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ABSTRACT DnyC QUALM'XfflpErD a

Turbulent channel flow and homogeneous shear flow have served as basic building block
flows for the testing and calibration of Reynolds stress models. In this paper, a direct
theoretical connection is made between homogeneous shear flow in equilibrium and the log-
layer of fully-developed turbulent channel flow. It is shown that if a second-order closure
model is calibrated to yield good equilibrium values for homogeneous shear flow it will also
yield good results for the log-layer of channel flow provided that the Rotta coefficient is
not too far removed from one. Most of the commonly used second-order closure models
introduce an ad hoc wall reflection term in order to mask deficient predictions for the log-
layer of channel flow that arise either from an inaccurate calibration of homogeneous shear
flow or from the use of a Rotta coefficient that is too large. Illustrative model calculations
are presented to demonstrate this point which has important implications for turbulence

modeling.

*Research was supported by the National Aeronautics and Space Administration under NASA Contract
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1. INTRODUCTION

Turbulence models have been calibrated and tested using a variety of benchmark tur-

bulent flows among which homogeneous shear flow and channel flow have played a central
role. Typically these two flows are treated as separate tests that are completely indepen-

dent. Starting with the work of Launder, Reece and Rodi1 , the pressure-strain correlation

of turbulence - which forms a pivotal part of second-order closure models - has been cal-

ibrated based on the equilibrium Reynolds stress anisotropies in homogeneous shear flow.

An ad hoc wall reflection term is then added to the pressure-strain model to yield good

predictions for the log-layer of fully-developed turbulent channel flow. There are several
disturbing features about the resulting model: the wall reflection term plays an important

role far into the interior of the channel and it depends in an empirical manner on the normal

distance from the wall. The latter deficiency makes it virtually impossible to systematically

apply second-order closure models to turbulent wall-bounded flows in complex geometries
containing sharp corners. This, as well as other near-wall problems, has impeded progress

in the applicaticn of second-order closures to the turbulent flows of technological interest.

In this paper, it is shown that a second-order closure model will yield the same equilibrium

Reynolds stress anisotropies in homogeneous shear flow and in the log-layer of channel flow
if the slow pressure-strain correlation is represented by a Rotta 2 type of return-to-isotropy

model with a coefficient of one. Since experiments3 '4 indicate that the Reynolds stress

anisotropies for these two problems are close to one another, it follows that if a second-order
closure model yields good equilibrium values for homogeneous shear flow it will also yield

good results for the log-layer of channel flow provided that the Rotta coefficient is not too far

removed from one. Illustrative calculations will be presented for four independent pressure-

strain models - which include the models of Launder, Reece and Rodi1 , Shih and Lumley5 ,

Fu, Launder and Tselepidakis 6 , and Speziale, Sarkar and Gatski7 - in order to demonstrate

this point. Some rather surprising results are obtained concerning the performance of these

models in channel flow. In addition, a crucial compatibility condition for the turbulent

diffusion coefficient in the transport equation for the dissipation rate is elaborated on. The
important implications that these results have for the development of improved second-order

closure models are discussed in detail.

2. THEORETICAL ANALYSIS

We consider incompressible turbulent flows for which the Reynolds-averaged Navier-
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Stokes equations take the form

U-t + -+ V.u - (1)aT Oxj7 axia,
V-U=o (2)

where Ui is the mean velocity, 5 is the mean kinematic pressure, ij = u~u is the Reynolds

stress tensor, and v is the kinematic viscosity of the fluid. Here, the Einstein summation

convention applies to repeated indices, an overbar represents an ensemble mean, and a prime

represents a fluctuating quantity. The Reynolds stress tensor is a solution of the transport

equation
8

D r0 j O-j OLuj +D T i = k - + 6, - VT (3)
_5T ~ ~ 01kak3 ij

at high Reynolds numbers where

Ik = a Oz O;' , = v--Oz z
~ax1 7ia~ xa , , x ix

pDT =(UaUJ7

are, respectively, the pressure-strain correlation, turbulent dissipation rate, and turbulent
diffusion term; DIDr = /aOt+ .V denotes the mean convective time rate and Kolmogorov's

assumption of local isotropy has been invoked.

The two equilibrium turbulent shear flows to be considered are unidirectional with the
mean velocity gradient tensr

-xj $ 6 , 6 2 (4)

where S = d-/dy (see Figure 1). For homogeneous shear flow, S is a constant, whereas for

the log-layer of turbulent channel flow, S = ur/Ky where u, is the friction velocity and K is
the von Karmin constant (in more familiar terms, u+ = (I / K)fn y+ + 5 in the log-layer where

U+ = U/u and y+ = yu./v). In channel flow, the mean convective terms are identically

zero and within the log-layer, turbulence production equals dissipation (P = e) and, hence,

the molecular and turbulent diffusion terms in (3) can be neglected 9. Consequently, the

anisotropy tensor bij = (Tij - !K6ij)/2K and shear parameter SK/e (where K = is
the turbulent kinetic energy) achieve constant equilibrium values in the log-layer that are

independent of the boundary conditions. In homogeneous shear flow the molecular and

turbulent diffusion terms in (3) are identically zero and each component of the Reynolds
stress tensor grows exponentially at the same rate so that the anisotropy tensor bij and shear

parameter SK/ achieve equilibrium values that are independent of the initial conditions".
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It is thus clear that the structural equilibrium in homogeneous shear flow and the

production-equals-dissipation equilibrium in the log-layer of turbulent channel flow are each

characterized by the constraints SKI, = constant and bi3 = constant. The latter constraint

is equivalent to Dbii/Dt = 0, or D'rij ( T- 1 (5

where P - -rl 2S is the turbulence production. The substitution of (4) and (5) into (3),
with vanishing turbulent diffusion terms, yields the equation

rij (P Ti2. Tj2 £ 1ij 2 e 6
T- -1f - K6 i - -- " + _§_ - 3§6(6)

which is valid for an equilibrium homogeneous shear flow and for the log-layer of channel

flow. We will consider second-order closure models where
nlij = j( + ( (7

and the slow pressure-strain correlation IIls ) is represented by a Rotta 2 type of return-to-

isotropy model

lilS) = -C, (rj - 2K6,j) (8)

whereas the rapid pressure-strain correlation 1 0 ) is modeled in the general form

ri(.) = g. i,,,(b)&u-kt  (9)

Here, both the Rotta coefficient C1 and the fourth-rank tensor Mj3 k1 can be functions of bij

(see the Appendix).

If we make use of the fact that

P r12 SK (10)
K e

along with (8)-(9), it is straightforward to show that (6) can be written in the equivalent

form

T ,, ' 2 2 T 2 2:, ((2 ) (!1) ( P)-' 0 (11)

K 6 - 6j, + n1. + (C, - 1)J K ,K i6 K 0K()
where l(R) M ij2(b) is specified by the pressure-strain model chosen. Hence, since

;o/K is directly related to bij, it then becomes clear that a closed set of nonlinear algebraic
equations for the non-zero components of the anisotropy tensor (b11,b12,b22 and b6) are

obtained once P/c is specified. Since P/c = 1 for the log-layer of channel flow and P/C ; 1.8
for an equilibrium homogeneous shear flow, it is clear that the same equilibrium values will
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be obtained for these respective problems only when the Rotta coefficient C, = 1 (the limit

in which the dependence of bij on P/e is eliminated in (11)). It is also clear that this result

carries over to the more general tensorially quadratic return models of the form7

= - 2C,-bj + 6(C1 - I )e (bikbk1 - jbk1bkt5Ii) (12)

where the coefficient C, can be a function of the second and third invariants of bij. This leads

us to the central result of this paper: A second-order closure model will yield approximately

the same equilibrium values for hi) in homogeneous shear flow and in the log-layer of channel

flow provided that Rotta coefficient is sufficiently close to one. In the next section, model

calculations will be presented to illustrate that with a Rotta constant C, as large as 1.7 it is

possible to obtain good results for both channel flow and homogeneous shear flow without

an ad hoc wall reflection term.

3. ILLUSTRATIVE MODEL CALCULATIONS

Calculations will now be presented for four pressure-strain models: the Launder, Reece

and Rodi (LRR) model', the Shih-Lumley (SL) model5 , the Fu, Launder and Tselepidakis

(FLT) model6 , and the Speziale, Sarkar and Gatski (SSG) model7 (see the Appendix for more

details on the models). The equilibrium values corresponding to these models are obtained

by substituting a given pressure-strain model into (6) and solving the resulting nonlinear

algebraic equations numerically after (10) is made use of to eliminate SKI,. For channel

flow, P/- is set equal to I whereas for homogeneous shear flow, P/e is taken to be 1.8. In

Table 1, the equilibrium Reynolds stress anisotropies bis and shear parameter SK/c obtained

from the various models are compared with the experimental data of Tavoularis and Karnik3

for homogeneous shear flow. Several observations concerning these results are noteworthy:

(a) the SSG and FLT models are, by far, in the best agreement with the experimental data

for homogeneous shear flow, (b) the LRR model does not do as well since it was calibrated

based on the older and less complete experimental data of Champagne, Harris and Corrsin"l,

and (c) the SL model performs the worst since, in its calibration, homogeneous shear flow

was not directly accounted for. In Table 2, the corresponding model predictions for the

log-layer of channel flow are compared with experimental data4 (here, an average is taken of

the log-layer values which vary somewhat with y+). Apparently, only the SSG model yields

equilibrium values that are in close range of the experimental data. The FLT model - which

performs well in homogeneous shear flow - does not do quite as well in channel flow. This

is a direct consequence of the theoretical result derived in the previous section. If a model

yields accurate results in homogeneous shear flow, good results will automatically follow for

the log-layer of channel flow provided that the Rotta coefficient is sufficiently close to one.
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In the SSG model, the Rotta coefficient C, = 1.7 is sufficiently close to one to guarantee

that
(C, - 1)libil. IIb211 « (13)IIn, I /

for all i and j where 11 jj is any suitable norm (this is a sufficient condition, that follows
directly from (11), which guarantees that results for bij in homogeneous shear flow and
channel flow will be close to one another as indicated by experiments). On the other hand,
due to its nonlinear dependence on the invariants of bij, the Rotta coefficient C, ; 3 for
the FLT model which explains why the normal Reynolds stress anisotropies in channel flow
differ by as much as 25% from their counterparts for homogeneous shear flow. The same is
true for the SL model since its Rotta coefficient C, is approximately 5 in homogeneous shear
flow (however, unlike the FLT model, the SL model renders inaccurate predictions for both
homogeneous shear flow and channel flow). The LRR model has a sufficiently small Rotta
coefficient C1 - 1.5 so that the deviations between its predictions for bij in homogeneous

shear flow and in channel flow are not fatal. The problem with this model is that it was
not optimally calibrated for homogeneous shear flow - a deficiency that is tied to the fact
that this model was developed before the more accurate experimental data became available
which clearly indicated that production exceeds dissipation. In the calibration of the LRR
model, the production was set equal to the dissipation for homogeneous shear flow1 .

Some comments are in order concerning how these results compare with the more de-
tailed model calculations of homogeneous shear flow by Speziale and co-workers7' 10,12 and
the recent systematic calculations of channel flow by Demuren and Sarkar' 3 . For these more
complete calculations, the Reynolds stress transport equation (3) must be supplemented
with a modeled transport equation for the turbulent dissipation rate 6 which is typically

taken to be of the form'
De e 2 a K Oe

=G P-Ce, 2 ± - ( 0 Ki e'\ (14)Dt K K- c -( oxj )

where Cei, C,2 and C, are constants whose values vary from one model to the next. For
homogeneous shear flow, the diffusion terms in (14) vanish. Since, DK/Dt = P - E for any
homogeneous turbulence, it then follows that an equilibrium state is achieved where

P C, 2 - (15)

in the limit as t - co (see Speziale and Mac Giolla Mhuiris' 0 ). Hence, the equilibrium values
for the various models given on Table 1 are identical to those that would be obtained from full

Reynolds stress transport calculations using the model (14) with (C,2 - 1)/(C, - 1) = 1.8.
Since most of the models do not employ precisely the same values for Cj, and C,2, there
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are some small differences between the equilibrium values displayed in Table 1 and those
published previously7"0 " 2 . However, the calculations presented herein for homogeneous shear
flow actually form a more objective basis for the comparison of Reynolds stress models since
P/- is set to a common experimental equilibrium value and the calculations are then freed
from dependence on the model chosen for the turbulent dissipation rate.

There is also a compatibility relation for the log-layer of channel flow that needs to be
discussed. Since in the log-layer du+/dy+ = -+ = 1/cy+ and bij as well as K are constant,

it follows that
c= 8(C , -C)b 2 (6

K2M2+ 2)6

for the modeled dissipation rate equation to be consistent. Full Reynolds stress calculations
of channel flow with models that satisfy the consistency constraint (16) will be in close
approximate agreement wi'h our calculations. The minor differences between the equilibrium
values given in Table 2 based on our log-layer analysis and those obtained by Demuren and

Sarkar"3 based on full Reynolds stress calculations are due to turbulent diffusion effects and
the fact that some of the models considered herein violate constraint (16). Since Ce2 - C',

is in the range of 0.40 - 0.45 for most of the commonly used models, it follows that in
order to yield a von Kirmin constant of r. = 0.41 (with the approximate log-layer values
of b12 ; -0.15 and b22 , -0.14), the value of C, chosen should be in the range of 0.16

- 0.18. This constraint should be made use of more carefully in the future formulation of
second-order closure models.

Finally, some comments are in order concerning the wall reflection term that is added
to many pressure-strain models in second-order closures to yield acceptable predictions for
the log-layer of turbulent channel flow. Typically, the wall reflection correction H- is of the

general form'
l~ ~ j [ C l _ ( r j _ 2) -t -R ) K 3 / 2

rp I- li
[C. (ri -bij+ C2 M(17)

where VT) is directly related to the rapid pressure-strain model in the absence of walls, y is
the distance normal to the wall, and C,l and C, 2 are empirical constants. Since

K 3 /2 - +cK3 / 2 ,z 2.5 (18)

Eli

in the log-layer, and since C,,, is typically chosen to be in the range of 0.1 - 1.0, it follows
that the wall reflection term makes a significant contribution to the slow pressure-strain
correlation (this needs to be the case for many pressure-strain models due to their poor

performance in channel flow as shown in Table 2). The problem with this is clear. At high
Reynolds numbers the log-layer extends far into the interior of the channel. To have an
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ad hoc correction - that depends on the normal distance from the wall - play a significant
role far into the interior of the fluid is dangerous. It seriously diminishes the possibility of

applying these models in complex geometries with corners where the normal distance y from

the wall is not uniquely defined.

4. CONCLUSIONS

A direct theoretical connection between the log-layer of turbulent channel flow and ho-
mogeneous shear flow in equilibrium has been established. These flows have traditionally

been treated as being independent tests since in the former flow there is a production-equals-

dissipation equilibrium, with bounded turbulent kinetic energy and dissipation, whereas in

the latter flow, production exceeds dissipation.so that the turbulent kinetic energy and dis-
sipation rate grow exponentially with time. However, both flows have a common theoretical

thread that connects them: the anisotropy tensor bij and shear parameter SKI, achieve
equilibrium values that are independent of the initial/boundary conditions. It was shown

that in the limit as the Rotta coefficient goes to one, a second-order closure model will yield

the same equilibrium values for bij in the log-layer of channel flow and in homogeneous shear
flow. Furthermore, it was demonstrated that with a Rotta coefficient C1 as large as 1.7

- which is a value that allows for the collapse of a significant range of return to isotropy

data7 - a model that was calibrated to yield good equilibrium values for homogeneous shear
flow (the SSG model) also performs well in the log-layer of channel flow without ad hoc

corrections. Hence, it appears that a model can be calibrated to perform well in both flows

provided that the Rotta coefficient is not too far removed from one.

The results obtained in this study have important implications for turbulence modeling.

It is rather disquieting how poorly many of the currently popular second-order closure mod-
els perform in the log-layer of turbulent channel flow. These deficiencies have their origin in

two major sources: an inaccurate calibration of the model for homogeneous shear flow or the

use of a Rotta coefficient that is too far removed from one (a state of affairs that has arisen

from the introduction of an empirical nonlinear dependence of C1 on the invariants of bij).

The introduction of an ad hoc wall reflection term to alleviate this problem has seriously
inhibited the ability to apply second-order closure models to turbulent flows in complex

geometries. Since turbulent channel flow is dynamically similar to a two-dimensional equi-

librium turbulent boundary layer - which forms a cornerstone for many practical engineering

applications - it is crucial to get this flow right without ad hoc corrections that make the

model geometry-dependent. The results of this study clearly show that it is possible to do
this. More attention needs to be paid to this issue in the future if second-order closure

models are to have an impact on the calculation of complex wall-bounded turbulent flows.
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APPENDIX

The detailed form of the pressure-strain models considered in this paper are as follows:

Launder, Reece & Rodi Model

flj= -2C,,ebj+ 4 K~gh3 + C2 K (b1k-3,k + bjk3 ,ik

2 bk~ki + C3K(bikWjk 4- bjkik)

where

Ci = 1.5, C 2 =1.75, C3 = 1.31 (A3)

Shih Lumley Model

H,,j = -3ebi, + ± ~j 12asK (bik3,k + bjkSik5

b,35)j ± (2 - 7as)K(bikW k + bjkWik)

(A4)

+ 4K(bibi.3jm + bjibimim - 2bik~kbj

-3bklklbi1 ) + 4 K(bibmWjm + biiblmWim)

where

=2 -t F x(77/--ej2 R + 80.1 mu~ + 62.4(-11 + 2.3111)]} (A5)

F= 1+ 911 +27111 (A6)

II = -ibj III = ibjbk (A7)
24K3
Ret = 4K(A8)

a= 1 (0+4F 2) (A9)
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Fu, Launder & Tselepidakis Model

fl = fhe b,3 + 9 2 c (bikbki - bklbkl~j

+-4K3,, + 1.2K bkg + bj~A - 2j li
5 3

+ 26K(bikWjk + bjAkWiA) + 4-K(bkbk3 1  A 0

+bjkbkI3il - 2bik3k~bIj - 3bk13 kgbi,)

+3K (bikbkiWjl + bjkbklWit) - L4K 8Ibk k

+bjkWlk) + 12 (bikbkiWmbrit + bjkbAIt~lmibmi)]

where

,1= 12011F 1 2 + 2F1 /2 - 2, /#2 = 1441I1 (All)

Speziale, Sarkar &Gatski Model

1i, = -(2Cce + CI*P)b,, + ce (bikbk, - bklbk16i3) + (C3 - C;II)K 3',,
(A12)

+C4K (bik3'k + bjk3 ik - 2bgkb + CsK(bikW& + bjAkWik)

where
C, = 1.7, c;* = 1.80, C2 =4.2 (A13)

C3= 4-C=130 C4 = 1.25 (A14)

Cs = 0.40, 116 = bibi, (A 15)



Equilibrium LRR SL FLT SSG Experimental
Values Model Model Model Model Data

bil 0.152 0.120 0.196 0.218 0.21

b12 -0.186 -0.121 -0.151 -0.164 -0.16

b22  -0.119 -0.122 -0.136 -0.145 -0.14

b33 -0.033 0.002 -0.060 -0.073 -0.07

SKI, 4.83 7.44 5.95 5.50 5.0

Table 1. Comparison of the model predictions for the equilibrium values in homogeneous

shear flow (P/,- = 1.8) with the experimental data of Tavoularis and Karnik3.

12



Equilibrium LRR SL FLT SSG Experimental
Values Model Model Model Model Data

bil 0.129 0.079 0.141 0.201 0.22

b12  -0.178 -0.116 -0.162 -0.160 -0.16

b22 -0.101 -0.082 -0.099 -0.127 -0.15

b33 -0.028 0.003 -0.042 -0.074 -0.07

SKI, 2.80 4.30 3.09 3.12 3.1

Table 2. Comparison of the model predictions for the equilibrium values in the log-layer of

turbulent channel flow (P/, = 1) with the mean experimental data of Laufer4 .

13



y
(a) Homogeneous Shear Flow

e vet bij, Skie ^,constant dy=

->
-Vdl x

z-

(b) og-Lyer f ChnnelFlo
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T p
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Figure 1. Schematic of the equilibrium turbulent flows: (a) Homogeneous shear flow and
(b) log-layer of channel flow.
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