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ABSTRACT

In this paper we discuss the wave-resolution properties of the Fourier approximations of

a wave function with discontinuities. It is well known that a minimum of two points per
wave is needed to resolve a periodic wave function using Fourier expansions. For Chebyshev
approximations of a wave function, a minimum of ir points per wave is needed [3]. Here we
obtain an estimate for the minimum number of points per wave to resolve a discontinuous

wave based on its Fourier coefficients.

In our recent work on overcoming the Gibbs phenomenon, we have shown that the Fourier

coefficients of a discontinuous function contain enough information to reconstruct with expo-

nential accuracy the coefficients of a rapidly converging Gegenbauer expansion. We therefore
study the resolution properties of a Gegenbauer expansion where both the number of terms

and the order increase.
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1 Introduction

In [5] (see also [3]), the issue of the number of points required to resolve a wave has been

considered as a measure of the accuracy of a given scheme. In particular it has been shown

that only two points per wave are required if the wave function is approximated by a Fourier

series. This result is almost trivial since the expansion basis contains the wave function. It

is also shown in [3] that if the wave function f(x) = e' is approximated by a trunzated

Chebyshev expansion then a minimum number of 7r points (or, alternatively, number of terms

retained in the expansion) per wave is required. The proof is based on the observation that

if the number of terms in the expansion exceeds this minimum of 7r per wave then the error

decays exponentially (see [3, page 351).

The situation changes when the wave function is discontinuous. As a generic example,

consider the above mentioned function f(x) = eil' ux defined on [-1, 1] where w is not an in-

teger. In this case, the truncated Fourier expansion does not converge at all in the maximum

norm. This is known as the Gibbs phenomenon and there is no meaning to the question of

number of points required to resolve such a wave.

Recently, however, the Gibbs phenomenon has been resolved. In [4] it has been shown

that the first N Fourier coefficients of an analytic, but nonperiodic function contain enough

information on the solution to construct an exponentially convergent Gegenbauer series.

Consequently we are concerned with resolution properties of the expansion in Gegenbauer
polynomials C (x) to approximate a non-periodic wave function f(x) = ei" " where w is not

an integer. We first consider the question of minimum number of points per wave needed

to resolve this function. Two separate situations are considered. The first involves a fixed

A in the Gegenbauer expansion. Note that the Chebyshev expansion is a special case with

A = 0. For this situation our results show that the minimum number of points per wave is

7r, the same as in the special Chebyshev case. In the second situation we assume that -Y = I

is a constant in the Gegenbauer expansion. We show that the minimum number of points

per wave increases with -/ at the boundary x = ±1 (i.e. at the discontinuity of the wave)

and decreases with y at the center x = 0. This second situation corresponds to the case in

which the first N Fourier coefficients of the function are known, since in this case we can

reconstruct the Gegenbauer expansion for -y = '\ constant.
m

In Section 2 we quote some results about Gegenbauer polynomials. In Section 3 we study

the resolution properties of the Gegenbauer expansion of a wave function, first for A fixed

and then for - = 1 constant. Section 4 is devoted to the discussion of how many Gegenbauer

coefficients can be obtained accurately from the first N Fourier coefficients. Here we have

the minimum number of points per (discontinuous) wave to get exponential decay of the
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error. Section 5 brings numerical confirmation for the above results.

We will use A to denote a generic constant independent of all the growing parameters

throughout this paper. The actual value of A may be different at different locations.

2 Preliminaries

In this section we will collect some definitions, equalities and inequalities which will be used

in later sections.

We start by defining the Gegenbauer polynomials C,(x).

Definition 2.1 For A > 0, the Gegenbauer polynomial C,(x) is the polynomial of degree n

that satisfies

(I - x2)A- C,(x)C.(x)dx = 0 k j n (2.1)

with

C.(1) = r(n + 2A) (2.2)
n!r(2A)

The Gegenbauer polynomial C,(x) achieves its maximum at the boundary x = 1 [2, page

2061

IC.(x)l _< C (1) (2.3)

and its value at the center x = 0 is given by [1, page 777]

C2A(o) = (M)-(A + n) C +1(0) -0. (2.4)
n!r(A) ;

The Gegenbauer polynomials thus defined are not orthonormal. The norm of Cn(x) is

given by [2, page 174]

=J( _- x2Cn(x)Cn(x)dx = 1)r(A( (2.5)()n+ A)'

We will also need the following identity, which can be found in [2, page 213]

(i - XT 2 eieizCI(x)dx = r(A) ( ti(l + A)J+A(7rw). (2.6)

Throughout this paper we repeatedly use the Stirling's formula: for any x > 1,
,, +1 - L 3

F(x + 1) < (21r)lx' e eA (2.7)

r(x + 1) _ (2r)'' C (28)

i immm m i n m m mmm~ m , m. = m.. - - - - . . .



We will need the following estimates for the Bessel function Jn(nz) [1, page 362]

( ~i

IJ,+(nz)I , 0<z<I. (2.9)

The following Lemma will be used in conjunction with the estimate in (2.9).

Lemma 2.1

If q(z) and p(z) are defined by

q(z) = p(z) = q(z)+Vy (2.10)q 1) + 71 p z) 2 z'f

where -y 2 0, and the constant c(-f) is defined by

c() = V , (2.11)1 +

then

(1) For 0 < z < 1, q(z) is a strictly increasing function and q(z) < 1;
(2) For 0 < z < c(7), p(z) is a strictly increasing function;
(3) For c(y) < z < 1, p(z) a strictly decreasing function and p(z) > 1. 0

3 Wave Resolution Properties of Gegenbauer Expan-
sions

Consider the non-periodic wave function

f(X) = eii rw=  (3.1)

where w > 0 is not an integer. The Gegenbauer coefficients of this function are defined by

1 2),%- (3.2)-X 2 Cj - 2)iiw (x) d. (3.2)

with h,\ given by (2.5).

Our objective is to find a lower bound on the ratio

r= (3.3)

where w is the number of waves in (3.1) and m is the number of terms in the Gegenbauer

expansion
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m

f.( ) = (C (3.4)
1=0

such that the approximation error using the expansion (3.4) is exponentially small when

m --- 00. The ratio r defined in (3.3) is usually called the number of points per wave. It is

literally the number of points per wave for the collocation case and can be called number of

modes per wave for the Galerkin expansion (3.4)-(3.2). We can then define the regularization

error RE(A, m, r, x) to be

RE(A,m,r,x) = If(x) - f.A(x)1 (3.5)

and ask the question of finding a lower bound r0 = ro(A, x) such that the regularization error

(3.5) is exponentially small for r > r0 when m --+ o.

According to the identity (2.6) and the definitions (3.2)-(3.4), the regularization error

(3.5) can be explicitly expressed as

RE(A,m,r,x) = r(A) ( i'(l+ A)J+A (Ir) Cj'\(x) (3.6)

first we have the following theorem for the case with fixed A.

Theorem 3.1 If A is fixed, then r0 = 7r is a lower bound for the number of points per wave

to obtain exponentially small regularization error for all -1 < x < 1.

Proof: Assume r > 7r. Denote z= and z= . For l> m we have zi < z < 1 and

hence q(zj) < q(z) < 1 according to Lemma 2.1. Take s = I+q(z) < 1 and m big enough so

that (til!A) q(z) < s for I > m. If we define

B(l) = (1 + A) (q(z)) +A F(l + 2A) (3.7)

we have, for 1 > m

B(l + 1) (1 + 1 + A)(1 + 2 A) q(z) s< (3.8)

B(l) (l + A)(l + 1)

We can then start from the explicit formula (3.6) and absorb all the A dependent terms

into the generic constant A to obtain

RE(A, m, r,x) <5 Am-\ E- (1+ A) Jl+,\C C"\(1)
i---m+lr

< Am ( ) [(1 + A)
1=m+l
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00

< Am - A E B(1)
I=m+l

< Am-A B(m)
S 1-s

< Am(q(z)) '+

where we have used (2.3) in the first inequality (2.9) and (2.2) in the second inequality, the

definition of B(1) in (3.7), the fact that q(zi) < q(z) in the third inequality, and (3.8) in the

fourth inequality. This finishes the proof because q(z) < 1. 0

The result of Theorem 3.1 is not surprising; for A = 0 this is simply the known result for

the Chebyshev case [3].

For fixed A, the estimates are essentially the same for the boundary point x = 1 or for

the center point x = 0, since there is only an algebraic difference between Ct'(1) and C/'(0).

However, this algebraic difference becomes bigger when A increases.

For our purpose we are more interested in the case A -, m. This is because we are

interested in the situation where the finite Fourier series of f(x) is given. In [4] we proved

that it is possible to recover uniform exponential accuracy from the finite Fourier series of a

non-periodic analytic function through the use of Gegenbauer expansions with A - m.

Let us now assume that - = I" is a constant. We have then the following theorem.

Theorem 3.2 If y = is a constant, then

(1) The regularization error RE(ym, m, r, 1), at the boundary x = 1, is exponentially

small if r > max(r,, r2) where r, is the unique solution of

( r ) = (2e 7 (l +Q ,))Y (39)
Pr,(I + ) (I 27)1+2y - Q,()

in the region r, > if (3.9) has a solution (i.e., if p(c(y)) > Q,(Y)), or r, =

otherwise. Also, r2 is the unique solution of

q 1r ) +- 1+27 (3.10)

(2) The regularization error RE(nym, m, r, 0), at the center x = 0, is exponentially small

if r > max(r 3, r4) where r3 is the unique solution of

P (1 r ) -= Q3(7) (3.11)

within the region r3 > if (3.11) has a solution (i.e., if p (c(7)) > Q3(7)), or r3 =

otherwise. Here r4 is the unique solution of
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q (3.12)

The functions p(z) and q(z) in (3.9)-(3.12) are defined by (2.10) in Lemma 2.1 and the
constant c(-) is defined by (2.11).

Proof: Denote zi = "' and z = -W = - For 1 > m we have z, < z < c(3) when
r> r, 7T; hence q(zj) < q(z) < - according to Lemma 2.1 and the condition (3.10).
Take s 1+(1+2,() which yields (1 + 2-y)q(z) < s < 1. Hence we can take m big enough

so that for 1 > m,

(1 +(I + 7m)(/+2 - ym q(z) 1 1 I I")-m 1-l (I +- 2)q(z)Y YM( +1 i+( 1 )T-1 1+2t
_< 1+ I + 1 YM (I + 2-y)q(z.) < s < 1

If we now define

B(l) = (1 + -im) (q(z))+"' P(1 + 2-ym) (3.13)

we have for 1 > m

B(I + 1) ( 1 + fm)(l + 2m) q(z) <s < 1. (3.14)B(I) (I + -ym)(I + 1)- "

We can then start from the explicit formula (3.6) to obtain

< r(2rm)(2rm . (l+_ in) (q(z1))1+, [(1+2ym)-E-m m ,1 r(2-m) rm / j=,,+ t M ll!,(

- r(rin) (2 )w 001 B(l)

r(27m) win) =.

where we have used (2.9) and (2.2) in the second inequality, the definition (3.13) and the

fact q(zg) < q(z) in the third inequality, (3.14) in the fourth inequality and Stirling's formula
(2.7)-(2.8) in the last inequality.
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According to condition (3.9) and Lemma 2.1, the number (0+ () is strictly

less than one for r > rl. This finishes the proof for x = 1.

The proof for the center point x = 0 is similar and is thus omitted. 0

REGULARIZATION RESOLUTION
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Figure 1: Minimum number of points per wave as a function of -y. Left: minimum r =

to obtain exponentially small regularization error; Right: minimum R = IN to obtain expo-

nentially small resolution error from Fourier partial sum.

In Figure 1 (left) we show the curves of number of points per wave, r = -, versus yt,
both for resolving the boundary x = 1 (upper line) and for resolving the center x = 0 (lower

line). These were obtained from the results (3.9)-(3.12) in Theorem 3.2. We can see that

the top curve for x = 1 is an increasing function of -y, while the bottom curve for x = 0 is a

decreasing function of y for y > 0.37. At y = 1, we need approximately 7.03 points per wave

to resolve the boundary and 3.51 points per wave to resolve the center. At -f = 5, this two

numbers change to 8.11 and 2.33, respectively. Figure 1 (right) is related to the truncation

error to be discussed in next section.

4 The Truncation Error from Finite Fourier Series

In this section we consider the situation that f(x) = e""Jx is not known and only the first

2N + 1 Fourier coefficients f(k) are given. We would like to recover, within exponential

accuracy at all points in -1 < x < 1, the finite Gegenbauer expansion fA(z) of f(x) as

defined by (3.4). This, together with the results in the previous section, will establish the

number of points per wave for resolving discontinuous waves based on its Fourier partial sum

through Gegenbauer polynomials. The result in this section parallels the general theorems

in [4].
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The Fourier partial sum of the discontinuous wave function f(x) = ei"rx is given by

N

fN(x) = , f(k)eikrx (4.1)
k=-N

where the Fourier coefficients f(k) are defined by
1,1

f(k) = -] f(x)e-Ikldx. (4.2)

Assume that the first 2N + I Fourier coefficients f(k), Jkl :- N and hence also the

Fourier partial sum (4.1) are known but the function f(z) is not. We thus do not know the

exact Gegenbauer coefficients f'(l) of f(x) defined by (3.2), but only the approximate ones

obtained from the Fourier partial sum fN(x), which we denote by §'(l)

X(l) = h J -2),IfN(x)C k(x)dx. (4.3)

Notice that §'(l) depends on N.

We now define the truncation error TE(A, m, N, x) to be

TE(A,m, N, x) = EYfA(l) - §A(l))CA(X). (4.4)
1=0

Notice that w or r = m is not an explicit parameter in our definition of the truncation

error. The estimates we obtain later will be uniformly valid for all W.

In the next theorem we shall bound the truncation error in terms of N, the number of

given Fourier coefficients, m the number of terms in the Gegenbauer expansion, and A.

Theorem 4.1 The truncation error at the boundary x = 1 satisfies the estimate

TE(A,m, N, 1) A (m + A)r(m + 2A)I(A)( 2 (4.5)
(m - 1)!r(2A)

At the center x = 0, the truncation error satisfies

TE(A,m,N,0) ! A (m+A)( 2 + (4.6)

If A = ym and m = /N where -y and # are positive constants, then the truncation error

satisfies

TE(-f/N,3N, N, 1) < AN 2 ( (+ 2 -y ) 1 N (4.7)

at the boundary x = 1 and

8



/ fON

_ \ (ie), ) (4.8)

at the center x = 0.

Proof: Since

f(x)- fN(x) = j f(n)einiz (4.9)
InI>N

and if(n)I < 1 according to the definition (4.2) with f(x) = e'- ', we can estimate the
truncation error as follows

TE(A,m,N,x) < (m + 1) max I(f'(l) - §'(1))Ct (X)j

= (m+1)max E f(n)C'(x) (2t L
0 I<1nI>N (,

= (m + 1) max Fj f(n)C'(x)r(A) (3 i'(l + A)J+.\(rn)
o<<M n>NY

< Amr(A) ( max (1 + ,)IC/(x) . (4.10)

In the second step we have used (4.9), the definition of fA(l) in (3.2) and that of §(l) in

(4.3), in the third step we have used the equality (2.6), and in the last step we have used

the facts Jf(n)j _ 1 and IJ,(x)l < 1 for all x and v > 0 [1, page 362].

For the boundary point x = 1 we can then proceed as follows

TE(A,m,N, 1) < Amr(A) 2 max (I + A)C1)(1)
U)r~ 0<1<m

r (A) 2" (1 + A)r(l + 2A)
- (2A) max

<A(m, + A)r(m + 2r()( 2 (411A~mn - i - 7 _ 41

where in the second step we have used the formula (2.2) for Ci'(1), and in the last step
we have used the fact that , ) is an increasing function of 1. The result in (4.5) is

thus proven. Some simple algebra and the use of Stirling's formula (2.7)-(2.8) easily produce

(4.7). The estimates (4.8) and (4.10) at the center point x = 0 can be obtained in a similarly

fashion and the detail is thus omitted. 0

Since our estimates of the truncation error, (4.7) and (4.8), do not depend on the wave
number w or r = 2, the minimum number of points per wave for exponential convergence,
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defined by R is obtained by using the r = - derived in Theorem 3.2 and the largest
in (4.7) or (4.8) such that the factors on the right hand sides which are being raised to

power N are still less than one. This gives the following theorem.

Theorem 4.2 Assume that the Fourier coefficients

f(k) = 2 J_'l f(x)e- k1tdx

of the function f(x) = e "' z are known for-N < k < N. Let §(),0 < 1 < m be the
Gegenbauer expansion coefficients of fN(x) EN )ik1! 4.= k=-N ](kei ' given by (43). Define the

number of points per wave by

2N
R =- (4.12)

and the resolution error by

E(A,m,N,R,x) = f(x)- -f'(l)C1(x) (4.13)
1=0

Then, if A = -ym and m = ON, we have the following results.

(1) At the boundary x = 1, if one uses

2 re7y
<(1 +27)1+2 = B,(-y) (4.14)

and r = ! max(r1 , r 2) as is derived in Theorem 3.2, then the resolution error is exponen-

tially small and bounded as

E('y/N, ON, N, R, 1) < A (N2b N + bN ) (4.15)

wL.ere

bT=(#,(1 + /,~ (1y < , I) + 2,y)l+ 2-Y(___
-\ (2"re-i < 1, b =,(2ey(1 -+ -y)) r(1 +-y) <1.

The number of points per wave R = 2N is estimated by

R > 2 max(r, r2) (4.16)R> B, (-y) (.

where r,, r2 are defined in Theorem 3.2 and B1 (-) is defined by (4.14).

(2) At the center x = 0, if one uses

(1 + 27)r +- B2(y) (4.17)
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and r = m > max(r 3, r4) as is derived in Theorem 3.2, then the resolution error is exponen-

tially small

E(-y N, ON, N, R, 0) < A (N24 + CN) (4.18)

where

T = + 21+-7) (f
\ ] < 1 CR = ( + -f) ,(1 + P <

The number of points per wave R = 2N is estimated by

2 max(r 3 , r4 )B2(-f)

where r3, r4 are defined in Theorem 3.2 and B2(7y) is defined by (4.17).

Proof: This is simply a combination of Theorems 3.2 and 4.1. 0

In Figure 1 (right) we show the curves of number of points per wave, R =2 versus -,

both for resolving the boundary x = 1 (upper line) and for resolving the center x = 0 (lower

line), obtained from the results (4.16) and (4.19) in Theorem 4.2. We can see that the top

curve for x = 1 achieves its minimum at around -y = 0.9. and the bottom curve for x = 0

is an increasing function of -t. We emphasize that these results are obtained with different

03 for x = 1 and x = 0 (from (4.14) and (4.17) respectively). In practice a single # should

be used since one would like to resolve both the boundary and the center simultaneously. If

the 0/ for x = 1, given by (4.14), is also used for x = 0, the minimum number of points per

wave, R, to resolve the center x = 0, would be described by the middle curve in Figure 1

(right). For the single # chosen according to (4.14), at -f = 1, a minimum of 22.2 points per

wave is needed to resolve the boundary x = 1, and a minimum of 11.1 points per wave is

needed to resolve the center x = 0.

5 Numerical Results and Conclusions

In this section we perform numerical calculations to demonstrate the theory developed in

previous sections. We use the discontinuous wave function

f(x) = cos(7rw(x + 1)) (5.1)

for various wave numbers w and report both the regularization error defined by (3.5) and

the resolution error defined by (4.13).

11



We implement the method in the following way. The exact Gegenbauer coefficients of

f(x), which are needed for the regularization error, are computed using (2.6). The approx-

imate Gegenbauer coefficients '(l), defined in (4.3), which are needed for the resolution

error, are computed using the following formula

60J(0) + F(A)i'(l + A) E Jl+A(7rk) (2if(k) (5.2)
0<lkl<5N

where f(k) are the Fourier coefficients of f(x) defined by (4.2). This formula can be easily
derived from the definition of '(1) in (4.3) and the integration formula (2.6). We compute

the Bessel function J,(x) using an IMSL routine. The approximation to f(x) is obtained by

directly summing (3.4) for the regularization error, or by directly summing
rt

g.(x) = E§,(1)C/A(x) (5.3)
1=0

for the resolution error. The Gegenbauer polynomials Cj'(x) are computed by the formula

( r(k + A) r(i- k + A) cos(l - 2k)o (5.4)

c(cos) = k!r(A) (I - k)! F(A)
k--O

which can be found in [1, page 1751.
We remark that the implementation techniques described above are subject to roundoff

effects for large A and m. A better way of implementing the method through Chebyshev

polynomials is currently under investigation.

In Figure 2 we show the errors, in a logarithm scale, at the discontinuity x = I for w = 1.4,

2.4, 3.4 and 4.4. We choose -y = - = 1 in this illustration. On the left, the regularizationm

error RE(m, m, m, 1) is shown as a function of m, the number of terms retained in the

Gengenbauer expansion. On the right, the resolution error E(, h, N, 2-N, 1) is shown as a

function of 2N, to total the number of terms in the Fourier expansion. Here we take 13 = 0.5
which satisfies (4.14). We can see that the errors are order 0(1) until r = or R = 2N

reaches the critical values obtained in Theorem 3.2 and in Theorem 4.2, after which the

errors drop exponentially. Figure 3 shows the same result but for the center point x = 0.

12
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FROM LEFT TO RIGHT i FROM LEFT TO RIGHT
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Figure 2: Logarithmic error at the discontinuity x=1fr(.)wt .,24 . n
101

C
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M I z 2

Figure 3: Same as Figure 2 but for the center point x = 0.
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