm.
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line separate the forecasts into four outcomes, labeled A,
B, C,and D in Figure 6-12. Area A represents the portion
of the time the forecast probability will be greater than
the critical probability, and the threshold is exceeded,
these represent correct “go” forecasts. Area C is the
portion of time the forecast probability will be greater
than the critical probability, but the threshold is not
exceeded. These are scheduled/attempted mission
executions that will have unfavorable weather (i.e.,
aborts). Missed opportunities, mission stand-downs
with observed favorable weather, are given by area B.
Area D is the fraction of correctly cancelled missions,
those with subsequently observed unfavorable weather.
The areas are part of the resultant two-by-two
verification matrix, when the critical probability is used
to make go/no-go decisions. This matrix is shown in
Table 6-7.

(4) The ratios of the four areas—A, B, C, and
D—to the total area under the ¥ curvegive the fractions
of the time respectively that the customer would: expect
to execute a mission with favorable weather; not execute
and have favorable weather; mission aborts/cancella-
tions due to unfavorable weather; and correct
standdowns because of weather. Remember, these
outcomes are those expected for an event with a 40%
climatological frequency, using a twelve-hour
probability forecast and a selected critical probability
for mission execution. Different critical probabilities
will change the proportions of the mission outcomes. If
the dashed vertical line for critical probability in Figure
6-11 were moved left or right, the relative size of areas A,
B, C, and D would change. A -ritical probability of 0%
(execute regardless of the weather forecast) would reduce
areas B and D to zero and enlarge areas A and C to 40
and 60% of the total area, respectively. The user would
expect the climatological frequency of favorable and
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unfavorable weather at mission execution. At the other
extreme, a critical probability of 100%, never go, would
result in a 40% frequency of missed opportunities, and a
60% rate of correct stand-downs. This variation in the
mission outcomes with critical probability is shown in
Figure 6-13.

(5) A decision maker can use graphical aids
like Figure 6-13 to adjust his critical probability to
obtain the desired rate of missed opportunities, false
alarms, prefigurance, postagreement, etc. One who
wanted to minimize missed opportunities would select
an appropriately low critical probability. Another who
needed to execute against a well defended, fixed target
might select a high critical probability that would
minimize C, the mission abort rate due to weather, and
thus the unnecessary exposure of aircraft to hostile fire.
USAFETAC can produce graphs like Figure 6-13 for
various elements, thresholds, and forecast lead times.
An example is shown in Table 6-8. The columns labeled
A, B, C, and D in this table identify the relative
frequencies for the corresponding matrix positions of
Table 6-7 for the given critical probabilities.

(6) USAFETAC calculated a series of SWII
tables similar to Table 6-8 using the method described in
this section. The tables cover a large number of
event/threshold climatological frequencies and forecast
skills (correlations). SOCS or other climatic aids
can be used to determine the frequency of the
event/threshold for the desired time of day and year.
The correlation for predicting ceiling and visibility
thresholds can be estimated by R = .98 t, where t is in
hours.! If a history of categorical or go/no-go forecast
verification for the event/threshold is available, the
correlation between forecasts and obaservations for the
sample can be culculated using the tetrachoric
correlation formula in AWS TR 75-259, page 23.

1This form is derived from correlation values given for extratropical regions in Touart, 1973.
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Table 6-7. Verification Matrix for Critical
Probability. (Assuming weather is
the only factor in mission success.)
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Figure 6-13. Sample of graphical presentation of data such .

as is in Table 6-8.
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threshold models can be requested from

The above sxample applies to a system sensitive to a simple threshold. Equivalent techniques are available for
continuous threshold models. SWils for the systems using continuous

USAFETAC.
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Chapter 7

Implementation of Probability Forecasts

7-1. General. The success of a probability forecast
program depends to a great degree on how it is
implemented. This chapter recommends how to
implement a probability forecast program at the
detachment level. For most applications the program
should evolve through four phases: development,
testing, evaluation, and operational use.

7-2. Development. Choosing and defining the
forecast event is the first and most critical step. Weather
events with the most operational impact should be
chosen first. This step requires very close coordination
with the customer to precisely define an event which is
operationally significant and within forecasting
capability. Tailored threshold forecasts should be
considered first for most requirements. If there are
several customers with similar requirements, considera
more general forecast. Do not attempt to furnish
weather impact indicators until the unit has thoroughly
mastered probability forecasts, and the customer
understands how to use them. Since the customer’s
ability to use probabilities is just as important as the
quality of the forecasts, he should understand the
decision models, critical probabilities, and other
procedures used in the decision process. The detco or
SWO should take the leading role in identifying where
probability forecasts can be applied and advising the
user. Contact the parent squadron or wing consultant if
outside assistance is needed.

7-3. Testing. This step determines the feasibility of
satisfying the user's requirement. Once an event is
defined, a test is needed to evaluate if the forecasts meet
customer requirements. The SWO must coordinate with
the customer to establish the standards of acceptable
reliability for the operation under consideration. A
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straight 5% deviation from perfect reliability (bias)
might be used. A deviation of 5% of the forecast
probability (i.e. 5% bias at 100% probability, a 2.5% bias
at 50% probability, 0.5% bias at 10% probability, etc)
might be more appropriate, especially when the
customer’s critical probability is very low and very
sensitive. The customer should be shown reliability
diagrams depicting upper and lower limits, so he will
know the limits of your capability.

7-4. Evaluation. Evaluation is a continuing process, .

but always of more importance initially. Forecasters
inexperienced in probability forecasting must be
trained. All forecasters must be trained when a new
forecasting requirement (event) is undertaken.
Attachment 8 has a training scenario that can be used.
Both types of training (new forecasters and new events)
are necessary to establish reliability in the forecasts.
This should be done prior to going operational. After the
forecasts are implemented, feedback of the reliability of
the forecasts should be provided to the customers on a
periodic basis. Forecasters should be provided frequent
feedback on thereliability of their forecasts, so they may
gain experience in quantifying uncertainty.

7-5. Operational Use. Implementation should not
be rushed. The unit should be thoroughly prepared to
issue probability forecasts, and the customer fully
knowledgeable on how to use them properly. This is
especially true for the first attempts. If things go wrong,
the customer will undoubtedly be reluctant to further use
them. It is also important that the customer know that
the payoff from using probability forecasts is
cumulative, and can only be realized if these forecasts
are used consistently over an extended period.

ALBERT J. KAEHN, JR, Colonel, USAF
Commander
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TERMS EXPLAINED

1. Probability. The chance that a prescribed event
will occur, represented as a number ranging from 0 to 1.
The probability of an impossible event is 0.0, that of an
inevitable event is 1.0. The percentage equivalent (0 to
100%) is frequently substituted when discussing
probabilities; however, the decimal equivalent (0 to 1)
should be used when performing mathematical
computations.

2. Climatological Probability. The probability that
an event will occur based on extensive historical
observations or experimental data. The simplest form of
climatological probability (commonly called climatic
frequency) is the number of occurrences of an event
divided by the sum of the number of occurrences and
non-occurrences over a given time period. More complex
forms of climatological probability frequently use
climatic models when historical observations are not
available. In these cases, the models are used to obtain
estimated climatological probabilities of the desired
event.

3. Sample Climatological Probability. The
climatological probability based on observations that
are made only during a sample period. Examples are
climatological probabilities based on one month’s data.

4. Objective Probability. The probability that an
event will occur based on a fixed set of rules which
produce a unique and reproducable outcome. The rules
may be derived by empirical or theoretical
considerations or a combination of both.

8. Subjective Probability. A personal estimate of
the probability that an event will occur. Subjective
probability estimates give good results, if the individual
knows the forecast problem (dynamics of the situation,
climatology of the event, etc.) and is aware of basic
probability laws and limitations of forecast skill.

Subjective probability forecasts may not be
reproducible.

6. Event. A specific occurrence that is defined by a
weather element(s), time, location, and/or duration; e.g.,
visibility less than one mile in the period 1700-2000Z
lasting more than 30 minutes at Scott AFB. Some events
do not require all of the above specifications;e.g., rain at
Offutt AFB at 0600Z.

7. Probability Forecast. Meteorological advice
consisting of two parts—a well defined weather event
and the expectation that the event will occur.

8. Post Agreemenc. A measure of how often an event
occurs when it was forecast (forecast hits divided by
total forecasts). This i8 a measure of categorical
forecasting reliability.

9. Prefigurance. A measure of how often an event
was forecast when it occurred (forecast hits divided by
total occurrences). This is a measure of categorical
forecasting capability.

10. Correlation. The measure of how well the
forecasts agree with the observed weather. Correlation
values range from -1 to +1, where -1 is perfect negative
correlation, 0 is no correlation, and +1 is perfect positive
correlation. (Reference AWS TR 75-259).

11. Sharpness. The degree of certainty of a
probability forecast. A set of forecasts containing only
0% and 100% probability values has perfect sharpness.
Zero sharpness occurs if all forecasts are for a
probability value equal to the sample climatology.

12. Reliability. The degree to which forecast
probabilities resemble the observed frequency for each
forecast probability value or interval. For example, an
event would occur 80% of the time for a series of perfectly
reliable 80% probability forecasts.

13. Decision Theory. A set of rules designed to use
probabilities and other information to make an optimal
decision: information about the state of nature (a
weather forecast), and information (utility, value,
expense, regret, etc) on the outcome (consequence) of the
decision. This information is usually given in the form
of a utility matrix.

14. Utility. The value a decision maker associates
with a given outcome with respect to other possible
outcomes. It may be based on monetary value alone, or
other factors which influence the decision maker’s order
of preference for the outcomes.

15. Utility Matrix. (Also called decision matrix, cost-
lose matrix, expense matrix, payoff matrix, value
matrix, etc, depending upon the writer and the way
outcomes are quantified). A two dimensional array
arranged in rows and columns. Normally, rows
represent possible courses of actions (strategies,
options, decisions) and columns represent the different
states of nature (weather categories or thresholds).
Entries at intersections of each row and column
represent the outcome (utlility, cost, loss, expense,
payoff, value, regret, or opportunity) associated with
each course of action and state of nature pair.

16. Critical, Threshold, or Breakeven
Probability. The probability above which it is cost or
mission effective for a decision maker to take a specific
action, i.e., the long-term positive utility (value, payoff,
etc.) is maximized and the negative utility (cost, loss,
expense, regret, etc.) is minimized. Critical probability
serves as thethreshold which, when exceeded, generates
a decision to act. It may be based on monetary value or
other measures of utility. When weather is the only
factor affecting the decision, the critical probability
must be stated in terms of the weather event which will
cause action to be taken, e.g., hangar aircraft when the
probability of hail exceeds a critical probability of 10%.
When other variable, non-weather mission factors affect
the decision, the customer may use a critical probability
stated in terms of mission success.
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17. Mission Success Indicator (MSI). The
probability that a mission will succeed. An MSI is
tailored to a specific decision. It includes both weather
(probability forecasts) and non-weather elements that
are needed to make an optimal decision.

18. Weather Impact Indicator (WII). A WII is the
weather input for decision assistance. It is the
probability of exceeding a particular threshold of a
given weather event or the probability distribution of
the weather event. Customers can combine the WII with
non-weather parameters to calculate a Mission Success
Indicator (MSI) for use in decision making.

19. Climatological Weather Impact Indicator

AWSP 105-51
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(CWII). A WII based on climatological probabilities
rather than forecasts. CWIIs are useful for planning
military operations, such as scheduling events or
selecting areas or routes.

20. Simulated Weather Impact Indicator (SWII).
An SWII is produced by using a model which simulates
the variability of observed and forecast weather for
specified climz‘i~ regimes. SWIIs can be used
independently (or combined with non-weather factors to
produce simulated MSIs) to study the impact of weather
and weather forecasts on operations, for training aids
and illustrative purposes, or to assist decision makers in
the optimal use of Wlls, such as determining critical
probability.
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SELECTING PROBABILITY INTERVALS

Any probability value from 0 to 100% can be used for
forecasting purposes, but evaluation requirements
make it more desirable to use a standard set of values or
intervals. In addition, use of all integral values between
0 to 100% implies a precision which does not exist in
subjective probability forecasting. Table A3-1 lists the
standard probabilities and ranges used by NWS

Table A3-l.

forecasters in hoth forecasts and evaluations. Table A3-
2 contains a translation of the permissible values into
the verbal equivalents given to the public. The criteria
used by NWS in choosing these standard values were
based on verification constraints, climatology of the
forecast event, and the precision of forecasting skill.

NWS Permissible Probability Values

(NWS Operations Manual, Chapter C-91).

VALUE (%){ PROBABILITY RANGE (%) ] VALUE (%)! PROBABILITY RANGE (%)

0 P < 2 50 45 < P < 55
2 2 <P <S5 60 55 < P < 65
5 5 <P < 8 70 65 < P < 75

10 8 <P < 15 80 75 < P < 85

20 15 < P < 25 90 85 < P < 95

30 25 < P < 35 100 P > 95

40 35 < P < 45

Table A3-2. Verbal EQuivalents of Permissible Probability

Values (NWS Operations Manual, Chapter C-91).

VERBAL TERMS

EQUIVALENT VALUES

Slight or Small Chance
Chance
Likely

Unqualified

P < 30%
30, 40, or 50%
60 or 70%

P > 70%
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a. Verification Constraints. If every possible
probability value were verified individually, the task
would be exceedingly tedious, and the results difficult to
interpret. The latter would occur because of the few
times each probability value would be used in normal
sample periods (Hughes, 1965). Therefore, it is desirable
to group the probabilities into intervals which
correspond as close as possible to the forecast values
that will be issued. It is not possible to use standard
values (such as those above) all the time in forecasts
involving more than two categories. Since thesum of the
probabilities for the categories must equal one, when a
2% or 5% value is used, another category must make up
the difference. This difficulty does not compromise the
evaluation.

b. Climatological Considerations. The range of
reliable probabilities should converge to the

AWSP 105-51
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climatological frequency of the event as lead time
increases. A significant imbalance of probability
intervals on either side of climatology creates a
psychological problem and, if too great, may force over
(under) forecasting. For this reason, probability values
of 2% and 5% are included in the set used by NWS
(Hughes, 1965). Therefore, forecast intervals for events
that occur infrequently should have choices for the
forecaster on both sides of climatology.

c. Customer Precision Requirements. The interval
precision need not be any more detailed than required by
the customer, but it must not be any more precise than
justified by forecasting skill. Forecasters generally
cannot differentiate much finer than in 10% probability
intervals, except for values near the extremes (Hughes,
1965).
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EXPLANATION OF MATHEMATICAL SYMBOLOGY IN THE BRIER SCORE EQUATION

Mathematically, the B-ier Score (PS) is expreased by the
following equation:

1 K N 2
PS == I z (R,, - D,))
N y=1 im1 ij ij

a. Definition of Variables

(1) PS is the Brier Score and ranges from a
value of 0.0 (perfect) to 2.0 (the worst possible).

(2) N isthe total number of forecasts in the set
being evaluated. A forecast with any number of
categories is counted as a single forecast.

(3) K s the total number of categories in each
forecast (two or more). For example, a probability of rain
forecast is actually one of two categories in the forecast;
the other category, the probability of no rain, is implied.
If probability forecasts were issued for the combined
ceiling and visibility categories (A, B, C, and D) of the
AWS TAF, K would be equal to four.

(4) jisthe category designator used to identify
the category to which the values of Rij and Dij belong

when the equation is expanded. It takes on all integral
values from one to K.

(5) i designates the numerical order in which
the forecasts will be evaluated. It ranges from one (the
first) to N (the last forecast in the set).

(6) Rij is the probability value assigned to
category j of the ith forecast. For example, Ryp =9

means that the probability for category 2 of the fourth
forecast is 90%; R 2 1,3= -3 means that the probability for

category 3 of the 21st forecast is 30%; etc. Accordingtoa
law of probabilities, the sum of the probabilities for each
category in a forecast must equal one; e.g., if there are
only two categories involved and Ry; = 0.9, then Rog

must equal 0.1.

) Dij is the “observed” probability and

aquals 1.0 if category j occurred fer the ith forecast;
otherwise, Dij equals zero. In a single forecast, only one

category will have a value of Dij =1, and it will be the
category in which the event occurred. Dij in all other

categories of that forecast will equal zero, regardless of
the number of cutegories it contains.
b. Explanations
N
(1) T.
i=1

capital Greek letter “sigma.” It means to sum or add the
expressions that would follow for all values included in

the index or subscript, i, which varies from 1 to N.
Assuming N =4,

This is the symbol for the

(A4-2)

)2 =(R; - D1)% +(R2 - D2)2 + (R3 - D3)2+(R, — Dy)?2

N=4
Ii=14+2+3+4=10
i=1
4
ZRi=R1 + R2 + Ry + Ry
1=]1
4
2D1=D1 + D; + D3 + Dy
i=1
4
Z (R, -D
1=1 i i
K
(2) b Explanation is similar to that above.
j=1
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multiplied by the result. The normal procedure is to set

1 K N . j=1 in the first sigma, and then sum all cases for i=1 to N

@5 I L .  This means that using the second sigma. The procedure is then repeated

=1 i=1 each time for j=2, j=3 through the value j=K. Assuming

two summations must be made and the constant, 1/N, N=4 and K=4,
(A4-3)
1 Kzé N24 R )2 l.{[ 2 2 2 2
L ( ij_Dij il (R11-D11)? + (R21-D21)2 + (R31-D31)? + (Ry1-Duy)?]
j = -

+[(R12-Dzz)2 +
+[(R13‘D13)2 +

+[(R1u-D1u)? +

(R22-D3,)?

(R23-D23)?

(R24-D3y)?

+ (R32-D32)? + (Ry2-Dy2)?]
+ (R33-D33)? + (Ru3-Dy3)?]

+ (R3y-D3u)? + (Ruu=Dus) %]}

Note that values in the first set of brackets represent the
contribution to the total from category 1; the second

bracket, the contribution from category 2; etc.

¢c. Example, the last equation above represents the
expanded form of the Brier Score equation for

calculating scores for four categories of a set of four
forecasts. Sample values for four such forecasts are
given in Table A2-1 below. They will be substituted in
the equation to illustrate computational procedures.

Table A4-1. Verification for Four Forecasts.
CATEGORY 1 CATEGORY 2 CATEGORY 3 CATEGORY 4
FCST OBSVD FCST OBSVD FCST OBSVD FCST OBSVD FCST OBSVD
# CAT PROB PROB PROB PROB PROB PROB PROB PROB
(i) (Ry1) (Dj1) (Rj 2) (Dj2) J(Rj3) (Dj3) | (Ry¥) (Dj»)
1 4 .0 0 .0 0 .1 0 .9 1l
2 4 .0 0 .0 ¢} .0 0 1.0 1
3 4 .0 0 .0 0 .0 0 1.0 1
4 4 .0 0 .1 0 .2 0 .7 1
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Substituting values for Rii and D'ij:
PS = + g g (Ry4-Dy )2 = H[(.0-0)2 + (.0-0)% + (.0-0)2 + (.0-0)2]  (A44)
4 ja1 11 "7 4t ' ' .
+[(.0-0)2 + (.0-00% + (.0-0)2 + (.1-0)?]
+[(.1-0)% + (.0-0)% + (.0-0)2 + (.2-0)?]
+{(.9-1)% + (1.0-1)% + (1.0-1? + (.7-1)?]}
L 46 . 1
PS = 7 3-2-1 151 (Ry3-Dyp)? = 7 {[0] + [.01] +[.05] + [.1]}

=0+ .003 + .013 + .025

PS = .041

In the next to last line above, each of the four values
represents the Brier Scores for the respective category,
K=1, 2, 3, 4. Summing these indivudual scores gives the
total Brier Score. Refer back to the point where we
substituted values into the equation above. The word
meaning of those mathematical aymbols is simply this:
the Brier Score is the average of the squares of the
forecast errors. It is an average, because we divide by the
number of forecasts involved, and the values we average
are the squaree of the differences between the forecast
and observed probabilities.

——

d. Alternate Methods. By now it should be obvious
that calculation of the Brier Score is very unwieldy
using the above method when a large number of
forecasts are involved.Tables 3-3,3-4 and 3-5 and related
diascussions in the main text explain how the procedures
can be greatly simplified using tabular formats to
perform the computations. The datain Table A4-1 above
are the same as the first four forecasts used in Table 3-4
of the text; therefore, the two methods may be compared
directly.




AB-1

AWSP 105-51

Attachment 5 31 October 1978

TABLE OF PARTIAL BRIER SCORES

A basic understanding of the mathematical meaning of
the Brier Score equation is necessary regardless of how
one actually computes the score. However, there are
several shortcuts that can be devised to simplify the
computations. Some of those were described in the basic
part of the pamphlet. Table A5-2 is one example.
Specifically, it eliminates the need to repeatedly

Table AS5-1.

compute specific values of (Rij -D ij)2' the penalty points

associated with the Brier Score, and allows the data to
be put in tabular format for easy computation. The
example verification summary given in Table A5-1
below is used to illustrate procedures for extracting
partial Brier Scores (PSp) from Table A5-2

Brier Score Computation Using Table of Partial Brier Scores.

OCCURRENCES NONOCCURRENCES
FCST [TOTAL # (Djj = 1) (Djy = 0) IPS,
PROB (Rj j)|OF FCSTS |~ #FCSTS (n) PS, | # rCste(n) [ PS, | [n(Ry5-Dj) °]
1.0 7 5 0.00 2 2.00 2.00
.8 4 2 0.08 2 1.28 1.36
6 4 1 0.16 3 1.08 1.24
4 L 1 0.36 0 0.00 0.36
.2 6 1 0.64 5 0.20 0.84
.0 9 0 0.00 9 0.00 0.00
TOTAL 31 10 1.24 21 4.56 5.80
PS = K 2
N _zl (Rj-Dj) % = 37 (5.8) = .374
1=

a. Instructions. Table A5-2 gives values for n(R;; -
Dij)z, where n is the number of forecasts in the

probability interval corresponding to the value of Rij for
either occurrences (Dij = 1) or nonoccurrences (Dij =0) of
the event.

(1) To determine penalties (PS,) for event
occurrences, use forecast probabilities (Rij) in the top

column heading (Dj;j = 1). Locate the appropriate value
for Rij' then gc down the column to the row

corresponding to the number of forecasts (n) in which
the event occurred. In Table A3-1 there were five
forecasts with a probability of 1.0. The penalty is 0.00.
Two forecasts for a probability of .8 give a penalty of
0.08, etc, for all other occurrences.

(2) Penalties for nonoccurrences of the event
use forecast probabilities (Rjj) in the second column

heading (Dij = 0). Other procedures for extracting the
penalties (PSP) are the same as above.

(3) Sum the Partial Brier Score obtained in
both steps above and divide by the total number of
forecasts issued (N) to obtain the Brier Score for that one
category. If the forecast is for a two category system,
multiply the result by 2 to obtain the total Brier Score
(reference para 3-6). For three or more categories,
determine Brier Scores for each category as above (do
not multiply by 2) and sum them to obtain the tota] Brier
Score (reference Table 3-5 for an example).

b. One is not restricted to using only the
probability values given in the tables. Other
intermediate values could be added, if needed. Further,
there is nothing magic about where the tables stopped
with values of (n). Expand the tableif you routinely need
partial scores for a larger number of forecasts (n).




AB-2

Attachment 5§ 31 October 1978

AWSP 105-51

00°cc8L62leL 922t 12| LT 988 Tiise 882 s [L6 2ee 1ee’ [80° [ 00 | €€
00 "2t | 88 "8226 "52[8% "02[89 "S1[ 26 '11,00°8| 21°'G|88°2|82°1] 2t |80 | 00°| et
00 °TE |86 L2 T1°G2[p8 61|61°SU T TI|SL 'L |96 F|6L ¢|¥e 1| 1c° |80 | 00°| 1€
00 '0€ 80 "22]0t ‘$2¢|0Z ‘6T|0Z "#1[08 01|06 2|08 ¥ |0L 2| 0Z°'1|0c" |80° | 00 | Ot
00°62| L1°92/6% "£2[9S ‘81|12 #1|#¥ 01 S2 L |P9 | 19°2| 91°'1|62° |20° | 00 | 62
00 °82]L2°62|89°22[26 "L1|22 "€1[80 "0T|00 'L | 8% ¥ |25°2| eL'L |82 |20 | 00 | 82
00°L2]Le ¥ 8 12]|82 L1|€2 €12l "6 |SL 9| 2E ¥ |ev 2|80 1L |L0° | 00 | L2 3
00°92]2¥ €290 "1z[¥9 " 91|¥L "Zt[9c "6 [0S 9| 9 v [¥E-2|P0°T1[92° (L0 [ 00" | 92 =
00 °52/ 95 "22{sZ02}00 "9t|sz 21j00 6 |SZ2°9|00 ¥ |sz'2]00°T][c2  [90 [ oo | s2 o
00 "¥2] 99 "12[¥¥ "619¢ ‘stjoL ‘1 [p9°8 00 9 P8 e[ 91"z 96" |tz {90 | 00" | 2 "
00 °€2[9L 02[e9 8rfze ‘Fticz 182 8 [SL s [89°c[L0°2[26° [€2° [90° [ 00 | €2 m
00 22/ 98 61|28 °L1|80 "¥1/8L "01|26 'L [0S°'S|2sc|86°1|88 |22  |90° | 00" | <¢ 3
001266 8110 "LTjpw cll62-01/95 "2 [s2's[9e'c[68 T |¥8" [12" |s0” | 00 | T2 &
00°02]/s0 8102 9t|o8"21[08 "6 [0z L |o0°'S|0Z°c|08°1|08° |02 |SO' | 00' | 02 >
0061 [ st Lif6c stjot-2t{tc 6 (P89 SL ¥ PO €| WL T|9L |61 |SO° | 00 | 61 3
00 °81]S2°91({8S '¥1|25 '11|28°8 |8 "9 |06 ¥ |88 2|29 1| 2L | 8L |SO | 00" | 81 @
00 L1 ¥ "Stlee culsg oT|ec '8 |21'9[s2'¥|2L-2(€s 1|89 | L1 |[¥0° | 00 | LU Z
00 91 [¥¥ #1[96 "2I|p2 01|58 L |9L 'S |00 #|9G 2 |¥¥ 1 |¥9° | 91" |¥0° | 00 | 91 m
00 "ST|¥S €1/ST 21|09 6 |SE L |0v G [SL E|OF 2|SE'1|09° |Si° |¥0° | 00 | ot 2
00 %1 %9 21{pE 11 [96°8 [98°9 |FO 'S [0S '€ |#2°2|92°1]|9S | ¥ |%0° | 00 | ¥l T
00°€T]€L T ]e5 01 2e "8 [L€°9 [89 ¥ |62 €80 2| LT 1|26 |el [€0° | 00 | €I o
00°21|€8°01]2L 6 |89 L |88°G |2€ ¥ |00°'c|2h- 1801 8% |2l |€0 | 00 | @1 w
00°'TI [£6°6 |16°8 |FO'L |6€'G |96°€E|SL°2|9L'1]66° |¥#¥P° | 1L je0° |00 | T o
00 01| €06 |OT'8 [0F 9 |06 % |09°€|06°2|]09°T]|06° [O¥- |OL |€0° |00 | Ol w
006 | 218 |62 L [9L°G W ¥ |vec|G2 ¢|¥P 1|18 |9€° |60° |20 |00° | 6 =
00°8 |22°L |8¥'9 |21'G.|26 € |88°2|00°2|82'1|2L° |2c (80" |20 |00 | 8 e
00°L |26°9 |L9°S |8F ¥ |e¥ € |25 2|GL°'T| 2U'1|€9 |82 |L0° |<e0° |00 | L o
00°9 |2F°S |98 % [P8 '€ |¥6°2 [91°2|0S 1|96 |¥S | be |90  |20° |00 | 9 5
06'S |iSPlsO'P loz'E|sb-z 08 1|62 1|08 |S¥ |02 |SO° |10 |00 | & e
00 % |19°€ |Pe'€ |95 2|96 T [#P 1|00 1|¥#9  [9¢ | 91" |¥0 |10 |00 | ¥ o]
00°¢ |1L'2|sv'2 26T |Lv'T [8O°T|GL  |8F |l2° |2 |€0° [10° |00 | € m
00°2 | 18°1 [29°1 |82°1 |86 |2 |os" [ee” [ 81" |[®0° [20 (10" (o0 | 2 -
00°1 |06 |18° (P9 |6%° |9t |s2 |9t leo Ivo- [10° Joo - loo- | 1 =
00T |s6: |6 {8 | ¢ |9 | s [ ¥ | ¢ 2| U |so- 0- | (o = f'a) IoNTYENDD0 NON
0° jso* |t 2o e [®- 1 s |9 |t 8 |6 js6- o001 (1 = f'q) IONIWENDD0
AL111dVdO¥d LSV
SAYODS ¥IIdd TVIL¥vd ~¢-Sv TV

'@




AS-1

AWSP 105-51

81 October 1978

Attachment 6

DETERMINING UTILITIES IN TERMS OF REGRET

1. INTRODUCTION. The concept of utilities is
rather simple to understand, but procedures for actually
determining utility values can be difficult to grasp. The
following extract from Selvidge’s Technical Report 76-
12, Rapid Screening of Decision Options (1976) vividly
illustrates how one might go about developing utilities
in terms of regret. Although the example used is not a
meteorological application, the principles involved in a
meteorological decision problem are the same.

a. Warsaw Pact Attack Example. Thefirst step
for rapidly evaluating decision options is to describe the
decision problem in a simplified format. The following
example provides a concrete application of this format.
The problem analyzed is one which might be faced by a
NATO decision maker.

Suppose that intelligence information indicates that
there is a build-up of Warsaw Pact forces in Eastern
Europe and the Western USSR. The uncertain event of
interest is whether or not these forces willinvade NATO
countries. The decision to be made is: What alert posture
should NATO assume? The decision about the extent of
the alert must be made before the intentions of the
Warsaw Pact forces are known for certain. If the NATO
commander is considering four alternative levels of
alert: Maintain status quo, military vigilance, simple
alert, and reinforced alert, then the decision problem can
be structured in the simplified decision-tree format
shown in Figure A6-1. (For additional information on
decision trees, see Attachment 9).

MAINTAIN Pact Attack
STATUS QU0
No Pact Attack
MILITARY Pact Attack
VIGILANCE
( No Pact Attack
sAmEPRLTE Pact Attack
L
( No Pact Attack
REINFORCED Pact Attack
ALERT

m = Decision Node
® = Uncertain Event

Figure A6-1.

No Pact Attack

-

Warsaw Pact Attack Example--Simplified Format.

!
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In matrix form, this decision problem has the rows and columns shown in Table A6-1.

VALUE MATRIX

DECISION

UNCERTAIN EVENT: IS AN ATTACK PLANNED ?

OPTIONS

OUTCOMES

PACT ATTACK

NO PACT ATTACK

MAINTAIN
STATUS Quo

MILITARY
VIGILANCE

SIMPLE
ALERT

REINFORCED
ALERT

PROBABILITIES

PACT ATTACK

NO PACT ATTACK

Table AG-1. Warsaw Pact Attack Example in Matrix Form.

The uncertain event has been defined as whether or not
the Warsaw Pact forces are planning to attack. The
simplifying assumption is made that the intention of the
Warsaw Pact forces does not depend on whether the
NATO forces maintain or increase their level of alert.

Therefore, the probabilities of attack and no attack need
to be estimated only once and will not change after the
NATO decision maker selects among the decigion
options.
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b. Value Structure. The final step in structuring a
decision problem is to identify the important factors
that describe the possible consequences of outcomes and
options and to determine how happy or unhappy the
decision maker expects to be with a particular decision.
These factors are the dimensions on which the decision
maker’'s satisfaction with different combinations of
options and outcomes is measured. For some problems, a
great many descriptors can be applied to the
consequences. In that case, the analyst should restrict
consideration to the factors of primary importance. By
definition, there cannot be too many of these. Often
fewer than a half dozen factors are sufficient to describe
the consequences. The consequences of many business
decisions, for example, can be described simply in
monetary terms. For social and military decision
making, however, factors such is ‘‘political
implications” or “lives lost” may be important. Besides
selecting these important factors from among the many
poesible, the decision maker must also assign an
“importance weight” to each factor. These weights
indicate relative importance among the different factors
and are used to combine ratings on each of the different
dimensions into a single summary measure of the value.
In the Warsaw Pact attack example, a military
operations expert described in some detail what
activities would be entailed in each of the options
(maintaining the status quo through reinforced
vigilance) and what the probable consequences of these
activities would be both for the case of a Pact attack and
for no Pact attack. After listing these consequences, the
military expert concluded that they could be grouped
into three general categories:

o Alert Cost (e.g., cost of deploying additional
forces, assuming control of civilian
transportation);

o Political Cost (e.g., embarrassment of being
wrong if NATO forces prepare for an attack
which never materializes); and

o Military Risk (e.g., expected military loss—
lives, equipment, territory, etc.—if the attack
occurs and NATO is unprepared).

These categories become the value dimensions of
interest. To fill the value matrices, three basic matrices
are set up, each representing one of the value
dimensions. Each option and event outcome
combination is rated on each of these dimensions. Then
a fourth matrix, the “combination valuation,” which is
the weighted sum of the measures in each of three
categories, is formed.

2. ASSESSING INPUTS. The analyst or the user
must quantify the uncertainty about the event outcomes
in terms of probabilities and must also express the
desirability (or, alternatively, the lack of satisfaction) of
the option and outcome combinations on the dimensions
identified earlier. Because the outcomes are defined so
that they are independent of the options (i.e,, do not
change as a function of the option), the probability
assegsment may take a relatively small proportion of
the effort devoted to preparing inputs. The value
assessments are generally much more difficult and time-
consuming. Initially, however, both of these inputs can
be approximations rather than the most accurate
possible reflections of uncertainty and value.

AWSP 108-51
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a. Probabilities of the Outcomes. Among
statisticians and others interested in the study and use
of probabilities as a measure of uncertainty, there are
presently two main schools of thought about how
probabilities should be defined. One is the “‘objectivist”
or “frequentist” school which maintains that the
probabilities of outcomes can only be found from the
long-run relative frequency of occurrence of outcomes of
identical events. The other is the “subjectivist” or
“personalist” school which says that probability is a
measure of someone’s degree of belief that an outcome
will occur. The latter definition is generally used by
decision analysts since rarely is the decision problem
studied one which has occurred exactly in the same form
many times in the past. For instance, in the Warsaw
Pact attack example, we cannot look at the past and say
that identical circumstances have occurred repeatedly
and that sometimes the Pact attacked and sometimes it
did not. Rather than trying to get a relative frequency
measure of the probability, the analyst or user of the
procedure tries to quantify the degree of belief of some
expert. Many experiments have been carried outin order
to arrive at guidelines for ways of eliciting this
probabalistic information in different circumstances.
The expert, or a group of experts, is asked questions like:
“Which outcome is most likely?” and “How many times
more likely is this than the next most likely?” “Than the
least likely?”’ Eventually the replies can be consolidated
into probabilities (or percentages) for the different
outcomes.

In the Warsaw Pact attack example, the expert
considered many intelligence reports of recent Soviet
domestic affairs, Soviet activities in the Mediterranean,
Warsaw Pact countries’ military maneuvers, and the
like. Considering this information, the expert
eventually arrived at probabilities of 0.10 for the
outcome Warsaw Pact attack ard 0.90 for the outcome
no attack. (The list of outcomes whose probabilities are
assessed must be exhaustive; that is, their probabilities
must add to 1.00 or to 100 when expressed as a
percentage.)

The assessment of the probabilities is more complicated
if:
o The assessor is periodically receiving new
information and would like to update the
probabilities to reflect this information; or

o  The uncertain event of interest is actually the
last of a series of other uncertain events and its
probabilities are conditioned by how the other
events turn out.

b. Values of the Option-Outcome
Combinations. The structure of the decision problem
determines the value dimensions and the option-
outcome combinations for whose consequences the
values must be assessed. For the Warsaw Pact attack
example, the user provides the numbers to fill the
matrices displayed in Table A6-2 Assessing these
values can be difficult because, in most simplified
examples such as this, each value dimension is a
composite and so may have no natural scale. When this
is the case, an arbitrary scale is established. The user or
expert whose judgments are to be quantified is then
asked a series of questions which require considerable
thought to answer. These questions are designed to elicit
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ALERT
COST

POLITICAL
COST

MILITARY
RISK

31 October 1878

MAINTAIN
STATUS aQuo

MILITARY
VIGILANCE

SIMPLE
ALERT

REINFORCED
ALERT

MAINTAIN
STATUS QUO

MILITARY
VIGILANCE
SIMPLE
ALERT

REINFORCED
ALERT

MAINTAIN
STATUS QU0

MILITARY
VIGILANCE

SIMPLE
ALERT

REINFORCED
ALERT

PACT ATTACK NO PACT ATTACK

PACT ATTACK

NO PACT ATTACK

PACT ATTACK

NO PALI ATTACY

1

Value Matrices for the Warsaw Pact Attack Example.
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the user'’s feelings about how the option-outcome
combinations rate on the selected arbitrary scale.

There are two general types of arbitray scales, either of
which can be used in a decision problem. One is an
absolute scale called “payoffs,”’ the other a relativeacale
called “regret.” The payoff scale is described briefly. The

PACT ATTACK

AWSP 10%-51
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regret scale, which is the recommended scale for the
decision problema discussed here, is described at length.

(1) Payoffs - Consider the value dimension
“political cost” in the Warsaw Pact attack example.
There are eight possible option-outcome combinations
shown in Table A6-3.

NO PACT ATTACK

MAINTAIN
STATUS aQuo

®

®

MILITARY
VIGILANCE

®

®

SIMPLE
ALERT

®

@

REINFORCED
ALERT

®

Table A6-3.

Possible Option Outcome Combinations.

They range from maintaining the status quo and a pact attack (combination 1) to reinforced alert and no attack
(combination 8). One way to think of the value problem is by imagining an arbitrary political cost scale along which the

assessor must scatter points representing option-outcome combinations in positions that show their relative

wowest
Cost

Political Cost

Highest
Cost

desirability. A hypothetical scattering is shown below. The circled numbers represent the option-outcome

combinations (the cells) of Table A6-3.

o®
X

Lowesgt
Cost

CORE

M
Political Cost

Q0
i Tghest

Cost

'
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The values read off this scale fill the “political cost”
value matrix, which is analogous to the payoff table
prepared in an elementary decision analysis exercise.

(2) Regret- An alternative way of expressing
the “political cost” value is to consider one column of the
matrix at a time (corresponding to one of the outcomes of
the uncertain event) and within the column to make
judgments about the relative cost (value) of different
possible options under that outcome as compared to the
best option. For instance, if, on the assumption that
there will be a pact attack, what is the best option? And
then what are the values of all the other options
compared to that best option? This process is analogous
to preparing a “regret table” in elementary decision
analysis. Many users find it easier to think about
“regrets” under a specific assumption about the
outcome than to make judgments about payoffs where
the users must consider both different outcomes and
different options at once. For this reason the regret scale
is used in these examples.

In order to respond to questions like “How’” —in terms of
regret—“does che value of option 1 compare to that of
option 2?” The units in which regretis measured must be
chosen. The decision is an arbitrary one which can be
handled as shown in steps 1 and 2 below. Suppose that
you are the assessor whose values are being elicited.
(3) Rules for filling a regret matrix
Arbitrary Establishment of the Units
1. If you make the decision which is best for a
particular event outcome, then you have no regret.
Therefore, within each column, identify the option that
would be optimal if the outcome of the uncertain event
were that indicated by the column under consideration.
Set the regret of that cell equal to zero. When you have
finished, each column will contain a cell with zeroin it.
This cell establishes one end of the regret scale within
each column.
2. Within each column, identify the worst option. Then
for each column think about how you feel on the
dimension of value being considered about going from
the best to the worst option in that column. You have no
regret with the best option, but you may have a great
deal of regret with the worst option. Then, for each
column, decide which of these transitions from best to
worst option involves the greatest incremental
increase in regret. Assign a value of -100 to the worst
option cell in the column where this inchease in regret is
greatest.

Relative Value Assessments

3. For the column containing both a zero value and a
-100 value, assign values between 0 and -100 to the rest of
the cells which reflect the relative regret of each cell
compared to the -100 cell. For example, if the amount of
your regret in going from the zero cell to another cell is
about 1/4 of that for going from the zero cell to the-100
cell, then the other cell should have a value of about -25.
4. Next, consider the minimum-to-maximum regret
cells of another column in comparison to the 0 to -100
cells of the previous column. Use your feelings about this
regret difference to establish the value of the maximum
regret cell for the new column. For example, if you think
it is about half as bad to go from the best to the worst
option for this new column as going from the 0 to the -100
options in the previous column, then the maximum
regret cell of the new column should have a value of -50.

81 October 1878
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Repeated Assessments

5. The procedure of step 3 is repeated to get all the cell
values within each column, and that of step 4 is repeated
to determine the worst regret value in each column
before the intermediary cells are filled.

Adjustments

6. Once the cells have been filled, various pair-wise
comparisons are made to test and increase the
consistency of the assessments. In these pair-wise
comparisons, the difference between the regret values
for one pair is compared to the difference between
values for another pair. These comparisons can be made
both within a column and across columns.

(4) Regret assessment example: Warsaw
Pact attack - The regret assessment is more easily
understood in the context of a particular example than
by merely listing the assessment rules. Furthermore,
specific problems sometimes have special features that
reduce the number of judgments needed. Consider first
the political cost dimension of the Warsaw Pact attack
problem. The regret matrix to be filled is shown in Table
A6-3A. Following the rules explained above, the
assessor looks first at each column separately to find its
zero-regret cell. If the event outcome is attack, the best
option from a political standpoint is the maximum alert
posture, namely reinforced alert; this option avoids, for
example, the loss of face in being taken by surprise;
consequently, this cell is given a zero value. On the
assumption there will be no attack, on the other hand,
the best option (zero regret) from the standpoint of
political costs is simply to maintain the status quo.
Table A6-4B shows the appearance of the regret matrix
after these judgments are made.

Next, the worst option (maximum regret) under each
outcome is noted. In this case the worst decisions are if
there is an attack, maintain status quo, and if thereis no
attack, reinforced alert. The assessor must decide
whether there is more regret, on the political cost
dimension, in going from the best to worst option under
the attack outcome compared to going from the best to
worst option under the no attack ou..  .:e. Another way
of phrasing this question is, “Is it a bigger mistake
politically to have failed to go on alert if there is an
attack or to have gone on alert when there is no attack?”
It happens in this particular example, that because the
assessor feels that those two shifts are equally bad, the
‘“worst option” cell in each column is assigned a value of
-100. (See Table A8-4C).

The next step in the regret assessment is to fill in the
intermediary values in the column containing both a 0
and a -100. (In this example either column satisfies that
requirement.) We begin with the attack column. After
some thought, the assessor comes up with the values
shown in Table A6-4D. These values imply that, of the
total (political cost) regret possible from being wrong on
the decision (i.e., selected the wrong option) the event
outcome is attack, only about a tenth of that is incurred
by going on a simple alert instead of a reinforced alert
and about a third is incurred in choosing the military
vigilance option rather than reinforced alert. One way to
explain these values is that the assessor feels that the
political cost of being in a less than maximum alert
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Table A6-4.

AWSP 108-51 Attachment 6
POLITICAL COST

ATTACK  NO ATTACK
MAINTAIN STATUS GUO
MILITARY VIGILANCE
SIMPLE ALERT
REINFORCED ALERY

ATTACK  NO ATTACK
MAINTAIN STATUS QUO 0
MILITARY VIGILANCE
SIMPLE ALERT
REINFORCED ALERT 0

ATTACK  NO ATTACK
MAINTAIN STATUS Quo -100 0
MILITARY VIGILANCE
SIMPLE ALERT
REINFORCED ALERT 0 -100

ATTACK  NO ATTACK
MAINTAIN STATUS QUO -100 0
MILITARY VIGILANCE -35
SIMPLE ALERT ~10
REINFORCED ALERT 0 -100

ATTACK  NO ATTACK
MAINTAIN STATUS QUO -100 0
MILITARY VIGILANCE ~35 -20
SIMPLE ALERT -10 -50
REINFORCED ALERT 0 -100

Application of Rules

for Filling Regret Matrix.

81 October 1978
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posture (compared to being in the maximum alert
posture) if an attack develops is quite a bit less serious
than having maintained the status quo. In other words,
having gone to some level of greater alert (exactly which
level is not as crucial) is much better from a political
viewpoint than having done nothing.

The regret values for the second column can be assessed
directly since this column also contains both 0 and -100
values. (If the regret of going from best to worst decision
here had been less than that of going from best to worst
in column 1, then the maximum regret value for this
column would have been assessed as something less
than -100, for example, -67 if the maximum amount of
regret in column 2 were thought to be about 2/3 that of
column 1. The rest of the values in column 2 are
estimated following the same procedure as described for
column 1. The results of this assessment appear in Table
AG4E.

All the assessments in the matrix can then be checked
(and adjusted if necessary) by making pair-wise
assessments of the values. For example, the assessor’s

31 October 1978
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feelings of regret should be twice as serious going from
the 0 to -20 cells in column 2 as going from the 0 to -10
cells in column 1.

Taken together, these feelings imply that, in the opinion
of the assessor, having gone to military vigilance when
in fact there is no attack is twice as serious a mistake as
having gone only to simple alert when an attack does
oceur.

The regret matrices for the other two dimensions,
military risk and alert cost, are assessed in the same
manner as the political cost. In assessing military risk,
for example, the zero regret cells are identified as shown
in Table A6-5. Furthermore, the assessor concludes here
that, militarily speaking, there is no regret in being
over-prepared for an attack which does not materialize.
For this reason all the cells in column 2 are zero. The
worst option on the assumption that thereis an attackis
to maintain the status quo; accordingly, that cell
receives a regret value of -100 (see Table A6-5B). Therest
of the values were assessed as shown in Table A6-5C.

. NO
A ATTACK ATTACK
MAINTAIN STATUS QUO 0
MILITARY VIGILANCE
SIMPLE ALERT
REINFORCED ALERT 0
B.
MAINTAIN STATUS QUO| -100 0
MILITARY VIGILANCE 0
SIMPLE ALERT 0
REINFORCED ALERT 0 0
C.
MAINTAIN STATUS Quo| -100 0
MILITARY VIGILANCE -45 0
SIMPLE ALERT -15 0
REINFORCED ALERT 0 0

i Table A6-5. Military Risk.
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The final value dimension, alert cost, is meant to be a
measure of the out-of-pocket costs of going from the
status quo to the various levels of alert. However, rather
than trying to figure out these costs in dollars, they will
also be approximated by regret on a scale of 0 to -100. If
the objective is to minimize regret on a cost dimension,
then the best option (that having the lowest cost) is to
maintain the status quo and the worst is to go to the

AWSP 105-51
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reinforced alert. Theee regrets are, therefore, 0 to -100,
respectively. Since the cost and, consequently, the regret
remains the same, whether there is an attack or not,
both columns of the regret matrix for alert cost will be
the same. The values obtained during this assessment
for the different cells of the matrix are shown in Table
A6-6.

NO

ATTACK ATTACK
MAINTAIN STATUS auo 0 0
MILITARY VIGILANCE =30 -30
SIMPLE ALERT -10 =10
REINFORCED ALERT -100 -100

Table A6-6.

Alert Cost.

In applying the general rules for filling a regret matrix
to this example, several special features of the example
became apparent. These were:

o In the political cost matrix, the amount of
regret incurred in going from the best to worst
option under one outcome (attack) was felt to be
the same as the amount incurred in going from
the best to worst option under the other
outcome (no attack). (Both columns contained a
0 and a -100.)

o  For the military cost matrix under the outcome
of no attack, none of the non-optimal options
resulted in any regret when compared to the
optimal one. (All the entries of the second
column were 0.)

o In the alert cost matrix, the amount of regret
was the same regardless of which outcome was
assumed to occur. (Column 1 is identical to
column 2.)

One feature of measures of regret which should be kept
in mind when regret matrices are used is that making
comparisons of values across columns is somewhat
tricky. Regret values within a column are all measures
of the value of a cell relative to that of the optimal cell
for that column. The basis for these relative values must
be kept in mind for a comparison of regret values across
columns. If two cells in different columns both contain
the regret value of -35, for instance, then the assessor
feels as bad about going from the optimal cell in one
column to its -35 cell as about going from the optimal cell

in the other column to its -35 cell. This equivalence is in
contrast to the interpretation of the entries in a payoff
matrix. For a payoff matrix the values in the cells are
measured in absolute terms. If two celle in different
columns have the same payoff, then the assessor feels
equally good (or bad) about being in either of the states.
For two regret cells having equal values, the assessor
feels equally good about the transition to that cell from
the optimal cell in its column. Statements involving the
comparison of incremental regrets can also be made. For
example, if the difference between two regrets in one
column is, say, 20 this is the same amount of regret as
that between any two regrets in another column which
also differ by 20.

c. Weights for the Value Dimensions. After the
assessor's feelings about regret have been elicited for
each of the different value dimensions, these figures are
combined into a single value for every decision option-
event outcome combination. This composite regret
matrix, called the “combined valuation,” is formed by
taking a weighted average of the matrices over the
different value dimensions. The average is weighted
because in most examples certain of the dimensions are
more important than others. These weights are assessed
as part of this analysis.

When values over different dimensions are expressed in
terms of regret, their weights are called the “swing
weighta” and are estimated not by considering the
overall difference in importance of one dimension
compared to another, but rather by estimating the
importance of a swing from the best (regret =0) to worst
(regret = -100) option in one column of one dimension
compared to the swing from the best to worst option on

| .
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another dimension. For example, consider the regret
matrices in the Warsaw Pact attack case shown in Table
A6-7. Now suppose the assessor first considers the
military risk compared to political cost and decides that
the military risk regret of going from zero (reinforced
alert if an attack occurs) to -100 (maintaining status quo
if an attack occurs) is twice as important as the political
cost regret of going from zero to -100 under the same
conditions; that is, the awing weight for military risk is
twice the swing weight for political cost. Suppose further
that the assessor decides that the alert cost regret from
having spent the money to go from zero (maintaining
status quo) to -100 guing on reinforced alert) is about
equal in importance to the political cost regret of going
from zero (reinforced alert if there is an attack) to -36
{military vigilance, if there is an attack). This implies
that the political cost swing weight is about three times
that of the alert cost. To summarize theee assessments:

military risk importance = 2 x political cost
importance.

political cost importance = 3 x alert cost importance.

Maintaining these relationships and normalizing the
weights so that they add to 1.00 give:

Value Dimension Importance Weight
Military risk 0.6
Political cost 0.3
Alert cost 0.1

8. CALCULATIONS. Once thedecision problem has
been structured and the inputs assessed, some
straightforward calculations are made to enable the
user to determine the best decision option.

a. Combined Valuation. By means of the
importance weights discussed above, the different
regret matrices are combined into a single matrix
expressing the combined effects of regret on different
dimensions. The result of this computation is shown in
Table A6-8 on the following page. The assumptions are
made that the different dimensions of value are
independent and that they combine according to an
additive rule. Under these assumptions, each cell in the
combined valuation matrix is filled by taking the
weighted average of the regret values in the
corresponding cells of the three value dimension
matrices. For example, the following computation
produces the value of -19 in the simple alert-attack cell:

(-10 x 0.30) + (-15 x 0.80) + (-70 x 0.10) = -19.

As is the case with the individual regret matrices, the
values of cells in this combined matrix incorporate an
understood comparison with the value of the optimal
cell in each column. In the combined value matrix,
however, the optimal cell for each column will not
necessarily have a zero value, since the combined
valuation is a weighted sum of the individual value
matrices. For instance, in the Warsaw Pact attack
example, the “Attack” column of the combined
valuation matrix no longer has a zero entry. Before
comparisons can be made of the absolute values of the
regret from column to column, the 2zero must be restored,
in this case by adding 10 to every entry in that column.

31 October 1978
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(Whether this adjustment is made or not has no effect
upon the choice of the optimal act since the addition of
the same constant to each row of the matrix will not
change which row has the smallest expected regret, the
chceice criterion discussed in the next section.) Without
making this adjustment, however, the differences
between entries within one column can be compared to
entry differences in another column. For example, the
amount of regret (9 units) in going from zero to -9 in the
second column is the same as that of going from-10to-19
in the first column. However, before the adjustment, the
amount of regret from being in the military vigilance-
attack cell (regret = -40) is not the same (-40) as that of
being in the reinforced alert-no attack cell.

b. Expected Value. The criterion used here for
indicating the best decision option is that having the
smallest expected regret, measured from the values of
the combined valuation matrix. Expected regret is
computed for each option by multiplying the value of
each outcome under that option by the outcome’s
probability. For example, the option “reinforced alert”
has combined regret values of -10 if there is an attack
and -40 if there i8 no attack. Weighting these values by
the probabilities for the two outcomes gives:

(-10 x 0.10) + (-40 x 0.90) = -37.

Carrying out the computation for the other three options
gives the expected regret values shown in Table A6-9.
Since the smallest expected regret value is 9 (ignore the
minus signs, which are included merely to remind the
assessor that regret is a measure of undesirability), the
associated option, maintaining the status quo, is,
therefore, the optimal decision on the basis of the data
input.

c. Sensitivity. The expected regret values for
each of the four options considered here depend on the
three kinds of inputs to the analysis: the regret matrices
for the different dimensions, the importance weights for
the different dimensions, and the probabilities. One way
to obtain these input values is to spend a lot of time and
effort in making the assessments. Generally, however, a
more efficient way to conduct the analysis is to assess
quickly some approximate numbers for use in an initial
pass through the whole procedure. The final step in the
option screening method then becomes a sensitivity
analysis where changes are made to the inputs to see
their effect upon the solution, that is, the choice of the
option having the smallest expected regret.

(1) Probabilities - The expected regret for
each option is a linear function of the corresponding row
in the combined valuation matrix with the probabilities
serving as coefficients. Changes in the probabilities of
attack versus no attack will cause changes in the values
of the expected regret and may cause a change in the
optimal option, that is, which option has the smallest
expected regret. Because of the linearity of the
relationship, the effect of probability changes on
expected regret can be easily shown graphically. In
Figure A6-2, four lines are plotted. Each of these, one for
each option, is an expected regret line. The points
composing the line show the change in expected regret
(the vertical scale) for changed values of the probability
of attack (the horizontal scale). (The probability of no
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Changes in Expected Regret as a Function of
Probability of Attack: Graphic Presentation

Figure A6-2.

o

attack is simply one minus the probability of attack.)
The expected regret scale runs from largest to emallest
so that the smallest (most desirable) values will be at the
top of the graph. An inspection of this graph enables the
assessor to see at a glance the effect of changes in the
probability assessment upon the choice of the optimal
option. The option whose expected regret line is
uppermost is the optimal act. In this example from the
Warsaw Pact exercise, the status quo option is optimal
until the probability of attack reaches about0.17; at that
point, military vigilance becomes optimal and remains
so until the attack probability exceeds about 0.38, when
simplie alert becomes the option whose expected regretis
smallest. The option of reinforced alert does not become
optimal until the attack probability reaches 0.67. These
points at which there is a shift in the optimal act are
referred to as the “thresholds” of the probabilities.

{(2) Values and importance weights -
Holding the probability of attack constant (at theinitial
value of 0.10, for example), the user can also test the

sensitivity of the output to changes in the importance
weights, which will change the combined value matrix,
and even to individual changes within any of the regret
matrices for the different value dimensions. The first
step would be to change the values of assigned weights,
then recompute the combined value matrix as described
in Table A6-8. Finally, revised expected regrets for each
option are computed as shown in Table A6-9.

4. EVALUATION OF THE RAPID SCREENING
METHOD. The usefulness of this method for the rapid
screening of decision options can be judged by
considering its various strengths and weaknesses. The
main strengths of the procedure stem from the virtures
generally claimed by decision analysis—quantification,
normativeness, and communicability—all incorporated
in a procedure that, compared to a full decision analysis,
is relatively simple and rapid. Some of the weaknesses of
the method, however, can also be attributed to this
simplification which, at worst, may make the problem
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solved by the analysis so different from the actual
decision problem faced that the solution is of no
practical value.

a. Strengths. Likethestandard decision-analytic
procedure, this method for the rapid screening of
decision options requires that the decision maker
systematically list all decision options and event
outcomes and express quantitatively the probability of
occurrence for each outcome and the value of the
different outcomes on several dimensions. This
information is then processed mathematically to
determine the optimal decision option and, through a
sensitivity analysis, to reveal the assumptions and
assessments which are critical to the choice of the best
decision option. Such a formal procedure for decision
making under uncertainty is generally considered to be
superior to more intuitive methods where some factors
may be overlooked or incorrectly weighted when their
importance to the final decision is considered. Besides
promising on the average and in the long run to give
better decision making, the rapid screening procedure
also promotes understanding of the problein hoth for an
individual decision maker and within a group of
decision makers. This increase in understanding occurs
because the factors or events having an effect upon the
probabilities must be enumerated during the probability
assessment and because the dimensions and
importance of the outcome values must be made explicit.”
Communication is improved among the people who are
party to the decision; people with differing opinions can
test the effect of their ideas on the final output; and,
consequently, everyone's confidence in the correctness
of (or at least the justification for) the selected decision
option should be high.

The points cited above show how decision making for a
particular problem may be improved by using the
rapid screening method. In addition, the method has
some usefulness as an introduction to the concepts of
decision analysis and as a training device in the
application of these roncepts. A user’s experience with
one problem may :n this way help to make the solution of
future problems better and easier.
b. Weakr.eeres

(1) Simp!ifirations - The simplified format of
the rapid screening method differs from the standard
decision analysis format in that (1) only one decision
node is allowed, followed by only one event node and (2)
the probabilities of the different event outcomes are
always independent of the action taken. If these
implications are too restrictive, then the solution to the
gimplified problem (its best decision option) may not be
a good approximation to the solution to the real
(unsimplified) problem. For example, in the Warsaw
Pact attack case, the assumption is made that the
probabilities of attack versus no attack (initially
assessed as 0.10 and 0.90) are independent of the
decision option taken by NATO. In other words,
whether NATO maintains the status quo or goes so far
as to order a reinforced alert will have no effect upon the
Pact’s decision to attack or not. (Our interpretation of
the 0.10 and 0.90 probabilities is then as follows: the
Pact has already decid2d either to attack or not. NATO
actions (within the range of options considered) will not
change its decision. NATO does not know what the
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Pact’s decision is but believes that there is a 0.10
probability that the intention is to attack and a 0.90
probability that it is not to attack.) If this assumption of
independence of probabilities is incorrect, then the
expected values of the regret under different decision
options should be obtained by multiplying the values in
the combined valuation regret matrix by different
probabilitiee (newly assessed to account for the
dependency) depending on which row (option) is being
considered. This change in the calculajion would
generally result in different expected values and,
consequently, might cause the optimal option (defined
as the option having the smallest expected regret) to
change.

The requirement of the simplified format that the
problem has only one immediate decision node and one
uncertain event node has the effect of eliminating the
ability of the analysis to represent accurately a problem
where there may be a sequence of decisions to be made.
In the Warsaw Pact attack example, for instance, the
probability graph (Figure A6-2) shows which decision is
optimal for all possible attack probabilities from 0.0 to
1.0. If the probability is 0.50, for example, then the
optimal decision is simple alert. It does not necessarily
follow, however, that, if NATO actually went first to
military vigilance on the basis of some data leading the
probability of attack to be assessed at 0.30 (say) and
then subsequently received information leading the
probability to be revised to 0.50, simple alert would still
be the optimal decision. This is because the regret
matrices showing the values on different dimensions of
the various options were assessed with the implicit
assumption that the current status was no
extraordinary alert position. If the status quo were
simple alert, these values or their weights might be
different.

(2) Value assessments: payoff versus
regret - Another possible weakness of the method is
that people will have a great deal of difficulty in
assessing the outcome values on the artificial scales
used here. If these assessments are not done coherently,
then the output of the entire analysis is called into
question.

In the examples shown here, the value within each
dimension of a particular combination of decision
option and event outcome was assessed, not by
comparing all combinations to each other (payoff
measures) on some absolute scale, but by taking each
event outcome separately and, within that outcome
column, assessing the regret resulting from making a
non-optimal decision compared with the best possible
decision under the outcome. One of the reasons for this
approach is that, when the values of the options under
one outcome are clustered at one end of the payoff scale
and those under another outcome at the opposite end,
the assessor may have difficulty in discriminating
among the points in each cluster. For example, with two
outcomes and four opticns, the payoff values assessed
might be 0, 1, 2, 3 under one outcome and 100, 99, 98, 97
under the other. This lack of discrimination within a
column is overcome by the technique of regret
assessment which emphasizes comparisons within a
column. Another reason for assessing regrets is that
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some assessors find it quite easy to answer questions

_ phrased in regret terms (e.g., “Is it a bigger mistake in
political cost terms to have failed to go to reinforced alert
if there is an attack or to have mistakenly gone on
reinforced alert when no attack occurs?”

However, despite these advantages of the regret
assessment, this method may have some drawbacks. It
may be that assessors have difficulty in keeping in mind
what is meant by the regret measurement (namely, the
comparison of a considered option to the optimal option)
when using values of one column as a basis for getting
those of another column or, what may be even more
difficult, when comparing a column in one dimension to
a column in another dimension to determineimportance
weights. The difficulty anticipated here is that an
assessor will not be able to keep in mind simultaneously
the three or four necessary factors. For intra-matrix

comparisons, these factors are the optimal option and
the considered option under one outcome versus the
optimal option and the considered option under another
outcome. For inter-matrix comparisons, the factors
which may differ are the optimal option in each matrix,
the considered option in each matrix, the outcome
considered in each matrix, and the dimension of value.
An assessor who has difficulty dealing with this
complexity may initially assess values in terms of regret
but then treat these as if they were payoffs in later
stages of the assessment. For example, after the expert
has assessed the regret matrices for military risk and for
political cost in the Warsaw Pact attack exercise, he is
asked, “Which is a worse mistake (and how much
worse), -100 under military risk or -100 under political
cost?” Rather than considering this question in regret
terms, where “mistake” means regret at having chosen
the wrong option when you could have chosen the
optimal one, the assessor may respond on the basis of
payoff, as if the question were, ‘Which option-outcome
combination is worse (and how much), the military risk

A6-8

of an attack when you are in status quo readiness or the
political cost under the same circumstances?”

Three possible ways of testing for the existence of this
problem and overcoming the confusion are:

o Assessing the value matrices and their
importance weights both in terms of payoffs
and of regrets. These assessments would be
made at separate times and the results
compared by looking at the regrets assessed
directly and those computed from the payoffs;

o Presenting the questions used to elicit the
regret assessments as paired comparisons,
without displaying the whole matrix to the
assessor; and

o Asking the assessor to justify each regret
assessment with a few sentences explaining
why one mistake is comparable to, or a certain
amount worse than, another. By listening to
these explanations, the elicitor may be able to
tell whether the assessor is correctly
considering the regret value rather than
payoffs.

For the regret assesaments presented in the examples of
this paper, the third of these approaches was tried.

c. Conclusions. The overall experience with this
simplified approach to the rapid screening of decision
options is quite positive. The solutions te the problems to
which it has been applied are seen as plausible by the
users of the method in light of their explicit probability
and value assessments. Furthermore, the discussion of
these probabilities and values has improved
communication among different parties to the decision.
The users are also enthusiastic about their ability to
modify by themselves both the structure of the problem
and its inputs.
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PROCEDURES USED IN PREPARING TABLE 5-15

1. Preparation of Verification Matrices. Table A7-1f illustrates how individual matrix values are obtained for the first
matrix (PZ 2%, P <.2%) in Table 5-15. Values labeled, “a,” “c,” “a+b,” and “c+d” are extracted from Part B, Table 5-14
and entered in the respective matrix positions (Table A7-1 and 5-15). Values for “a+c” and “a+bh+c+d” are also obtained

Table A7-1. Example Computations Used to Prepare Matrices
in Table 5-15.
EVENT FORECAST PROBABILITY
OCCURRED P 2> 2% P < 2% TOTAL
(a) (c) (atc)
YES 293 19 312
(b) (4) (b+4d)
NO 1008 888 1896
(a+b) (c+d) (a+b+c+d)
TOTAL 1301 907 2208

from Table 5-14, since they are the total numbers of events occurrences and forecasts, respectively. The threeremaining
values needed (“‘b,” “d,” and “b+d”) are determined by calculating the differences between those values previously
obtained. Similar procedures are used in preparing the other matrices.

2. Calculation of Post Agreement and Prefigurance (Panofsky and Brier, 1965).

a. Post Agreement. Thisis a measure of thereliability of categorical forecasts which describes the extent to which
subsequent observations confirm the prediction, when a certain event is forecast. It indicates how frequently an event
occurs when it was forecast. Table A7-2 shows the computations for the first matrix (P 22%, P <2%) in Table 5-15.
Notations (a, b, ¢, and d) and matrix values are taken from Table A7-1 above. Similar procedures are used in computing
post agreement for all other matrices.

Table A7-2. Example Computation of Post Agreement.

k_
EVENT FOREQAST PROBABILITY
OCCURRED P > 2% P < 2%
a 293 . 19 _
YES b = 1301 = 22-5*| Gia = gn7 — 2-1%
b - 1008 _ 77.5% d _ 888 =97.9%
NO a+b 1301 c+d 907
IA TOTAL 100¢% 100%
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b. Prefigurance. This is a measure of categorical forecasting capability which describes the extent to which the

forecasts give advance notice of the occurrence of a certain event. It indicates how often an event is forecast when it

. occurs. Table A7-3 shows the computations for the first matrix (P22%, P <2%) in Table 5-15. Notations and matrix
values are obtained as stated above. Similar procedures are used in computing prefigurance for all other matrices.

Table A7-3. Example Computation of Prefigurance.

.("

EVENT L _FORECAST PROBABILITY
OCCURRED P 2 2% P < 2% TOTAL
a _ 293 _ c _ 19 _
YES ate 312 = 93.9% @ - 33 = 6.1% 100%
b 1008 d 888
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INTRODUCTORY TRAINING SCENARIO

1. Background.

a.The text describes all the tools needed by skilled
forecasters for producing good probability forecasts.
The key element Jacking is experience with this new
approach. The limited experience resulting from a unit
training program does not make a substantial
difference in sharpness, since this attribute is similar in
categorical forecasting and is dopondcnt upon
forecasting skill. However, reliability is a new ability
that can be gained in a relatively short training
environment. Experience by NWS ghows that
forecasters learn to adjust reliability biases very
quickly, given timely feedback (Hughes, 1976a).
Further, the experience within AWS indicates that
reasonable reliability can usually be attained after a
forecaster has issued 50-100 forecastsin which theevent
occurs. This does not mean that operational forecasts
cannot be issued, when a forecaster has less experience.
It simply means that the forecasts may not be as reliable
as they could be.

b. This attachment provides guidance for
establishing local training programs in probability
forecasting. Two types of programs are needed. The first
involves training forecasters who have no previous
experience with probabilities. It must cover all phases of
the effort. Forecasters completing this training should
be fully capable of issuing reliable forecasts for the
weather event used in training. The second program
must train all forecasters to issue reliable forecasts for
each weather event used operationally. Its objective is to
provide forecasters with sufficient experience to
establish reliability for that specific event. If time
allows, experience can be gained by preparing training
forecasts on a real-time basis. This if often not practical,
especially when the forecasts are made only once a day.
Further, it may take months or years to obtain adequate
experience, where infrequent or rare weather events are
concerned. Therefore, canned data, as described in this
attachment, can be used to reduce training time
considerably.

2. Preparation of the Training Programs.

a. Define the Event. The first step is to precisely
define the weather event to be forecast. It must specify
the data base time to be used in preparing the forecast,
what element will be forecast, and when the forecast will
be valid.

(1) Introductory training: The event chosen
should have a climatic frequency of near 30%; be limited
to a two category forecast; and have a lead time of
approximately six hours. Note that rare events usually
do not include a sufficient number of occurrences to gain
experience or to perform reliable evaluations.

(2) Operational training. Train with an event
as close as possible to the one that will be used
operationally. The actual choice will be limited by the
data base available.

b. Collect Data Base.

(1) Introductory training.

(a) Charts. Collect two sets of charts for 31
consecutive days each. A complete data base is not
needed, because the principles can be learned from a
minimum of data. Even daily surface charts, such asthe
US Dept of Commerce Daily Weather Map wiil suffice.

The forecasts need not be for the home station. If
available, choose charts for two different years (e.g.,
May 1976 and May 1977). If only local charts are used,
two. consecutive months in the same season are
adequate, provided the forecasting techniques used are
similar.

(b) Observations. Observations
corresponding to the map times are needed. Verifying
obeervations are also required for evaluating and
critiquing the forecasts.

(¢) Climatology. Obtain the best source of
long-term climatology valid for the verifying time and
give it to the forecasters. Use CC as a starting point for
each forecast, if available.

(2) Operational training. A larger data base is
needed for operational training to make the situation as
realistic as possible. The extent of the data base is
dictated by manageability. The type of data provided is
also governed by the nature of the event. For rare events,
it may be necessary to acquire several years of data for
selected seasons in order to obtain sufficient forecasting
experience.

c. Design of Worksheet and Verification
Procedures.

(1) Introductory training. Design a worksheet
similar to Figure 4-3 for recording and evaluating the
forecasts. Instead of using zeros and ones toindicate the
verification, enter the valid dates of the forecasts in the
blocks on the forecast distribution diagram, and verify
(occurrences of the event) by indicating slashes through
the appropriate dates. Probability intervals must not be
less than 20%, unless a large number of forecasts are
used. Otherwise, the number of cases in the probability
intervals may be too small to obtain reliable
evaluations.

(2) Operational training. The worksheet
format varies with the number of categories in the
forecast. For a two category forecast, use the format
given in Figure 4-3. For a larger number of categories, a
form similar to the one described in Figure AS8-1 is
probably more suitable for recording the forecasts.
Evaluations then take the format of Table 4.5. Use
probability intervals for forecasts and evaluations
which cnrrespond to those used operationally, if known.

3. Training Procedures.
a. Introductory Training.

(1) Start the training program with a seminar
covering all the key elements of probability forecasting,
evaluation techniques, and a few examples of how
probabilities are applied operationally.

(2) Follow with a workshop amplifying the
basic concepts. Discuss the sequence of events to follow.
Provide climatological aids, initial observations, charts,
worksheets, etc, and instructions for completing the
various tasks. Begin practice by having the trainecs
prepare probability forecasts for the chosen event using
one of the two sets of data. Normally, an average of one
minute per forecast is sufficient time for this phase.

(3) Give the trainces the shservatisas to verify
the practice forecaits. Have them compuie, for cach
probability interval, the nuinber of farecaats, number of
event occurrerces, obhse: ved froyuency, cord bias

-‘_J
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Compute Brier Scores if they are used routinely.

(4) Critique each trainee’s forecasts. Discuss
their merits and deficiencies, and how to overcome the
biases. Cover sharpness, reliability, and the biases of
over-underforecasting and over-underconfidence. If
Brier Score measures are used, compare the individual
scores with climatological scores.

(6) Use the second set of data to prepare
another set of practice forecasts. This time, have the
trainees concentrate on correcting the biases they had in
the first set.

(8) Evaluate and critique this second set of
forecasts. Most trainees achieve substantial
improvement on the second set, but some will
overcompensate (i.e, go from overforecasting to
underforecasting). This simply means that they know
the right principle, but need to achieve the right balance.

31 October 1978
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(7 After the workshop, require trainees to
read this pamphlet to help reinforce the principles
taught during the exercise, and to learn the details that
will be needed before they can become proficient.

(8) Additional experience can be obtained by
having the trainee issue practice forecasts on a real-time
basis, or by using canned data. This is a good time to
change to an event for which operational forecasts will
be issued. Continue practice forecasta until the trainee
attains the required reliability and sharpness.

b. Operational Training. Once introductory
training is completed, it need not be repeated, except
when the principles are not understood. Administer
training on a real-time basis or by using canned data.
Ideally, at least part of the training must be with real-
time data, to better assess expected performance.
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A9-1

INTRODUCTION TO DECISION TREES

Decision trees are frequently used instead of decision matrices to solve problems. Most of the information was extracted
from Selvidge’s Technical Report 76-12, Rapid Screening of Decision Options (1976).

1. General.

a. “Decision Analysis” is the name given to a
recently developed, formal procedure for resolving
complex problems where the decision maker must
choose from among a number of options, and where the
best decision depends, in part, on some uncertain future
events whose outcomes can only be guessed at when the
decision is made.! The techniques of decision-analytic
procedure help the decision maker to enumerate all the
possible acts (called the decision options), and all the
relevant uncertain events with their different possible
outcomes. The procedure also requires the decision
maker to express in numerical terms his feelings about
the relative likelihood (called the probabilities) of
different outcomee in conjunction with the different
possible decigion options. Once the decision problem has
been described in this fashion, the decision-analytic
procedure specifies the way in which this numerical

information is aggregated into summary figures (one for
each decision option). These are used as an indicator of
the best decision option.

b. The description of a decision problem is
generally presented in the form of a decision diagram,
called a “decision tree,” shown in Figure A9-1. In this
format, decision points (called nodes) are represented by
small squares, with the different possible options shown
as lines or paths coming out of the square. Points or
nodes where uncertain events occur are represented by
small circles, with lines extending out to indicate the
different possible outcomes of the event. One function of
the decision tree is to illustrate how the decision problem
unfolds over time. The decision and event nodes are
arranged sequentially, in the order in which decisions
must be made, and in which outcomes of the uncertain
events are revealed to the decision maker.

PRIMARY SECONDARY
DECISION UNCERTAIN DECISION
NODE EVENTS NODE
Option
Outcome )
Option Option
Outcome
Qutcome
Option Qutcome
Option
Outcome
Option
Option
Outcome
Option
Option

Outcome

e =Decision Node

® - Uncertain Event Node

Figure A9-1.

Outcome

Qutcome

A Schematic of the Decision Tree Format.

1An excsllent text on decision theory is Howard Raiffa’s “Decision Analysis, Introductory Lectures on Choices under

Uncertainty,” Addison-Wesley Publishing Co, Reading, MA.
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2. Simplified Format Using a Decision Tree.
Figure A9-2 presents a simplified decision analysis
format, showing a single decision node followed by a
single uncertain event node. The probabilities of the
different outcomes of the uncertian event (in this case,
three outcomes are shown) are the same, regardless of
which decision option is taken. Any end-point position
of this simplified tree may be valued on many
dimensions, and then summarized into a single utility
figure.

3. Basic Matrix Format.

a. The simplified decision tree contains all the
information needed to carry out an approximate
analysis of the problem. Since there is only one decision
node and one uncertain event, an alternative way of
displaying this information is in the form of a table or
matrix. The rows represent the alternative decision
options, and the columns of the matrix represent the

AWSP 105-51
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different possible outcomes of the uncertain event. Each
cell represents an option-outcome combination (and
corregponds to an end-point in the decision tree). The
cells contain the value of the particular option-outcome
combination. There is a separate matrix for each value
dimension.

b. Figure A9-3 shows how the decision sketched in
Figure A9-2 appears in the basic matrix format.

c. The principal advantage of presenting decision
problems in the basic matrix format is that people
inexperienced in decision analysis seem to understand
the matrix presentation more easily than the decision
tree format. Additionally, the matrix provides a
convenient way for recording the costs and benefits,
when these need to be measured simultaneously in
terms of a number of different factors (e.g., dollars,
human lives, military advantage, political
implications).

DECISION UNCERTAIN PEO'::T OUTCOME
OPTIONS EVENT NUMBER VALUE UTILITY
Pi ! vy Uy
1 P2 2 v, U3
A 's v, U3
i 4 Vy U4
Pa . . .
¢ P1_ _ —
3 Py ; . .
P3 ] . L

B - Decision node

Uncertain event

Figure A9-2.

Simplified decision analysis format.
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Uncertain Event

1l 2 3
o
(o}
e A \'21 Va2 Vs
P
[oF
(o]
o B Vau Vs Ve
(o]
-
)
° | c Vs Ve Vs
Q
a

P, P2 P;

Figure A9-3.

Event Probabilities

Basic Decision Matrix for the
Decision Tree in Figure A9-2.
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Instruction for Variable-Width Interval Forecasting of
Maximum and Minimum Temperature

In forecasting the maximum (max) and minimum (min)
temperature, you undoubtedly are somewhat uncertain
about what the actual max and min will be. Itis possible
to give a point forecast (i.e., a single value) that
represents your “best estimate” about the max or min,
but the point forecast alone does not completely
represent your uncertainty. A convenient way to convey
this uncertainty is through the use of interval forecasts
(i.e., intervals of values, as opposed to the single values
used as point forecasts). Specifying an interval and the
probability that the max (or min) temperature will be
within the interval conveys a considerable amount of
information about your uncertainty. On some days, you
may feel that the odds are even that the max willbein a
particular five degree interval; on other days, you may
be much more uncertain, so you feel that the odds are
even that the max will be in a particular ten degree
interval. In this experiment you will be asked to
determine an interval such that the probability is 50%
that the max (or min) temperature will be in the interval,

and you will be asked to determine an interval such that
the probability is 75% that the max (or min) temperature
will be in the interval. An interval is assumed to include
its end points; for example, the interval 72-76°F is a five
degree interval (it includes 72, 73, 74, 75, and 76). Note
that in determining your interval forecasts, you will be
working with intervals that are of fixed probability
(50% and 75%), and you will have to determine the end
points of the intervals; hence, the intervals are of
variable width (the width depending on how uncertain
you are on a given occasion).

The first step in determining the interval forecasts is to
determine a median, which will be used as a mid-point
for the variable width intervals. A medianis a value that
you feel is equally likely to be exceeded or not exceeded.
For example, .f you feel that it is equally likely that the
max temperature tomorrow will be above 74 or below 74,
then 74 is your median. The following dialogue should
illustrate how you might arrive at a median.

What is your best intuitive estimate of tomorrow’s max temperature?

My first step will be an attempt to sharpen up thatinitial estimate. If we were both to wager the
same amount of money, would you rather bet thatthe max temperature will be above 90 degrees

Fine. Then we will select 92 degrees as your indifference judgment. You think that is is just as
likely that tomorrow’s max temperature will be above 92 degrees as that it will be below 92

Experimenter:
Forecaster: About 90 degrees.
Experimenter:

or below?
Forecaster: Above 90 degrees.
Experimenter: Would you rather bet that it will be above 94 degrees or below?
Forecaster: Below.
Experimenter: Above or below 91 degrees?
Forecaster: Hmmm ... probably above.
Experimenter: Above or below 92 degrees?
Forecaster: It doesn’t make much difference there.
Experimenter: Above or below 93 degrees?
Forecaster: Below.
Experimenter:

degrees. Is that right?
Forecaster: That seems right.
Experimenter:

In a sense, 92 degrees, which is a median, is your best estimate of tomorrow’s max temperature -
it can be viewed as a point forecast.

The next step is to determine your 25th percentile (the
median is sometimes called the 50th percentile). The
25th percentile is the value that divides the interval
below the median intotwo equally likely subintervals.
Note that the median divided the entire set of possible
values into two equally likely intervals, so the procedure
for determining the 25th percentile is very similar to the

procedure for determining the median. For example,
suppose that your median for the max temperature
tomorrow is 74. Then if you feel that it is equally likely
that the max temperature tomorrow will be below 71 or
between 71 and 74, then 71 is your 25th percentile. The
following continuation of the dialogue presented above
illustrates the determination of a 25th percentile.

In a sense, 92 degrees, which is a “median,” is your best estimate of tomorrow’s max
temperature. The next series of questions that I'll ask is designed to explore just how certain
you are that tomorrow’s max temperature will be near 92 degrees. First, assume that all bets are
off in case the max temperature is greater than 92 degrees. Do you think that it is more likely
that tomorrow’s max temperature will fall below 80 degrees or between 80 and 92 degrees? I am

Experimenter:

after two equally likely intervals below 92 degrees.
Forecaster: It is more likely to be between 80 and 92 degrees.
Experimenter: Below 85 degrees, or between 85 and 92 degrees?
Forecaster: That's pretty difficult. Probably below 85 degrees.
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Experimenter: Below 84 degrees or between 84 and 92 degrees?

Forecaster: That's about it. I can’t choose between the two intervals.
Experimenter: Fine - then we will accept 84 degrees as your 25th percentile.

Next, it is necessary to go through this type of procedure
once more on the “low” side (the side below the median),
in order to determine your 12%th percentile. As you can

probably guess by now, the 12%th percentile divides the
interval below the 25th percentile into two equally
likely subintervals. The dialogue cortinues:

Now that you've decided that 84 is your 25th percentile, let’s assume that all bets are off if
tomorrow’s max temperature is above 84 degrees. Do you think that is is more likely that
tomorrow’s max temperature will fall below 70 degrees or between 70 and 84 degrees?

Experimenter:

Forecaster: Between 70 and 84 degrees.

Experimenter: Below 75 degrees or between 75 and 84 degrees?
Forecaster: Between 75 and 84 degrees.

Experimenter: Below 80 degrees or between 80 and 84 degrees?
Forecaster: That’s pretty close, but I'd say below 80 degrees.
Experimenter: Below 78 degrees or between 78 and 84 degrees?
Forecaster: Between 78 and 84 degrees, but it’s pretty close agair..
Experimenter: Below 79 degrees or between 79 and 84 degrees?
Forecaster: I guess those intervals are about equally likely.
Experimenter: Then we will select 79 degrees as your 12%th percentile.

The next step is to determine your 75th percentile, the
value that divides the interval above the median into
two equally likely subintervals. As you might suspect,

the procedure for determining the 75th percentile is like
the procedure for determining the 25th percentile. Let's
go back to the dialogue.

Now let’s move on to the upper range, the range above the median. Assuming that all bets are
off if tomorrow’s max temperature is below 92 degrees, do you think that it is more likely to be

Experimenter:
between 92 and 100 or above 100?
Forecaster: Definitely between 92 and 100.
Experimenter: Between 92 and 95 or above 95?
Forecaster: Still between 92 and 95.
Experimenter: Between 92 and 94 or above 94?
Forecaster: Now I am indifferent.
Experimenter: In that case we will take 94 as your 75th percentile.

Finally, it is necessary to determine your 87%th
percentile, the value that divides theinterval above the

The procedure is similar to that for determining the
12%th percentile, so the dialogue might be as follows:

78th percentile into two equally likely subintervals.

If I can “push” you to determine one more indifference point, let’s assume that all bets are off if
the max temperature t~morrow is less than 94, which we just determined to be your 75th
percentile. Do you think that the max temperature is more likely to be between 94 and 96 or

That's pretty difficult, but I guess I'm about indifferent.

Experimenter:

above 96?
Forecaster: Between 94 and 96.
Experimenter: Between 94 and 95 or above 95?
Forecaster:
Experimenter:

Theee are difficult judgments to make. Since you're about indifferent, we'll take 95 as you
87%th percentile.

The median, the 25th percentile, the 12'4th percentile,

percentile and the 87':th percentile. Thus, we have one

the 75th percentile, and the 87'4th percentile have been
determined, in that order. These values can be used to
determine interval forecasts. The probability is 50% that
the max temperature will be between the 25th percentile
and the 75th percentile, and the probability is 75% that
the max temperature will be between the 12lth

interval forecast with probability 50% and one with
probability 75%. It is useful to reconsider the values that
have been determined to make sure that they coincide
with your best judgments. To illustrate this, we return to
the dialogue one more time.
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Experimenter:

Forecaster:

Experimenter:

Forecaster:

Experimenter:

Forecaster:

Experimenter:

Forecaster:

Experimenter:

Forecaster:

Experimenter:

Forecaster:
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Now let’s carefully consider the values that you have estimated. Firat, consider theintervals A,
B, C, and D, where A is below 84 degrees, Bis between 84 and 92, C is between 92 and 94, and D is
above 94. Assume that there is a four-way bet this time and you can pick only one of the
intervals. Which one would you prefer?

Hmmm ... Clearly not B or C. I guess I like A the beat, but D looks pretty good, too.

People occasionally squeeze the outside boundaries in too closely when making judgments like
this for the first time.

I must have done that because now I clearly like the outside two intervals better than the middle
ones.

Then move the outer boundaries out one degree each so that the boundaries are at 83 degrees, 92
degrees, and 95 degrees. Now which interval would you prefer to bet on?

These estimates are better now. Any one of the intervals looks just as good as any other one to
me. Also, I think that the max temperature is just as likely to fall inside the interval between 83
and 95 degrees as it is to fall outside that interval.

Good. Now let’s consider the interval’s P, G, R, and S, where P is below 79 degrees, Q is between
79 and 83, R is between 95 and 96, and S is above 96. I have taken the liberty of shifting your
87vath percentile up to 96, since the 75th percentile is now 95. In a four-way bet among these four
intervals, which one would you prefer?

The outside intervals look better again, so perhaps I need to move the 12%th and 87%th
percentiles. Let’s see- suppose they were 78 and 97. The 97 seems okay, but the 78 might still be a
little high. I guess 77 and 97 would make me indifferent.

Fine. Then your interval estimate with probability 50% is from 83 to 95, and your interval
estimate with probability 75% is from 77 to 97. It is interesting that the boundaries are spread
out asymmetrically around 92 degrees. The lower bound of 83 degrees has been pushed much
farther away than the upper boundary of 95 degrees.

I was thinking about that when making my estimates. A weak cold front is moving in from the
northwest. It may reach here early tomorrow morning, but it may take until tomorrow night. If
it gets here before morning, then it won’t get very warm tomorrow. But, if the front is delayed,
then the max temperature should be around 92 degrees.

Then that explains why the upper boundary is so much closer to 92 degrees. There is little
chance for any change in conditions to produce much of an increase above your median of 92.
That's right. Looked at that way, these intervals display a lot of what I know about tomorrow’s
max temperature. They don’t indicate why the max temperature could drop but they certainly
show that it can. I wouldn’t expect to alwaye have such asymmetric intervals when compared
with the median, but it sure seems reasonable in this particular situation.

For convenience, here i8 a summary of the procedure.
First, consider the maximum temperature in degrees
Fahrenheit (on the day shift, this refers to tomorrow’s
maximum; on the midnight shift, this refers to today's

5. Determine your 87'%th percentile.

6. Look at the resulting intervals to make sure that
they agree with your judgments, making any changes
you deem necessary.

maximum) and complete the following steps:

1. Determine your median.

2. Determine your 25th percentile.
3. Determine your 12%th percentile.
4. Determine your 75th percentile.

Next, consider the minimum temperature in degrees
Fahrenheit (on both the day and midnight shifts, this
refers to tonight’s minimum), and repeat the six steps
listed above.
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